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 6 

Abstract: In this paper, a novel approach to the self-organization of hierarchical prototype-based classifiers from 7 

data is proposed. The approach recursively partitions the data at multiple levels of granularity into shape-free 8 

clusters of different sizes, resembling Voronoi tessellation, and naturally aggregates the resulting cluster medoids 9 

into a multi-layered prototype-based structure according to their descriptive abilities. Different from conventional 10 

classification models, it is nonparametric and entirely data-driven, and the learned model can offer a high-level of 11 

transparency and interpretability thanks to the underlying prototype-based nature. The system identification 12 

process underpinning the approach is driven by the aim of separating data samples of different classes into 13 

nonoverlapping multi-granular clusters. Its associated decision-making process follows the “nearest prototype” 14 

principle and hence, the rationales of the subsequent decisions made can be explicitly explained. Experimental 15 

studies based on popular benchmark classification problems, as well as on a practical application to remote sensing 16 

image classification, demonstrate the efficacy of the proposed approach. 17 

Keywords: classification; divisive partitioning; prototype; self-organizing; hierarchical model. 18 

1. Introduction 19 

Classification is a hot research topic in machine learning and statistics. As a typical form of supervised learning, 20 

classification methods aim to construct predictive models from labelled training data capable of predicting the 21 

class labels of new observations. To date, classification methods have been developed and implemented for real-22 

world applications in various areas such as remote sensing [1] and biomedical analysis [2], amongst many others. 23 

In recent years, issues of understandability and explainability have gained increasing attention from both research 24 

communities and the general public [3]. This is largely due to the wide deployment of complicated machine 25 

learning models in life-critical applications, e.g., autonomous driving [4], structural health monitoring [5]. 26 

Currently, deep neural networks (DNNs) is one of the most popular classification methods offering the state-of-27 

the-art performances in terms of accuracy on many complex practical problems concerning visual and audio 28 

information processing [6]. However, DNNs are highly sophisticated models with a huge number (millions) of 29 

hyperparameters with no clear physical meanings. Hence, they are often being criticized as a typical type of “black 30 

box” models lack of transparency [7]. Although DNNs can be simplified by pruning less important parameters 31 

[8], a large proportion of hyperparameters still need to be kept in order to maintain a high level of performance, 32 

thereby the complexity of the models remaining high. Many mainstream classification methods, such as random 33 

forests (RFs) [9], support vector machines (SVMs) [10], learning vector quantization (LVQ) [11] are also 34 

characterized as being opaque. Despite the great performances they have demonstrated, the lack of transparency 35 

and therefore, that of trustability of these predictive machine learning models is not a trivial issue and may cause 36 

severe consequences [7]. Having recognized this, researchers and industry practitioners are now frequently calling 37 

for explainable artificial intelligence (XAI) [3]. 38 

Decision trees (DTs) [12], k-nearest neighbours (KNN) [13] and evolving fuzzy systems (EFSs) [14] are generally 39 

regarded as interpretable machine learning models. In particular, DT aims to build a tree-like predictive model by 40 

recursively splitting data. However, the explainability of DT is usually limited if the dimensionality of the problem 41 

is high. Instead of learning a predictive model from data, KNN uses all the training samples directly to classify 42 

unlabelled data by following the “nearest neighbours” principle [15]. The operating mechanism of KNN is simple 43 

to understand and can be very effective to small-scale problems, but it also has several weaknesses when applied 44 

to large-scale problems, such as lower interpretability, and low computational- and memory-efficiency. EFSs are 45 

a powerful tool for data stream processing and have been widely applied to addressing a range of real-world 46 

problems [16]–[18]. Study of EFSs has increasingly become a major scientific endeavour over the past two 47 

decades, and a number of more advanced EFSs have been introduced in the past few years. These include self-48 

organising fuzzy inference system (SOFIS) [16], recursive maximum correntropy-based evolving fuzzy system 49 
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[17], and jointly evolving and compressing fuzzy system [18], etc. Based on IF-THEN fuzzy production rules, 50 

EFSs are capable of self-adapting both model structure and meta-parameters online and doing so simultaneously 51 

from streaming data, to capture the dynamical changes of data patterns. Compared with their first-order 52 

counterparts [17], [18], zero-order EFSs [16], [19] are particularly designed for data stream classification. Being 53 

a prototype-based method, a zero-order EFS extracts a subset of highly representative prototypes from training 54 

data to facilitate classification. Such a prototype-based nature brings higher transparency and explainablity to the 55 

resulting EFSs. Nevertheless, it is often observed that the knowledge base of a zero-order EFS is unfavourably 56 

large. Whilst a large-sized knowledge base may be necessary for many applications to achieve high-level 57 

performance on complex problems, it can impair the interpretability of the predictive model as well as the 58 

explainability of the reasoning process that runs on such a complicated model, in addition to increased 59 

computational costs. 60 

Although a universally perfect classifier for any given application is unobtainable, designing more effective 61 

classifiers with higher computational efficiency and model transparency is highly rewarding. More recently, a 62 

number of new classification methods have been proposed. For example, a sequence classifier (SC) is introduced 63 

in [20], which works by sorting and ranking data attributes to create a dictionary for classification. An eigenvalue-64 

based classification method called EigenClass is presented in [21], which determines the class label of a testing 65 

sample based on its eigenvalues calculated with respect to the available training samples. A selective prototype-66 

based learning (SPL) classifier is provided in [22] for streaming data classification, which learns from data 67 

streams, sample by sample, while simultaneously maintaining two sets of prototypes, namely, important instance 68 

set (ISet) and potential concept-drifting instance set (PSet). Interestingly, ISet contains the most important samples 69 

learned by considering error-driven representativeness, in an effort to capture the current concept for 70 

classification, and PSet stores the misclassified samples for detecting the abrupt concept drifts. A graph-based 71 

prototype selector ensemble model is proposed in [23], which exploits an undirected graph to store the prototypes 72 

selected at each iteration and also, the relationships between them to enable classification. In [24], a 73 

comprehensive study is conducted to investigate the influence of employing different base learners, and that of 74 

running different methods that combine such bases to form classifier ensembles, on the performances of the 75 

resulting ensembles. To boost the efficacy of classifier ensembles, in the literature, work has also been carried out 76 

to reduce the complexity while retaining model transparency through innovative application of attribute selection 77 

techniques [25]. 78 

In general, the use of prototypes helps preserve the structure and underlying patterns of the original data. Models 79 

constructed with a prototype-based method typically demonstrate a higher level of model transparency and 80 

explainability than alternative classifiers (e.g., DNN/ANN, RF, SVM). However, a common problem that such 81 

models suffer from is system obesity, often occurring when prototype-based methods are applied to performing 82 

large-scale complex classification tasks. A large-sized knowledge base (with too many prototypes) can impair the 83 

interpretability and explainability of the learned model greatly. A feasible solution to resolve this bottleneck 84 

problem is to arrange the identified prototypes in multiple layers according to their descriptive abilities [26]–[28], 85 

such that users can use the more descriptive prototypes representing the global patterns of data (that are placed at 86 

higher layers) to interpret and understand the general picture of the problem under consideration, whilst utilizing 87 

the less descriptive prototypes depicting local data structures (as placed at lower layers) to obtain auxiliary finer 88 

details. An example of this is the two-level prototype-based classifier as presented in [26], named SyncStream. It 89 

learns a two-level prototype-based structure from data with the first level containing raw prototypes for capturing 90 

the current concept and the second containing highly representative prototypes representing historical concepts. 91 

However, the main issue with SyncStream is that its model size and predictive performance are subject to a number 92 

of externally controlled parameters, including the maximum numbers of prototypes to be stored at the first and 93 

second levels, the decay rate, and the noise threshold. Without sufficient prior knowledge to predetermine these 94 

parameters appropriately, it can be very difficult for SyncStream to achieve satisfactory performance.  95 

In contrast with systems like SyncStream, hierarchical prototype-based (HP) classifiers [27] and multi-granularity 96 

locally optimal prototype-based (MLOP) classifiers [28] offer more advanced multi-layer prototype-based 97 

approaches for classification. With a pre-determined model depth, a HP classifier self-organizes a number of 98 

pyramidical hierarchies from streaming data based on the prototypes identified at multiple levels of granularity. 99 

The constructed hierarchies are capable of continuously self-evolving by adding new prototypes to capture any 100 

new data patterns. A MLOP classifier takes one step ahead further, by employing the classical elbow method [29] 101 

to self-determine the model depth through adjusting the intra-cluster variance that is controlled by a regularization 102 

parameter. MLOP further involves an iterative optimization process to attain the local optimality of prototypes. 103 



However, both HP and MLOP fail to capture the inter-class relationship of data because the prototypes are learned 104 

from data of different classes separately, ignoring potential class overlaps or interactions. Besides, they both still 105 

require externally controlled parameters (to be predefined by users), namely, the model depth for HP and the 106 

regularization parameter for MLOP. Nonetheless, these parameters play an important role during the learning 107 

process, in assisting in the optimization of the size and the predictive precision of the models learned from data.  108 

In trying to attain the strengths of HP and MLOP while addressing their shortcomings, a novel approach is herein 109 

presented for self-organizing a Divisive Hierarchical Voronoi Tessellation-based (DHT) model to perform 110 

classification tasks. Particularly, mirroring the top-down data splitting mechanism used by hierarchical divisive 111 

clustering algorithm [30], DHT self-learns a hierarchical prototype-based structure, via recursively partitioning 112 

data and creating shape-free clusters resembling Voronoi tessellations at multiple levels of granularity from low 113 

to high, thereby separating data samples of different classes. The medoids of clusters obtained during the 114 

recursively partitioning process are selected as prototypes and are subsequently arranged in a single multi-layer 115 

pyramidical hierarchy. In so doing, the potential class overlaps are taken into consideration during the model 116 

identification process. Compared with its predecessors (SyncStream [26], HP [27] and MLOP [28]), DHT has the 117 

following unique advantages: 118 

1) it is nonparametric, no externally controlled parameter is required to be predefined; 119 

2) its system identification process is driven by data and thus, is highly objective; and 120 

3) it enables a better understanding of multi-model distributions of data, by considering the inter-class overlaps. 121 

An additional key feature of DHT is that its prototypes are themselves highly representative real samples in the 122 

data space rather than the commonly used cluster means, which usually do not physically exist and hence have no 123 

real meaning. As such, the DHT models can provide more institutive information about the problem and are 124 

guaranteed to be semantically interpretable in a given applied field. Experimental investigations conducted on a 125 

variety of benchmark problems, including a real-world application to remote sensing image classification, also 126 

demonstrate the efficacy of the proposed DHT approach. 127 

The remainder of this paper is organized as follows. Technical details of the proposed approach are presented in 128 

Section 2. Its computational complexity is analysed in Section 3. Section 4 provides experimental case studies, 129 

and the paper is concluded in Section 5. 130 

2. Proposed Approach 131 

In this section, the general architecture and the learning and decision-making strategies of the proposed DHT 132 

approach are described in detail.  133 

2.1. Key Notations 134 

Let 𝑿 = {𝒙1, 𝒙2, … , 𝒙𝐾} be a particular static dataset in the 𝑁 dimensional real data space 𝓡𝑁 with the 135 

corresponding class labels 𝒀 = {𝑦1, 𝑦2, … , 𝑦𝐾}, where 𝐾 is the cardinality of 𝑿; 𝒙𝑘 = [𝑥𝑘,1, 𝑥𝑘,2, … , 𝑥𝑘,𝑁]
𝑇
∈ 𝓡𝑁  136 

denotes the kth data sample of 𝑿; and 𝑦𝑘  is the corresponding class label of 𝒙𝑘. Also, without losing generality, 137 

assume that 𝑿 is composed of data samples of 𝐶 different classes, that is, 𝑦𝑘 ∈ {1,2,… , 𝐶} (𝑘 = 1,2, … , 𝐾). For 138 

presentational simplicity, a list of key notations used is summarized in Table 1.  139 

Table 1. List of key notations and their respective definitions 140 

Notation Definition  

𝑿 Static dataset 

𝒀 Class labels of 𝑿 

𝓡𝑁 Data space 

𝐾 Cardinality of 𝑿 

𝑁 Dimensionality of 𝓡𝑁 

𝒙𝑘 The kth data sample of 𝐗 

𝑦𝑘 Class label of 𝒙𝑘 

𝐶 Number of classes 

𝑔 Level of granularity 

𝑫 Pairwise distance matrix 

𝜮 Diagonal covariance matrix 



𝜎𝑔 Radius of zone of influence around each prototype at the gth level of granularity 

𝑼𝑔 Membership matrix of 𝑿 obtained at the gth level of granularity 

𝜆𝑔 Cumulative membership calculated from 𝑼𝑔 

𝑷𝑔 Set of prototypes identified at the gth level of granularity 

ℂ𝑔 Set of clusters formed around 𝑷𝑔 

𝑃𝑔 Cardinality of 𝑷𝑔 

𝒑𝑔,𝑘 The kth prototype of 𝑷𝑔 

𝑪𝑔,𝑘 Cluster formed around 𝒑𝑔,𝑘 

𝑆𝑔,𝑘 Cardinality of 𝑪𝑔,𝑘 

𝜌𝑔,𝑘 Purity of 𝑪𝑔,𝑘 

𝑷𝑔
𝐿  Set of leaf prototypes within 𝑷𝑔 

𝑷𝑔
𝐼  Set of internal prototypes within 𝑷𝑔 

𝑃𝑔
𝐼 Cardinality of 𝑷𝑔

𝐼  

𝒑𝑔,𝑘
𝐼  The kth prototype of 𝑷𝑔

𝐼  

𝑪𝑔,𝑘
𝐼  Cluster formed around 𝒑𝑔,𝑘

𝐼  

𝑼𝑔+1,𝑘
𝐼  Local membership matrix of 𝑪𝑔,𝑘

𝐼  obtained at the (g+1)th level of granularity 

𝑆𝑔,𝑘
𝐼  Cardinality of 𝑪𝑔,𝑘

𝐼  

𝜆𝑔+1,𝑘
𝐼  Local cumulative membership calculated from 𝑼𝑔+1,𝑘

𝐼  

𝑷𝑔+1,𝑘 Set of prototypes identified from 𝑪𝑔,𝑘
𝐼  at the (g+1)th level of granularity 

𝑷𝐿 Set of leaf prototypes identified from 𝑿 

𝑃𝐿 Cardinality of 𝑷𝐿 

 141 

2.2. General Architecture 142 

The main aim of DHT is to self-learn a multi-layered prototype-based hierarchical structure from data with each 143 

node being a prototype, as depicted in Fig. 1. These prototypes are the medoids of clusters formed by neighbouring 144 

samples at different levels of granularity, ordered from low to high, resembling Voronoi tessellations [31].  145 

 146 

Fig. 1. General architecture of DHT 147 

The hierarchical structure of DHT is purely determined by the ensemble properties and mutual distances of data 148 

samples observed in the data space. Each layer corresponds to a particular level of granularity. Prototypes at higher 149 

layers are identified from data at lower levels of granularity, and they represent the global patterns of data better 150 

and have a greater descriptive power. Prototypes at lower layers are obtained at higher levels of granularity, 151 

containing fine details about the data distribution and being able to better describe the local data patterns. These 152 



prototypes can be further divided into two groups: i) internal prototypes, and ii) leaf prototypes. A prototype is 153 

recognized as a leaf only if the cluster formed around it consists of data samples of the same class. Otherwise, it 154 

is recognized as an internal prototype. An internal prototype can have multiple child prototypes directly linked to 155 

it, as the medoids of smaller clusters obtained by partitioning the cluster formed around it at a higher level of 156 

granularity aims to separate the data of different classes. These child prototypes can also have their own children 157 

if they are internal prototypes, being surrounded by data samples of mixed classes. Clusters formed around internal 158 

prototypes (white nodes in Fig. 1) are composed of data samples of multiple classes, whilst clusters formed around 159 

leaf prototypes (blue nodes in Fig. 1) are each composed of data samples of the same class.  160 

During the system identification process, DHT firstly initializes its structure by identifying the apex prototypes 161 

from the given data at the lowest level of granularity. Then, it continuously self-develops its hierarchical structure 162 

by partitioning the data at higher levels of granularity and automatically increases its depth at the same time until 163 

all the prototypes at the bottom layer become leaves. Through this process, DHT achieves a multi-granular 164 

partition of data such that the data samples of different classes are separated by clusters formed around leaf 165 

prototypes. Of course, the identified leaf prototypes are connected directly to the decision-maker. For decision-166 

making, the class labels of unlabelled data samples are determined on the basis of their distances to the leaf 167 

prototypes. In the following subsections, the learning and decision-making policies are further detailed. 168 

2.3. Learning Policy 169 

Step A. System Initialization - Apex Prototype Identification 170 

The system identification process starts by identifying apex prototypes. These apex prototypes locate at the top 171 

layer of the hierarchical structure, and they are obtained from all the observed data samples at the first level of 172 

granularity, namely, 𝑔 = 1. Therefore, apex prototypes are the most descriptive samples representing the global 173 

patterns of data distribution. In order to identify such samples, distances between data samples of 𝑿 are firstly 174 

calculated and a 𝐾 × 𝐾 dimensional pairwise distance matrix is obtained as Eqn. (1): 175 

𝑫 = [𝑑2(𝒙𝑖 , 𝒙𝑗)]𝑗=1:𝐾
𝑖=1:𝐾

                                                                                                                                  (1)                                                            176 

where 𝑑2(𝒙𝑖 , 𝒙𝑗) = (𝒙𝑖 − 𝒙𝑗)
𝑇
𝜮−1(𝒙𝑖 − 𝒙𝑗); 𝜮 is an 𝑁 × 𝑁 dimensional diagonal matrix with its main diagonal 177 

elements being the variances of 𝑿. In this work, Mahalanobis distance metric is employed as the default distance 178 

measure to ensure that different attributes of the data contribute to the identification process equally. However, if 179 

preferred, one may adopt any of other commonly used distance metrics or pseudo metrics (e.g., Euclidean distance 180 

and cosine dissimilarity) as an alternative for DHT, depending on the nature of the problem. 181 

Based on the distance matrix 𝑫, the radius of zone of influence around each prototype, denoted as 𝜎𝑔 at the first 182 

level of granularity (𝑔 = 1)  can be estimated using Eqn. (2), as the average distance between any two data 183 

samples:  184 

𝜎𝑔
2 =

1

𝐾(𝐾−1)
∑ ∑ 𝑑2(𝒙𝑖 , 𝒙𝑗)

𝐾
𝑗=1

𝐾
𝑖=1                                                                                                               (2) 185 

Then, every individual data sample, 𝒙𝑘 is treated as a micro-cluster with the sample itself being the cluster medoid. 186 

From this, there are a total of 𝐾 micro-clusters in the data space 𝓡𝑁. By letting the 𝐾 micro-cluster medoids be 187 

assigned a membership with respect to each of the others (including itself), a 𝐾 × 𝐾 dimensional membership 188 

matrix is obtained as follows [32]: 189 

𝑼𝑔 = [𝜇̅(𝒙𝑖 , 𝒙𝑗 , 𝜎𝑔)]𝑖=1:𝐾
𝑗=1:𝐾

                                                                                                                       (3) 190 

where 𝜇̅(𝒙𝑖 , 𝒙𝑗, 𝜎𝑔) =
𝜇(𝒙𝑖,𝒙𝑗,𝜎𝑔)

∑ 𝜇(𝒙𝑙,𝒙𝑗,𝜎𝑔)
𝐾
𝑙=1

 is the normalized membership of which the ith micro-cluster medoid, 𝒙𝑖 is 191 

assigned to the jth micro-cluster medoid, with 𝒙𝑗 at the gth level of granularity; and 𝜇(𝒙𝑖 , 𝒙𝑗 , 𝜎𝑔) is calculated by 192 

Eqn. (4): 193 

𝜇(𝒙𝑖 , 𝒙𝑗 , 𝜎𝑔) = 𝑒
−
𝑑2(𝒙𝑖,𝒙𝑗)

𝜎𝑔
2

                                                                                                                                      (4) 194 

Cumulative memberships of these micro-cluster medoids are calculated from 𝑼𝑔 as Eqn. (5) [32]: 195 



𝜆𝑔(𝒙𝑖) = ∑ 𝜇̅(𝒙𝑖 , 𝒙𝑗 , 𝜎𝑔)
𝐾
𝑗=1 = ∑

𝜇(𝒙𝑖,𝒙𝑗,𝜎𝑔)

∑ 𝜇(𝒙𝑙,𝒙𝑗,𝜎𝑔)
𝐾
𝑙=1

𝐾
𝑗=1                                                                                         (5) 196 

where 𝜆𝑔(𝒙𝑖) is the cumulative membership of 𝒙𝑖 . Based on 𝜆𝑔(𝒙𝑖) (𝑖 = 1,2, … , 𝐾), apex prototypes at the first 197 

layer of the hierarchical structure are identified using Condition 1 (Eqn. (6)) [32]: 198 

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟏:
𝑖𝑓 (𝜆𝑔(𝒙𝑖) = max

𝑑2(𝒙𝑖,𝒙)≤𝜎𝑔
2;

𝒙∈𝑿;

(𝜆𝑔(𝒙)))

𝑡ℎ𝑒𝑛 (𝑷𝑔 ← 𝑷𝑔 ∪ {𝒙𝑖})

                                                                (6) 199 

Condition 1 selects data samples of a locally maximum cumulative membership value as apex prototypes with 200 

their collection denoted as 𝑷𝑔.   201 

Remark 1: In exceptional cases, there may exist two (or more) neighbouring data samples satisfying Condition 202 

1 at the same time, namely, 𝜆𝑔(𝒙𝑗) = 𝜆𝑔(𝒙𝑖) = max
𝑑2(𝒙𝑖,𝒙)≤𝜎𝑔

2;

𝒙∈𝑿;

(𝜆𝑔(𝒙)) and 𝑗 ≠ 𝑖. In the event that this happens, those 203 

data samples satisfying Condition 1 will be selected as apex prototypes unless they are positioned at an exactly 204 

identical location in the data space, which means that 𝒙𝑗 = 𝒙𝑖 and 𝑗 ≠ 𝑖. The same principle also applies to 205 

Condition 2, which will be given in Eqn. (12) later.  206 

Suppose that there are a total of 𝑃𝑔 apex prototypes being identified, namely,  𝑷𝑔 = {𝒑𝑔,1, 𝒑𝑔,2, … , 𝒑𝑔,𝑃𝑔}. Then, 207 

clusters can be created using these apex prototypes to attract nearby data samples to form Voronoi tessellations 208 

[31]: 209 

𝑪𝑔,𝑗∗ ← 𝑪𝑔,𝑗∗ ∪ {𝒙𝑖}; 𝑗∗ = argmin
𝑗=1,2,…,𝑃𝑔

(𝑑2(𝒙𝑖 , 𝒑𝑔,𝑗))                                                                      (7) 210 

where 𝑖 = 1,2, … , 𝐾; and 𝑪𝑔,𝑗 is the cluster constructed around 𝒑𝑔,𝑗. The collection of clusters at the first layer of 211 

this hierarchical structure is denoted as ℂ𝑔 (ℂ𝑔 = {𝑪𝑔,1, 𝑪𝑔,2, … , 𝑪𝑔,𝑃𝑔}).  212 

From the above, the purity of each cluster, 𝑪𝑔,𝑖 is calculated using Eqn. (8) (𝑖 = 1,2, … , 𝑃𝑔): 213 

𝜌𝑔,𝑖 =
𝑆𝑔,𝑖
𝑑

𝑆𝑔,𝑖
                                                                                                                                     (8) 214 

where 𝜌𝑔,𝑖 is the purity of 𝑪𝑔,𝑖; 𝑆𝑔,𝑖 is the cardinality (number of data samples) of 𝑪𝑔,𝑖; and 𝑆𝑔,𝑖
𝑑  is the number of 215 

data samples with the dominate class label in 𝑪𝑔,𝑖. If 𝜌𝑔,𝑖 = 1, it suggests that 𝑪𝑔,𝑖 is a pure cluster formed by data 216 

samples of the same class. In this case, the cluster medoid, 𝒑𝑔,𝑖 is recognized as a leaf prototype with the 217 

corresponding class label denoted as 𝑦𝑔,𝑖. Otherwise, namely,  𝜌𝑔,𝑖 < 1, 𝒑𝑔,𝑖 is an internal prototype, and 𝑪𝑔,𝑖 is 218 

an impure cluster and needs to be partitioned at a higher level of granularity in order to separate data samples of 219 

different classes. Based on Eqn. (8), 𝑷𝑔 can be divided into two non-overlapping sets: one is the set of leaf 220 

prototypes, 𝑷𝑔
𝐿 , and the other is the set of internal prototypes, 𝑷𝑔

𝐼 , which satisfy that 𝑷𝑔
𝐿 ∪ 𝑷𝑔

𝐼 = 𝑷𝑔 and 𝑷𝑔
𝐿 ∩221 

𝑷𝑔
𝐼 = ∅. Accordingly, the constructed clusters associated with 𝑷𝑔 can be divided into two groups: the impure 222 

clusters formed around internal prototypes, 𝑷𝑔
𝐼  and the pure clusters formed around leaf prototypes, 𝑷𝑔

𝐿 . Although 223 

internal prototypes are associated with data samples of different classes and will not participate in decision-making 224 

directly, they represent the peaks of multi-model distribution of data and help disclose key information about class 225 

overlaps and interactions. 226 

If there are any clusters formed around the apex prototypes with purity values smaller than 1, it means that data 227 

samples of different classes cannot be satisfactorily separated at the current level of granularity and thus, the 228 

system identification process enters Step B for finer partitioning.  229 

Step B. Pyramidical Hierarchy Growth - Child Prototype Identification 230 



Without losing generality, suppose that there are 𝑃𝑔
𝐼  internal prototypes identified at the gth level of granularity, 231 

namely, 𝒑𝑔
𝐼 = {𝒑𝑔,1

𝐼 , 𝒑𝑔,2
𝐼 , … , 𝒑

𝑔,𝑃𝑔
𝐼

𝐼 } ⊆ 𝑷𝑔, the clusters formed around them, denoted as 𝑪𝑔,1
𝐼 , 𝑪𝑔,2

𝐼 ,…, 𝑪
𝑔,𝑃𝑔

𝐼
𝐼  will 232 

then be partitioned at a higher level of granularity (namely, 𝑔 + 1) with the aim of separating data samples of 233 

different classes. 234 

The radius of the zone of influence around each prototype at the (g+1)th level of granularity is first estimated 235 

using Eqn. (9): 236 

𝜎𝑔+1
2 =

1

∑ ∑ 𝑤𝑔,𝑖,𝑗
𝐾
𝑗=1

𝐾
𝑖=1

∑ ∑ 𝑤𝑔,𝑖,𝑗𝑑
2(𝒙𝑖, 𝒙𝑗)

𝐾
𝑗=1

𝐾
𝑖=1                                                                            (9) 237 

where 𝑤𝑔,𝑖,𝑗 = {
1, 𝑖𝑓 𝑑2(𝒙𝑖 , 𝒙𝑗) ≤ 𝜎𝑔

2

0, 𝑖𝑓 𝑑2(𝒙𝑖 , 𝒙𝑗) > 𝜎𝑔
2
. 238 

Next, for each impure cluster, 𝑪𝑔,𝑖
𝐼  (𝑖 = 1,2, … , 𝑃𝑔

𝐼), a similar prototype identification process as used in Step A is 239 

applied to identify child prototypes from its members. Data sample associated with 𝑪𝑔,𝑖
𝐼  are treated as micro-240 

cluster medoids and a 𝑆𝑔,𝑖
𝐼 × 𝑆𝑔,𝑖

𝐼  dimensional local membership matrix is obtained by letting them assign 241 

memberships to each other, similar to Eqn. (3): 242 

𝑼𝑔+1,𝑖
𝐼 = [𝜇̅(𝒛𝑗 , 𝒛𝑙 , 𝜎𝑔+1)]𝑙=1:𝑆𝑔,𝑖

𝐼

𝑗=1:𝑆𝑔,𝑖
𝐼

                                                                                                     (10) 243 

where 𝒛𝑗 , 𝒛𝑙 ∈ 𝑪𝑔,𝑖
𝐼 ; 𝜇̅(𝒛𝑗 , 𝒛𝑙 , 𝜎𝑔+1) =

𝜇(𝒛𝑗,𝒛𝑙,𝜎𝑔+1)

∑ 𝜇(𝒛𝑘,𝒛𝑙,𝜎𝑔+1)
𝑆𝑔,𝑖
𝐼

𝑘=1

; 𝜇(𝒛𝑗, 𝒛𝑙 , 𝜎𝑔+1) is calculated by Eqn. (4). 244 

Local cumulative memberships are computed from 𝑼𝑔+1,𝑖
𝐼  by Eqn. (11): 245 

𝜆𝑔+1,𝑖
𝐼 (𝒛𝑗) = ∑ 𝜇(𝒛𝑗 , 𝒛𝑙 , 𝜎𝑔+1)

𝑆𝑔,𝑖
𝐼

𝑙=1 = ∑
𝜇(𝒛𝑗,𝒛𝑙,𝜎𝑔+1)

∑ 𝜇(𝒛𝑘,𝒛𝑙,𝜎𝑔+1)
𝑆𝑔,𝑖
𝐼

𝑘=1

𝑆𝑔,𝑖
𝐼

𝑙=1                                                             (11) 246 

where 𝜆𝑔+1,𝑖
𝐼 (𝒛𝑗 , 𝜎𝑔+1) is the cumulative membership of 𝒛𝑗 calculated locally within 𝑪𝑔,𝑖

𝐼 . Condition 2 is used for 247 

identifying the child prototypes of 𝒑𝑔,𝑖
𝐼  from members of 𝑪𝑔,𝑖

𝐼 : 248 

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟐:
𝑖𝑓 

(

 
 
𝜆𝑔+1,𝑖
𝐼 (𝒛𝑗) = max

𝑑2(𝒛𝑗,𝒙)≤𝜎𝑔+1
2 ;

𝒛∈𝑪𝑔,𝑖
𝐼 ;

(𝜆𝑔+1,𝑖
𝐼 (𝒛))

)

 
 

𝑡ℎ𝑒𝑛 (𝑷𝑔+1,𝑖 ← 𝑷𝑔+1,𝑖 ∪ {𝒛𝑗})

                                                    (12) 249 

Condition 2 selects data samples from 𝑪𝑔,𝑖
𝐼  of the highest cumulative membership locally to join 𝑷𝑔+1,𝑖, which is 250 

the collection of child prototypes of 𝒑𝑔,𝑖
𝐼 . Given that there are 𝑃𝑔+1,𝑖 prototypes identified from 𝑪𝑔,𝑖

𝐼  at the (g+1)th 251 

level of granularity, namely, 𝑷𝑔+1,𝑖 = {𝒑𝑔+1,𝑖,1, 𝒑𝑔+1,𝑖,2 , … , 𝒑𝑔+1,𝑖,𝑃𝑔+1,𝑖}, 𝑪𝑔,𝑖
𝐼  is partitioned into 𝑃𝑔+1,𝑖 smaller 252 

clusters by forming Voronoi tessellations locally: 253 

𝑪𝑔+1,𝑖,𝑘∗
𝐼 ← 𝑪𝑔+1,𝑖,𝑘∗

𝐼 ∪ {𝒛𝑗}; 𝑘∗ = argmin
𝑘=1,2,…,𝑃𝑔+1,𝑖

(𝑑2(𝒛𝑗 , 𝒑𝑔+1,𝑖,𝑘))                                                     (13) 254 

where 𝒛𝑗 ∈ 𝑪𝑔,𝑖
𝐼 . The collection of smaller clusters obtained from 𝑪𝑔,𝑖

𝐼  is denoted as ℂ𝑔+1,𝑖, namely, ℂ𝑔+1,𝑖 =255 

{𝑪𝑔+1,1, 𝑪𝑔+1,2, … , 𝑪𝑔+1,𝑃𝑔+1,𝑖}.  256 

After all the impure clusters have been partitioned at the (g+1)th level of granularity, a new layer is added to the 257 

hierarchical structure of DHT based on these newly identified child prototypes. The collection of prototypes at 258 

the (g+1)th layer is denoted as 𝑷𝑔+1, namely, 𝑷𝑔+1 = 𝑷𝑔+1,1 ∪ 𝑷𝑔+1,2 ∪ …∪ 𝑷𝑔+1,𝑃𝑔𝐼 . Correspondingly, the 259 



collection of the clusters formed around them is denoted as ℂ𝑔+1, namely, ℂ𝑔+1 = ℂ𝑔+1,1 ∪ ℂ𝑔+1,2 ∪ …∪ ℂ𝑔+1,𝑃𝑔𝐼 . 260 

The cardinality of 𝑷𝑔+1 is denoted as 𝑃𝑔+1, where 𝑃𝑔+1 = ∑ 𝑃𝑔+1,𝑖
𝑃𝑔
𝐼

𝑖=1
 .  261 

Then, purity values of the newly obtained clusters are calculated using Eqn. (8). If all the clusters at the (g+1)th 262 

layer have the purity value 1, it means that the data samples of different classes have been sufficiently separated 263 

at the current level of granularity, and that the system identification process terminates. Otherwise, Step B is 264 

repeated to partition the newly obtained impure clusters at a higher level of granularity (while setting 𝑔 ← 𝑔 +265 

1). 266 

Remark 2: The system identification process of DHT will in general, self-terminate automatically thanks to the 267 

recursive partitioning mechanism utilized. At each partitioning cycle (say, the 𝑔th cycle), only those impure 268 

clusters at the previous cycle (namely, the (𝑔 − 1)th) are partitioned, and the resulting prototypes will form smaller 269 

clusters with a smaller radius of the zone of influence (as specified by Eqn. (9)), associated with less data samples. 270 

The impure clusters derived from the current cycle will then be partitioned at a higher level of granularity in the 271 

next cycle. Hence, this recursive partitioning process will generally separate data samples of different classes and 272 

terminate itself at the end when the purity values of all the newly obtained clusters reach 1. Such a mechanism is 273 

also computationally efficient because there are always less data samples to be partitioned cycle by cycle. In 274 

theory, however, this system identification process may enter into an infinite loop in the unlikely event where 275 

there are data samples of different classes accidentally positioned at an exactly identical location in the data space, 276 

namely, 𝒙𝑗 = 𝒙𝑖 whilst 𝑦𝑗 ≠ 𝑦𝑖 . Yet, the likelihood for this to take place is extremely low. Besides, it can be 277 

avoided by carrying out a simple procedure of data cleaning to explicitly block such partitions in advance. 278 

Remark 3: The main aim of DHT is to identify a group of leaf prototypes at multiple levels of granularity with 279 

different descriptive abilities for classification, by recursively partitioning the data into non-overlapping multi-280 

granular clusters one cycle after another. Once a leaf prototype is obtained, the associated pure cluster will no 281 

longer participate in the partitioning process further. Hence, the obtained classification model is unlikely to be 282 

overfitting because leaf prototypes will only distribute densely in the areas where class overlaps are observed, 283 

unless the data itself rejects the cluster hypothesis, which is extremely rare in practice. On the other hand, users 284 

may further consider terminating the system identification process earlier, by pre-setting the maximum model 285 

depth (number of layers) over which DHT may achieve. However, this would require prior knowledge of the 286 

problem under consideration in order to achieve the best classification performance, reducing the pure data-driven 287 

nature of the proposed approach. 288 

Remark 4: The interpretability of the DHT models comes from three different aspects. First, all identified 289 

prototypes are data samples physically existing in the data space and are guaranteed to attain their inherent 290 

meanings. Second, the resulting prototypes are arranged in multiple layers according to their descriptive abilities. 291 

A smaller amount of more descriptive prototypes that represent global patterns of data are located at higher layers, 292 

whilst a greater amount of less descriptive prototypes that represent local patterns of data are located at lower 293 

layers. Users can utilize prototypes at higher layers to obtain a general picture of the problem and also, they can 294 

retrieve finer details of the problem based on prototypes at lower layers. Third, the relationships between 295 

prototypes identified at different levels of granularity are preserved by the models in the form of meaningful links, 296 

which are readily visualizable in a human-understandable manner. Users may use these links to interpret the 297 

internal system identification processes of the DHT models top-down. 298 

2.4. Summary and Illustration of System identification Algorithm  299 

The main system identification procedure is summarized in the form of pseudo code as given in Algorithm 1. 300 

Algorithm 1. Learning policy of DHT 301 

i. calculate 𝑫 from 𝑿 as Eqn. (1); 

ii. 𝑔 ← 1; 

iii. calculate 𝜎𝑔 by Eqn. (2); 

iv. obtain 𝑼𝑔 by Eqns. (3) and (4); 

v. calculate 𝜆𝑔(𝒙𝑖) (𝑖 = 1,2, … , 𝐾) by Eqn. (5); 
vi. identify 𝑷𝑔 from 𝑿 by Condition 1 as Eqn. (6); 

vii. obtain ℂ𝑔 from 𝑷𝑔 and 𝑿 by Eqn. (7); 

viii. calculate 𝜌𝑔,𝑖 of 𝑪𝑔,𝑖  (𝑖 = 1,2, … , 𝑃𝑔) by Eqn. (8); 



ix. separate 𝑷𝑔 to 𝑷𝑔
𝐿  and 𝑷𝑔

𝐼 ; 

xi. while (𝑷𝑔
𝐼 ≠ ∅): 

1. calculate 𝜎𝑔+1 by Eqn. (9); 

2. 𝑷𝑔+1 ← ∅; 

3. ℂ𝑔+1 ← ∅; 

4. for 𝑖 = 1 to 𝑃𝑔
𝐼  do: 

* obtain 𝑼𝑔+1,𝑖
𝐼  from 𝑪𝑔,𝑖

𝐼  by Eqn. (10); 

* calculate 𝜆𝑔+1,𝑖
𝐼 (𝒛𝑗) for ∀𝒛𝑗 ∈ 𝑪𝑔,𝑖

𝐼  by Eqn. (11); 

* identify 𝑷𝑔+1,𝑖 from 𝑪𝑔,𝑖
𝐼  by Condition 2 as Eqn. (12); 

* obtain ℂ𝑔+1,𝑖 from 𝑷𝑔+1,𝑖 and 𝑪𝑔,𝑖
𝐼  by Eqn. (13); 

* 𝑷𝑔+1 ← 𝑷𝑔+1 ∪ 𝑷𝑔+1,𝑖; 

* ℂ𝑔+1 ← ℂ𝑔+1 ∪ ℂ𝑔+1,𝑖; 

5. end for 

6. calculate 𝜌𝑔+1,𝑗 of ℂ𝑔+1 (𝑗 = 1,2, … , 𝑃𝑔) by Eqn. (8); 

7. separate 𝑷𝑔+1 into 𝑷𝑔+1
𝐿  and 𝑷𝑔+1

𝐼 ; 

8. 𝑔 ← 𝑔 + 1; 

xii. end while 

 302 

To better illustrate the system identification process of DHT, a two-dimensional synthetic dataset is used as a 303 

visual example. This dataset considered is composed of 300 data samples of three different classes (100 samples 304 

per class), as visualized in Fig. 2, where dots “·” in three different colours represent data samples of three classes. 305 

The cumulative memberships of the 300 data samples calculated by Eqn. (11) at the first level of granularity (𝑔 =306 

1) are visualized in Fig. 3 (a), and the apex prototype identified from the dataset with the local maximum 307 

cumulative membership is given by Fig. 3(b), represented by the red asterisk “*”. Note that as there is just one 308 

apex prototype identified, only one cluster containing all the 300 data samples is created. Hence, the entire dataset 309 

needs to be partitioned at a higher level of granularity, namely, 𝑔 = 2. At this stage, the calculated cumulative 310 

memberships of the 300 data samples are visualized in Fig. 4(a). Two data samples with the local maximum 311 

cumulative membership are identified as prototypes, represented by blue asterisks “*”, as shown in Fig. 4(b). 312 

Accordingly, two clusters are formed via using them as the cluster medoids to attract nearby data samples forming 313 

Voronoi tessellations. It can be seen from Fig. 4(b) that one of the clusters is formed by data samples of two 314 

classes, this cluster requires to be partitioned at the next level of granularity, 𝑔 = 3. The obtained cumulative 315 

membership calculated locally within this cluster is presented in Fig. 5(a) and the identified prototypes are given 316 

in Fig. 5(b) as black asterisks “*”. It follows from Fig. 5(b) that the cluster is partitioned into two smaller ones, 317 

each of which contains data samples of the same class. As data samples of three classes have been sufficiently 318 

separated, the system identification process terminates with the final three-layer prototype-based hierarchical 319 

structure obtained as visualized in Fig. 6.  320 

 321 

Fig. 2. Visualization of two-dimensional synthetic dataset composed of 300 samples of three classes (100 322 

samples per class) 323 



 324 

(a) Cumulative membership                                                (b) Prototype 325 

Fig. 3. Cumulative membership and identified prototype at the first level of granularity (𝑔 = 1) 326 

 327 

(a) Cumulative membership                                                (b) Prototypes 328 

Fig. 4. Cumulative membership and identified prototypes at the second level of granularity (𝑔 = 2) 329 

 330 

(a) Cumulative membership                                                (b) Prototypes 331 

Fig. 5. Cumulative membership and identified prototypes at the third level of granularity (𝑔 = 3) 332 

 333 



 334 

 335 

Fig. 6. Prototype-based hierarchical structure identified from data 336 

2.5. Decision-Making Policy 337 

During the decision-making stage, the decision-maker component of DHT determines the class labels of 338 

unlabelled data samples based on the distances between these unlabelled samples and the identified leaf 339 

prototypes. For a particular data sample, 𝒙𝑘, its class label is decided by Eqn. (14): 340 

𝑦̂𝑘 ← 𝑦𝑛∗; 𝑛∗ = argmin
𝑛=1,2,…,𝑃𝐿

(𝑑2(𝒙𝑘, 𝒑𝑛))                                                                                   (14) 341 

where 𝒑𝑛 ∈ 𝑷
𝐿; 𝑷𝐿 is the collection of identified leaf prototypes; 𝑃𝐿  is the cardinality of 𝑷𝐿. 342 

Remark 5: Since the class labels of unlabelled data samples are determined by the nearest leaf prototypes, if 343 

desired, users can track and trace the internal decision-making processes of the DHT models in a straightforward 344 

manner. Understanding about the rationales behind the decisions made can be obtained by exploiting the links 345 

constructed between prototypes at different layers (e.g., to appreciate how well an unlabelled data sample fits the 346 

related local and global patterns). 347 

3. Computational Complexity Analysis 348 

To reflect the efficiency of the proposed approach, a formal analysis of the computational complexity of the two 349 

main processes of DHT is provided herein. 350 

3.1. Learning Process 351 

Step A of the learning process of DHT starts by calculating a 𝐾 × 𝐾 dimensional pairwise distance matrix, 𝑫 from 352 

𝑿. The computational complexity of calculating 𝑫 by Eqn. (1) is 𝑂(𝑁𝐾2); that of deriving 𝜎𝑔 from 𝑫 by Eqn. (2) 353 

is 𝑂(𝐾2); and that of calculating the membership matrix, 𝑼𝑔 and cumulative membership, 𝜆 from 𝑫 and 𝜎𝑔 (Eqns. 354 

(3)-(5)) is 𝑂(𝐾3). The computational complexity of identifying 𝑷𝑔 from 𝑿 by Condition 1 is 𝑂(𝐾2); that of 355 

forming Voronoi tessellations by Eqn. (7) is 𝑂(𝑁𝐾𝑃𝑔); and that of calculating the purity for each cluster is 356 

𝑂(𝐾𝑃𝑔). Therefore, the overall computational complexity of Step A is 𝑂((𝑁 + 𝐾)𝐾2). 357 

In Step B, the obtained impure clusters are recursively partitioned at higher levels of granularity in order to 358 

separate data samples of different classes. The computational complexity of calculating 𝜎𝑔+1 by Eqn. (9) is 𝑂(𝐾2); 359 

and that of calculating the local membership matrix, 𝑼𝑔+1,𝑖
𝐼  and local cumulative membership, 𝜆𝑔+1,𝑖

𝐼  for each 360 



impure cluster, 𝑪𝑔,𝑖
𝐼  by Eqns. (10)-(11) is 𝑂 ((𝑆𝑔,𝑖

𝐼 )
3
). The computational complexity of identifying 𝒑𝑔,𝑖

𝐼  from 𝑪𝑔,𝑖
𝐼  361 

using Condition 2 is 𝑂 ((𝑆𝑔,𝑖
𝐼 )

2
); and that of forming Voronoi tessellations within 𝑪𝑔,𝑖

𝐼  by Eqn. (7) is 362 

𝑂(𝑁𝑆𝑔,𝑖
𝐼 𝑃𝑔+1,𝑖). As there are a total of 𝑃𝑔

𝐼  impure clusters at the gth level of granularity, the overall computational 363 

complexity of Step B is 𝑂 (𝐾2 +∑ (𝑆𝑔,𝑖
𝐼 )

3𝑃𝑔
𝐼

𝑖=1
).  364 

Despite that Step B may be repeated for a few times before the complete separation of data can be achieved, the 365 

computational complexity of each iteration is kept decreasing due to the continued reduction of the sizes of impure 366 

clusters obtained at higher levels of granularity. Hence, it can be concluded from the above that the overall 367 

computational complexity of DHT is 𝑂((𝑁 + 𝐾)𝐾2). 368 

3.2. Decision-Making Process 369 

During the decision-making process, the computational complexity of calculating the distances between a 370 

particular testing sample and the learned leaf prototypes is 𝑂(𝑁𝑃𝐿). For 𝐾 testing samples, the overall 371 

computational complexity to determine their class labels is 𝑂(𝑁𝐾𝑃𝐿). 372 

4. Experimental Investigation 373 

In this section, experimental studies are conducted to evaluate the effectiveness and validity of the proposed DHT 374 

algorithm.  375 

4.1. Configuration 376 

In this work, a total of 21 commonly used benchmark numerical datasets (including 10 binary and 11 multi-class 377 

ones) and two real-world remote sensing image sets are utilized in the experimental investigations. Key 378 

information regarding the 23 datasets is summarized in Tables 2-4, and the web links to these datasets are given 379 

in Table 5. 380 

 Table 2. Key information of binary benchmark classification problems 381 

Dataset Abbreviation #(Samples) #(Attributes) #(Minority) #(Majority) 

Epileptic seizure recognition ES 11500 175+1 label 2300  9200 

German credit GC 1000 24+1 label 300 700 

Mammography MA 11183 6+1 label 260 10923 

Magic gamma telescope MG 19020 10+1 label 6688 12332 

Occupancy detection Training OD 8143 5+1 label 1729 6414 

Testing 12417 3021 9396 

Phishing websites PW 11055 30+1 label 4898 6157 

Shill bidding SB 6321 9+1 label 675 5646 

Seismic SE 2584 18+1 label 170 2414 

Spambase SP 4601 57+1 label 1813 2788 

Wilt Training WI 4339 5+1 label 74 4265 

Testing 500 187 313 

 382 

Table 3. Key information of multi-class benchmark classification problems 383 

Dataset Abbreviation #(Samples) #(Attributes) #(Classes) 

Iris IR 150 4+1 label 3 

Cardiotocography CA 2126 21+1 label 3 

Gesture phase segmentation GP 9901 18+1 label 5 

Image segmentation Training IS 420 19+1 label 7 

Testing 2100 

Letter recognition LR 20000 16+1 label 26 

Multiple features MF 2000 649+1 label 10 

Page-blocks PB 5473 10+1 label 5 

Pen-based recognition of handwritten digits PR 10996 16+1 label 10 

Semeion handwritten digit SH 1593 256+1 label 10 

Steel plates faults SPF 1941 27+1 label 7 

Wall-following robot navigation WF 5456 24+1 label 4 



 384 

Table 4. Key information of benchmark remote sensing image sets for land-use classification 385 

Dataset #(Images) #(Categories) #(Images per category) Image size 

OPTIMAL-31 1860 31 60 256×256 

RSI-CB256 24747 35 198~1331 256×256 

 386 

Table 5. Web links to benchmark datasets involved in experimental investigation 387 

Dataset Web link 

ES https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition  

GC https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)  

MA http://odds.cs.stonybrook.edu/mammography-dataset/  

MG https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope  

OD https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+  

PW https://archive.ics.uci.edu/ml/datasets/phishing+websites  

SB https://archive.ics.uci.edu/ml/datasets/Shill+Bidding+Dataset  

SE https://archive.ics.uci.edu/ml/datasets/seismic-bumps  

SP https://archive.ics.uci.edu/ml/datasets/Spambase  

WI http://archive.ics.uci.edu/ml/datasets/wilt  

IR  https://archive.ics.uci.edu/ml/datasets/iris 
CA https://archive.ics.uci.edu/ml/datasets/cardiotocography  

GP https://archive.ics.uci.edu/ml/datasets/gesture+phase+segmentation  

IS https://archive.ics.uci.edu/ml/datasets/image+segmentation  

LR https://archive.ics.uci.edu/ml/datasets/Letter+Recognition  

MF https://archive.ics.uci.edu/ml/datasets/Multiple+Features  

PB https://archive.ics.uci.edu/ml/datasets/Page+Blocks+Classification  

PR https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits  

SH https://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit  

SPF https://archive.ics.uci.edu/ml/datasets/Steel+Plates+Faults  

WF https://archive.ics.uci.edu/ml/datasets/Wall-Following+Robot+Navigation+Data  

OPTIMAL-31 https://drive.google.com/file/d/1Fk9a0DW8UyyQsR8dP2Qdakmr69NVBhq9  

RSI-CB256 https://github.com/lehaifeng/RSI-CB  
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Binary Classification Problems. In running the experiments, for the OD and WI datasets, the original training-389 

testing splits are used. For the other eight binary benchmark datasets, namely, ES, GC, MA, MG, PW, SB, SE 390 

and SP, 50% of the data samples are randomly selected for building the training sets and the rest for testing [28].  391 

The performance of DHT is evaluated on the 10 binary classification datasets in terms of classification accuracy 392 

(𝐴𝑐𝑐) and execution time (𝑡𝑒𝑥𝑒). As some of the binary classification datasets are highly imbalanced, the standard 393 

classification accuracy may not be the best performance index. Hence, the following two additional measures are 394 

also employed: balanced accuracy score (𝐵𝐴𝑐𝑐) [33] and F1 score (𝐹1). Expressions of 𝐴𝑐𝑐, 𝐵𝐴𝑐𝑐 and 𝐹1 are 395 

given by Eqns. (15a), (15b) and (15c). 396 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                                                                                                       (15a) 397 

𝐵𝐴𝑐𝑐 =
1

2
(

𝑇𝑃

𝑇𝑃+𝐹𝑁
+

𝑇𝑁

𝑇𝑁+𝐹𝑃
)                                                                                                                       (15b) 398 

𝐹1 =
𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑃+𝐹𝑁)

                                                                                                                       (15c) 399 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 denote true positive, true negative, false positive and false negative, respectively. 400 

Multi-Class Classification Problems. Thanks to its smaller scale and simpler structure, the IR dataset is taken 401 

to provide visual illustration. The remaining ten multi-class benchmark datasets are used for performance 402 

evaluation. Similar to the experiment protocols used for binary classification problems, the original training-403 

testing splits of the IS and PR dataset are retained. For the other eight datasets, including CA, GP, LR, MF, PB, 404 

SH, SPF and WF, 50% of data samples are randomly selected for training with the remaining for testing [28]. 𝐴𝑐𝑐 405 

and 𝑡𝑒𝑥𝑒  are used as the two criteria to evaluate the working of DHT on the 10 multi-class classification problems. 406 
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https://archive.ics.uci.edu/ml/datasets/Spambase
http://archive.ics.uci.edu/ml/datasets/wilt
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/cardiotocography
https://archive.ics.uci.edu/ml/datasets/gesture+phase+segmentation
https://archive.ics.uci.edu/ml/datasets/image+segmentation
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https://github.com/lehaifeng/RSI-CB


Remote Sensing Image Classification Problems. To examine the capability of DHT to handle high-dimensional, 407 

complex problems, two popular remote sensing image sets for land-use classification problems are employed. In 408 

carrying out the experiments, three popular DNNs including ResNet50 [34], DenseNet121 [35] and InceptionV3 409 

[36] are exploited for feature extraction after fine-tuning on the NWPU45 dataset, following the same process as 410 

described in [37]. Each of the three DNNs extracts a 1024 × 1 dimensional feature vector from every remote 411 

sensing image. The three resulting feature vectors are combined into a more descriptive high-level representation 412 

by arithmetic mean. Hence, for each image within the datasets, a 1024 × 1 dimensional high-level representation 413 

is extracted. As with the common practice in the literature, the training-testing split ratio of OPTIMAL-31 is set 414 

to 8:2; and for the RSI-CB256 dataset, two different split ratios are considered, namely, 5:5 and 8:2. The 415 

classification performances of DHT on the two remote sensing image classification problems are measured with 416 

respect to 𝐴𝑐𝑐, as commonly done in the literature. 417 

State-of-the-Art Methods for Benchmark Comparison. For better evaluation, the following 14 mainstream 418 

classification approaches are involved for benchmark comparison on the 20 numerical datasets, under the same 419 

experimental protocols used by DHT. 420 

1) Multi-granularity locally optimal prototype-based (MLOP) classifier [28]; 421 

2) Hierarchical prototype-based (HP) classifier [27]; 422 

3) SVM classifier with linear kernel (SVM-L) [10]; 423 

4) SVM classifier with Gaussian kernel (SVM-G) [10]; 424 

5) DT classifier [12]; 425 

6) KNN classifier [13]; 426 

7) Multilayer perceptron (MLP); 427 

8) SC [20]; 428 

9) Sequence-dictionary-based KNN (SDKNN) classifier [20]; 429 

10) Zero-order autonomous learning multiple-model (ALMMo0) classifier [19];  430 

11) Self-organising fuzzy inference system (SOFIS) [16]; 431 

12) Extreme learning machine (ELM) [38]; 432 

13) EigenClass [21], and; 433 

14) Generalized learning vector quantization (GLVQ) [39]. 434 

In running these experiments, system parameters are set with respect to the commonly adopted default values 435 

[28]. Particularly, the layer number of HP is set as 𝐻 = 6 [27]; the regularization parameter of MLOP is set as 436 

𝜌 = 0.05 [28]; SC uses the recommended setting given by [20]; the box constraint, 𝐶 for SVM is set as 𝐶 = 1; 437 

both KNN and SDKNN use 𝑘 = 5; the maximum depth of DT is set as 𝐾 − 1; MLP has three hidden layers with 438 

20 neurons per layer; the level of granularity of SOFIS is set as 𝐺 = 12 [16]; the maximum number of neurons 439 

for ELM is set as 200; EigenClass considers the first five eigenvalues for classification; and GLVQ has 25 440 

reference vectors per class with the gain factor set to 𝛼 =  0.005. 441 

In addition, three evolutionary algorithms are also employed in experimental investigation, including: 442 

1) Genetic algorithm (GA) [40]; 443 

2) Particle swarm optimization algorithm (PSO) [41], and; 444 

3) Genetic learning particle swarm optimization algorithm (GLPSO) [42]. 445 

In these experiments, GA, PSO, GLPSO are utilized to optimize the learned prototypes by SOFIS from data, under 446 

a similar experimental protocol as used in [43]. Following the common practice in the literature, the crossover 447 

probability 𝑝𝑐, mutation probability 𝑝𝑚, distribution indexes for crossover and mutation operators, 𝜂𝑐 and 𝜂𝑐 for 448 



GA are set as: 𝑝𝑐 = 0.9; 𝑝𝑚 =
1

𝑁
; 𝜂𝑐 = 20 and 𝜂𝑚 = 20, respectively. The externally controlled parameters for 449 

PSO are set as: 𝜔 =  0.7298; 𝑐1  =  𝑐2  =  1.49618, and that for GLPSO are set as: 𝜔 =  0.7298; 𝑐 = 𝑐1  =450 

 𝑐2  =  1.49618; 𝑝𝑚 = 0.01 [42], [43]. The population size is set to 100, the maximum number of iterations is 451 

200 for each of the three evolutionary algorithms, and the fitness of the solutions is evaluated on the basis of the 452 

classification error rate (1 − 𝐴𝑐𝑐) on the training data. The optimized SOFISs by GA, PSO and GLPSO are 453 

denoted as GA-SOFIS, PSO-SOFIS and GLPSO-SOFIS. Here, the level of granularity is set as 𝐺 = 9 for GA-454 

SOFIS, PSO-SOFIS and GLPSO-SOFIS to avoid overfitting.  455 

The proposed approach is implemented on the MATLAB2020b platform, and the performance evaluation is 456 

conducted on a laptop with dual core i7 processer 2.60GHz×2 and 16.0GB RAM. Unless otherwise stated, the 457 

reported results are obtained after 10 Monte Carlo experiments to allow a certain degree of randomness and hence, 458 

a fair comparison. The MATLAB code of DHT is publicly available at: https://github.com/Gu-X/Self-Organizing-459 

Divisive-Hierarchical-Voronoi-Tessellation-Based-Classifier. 460 

4.2. Visual Illustration  461 

The IR dataset is employed as the first example to illustrate the proposed concept. In this case study, all data 462 

samples available are used for training. During the experiment, DHT repeatedly partitions the dataset at seven 463 

different levels of granularity until a clear separation of data samples of the three classes is achieved. The recursive 464 

partitioning results are visualized in Fig. 7, where dots “·” in three different colours represent data samples of 465 

three classes and the blue asterisks “*” represent the identified prototypes. Whilst DHT self-constructs a seven-466 

layer prototype-based hierarchical structure from data, for visual clarity, only the partitioning results obtained at 467 

the first four levels of granularity are given. The constructed prototype-based hierarchy is presented in Fig. 8, and 468 

the corresponding prototypes are listed in Table 6. 469 

Table 6. Identified prototypes from IR dataset 470 

Prototype Prototype Prototype 

𝒑1,1 = [5.7,3.0,4.2,1.2]
𝑇 𝒑5,14 = [7.4,2.8,6.1,1.9]

𝑇 𝒑6,19 = [6.3,2.5,5.0,1.9]
𝑇 

𝒑2,1 = [5.0,3.4,1.6,0.4]
𝑇 𝒑5,15 = [7.7,2.6,6.9,2.3]

𝑇 𝒑6,20 = [6.2,3.4,5.4,2.3]
𝑇 

𝒑2,2 = [6.0,2.9,4.5,1.5]
𝑇 𝒑6,1 = [4.9,2.5,4.5,1.7]

𝑇 𝒑6,21 = [6.3,3.3,4.7,1.6]
𝑇 

𝒑3,1 = [6.2,2.8,4.8,1.8]
𝑇 𝒑6,2 = [5.2,2.7,3.9,1.4]

𝑇 𝒑6,22 = [6.7,3.1,4.7,1.5]
𝑇 

𝒑3,2 = [7.7,3.8,6.7,2.2]
𝑇 𝒑6,3 = [5.5,2.5,4.0,1.3]

𝑇 𝒑6,23 = [7.0,3.2,4.7,1.4]
𝑇 

𝒑4,1 = [6.0,2.9,4.5,1.5]
𝑇 𝒑6,4 = [5.5,2.6,4.4,1.2]

𝑇 𝒑6,24 = [6.3,3.3,6.0,2.5]
𝑇 

𝒑4,2 = [6.5,3.0,5.2,2.0]
𝑇 𝒑6,5 = [5.7,2.5,5.0,2.0]

𝑇 𝒑6,25 = [6.4,2.8,5.6,2.1]
𝑇 

𝒑5,1 = [4.9,2.5,4.5,1.7]
𝑇 𝒑6,6 = [5.8,2.7,5.1,1.9]

𝑇 𝒑6,26 = [6.4,3.2,5.3,2.3]
𝑇 

𝒑5,2 = [5.0,2.0,3.5,1.0]
𝑇 𝒑6,7 = [6.0,2.7,5.1,1.6]

𝑇 𝒑6,27 = [6.7,3.1,5.6,2.4]
𝑇 

𝒑5,3 = [5.0,2.3,3.3,1.0]
𝑇 𝒑6,8 = [6.1,2.6,5.6,1.4]

𝑇 𝒑6,28 = [6.8,3.0,5.5,2.1]
𝑇 

𝒑5,4 = [6.0,2.2,4.0,1.0]
𝑇 𝒑6,9 = [6.2,2.8,4.8,1.8]

𝑇 𝒑7,1 = [6.0,2.2,5.0,1.5]
𝑇 

𝒑5,5 = [6.0,2.7,5.1,1.6]
𝑇 𝒑6,10 = [6.3,2.8,5.1,1.5]

𝑇 𝒑7,2 = [6.2,2.2,4.5,1.5]
𝑇 

𝒑5,6 = [6.0,2.9,4.5,1.5]
𝑇 𝒑6,11 = [5.7,2.9,4.2,1.3]

𝑇 𝒑7,3 = [6.3,2.3,4.4,1.3]
𝑇 

𝒑5,7 = [6.2,2.2,4.5,1.5]
𝑇 𝒑6,12 = [5.9,3.2,4.8,1.8]

𝑇 𝒑7,4 = [6.5,3.0,5.5,1.8]
𝑇 

𝒑5,8 = [6.3,2.5,4.9,1.5]
𝑇 𝒑6,13 = [6.0,2.9,4.5,1.5]

𝑇 𝒑7,5 = [6.5,3.0,5.8,2.2]
𝑇 

𝒑5,9 = [5.8,2.8,5.1,2.4]
𝑇 𝒑6,14 = [6.0,3.0,4.8,1.8]

𝑇 𝒑7,6 = [6.7,3.0,5.0,1.7]
𝑇 

𝒑5,10 = [6.3,3.3,4.7,1.6]
𝑇 𝒑6,15 = [6.0,3.4,4.5,1.6]

𝑇 𝒑7,7 = [6.7,3.0,5.2,2.3]
𝑇 

𝒑5,11 = [6.7,2.5,5.8,1.8]
𝑇 𝒑6,16 = [6.4,3.2,4.5,1.5]

𝑇 𝒑7,8 = [6.8,3.0,5.5,2.1]
𝑇 

𝒑5,12 = [6.8,2.8,4.8,1.4]
𝑇 𝒑6,17 = [6.2,2.2,4.5,1.5]

𝑇 𝒑7,9 = [7.1,3.0,5.9,2.1]
𝑇 

𝒑5,13 = [6.8,3.0,5.5,2.1]
𝑇 𝒑6,18 = [6.3,2.5,4.9,1.5]

𝑇  

https://github.com/Gu-X/Self-Organizing-Divisive-Hierarchical-Voronoi-Tessellation-Based-Classifier
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(a) 𝑔 = 1                                                                              (b) 𝑔 = 2 472 

  473 

(c) 𝑔 = 3                                                                              (d) 𝑔 = 4 474 

Fig. 7. Partitioning results obtained at four different levels of granularity 475 

 476 

Fig. 8. Constructed seven-layer prototype-based hierarchical structure from data 477 

The numerical example shown by Figs. 7-8 and Table 6 demonstrates the operating process of DHT. In particular, 478 

DHT obtains an initial partition of the IR dataset at the first level of granularity (𝑔 = 1), where only one large 479 



cluster is created (see Fig. 7(a)). Next, DHT splits the large cluster at the second level of granularity (𝑔 = 2) and 480 

obtains two smaller ones (see Fig. 7(b)). Then, the proposed algorithm selects an impure one from these two newly 481 

obtained clusters and continues to partition it at a higher level of granularity (see Fig. 7(c)). The same process is 482 

repeated until data samples of different classes have been well separated. In this way, DHT self-organizes a 483 

prototype-based hierarchical structure from data as given in Fig. 8.  484 

4.3. Performance Examination 485 

Binary Classification Problems. Firstly, the performance of the proposed DHT classifier is evaluated on 10 486 

binary benchmark classification problems. The results, in terms of 𝐴𝑐𝑐, 𝐵𝐴𝑐𝑐 and 𝐹1, obtained by DHT and the 487 

17 comparative algorithms on each benchmark problem are reported in Tables 7-9, respectively. In addition, the 488 

average performance measures (𝐴𝑐𝑐, 𝐵𝐴𝑐𝑐,  𝐹1 and 𝑡𝑒𝑥𝑒) of each classification approach across the 10 problems 489 

are given in Table 10, and the ranks per measure are presented within the same table. The results obtained by the 490 

proposed approach are shown in bold for visual clarity. 491 

Table 7. Classification accuracy (𝐴𝑐𝑐) of different classification approaches on binary benchmark classification 492 

problems 493 

Algorithm Dataset 

ES GC MA MG OD PW SB SE SP WI 

DHT 0.9388 0.6636 0.9715 0.7839 0.9170 0.9217 0.9792 0.8672 0.8635 0.7840 

MLOP 0.9190 0.6414 0.8306 0.7646 0.9441 0.9359 0.9958 0.8301 0.6678 0.7760 

HP 0.8695 0.6392 0.6667 0.6851 0.7932 0.9194 0.9835 0.7796 0.7073 0.8076 

SVM-L 0.2157 0.7560 0.9810 0.7122 0.8436 0.9277 0.9793 0.6694 0.8889 0.7150 

SVM-G 0.7979 0.6944 0.9825 0.6576 0.7607 0.8587 0.9979 0.9342 0.6902 0.6280 

DT 0.9344 0.7000 0.9803 0.8181 0.9314 0.9472 0.9971 0.9005 0.9042 0.8140 

KNN 0.9150 0.6912 0.9848 0.8040 0.9580 0.9303 0.9966 0.9301 0.7822 0.7260 

MLP 0.9394 0.7154 0.9840 0.8550 0.9311 0.9391 0.9890 0.9338 0.8617 0.6376 

SC 0.9202 0.7038 0.5203 0.7788 0.7351 0.9094 0.9785 0.9300 0.8865 0.3980 

SDKNN 0.9449 0.6616 0.6259 0.7764 0.5189 0.9470 0.9808 0.8913 0.8853 0.6720 

ALMMo0 0.8939 0.6662 0.7040 0.7248 0.9438 0.9426 0.9906 0.8882 0.7826 0.7614 

SOFIS 0.9218 0.6488 0.8330 0.7695 0.9588 0.9361 0.9964 0.9049 0.7637 0.7560 

GA-SOFIS 0.9170 0.6570 0.9819 0.7667 0.9547 0.9361 0.9958 0.9322 0.7577 0.7668 

PSO-SOFIS 0.9154 0.6514 0.9832 0.7655 0.9588 0.9380 0.9951 0.9309 0.7491 0.7578 

GLPSO-SOFIS 0.9145 0.6434 0.9828 0.7651 0.9592 0.9375 0.9957 0.9318 0.7495 0.7552 

ELM 0.2737 0.7790 0.9681 0.5500 0.9894 0.9104 0.9944 0.8400 0.8772 0.8594 

EigenClass 0.8010 0.7060 0.8936 0.8092 0.9615 0.9461 0.9704 0.9331 0.8583 0.7080 

GLVQ 0.7707 0.7346 0.9655 0.8083 0.9314 0.9063 0.9777 0.8317 0.8420 0.6260 

 494 

Table 8. Balanced classification accuracy (𝐵𝐴𝑐𝑐) of different classification approaches on binary benchmark 495 

classification problems 496 

Algorithm Dataset 

ES GC MA MG OD PW SB SE SP WI 

DHT 0.8647 0.5997 0.8108 0.7575 0.8759 0.9208 0.9624 0.5560 0.8567 0.7349 

MLOP 0.8061 0.5616 0.6750 0.7199 0.9186 0.9357 0.9854 0.5416 0.6188 0.7048 

HP 0.7901 0.5815 0.6191 0.6669 0.7678 0.9171 0.9750 0.5802 0.7023 0.7761 

SVM-L 0.3759 0.6772 0.6375 0.6706 0.8082 0.9255 0.9837 0.5245 0.8764 0.6427 

SVM-G 0.5000 0.5000 0.6770 0.5089 0.5084 0.8443 0.9935 0.5000 0.6093 0.5027 

DT 0.8956 0.6383 0.7637 0.7995 0.8981 0.9460 0.9898 0.5437 0.8998 0.7653 

KNN 0.7916 0.5753 0.7496 0.7541 0.9547 0.9291 0.9878 0.5066 0.7703 0.6348 

MLP 0.8737 0.6094 0.7486 0.8220 0.9142 0.9375 0.9778 0.5031 0.8506 0.5164 

SC 0.8681 0.5890 0.6107 0.7324 0.6164 0.9446 0.9620 0.5268 0.8868 0.5776 

SDKNN 0.8045 0.5997 0.6901 0.6963 0.6802 0.9083 0.9646 0.5185 0.8787 0.5192 

ALMMo0 0.8202 0.5983 0.6114 0.6868 0.9161 0.9415 0.9801 0.5202 0.7891 0.6905 

SOFIS 0.8117 0.5717 0.7015 0.7333 0.9600 0.9359 0.9884 0.5308 0.7526 0.6792 

GA-SOFIS 0.8000 0.5788 0.7213 0.7260 0.9490 0.9359 0.9864 0.5020 0.7388 0.6920 

PSO-SOFIS 0.7948 0.5769 0.7471 0.7260 0.9570 0.9376 0.9836 0.5050 0.7296 0.6800 

GLPSO-SOFIS 0.7928 0.5664 0.7370 0.7250 0.9570 0.9371 0.9864 0.5080 0.7301 0.6760 

ELM 0.5327 0.7374 0.7560 0.5284 0.9911 0.9059 0.9844 0.5710 0.8672 0.8218 

EigenClass 0.5078 0.6100 0.6222 0.7420 0.9499 0.9455 0.8771 0.5087 0.8270 0.6107 

GLVQ 0.5951 0.7011 0.7421 0.7607 0.9344 0.9027 0.9486 0.6376 0.8254 0.5000 



Table 9. F1 scores (𝐹1) of different classification approaches on binary benchmark classification problems 497 

Algorithm Dataset 

ES GC MA MG OD PW SB SE SP WI 

DHT 0.8304 0.4396 0.5260 0.8359 0.8234 0.9293 0.9062 0.9278 0.8270 0.6516 

MLOP 0.7546 0.3765 0.3162 0.8275 0.8832 0.9420 0.9802 0.9051 0.4724 0.5852 

HP 0.6703 0.4204 0.0772 0.7505 0.6279 0.9282 0.9262 0.8718 0.6473 0.7166 

SVM-L 0.2495 0.5396 0.4058 0.7837 0.7644 0.9356 0.9106 0.7365 0.8471 0.4827 

SVM-G 0.0000 0.0000 0.4972 0.7918 0.0332 0.8846 0.9904 0.9660 0.3591 0.0106 

DT 0.8365 0.4933 0.5707 0.8604 0.8552 0.9527 0.9864 0.9471 0.8791 0.6971 

KNN 0.7353 0.3516 0.6173 0.8593 0.9165 0.9374 0.9840 0.9637 0.7218 0.4268 

MLP 0.7990 0.3904 0.6029 0.8932 0.8626 0.9455 0.9491 0.9658 0.8203 0.0586 

SC 0.8444 0.4188 0.0722 0.8364 0.4492 0.9529 0.9124 0.9421 0.8607 0.3167 

SDKNN 0.7554 0.4038 0.0913 0.8509 0.5130 0.9183 0.9038 0.9636 0.8546 0.5541 

ALMMo0 0.7263 0.4348 0.1094 0.7937 0.8818 0.9484 0.9564 0.9403 0.7494 0.5608 

SOFIS 0.7640 0.3915 0.3397 0.8282 0.9191 0.9422 0.9830 0.9497 0.7010 0.5344 

GA-SOFIS 0.7460 0.4006 0.5383 0.8280 0.9090 0.9422 0.9803 0.9650 0.6791 0.5580 

PSO-SOFIS 0.7387 0.4015 0.5901 0.8270 0.9180 0.9440 0.9770 0.9640 0.6675 0.5330 

GLPSO-SOFIS 0.7355 0.3847 0.5747 0.8260 0.9190 0.9435 0.9796 0.9650 0.6683 0.5260 

ELM 0.3810 0.6346 0.5832 0.4844 0.9786 0.9215 0.9737 0.8652 0.8398 0.7815 

EigenClass 0.0308 0.4237 0.3455 0.8681 0.9214 0.9513 0.8452 0.9654 0.7899 0.3652 

GLVQ 0.3460 0.5845 0.4488 0.8619 0.8696 0.9173 0.8972 0.9040 0.7884 0.0000 

 498 

Table 10. Overall performances and ranks of different classification approaches on binary benchmark 499 

classification problems 500 

Algorithm 𝐴𝑐𝑐 𝐵𝐴𝑐𝑐 𝐹1 𝑡𝑒𝑥𝑒 

Average Rank Average Rank Average Rank Average Rank 

DHT 0.8690 4 0.7939 2 0.7697 2 3.1203 9 

MLOP 0.8305 11 0.7468 12 0.7043 11 5.6767 11 

HP 0.7851 16 0.7376 13 0.6636 14 1.8165 8 

SVM-L 0.7689 18 0.7122 17 0.6655 13 30.1451 14 

SVM-G 0.8002 14 0.6144 18 0.4533 18 1.0589 6 

DT 0.8927 1 0.8140 1 0.8078 1 0.0577 3 

KNN 0.8718 3 0.7654 6 0.7514 6 0.0197 1 

MLP 0.8786 2 0.7753 3 0.7287 9 0.4322 4 

SC 0.7761 17 0.7314 14 0.6606 16 5.1244 10 

SDKNN 0.7904 15 0.7260 15 0.6809 12 11.6159 12 

ALMMo0 0.8298 12 0.7554 10 0.7101 10 1.7216 7 

SOFIS 0.8489 9 0.7665 5 0.7353 8 0.7829 5 

GA-SOFIS 0.8666 5 0.7630 8 0.7546 4 664.0393 16 

PSO-SOFIS 0.8645 6 0.7638 7 0.7561 3 608.3320 15 

GLPSO-SOFIS 0.8635 7 0.7616 9 0.7522 5 1188.7767 18 

ELM 0.8042 13 0.7696 4 0.7444 7 0.0462 2 

EigenClass 0.8587 8 0.7201 16 0.6506 17 865.4351 17 

GLVQ 0.8394 10 0.7548 11 0.6618 15 22.7965 13 

 501 

It can be seen from Table 10 that the average 𝐴𝑐𝑐, 𝐵𝐴𝑐𝑐 and 𝐹1 of DHT obtained on the 10 binary benchmark 502 

classification problems are 0.8690, 0.7939 and 0.7697, respectively. The average 𝐴𝑐𝑐 of DHT is ranked at the 503 

fourth place over the 18 classification approaches involved in the experiments, whilst its average 𝐵𝐴𝑐𝑐 and 𝐹1 504 

are both ranked at the second place. The results show that DHT is able to achieve very high performance on binary 505 

classification problems including the imbalanced ones. Note that such excellent performance is achieved by DHT 506 

with a practically acceptable computational efficiency. Whilst DT offers the best performance overall, it operates 507 

at attribute level and builds the classification model via splitting data based on these more important attributes. 508 

This mechanism is highly effective on simpler problems, enabling DT to outperform DHT as well as other 509 

classifiers on binary classification tasks. In contrast, DHT builds a hierarchical classification model via identifying 510 

prototypes at multiple levels of granularity and recursively partitioning the data [31]. Hence, the resulting model 511 

can provide more intuitive information about the underlying patterns and multi-model distribution of the given 512 

data. Nonetheless, as to be shown next, for more challenging application problems concerning multi-class 513 

classification, DHT is able to perform the best, beating DT in accuracy. 514 



Note that evolutionary algorithms help SOFIS achieve greater classification performance in terms of 𝐴𝑐𝑐 and 𝐹1. 515 

PSO-SOFIS ranks the third place over the 18 classification methods on 𝐹1, and GA-SOFIS ranks the fifth on 𝐴𝑐𝑐. 516 

However, such improvement comes at the price of much higher computational resource consumption, which is 517 

due to the iterative optimization processes required by the evolutionary algorithms. 518 

Multi-class Classification Problems. Next, the performance of DHT is evaluated on 10 multi-class benchmark 519 

classification problems, and compared with the 17 comparative classification algorithms as listed in Section 4.1. 520 

The performances of the involved classification approaches on the 10 multi-class classification problems, in terms 521 

of 𝐴𝑐𝑐, are reported in Table 11. A high-level summary of the results (𝐴𝑐𝑐 and 𝑡𝑒𝑥𝑒) obtained by the 18 522 

classification approaches is given in Table 12, including the respective rankings as per each of the two 523 

performance criteria. 524 

Table 11. Classification accuracy (𝐴𝑐𝑐) of different classification approaches on multi-class benchmark 525 

classification problems 526 

Algorithm Dataset 
CA GP IS LR MF PB PR SH SPF WF 

DHT 0.8810 0.8777 0.8876 0.9221 0.9634 0.9450 0.9651 0.8700 0.7052 0.8454 
MLOP 0.8773 0.6980 0.7819 0.9281 0.9148 0.9340 0.9757 0.8593 0.3727 0.8404 
HP 0.8127 0.6597 0.7929 0.9153 0.9250 0.8845 0.9671 0.8794 0.2234 0.8360 
SVM-L 0.8748 0.5681 0.9405 0.8552 0.9696 0.9255 0.9551 0.9154 0.1376 0.7315 
SVM-G 0.7805 0.7675 0.2369 0.3799 0.1026 0.9363 0.1039 0.0895 0.3507 0.7344 
DT 0.9117 0.8192 0.9048 0.8236 0.9214 0.9644 0.9122 0.6925 0.6950 0.9912 
KNN 0.8807 0.8080 0.8438 0.9325 0.9290 0.9510 0.9760 0.8770 0.4382 0.8297 
MLP 0.8892 0.6099 0.8878 0.4660 0.8420 0.9455 0.9172 0.5706 0.6790 0.8273 
SC 0.8767 0.7619 0.8381 0.8339 0.9748 0.9616 0.9531 0.8172 0.6890 0.8963 
SDKNN 0.8890 0.8410 0.8824 0.8561 0.9760 0.9423 0.9511 0.8935 0.6823 0.9284 
ALMMo0 0.8432 0.7104 0.7671 0.9190 0.9329 0.9492 0.9753 0.8918 0.3438 0.8352 
SOFIS 0.8792 0.7819 0.7976 0.9289 0.9200 0.9414 0.9763 0.8973 0.4095 0.8406 
GA-SOFIS 0.8798 0.7859 0.8040 0.9290 0.9189 0.9455 0.9753 0.8971 0.4748 0.8414 

PSO-SOFIS 0.8783 0.7796 0.7966 0.9266 0.9172 0.9457 0.9737 0.8894 0.4842 0.8419 

GLPSO-SOFIS 0.8793 0.7799 0.8009 0.9269 0.9159 0.9459 0.9734 0.8902 0.4791 0.8418 

ELM 0.8605 0.5283 0.1430 0.5286 0.9761 0.8983 0.9813 0.4269 0.0827 0.7821 
EigenClass 0.8830 0.8436 0.8700 0.9266 0.8969 0.9692 0.9148 0.7056 0.6693 0.9274 
GLVQ 0.8369 0.5417 0.8433 0.7607 0.9333 0.9159 0.8453 0.8296 0.5569 0.6782 

 527 

Table 12. Overall performances and ranks of different classification approaches on multi-class benchmark 528 

classification problems 529 

Algorithm 𝐴𝑐𝑐 𝑡𝑒𝑥𝑒 

Average Rank Average Rank 

DHT 0.8863 1 2.7853 10 

MLOP 0.8182 11 0.3258 6 

HP 0.7896 13 1.1938 8 

SVM-L 0.7873 14 10.4753 13 

SVM-G 0.4482 18 1.3368 9 

DT 0.8636 3 0.0349 3 

KNN 0.8466 6 0.0154 1 

MLP 0.7634 16 0.4146 7 

SC 0.8603 5 3.7449 11 

SDKNN 0.8842 2 7.2275 12 

ALMMo0 0.8168 12 0.1775 5 

SOFIS 0.8373 10 0.1116 4 

GA-SOFIS 0.8452 7 420.1389 16 

PSO-SOFIS 0.8433 8.5 369.8214 15 

GLPSO-SOFIS 0.8433 8.5 722.0387 17 

ELM 0.6208 17 0.0311 2 

EigenClass 0.8606 4 878.1962 18 

GLVQ 0.7742 15 26.2725 14 

 530 



It can be observed from Table 12 that the average 𝐴𝑐𝑐 of DHT obtained over the 10 multi-class benchmark 531 

classification problems is 0.8863, ranked at the top place across all 18 approaches compared. This shows the very 532 

strong predictive performance of DHT for multi-class problems.  533 

To examine the statistical significance of the better performance achieved by DHT, over the other 17 classification 534 

approaches and on the 10 multi-class benchmark problems, pairwise Wilcoxon signed rank tests [44] are 535 

conducted. The outcomes of the pairwise tests in terms of 𝑝-value are tabulated in Table 13, where the cascaded 536 

classification results by each approach across the 10 experiments are used. It can be observed that 87.65% of the 537 

p-values returned by the pairwise Wilcoxon tests are below the level of significance specified by 𝛼 = 0.05. This 538 

suggests that the performance of DHT is significantly better than the other 17 classifiers. 539 

Table 13. p-values returned by pairwise Wilcoxon signed rank tests 540 

DHT 

versus 

Dataset 

CA GP IS LR MF PB PR SH SPF WF 

MLOP 0.0000 0.0000 0.0000 0.0807 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 

HP 0.0000 0.0000 0.8944 0.5376 0.1452 0.0000 0.0000 0.0000 0.0000 0.0000 

SVM-L 0.0000 0.0000 0.0000 0.0219 0.0028 0.0000 0.0226 0.0000 0.0000 0.0000 

SVM-G 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

DT 0.0135 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 0.4874 0.0000 

KNN 0.0000 0.0000 0.0000 0.0000 0.7913 0.0000 0.0026 0.0000 0.0000 0.0510 

MLP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1423 0.0000 0.0000 

SC 0.0000 0.0000 0.0078 0.0000 0.0000 0.0000 0.0003 0.8339 0.0000 0.2011 

SDKNN 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050 

ALMMo0 0.0000 0.0000 0.0000 0.1763 0.2042 0.0000 0.0000 0.0000 0.0000 0.0028 

SOFIS 0.0000 0.0000 0.0000 0.0820 0.1245 0.0000 0.0000 0.0000 0.0000 0.0000 

GA-SOFIS 0.0000 0.0000 0.0000 0.1310 0.0635 0.0000 0.0000 0.0000 0.0000 0.0000 

PSO-SOFIS 0.0000 0.0000 0.0000 0.0808 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000 

GLPSO-SOFIS 0.0000 0.0000 0.0000 0.4120 0.0883 0.0000 0.0000 0.0000 0.0000 0.0000 

ELM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

EigenClass 0.0000 0.0000 0.0000 0.2280 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

GLVQ 0.0000 0.0000 0.0001 0.0000 0.8242 0.0001 0.0000 0.0000 0.0000 0.0000 

 541 

Remote Sensing Image Classification. Finally, experiments on popular real-world remote sensing image 542 

classification problems are conducted to further evaluate the performance of DHT. The results (in terms of 𝐴𝑐𝑐) 543 

on the these two problems are reported in Tables 14 and 15, respectively. For comparison, the results obtained by 544 

the relevant state-of-the-art approaches in the literature are given in these two tables also. It can be observed that 545 

DHT is able to achieve very high classification accuracy on the testing sets over both datasets, surpassing, or at 546 

least on par with the best performing models. This once again, demonstrates the strong performance of DHT.  547 

Table 14. Performance comparison on OPTIMAL-31  548 

Algorithm 𝐴𝑐𝑐 

DHT 0.9989±0.0014 

GBNet [45] 0.9328±0.0027 

MSNet [46] 0.9392±0.0041 

ARCNet-VGG16 [47] 0.9270±0.0035 

ARCNet-ResNet34  [47] 0.9128±0.0045 

ARCNet-AlexNet [47] 0.8575±0.0035 

Fine-tune VGGNet16 [47] 0.8745±0.0045 

Fine-tune GoogLeNet [47] 0.8257±0.0012 

Fine-tune AlexNet [47] 0.8122±0.0019 

MAA-CNN [1] 0.9570±0.0054 

EfficientNetB3-Basic [48] 0.9476±0.0026 

EfficientNetB3-Attn-2 [48] 0.9586±0.0022 

 549 

 550 

 551 

 552 



Table 15. Performance comparison on RSI-CB256  553 

Algorithm 𝐴𝑐𝑐 

50 % labelled 80 % labelled 

DHT 0.9863±0.0011 0.9898±0.0015 

SIFT [49] 0.3796±0.0027 0.4012±0.0034 

LBP [49] 0.6910±0.0020 0.7198±0.0036 

CH [49] 0.8408±0.0026 0.8408±0.0026 

Gist [49] 0.6174±0.0035 0.6359±0.0045 

Enhanced Fusion of DCNNs [50] - 0.9950 

 554 

Four example images taken from the OPTIMAL-31 dataset are presented in Fig. 9, to provide a visual comparison 555 

between DHT and MAA-CNN [1]. Figs. 9(a) and (b) belong to the category of “commercial area”. Figs. 9(c) and 556 

(d) belong to the two categories of “church” and “industrial area”, respectively. As reported in [1], the four images 557 

are classified to the category of “commercial area” by MAA-CNN, two of which are misclassifications. Whilst 558 

DHT correctly classified all of them.  559 

                         560 

(a) Image of category “commercial area”              (b) Image of category “commercial area”  561 

                       562 

(c) Image of category “church”                           (d) Image of category “industrial area” 563 

Fig. 9. Visual comparison between DHT and MAA-CNN [1] on OPTIMAL-31 ((a) and (b) are correctly 564 

classified by both approaches; (c) and (d) are correctly classified by DHT but misclassified by MAA-CNN ) 565 

4.4. Further Evaluations 566 

Further to the above systematic evaluations, additional experimental investigations are conducted on the basis of 567 

the 10 multi-class benchmark classification problems, under the same experimental protocols used previously. 568 

Firstly, the impact of utilizing different distance measures on the performance of DHT is investigated. In this 569 

example, the most commonly used Euclidean distance metric is adopted as the alternative, and the performances 570 

of the resulting DHT model in terms of 𝐴𝑐𝑐 are tabulated in Table 16. In addition, the same experiments are 571 

repeated using cosine dissimilarity as the distance measure, and the obtained results are also reported in Table 16. 572 

The outcomes obtained by DHT with the default Mahalanobis distance metric are given in the same table for easy 573 



comparison. The average 𝐴𝑐𝑐 of DHT while using each of the three distance measures over the 10 datasets is 574 

shown in Fig. 10. 575 

Table 16. Performance of DHT with different distance measures on multi-class benchmark classification 576 

problems 577 

Distance 

measure 

Dataset 

CA GP IS LR MF PB PR SH SPF WF 

Mahalanobis 0.8810 0.8771 0.8876 0.9221 0.9634 0.9450 0.9651 0.8700 0.7052 0.8454 

Euclidean 0.8571 0.8727 0.8405 0.9284 0.9232 0.9418 0.9697 0.8766 0.3903 0.8493 

Cosine 0.8481 0.8656 0.7957 0.9225 0.9300 0.9427 0.9640 0.8742 0.4151 0.8455 

 578 

 579 

Fig. 10. Overall performances of DHT with different distance measures 580 

It can be seen from Table 16 that the employment of different distance measures may affect the classification 581 

accuracy of the proposed DHT model to a certain degree. Using the default Mahalanobis distance metric, DHT 582 

produces better results on the largest number of datasets, including CA, GP, IS, MF, PB, and SPF. With the 583 

Euclidean distance metric, DHT performs the best on the LR, PR, SH and WF datasets, whilst being outperformed 584 

by the model utilizing cosine dissimilarity on the MF, PB and SPF datasets. In practice, however, without prior 585 

knowledge of the problem under consideration, it is generally impossible to prejudge which distance metric would 586 

enable DHT to achieve the best performance, but the use of Mahalanobis distance as the default is empirically 587 

supported as it provides the highest average 𝐴𝑐𝑐 rate on the 10 datasets, as reflected by Fig. 10. 588 

Experiments are also conducted to examine the behaviour of DHT with a predefined maximum model depth. 589 

During these experiments, the maximum depth of the DHT model varies from 5 to 20. The performances (𝐴𝑐𝑐) 590 

of DHT with a different maximum model depth on the 10 multi-class benchmark datasets are reported in Table 591 

17. The results by DHT with the default experimental setting are also presented in this table to facilitate 592 

comparison. Note that the system identification process of DHT self-terminates automatically before the 593 

maximum model depth is reached if the data samples of different classes have been appropriately separated at the 594 

current depth. In such cases, the models perform in exactly the same way as the one with the default setting, 595 

despite that a maximum model depth has been given.  596 

Table 17. Performance of DHT with different maximum model depths on multi-class benchmark classification 597 

problems 598 

𝐺𝑚𝑎𝑥 Dataset 

CA GP IS LR MF PB PR SH SPF WF 

5 0.8198 0.3082 0.6829 0.0691 0.8981 0.8975 0.6012 0.7829 0.5355 0.5529 

10 0.8798 0.7670 0.8876 0.9077 0.9634 0.9487 0.9660 0.8700 0.7072 0.8379 

15 0.8811 0.8757 0.8876 0.9221 0.9634 0.9449 0.9651 0.8700 0.7055 0.8456 

20 0.8810 0.8771 0.8876 0.9221 0.9634 0.9450 0.9651 0.8700 0.7052 0.8454 

Default 0.8810 0.8777 0.8876 0.9221 0.9634 0.9450 0.9651 0.8700 0.7052 0.8454 

 599 

The results given in Table 17 confirm that without artificially restricting the maximum model depth, the system 600 

identification process of DHT is able to self-terminate in less than 20 recursive partitioning cycles in most cases. 601 

In general, the number of recursive partitioning cycles required by DHT is purely depending on the nature of data. 602 



For example, the system identification process self-terminates in less than 10 cycles for the IS, MF and SH 603 

datasets, whilst it still carries on after 20 cycles for the GP dataset. Although users can choose to terminate the 604 

system identification process earlier via controlling the maximum model depth externally, the performance of 605 

DHT may be adversely impacted if the model depth is set to a too small number (e.g., less than 10).  606 

In the final experimental study, the robustness of the proposed DHT is examined by adding Gaussian noise to the 607 

experimental data. During the experiments, 0dB additive white Gaussian noise is randomly added onto 10% of 608 

the data samples. The classification results (𝐴𝑐𝑐) of DHT are reported in Table 18. The following nine 609 

classification algorithms are run for comparison (under the same experimental protocols), including: MLOP, HP, 610 

SVM-G, DT, KNN, SC, SDKNN, ALMMo0 and SOFIS. The obtained results by these comparative algorithms 611 

are tabulated in Table 18 as well. Furthermore, the same experiments are repeated by randomly selecting 20% of 612 

data samples to be added with the 0dB additive white Gaussian noise. The obtained results by the 10 classification 613 

algorithms are tabulated in the same table. The average 𝐴𝑐𝑐 rates of the 10 algorithms over the 10 datasets across 614 

the experiments are shown in Fig. 11.  615 

Table 18. Performances of different classification approaches on multi-class benchmark classification problems 616 

with different ratios of noisy samples 617 

Algorithm Dataset with 10% of noisy samples 

CA GP IS LR MF PB PR SH SPF WF 

DHT 0.8264 0.8046 0.8378 0.8358 0.8946 0.9302 0.8877 0.8612 0.4001 0.8032 

MLOP 0.8222 0.6175 0.7501 0.8255 0.8752 0.9096 0.8993 0.8483 0.3722 0.7846 

HP 0.7764 0.6181 0.7414 0.8256 0.8972 0.8634 0.8899 0.8722 0.2270 0.7778 

SVM-G 0.7804 0.7131 0.2205 0.3261 0.1023 0.9229 0.1040 0.0892 0.3507 0.6884 

DT 0.8772 0.7502 0.8282 0.7387 0.8402 0.9447 0.8374 0.6464 0.6275 0.9277 

KNN 0.8503 0.7444 0.8044 0.8446 0.9098 0.9381 0.9126 0.8684 0.4283 0.7954 

SC 0.8501 0.7623 0.8142 0.7814 0.9054 0.9338 0.8930 0.8800 0.3559 0.8522 

SDKNN 0.8525 0.6845 0.7544 0.7645 0.9175 0.9242 0.9004 0.8600 0.1928 0.8143 

ALMMo0 0.8221 0.6443 0.7089 0.8273 0.9027 0.9335 0.9028 0.8850 0.3469 0.7884 

SOFIS 0.8392 0.6849 0.7563 0.8222 0.8794 0.9240 0.9011 0.8844 0.4024 0.7860 

Algorithm Dataset with 20% of noisy samples 

CA GP IS LR MF PB PR SH SPF WF 

DHT 0.8042 0.7310 0.7777 0.7483 0.8586 0.9119 0.8167 0.8468 0.3818 0.7541 

MLOP 0.7859 0.5466 0.7074 0.7269 0.8219 0.9017 0.8261 0.8355 0.3659 0.7322 

HP 0.7373 0.5617 0.6859 0.7365 0.8741 0.8391 0.8158 0.8582 0.2325 0.7277 

SVM-G 0.7805 0.6629 0.2105 0.2765 0.1016 0.9168 0.1040 0.0891 0.3507 0.6502 

DT 0.8439 0.6831 0.7770 0.6562 0.7694 0.9302 0.7658 0.6048 0.5898 0.8655 

KNN 0.8268 0.6825 0.7628 0.7548 0.8898 0.9305 0.8460 0.8608 0.4225 0.7561 

SC 0.8303 0.6980 0.7513 0.6977 0.8615 0.9176 0.8240 0.8703 0.3347 0.8027 

SDKNN 0.8409 0.6325 0.6866 0.6830 0.8788 0.9178 0.8366 0.8481 0.1741 0.7739 

ALMMo0 0.7976 0.5898 0.6659 0.7361 0.8776 0.9146 0.8300 0.8691 0.3303 0.7433 

SOFIS 0.8033 0.6167 0.7136 0.7222 0.8456 0.9121 0.8287 0.8658 0.4137 0.7322 

 618 

 619 

Fig. 11. Overall performances of different classification approaches on multi-class benchmark classification 620 

problems with 0dB additive white Gaussian noise 621 



Collectively, from the results of Table 18 and Fig. 11, it can be seen that the overall 𝐴𝑐𝑐 of DHT is the second 622 

highest among the 10 classification methods (only outperformed by KNN). The proposed approach is therefore 623 

verified to offer a generally strong resistance to Gaussian noise. 624 

4.5. Discussions 625 

In short, all experimental studies carried out so far collectively demonstrate the significant potential of DHT as a 626 

powerful nonparametric method for classification. It offers the highest overall predictive precision on multi-class 627 

classification problems, and the second best on binary ones. In addition, its performance on remote sensing 628 

datasets is also top ranked, showing the capability of DHT on solving high-dimensional, complex problems. 629 

Experimental studies also demonstrate that DHT is robust to Gaussian noise.  630 

The computational efficiency of DHT is however, basically at the same level as techniques such as HP, MLOP, 631 

SVM and SC (as shown in Section 4.3). Fortunately, this limitation does not form a major concern in practice 632 

since it is devised as an offline classification approach. Nevertheless, for offline learning, DHT requires a 633 

sufficient amount of training samples to be available. This may significantly limit its applicability to very large-634 

scale, high-dimensional problems, mostly due to hardware limitation. 635 

In addition, the prototypes within the hierarchical structure produced by DHT are identified from data through a 636 

recursive data partitioning process. Such prototypes may not be optimal because no iterative optimization is 637 

carried out during the system identification process. It has been shown above that evolutionary algorithms can 638 

effectively help to improve the classification accuracy of prototype-based classifiers, and it is reasonable to 639 

presume that the classification performance of DHT can be further improved once the optimality of the prototypes 640 

is attained. However, the prototype optimization processes by evolutionary algorithms are time consuming and 641 

can cost much more computational resources. Hence, a more efficient optimization scheme would be needed for 642 

DHT to improve its classification performance without significantly increasing the computation burden. 643 

Otherwise, a trade-off between classification performance and training cost has to be considered. 644 

Finally, the default implementation of DHT is to work with Mahalanobis distance, but different types of distance 645 

measure, e.g., Euclidean distance, cosine dissimilarity, are also supported by this approach. Numerical examples 646 

have shown that the predictive precision of DHT on a particular problem may vary significantly with different 647 

types of distance measure being used. Currently, it is difficult for DHT to self-determine which metric to be 648 

utilized as the best option, but the empirical results achieved so far have indicated that it is appropriate to use the 649 

Mahalanobis distance metric as the default without the need of human intervention in the setup of the DHT model.  650 

5. Conclusions  651 

This paper has presented a nonparametric approach to self-constructing a prototype-based classification model, 652 

named DHT, which does not require any externally controlled parameters to be predefined a priori and is entirely 653 

data driven. By recursively partitioning the empirically observed data at multiple levels of granularity in a divisive 654 

manner, DHT achieves a multi-granular partition of data and autonomously self-constructs a multi-layered 655 

hierarchical structure from the identified prototypes for classification. Experimental case studies on a wide range 656 

of benchmark binary- and  multi-class problems, including those involving real-world remote sensing image data, 657 

show the high-level predictive performance of DHT, justifying the effectiveness and validity of the proposed 658 

novel approach.  659 

There are several considerations for future work. Firstly, it can be highly rewarding to design an online learning 660 

extension for the proposed approach, such that it can handle streaming data, possibly on a chunk-by-chunk basis. 661 

Secondly, the optimality of prototypes within the hierarchical structure of DHT needs to be further investigated 662 

as they play an instrumental role in the structure of the resulting classification model. It would be helpful to 663 

introduce a novel optimization mechanism with greater computational efficiency to attain local optimality of the 664 

identified prototypes. Thirdly, an encoding mechanism can be introduced to add semantics to data. This can 665 

effectively help DHT to handle data with categorical attributes. Finally, it would be interesting to develop a meta-666 

control scheme that would enable DHT to self-determine an appropriate distance metric for use in a generic 667 

practical problem-solving setting.  668 
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