University of

"1l Kent Academic Repository

Marr, Stefan (2021) Actors! And now? An Implementer's Perspective on
High-level Concurrency Models, Debugging Tools, and the Future of Automatic
Bug Mitigation. In: 11th ACM SIGPLAN International Workshop on Programming
Based on Actors, Agents, and Decentralized Control, AGERE!'21, 17 Oct

2021. (Unpublished)

Downloaded from
https://kar.kent.ac.uk/94848/ The University of Kent's Academic Repository KAR

The version of record is available from
https://2021.splashcon.org/details/agere-2021-papers/8/Actors-And-now-An-Implementer-s-Perspective-c

This document version
Presentation

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/94848/
https://2021.splashcon.org/details/agere-2021-papers/8/Actors-And-now-An-Implementer-s-Perspective-on-High-level-Concurrency-Models-Debug
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

University of

Kent

Actors! And now?

An Implementer's Perspective on
High-level Concurrency Models,
Debugging Tools,
and the Future of Automatic Bug Mitigation

THE

ROYAL
SOCIETY

Engineering and
Physical Sciences Stefan Marr
Research Council 17 October 2021

Got a Question?
Feel free to interrupt me!

We're Looking for a Postdoc! fe] o Wiy

Project CaMELot: Catch and Mitigate
Event-Loop Concurrency Issues

University of https://stefan-marr.de/2021/02/open-postdoc-
I<(=nt position-on-language-implementation-and- ,

concurrency/

Outcomes of Project MetaConc
and work by

VRIJE
UNIVERSITEIT
BRUSSEL

fwo

Research Foundation
Flanders
Opening new horizons

C. Torres Lopez

E. Gonzalez Boix

H. Mossenbock

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

LLIF

Der Wissenschaftsfonds.

Actors! What are Actors?

43 Years of Actors: A Taxonomy of
Actor Models and Their Key Properties

Joeri De Koster Tom Van Cutsem Wolfgang De Meuter

Vriie Universiteit Brussel Nokia Bell Labs Vriie Universiteit Brussel

 Many different variants

e For the 50 Years’ Edition:

— Which model is good for what?
* Suitable problems/applications
* Unsuitable problems per model

Communicating Event Loops

Concurrency Bugs are Common in

Event Loop Systems

ﬂUdQ 53 pro!ects, 57 issues - 2 studies
12 projects, 1000 potential issues

12 projects 1 study
A akka 53 concurrency issues

=y Websites in top 500 ,‘_J.L‘,;,
E] =1-10 concurrency issues pe W'
Tip (the
8-27 apps Iceberg
ans301> =2-20 concurrency issues pe
c 6 projects 1 study

35 known event races

How to get rid
of all these bugs?

DEBUGGING ACTORS WITH
SUITABLE BREAKPOINTS/STEPPING

Actor Breakpoints/Stepping

prom := aResult <-: get.

prom whenResolved: [:r |
r println

1.

Actor A

10

Actor Breakpoints/Stepping

msg send

prom := aResult get.

prom whenResolved: [:r |
r println

1.

Actor A

11

Actor Breakpoints/Stepping

msg receive

prom := aResult get.

[:r |

prom whenResolved:

r println

1.

Actor A

class Result = ()(

public get = (

@ | result |
result := 42.
N result

)

Actor B
12

Actor Breakpoints/Stepping

promise resolver

prom := aResult get.

class Result = ()(

public get = (

prom whenResolved: [:r | | result |
r println result := 42.
1. 3" result
)
)

Actor A Actor B
13

Actor Breakpoints/Stepping

promise resolution class Result = ()(

prom := aResult get.

public get = (
prom whenResolved: [:r |® | result |

r println result := 42.

]. N result

)

)

Actor A Actor B
14

Actor Breakpoints/Stepping

class Result = ()(
prom := aResult <-: get. gﬂﬂ;ﬁfc
public = (
prom whenResolved: [:r | @ | Pesult |
r println result := 42.
]. @”" result
)
)

Actor A Actor B
15

Actor Breakpoints/Stepping

class Result = ()(

prom := aResult <-: get.
romise resolution public get = (
prom |[whenResolved:| [:r | | result |
Mr println result := 42.
]. N result
)
)

Actor A Actor B
16

Apgar: A Debugger Made for Actor Programs

[N) somnsProject - PythagorasCalculator.ns

somnsProject = src = userStudy = math & i#PythagorasCalculator.ns Ly A o PythagorasCalculatorns v b 2% W Gt ¥ vV A o Q o D
E Project v € = = & — 2 PpythagorasCalculator.ns

& v ™ somnsProject ~/GitHub-repositories/IntelliJ/proc 3)(v
L] > .idea 35

public computePerimeter = (

v 4 | sideA sideB squareA squareB perimeterPP |
5 q
experlments perimeterPP:: actors createPromisePair.
> tutorial
v userStudy X
N flightBooking sideA:: 1 + (rand next % numberStudents).
v mmath ‘ sideB:: 1 + (rand next % numberStudents).

#4 PythagorasCalculator.ns

> orderPurchase 2 squareA:: math M square: sideA. ﬂ
= description squareB:: math <-: square: sideB.
> ™ test [somnsProject] test sources root
= log.txt 5 squareA, squareB whenResolved:[:squares |
a somnsProject.iml | squareSumP hypotenusePromise |
> L LD squareSumP:: math <-: add: (squares at: 1) and: (squares at: 2).
© Scratches and Consoles .
hypotenusePromise:: squareSumP <-: sqrt.
hypotenusePromise whenResolved:[:sideC |
| perimeterPromise |
Debug: * PythagorasCalculator.ns -
(4 Debugger Console 2 * 1T 55 55 o I~ - =
Frames coo Actors A Turns Variables £ Mailbox Sentbox

e}

What’s the Problem? Interrogating Actors to Identify o umememomsuummo o
the Root Cause of Concurrency Bugs

Carmen Torres Lopez Louise Van Verre Elisa Gonzalez Boix
ctorresl@vub.be Louise.Van.Verre@vub.be egonzale@vub.be
Vriie Universiteit Brussel Vriie Universiteit Brussel Vriie Universiteit Brussel

@) Event Log
LF UTF-8 4spaces [master tu @

Carmen’s presentation is in

about 5.5h here at AGERE
17

Kompos Architecture

Interpreter

>0=

https://stefan-marr.de/papers/dls-marr-et-al-concurrency-agnostic-protocol-for-debugging/

Kémpos Protocol

The “Magic” Bit

Debugger
Ul

Apgar or
Kémpos Ul

18

The Kompos Debugger

A\t Stefan

i D Kompos Debugger X \\ \

*master C | @ localhost:8888/index.html * OX B 6 OSSN

Program core-1lib/KomposDemo.som
Reconnect > Il W 3} ~ &

2017-03-28T21:42:17.243: [WS] close
2017-03-28T21:42:00.669: Send breakpoints: 0
2017-03-28T21:42:00.668: [WS] open

Kensington

Coffey Stre

https://stefan-marr.de/2017/10/multi-
olncs ey paradigm-concurrent-debugging/

Beacon Cou Platform 387@52
IR AR | TR WK

Beaver Stre

ReportActor AAcalculateSumOfwithfrominto@386@12@387@52

v laaleam. 1. % 1. WG 2 leal=l ol M o

Even with better debuggers,
we’ll still have concurrency bugs
In our actor systems...

Maybe, just maybe!

Maybe Actors aren’t the best
choice for every problem?

Maybe there are no Silver Bullets?

/\\ Locks, Monitors, ...

/\ Fork/Join
/\ Transactional Memory

22

Building an
Online Sales-Data Processor

{ item" "beer",
prlce 5.5,
"quantlty': 344,
"customer”: "<Prog>",
"address": "Pleinlaan 2"}

Stream of Sales Events
* Track revenue
* Report sales revenue

over time

23

Subsystems as Asynchronous Activities

Use Actors as Main Abstraction
Event-Loop Model fits Ul and System Paradigms

A @) (.)
{"item": -
"beer", =

M ™| 2 =l
5.5,

—> —> —> |
I SO/ SO/
JSON Input DataStore Report

Actor Actor Actor

24

e Strict consumer/

Parallelize JSON Processing

Using Communicating Sequential Processes
with Channels

producer E
relationship —
Allow for

pipeline E
parallelism <

é)

{"item":
"beer",
"price":
5.5,

G

JSON Input
Actor

JSON Stream

Tokenizer
»

JSON fragment

channel

_
Data Filter o
Result — process

channel JSON token

&L channel

25

Sales Revenue Over Time

based on Large Data Array

r

~

il

G

Parallel Prefix Sum Calculation

Report
Actor

Construct Sum Tree
in parallel

Calculate Prefix Sum
in parallel

with fork/join parallelism

1

2

1

1

2

10

11

How to build debuggers to
support all the Concurrency
Models?

Koumnog: A PLATFORM FOR DEBUGGING
COMPLEX CONCURRENT APPLICATIONS

The Kompos Debugger

A Concurrency-Agnostic Protocol for Multi-Paradigm
Concurrent Debugging Tools

Stefan Marr Carmen Torres Lopez Dominik Aumayr
Johannes Kepler University Vrije Universiteit Brussel Johannes Kepler University
Linz, Austria Brussels, Belgium Linz, Austria

stefan.marr@jku.at ctorresl@vub.be dominik.aumayr@jku.at

Elisa Gonzalez Boix Hanspeter Mdssenbock
Vrije Universiteit Brussel Johannes Kepler University
Brussels, Belgium Linz, Austria
egonzale@vub.be hanspeter.moessenboeck@jku.at

https://stefan-marr.de/papers/dls-marr-et-al-concurrency-agnostic-protocol-for-debugging/ 29

Kompos Architecture

SOMy;
Interpreter

>0=

Kémpos Protocol
JSON Web Socket

Debugger
Ul

Kompos Architecture

| Actors | Threads
F/) Deb
> ebugger
SOMy; € O <€ ul
Interpreter Kémpos Protocol
JSON Web Socket

Agnostic of And we have
Concurrency two Uls! Apgar
Models & Kémpos Ul

Kompos Protocol Metadata

Concurrency

semantics only EntityType

known to id: typeld
name: string

language ////v

>~

ActivityType DynamicScopeType
icon: string
BreakpointType SteppingType

name: string
label: string
applicableTo: Tag|]

name: string
label: string
applicableTo: Tag|[]
activities: ActivityType|[]
scopes: DynamicScopeType]|]

32

Kompos Protocol Messages

SetBreakpoint

location: Coord
type: BreakpointType

Debugger Ul just

“lists” available
types

DoStep
activityId: id
type: SteppingType

Stopped

activityId: id
location: Coord
actType: ActivityType
scopes: DynamicScopeType]|]

33

A Model-Agnostic Debugger:
Example Channel Breakpoints

channel out channel 1in

) WP (3)
Qurite:] 42,

Process A

“just” source locations and ids!

Ul doesn’t need to know these
concepts!

Debuggers can be Great for High-level
Concurrency Models!

s s [Toeb promise resolver
ebugger promise resolution
< oF Ul promlwhenResolved:l [:r |
Kémpos Protocol r println J.
Make tools agnostic Offer the Key Features

as Breakpoints/Steps

?

.
/) Y
% | I l @ :
. % ad § .

NON-DETERMINISM MAKES FOR
UNHAPPY DEBUGGERS

One Solution: Record & Replay

C B A
* Record
event order EEE E

————

B C
* Replay EE A
reorder to fit cle E

—_—

Capturing High-level Nondeterminism in Concurrent Programs for Practical Concurrency
Model Agnostic Record & Replay D. Aumayr et al. The Art, Science, and Engineering of
Programming, Programming, 2021.

Efficient and Deterministic Record & Replay for Actor Languages D. Aumayr et al.
Proceedings of the 15th International Conference on Managed Languages and

Runtimes, ManLang’18.

How is that going to work
agnostic to concurrency models?

Looking at
Communicating Event Loops

Mailbox The Mailboxes! Mailbox

(mailbox read order)

~

What are the Points of
Non-determinism?

39

Communicating Event Loops

Mailbox

B C

MM

Replay messages in same
order as originally

40

Recording Non-determinism in
Communicating Event Loops

Sender Receiver

Actor

Store to Mailbox Read from
mailbox? E mailbox?

41

For Communicating Event Loops

Sender-side and Receiver-Side
Recording are most interesting bit
“Functionally Equivalent”

with complexity
and performance trade-offs

Overview for Concurrency Models

Passive Entities | Non-
determinism

Communicating Actor Promise, Message order
Event Loops Message per actor
Threads & Locks Thread Lock, Condition Order of lock
acquisitions
Communicating Process Channel Order of
Sequential channel
Processes reads/writes
Software Transaction - Commit order

Transactional
Memory

43

Model Agnostic Framework

i r thr
Instrumented Operation Framework per thread

if (RECORD) { record Thread-local buffers

record(
type, ordering)
} else if (REPLAY) {
Event e = poll()

Trace

Event queues
parser

per activity

Agnostic of
Concurrency Models

Allows us to Record&Replay
a Multi-Paradigm Application

Fork/Join in
here

{"item": 4 =) '
"beer", 5
M || ™
5.5,
—> —> | —>
< I I
JSON Input DataStore Report

| Actor Actor Actor

SOM

SimpleObjectMachine N: ;

SOM,: A NEWSPEAK FOR
CONCURRENCY RESEARCH

Newspeak: newspeaklanguage.org
SOMys: github.com/smarr/SOMns

®

Performance: Baselines

Runtime Factor
normalized to Java (lower is better)

— N OV ~ 6) ®» ~
1 1 1 1 1 1 1

Java - I
Node.js= » —[D] .
somns+ [F—

SOM,; is on level of

optimized dynamic
languages!

Are We Fast Yet: Cross-Language Comparison
https://github.com/smarr/are-we-fast-yet#freadme

47

Performance: Baselines

0]
1

525" Competitive
L(E_Qg 37 o

gge - with JVM actor
53

¢§°1-Q$$— frameworks!

® Savina Actor Benchmark Suite
https://github.com/shamsimam/savinattreadme

48

Overhead of Recording Actors for Replay

Overhead on Savina benchmarks
over execution without recording (geometric)
* Specialized: 7.89% S
min. -21.42%, max. 36.29% ReceiverSideRR- — | =
(specialized to actors,
without support for
other concurrency models)

Sender-Side RR - — —

Specialized RR-] : —

 Sender-side: 7.82% e © o .
min. -17.84%, max. 41.23% Runtime Factor, normalized to

. . , o baseline SOMns (lower is better)
— Performance is competitive with specialized
implementation

e Receiver-side: 13.23%
min. -19.33%, max. 53.1%

— Not as optimized as specialized

Agnostic Record&Replay is Practical!

Framework per thread
Thread-local
Store to Mailbox Read from IR
mailbox? ¥ E/ mailbox?
Capture Non-determinism L
Per Concurrency Model per activity

Keep Framework
Agnostic

50

>0

Snapshotting Actor Systems without Stopping Them

LONG AND HUGE TRACES MAKE
REPLAY IMPRACTICAL

\ly

@{i\ Asynchronous and Partial

Heap Snapshots

4 A

&
& _

snapshot on message receive
but only objects reachable from a message 52

Snapshotting without Global
Synchronization

Start Snapshotting

N
/A
@ Message Message Message

Time

Detecting Message Crossovers

e Attach send phase number to messages

 Messages sent in Phase n (previous) are

captured
Phase n Phase n+1
Actor A Message [n] Message [n+1]
Actor B Message Message [n] Message [n]
Actor C Message [n]

| ’ ’
Start /
Snapshotting
Snapshot before
processing 54

Time

Detecting Snapshot Completion (2)

Actors waiting for execution (FIFO)

e K

Actors with messages from

) revious phase
Completion P P

J
J
<

Task

message sends may schedule
actors for execution

Thread Pool

Thread 1

Thread n

Msg
[n-1]

Actors in current phase

55

Detecting Snapshot Completion (3)

Actors waiting for execution (FIFO)

Actors with messages from current

phase

message sends may schedule
actors for execution

Thread Pool
Thread 1 Thread n
Msg
[n-1]

Completion
Task

56

Evaluation - Savina

AStarSearch= @—=
BankTransaction = +———
BigContention 7 =®=

* Snapshot Chameneos | Dol

CigaretteSmokers = 1§

eVE ry ConcurrentDictionary = %

ConcurrentList =

second Counting | | am—

. . FJActorCreation 5 14
Iteration FJThroughput 7 —#==—
LogisticsMapSeries7 &
Philosophers= | &
PingPong !
ProducerConsumerBB = |

e Worst-case RadixSort 1 &

SleepingBarber -+ | ¢

ScenaﬂO ThreadRing = | ¢ E Snapshot

Baseline

Trapezoidal = 1 Snapshot
CobwebbedTree = = + R&R
Sne o S o

Runtime Factor, normalized to

baseline SOMns (lower is better)
57

Evaluation — AcmeAir Web Application

Snapshot every 1000

req uests | Logo‘ut = f— | |
View Profile = — -
) Update Customer 4 —— | I
La.te.ncy Increases Query Flight 4 —— |
minimally owin | T

(1,66% geo mean)

List Bookings- — | |—

Cancel Booking4 —— | |—

20 Million requests total BookFlight 1 — [}—
| | | | |
-
Slow requests (> 100ms): = i e B

5.43% increase (0.007% Latency Factor

of total requests) ”Or?l“;\!vizf?stgeb;‘;e)'i”e

58

1.025

Snapshots can be Low-Overhead,
Without Stop-the-World Pause

>G|

Looking for
a PostDoc

If it fails only 1 in 10 times, can we avert failure?

BUG MITIGATION

60

Bug Mitigation: Basic Idea
Detect Event Races At Run Time
C B A
e, £

OrderA -> B -> C problematic?

Let’s swap them!

Messages Usually Access
Predictable Parts of the Heap

4 A

ac

Actor /

Use Existing VM Techniques to
Minimize Race Detection Overhead

product.setPrice(newPrice)

AwNnPR

Shape A

: parts(array)
: name(string)

e

: price(money)
: id(int)

Shape B
1: id(int)
2: name(string)
3: price(money)

IS function

(for polymorphic
methods)

63

Restrict Monitoring to Parts
that can Race

R A

() X

Very Early, but:

Heap Access Patterns promising for
light-weight, low-precision

race-possibility detection

WRAP-UP/CONCLUSION

We're Looking for a Postdoc! Bfe]o Wiy

Project CaMELot: Catch and Mitigate
Event-Loop Concurrency Issues

University of https://stefan-marr.de/2021/02/open-postdoc-
I<(=nt position-on-language-implementation-and- .

concurrency/

Maybe there are no Silver Bullets?

/\\ Locks, Monitors, ...

/\ Fork/Join
/\ Transactional Memory

67

Debuggers can be Great for High-level
Concurrency Models!

Debugger
—0| "

Kémpos Protocol

Make tools agnostic

promise resolver
promise resolution
promlwhenResolved:I[:r |

r println |.

Offer the Key Features
as Breakpoints/Steps

68

Agnostic Record&Replay is Practical!

Store to Mailbox
mailbox? E

Read from
mailbox?

Capture Non-determinism

Per Concurrency Model

Framework per thread

Thread-local

record
buffers

‘ Trace

Event queues
parser

per activity

Keep Framework
Agnostic

69

Snapshots can be Low-Overhead,
Without Stop-the-World Pause

>G|

And maybe,

we can use it to do race-mitigation!

Actor

ac

~

Shape B
1: id(int)
2: name(string)
3: price(money)

> Debugger

Kéompos Protocol

Make tools agnostic

Store to Mailbox Read from
mailbox? E mailbox?

Capture Non-determinism

N Per Concurrency Model
» v

N _/
And don’t stop the world
for snapshotting! = ‘ "y

72

References

Capturing High-level Nondeterminism in Concurrent Programs for Practical Concurrency Model
Agnostic Record & Replay (pdf)

D. Aumayr, S. Marr, S. Kaleba, E. Gonzalez Boix, H. Mdssenbock, <Programming>, p. 39, AOSA Inc.,
2021. doi: 10.22152/programming-journal.org/2021/5/14

Asynchronous Snapshots of Actor Systems for Latency-Sensitive Applications (pdf)
D. Aumayr, S. Marr, E. Gonzalez Boix, H. Mdssenbdck, MPLR'19, p. 157-171, ACM, 2019.
doi: 10.1145/3357390.3361019

Efficient and Deterministic Record & Replay for Actor Languages (pdf)
D. Aumayr, S. Marr, C. Béra, E. Gonzalez Boix, H. Mossenbdck, ManLang'18, ACM, 2018.
doi: 10.1145/3237009.3237015

A Concurrency-Agnostic Protocol for Multi-Paradigm Concurrent Debugging Tools (pdf)
S. Marr, C. Torres Lopez, D. Aumayr, E. Gonzalez Boix, H. Modssenbdck, DLS'17, p. 3—14, ACM, 2017.
doi: 10.1145/3133841.3133842

Kémpos: A Platform for Debugging Complex Concurrent Applications (pdf)
S. Marr, C. Torres Lopez, D. Aumayr, E. Gonzalez Boix, H. M6ssenbdck, <Programming Demo’17>, p.
2:1-2:2, ACM, 2017. Demo. doi: 10.1145/3079368.3079378

A Study of Concurrency Bugs and Advanced Development Support for Actor-based Programs (pdf)
C. Torres Lopez, S. Marr, H. Mossenbock, E. Gonzalez Boix, AGERE!'16 (LNCS), p. 155-185, Springer,
2018. doi: 10.1007/978-3-030-00302-9 6

Towards Advanced Debugging Support for Actor Languages: Studying Concurrency Bugs in Actor-
based Programs (pdf)
C. Torres Lopez, S. Marr, H. Mdssenbock, E. Gonzalez Boix, AGERE! '16, 2016.

https://stefan-marr.de/downloads/prog21-aumayr-et-al-capturing-high-level-nondeterminism-in-concurrent-programs-for-practical-concurrency-model-agnostic-record-replay.pdf
https://doi.org/10.22152/programming-journal.org/2021/5/14
https://stefan-marr.de/downloads/mplr19-aumayr-et-al-asynchronous-snapshots-of-actor-systems-for-latency-sensitive-applications.pdf
https://doi.org/10.1145/3357390.3361019
http://stefan-marr.de/downloads/manlang18-aumayr-et-al-efficient-and-deterministic-record-and-replay-for-actor-languages.pdf
https://doi.org/10.1145/3237009.3237015
https://stefan-marr.de/papers/dls-marr-et-al-concurrency-agnostic-protocol-for-debugging/
https://stefan-marr.de/downloads/dls17-marr-et-al-concurrency-agnostic-protocol-for-debugging.pdf
https://doi.org/10.1145/3133841.3133842
http://stefan-marr.de/downloads/progdemo-marr-et-al-kompos-a-platform-for-debugging-complex-concurrent-applications.pdf
https://doi.org/10.1145/3079368.3079378
http://stefan-marr.de/downloads/lncs-torres-lopez-et-al-study-of-concurrency-bugs-and-advanced-development-support-for-actor-based-programs.pdf
https://doi.org/10.1007/978-3-030-00302-9_6
http://stefan-marr.de/downloads/agere16-torres-lopez-et-al-towards-advanced-debugging-support-for-actor-languages.pdf

