
Marr, Stefan (2021) Actors! And now? An Implementer's Perspective on
High-level Concurrency Models, Debugging Tools, and the Future of Automatic
Bug Mitigation. In: 11th ACM SIGPLAN International Workshop on Programming
Based on Actors, Agents, and Decentralized Control, AGERE!'21, 17 Oct
2021. (Unpublished)

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/94848/ The University of Kent's Academic Repository KAR

The version of record is available from
https://2021.splashcon.org/details/agere-2021-papers/8/Actors-And-now-An-Implementer-s-Perspective-on-High-level-Concurrency-Models-Debug

This document version
Presentation

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/94848/
https://2021.splashcon.org/details/agere-2021-papers/8/Actors-And-now-An-Implementer-s-Perspective-on-High-level-Concurrency-Models-Debug
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Actors! And now?
An Implementer's Perspec/ve on
High-level Concurrency Models,

Debugging Tools,
and the Future of Automa/c Bug Mi/ga/on

Stefan Marr
17 October 2021

Got a Ques*on?
Feel free to interrupt me!

2

Job AdWe’re Looking for a Postdoc!

3

Project CaMELot: Catch and Mitigate
Event-Loop Concurrency Issues

h3ps://stefan-marr.de/2021/02/open-postdoc-
posi=on-on-language-implementa=on-and-
concurrency/

Please get
in touch!

Outcomes of Project MetaConc
and work by

4

C. Torres Lopez D. Aumayr

E. Gonzalez Boix H. Mössenböck

Actors! What are Actors?

• Many different variants
• For the 50 Years’ Edition:
– Which model is good for what?
• Suitable problems/applications
• Unsuitable problems per model

– …
5

Communicating Event Loops

6

ActorActor

8-27 apps 3 studies
≈2-20 concurrency issues per app

Websites in top 500 6 studies
≈1-10 concurrency issues per site

Tip of the
Iceberg

Concurrency Bugs are Common in
Event Loop Systems

C 6 projects 1 study
35 known event races

53 projects, 57 issues 2 studies
12 projects, 1000 potential issues

12 projects 1 study
53 concurrency issues

7

How to get rid
of all these bugs?

8

DEBUGGING ACTORS WITH
SUITABLE BREAKPOINTS/STEPPING

Perhaps not a way to get rid of them all, but at least to make it easier

9

prom := aResult <-: get.

prom whenResolved: [:r |
r println

].

Actor Breakpoints/Stepping

10
Actor A

prom := aResult <-: get.

prom whenResolved: [:r |
r println

].

Actor Breakpoints/Stepping

11

1

Actor A

msg send
msg receive
promise resolver
promise resolu=on

prom := aResult <-: get.

prom whenResolved: [:r |
r println

].

Actor Breakpoints/Stepping

12

class Result = ()(

public get = (
| result |
result := 42.
^ result

)

)

2

Actor A Actor B

msg send
msg receive
promise resolver
promise resolu=on

prom := aResult <-: get.

prom whenResolved: [:r |
r println

].

Actor Breakpoints/Stepping

13

class Result = ()(

public get = (
| result |
result := 42.
^ result

)

)

3

Actor A Actor B

msg send
msg receive
promise resolver
promise resolution

prom := aResult <-: get.

prom whenResolved: [:r |
r println

].

Actor Breakpoints/Stepping

14

class Result = ()(

public get = (
| result |
result := 42.
^ result

)

)

4

Actor A Actor B

msg send
msg receive
promise resolver
promise resolu=on

prom := aResult <-: get.

prom whenResolved: [:r |
r println

].

Actor Breakpoints/Stepping

15

class Result = ()(

public get = (
| result |
result := 42.
^ result

)

)

1

2

Actor A Actor B

before async
aGer async

prom := aResult <-: get.

prom whenResolved: [:r |
r println

].

Actor Breakpoints/Stepping

16

class Result = ()(

public get = (
| result |
result := 42.
^ result

)

)

1

Actor A Actor B

promise resolver
promise resolution

Apgar: A Debugger Made for Actor Programs

17

Carmen’s presentation is in
about 5.5h here at AGERE

Kómpos Architecture

18

Interpreter

Debugger
UI

Apgar or
Kómpos UIKómpos Protocol

The “Magic” Bit

https://stefan-marr.de/papers/dls-marr-et-al-concurrency-agnostic-protocol-for-debugging/

The Kómpos Debugger

19

Demo:
h<ps://stefan-marr.de/2017/10/mulF-

paradigm-concurrent-debugging/

Even with be=er debuggers,
we’ll s*ll have concurrency bugs

in our actor systems…

20

Maybe, just maybe!

Maybe Actors aren’t the best
choice for every problem?

21

…

Maybe there are no Silver Bullets?

CSP

Locks, Monitors, …

Fork/Join

Transactional Memory

22

Data Flow

Actors

Building an
Online Sales-Data Processor

23

{"item": "beer",
"price": 5.5,
"quantity": 344,
"customer": "<Prog>",
"address": "Pleinlaan 2"}

Stream of Sales Events
• Track revenue
• Report sales revenue

over time

Subsystems as Asynchronous AcDviDes

24

Use Actors as Main Abstraction
Event-Loop Model fits UI and System Paradigms

JSON Input
Actor

DataStore
Actor

Report
Actor

{"item":
"beer",

"price":
5.5,

Parallelize JSON Processing

25

JSON Input
Actor

JSON fragment
channel

JSON token
channel

JSON Stream
Tokenizer

Result
channel

Data Filter
Process

Using Communicating Sequential Processes
with Channels

{"item":
"beer",

"price":
5.5,

• Strict consumer/
producer
relationship

• Allow for
pipeline
parallelism

Sales Revenue Over Time
based on Large Data Array

26

Report
Actor

12 1 12 1 21

53 4 117 8 101

Construct Sum Tree
in parallel

Calculate Prefix Sum
in parallel

Parallel Prefix Sum Calculation
with fork/join parallelism

How to build debuggers to
support all the Concurrency

Models?

27

Κόμπος: A PLATFORM FOR DEBUGGING
COMPLEX CONCURRENT APPLICATIONS

28

The Kómpos Debugger

29h8ps://stefan-marr.de/papers/dls-marr-et-al-concurrency-agnos9c-protocol-for-debugging/

Kómpos Architecture

30

SOMNS
Interpreter

Debugger
UI

Kómpos Protocol
JSON Web Socket

Kómpos Architecture

31

SOMNS
Interpreter

Debugger
UI

Kómpos Protocol
JSON Web Socket

Actors
CSP
STM
F/J

Threads
…

Agnostic of
Concurrency

Models

And we have
two UIs! Apgar
& Kómpos UI

Kómpos Protocol Metadata

32

EntityType
id: typeId

name: string

ActivityType

icon: string

DynamicScopeType

BreakpointType
name: string
label: string

applicableTo: Tag[]

SteppingType
name: string
label: string

applicableTo: Tag[]
activities: ActivityType[]
scopes: DynamicScopeType[]

Concurrency
semanCcs only

known to
language

Kómpos Protocol Messages

33

SetBreakpoint
location: Coord

type: BreakpointType

Stopped
activityId: id
location: Coord

actType: ActivityType
scopes: DynamicScopeType[]

DoStep
activityId: id

type: SteppingType

Debugger UI just
“lists” available

types

A Model-AgnosDc Debugger:
Example Channel Breakpoints

34

channel out
write: 42.

channel in
read

Process A Process B

1
2

3
4

“just” source locations and ids!
UI doesn’t need to know these

concepts!

Debuggers can be Great for High-level
Concurrency Models!

35

? ??
Debugger

UI
Kómpos Protocol

Make tools agnostic

prom whenResolved: [:r |
r println].

promise resolver
promise resolution

Offer the Key Features
as Breakpoints/Steps

NON-DETERMINISM MAKES FOR
UNHAPPY DEBUGGERS

Reproduces only 1 in 10? How can I fix such a bug???

36

F

One Solution: Record & Replay

• Record
event order

• Replay
reorder to fit

37

ABC

CB

BC
A

F

Capturing High-level Nondeterminism in Concurrent Programs for Prac9cal Concurrency
Model Agnos9c Record & Replay D. Aumayr et al. The Art, Science, and Engineering of
Programming, Programming, 2021.
Efficient and Determinis9c Record & Replay for Actor Languages D. Aumayr et al.
Proceedings of the 15th InternaFonal Conference on Managed Languages and
RunFmes, ManLang’18.

How is that going to work
agnostic to concurrency models?

38

Looking at
Communicating Event Loops

39

ActorActor

What are the Points of
Non-determinism?

MailboxMailbox The Mailboxes!
(mailbox read order)

CommunicaDng Event Loops

40

BC
A

CB
Mailbox

Replay messages in same
order as originally

Recording Non-determinism in
CommunicaLng Event Loops

41

ActorActor

Mailbox

What to record?

Store to
mailbox?

Read from
mailbox?

Sender Receiver

For Communicating Event Loops

Sender-side and Receiver-Side
Recording are

“Functionally Equivalent”

with complexity
and performance trade-offs

42

most interesting bit

Overview for Concurrency Models

43

Model Activities Passive Entities Non-
determinism

Communicating
Event Loops

Actor Promise,
Message

Message order
per actor

Threads & Locks Thread Lock, Condition Order of lock
acquisitions

Communicating
Sequential
Processes

Process Channel Order of
channel
reads/writes

Software
Transactional
Memory

Transaction - Commit order

Instrumented Operation

if (RECORD) {
…
record(
type, ordering)

} else if (REPLAY) {
Event e = poll()
…

}

Model AgnosDc Framework

44

Framework

peek

poll

record

Trace
file

Thread-local buffers

Trace
parserEvent queues

per activity

per thread

Agnostic of
Concurrency Models

Allows us to Record&Replay
a Multi-Paradigm Application

45

JSON Input
Actor

DataStore
Actor

Report
Actor

{"item":
"beer",

"price":
5.5,

Actors

CSP in here Fork/Join in
here

SOMNS: A NEWSPEAK FOR
CONCURRENCY RESEARCH

46

Newspeak: newspeaklanguage.org
SOMNS: github.com/smarr/SOMns

NS

Performance: Baselines

●● ●●

1 2 3 4 5 6 7
Java

Node.js

SOMns

Runtime Factor
normalized to Java (lower is better)

47

Are We Fast Yet: Cross-Language Comparison
https://github.com/smarr/are-we-fast-yet#readme

SOMNS is on level of
optimized dynamic

languages!

Performance: Baselines

48
Savina Actor Benchmark Suite
hOps://github.com/shamsimam/savina#readme

●

●
●
●

●

●

●

●

●

●

● ●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●●●

1 2 4 6 8

Ak
ka

Je
tla

ng
Sc

al
az

SO
M

ns

Ak
ka

Je
tla

ng
Sc

al
az

SO
M

ns

Ak
ka

Je
tla

ng
Sc

al
az

SO
M

ns

Ak
ka

Je
tla

ng
Sc

al
az

SO
M

ns

Ak
ka

Je
tla

ng
Sc

al
az

SO
M

ns

0

1

2

3

4

5

Cores

R
un

tim
e

Fa
ct

or
no

rm
al

ize
d

to
 S

O
M

ns
(lo

we
r i

s
be

tte
r)

●

●
●
●

●

●

●

●

●

●

● ●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●●●

1 2 4 6 8

Ak
ka

Je
tla

ng
Sc

al
az

SO
M

ns

Ak
ka

Je
tla

ng
Sc

al
az

SO
M

ns

Ak
ka

Je
tla

ng
Sc

al
az

SO
M

ns

Ak
ka

Je
tla

ng
Sc

al
az

SO
M

ns

Ak
ka

Je
tla

ng
Sc

al
az

SO
M

ns

0

1

2

3

4

5

Cores

R
un

tim
e

Fa
ct

or
no

rm
al

ize
d

to
 S

O
M

ns
(lo

we
r i

s
be

tte
r) CompeLLve

with JVM actor
frameworks!

Overhead of Recording Actors for Replay

Overhead on Savina benchmarks
over execuFon without recording (geometric)
• Specialized: 7.89%

min. -21.42%, max. 36.29%
(specialized to actors,
without support for
other concurrency models)

• Sender-side: 7.82%
min. -17.84%, max. 41.23%
– Performance is compe==ve with specialized

implementa=on

• Receiver-side: 13.23%
min. -19.33%, max. 53.1%
– Not as op=mized as specialized

49

Agnostic Record&Replay is Practical!

50

? ??
Keep Framework

Agnostic

MailboxStore to
mailbox?

Read from
mailbox?

Capture Non-determinism
Per Concurrency Model

Framework

peek

poll

record Trace
file

Thread-local
buffers

Trace
parserEvent queues

per activity

per thread

LONG AND HUGE TRACES MAKE
REPLAY IMPRACTICAL

Snapshotting Actor Systems without Stopping Them

51

Actor

Asynchronous and Partial
Heap Snapshots

52

snapshot on message receive
but only objects reachable from a message

SnapshoNng without Global
SynchronizaLon

53

Message Message

Time

Message Message Message

Message Message

Start Snapshotting

• AUach send phase number to messages
• Messages sent in Phase n (previous) are

captured

Detecting Message Crossovers

54

Actor A

Actor B

Actor C Message Message [n] Message [n]

Time

Message Message [n] Message [n]

Message Message [n] Message [n+1]

Start
Snapsho_ng

Phase n Phase n+1

Snapshot before
processing

Detecting Snapshot Completion (2)

55

Msg
[n-1]

Msg
[n-1]

Msg
[n-1]

Thread 1 Thread n

Actors wai7ng for execu7on (FIFO)

Actors with messages from
previous phaseCompleJon

Task

Actors in current phase

Thread Pool

message sends may schedule
actors for execuJon

Msg
[n]

Msg
[n-1]

Msg
[n-1]

Detecting Snapshot Completion (3)

56

Actors wai7ng for execu7on (FIFO)

Actors with messages from current
phase

CompleJon
Task

Thread Pool

message sends may schedule
actors for execution

Msg
[n]

Msg
[n]

Msg
[n]

Thread 1 Thread n

Msg
[n-1]

• Snapshot
every
second
iteration

• Worst-case
scenario

Evaluation - Savina

57

• Snapshot every 1000
requests

• Latency increases
minimally
(1,66% geo mean)

• 20 Million requests total

• Slow requests (> 100ms):
5.43% increase (0.007%
of total requests)

EvaluaLon – AcmeAir Web ApplicaLon

58

Snapshots can be Low-Overhead,
Without Stop-the-World Pause

59

Actor

BUG MITIGATION
If it fails only 1 in 10 Fmes, can we avert failure?

60

F

Looking for
a PostDoc

Bug Mitigation: Basic Idea

61

ABC

Detect Event Races At Run Time

Order A -> B -> C problema?c?

Let’s swap them!

F

Actor

Messages Usually Access
Predictable Parts of the Heap

62

Use ExisLng VM Techniques to
Minimize Race DetecLon Overhead

63

product.setPrice(newPrice)
func=on

function
(for polymorphic
methods)

Shape A
1: price(money)
2: id(int)
3: parts(array)
4: name(string) Shape B

1: id(int)
2: name(string)
3: price(money)

Actor

Restrict Monitoring to Parts
that can Race

64

Shape B
1: id(int)
2: name(string)
3: price(money)

Very Early, but:
Heap Access Patterns promising for

light-weight, low-precision
race-possibility detection

WRAP-UP/CONCLUSION

65

Job AdWe’re Looking for a Postdoc!

66

Project CaMELot: Catch and MiLgate
Event-Loop Concurrency Issues

h3ps://stefan-marr.de/2021/02/open-postdoc-
posi=on-on-language-implementa=on-and-
concurrency/

Please get
in touch!

…

Maybe there are no Silver Bullets?

CSP

Locks, Monitors, …

Fork/Join

TransacUonal Memory

67

Data Flow

Actors

Debuggers can be Great for High-level
Concurrency Models!

68

Debugger
UI

Kómpos Protocol

Make tools agnosCc

prom whenResolved: [:r |
r println].

promise resolver
promise resolu=on

Offer the Key Features
as Breakpoints/Steps

Agnostic Record&Replay is Practical!

69

MailboxStore to
mailbox?

Read from
mailbox?

Capture Non-determinism
Per Concurrency Model

Keep Framework
AgnosCc

Framework

peek

poll

record Trace
file

Thread-local
buffers

Trace
parserEvent queues

per activity

per thread

Snapshots can be Low-Overhead,
Without Stop-the-World Pause

70

Actor

Actor

And maybe,
we can use it to do race-mitigation!

71

Shape B
1: id(int)
2: name(string)
3: price(money)

72

Debugger
UI

Kómpos Protocol

Make tools agnosCc
MailboxStore to

mailbox?
Read from
mailbox?

Capture Non-determinism
Per Concurrency Model

Actor

And don’t stop the world
for snapshoTng!

? ??

References
• Capturing High-level Nondeterminism in Concurrent Programs for Prac9cal Concurrency Model

Agnos9c Record & Replay (pdf)
D. Aumayr, S. Marr, S. Kaleba, E. Gonzalez Boix, H. Mössenböck, <Programming>, p. 39, AOSA Inc.,
2021. doi: 10.22152/programming-journal.org/2021/5/14

• Asynchronous Snapshots of Actor Systems for Latency-Sensi9ve Applica9ons (pdf)
D. Aumayr, S. Marr, E. Gonzalez Boix, H. Mössenböck, MPLR'19, p. 157–171, ACM, 2019.
doi: 10.1145/3357390.3361019

• Efficient and Determinis9c Record & Replay for Actor Languages (pdf)
D. Aumayr, S. Marr, C. Béra, E. Gonzalez Boix, H. Mössenböck, ManLang'18, ACM, 2018.
doi: 10.1145/3237009.3237015

• A Concurrency-Agnos9c Protocol for Mul9-Paradigm Concurrent Debugging Tools (pdf)
S. Marr, C. Torres Lopez, D. Aumayr, E. Gonzalez Boix, H. Mössenböck, DLS'17, p. 3–14, ACM, 2017.
doi: 10.1145/3133841.3133842

• Kómpos: A PlaNorm for Debugging Complex Concurrent Applica9ons (pdf)
S. Marr, C. Torres Lopez, D. Aumayr, E. Gonzalez Boix, H. Mössenböck, <Programming Demo’17>, p.
2:1–2:2, ACM, 2017. Demo. doi: 10.1145/3079368.3079378

• A Study of Concurrency Bugs and Advanced Development Support for Actor-based Programs (pdf)
C. Torres Lopez, S. Marr, H. Mössenböck, E. Gonzalez Boix, AGERE!'16 (LNCS), p. 155–185, Springer,
2018. doi: 10.1007/978-3-030-00302-9_6

• Towards Advanced Debugging Support for Actor Languages: Studying Concurrency Bugs in Actor-
based Programs (pdf)
C. Torres Lopez, S. Marr, H. Mössenböck, E. Gonzalez Boix, AGERE! '16, 2016.

73

https://stefan-marr.de/downloads/prog21-aumayr-et-al-capturing-high-level-nondeterminism-in-concurrent-programs-for-practical-concurrency-model-agnostic-record-replay.pdf
https://doi.org/10.22152/programming-journal.org/2021/5/14
https://stefan-marr.de/downloads/mplr19-aumayr-et-al-asynchronous-snapshots-of-actor-systems-for-latency-sensitive-applications.pdf
https://doi.org/10.1145/3357390.3361019
http://stefan-marr.de/downloads/manlang18-aumayr-et-al-efficient-and-deterministic-record-and-replay-for-actor-languages.pdf
https://doi.org/10.1145/3237009.3237015
https://stefan-marr.de/papers/dls-marr-et-al-concurrency-agnostic-protocol-for-debugging/
https://stefan-marr.de/downloads/dls17-marr-et-al-concurrency-agnostic-protocol-for-debugging.pdf
https://doi.org/10.1145/3133841.3133842
http://stefan-marr.de/downloads/progdemo-marr-et-al-kompos-a-platform-for-debugging-complex-concurrent-applications.pdf
https://doi.org/10.1145/3079368.3079378
http://stefan-marr.de/downloads/lncs-torres-lopez-et-al-study-of-concurrency-bugs-and-advanced-development-support-for-actor-based-programs.pdf
https://doi.org/10.1007/978-3-030-00302-9_6
http://stefan-marr.de/downloads/agere16-torres-lopez-et-al-towards-advanced-debugging-support-for-actor-languages.pdf

