
Gu, Xiaowei and Shen, Qiang (2022) Self-organizing Divisive Hierarchical Voronoi
Tessellation-based classifier. Information Sciences, 603 . pp. 106-139. ISSN
0020-0255.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/94753/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/j.ins.2022.04.049

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/94753/
https://doi.org/10.1016/j.ins.2022.04.049
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Self-Organizing Divisive Hierarchical Voronoi Tessellation-Based Classifier 1

Xiaowei Gu1 and Qiang Shen2 2

1School of Computing, University of Kent, Canterbury CT2 7NZ, UK 3
2Department of Computer Science, Aberystwyth University, Aberystwyth, SY23 3DB, UK 4

E-mails: X.Gu@kent.ac.uk; qqs@aber.ac.uk 5

 6

Abstract: In this paper, a novel approach to the self-organization of hierarchical prototype-based classifiers from 7

data is proposed. The approach recursively partitions the data at multiple levels of granularity into shape-free 8

clusters of different sizes, resembling Voronoi tessellation, and naturally aggregates the resulting cluster medoids 9

into a multi-layered prototype-based structure according to their descriptive abilities. Different from conventional 10

classification models, it is nonparametric and entirely data-driven, and the learned model can offer a high-level of 11

transparency and interpretability thanks to the underlying prototype-based nature. The system identification 12

process underpinning the approach is driven by the aim of separating data samples of different classes into 13

nonoverlapping multi-granular clusters. Its associated decision-making process follows the “nearest prototype” 14

principle and hence, the rationales of the subsequent decisions made can be explicitly explained. Experimental 15

studies based on popular benchmark classification problems, as well as on a practical application to remote sensing 16

image classification, demonstrate the efficacy of the proposed approach. 17

Keywords: classification; divisive partitioning; prototype; self-organizing; hierarchical model. 18

1. Introduction 19

Classification is a hot research topic in machine learning and statistics. As a typical form of supervised learning, 20

classification methods aim to construct predictive models from labelled training data capable of predicting the 21

class labels of new observations. To date, classification methods have been developed and implemented for real-22

world applications in various areas such as remote sensing [1] and biomedical analysis [2], amongst many others. 23

In recent years, issues of understandability and explainability have gained increasing attention from both research 24

communities and the general public [3]. This is largely due to the wide deployment of complicated machine 25

learning models in life-critical applications, e.g., autonomous driving [4], structural health monitoring [5]. 26

Currently, deep neural networks (DNNs) is one of the most popular classification methods offering the state-of-27

the-art performances in terms of accuracy on many complex practical problems concerning visual and audio 28

information processing [6]. However, DNNs are highly sophisticated models with a huge number (millions) of 29

hyperparameters with no clear physical meanings. Hence, they are often being criticized as a typical type of “black 30

box” models lack of transparency [7]. Although DNNs can be simplified by pruning less important parameters 31

[8], a large proportion of hyperparameters still need to be kept in order to maintain a high level of performance, 32

thereby the complexity of the models remaining high. Many mainstream classification methods, such as random 33

forests (RFs) [9], support vector machines (SVMs) [10], learning vector quantization (LVQ) [11] are also 34

characterized as being opaque. Despite the great performances they have demonstrated, the lack of transparency 35

and therefore, that of trustability of these predictive machine learning models is not a trivial issue and may cause 36

severe consequences [7]. Having recognized this, researchers and industry practitioners are now frequently calling 37

for explainable artificial intelligence (XAI) [3]. 38

Decision trees (DTs) [12], k-nearest neighbours (KNN) [13] and evolving fuzzy systems (EFSs) [14] are generally 39

regarded as interpretable machine learning models. In particular, DT aims to build a tree-like predictive model by 40

recursively splitting data. However, the explainability of DT is usually limited if the dimensionality of the problem 41

is high. Instead of learning a predictive model from data, KNN uses all the training samples directly to classify 42

unlabelled data by following the “nearest neighbours” principle [15]. The operating mechanism of KNN is simple 43

to understand and can be very effective to small-scale problems, but it also has several weaknesses when applied 44

to large-scale problems, such as lower interpretability, and low computational- and memory-efficiency. EFSs are 45

a powerful tool for data stream processing and have been widely applied to addressing a range of real-world 46

problems [16]–[18]. Study of EFSs has increasingly become a major scientific endeavour over the past two 47

decades, and a number of more advanced EFSs have been introduced in the past few years. These include self-48

organising fuzzy inference system (SOFIS) [16], recursive maximum correntropy-based evolving fuzzy system 49

mailto:X.Gu@kent.ac.uk
mailto:qqs@aber.ac.uk

[17], and jointly evolving and compressing fuzzy system [18], etc. Based on IF-THEN fuzzy production rules, 50

EFSs are capable of self-adapting both model structure and meta-parameters online and doing so simultaneously 51

from streaming data, to capture the dynamical changes of data patterns. Compared with their first-order 52

counterparts [17], [18], zero-order EFSs [16], [19] are particularly designed for data stream classification. Being 53

a prototype-based method, a zero-order EFS extracts a subset of highly representative prototypes from training 54

data to facilitate classification. Such a prototype-based nature brings higher transparency and explainablity to the 55

resulting EFSs. Nevertheless, it is often observed that the knowledge base of a zero-order EFS is unfavourably 56

large. Whilst a large-sized knowledge base may be necessary for many applications to achieve high-level 57

performance on complex problems, it can impair the interpretability of the predictive model as well as the 58

explainability of the reasoning process that runs on such a complicated model, in addition to increased 59

computational costs. 60

Although a universally perfect classifier for any given application is unobtainable, designing more effective 61

classifiers with higher computational efficiency and model transparency is highly rewarding. More recently, a 62

number of new classification methods have been proposed. For example, a sequence classifier (SC) is introduced 63

in [20], which works by sorting and ranking data attributes to create a dictionary for classification. An eigenvalue-64

based classification method called EigenClass is presented in [21], which determines the class label of a testing 65

sample based on its eigenvalues calculated with respect to the available training samples. A selective prototype-66

based learning (SPL) classifier is provided in [22] for streaming data classification, which learns from data 67

streams, sample by sample, while simultaneously maintaining two sets of prototypes, namely, important instance 68

set (ISet) and potential concept-drifting instance set (PSet). Interestingly, ISet contains the most important samples 69

learned by considering error-driven representativeness, in an effort to capture the current concept for 70

classification, and PSet stores the misclassified samples for detecting the abrupt concept drifts. A graph-based 71

prototype selector ensemble model is proposed in [23], which exploits an undirected graph to store the prototypes 72

selected at each iteration and also, the relationships between them to enable classification. In [24], a 73

comprehensive study is conducted to investigate the influence of employing different base learners, and that of 74

running different methods that combine such bases to form classifier ensembles, on the performances of the 75

resulting ensembles. To boost the efficacy of classifier ensembles, in the literature, work has also been carried out 76

to reduce the complexity while retaining model transparency through innovative application of attribute selection 77

techniques [25]. 78

In general, the use of prototypes helps preserve the structure and underlying patterns of the original data. Models 79

constructed with a prototype-based method typically demonstrate a higher level of model transparency and 80

explainability than alternative classifiers (e.g., DNN/ANN, RF, SVM). However, a common problem that such 81

models suffer from is system obesity, often occurring when prototype-based methods are applied to performing 82

large-scale complex classification tasks. A large-sized knowledge base (with too many prototypes) can impair the 83

interpretability and explainability of the learned model greatly. A feasible solution to resolve this bottleneck 84

problem is to arrange the identified prototypes in multiple layers according to their descriptive abilities [26]–[28], 85

such that users can use the more descriptive prototypes representing the global patterns of data (that are placed at 86

higher layers) to interpret and understand the general picture of the problem under consideration, whilst utilizing 87

the less descriptive prototypes depicting local data structures (as placed at lower layers) to obtain auxiliary finer 88

details. An example of this is the two-level prototype-based classifier as presented in [26], named SyncStream. It 89

learns a two-level prototype-based structure from data with the first level containing raw prototypes for capturing 90

the current concept and the second containing highly representative prototypes representing historical concepts. 91

However, the main issue with SyncStream is that its model size and predictive performance are subject to a number 92

of externally controlled parameters, including the maximum numbers of prototypes to be stored at the first and 93

second levels, the decay rate, and the noise threshold. Without sufficient prior knowledge to predetermine these 94

parameters appropriately, it can be very difficult for SyncStream to achieve satisfactory performance. 95

In contrast with systems like SyncStream, hierarchical prototype-based (HP) classifiers [27] and multi-granularity 96

locally optimal prototype-based (MLOP) classifiers [28] offer more advanced multi-layer prototype-based 97

approaches for classification. With a pre-determined model depth, a HP classifier self-organizes a number of 98

pyramidical hierarchies from streaming data based on the prototypes identified at multiple levels of granularity. 99

The constructed hierarchies are capable of continuously self-evolving by adding new prototypes to capture any 100

new data patterns. A MLOP classifier takes one step ahead further, by employing the classical elbow method [29] 101

to self-determine the model depth through adjusting the intra-cluster variance that is controlled by a regularization 102

parameter. MLOP further involves an iterative optimization process to attain the local optimality of prototypes. 103

However, both HP and MLOP fail to capture the inter-class relationship of data because the prototypes are learned 104

from data of different classes separately, ignoring potential class overlaps or interactions. Besides, they both still 105

require externally controlled parameters (to be predefined by users), namely, the model depth for HP and the 106

regularization parameter for MLOP. Nonetheless, these parameters play an important role during the learning 107

process, in assisting in the optimization of the size and the predictive precision of the models learned from data. 108

In trying to attain the strengths of HP and MLOP while addressing their shortcomings, a novel approach is herein 109

presented for self-organizing a Divisive Hierarchical Voronoi Tessellation-based (DHT) model to perform 110

classification tasks. Particularly, mirroring the top-down data splitting mechanism used by hierarchical divisive 111

clustering algorithm [30], DHT self-learns a hierarchical prototype-based structure, via recursively partitioning 112

data and creating shape-free clusters resembling Voronoi tessellations at multiple levels of granularity from low 113

to high, thereby separating data samples of different classes. The medoids of clusters obtained during the 114

recursively partitioning process are selected as prototypes and are subsequently arranged in a single multi-layer 115

pyramidical hierarchy. In so doing, the potential class overlaps are taken into consideration during the model 116

identification process. Compared with its predecessors (SyncStream [26], HP [27] and MLOP [28]), DHT has the 117

following unique advantages: 118

1) it is nonparametric, no externally controlled parameter is required to be predefined; 119

2) its system identification process is driven by data and thus, is highly objective; and 120

3) it enables a better understanding of multi-model distributions of data, by considering the inter-class overlaps. 121

An additional key feature of DHT is that its prototypes are themselves highly representative real samples in the 122

data space rather than the commonly used cluster means, which usually do not physically exist and hence have no 123

real meaning. As such, the DHT models can provide more institutive information about the problem and are 124

guaranteed to be semantically interpretable in a given applied field. Experimental investigations conducted on a 125

variety of benchmark problems, including a real-world application to remote sensing image classification, also 126

demonstrate the efficacy of the proposed DHT approach. 127

The remainder of this paper is organized as follows. Technical details of the proposed approach are presented in 128

Section 2. Its computational complexity is analysed in Section 3. Section 4 provides experimental case studies, 129

and the paper is concluded in Section 5. 130

2. Proposed Approach 131

In this section, the general architecture and the learning and decision-making strategies of the proposed DHT 132

approach are described in detail. 133

2.1. Key Notations 134

Let 𝑿 = {𝒙1, 𝒙2, … , 𝒙𝐾} be a particular static dataset in the 𝑁 dimensional real data space 𝓡𝑁 with the 135

corresponding class labels 𝒀 = {𝑦1, 𝑦2, … , 𝑦𝐾}, where 𝐾 is the cardinality of 𝑿; 𝒙𝑘 = [𝑥𝑘,1, 𝑥𝑘,2, … , 𝑥𝑘,𝑁]
𝑇
∈ 𝓡𝑁 136

denotes the kth data sample of 𝑿; and 𝑦𝑘 is the corresponding class label of 𝒙𝑘. Also, without losing generality, 137

assume that 𝑿 is composed of data samples of 𝐶 different classes, that is, 𝑦𝑘 ∈ {1,2,… , 𝐶} (𝑘 = 1,2, … , 𝐾). For 138

presentational simplicity, a list of key notations used is summarized in Table 1. 139

Table 1. List of key notations and their respective definitions 140

Notation Definition

𝑿 Static dataset

𝒀 Class labels of 𝑿

𝓡𝑁 Data space

𝐾 Cardinality of 𝑿

𝑁 Dimensionality of 𝓡𝑁

𝒙𝑘 The kth data sample of 𝐗

𝑦𝑘 Class label of 𝒙𝑘

𝐶 Number of classes

𝑔 Level of granularity

𝑫 Pairwise distance matrix

𝜮 Diagonal covariance matrix

𝜎𝑔 Radius of zone of influence around each prototype at the gth level of granularity

𝑼𝑔 Membership matrix of 𝑿 obtained at the gth level of granularity

𝜆𝑔 Cumulative membership calculated from 𝑼𝑔

𝑷𝑔 Set of prototypes identified at the gth level of granularity

ℂ𝑔 Set of clusters formed around 𝑷𝑔

𝑃𝑔 Cardinality of 𝑷𝑔

𝒑𝑔,𝑘 The kth prototype of 𝑷𝑔

𝑪𝑔,𝑘 Cluster formed around 𝒑𝑔,𝑘

𝑆𝑔,𝑘 Cardinality of 𝑪𝑔,𝑘

𝜌𝑔,𝑘 Purity of 𝑪𝑔,𝑘

𝑷𝑔
𝐿 Set of leaf prototypes within 𝑷𝑔

𝑷𝑔
𝐼 Set of internal prototypes within 𝑷𝑔

𝑃𝑔
𝐼 Cardinality of 𝑷𝑔

𝐼

𝒑𝑔,𝑘
𝐼 The kth prototype of 𝑷𝑔

𝐼

𝑪𝑔,𝑘
𝐼 Cluster formed around 𝒑𝑔,𝑘

𝐼

𝑼𝑔+1,𝑘
𝐼 Local membership matrix of 𝑪𝑔,𝑘

𝐼 obtained at the (g+1)th level of granularity

𝑆𝑔,𝑘
𝐼 Cardinality of 𝑪𝑔,𝑘

𝐼

𝜆𝑔+1,𝑘
𝐼 Local cumulative membership calculated from 𝑼𝑔+1,𝑘

𝐼

𝑷𝑔+1,𝑘 Set of prototypes identified from 𝑪𝑔,𝑘
𝐼 at the (g+1)th level of granularity

𝑷𝐿 Set of leaf prototypes identified from 𝑿

𝑃𝐿 Cardinality of 𝑷𝐿

 141

2.2. General Architecture 142

The main aim of DHT is to self-learn a multi-layered prototype-based hierarchical structure from data with each 143

node being a prototype, as depicted in Fig. 1. These prototypes are the medoids of clusters formed by neighbouring 144

samples at different levels of granularity, ordered from low to high, resembling Voronoi tessellations [31]. 145

 146

Fig. 1. General architecture of DHT 147

The hierarchical structure of DHT is purely determined by the ensemble properties and mutual distances of data 148

samples observed in the data space. Each layer corresponds to a particular level of granularity. Prototypes at higher 149

layers are identified from data at lower levels of granularity, and they represent the global patterns of data better 150

and have a greater descriptive power. Prototypes at lower layers are obtained at higher levels of granularity, 151

containing fine details about the data distribution and being able to better describe the local data patterns. These 152

prototypes can be further divided into two groups: i) internal prototypes, and ii) leaf prototypes. A prototype is 153

recognized as a leaf only if the cluster formed around it consists of data samples of the same class. Otherwise, it 154

is recognized as an internal prototype. An internal prototype can have multiple child prototypes directly linked to 155

it, as the medoids of smaller clusters obtained by partitioning the cluster formed around it at a higher level of 156

granularity aims to separate the data of different classes. These child prototypes can also have their own children 157

if they are internal prototypes, being surrounded by data samples of mixed classes. Clusters formed around internal 158

prototypes (white nodes in Fig. 1) are composed of data samples of multiple classes, whilst clusters formed around 159

leaf prototypes (blue nodes in Fig. 1) are each composed of data samples of the same class. 160

During the system identification process, DHT firstly initializes its structure by identifying the apex prototypes 161

from the given data at the lowest level of granularity. Then, it continuously self-develops its hierarchical structure 162

by partitioning the data at higher levels of granularity and automatically increases its depth at the same time until 163

all the prototypes at the bottom layer become leaves. Through this process, DHT achieves a multi-granular 164

partition of data such that the data samples of different classes are separated by clusters formed around leaf 165

prototypes. Of course, the identified leaf prototypes are connected directly to the decision-maker. For decision-166

making, the class labels of unlabelled data samples are determined on the basis of their distances to the leaf 167

prototypes. In the following subsections, the learning and decision-making policies are further detailed. 168

2.3. Learning Policy 169

Step A. System Initialization - Apex Prototype Identification 170

The system identification process starts by identifying apex prototypes. These apex prototypes locate at the top 171

layer of the hierarchical structure, and they are obtained from all the observed data samples at the first level of 172

granularity, namely, 𝑔 = 1. Therefore, apex prototypes are the most descriptive samples representing the global 173

patterns of data distribution. In order to identify such samples, distances between data samples of 𝑿 are firstly 174

calculated and a 𝐾 × 𝐾 dimensional pairwise distance matrix is obtained as Eqn. (1): 175

𝑫 = [𝑑2(𝒙𝑖 , 𝒙𝑗)]𝑗=1:𝐾
𝑖=1:𝐾

 (1) 176

where 𝑑2(𝒙𝑖 , 𝒙𝑗) = (𝒙𝑖 − 𝒙𝑗)
𝑇
𝜮−1(𝒙𝑖 − 𝒙𝑗); 𝜮 is an 𝑁 × 𝑁 dimensional diagonal matrix with its main diagonal 177

elements being the variances of 𝑿. In this work, Mahalanobis distance metric is employed as the default distance 178

measure to ensure that different attributes of the data contribute to the identification process equally. However, if 179

preferred, one may adopt any of other commonly used distance metrics or pseudo metrics (e.g., Euclidean distance 180

and cosine dissimilarity) as an alternative for DHT, depending on the nature of the problem. 181

Based on the distance matrix 𝑫, the radius of zone of influence around each prototype, denoted as 𝜎𝑔 at the first 182

level of granularity (𝑔 = 1) can be estimated using Eqn. (2), as the average distance between any two data 183

samples: 184

𝜎𝑔
2 =

1

𝐾(𝐾−1)
∑ ∑ 𝑑2(𝒙𝑖 , 𝒙𝑗)

𝐾
𝑗=1

𝐾
𝑖=1 (2) 185

Then, every individual data sample, 𝒙𝑘 is treated as a micro-cluster with the sample itself being the cluster medoid. 186

From this, there are a total of 𝐾 micro-clusters in the data space 𝓡𝑁. By letting the 𝐾 micro-cluster medoids be 187

assigned a membership with respect to each of the others (including itself), a 𝐾 × 𝐾 dimensional membership 188

matrix is obtained as follows [32]: 189

𝑼𝑔 = [𝜇̅(𝒙𝑖 , 𝒙𝑗 , 𝜎𝑔)]𝑖=1:𝐾
𝑗=1:𝐾

 (3) 190

where 𝜇̅(𝒙𝑖 , 𝒙𝑗, 𝜎𝑔) =
𝜇(𝒙𝑖,𝒙𝑗,𝜎𝑔)

∑ 𝜇(𝒙𝑙,𝒙𝑗,𝜎𝑔)
𝐾
𝑙=1

 is the normalized membership of which the ith micro-cluster medoid, 𝒙𝑖 is 191

assigned to the jth micro-cluster medoid, with 𝒙𝑗 at the gth level of granularity; and 𝜇(𝒙𝑖 , 𝒙𝑗 , 𝜎𝑔) is calculated by 192

Eqn. (4): 193

𝜇(𝒙𝑖 , 𝒙𝑗 , 𝜎𝑔) = 𝑒
−
𝑑2(𝒙𝑖,𝒙𝑗)

𝜎𝑔
2

 (4) 194

Cumulative memberships of these micro-cluster medoids are calculated from 𝑼𝑔 as Eqn. (5) [32]: 195

𝜆𝑔(𝒙𝑖) = ∑ 𝜇̅(𝒙𝑖 , 𝒙𝑗 , 𝜎𝑔)
𝐾
𝑗=1 = ∑

𝜇(𝒙𝑖,𝒙𝑗,𝜎𝑔)

∑ 𝜇(𝒙𝑙,𝒙𝑗,𝜎𝑔)
𝐾
𝑙=1

𝐾
𝑗=1 (5) 196

where 𝜆𝑔(𝒙𝑖) is the cumulative membership of 𝒙𝑖 . Based on 𝜆𝑔(𝒙𝑖) (𝑖 = 1,2, … , 𝐾), apex prototypes at the first 197

layer of the hierarchical structure are identified using Condition 1 (Eqn. (6)) [32]: 198

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟏:
𝑖𝑓 (𝜆𝑔(𝒙𝑖) = max

𝑑2(𝒙𝑖,𝒙)≤𝜎𝑔
2;

𝒙∈𝑿;

(𝜆𝑔(𝒙)))

𝑡ℎ𝑒𝑛 (𝑷𝑔 ← 𝑷𝑔 ∪ {𝒙𝑖})

 (6) 199

Condition 1 selects data samples of a locally maximum cumulative membership value as apex prototypes with 200

their collection denoted as 𝑷𝑔. 201

Remark 1: In exceptional cases, there may exist two (or more) neighbouring data samples satisfying Condition 202

1 at the same time, namely, 𝜆𝑔(𝒙𝑗) = 𝜆𝑔(𝒙𝑖) = max
𝑑2(𝒙𝑖,𝒙)≤𝜎𝑔

2;

𝒙∈𝑿;

(𝜆𝑔(𝒙)) and 𝑗 ≠ 𝑖. In the event that this happens, those 203

data samples satisfying Condition 1 will be selected as apex prototypes unless they are positioned at an exactly 204

identical location in the data space, which means that 𝒙𝑗 = 𝒙𝑖 and 𝑗 ≠ 𝑖. The same principle also applies to 205

Condition 2, which will be given in Eqn. (12) later. 206

Suppose that there are a total of 𝑃𝑔 apex prototypes being identified, namely, 𝑷𝑔 = {𝒑𝑔,1, 𝒑𝑔,2, … , 𝒑𝑔,𝑃𝑔}. Then, 207

clusters can be created using these apex prototypes to attract nearby data samples to form Voronoi tessellations 208

[31]: 209

𝑪𝑔,𝑗∗ ← 𝑪𝑔,𝑗∗ ∪ {𝒙𝑖}; 𝑗∗ = argmin
𝑗=1,2,…,𝑃𝑔

(𝑑2(𝒙𝑖 , 𝒑𝑔,𝑗)) (7) 210

where 𝑖 = 1,2, … , 𝐾; and 𝑪𝑔,𝑗 is the cluster constructed around 𝒑𝑔,𝑗. The collection of clusters at the first layer of 211

this hierarchical structure is denoted as ℂ𝑔 (ℂ𝑔 = {𝑪𝑔,1, 𝑪𝑔,2, … , 𝑪𝑔,𝑃𝑔}). 212

From the above, the purity of each cluster, 𝑪𝑔,𝑖 is calculated using Eqn. (8) (𝑖 = 1,2, … , 𝑃𝑔): 213

𝜌𝑔,𝑖 =
𝑆𝑔,𝑖
𝑑

𝑆𝑔,𝑖
 (8) 214

where 𝜌𝑔,𝑖 is the purity of 𝑪𝑔,𝑖; 𝑆𝑔,𝑖 is the cardinality (number of data samples) of 𝑪𝑔,𝑖; and 𝑆𝑔,𝑖
𝑑 is the number of 215

data samples with the dominate class label in 𝑪𝑔,𝑖. If 𝜌𝑔,𝑖 = 1, it suggests that 𝑪𝑔,𝑖 is a pure cluster formed by data 216

samples of the same class. In this case, the cluster medoid, 𝒑𝑔,𝑖 is recognized as a leaf prototype with the 217

corresponding class label denoted as 𝑦𝑔,𝑖. Otherwise, namely, 𝜌𝑔,𝑖 < 1, 𝒑𝑔,𝑖 is an internal prototype, and 𝑪𝑔,𝑖 is 218

an impure cluster and needs to be partitioned at a higher level of granularity in order to separate data samples of 219

different classes. Based on Eqn. (8), 𝑷𝑔 can be divided into two non-overlapping sets: one is the set of leaf 220

prototypes, 𝑷𝑔
𝐿 , and the other is the set of internal prototypes, 𝑷𝑔

𝐼 , which satisfy that 𝑷𝑔
𝐿 ∪ 𝑷𝑔

𝐼 = 𝑷𝑔 and 𝑷𝑔
𝐿 ∩221

𝑷𝑔
𝐼 = ∅. Accordingly, the constructed clusters associated with 𝑷𝑔 can be divided into two groups: the impure 222

clusters formed around internal prototypes, 𝑷𝑔
𝐼 and the pure clusters formed around leaf prototypes, 𝑷𝑔

𝐿 . Although 223

internal prototypes are associated with data samples of different classes and will not participate in decision-making 224

directly, they represent the peaks of multi-model distribution of data and help disclose key information about class 225

overlaps and interactions. 226

If there are any clusters formed around the apex prototypes with purity values smaller than 1, it means that data 227

samples of different classes cannot be satisfactorily separated at the current level of granularity and thus, the 228

system identification process enters Step B for finer partitioning. 229

Step B. Pyramidical Hierarchy Growth - Child Prototype Identification 230

Without losing generality, suppose that there are 𝑃𝑔
𝐼 internal prototypes identified at the gth level of granularity, 231

namely, 𝒑𝑔
𝐼 = {𝒑𝑔,1

𝐼 , 𝒑𝑔,2
𝐼 , … , 𝒑

𝑔,𝑃𝑔
𝐼

𝐼 } ⊆ 𝑷𝑔, the clusters formed around them, denoted as 𝑪𝑔,1
𝐼 , 𝑪𝑔,2

𝐼 ,…, 𝑪
𝑔,𝑃𝑔

𝐼
𝐼 will 232

then be partitioned at a higher level of granularity (namely, 𝑔 + 1) with the aim of separating data samples of 233

different classes. 234

The radius of the zone of influence around each prototype at the (g+1)th level of granularity is first estimated 235

using Eqn. (9): 236

𝜎𝑔+1
2 =

1

∑ ∑ 𝑤𝑔,𝑖,𝑗
𝐾
𝑗=1

𝐾
𝑖=1

∑ ∑ 𝑤𝑔,𝑖,𝑗𝑑
2(𝒙𝑖, 𝒙𝑗)

𝐾
𝑗=1

𝐾
𝑖=1 (9) 237

where 𝑤𝑔,𝑖,𝑗 = {
1, 𝑖𝑓 𝑑2(𝒙𝑖 , 𝒙𝑗) ≤ 𝜎𝑔

2

0, 𝑖𝑓 𝑑2(𝒙𝑖 , 𝒙𝑗) > 𝜎𝑔
2
. 238

Next, for each impure cluster, 𝑪𝑔,𝑖
𝐼 (𝑖 = 1,2, … , 𝑃𝑔

𝐼), a similar prototype identification process as used in Step A is 239

applied to identify child prototypes from its members. Data sample associated with 𝑪𝑔,𝑖
𝐼 are treated as micro-240

cluster medoids and a 𝑆𝑔,𝑖
𝐼 × 𝑆𝑔,𝑖

𝐼 dimensional local membership matrix is obtained by letting them assign 241

memberships to each other, similar to Eqn. (3): 242

𝑼𝑔+1,𝑖
𝐼 = [𝜇̅(𝒛𝑗 , 𝒛𝑙 , 𝜎𝑔+1)]𝑙=1:𝑆𝑔,𝑖

𝐼

𝑗=1:𝑆𝑔,𝑖
𝐼

 (10) 243

where 𝒛𝑗 , 𝒛𝑙 ∈ 𝑪𝑔,𝑖
𝐼 ; 𝜇̅(𝒛𝑗 , 𝒛𝑙 , 𝜎𝑔+1) =

𝜇(𝒛𝑗,𝒛𝑙,𝜎𝑔+1)

∑ 𝜇(𝒛𝑘,𝒛𝑙,𝜎𝑔+1)
𝑆𝑔,𝑖
𝐼

𝑘=1

; 𝜇(𝒛𝑗, 𝒛𝑙 , 𝜎𝑔+1) is calculated by Eqn. (4). 244

Local cumulative memberships are computed from 𝑼𝑔+1,𝑖
𝐼 by Eqn. (11): 245

𝜆𝑔+1,𝑖
𝐼 (𝒛𝑗) = ∑ 𝜇(𝒛𝑗 , 𝒛𝑙 , 𝜎𝑔+1)

𝑆𝑔,𝑖
𝐼

𝑙=1 = ∑
𝜇(𝒛𝑗,𝒛𝑙,𝜎𝑔+1)

∑ 𝜇(𝒛𝑘,𝒛𝑙,𝜎𝑔+1)
𝑆𝑔,𝑖
𝐼

𝑘=1

𝑆𝑔,𝑖
𝐼

𝑙=1 (11) 246

where 𝜆𝑔+1,𝑖
𝐼 (𝒛𝑗 , 𝜎𝑔+1) is the cumulative membership of 𝒛𝑗 calculated locally within 𝑪𝑔,𝑖

𝐼 . Condition 2 is used for 247

identifying the child prototypes of 𝒑𝑔,𝑖
𝐼 from members of 𝑪𝑔,𝑖

𝐼 : 248

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟐:
𝑖𝑓

(

𝜆𝑔+1,𝑖
𝐼 (𝒛𝑗) = max

𝑑2(𝒛𝑗,𝒙)≤𝜎𝑔+1
2 ;

𝒛∈𝑪𝑔,𝑖
𝐼 ;

(𝜆𝑔+1,𝑖
𝐼 (𝒛))

)

𝑡ℎ𝑒𝑛 (𝑷𝑔+1,𝑖 ← 𝑷𝑔+1,𝑖 ∪ {𝒛𝑗})

 (12) 249

Condition 2 selects data samples from 𝑪𝑔,𝑖
𝐼 of the highest cumulative membership locally to join 𝑷𝑔+1,𝑖, which is 250

the collection of child prototypes of 𝒑𝑔,𝑖
𝐼 . Given that there are 𝑃𝑔+1,𝑖 prototypes identified from 𝑪𝑔,𝑖

𝐼 at the (g+1)th 251

level of granularity, namely, 𝑷𝑔+1,𝑖 = {𝒑𝑔+1,𝑖,1, 𝒑𝑔+1,𝑖,2 , … , 𝒑𝑔+1,𝑖,𝑃𝑔+1,𝑖}, 𝑪𝑔,𝑖
𝐼 is partitioned into 𝑃𝑔+1,𝑖 smaller 252

clusters by forming Voronoi tessellations locally: 253

𝑪𝑔+1,𝑖,𝑘∗
𝐼 ← 𝑪𝑔+1,𝑖,𝑘∗

𝐼 ∪ {𝒛𝑗}; 𝑘∗ = argmin
𝑘=1,2,…,𝑃𝑔+1,𝑖

(𝑑2(𝒛𝑗 , 𝒑𝑔+1,𝑖,𝑘)) (13) 254

where 𝒛𝑗 ∈ 𝑪𝑔,𝑖
𝐼 . The collection of smaller clusters obtained from 𝑪𝑔,𝑖

𝐼 is denoted as ℂ𝑔+1,𝑖, namely, ℂ𝑔+1,𝑖 =255

{𝑪𝑔+1,1, 𝑪𝑔+1,2, … , 𝑪𝑔+1,𝑃𝑔+1,𝑖}. 256

After all the impure clusters have been partitioned at the (g+1)th level of granularity, a new layer is added to the 257

hierarchical structure of DHT based on these newly identified child prototypes. The collection of prototypes at 258

the (g+1)th layer is denoted as 𝑷𝑔+1, namely, 𝑷𝑔+1 = 𝑷𝑔+1,1 ∪ 𝑷𝑔+1,2 ∪ …∪ 𝑷𝑔+1,𝑃𝑔𝐼 . Correspondingly, the 259

collection of the clusters formed around them is denoted as ℂ𝑔+1, namely, ℂ𝑔+1 = ℂ𝑔+1,1 ∪ ℂ𝑔+1,2 ∪ …∪ ℂ𝑔+1,𝑃𝑔𝐼 . 260

The cardinality of 𝑷𝑔+1 is denoted as 𝑃𝑔+1, where 𝑃𝑔+1 = ∑ 𝑃𝑔+1,𝑖
𝑃𝑔
𝐼

𝑖=1
 . 261

Then, purity values of the newly obtained clusters are calculated using Eqn. (8). If all the clusters at the (g+1)th 262

layer have the purity value 1, it means that the data samples of different classes have been sufficiently separated 263

at the current level of granularity, and that the system identification process terminates. Otherwise, Step B is 264

repeated to partition the newly obtained impure clusters at a higher level of granularity (while setting 𝑔 ← 𝑔 +265

1). 266

Remark 2: The system identification process of DHT will in general, self-terminate automatically thanks to the 267

recursive partitioning mechanism utilized. At each partitioning cycle (say, the 𝑔th cycle), only those impure 268

clusters at the previous cycle (namely, the (𝑔 − 1)th) are partitioned, and the resulting prototypes will form smaller 269

clusters with a smaller radius of the zone of influence (as specified by Eqn. (9)), associated with less data samples. 270

The impure clusters derived from the current cycle will then be partitioned at a higher level of granularity in the 271

next cycle. Hence, this recursive partitioning process will generally separate data samples of different classes and 272

terminate itself at the end when the purity values of all the newly obtained clusters reach 1. Such a mechanism is 273

also computationally efficient because there are always less data samples to be partitioned cycle by cycle. In 274

theory, however, this system identification process may enter into an infinite loop in the unlikely event where 275

there are data samples of different classes accidentally positioned at an exactly identical location in the data space, 276

namely, 𝒙𝑗 = 𝒙𝑖 whilst 𝑦𝑗 ≠ 𝑦𝑖 . Yet, the likelihood for this to take place is extremely low. Besides, it can be 277

avoided by carrying out a simple procedure of data cleaning to explicitly block such partitions in advance. 278

Remark 3: The main aim of DHT is to identify a group of leaf prototypes at multiple levels of granularity with 279

different descriptive abilities for classification, by recursively partitioning the data into non-overlapping multi-280

granular clusters one cycle after another. Once a leaf prototype is obtained, the associated pure cluster will no 281

longer participate in the partitioning process further. Hence, the obtained classification model is unlikely to be 282

overfitting because leaf prototypes will only distribute densely in the areas where class overlaps are observed, 283

unless the data itself rejects the cluster hypothesis, which is extremely rare in practice. On the other hand, users 284

may further consider terminating the system identification process earlier, by pre-setting the maximum model 285

depth (number of layers) over which DHT may achieve. However, this would require prior knowledge of the 286

problem under consideration in order to achieve the best classification performance, reducing the pure data-driven 287

nature of the proposed approach. 288

Remark 4: The interpretability of the DHT models comes from three different aspects. First, all identified 289

prototypes are data samples physically existing in the data space and are guaranteed to attain their inherent 290

meanings. Second, the resulting prototypes are arranged in multiple layers according to their descriptive abilities. 291

A smaller amount of more descriptive prototypes that represent global patterns of data are located at higher layers, 292

whilst a greater amount of less descriptive prototypes that represent local patterns of data are located at lower 293

layers. Users can utilize prototypes at higher layers to obtain a general picture of the problem and also, they can 294

retrieve finer details of the problem based on prototypes at lower layers. Third, the relationships between 295

prototypes identified at different levels of granularity are preserved by the models in the form of meaningful links, 296

which are readily visualizable in a human-understandable manner. Users may use these links to interpret the 297

internal system identification processes of the DHT models top-down. 298

2.4. Summary and Illustration of System identification Algorithm 299

The main system identification procedure is summarized in the form of pseudo code as given in Algorithm 1. 300

Algorithm 1. Learning policy of DHT 301

i. calculate 𝑫 from 𝑿 as Eqn. (1);

ii. 𝑔 ← 1;

iii. calculate 𝜎𝑔 by Eqn. (2);

iv. obtain 𝑼𝑔 by Eqns. (3) and (4);

v. calculate 𝜆𝑔(𝒙𝑖) (𝑖 = 1,2, … , 𝐾) by Eqn. (5);
vi. identify 𝑷𝑔 from 𝑿 by Condition 1 as Eqn. (6);

vii. obtain ℂ𝑔 from 𝑷𝑔 and 𝑿 by Eqn. (7);

viii. calculate 𝜌𝑔,𝑖 of 𝑪𝑔,𝑖 (𝑖 = 1,2, … , 𝑃𝑔) by Eqn. (8);

ix. separate 𝑷𝑔 to 𝑷𝑔
𝐿 and 𝑷𝑔

𝐼 ;

xi. while (𝑷𝑔
𝐼 ≠ ∅):

1. calculate 𝜎𝑔+1 by Eqn. (9);

2. 𝑷𝑔+1 ← ∅;

3. ℂ𝑔+1 ← ∅;

4. for 𝑖 = 1 to 𝑃𝑔
𝐼 do:

* obtain 𝑼𝑔+1,𝑖
𝐼 from 𝑪𝑔,𝑖

𝐼 by Eqn. (10);

* calculate 𝜆𝑔+1,𝑖
𝐼 (𝒛𝑗) for ∀𝒛𝑗 ∈ 𝑪𝑔,𝑖

𝐼 by Eqn. (11);

* identify 𝑷𝑔+1,𝑖 from 𝑪𝑔,𝑖
𝐼 by Condition 2 as Eqn. (12);

* obtain ℂ𝑔+1,𝑖 from 𝑷𝑔+1,𝑖 and 𝑪𝑔,𝑖
𝐼 by Eqn. (13);

* 𝑷𝑔+1 ← 𝑷𝑔+1 ∪ 𝑷𝑔+1,𝑖;

* ℂ𝑔+1 ← ℂ𝑔+1 ∪ ℂ𝑔+1,𝑖;

5. end for

6. calculate 𝜌𝑔+1,𝑗 of ℂ𝑔+1 (𝑗 = 1,2, … , 𝑃𝑔) by Eqn. (8);

7. separate 𝑷𝑔+1 into 𝑷𝑔+1
𝐿 and 𝑷𝑔+1

𝐼 ;

8. 𝑔 ← 𝑔 + 1;

xii. end while

 302

To better illustrate the system identification process of DHT, a two-dimensional synthetic dataset is used as a 303

visual example. This dataset considered is composed of 300 data samples of three different classes (100 samples 304

per class), as visualized in Fig. 2, where dots “·” in three different colours represent data samples of three classes. 305

The cumulative memberships of the 300 data samples calculated by Eqn. (11) at the first level of granularity (𝑔 =306

1) are visualized in Fig. 3 (a), and the apex prototype identified from the dataset with the local maximum 307

cumulative membership is given by Fig. 3(b), represented by the red asterisk “*”. Note that as there is just one 308

apex prototype identified, only one cluster containing all the 300 data samples is created. Hence, the entire dataset 309

needs to be partitioned at a higher level of granularity, namely, 𝑔 = 2. At this stage, the calculated cumulative 310

memberships of the 300 data samples are visualized in Fig. 4(a). Two data samples with the local maximum 311

cumulative membership are identified as prototypes, represented by blue asterisks “*”, as shown in Fig. 4(b). 312

Accordingly, two clusters are formed via using them as the cluster medoids to attract nearby data samples forming 313

Voronoi tessellations. It can be seen from Fig. 4(b) that one of the clusters is formed by data samples of two 314

classes, this cluster requires to be partitioned at the next level of granularity, 𝑔 = 3. The obtained cumulative 315

membership calculated locally within this cluster is presented in Fig. 5(a) and the identified prototypes are given 316

in Fig. 5(b) as black asterisks “*”. It follows from Fig. 5(b) that the cluster is partitioned into two smaller ones, 317

each of which contains data samples of the same class. As data samples of three classes have been sufficiently 318

separated, the system identification process terminates with the final three-layer prototype-based hierarchical 319

structure obtained as visualized in Fig. 6. 320

 321

Fig. 2. Visualization of two-dimensional synthetic dataset composed of 300 samples of three classes (100 322

samples per class) 323

 324

(a) Cumulative membership (b) Prototype 325

Fig. 3. Cumulative membership and identified prototype at the first level of granularity (𝑔 = 1) 326

 327

(a) Cumulative membership (b) Prototypes 328

Fig. 4. Cumulative membership and identified prototypes at the second level of granularity (𝑔 = 2) 329

 330

(a) Cumulative membership (b) Prototypes 331

Fig. 5. Cumulative membership and identified prototypes at the third level of granularity (𝑔 = 3) 332

 333

 334

 335

Fig. 6. Prototype-based hierarchical structure identified from data 336

2.5. Decision-Making Policy 337

During the decision-making stage, the decision-maker component of DHT determines the class labels of 338

unlabelled data samples based on the distances between these unlabelled samples and the identified leaf 339

prototypes. For a particular data sample, 𝒙𝑘, its class label is decided by Eqn. (14): 340

𝑦̂𝑘 ← 𝑦𝑛∗; 𝑛∗ = argmin
𝑛=1,2,…,𝑃𝐿

(𝑑2(𝒙𝑘, 𝒑𝑛)) (14) 341

where 𝒑𝑛 ∈ 𝑷
𝐿; 𝑷𝐿 is the collection of identified leaf prototypes; 𝑃𝐿 is the cardinality of 𝑷𝐿. 342

Remark 5: Since the class labels of unlabelled data samples are determined by the nearest leaf prototypes, if 343

desired, users can track and trace the internal decision-making processes of the DHT models in a straightforward 344

manner. Understanding about the rationales behind the decisions made can be obtained by exploiting the links 345

constructed between prototypes at different layers (e.g., to appreciate how well an unlabelled data sample fits the 346

related local and global patterns). 347

3. Computational Complexity Analysis 348

To reflect the efficiency of the proposed approach, a formal analysis of the computational complexity of the two 349

main processes of DHT is provided herein. 350

3.1. Learning Process 351

Step A of the learning process of DHT starts by calculating a 𝐾 × 𝐾 dimensional pairwise distance matrix, 𝑫 from 352

𝑿. The computational complexity of calculating 𝑫 by Eqn. (1) is 𝑂(𝑁𝐾2); that of deriving 𝜎𝑔 from 𝑫 by Eqn. (2) 353

is 𝑂(𝐾2); and that of calculating the membership matrix, 𝑼𝑔 and cumulative membership, 𝜆 from 𝑫 and 𝜎𝑔 (Eqns. 354

(3)-(5)) is 𝑂(𝐾3). The computational complexity of identifying 𝑷𝑔 from 𝑿 by Condition 1 is 𝑂(𝐾2); that of 355

forming Voronoi tessellations by Eqn. (7) is 𝑂(𝑁𝐾𝑃𝑔); and that of calculating the purity for each cluster is 356

𝑂(𝐾𝑃𝑔). Therefore, the overall computational complexity of Step A is 𝑂((𝑁 + 𝐾)𝐾2). 357

In Step B, the obtained impure clusters are recursively partitioned at higher levels of granularity in order to 358

separate data samples of different classes. The computational complexity of calculating 𝜎𝑔+1 by Eqn. (9) is 𝑂(𝐾2); 359

and that of calculating the local membership matrix, 𝑼𝑔+1,𝑖
𝐼 and local cumulative membership, 𝜆𝑔+1,𝑖

𝐼 for each 360

impure cluster, 𝑪𝑔,𝑖
𝐼 by Eqns. (10)-(11) is 𝑂 ((𝑆𝑔,𝑖

𝐼)
3
). The computational complexity of identifying 𝒑𝑔,𝑖

𝐼 from 𝑪𝑔,𝑖
𝐼 361

using Condition 2 is 𝑂 ((𝑆𝑔,𝑖
𝐼)

2
); and that of forming Voronoi tessellations within 𝑪𝑔,𝑖

𝐼 by Eqn. (7) is 362

𝑂(𝑁𝑆𝑔,𝑖
𝐼 𝑃𝑔+1,𝑖). As there are a total of 𝑃𝑔

𝐼 impure clusters at the gth level of granularity, the overall computational 363

complexity of Step B is 𝑂 (𝐾2 +∑ (𝑆𝑔,𝑖
𝐼)

3𝑃𝑔
𝐼

𝑖=1
). 364

Despite that Step B may be repeated for a few times before the complete separation of data can be achieved, the 365

computational complexity of each iteration is kept decreasing due to the continued reduction of the sizes of impure 366

clusters obtained at higher levels of granularity. Hence, it can be concluded from the above that the overall 367

computational complexity of DHT is 𝑂((𝑁 + 𝐾)𝐾2). 368

3.2. Decision-Making Process 369

During the decision-making process, the computational complexity of calculating the distances between a 370

particular testing sample and the learned leaf prototypes is 𝑂(𝑁𝑃𝐿). For 𝐾 testing samples, the overall 371

computational complexity to determine their class labels is 𝑂(𝑁𝐾𝑃𝐿). 372

4. Experimental Investigation 373

In this section, experimental studies are conducted to evaluate the effectiveness and validity of the proposed DHT 374

algorithm. 375

4.1. Configuration 376

In this work, a total of 21 commonly used benchmark numerical datasets (including 10 binary and 11 multi-class 377

ones) and two real-world remote sensing image sets are utilized in the experimental investigations. Key 378

information regarding the 23 datasets is summarized in Tables 2-4, and the web links to these datasets are given 379

in Table 5. 380

 Table 2. Key information of binary benchmark classification problems 381

Dataset Abbreviation #(Samples) #(Attributes) #(Minority) #(Majority)

Epileptic seizure recognition ES 11500 175+1 label 2300 9200

German credit GC 1000 24+1 label 300 700

Mammography MA 11183 6+1 label 260 10923

Magic gamma telescope MG 19020 10+1 label 6688 12332

Occupancy detection Training OD 8143 5+1 label 1729 6414

Testing 12417 3021 9396

Phishing websites PW 11055 30+1 label 4898 6157

Shill bidding SB 6321 9+1 label 675 5646

Seismic SE 2584 18+1 label 170 2414

Spambase SP 4601 57+1 label 1813 2788

Wilt Training WI 4339 5+1 label 74 4265

Testing 500 187 313

 382

Table 3. Key information of multi-class benchmark classification problems 383

Dataset Abbreviation #(Samples) #(Attributes) #(Classes)

Iris IR 150 4+1 label 3

Cardiotocography CA 2126 21+1 label 3

Gesture phase segmentation GP 9901 18+1 label 5

Image segmentation Training IS 420 19+1 label 7

Testing 2100

Letter recognition LR 20000 16+1 label 26

Multiple features MF 2000 649+1 label 10

Page-blocks PB 5473 10+1 label 5

Pen-based recognition of handwritten digits PR 10996 16+1 label 10

Semeion handwritten digit SH 1593 256+1 label 10

Steel plates faults SPF 1941 27+1 label 7

Wall-following robot navigation WF 5456 24+1 label 4

 384

Table 4. Key information of benchmark remote sensing image sets for land-use classification 385

Dataset #(Images) #(Categories) #(Images per category) Image size

OPTIMAL-31 1860 31 60 256×256

RSI-CB256 24747 35 198~1331 256×256

 386

Table 5. Web links to benchmark datasets involved in experimental investigation 387

Dataset Web link

ES https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition

GC https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)

MA http://odds.cs.stonybrook.edu/mammography-dataset/

MG https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope

OD https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+

PW https://archive.ics.uci.edu/ml/datasets/phishing+websites

SB https://archive.ics.uci.edu/ml/datasets/Shill+Bidding+Dataset

SE https://archive.ics.uci.edu/ml/datasets/seismic-bumps

SP https://archive.ics.uci.edu/ml/datasets/Spambase

WI http://archive.ics.uci.edu/ml/datasets/wilt

IR https://archive.ics.uci.edu/ml/datasets/iris
CA https://archive.ics.uci.edu/ml/datasets/cardiotocography

GP https://archive.ics.uci.edu/ml/datasets/gesture+phase+segmentation

IS https://archive.ics.uci.edu/ml/datasets/image+segmentation

LR https://archive.ics.uci.edu/ml/datasets/Letter+Recognition

MF https://archive.ics.uci.edu/ml/datasets/Multiple+Features

PB https://archive.ics.uci.edu/ml/datasets/Page+Blocks+Classification

PR https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits

SH https://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit

SPF https://archive.ics.uci.edu/ml/datasets/Steel+Plates+Faults

WF https://archive.ics.uci.edu/ml/datasets/Wall-Following+Robot+Navigation+Data

OPTIMAL-31 https://drive.google.com/file/d/1Fk9a0DW8UyyQsR8dP2Qdakmr69NVBhq9

RSI-CB256 https://github.com/lehaifeng/RSI-CB

 388

Binary Classification Problems. In running the experiments, for the OD and WI datasets, the original training-389

testing splits are used. For the other eight binary benchmark datasets, namely, ES, GC, MA, MG, PW, SB, SE 390

and SP, 50% of the data samples are randomly selected for building the training sets and the rest for testing [28]. 391

The performance of DHT is evaluated on the 10 binary classification datasets in terms of classification accuracy 392

(𝐴𝑐𝑐) and execution time (𝑡𝑒𝑥𝑒). As some of the binary classification datasets are highly imbalanced, the standard 393

classification accuracy may not be the best performance index. Hence, the following two additional measures are 394

also employed: balanced accuracy score (𝐵𝐴𝑐𝑐) [33] and F1 score (𝐹1). Expressions of 𝐴𝑐𝑐, 𝐵𝐴𝑐𝑐 and 𝐹1 are 395

given by Eqns. (15a), (15b) and (15c). 396

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (15a) 397

𝐵𝐴𝑐𝑐 =
1

2
(

𝑇𝑃

𝑇𝑃+𝐹𝑁
+

𝑇𝑁

𝑇𝑁+𝐹𝑃
) (15b) 398

𝐹1 =
𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑃+𝐹𝑁)

 (15c) 399

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 denote true positive, true negative, false positive and false negative, respectively. 400

Multi-Class Classification Problems. Thanks to its smaller scale and simpler structure, the IR dataset is taken 401

to provide visual illustration. The remaining ten multi-class benchmark datasets are used for performance 402

evaluation. Similar to the experiment protocols used for binary classification problems, the original training-403

testing splits of the IS and PR dataset are retained. For the other eight datasets, including CA, GP, LR, MF, PB, 404

SH, SPF and WF, 50% of data samples are randomly selected for training with the remaining for testing [28]. 𝐴𝑐𝑐 405

and 𝑡𝑒𝑥𝑒 are used as the two criteria to evaluate the working of DHT on the 10 multi-class classification problems. 406

https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
http://odds.cs.stonybrook.edu/mammography-dataset/
https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope
https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection
https://archive.ics.uci.edu/ml/datasets/phishing+websites
https://archive.ics.uci.edu/ml/datasets/Shill+Bidding+Dataset
https://archive.ics.uci.edu/ml/datasets/seismic-bumps
https://archive.ics.uci.edu/ml/datasets/Spambase
http://archive.ics.uci.edu/ml/datasets/wilt
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/cardiotocography
https://archive.ics.uci.edu/ml/datasets/gesture+phase+segmentation
https://archive.ics.uci.edu/ml/datasets/image+segmentation
https://archive.ics.uci.edu/ml/datasets/Letter+Recognition
https://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://archive.ics.uci.edu/ml/datasets/Page+Blocks+Classification
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit
https://archive.ics.uci.edu/ml/datasets/Steel+Plates+Faults
https://archive.ics.uci.edu/ml/datasets/Wall-Following+Robot+Navigation+Data
https://drive.google.com/file/d/1Fk9a0DW8UyyQsR8dP2Qdakmr69NVBhq9
https://github.com/lehaifeng/RSI-CB

Remote Sensing Image Classification Problems. To examine the capability of DHT to handle high-dimensional, 407

complex problems, two popular remote sensing image sets for land-use classification problems are employed. In 408

carrying out the experiments, three popular DNNs including ResNet50 [34], DenseNet121 [35] and InceptionV3 409

[36] are exploited for feature extraction after fine-tuning on the NWPU45 dataset, following the same process as 410

described in [37]. Each of the three DNNs extracts a 1024 × 1 dimensional feature vector from every remote 411

sensing image. The three resulting feature vectors are combined into a more descriptive high-level representation 412

by arithmetic mean. Hence, for each image within the datasets, a 1024 × 1 dimensional high-level representation 413

is extracted. As with the common practice in the literature, the training-testing split ratio of OPTIMAL-31 is set 414

to 8:2; and for the RSI-CB256 dataset, two different split ratios are considered, namely, 5:5 and 8:2. The 415

classification performances of DHT on the two remote sensing image classification problems are measured with 416

respect to 𝐴𝑐𝑐, as commonly done in the literature. 417

State-of-the-Art Methods for Benchmark Comparison. For better evaluation, the following 14 mainstream 418

classification approaches are involved for benchmark comparison on the 20 numerical datasets, under the same 419

experimental protocols used by DHT. 420

1) Multi-granularity locally optimal prototype-based (MLOP) classifier [28]; 421

2) Hierarchical prototype-based (HP) classifier [27]; 422

3) SVM classifier with linear kernel (SVM-L) [10]; 423

4) SVM classifier with Gaussian kernel (SVM-G) [10]; 424

5) DT classifier [12]; 425

6) KNN classifier [13]; 426

7) Multilayer perceptron (MLP); 427

8) SC [20]; 428

9) Sequence-dictionary-based KNN (SDKNN) classifier [20]; 429

10) Zero-order autonomous learning multiple-model (ALMMo0) classifier [19]; 430

11) Self-organising fuzzy inference system (SOFIS) [16]; 431

12) Extreme learning machine (ELM) [38]; 432

13) EigenClass [21], and; 433

14) Generalized learning vector quantization (GLVQ) [39]. 434

In running these experiments, system parameters are set with respect to the commonly adopted default values 435

[28]. Particularly, the layer number of HP is set as 𝐻 = 6 [27]; the regularization parameter of MLOP is set as 436

𝜌 = 0.05 [28]; SC uses the recommended setting given by [20]; the box constraint, 𝐶 for SVM is set as 𝐶 = 1; 437

both KNN and SDKNN use 𝑘 = 5; the maximum depth of DT is set as 𝐾 − 1; MLP has three hidden layers with 438

20 neurons per layer; the level of granularity of SOFIS is set as 𝐺 = 12 [16]; the maximum number of neurons 439

for ELM is set as 200; EigenClass considers the first five eigenvalues for classification; and GLVQ has 25 440

reference vectors per class with the gain factor set to 𝛼 = 0.005. 441

In addition, three evolutionary algorithms are also employed in experimental investigation, including: 442

1) Genetic algorithm (GA) [40]; 443

2) Particle swarm optimization algorithm (PSO) [41], and; 444

3) Genetic learning particle swarm optimization algorithm (GLPSO) [42]. 445

In these experiments, GA, PSO, GLPSO are utilized to optimize the learned prototypes by SOFIS from data, under 446

a similar experimental protocol as used in [43]. Following the common practice in the literature, the crossover 447

probability 𝑝𝑐, mutation probability 𝑝𝑚, distribution indexes for crossover and mutation operators, 𝜂𝑐 and 𝜂𝑐 for 448

GA are set as: 𝑝𝑐 = 0.9; 𝑝𝑚 =
1

𝑁
; 𝜂𝑐 = 20 and 𝜂𝑚 = 20, respectively. The externally controlled parameters for 449

PSO are set as: 𝜔 = 0.7298; 𝑐1 = 𝑐2 = 1.49618, and that for GLPSO are set as: 𝜔 = 0.7298; 𝑐 = 𝑐1 =450

 𝑐2 = 1.49618; 𝑝𝑚 = 0.01 [42], [43]. The population size is set to 100, the maximum number of iterations is 451

200 for each of the three evolutionary algorithms, and the fitness of the solutions is evaluated on the basis of the 452

classification error rate (1 − 𝐴𝑐𝑐) on the training data. The optimized SOFISs by GA, PSO and GLPSO are 453

denoted as GA-SOFIS, PSO-SOFIS and GLPSO-SOFIS. Here, the level of granularity is set as 𝐺 = 9 for GA-454

SOFIS, PSO-SOFIS and GLPSO-SOFIS to avoid overfitting. 455

The proposed approach is implemented on the MATLAB2020b platform, and the performance evaluation is 456

conducted on a laptop with dual core i7 processer 2.60GHz×2 and 16.0GB RAM. Unless otherwise stated, the 457

reported results are obtained after 10 Monte Carlo experiments to allow a certain degree of randomness and hence, 458

a fair comparison. The MATLAB code of DHT is publicly available at: https://github.com/Gu-X/Self-Organizing-459

Divisive-Hierarchical-Voronoi-Tessellation-Based-Classifier. 460

4.2. Visual Illustration 461

The IR dataset is employed as the first example to illustrate the proposed concept. In this case study, all data 462

samples available are used for training. During the experiment, DHT repeatedly partitions the dataset at seven 463

different levels of granularity until a clear separation of data samples of the three classes is achieved. The recursive 464

partitioning results are visualized in Fig. 7, where dots “·” in three different colours represent data samples of 465

three classes and the blue asterisks “*” represent the identified prototypes. Whilst DHT self-constructs a seven-466

layer prototype-based hierarchical structure from data, for visual clarity, only the partitioning results obtained at 467

the first four levels of granularity are given. The constructed prototype-based hierarchy is presented in Fig. 8, and 468

the corresponding prototypes are listed in Table 6. 469

Table 6. Identified prototypes from IR dataset 470

Prototype Prototype Prototype

𝒑1,1 = [5.7,3.0,4.2,1.2]
𝑇 𝒑5,14 = [7.4,2.8,6.1,1.9]

𝑇 𝒑6,19 = [6.3,2.5,5.0,1.9]
𝑇

𝒑2,1 = [5.0,3.4,1.6,0.4]
𝑇 𝒑5,15 = [7.7,2.6,6.9,2.3]

𝑇 𝒑6,20 = [6.2,3.4,5.4,2.3]
𝑇

𝒑2,2 = [6.0,2.9,4.5,1.5]
𝑇 𝒑6,1 = [4.9,2.5,4.5,1.7]

𝑇 𝒑6,21 = [6.3,3.3,4.7,1.6]
𝑇

𝒑3,1 = [6.2,2.8,4.8,1.8]
𝑇 𝒑6,2 = [5.2,2.7,3.9,1.4]

𝑇 𝒑6,22 = [6.7,3.1,4.7,1.5]
𝑇

𝒑3,2 = [7.7,3.8,6.7,2.2]
𝑇 𝒑6,3 = [5.5,2.5,4.0,1.3]

𝑇 𝒑6,23 = [7.0,3.2,4.7,1.4]
𝑇

𝒑4,1 = [6.0,2.9,4.5,1.5]
𝑇 𝒑6,4 = [5.5,2.6,4.4,1.2]

𝑇 𝒑6,24 = [6.3,3.3,6.0,2.5]
𝑇

𝒑4,2 = [6.5,3.0,5.2,2.0]
𝑇 𝒑6,5 = [5.7,2.5,5.0,2.0]

𝑇 𝒑6,25 = [6.4,2.8,5.6,2.1]
𝑇

𝒑5,1 = [4.9,2.5,4.5,1.7]
𝑇 𝒑6,6 = [5.8,2.7,5.1,1.9]

𝑇 𝒑6,26 = [6.4,3.2,5.3,2.3]
𝑇

𝒑5,2 = [5.0,2.0,3.5,1.0]
𝑇 𝒑6,7 = [6.0,2.7,5.1,1.6]

𝑇 𝒑6,27 = [6.7,3.1,5.6,2.4]
𝑇

𝒑5,3 = [5.0,2.3,3.3,1.0]
𝑇 𝒑6,8 = [6.1,2.6,5.6,1.4]

𝑇 𝒑6,28 = [6.8,3.0,5.5,2.1]
𝑇

𝒑5,4 = [6.0,2.2,4.0,1.0]
𝑇 𝒑6,9 = [6.2,2.8,4.8,1.8]

𝑇 𝒑7,1 = [6.0,2.2,5.0,1.5]
𝑇

𝒑5,5 = [6.0,2.7,5.1,1.6]
𝑇 𝒑6,10 = [6.3,2.8,5.1,1.5]

𝑇 𝒑7,2 = [6.2,2.2,4.5,1.5]
𝑇

𝒑5,6 = [6.0,2.9,4.5,1.5]
𝑇 𝒑6,11 = [5.7,2.9,4.2,1.3]

𝑇 𝒑7,3 = [6.3,2.3,4.4,1.3]
𝑇

𝒑5,7 = [6.2,2.2,4.5,1.5]
𝑇 𝒑6,12 = [5.9,3.2,4.8,1.8]

𝑇 𝒑7,4 = [6.5,3.0,5.5,1.8]
𝑇

𝒑5,8 = [6.3,2.5,4.9,1.5]
𝑇 𝒑6,13 = [6.0,2.9,4.5,1.5]

𝑇 𝒑7,5 = [6.5,3.0,5.8,2.2]
𝑇

𝒑5,9 = [5.8,2.8,5.1,2.4]
𝑇 𝒑6,14 = [6.0,3.0,4.8,1.8]

𝑇 𝒑7,6 = [6.7,3.0,5.0,1.7]
𝑇

𝒑5,10 = [6.3,3.3,4.7,1.6]
𝑇 𝒑6,15 = [6.0,3.4,4.5,1.6]

𝑇 𝒑7,7 = [6.7,3.0,5.2,2.3]
𝑇

𝒑5,11 = [6.7,2.5,5.8,1.8]
𝑇 𝒑6,16 = [6.4,3.2,4.5,1.5]

𝑇 𝒑7,8 = [6.8,3.0,5.5,2.1]
𝑇

𝒑5,12 = [6.8,2.8,4.8,1.4]
𝑇 𝒑6,17 = [6.2,2.2,4.5,1.5]

𝑇 𝒑7,9 = [7.1,3.0,5.9,2.1]
𝑇

𝒑5,13 = [6.8,3.0,5.5,2.1]
𝑇 𝒑6,18 = [6.3,2.5,4.9,1.5]

𝑇

https://github.com/Gu-X/Self-Organizing-Divisive-Hierarchical-Voronoi-Tessellation-Based-Classifier
https://github.com/Gu-X/Self-Organizing-Divisive-Hierarchical-Voronoi-Tessellation-Based-Classifier

 471

(a) 𝑔 = 1 (b) 𝑔 = 2 472

 473

(c) 𝑔 = 3 (d) 𝑔 = 4 474

Fig. 7. Partitioning results obtained at four different levels of granularity 475

 476

Fig. 8. Constructed seven-layer prototype-based hierarchical structure from data 477

The numerical example shown by Figs. 7-8 and Table 6 demonstrates the operating process of DHT. In particular, 478

DHT obtains an initial partition of the IR dataset at the first level of granularity (𝑔 = 1), where only one large 479

cluster is created (see Fig. 7(a)). Next, DHT splits the large cluster at the second level of granularity (𝑔 = 2) and 480

obtains two smaller ones (see Fig. 7(b)). Then, the proposed algorithm selects an impure one from these two newly 481

obtained clusters and continues to partition it at a higher level of granularity (see Fig. 7(c)). The same process is 482

repeated until data samples of different classes have been well separated. In this way, DHT self-organizes a 483

prototype-based hierarchical structure from data as given in Fig. 8. 484

4.3. Performance Examination 485

Binary Classification Problems. Firstly, the performance of the proposed DHT classifier is evaluated on 10 486

binary benchmark classification problems. The results, in terms of 𝐴𝑐𝑐, 𝐵𝐴𝑐𝑐 and 𝐹1, obtained by DHT and the 487

17 comparative algorithms on each benchmark problem are reported in Tables 7-9, respectively. In addition, the 488

average performance measures (𝐴𝑐𝑐, 𝐵𝐴𝑐𝑐, 𝐹1 and 𝑡𝑒𝑥𝑒) of each classification approach across the 10 problems 489

are given in Table 10, and the ranks per measure are presented within the same table. The results obtained by the 490

proposed approach are shown in bold for visual clarity. 491

Table 7. Classification accuracy (𝐴𝑐𝑐) of different classification approaches on binary benchmark classification 492

problems 493

Algorithm Dataset

ES GC MA MG OD PW SB SE SP WI

DHT 0.9388 0.6636 0.9715 0.7839 0.9170 0.9217 0.9792 0.8672 0.8635 0.7840

MLOP 0.9190 0.6414 0.8306 0.7646 0.9441 0.9359 0.9958 0.8301 0.6678 0.7760

HP 0.8695 0.6392 0.6667 0.6851 0.7932 0.9194 0.9835 0.7796 0.7073 0.8076

SVM-L 0.2157 0.7560 0.9810 0.7122 0.8436 0.9277 0.9793 0.6694 0.8889 0.7150

SVM-G 0.7979 0.6944 0.9825 0.6576 0.7607 0.8587 0.9979 0.9342 0.6902 0.6280

DT 0.9344 0.7000 0.9803 0.8181 0.9314 0.9472 0.9971 0.9005 0.9042 0.8140

KNN 0.9150 0.6912 0.9848 0.8040 0.9580 0.9303 0.9966 0.9301 0.7822 0.7260

MLP 0.9394 0.7154 0.9840 0.8550 0.9311 0.9391 0.9890 0.9338 0.8617 0.6376

SC 0.9202 0.7038 0.5203 0.7788 0.7351 0.9094 0.9785 0.9300 0.8865 0.3980

SDKNN 0.9449 0.6616 0.6259 0.7764 0.5189 0.9470 0.9808 0.8913 0.8853 0.6720

ALMMo0 0.8939 0.6662 0.7040 0.7248 0.9438 0.9426 0.9906 0.8882 0.7826 0.7614

SOFIS 0.9218 0.6488 0.8330 0.7695 0.9588 0.9361 0.9964 0.9049 0.7637 0.7560

GA-SOFIS 0.9170 0.6570 0.9819 0.7667 0.9547 0.9361 0.9958 0.9322 0.7577 0.7668

PSO-SOFIS 0.9154 0.6514 0.9832 0.7655 0.9588 0.9380 0.9951 0.9309 0.7491 0.7578

GLPSO-SOFIS 0.9145 0.6434 0.9828 0.7651 0.9592 0.9375 0.9957 0.9318 0.7495 0.7552

ELM 0.2737 0.7790 0.9681 0.5500 0.9894 0.9104 0.9944 0.8400 0.8772 0.8594

EigenClass 0.8010 0.7060 0.8936 0.8092 0.9615 0.9461 0.9704 0.9331 0.8583 0.7080

GLVQ 0.7707 0.7346 0.9655 0.8083 0.9314 0.9063 0.9777 0.8317 0.8420 0.6260

 494

Table 8. Balanced classification accuracy (𝐵𝐴𝑐𝑐) of different classification approaches on binary benchmark 495

classification problems 496

Algorithm Dataset

ES GC MA MG OD PW SB SE SP WI

DHT 0.8647 0.5997 0.8108 0.7575 0.8759 0.9208 0.9624 0.5560 0.8567 0.7349

MLOP 0.8061 0.5616 0.6750 0.7199 0.9186 0.9357 0.9854 0.5416 0.6188 0.7048

HP 0.7901 0.5815 0.6191 0.6669 0.7678 0.9171 0.9750 0.5802 0.7023 0.7761

SVM-L 0.3759 0.6772 0.6375 0.6706 0.8082 0.9255 0.9837 0.5245 0.8764 0.6427

SVM-G 0.5000 0.5000 0.6770 0.5089 0.5084 0.8443 0.9935 0.5000 0.6093 0.5027

DT 0.8956 0.6383 0.7637 0.7995 0.8981 0.9460 0.9898 0.5437 0.8998 0.7653

KNN 0.7916 0.5753 0.7496 0.7541 0.9547 0.9291 0.9878 0.5066 0.7703 0.6348

MLP 0.8737 0.6094 0.7486 0.8220 0.9142 0.9375 0.9778 0.5031 0.8506 0.5164

SC 0.8681 0.5890 0.6107 0.7324 0.6164 0.9446 0.9620 0.5268 0.8868 0.5776

SDKNN 0.8045 0.5997 0.6901 0.6963 0.6802 0.9083 0.9646 0.5185 0.8787 0.5192

ALMMo0 0.8202 0.5983 0.6114 0.6868 0.9161 0.9415 0.9801 0.5202 0.7891 0.6905

SOFIS 0.8117 0.5717 0.7015 0.7333 0.9600 0.9359 0.9884 0.5308 0.7526 0.6792

GA-SOFIS 0.8000 0.5788 0.7213 0.7260 0.9490 0.9359 0.9864 0.5020 0.7388 0.6920

PSO-SOFIS 0.7948 0.5769 0.7471 0.7260 0.9570 0.9376 0.9836 0.5050 0.7296 0.6800

GLPSO-SOFIS 0.7928 0.5664 0.7370 0.7250 0.9570 0.9371 0.9864 0.5080 0.7301 0.6760

ELM 0.5327 0.7374 0.7560 0.5284 0.9911 0.9059 0.9844 0.5710 0.8672 0.8218

EigenClass 0.5078 0.6100 0.6222 0.7420 0.9499 0.9455 0.8771 0.5087 0.8270 0.6107

GLVQ 0.5951 0.7011 0.7421 0.7607 0.9344 0.9027 0.9486 0.6376 0.8254 0.5000

Table 9. F1 scores (𝐹1) of different classification approaches on binary benchmark classification problems 497

Algorithm Dataset

ES GC MA MG OD PW SB SE SP WI

DHT 0.8304 0.4396 0.5260 0.8359 0.8234 0.9293 0.9062 0.9278 0.8270 0.6516

MLOP 0.7546 0.3765 0.3162 0.8275 0.8832 0.9420 0.9802 0.9051 0.4724 0.5852

HP 0.6703 0.4204 0.0772 0.7505 0.6279 0.9282 0.9262 0.8718 0.6473 0.7166

SVM-L 0.2495 0.5396 0.4058 0.7837 0.7644 0.9356 0.9106 0.7365 0.8471 0.4827

SVM-G 0.0000 0.0000 0.4972 0.7918 0.0332 0.8846 0.9904 0.9660 0.3591 0.0106

DT 0.8365 0.4933 0.5707 0.8604 0.8552 0.9527 0.9864 0.9471 0.8791 0.6971

KNN 0.7353 0.3516 0.6173 0.8593 0.9165 0.9374 0.9840 0.9637 0.7218 0.4268

MLP 0.7990 0.3904 0.6029 0.8932 0.8626 0.9455 0.9491 0.9658 0.8203 0.0586

SC 0.8444 0.4188 0.0722 0.8364 0.4492 0.9529 0.9124 0.9421 0.8607 0.3167

SDKNN 0.7554 0.4038 0.0913 0.8509 0.5130 0.9183 0.9038 0.9636 0.8546 0.5541

ALMMo0 0.7263 0.4348 0.1094 0.7937 0.8818 0.9484 0.9564 0.9403 0.7494 0.5608

SOFIS 0.7640 0.3915 0.3397 0.8282 0.9191 0.9422 0.9830 0.9497 0.7010 0.5344

GA-SOFIS 0.7460 0.4006 0.5383 0.8280 0.9090 0.9422 0.9803 0.9650 0.6791 0.5580

PSO-SOFIS 0.7387 0.4015 0.5901 0.8270 0.9180 0.9440 0.9770 0.9640 0.6675 0.5330

GLPSO-SOFIS 0.7355 0.3847 0.5747 0.8260 0.9190 0.9435 0.9796 0.9650 0.6683 0.5260

ELM 0.3810 0.6346 0.5832 0.4844 0.9786 0.9215 0.9737 0.8652 0.8398 0.7815

EigenClass 0.0308 0.4237 0.3455 0.8681 0.9214 0.9513 0.8452 0.9654 0.7899 0.3652

GLVQ 0.3460 0.5845 0.4488 0.8619 0.8696 0.9173 0.8972 0.9040 0.7884 0.0000

 498

Table 10. Overall performances and ranks of different classification approaches on binary benchmark 499

classification problems 500

Algorithm 𝐴𝑐𝑐 𝐵𝐴𝑐𝑐 𝐹1 𝑡𝑒𝑥𝑒

Average Rank Average Rank Average Rank Average Rank

DHT 0.8690 4 0.7939 2 0.7697 2 3.1203 9

MLOP 0.8305 11 0.7468 12 0.7043 11 5.6767 11

HP 0.7851 16 0.7376 13 0.6636 14 1.8165 8

SVM-L 0.7689 18 0.7122 17 0.6655 13 30.1451 14

SVM-G 0.8002 14 0.6144 18 0.4533 18 1.0589 6

DT 0.8927 1 0.8140 1 0.8078 1 0.0577 3

KNN 0.8718 3 0.7654 6 0.7514 6 0.0197 1

MLP 0.8786 2 0.7753 3 0.7287 9 0.4322 4

SC 0.7761 17 0.7314 14 0.6606 16 5.1244 10

SDKNN 0.7904 15 0.7260 15 0.6809 12 11.6159 12

ALMMo0 0.8298 12 0.7554 10 0.7101 10 1.7216 7

SOFIS 0.8489 9 0.7665 5 0.7353 8 0.7829 5

GA-SOFIS 0.8666 5 0.7630 8 0.7546 4 664.0393 16

PSO-SOFIS 0.8645 6 0.7638 7 0.7561 3 608.3320 15

GLPSO-SOFIS 0.8635 7 0.7616 9 0.7522 5 1188.7767 18

ELM 0.8042 13 0.7696 4 0.7444 7 0.0462 2

EigenClass 0.8587 8 0.7201 16 0.6506 17 865.4351 17

GLVQ 0.8394 10 0.7548 11 0.6618 15 22.7965 13

 501

It can be seen from Table 10 that the average 𝐴𝑐𝑐, 𝐵𝐴𝑐𝑐 and 𝐹1 of DHT obtained on the 10 binary benchmark 502

classification problems are 0.8690, 0.7939 and 0.7697, respectively. The average 𝐴𝑐𝑐 of DHT is ranked at the 503

fourth place over the 18 classification approaches involved in the experiments, whilst its average 𝐵𝐴𝑐𝑐 and 𝐹1 504

are both ranked at the second place. The results show that DHT is able to achieve very high performance on binary 505

classification problems including the imbalanced ones. Note that such excellent performance is achieved by DHT 506

with a practically acceptable computational efficiency. Whilst DT offers the best performance overall, it operates 507

at attribute level and builds the classification model via splitting data based on these more important attributes. 508

This mechanism is highly effective on simpler problems, enabling DT to outperform DHT as well as other 509

classifiers on binary classification tasks. In contrast, DHT builds a hierarchical classification model via identifying 510

prototypes at multiple levels of granularity and recursively partitioning the data [31]. Hence, the resulting model 511

can provide more intuitive information about the underlying patterns and multi-model distribution of the given 512

data. Nonetheless, as to be shown next, for more challenging application problems concerning multi-class 513

classification, DHT is able to perform the best, beating DT in accuracy. 514

Note that evolutionary algorithms help SOFIS achieve greater classification performance in terms of 𝐴𝑐𝑐 and 𝐹1. 515

PSO-SOFIS ranks the third place over the 18 classification methods on 𝐹1, and GA-SOFIS ranks the fifth on 𝐴𝑐𝑐. 516

However, such improvement comes at the price of much higher computational resource consumption, which is 517

due to the iterative optimization processes required by the evolutionary algorithms. 518

Multi-class Classification Problems. Next, the performance of DHT is evaluated on 10 multi-class benchmark 519

classification problems, and compared with the 17 comparative classification algorithms as listed in Section 4.1. 520

The performances of the involved classification approaches on the 10 multi-class classification problems, in terms 521

of 𝐴𝑐𝑐, are reported in Table 11. A high-level summary of the results (𝐴𝑐𝑐 and 𝑡𝑒𝑥𝑒) obtained by the 18 522

classification approaches is given in Table 12, including the respective rankings as per each of the two 523

performance criteria. 524

Table 11. Classification accuracy (𝐴𝑐𝑐) of different classification approaches on multi-class benchmark 525

classification problems 526

Algorithm Dataset
CA GP IS LR MF PB PR SH SPF WF

DHT 0.8810 0.8777 0.8876 0.9221 0.9634 0.9450 0.9651 0.8700 0.7052 0.8454
MLOP 0.8773 0.6980 0.7819 0.9281 0.9148 0.9340 0.9757 0.8593 0.3727 0.8404
HP 0.8127 0.6597 0.7929 0.9153 0.9250 0.8845 0.9671 0.8794 0.2234 0.8360
SVM-L 0.8748 0.5681 0.9405 0.8552 0.9696 0.9255 0.9551 0.9154 0.1376 0.7315
SVM-G 0.7805 0.7675 0.2369 0.3799 0.1026 0.9363 0.1039 0.0895 0.3507 0.7344
DT 0.9117 0.8192 0.9048 0.8236 0.9214 0.9644 0.9122 0.6925 0.6950 0.9912
KNN 0.8807 0.8080 0.8438 0.9325 0.9290 0.9510 0.9760 0.8770 0.4382 0.8297
MLP 0.8892 0.6099 0.8878 0.4660 0.8420 0.9455 0.9172 0.5706 0.6790 0.8273
SC 0.8767 0.7619 0.8381 0.8339 0.9748 0.9616 0.9531 0.8172 0.6890 0.8963
SDKNN 0.8890 0.8410 0.8824 0.8561 0.9760 0.9423 0.9511 0.8935 0.6823 0.9284
ALMMo0 0.8432 0.7104 0.7671 0.9190 0.9329 0.9492 0.9753 0.8918 0.3438 0.8352
SOFIS 0.8792 0.7819 0.7976 0.9289 0.9200 0.9414 0.9763 0.8973 0.4095 0.8406
GA-SOFIS 0.8798 0.7859 0.8040 0.9290 0.9189 0.9455 0.9753 0.8971 0.4748 0.8414

PSO-SOFIS 0.8783 0.7796 0.7966 0.9266 0.9172 0.9457 0.9737 0.8894 0.4842 0.8419

GLPSO-SOFIS 0.8793 0.7799 0.8009 0.9269 0.9159 0.9459 0.9734 0.8902 0.4791 0.8418

ELM 0.8605 0.5283 0.1430 0.5286 0.9761 0.8983 0.9813 0.4269 0.0827 0.7821
EigenClass 0.8830 0.8436 0.8700 0.9266 0.8969 0.9692 0.9148 0.7056 0.6693 0.9274
GLVQ 0.8369 0.5417 0.8433 0.7607 0.9333 0.9159 0.8453 0.8296 0.5569 0.6782

 527

Table 12. Overall performances and ranks of different classification approaches on multi-class benchmark 528

classification problems 529

Algorithm 𝐴𝑐𝑐 𝑡𝑒𝑥𝑒

Average Rank Average Rank

DHT 0.8863 1 2.7853 10

MLOP 0.8182 11 0.3258 6

HP 0.7896 13 1.1938 8

SVM-L 0.7873 14 10.4753 13

SVM-G 0.4482 18 1.3368 9

DT 0.8636 3 0.0349 3

KNN 0.8466 6 0.0154 1

MLP 0.7634 16 0.4146 7

SC 0.8603 5 3.7449 11

SDKNN 0.8842 2 7.2275 12

ALMMo0 0.8168 12 0.1775 5

SOFIS 0.8373 10 0.1116 4

GA-SOFIS 0.8452 7 420.1389 16

PSO-SOFIS 0.8433 8.5 369.8214 15

GLPSO-SOFIS 0.8433 8.5 722.0387 17

ELM 0.6208 17 0.0311 2

EigenClass 0.8606 4 878.1962 18

GLVQ 0.7742 15 26.2725 14

 530

It can be observed from Table 12 that the average 𝐴𝑐𝑐 of DHT obtained over the 10 multi-class benchmark 531

classification problems is 0.8863, ranked at the top place across all 18 approaches compared. This shows the very 532

strong predictive performance of DHT for multi-class problems. 533

To examine the statistical significance of the better performance achieved by DHT, over the other 17 classification 534

approaches and on the 10 multi-class benchmark problems, pairwise Wilcoxon signed rank tests [44] are 535

conducted. The outcomes of the pairwise tests in terms of 𝑝-value are tabulated in Table 13, where the cascaded 536

classification results by each approach across the 10 experiments are used. It can be observed that 87.65% of the 537

p-values returned by the pairwise Wilcoxon tests are below the level of significance specified by 𝛼 = 0.05. This 538

suggests that the performance of DHT is significantly better than the other 17 classifiers. 539

Table 13. p-values returned by pairwise Wilcoxon signed rank tests 540

DHT

versus

Dataset

CA GP IS LR MF PB PR SH SPF WF

MLOP 0.0000 0.0000 0.0000 0.0807 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

HP 0.0000 0.0000 0.8944 0.5376 0.1452 0.0000 0.0000 0.0000 0.0000 0.0000

SVM-L 0.0000 0.0000 0.0000 0.0219 0.0028 0.0000 0.0226 0.0000 0.0000 0.0000

SVM-G 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

DT 0.0135 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 0.4874 0.0000

KNN 0.0000 0.0000 0.0000 0.0000 0.7913 0.0000 0.0026 0.0000 0.0000 0.0510

MLP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1423 0.0000 0.0000

SC 0.0000 0.0000 0.0078 0.0000 0.0000 0.0000 0.0003 0.8339 0.0000 0.2011

SDKNN 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050

ALMMo0 0.0000 0.0000 0.0000 0.1763 0.2042 0.0000 0.0000 0.0000 0.0000 0.0028

SOFIS 0.0000 0.0000 0.0000 0.0820 0.1245 0.0000 0.0000 0.0000 0.0000 0.0000

GA-SOFIS 0.0000 0.0000 0.0000 0.1310 0.0635 0.0000 0.0000 0.0000 0.0000 0.0000

PSO-SOFIS 0.0000 0.0000 0.0000 0.0808 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000

GLPSO-SOFIS 0.0000 0.0000 0.0000 0.4120 0.0883 0.0000 0.0000 0.0000 0.0000 0.0000

ELM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

EigenClass 0.0000 0.0000 0.0000 0.2280 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

GLVQ 0.0000 0.0000 0.0001 0.0000 0.8242 0.0001 0.0000 0.0000 0.0000 0.0000

 541

Remote Sensing Image Classification. Finally, experiments on popular real-world remote sensing image 542

classification problems are conducted to further evaluate the performance of DHT. The results (in terms of 𝐴𝑐𝑐) 543

on the these two problems are reported in Tables 14 and 15, respectively. For comparison, the results obtained by 544

the relevant state-of-the-art approaches in the literature are given in these two tables also. It can be observed that 545

DHT is able to achieve very high classification accuracy on the testing sets over both datasets, surpassing, or at 546

least on par with the best performing models. This once again, demonstrates the strong performance of DHT. 547

Table 14. Performance comparison on OPTIMAL-31 548

Algorithm 𝐴𝑐𝑐

DHT 0.9989±0.0014

GBNet [45] 0.9328±0.0027

MSNet [46] 0.9392±0.0041

ARCNet-VGG16 [47] 0.9270±0.0035

ARCNet-ResNet34 [47] 0.9128±0.0045

ARCNet-AlexNet [47] 0.8575±0.0035

Fine-tune VGGNet16 [47] 0.8745±0.0045

Fine-tune GoogLeNet [47] 0.8257±0.0012

Fine-tune AlexNet [47] 0.8122±0.0019

MAA-CNN [1] 0.9570±0.0054

EfficientNetB3-Basic [48] 0.9476±0.0026

EfficientNetB3-Attn-2 [48] 0.9586±0.0022

 549

 550

 551

 552

Table 15. Performance comparison on RSI-CB256 553

Algorithm 𝐴𝑐𝑐

50 % labelled 80 % labelled

DHT 0.9863±0.0011 0.9898±0.0015

SIFT [49] 0.3796±0.0027 0.4012±0.0034

LBP [49] 0.6910±0.0020 0.7198±0.0036

CH [49] 0.8408±0.0026 0.8408±0.0026

Gist [49] 0.6174±0.0035 0.6359±0.0045

Enhanced Fusion of DCNNs [50] - 0.9950

 554

Four example images taken from the OPTIMAL-31 dataset are presented in Fig. 9, to provide a visual comparison 555

between DHT and MAA-CNN [1]. Figs. 9(a) and (b) belong to the category of “commercial area”. Figs. 9(c) and 556

(d) belong to the two categories of “church” and “industrial area”, respectively. As reported in [1], the four images 557

are classified to the category of “commercial area” by MAA-CNN, two of which are misclassifications. Whilst 558

DHT correctly classified all of them. 559

 560

(a) Image of category “commercial area” (b) Image of category “commercial area” 561

 562

(c) Image of category “church” (d) Image of category “industrial area” 563

Fig. 9. Visual comparison between DHT and MAA-CNN [1] on OPTIMAL-31 ((a) and (b) are correctly 564

classified by both approaches; (c) and (d) are correctly classified by DHT but misclassified by MAA-CNN) 565

4.4. Further Evaluations 566

Further to the above systematic evaluations, additional experimental investigations are conducted on the basis of 567

the 10 multi-class benchmark classification problems, under the same experimental protocols used previously. 568

Firstly, the impact of utilizing different distance measures on the performance of DHT is investigated. In this 569

example, the most commonly used Euclidean distance metric is adopted as the alternative, and the performances 570

of the resulting DHT model in terms of 𝐴𝑐𝑐 are tabulated in Table 16. In addition, the same experiments are 571

repeated using cosine dissimilarity as the distance measure, and the obtained results are also reported in Table 16. 572

The outcomes obtained by DHT with the default Mahalanobis distance metric are given in the same table for easy 573

comparison. The average 𝐴𝑐𝑐 of DHT while using each of the three distance measures over the 10 datasets is 574

shown in Fig. 10. 575

Table 16. Performance of DHT with different distance measures on multi-class benchmark classification 576

problems 577

Distance

measure

Dataset

CA GP IS LR MF PB PR SH SPF WF

Mahalanobis 0.8810 0.8771 0.8876 0.9221 0.9634 0.9450 0.9651 0.8700 0.7052 0.8454

Euclidean 0.8571 0.8727 0.8405 0.9284 0.9232 0.9418 0.9697 0.8766 0.3903 0.8493

Cosine 0.8481 0.8656 0.7957 0.9225 0.9300 0.9427 0.9640 0.8742 0.4151 0.8455

 578

 579

Fig. 10. Overall performances of DHT with different distance measures 580

It can be seen from Table 16 that the employment of different distance measures may affect the classification 581

accuracy of the proposed DHT model to a certain degree. Using the default Mahalanobis distance metric, DHT 582

produces better results on the largest number of datasets, including CA, GP, IS, MF, PB, and SPF. With the 583

Euclidean distance metric, DHT performs the best on the LR, PR, SH and WF datasets, whilst being outperformed 584

by the model utilizing cosine dissimilarity on the MF, PB and SPF datasets. In practice, however, without prior 585

knowledge of the problem under consideration, it is generally impossible to prejudge which distance metric would 586

enable DHT to achieve the best performance, but the use of Mahalanobis distance as the default is empirically 587

supported as it provides the highest average 𝐴𝑐𝑐 rate on the 10 datasets, as reflected by Fig. 10. 588

Experiments are also conducted to examine the behaviour of DHT with a predefined maximum model depth. 589

During these experiments, the maximum depth of the DHT model varies from 5 to 20. The performances (𝐴𝑐𝑐) 590

of DHT with a different maximum model depth on the 10 multi-class benchmark datasets are reported in Table 591

17. The results by DHT with the default experimental setting are also presented in this table to facilitate 592

comparison. Note that the system identification process of DHT self-terminates automatically before the 593

maximum model depth is reached if the data samples of different classes have been appropriately separated at the 594

current depth. In such cases, the models perform in exactly the same way as the one with the default setting, 595

despite that a maximum model depth has been given. 596

Table 17. Performance of DHT with different maximum model depths on multi-class benchmark classification 597

problems 598

𝐺𝑚𝑎𝑥 Dataset

CA GP IS LR MF PB PR SH SPF WF

5 0.8198 0.3082 0.6829 0.0691 0.8981 0.8975 0.6012 0.7829 0.5355 0.5529

10 0.8798 0.7670 0.8876 0.9077 0.9634 0.9487 0.9660 0.8700 0.7072 0.8379

15 0.8811 0.8757 0.8876 0.9221 0.9634 0.9449 0.9651 0.8700 0.7055 0.8456

20 0.8810 0.8771 0.8876 0.9221 0.9634 0.9450 0.9651 0.8700 0.7052 0.8454

Default 0.8810 0.8777 0.8876 0.9221 0.9634 0.9450 0.9651 0.8700 0.7052 0.8454

 599

The results given in Table 17 confirm that without artificially restricting the maximum model depth, the system 600

identification process of DHT is able to self-terminate in less than 20 recursive partitioning cycles in most cases. 601

In general, the number of recursive partitioning cycles required by DHT is purely depending on the nature of data. 602

For example, the system identification process self-terminates in less than 10 cycles for the IS, MF and SH 603

datasets, whilst it still carries on after 20 cycles for the GP dataset. Although users can choose to terminate the 604

system identification process earlier via controlling the maximum model depth externally, the performance of 605

DHT may be adversely impacted if the model depth is set to a too small number (e.g., less than 10). 606

In the final experimental study, the robustness of the proposed DHT is examined by adding Gaussian noise to the 607

experimental data. During the experiments, 0dB additive white Gaussian noise is randomly added onto 10% of 608

the data samples. The classification results (𝐴𝑐𝑐) of DHT are reported in Table 18. The following nine 609

classification algorithms are run for comparison (under the same experimental protocols), including: MLOP, HP, 610

SVM-G, DT, KNN, SC, SDKNN, ALMMo0 and SOFIS. The obtained results by these comparative algorithms 611

are tabulated in Table 18 as well. Furthermore, the same experiments are repeated by randomly selecting 20% of 612

data samples to be added with the 0dB additive white Gaussian noise. The obtained results by the 10 classification 613

algorithms are tabulated in the same table. The average 𝐴𝑐𝑐 rates of the 10 algorithms over the 10 datasets across 614

the experiments are shown in Fig. 11. 615

Table 18. Performances of different classification approaches on multi-class benchmark classification problems 616

with different ratios of noisy samples 617

Algorithm Dataset with 10% of noisy samples

CA GP IS LR MF PB PR SH SPF WF

DHT 0.8264 0.8046 0.8378 0.8358 0.8946 0.9302 0.8877 0.8612 0.4001 0.8032

MLOP 0.8222 0.6175 0.7501 0.8255 0.8752 0.9096 0.8993 0.8483 0.3722 0.7846

HP 0.7764 0.6181 0.7414 0.8256 0.8972 0.8634 0.8899 0.8722 0.2270 0.7778

SVM-G 0.7804 0.7131 0.2205 0.3261 0.1023 0.9229 0.1040 0.0892 0.3507 0.6884

DT 0.8772 0.7502 0.8282 0.7387 0.8402 0.9447 0.8374 0.6464 0.6275 0.9277

KNN 0.8503 0.7444 0.8044 0.8446 0.9098 0.9381 0.9126 0.8684 0.4283 0.7954

SC 0.8501 0.7623 0.8142 0.7814 0.9054 0.9338 0.8930 0.8800 0.3559 0.8522

SDKNN 0.8525 0.6845 0.7544 0.7645 0.9175 0.9242 0.9004 0.8600 0.1928 0.8143

ALMMo0 0.8221 0.6443 0.7089 0.8273 0.9027 0.9335 0.9028 0.8850 0.3469 0.7884

SOFIS 0.8392 0.6849 0.7563 0.8222 0.8794 0.9240 0.9011 0.8844 0.4024 0.7860

Algorithm Dataset with 20% of noisy samples

CA GP IS LR MF PB PR SH SPF WF

DHT 0.8042 0.7310 0.7777 0.7483 0.8586 0.9119 0.8167 0.8468 0.3818 0.7541

MLOP 0.7859 0.5466 0.7074 0.7269 0.8219 0.9017 0.8261 0.8355 0.3659 0.7322

HP 0.7373 0.5617 0.6859 0.7365 0.8741 0.8391 0.8158 0.8582 0.2325 0.7277

SVM-G 0.7805 0.6629 0.2105 0.2765 0.1016 0.9168 0.1040 0.0891 0.3507 0.6502

DT 0.8439 0.6831 0.7770 0.6562 0.7694 0.9302 0.7658 0.6048 0.5898 0.8655

KNN 0.8268 0.6825 0.7628 0.7548 0.8898 0.9305 0.8460 0.8608 0.4225 0.7561

SC 0.8303 0.6980 0.7513 0.6977 0.8615 0.9176 0.8240 0.8703 0.3347 0.8027

SDKNN 0.8409 0.6325 0.6866 0.6830 0.8788 0.9178 0.8366 0.8481 0.1741 0.7739

ALMMo0 0.7976 0.5898 0.6659 0.7361 0.8776 0.9146 0.8300 0.8691 0.3303 0.7433

SOFIS 0.8033 0.6167 0.7136 0.7222 0.8456 0.9121 0.8287 0.8658 0.4137 0.7322

 618

 619

Fig. 11. Overall performances of different classification approaches on multi-class benchmark classification 620

problems with 0dB additive white Gaussian noise 621

Collectively, from the results of Table 18 and Fig. 11, it can be seen that the overall 𝐴𝑐𝑐 of DHT is the second 622

highest among the 10 classification methods (only outperformed by KNN). The proposed approach is therefore 623

verified to offer a generally strong resistance to Gaussian noise. 624

4.5. Discussions 625

In short, all experimental studies carried out so far collectively demonstrate the significant potential of DHT as a 626

powerful nonparametric method for classification. It offers the highest overall predictive precision on multi-class 627

classification problems, and the second best on binary ones. In addition, its performance on remote sensing 628

datasets is also top ranked, showing the capability of DHT on solving high-dimensional, complex problems. 629

Experimental studies also demonstrate that DHT is robust to Gaussian noise. 630

The computational efficiency of DHT is however, basically at the same level as techniques such as HP, MLOP, 631

SVM and SC (as shown in Section 4.3). Fortunately, this limitation does not form a major concern in practice 632

since it is devised as an offline classification approach. Nevertheless, for offline learning, DHT requires a 633

sufficient amount of training samples to be available. This may significantly limit its applicability to very large-634

scale, high-dimensional problems, mostly due to hardware limitation. 635

In addition, the prototypes within the hierarchical structure produced by DHT are identified from data through a 636

recursive data partitioning process. Such prototypes may not be optimal because no iterative optimization is 637

carried out during the system identification process. It has been shown above that evolutionary algorithms can 638

effectively help to improve the classification accuracy of prototype-based classifiers, and it is reasonable to 639

presume that the classification performance of DHT can be further improved once the optimality of the prototypes 640

is attained. However, the prototype optimization processes by evolutionary algorithms are time consuming and 641

can cost much more computational resources. Hence, a more efficient optimization scheme would be needed for 642

DHT to improve its classification performance without significantly increasing the computation burden. 643

Otherwise, a trade-off between classification performance and training cost has to be considered. 644

Finally, the default implementation of DHT is to work with Mahalanobis distance, but different types of distance 645

measure, e.g., Euclidean distance, cosine dissimilarity, are also supported by this approach. Numerical examples 646

have shown that the predictive precision of DHT on a particular problem may vary significantly with different 647

types of distance measure being used. Currently, it is difficult for DHT to self-determine which metric to be 648

utilized as the best option, but the empirical results achieved so far have indicated that it is appropriate to use the 649

Mahalanobis distance metric as the default without the need of human intervention in the setup of the DHT model. 650

5. Conclusions 651

This paper has presented a nonparametric approach to self-constructing a prototype-based classification model, 652

named DHT, which does not require any externally controlled parameters to be predefined a priori and is entirely 653

data driven. By recursively partitioning the empirically observed data at multiple levels of granularity in a divisive 654

manner, DHT achieves a multi-granular partition of data and autonomously self-constructs a multi-layered 655

hierarchical structure from the identified prototypes for classification. Experimental case studies on a wide range 656

of benchmark binary- and multi-class problems, including those involving real-world remote sensing image data, 657

show the high-level predictive performance of DHT, justifying the effectiveness and validity of the proposed 658

novel approach. 659

There are several considerations for future work. Firstly, it can be highly rewarding to design an online learning 660

extension for the proposed approach, such that it can handle streaming data, possibly on a chunk-by-chunk basis. 661

Secondly, the optimality of prototypes within the hierarchical structure of DHT needs to be further investigated 662

as they play an instrumental role in the structure of the resulting classification model. It would be helpful to 663

introduce a novel optimization mechanism with greater computational efficiency to attain local optimality of the 664

identified prototypes. Thirdly, an encoding mechanism can be introduced to add semantics to data. This can 665

effectively help DHT to handle data with categorical attributes. Finally, it would be interesting to develop a meta-666

control scheme that would enable DHT to self-determine an appropriate distance metric for use in a generic 667

practical problem-solving setting. 668

References 669

[1] F. Li, R. Feng, W. Han, and L. Wang, “An augmentation attention mechanism for high-spatial-resolution 670

remote sensing image scene classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 671

3862–3878, 2020. 672

[2] M. Zhu et al., “Class weights random forest algorithm for processing class imbalanced medical data,” 673

IEEE Access, vol. 6, pp. 4641–4652, 2018. 674

[3] H. Hagras, “Toward human-understandable, explainable AI,” Computer (Long. Beach. Calif)., vol. 51, 675

no. 9, pp. 28–36, 2018. 676

[4] S. Yang, W. Wang, C. Liu, and W. Deng, “Scene understanding in deep learning-based end-to-end 677

controllers for autonomous vehicles,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 49, no. 1, pp. 53–63, 678

2019. 679

[5] Y. Pan, L. Zhang, X. Wu, and M. J. Skibniewski, “Multi-classifier information fusion in risk analysis,” 680

Inf. Fusion, vol. 60, no. December 2019, pp. 121–136, 2020. 681

[6] Y. Li, H. Zhang, X. Xue, Y. Jiang, and Q. Shen, “Deep learning for remote sensing image classification: 682

a survey,” WIREs Data Min. Knowl. Discov., vol. 8, no. 6, p. e1264, 2018. 683

[7] C. Rudin, “Stop explaining black box machine learning models for high stakes decisions and use 684

interpretable models instead,” Nat. Mach. Intell., vol. 1, no. 5, pp. 206–215, 2019. 685

[8] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convolutional neural networks for 686

resource efficient inference,” in International Conference on Learning Representations, 2017, pp. 1–17. 687

[9] L. Breiman, “Random forests,” Mach. Learn. Proc., vol. 45, no. 1, pp. 5–32, 2001. 688

[10] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines and other kernel-based 689

learning methods. Cambridge: Cambridge University Press, 2000. 690

[11] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no. 1–3, pp. 1–6, 1998. 691

[12] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1, pp. 81–106, 1986. 692

[13] P. Cunningham and S. J. Delany, “K-nearest neighbour classifiers,” Mult. Classif. Syst., vol. 34, pp. 1–693

17, 2007. 694

[14] P. Angelov and X. Zhou, “Evolving fuzzy-rule based classifiers from data streams,” IEEE Trans. Fuzzy 695

Syst., vol. 16, no. 6, pp. 1462–1474, 2008. 696

[15] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: data mining, inference, and 697

prediction. Burlin: Springer, 2009. 698

[16] X. Gu and P. P. Angelov, “Self-organising fuzzy logic classifier,” Inf. Sci. (Ny)., vol. 447, pp. 36–51, 699

2018. 700

[17] H. Rong, Z. Yang, and P. K. Wong, “Robust and noise-insensitive recursive maximum correntropy-based 701

evolving fuzzy system,” IEEE Trans. Fuzzy Syst., vol. 28, no. 9, pp. 2277–2284, 2019. 702

[18] H. Huang, H.-J. Rong, Z.-X. Yang, and C.-M. Vong, “Jointly evolving and compressing fuzzy system for 703

feature reduction and classification,” Inf. Sci. (Ny)., vol. 579, pp. 218–230, 2021. 704

[19] P. Angelov and X. Gu, “Autonomous learning multi-model classifier of 0-order (ALMMo-0),” in IEEE 705

Conference on Evolving and Adaptive Intelligent Systems, 2017, pp. 1–7. 706

[20] R. N. Patro, S. Subudhi, P. K. Biswal, and F. Dell’Acqua, “Dictionary-based classifiers for exploiting 707

feature sequence information and their application to hyperspectral remotely sensed data,” Int. J. Remote 708

Sens., vol. 40, no. 13, pp. 4996–5024, 2019. 709

[21] U. Erkan, “A precise and stable machine learning algorithm: eigenvalue classification (EigenClass),” 710

Neural Comput. Appl., vol. 33, no. 10, pp. 5381–5392, 2021. 711

[22] D. Chen, Q. Yang, J. Liu, and Z. Zeng, “Selective prototype-based learning on concept-drifting data 712

streams,” Inf. Sci. (Ny)., vol. 516, pp. 20–32, 2020. 713

[23] G. Cerruela-García, A. de Haro-García, J. P. P. Toledano, and N. García-Pedrajas, “Improving the 714

combination of results in the ensembles of prototype selectors,” Neural Networks, vol. 118, pp. 175–191, 715

2019. 716

[24] M. P. Sesmero, J. A. Iglesias, E. Magán, A. Ledezma, and A. Sanchis, “Impact of the learners diversity 717

and combination method on the generation of heterogeneous classifier ensembles,” Appl. Soft Comput., 718

vol. 111, p. 107689, 2021. 719

[25] R. Diao, F. Chao, T. Peng, N. Snooke, and Q. Shen, “Feature selection inspired classifier ensemble 720

reduction,” IEEE Trans. Cybern., vol. 44, no. 8, pp. 1259–1268, 2014. 721

[26] J. Shao, F. Huang, Q. Yang, and G. Luo, “Robust prototype-based learning on data streams,” IEEE Trans. 722

Knowl. Data Eng., vol. 30, no. 5, pp. 978–991, 2018. 723

[27] X. Gu and W. Ding, “A hierarchical prototype-based approach for classification,” Inf. Sci. (Ny)., vol. 505, 724

pp. 325–351, 2019. 725

[28] X. Gu and M. Li, “A multi-granularity locally optimal prototype-based approach for classification,” Inf. 726

Sci. (Ny)., vol. 569, pp. 157–183, 2021. 727

[29] T. M. Kodinariya and P. R. Makwana, “Review on determining number of cluster in K-means clustering,” 728

Int. J. Adv. Res. Comput. Sci. Manag. Stud., vol. 1, no. 6, pp. 2321–7782, 2013. 729

[30] C. Ding and X. He, “Cluster merging and splitting in hierarchical clustering algorithms,” in IEEE 730

International Conference on Data Mining, 2002, pp. 139–146. 731

[31] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial tessellations: concepts and applications of 732

Voronoi diagrams, 2nd ed. Chichester, England: John Wiley & Sons., 1999. 733

[32] X. Gu, Q. Ni, and G. Tang, “A novel data-driven approach to autonomous fuzzy clustering,” IEEE Trans. 734

Fuzzy Syst., DOI: 10.1109/TFUZZ.2021.3074299, 2021. 735

[33] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann, “The balanced accuracy and its posterior 736

distribution,” in Proceedings - International Conference on Pattern Recognition, 2010, pp. 3121–3124. 737

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference 738

on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778. 739

[35] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected convolutional 740

networks,” in IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708. 741

[36] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for 742

computer vision,” in IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–743

2826. 744

[37] X. Gu and P. Angelov, “A multi-stream deep rule-based ensemble system for aerial image scene 745

classification,” in Handbook on Computer Learning and Intelligence, 2021. 746

[38] G. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for regression and multiclass 747

classification,” IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. 42, no. 2, pp. 513–529, 2012. 748

[39] A. Sato and K. Yamada, “Generalized learning vector quantization,” in Advances in neural information 749

processing systems, 1996, pp. 423–429. 750

[40] M. Mitchell, An introduction to genetic algorithms. Cambridge, MA: MIT Press, 1996. 751

[41] R. Eberhart and J. Kennedy, “Particle swarm optimization,” in IEEE International Conference on Neural 752

Networks, 1995, pp. 1942–1948. 753

[42] Y. J. Gong et al., “Genetic learning particle swarm optimization,” IEEE Trans. Cybern., vol. 46, no. 10, 754

pp. 2277–2290, 2016. 755

[43] X. Gu, Q. Shen, and P. Angelov, “Particle swarm optimized autonomous learning fuzzy system,” IEEE 756

Trans. Cybern., vol. 51, no. 11, pp. 5352–5363, 2021. 757

[44] F. Wilcoxon, “Individual comparisons of grouped data by ranking methods,” J. Econ. Entomol., vol. 39, 758

no. 6, pp. 269–270, 1946. 759

[45] H. Sun, S. Li, X. Zheng, and X. Lu, “Remote sensing scene classification by gated bidirectional network,” 760

IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1, pp. 82–96, 2020. 761

[46] N. Liu, T. Celik, and H. Li, “MSNet: a multiple supervision network for remote sensing scene 762

classification,” IEEE Geosci. Remote Sens. Lett., DOI: 10.1109/LGRS.2020.3043020, 2020. 763

[47] Q. Wang, S. Liu, and J. Chanussot, “Scene classification with recurrent attention of VHR remote sensing 764

images,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 2, pp. 1155–1167, 2019. 765

[48] H. Alhichri, A. S. Alswayed, Y. Bazi, N. Ammour, and N. A. Alajlan, “Classification of remote sensing 766

images using EfficientNet-B3 CNN model with attention,” IEEE Access, vol. 9, pp. 14078–14094, 2021. 767

[49] H. Li et al., “RSI-CB: a large-scale remote sensing image classification benchmark using crowdsourced 768

data,” Sensors, vol. 20, no. 6, pp. 28–32, 2020. 769

[50] G. J. Scott, K. C. Hagan, R. A. Marcum, J. A. Hurt, D. T. Anderson, and C. H. Davis, “Enhanced fusion 770

of deep neural networks for classification of benchmark high-resolution image data sets,” IEEE Geosci. 771

Remote Sens. Lett., vol. 15, no. 9, pp. 1451–1455, 2018. 772

 773

