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Abstract 

The Fringe-P3 method combined with a concealed information test is a counter-measure 

resistant method to detect (concealed) familiarity with stimuli (Alsufyani et al., 2019; 

Bowman et al., 2013, 2014). The Fringe-P3 method presents stimuli on the fringe of 

awareness through rapid serial visual presentation, where, typically, only familiar and 

salient stimuli can breakthrough into conscious awareness. When a salient stimulus breaks 

through into awareness, it generates a P3 brain response that can be detected through 

EEG. As such, if a familiar/salient probe stimulus (e.g., a famous name) breaks through into 

awareness and a P3 is detected, we can infer that the participant is familiar with that 

stimulus and, therefore, is concealing information about it. The Fringe-P3 concealed 

information test has been shown to detect familiarity with own-name and famous face 

stimuli at both the group and individual participants’ level (Alsufyani et al., 2019; Bowman 

et al., 2013, 2014). Successful detection of familiarity at the individual participants’ level is 

key, as the real world application of the method would be for individual suspects in forensic 

investigations to link them to crimes by detecting their familiarity with crime-related 

stimuli.  

This thesis aimed to generalise the Fringe-P3 method by demonstrating that it can detect 

familiarity with a wider variety of stimuli beyond own-names and faces. Specifically, it 

aimed to demonstrate that the Fringe-P3 method can detect concealed information with 

familiar name, email address, and location image stimuli. In addition to using EEG to detect 

P3s in three experiments in this thesis, a fourth experiment used the attentional blink 

paradigm (where a participant’s detection of a probe stimulus causes them to miss a target 

stimulus presented shortly after) as an alternative to EEG to detect concealed information. 

This thesis also proposed an alternative method of analysing EEG datasets to detect P3s 

using a template based on other participants’ P3s, called the matched filter convolution 

analysis.  

This thesis successfully provided proofs of concept that the Fringe-P3 method could be 

used to detect familiarity with famous name and email address stimuli at the group and 

individual participants’ level. It also demonstrated potential to be used with location image 

stimuli and the attentional blink, following some methodological improvements suggested 

for future work. The matched filter convolution analysis successfully detected an equal 

number of P3s to the aggregated grand average of trials analysis that is currently used as 

the standard analysis for Fringe-P3 datasets.  
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1. Introduction 

It is vital to the police, counterterrorism, airport security, and other law enforcement 

groups that they can accurately detect if a suspect is lying or concealing information about 

their involvement in and/or knowledge of a crime. The most common methods of 

deception detection used by law enforcement groups are polygraphs and control question 

tests. The use of polygraphs and psychological methods employed by “lie detection 

experts” are also commonly seen in popular media such as TV shows and novels. However, 

these methods are unreliable, with inconsistent accuracy rates, and are susceptible to 

countermeasures used to cheat them. Therefore, researchers have been working on a 

variety of alternatives in the hopes of finding more reliable and accurate methods. These 

alternatives include different styles of questioning, concealed information tests, and the 

use of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI).  

The research in this thesis is focused on one particular method of detecting concealed 

information with EEG called the Fringe-P3 method. This promising method has been shown 

to have high accuracy rates and be resistant to countermeasures. This thesis will further 

explore the Fringe-P3 method’s efficacy with different types of stimuli.  

1.1. History of Deception Detection 

The main methods of deception detection used by law enforcement can be broken down 

into two categories: psychological and physiological. Psychological methods of deception 

detection are based on verbal and non-verbal cues from suspects during interrogation. 

Studies on these methods have found that on average, people can detect lies with an 

accuracy around 50%. If people were to simply guess if someone was lying or telling the 

truth, they would also have a 50% chance of being correct, which means that any method 

of deception detection with an accuracy rate that is 50% or less is no better than guessing. 

A meta-analysis by Bond and DePaulo (2006) found that people could accurately detect lies 

47% of the time and accurately detect truth 61% of the time. Another meta-analysis by 

Aamodt and Custer (2006) found that police officers, detectives, judges, and psychologists 

(“professional lie detectors”) were not more accurate at detecting lies (55.51%) than 

students and other “non-professionals” (54.22%). A review of psychological lie detection 

studies by O’Sullivan et al (2009) found that lie detection accuracy varied across law 

enforcement groups, with some groups scoring mean accuracies of 73% while other groups 

watching the same video scored 51%. They also found that overall, law enforcement 

groups had higher mean accuracy in high stakes lie scenarios (67.15%) compared to low 
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stakes lie scenarios (55.17%). Vrij et al (2017) conducted a meta-analysis on three particular 

cognitive lie detection methods (imposing cognitive load, encouraging interviewees to say 

more, and asking unexpected questions) and found that participants could correctly detect 

lies and truth 67% of the time. While the 73% accuracy found by Aamodt and Custer (2006) 

is not a trivial score, this rate is not consistent across individuals and scenarios, and most 

meta-analyses and studies have found accuracy rates closer to chance, thus making 

psychological methods of lie detection unreliable.  

The main form of physiological deception detection is the polygraph (also colloquially 

referred to as the “lie detector test”). This refers to a range of psychophysiological 

measures including heart rate, respiration rate, and skin conductance responses. 

Polygraphs are based on the idea that if the participant’s responses for one of these 

measures changes when answering a particular question compared to their baseline (their 

measures while they are known to be responding truthfully), then they are being deceptive 

in their answer to that question. Common “guilty” responses include changes in heart rate 

(increase or decrease), decrease in respiration, and increased skin conductance (Meijer et 

al., 2014). Studies have found accuracy rates varying between 35% and 100% (Brett et al., 

1986; Levenson, 2009; Saxe et al., 1985) for polygraph methods, thus making it unreliable 

across situations and investigators. Additionally, physiological measures have been shown 

to be very susceptible to countermeasures and participants can be trained to “cheat” the 

tests, typically by increasing their baseline measure or reducing their physiological 

responses while answering the critical questions (Brett et al., 1986; Honts et al., 1985, 

1987, 1994; Saxe et al., 1985). Therefore, a more consistent and countermeasure resistant 

method is still needed. The Fringe-P3 method investigated throughout this thesis and 

discussed in detail in the next chapter aims to be that method.  

While the polygraph’s accuracy in detecting deception is unreliable, there is evidence that 

the use of polygraphs leads to participants admitting more embarrassing (E. E. Jones & 

Sigall, 1971; Tourangeau et al., 1997) or crime-related information (Gannon et al., 2014). A 

recent evaluation of polygraph testing by police with convicted or suspected sexual 

offenders (J. Wood et al., 2020) investigated the influence of polygraph use on participants 

making risk-relevant disclosures from three groups: supervisees (convicted sexual 

offenders undergoing police supervision), suspects (undergoing police investigation), and 

applicants (convicted sexual offenders who had applied for removal of notification 

requirements). Risk-relevant disclosures (RRDs) were defined as the participant providing 

new information that leads to a change in how they are supervised, investigated, or risk 
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assessed. They found that 71.2% of supervisees, 76% of suspects, and 43.6% of applicants 

who undertook mandatory or voluntary polygraph tests made at least one RRD compared 

to 25% of supervisees, 30.4% of suspects, and 0% of applicants who did not take a 

polygraph test. They also found that participants who took polygraph tests made more 

detailed RRDs and that most RRDs were made in pre-polygraph interviews, which suggests 

that just the knowledge of an impending polygraph test motivated participants to divulge 

more information. Additionally, in the post-polygraph interviews, more RRDs were made 

following a “failed” polygraph result, where a significant response was detected. This 

evaluation does not provide any specific results on the accuracy of the polygraph tests in 

detecting lies but does show that taking a polygraph test motivates people to divulge more 

information. It is very possible that this same increased motivation could apply if the police 

were to use other methods of detecting deception and concealed information, including 

neurological measures such as the Fringe-P3 method used in this thesis’ research.  

As well as different measures for detecting deception, there are also several different 

question types. There are three main question formats used by law enforcement across the 

world: the Control Question Test (CQT), the Differentiation of Deception (DoD), and the 

Concealed Information Test (CIT). In the CQT (Reid, 1947), there are relevant and control 

questions that are asked while recording the participant’s physiological reactions. The 

relevant questions relate to the specific crime under investigation while the control 

questions are more general but include some undesirable behaviour such as “have you 

ever done something illegal?” It is thought that guilty participants will have stronger 

reactions to the relevant questions than the control questions, while innocent participants 

will have stronger reactions to the control questions. One of the main criticisms of this 

method is that the assumption that only guilty participants will have strong reactions to the 

relevant questions is flawed (Fiedler et al., 2002; Iacono, 2008; Lykken, 1998), as it is 

possible that innocent participants will realise the importance of the relevant questions 

and thus may show stronger reactions to them. The notion that innocent participants will 

have stronger responses to the control questions than the relevant questions is also 

debatable, as an innocent participant could have equal responses to both. It has also been 

shown that the CQT combined with physiological measures is susceptible to 

countermeasures with guilty participants being falsely classed as innocent 45-55% of the 

time when using countermeasures (Honts et al., 1985, 1987, 1994). The CQT is often seen 

by researchers as lacking scientific validity due to its flawed assumptions and unreliable 
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results, with some arguing that it should not be used as evidence in court (Gallai, 1999; 

Meijer et al., 2016; Saxe & Ben-Shakhar, 1999). 

The DoD initially involved participants answering half of a series of questions truthfully and 

the other half deceptively (Furedy et al., 1988). Another, more recent, version of the DoD 

called the Sheffield Lie Test involves participants answering each question twice, once 

truthfully and the other deceptively (Spence et al., 2001). The aim is to isolate the reactions 

that occur while being deceptive. Spence et al (2001) found deceptive responses were 

associated with significantly longer reaction times and significantly more activity in bilateral 

ventrolateral prefrontal cortices (recorded with fMRI). However, there are many criticisms 

of the DoD. The questions used in most DoD research are simple autobiographical or 

semantic questions such as “Is your name X?” and “Is Rome the capital of Italy?” which are 

not representative of the sort of questions that would be asked in real criminal 

investigations. Therefore, the results may not be the same in the field. Most of the 

literature on the DoD has used physiological measures (Furedy et al., 1988; Gödert et al., 

2001; Vincent & Furedy, 1992) or fMRI (Kozel et al., 2004; Spence et al., 2001). As 

mentioned previously, physiological measures of deception are susceptible to 

countermeasures, and fMRI equipment is expensive and requires more space and training 

than other measures, so is also less likely to be taken on by law enforcement. Another 

criticism is that the DoD is reliant on one condition being all truths and the other being all 

lies. If someone were to be honest in both conditions or lie in both conditions, the DoD 

would not be able to tell the difference and identify the lies. Finally, most DoD research is 

focused on the group level rather than the individual level. One study that did test the DoD 

at the individual level was Spence et al (2001), who used the Sheffield Lie Test with one real 

suspect who had been accused of harming a child but claimed she was innocent. The test 

showed that response times were longer and there was more activity in the relevant brain 

regions when she had to agree with the accusations than when she refuted them. 

However, there is no way to tell if these results are because she was lying when she agreed 

with the accusations or whether admitting guilt is more cognitively demanding. So far, the 

DoD has not proven to be a reliable method of detecting deception. 

The final method used by law enforcement is the concealed information test. It is worth 

clarifying at this point that detecting concealed information is not exactly the same as 

detecting deception. “Deception detection” typically refers to detecting a lie - a false 

statement - whereas detecting concealed information involves detecting the presence of 

crime-related information in a participant’s memory. Deception detection methods test for 
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physical, neurological, or behavioural responses that occur while people are lying (e.g., 

increased heart rate), which do not occur when the participant is telling the truth. The 

methods and studies discussed previously in this section are attempting to detect 

deception. Concealed information tests, on the other hand, measure responses associated 

with recognition of a stimulus. These recognition responses happen whenever someone 

recognises a salient stimulus, regardless of whether or not that person is admitting that 

they recognise it, and thus the tests are not technically detecting deception. This 

recognition can, however, suggest that the person is being deceptive if they have a 

significant recognition response but claim they do not recognise that stimulus.  

Only one of the experiments (chapter 4) conducted for this thesis involved lying as a part of 

the experiment’s task and so is directly detecting deception. The other experiments are, 

instead, focused on detecting concealed information via familiarity with salient probe 

stimuli. Concealed information tests are a vital part of the Fringe-P3 method and will be 

explained in full in the literature review in the next chapter.  

1.2. Objectives 

So far, the Fringe-P3 method has been shown to accurately detect familiarity with own-

name (Bowman et al., 2013, 2014) and famous face stimuli (Alsufyani et al., 2019). In order 

for the Fringe-P3 method to be considered reliable enough to be used in real criminal 

justice situations, it needs to be tested with a much wider variety of stimuli. The main aim 

of this thesis is to generalise the Fringe-P3 method by testing it with famous name, email 

address, and location stimuli. In addition to this, there are three further aims. Firstly, it will 

test an alternative to the P3 measure – the attentional blink – which has the potential to be 

used instead of or in addition to the P3 measure when using the Fringe-P3 method. 

Secondly, the results and discussions from chapters 4 and 5 suggest that participants could 

be using strategies to help them search for the target that may be negatively impacting 

their detection of the probe. Chapter 6 will test two task types – categorisation and 

detection – to investigate the impact of these potential search strategies. Finally, it will test 

a possible alternative method of analysing EEG data that has the potential to be able to 

detect P3’s that do not fit the typical shape or latency.  

1.3. Thesis Structure 

Chapter 1: This chapter contains an introduction to the context and history of deception 

detection and descriptions of the main objectives and structure of this thesis.  
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Chapter 2: A review of the literature covering concealed information tests, EEG, the Fringe-

P3 method and other methods used throughout this thesis to detect concealed 

information. This chapter ends with the central hypotheses.  

Chapter 3: An analysis of a dataset from an EEG experiment using the Fringe-P3 method 

with two-part famous name stimuli. Findings at the group and individual level and their 

implications for the Fringe-P3 method and detecting concealed information are discussed.  

Chapter 4: An analysis of a dataset from an EEG experiment using the Fringe-P3 method 

with email address stimuli. Results at the group and individual level and their implications 

for the Fringe-P3 method and investigating cybercrime are discussed.   

Chapter 5: An analysis of a dataset from an EEG experiment using the Fringe-P3 method 

with location stimuli. Results at the group and individual level and their implications for the 

Fringe-P3 method are discussed.  

Chapter 6: An analysis of a dataset from a behavioural experiment using an attentional 

blink paradigm with location stimuli. In addition to testing the attentional blink as a 

measure for the Fringe-P3 method, this experiment also investigates potential search 

strategies participants may use by comparing two tasks: categorisation and detection. The 

results at the group and individual level and their and implications for the Fringe-P3 

method are discussed.  

Chapter 7: This chapter proposes and tests an alternative method of analysing EEG datasets 

in the context of detecting P3s: the matched filter convolution analysis. This analysis 

method is tested on the email addresses data set from chapter 4. The outcomes and 

suitability of the method are discussed. 

Chapter 8: A summary of the findings of this thesis and their implications for wider research 

and forensic investigations are discussed. Overall conclusions are drawn and possibilities 

for future research are suggested. 

Glossary: A glossary of key terms relating to the methods used in this thesis.  

Appendices: Appendices relating to chapters 3 (A), 4 (B), and 6 (C & D). 

References: A full list of all works cited in this thesis.  
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1.4. Collaborations and Contributions 

This thesis used several data sets collected by other researchers at the University of Kent 

and University of Birmingham. All but one of these data sets was processed solely by 

myself. All analyses were conducted by myself. Howard Bowman had important input on all 

experiments. The following provides further information on the contributions of others to 

the datasets used in each research chapter.  

Chapter 3: Famous Names Dataset 

The EEG dataset using famous name stimuli was collected by Abdulmajeed Alsufyani at the 

University of Kent. Part of the initial data processing (i.e., filtering and epoching) was 

performed by Abdulmajeed Alsufyani. There was a problem with the archived raw EEG files 

which meant that new processing could not be conducted directly on the raw files, so 

Alsufyani’s original partially processed files (epoched and filtered) were used for this 

chapter. Merging and baselining the ERPs and all analyses in this thesis were conducted by 

myself.  

This experiment was designed by Abdulmajeed Alsufyani and Howard Bowman and the 

dataset was originally analysed by Alsufyani for his PhD thesis in 2015 but was not 

published anywhere. Alsufyani’s analyses used an earlier version of the AGAT analysis, 

where the number of trials in each condition were equalised (i.e., if there were 60 probe 

trials and 50 irrelevant trials for a participant following artefact rejection, then only the first 

50 probe and 50 irrelevant trials would be analysed). Since then, it has been shown that the 

AGAT is robust against trial count asymmetry between conditions (Brooks et al., 2017), so 

the current version of the AGAT does not need to equalise the number of trials and simply 

uses all trials from both conditions (following artefact rejection). I have used the current 

version of the AGAT to provide all new analyses at the group and individual level for this 

thesis.  

For the recall and recognition tests, Alsufyani used Wilcoxon’s signed-rank tests. However, 

new analyses by myself found that the recognition measures were normally distributed, so 

paired t-tests were used instead of Wilcoxon’s signed-rank tests for the recognition data in 

this thesis. The recall measure was not found to be normally distributed, so new Wilcoxon’s 

signed-rank and paired t-tests were used for the recall data in this thesis.  

This dataset has now been published in Cortex using my new analyses, with myself and 

Alsufyani as co-first authors (Alsufyani et al., 2021). 
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Chapters 4 & 7: Email Addresses Dataset 

The EEG experiment using email address stimuli was designed by Howard Bowman, Claire 

Miller, Anthony Beech, and Brendan Jose, and the dataset was collected by Claire Miller 

and Weiyan Hwang at the University of Birmingham in 2015. All data processing and 

analyses in this thesis were conducted by myself.  

This dataset was originally analysed by Weiyan Hwang for her bachelor’s dissertation, but 

the data and her analyses were not published anywhere. Hwang analysed the data at the 

group level but did not conduct any analyses at the individual participants’ level. All new 

analyses were conducted for this thesis at both the group and individual participants’ level 

using the AGAT analysis. The introduction of analyses at the individual level for this thesis is 

especially key, as the Fringe-P3 method would be used for individuals in the real world, as it 

is individual suspects that would be tested in real forensic investigations. 

This dataset and my analyses have now been published in the European Journal of 

Neuroscience (Harris et al., 2020). 

Chapter 5: EEG Locations Dataset 

The EEG experiment using location stimuli was designed by Howard Bowman and myself 

and the dataset was collected by myself for my master’s dissertation in 2015. The running 

of the experiment, stimuli curation (including photographing of the University of Kent 

campus), data collection and processing, and all analyses were done by myself, including all 

new data processing and analyses for this thesis.   

This dataset was originally analysed by myself for my master’s dissertation in 2015 using a 

predecessor to the AGAT, known as the aggregated grand average of grand averages 

(AGAGA). The AGAGA created the aggregated ERP from the probe and irrelevant ERPs, 

whereas the AGAT creates the aggregated ERP from the individual probe and irrelevant 

trials. The AGAGA also equalised the number of trials in each condition, whereas, as 

mentioned earlier for the famous names dataset, the AGAT is robust against between-

condition trial asymmetry, so does not need to equalise the number of trials. The data was 

only analysed at the group level for my MSc dissertation, whereas this thesis has used the 

AGAT to run new analyses on the data at both the group and individual participant’s level. 

As mentioned previously, the introduction of analyses at the individual level for this thesis 

is especially important, as the Fringe-P3 method would be used for individual suspects in 

the real world.  
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For my master’s dissertation, the recognition data was only analysed using Pearson’s 

correlation coefficient to compare the recognition and ERP data and found no significant 

correlations. This thesis did not include any correlation analyses, and instead conducted all 

new analyses on the recognition data using paired sample t-tests to compare the 

recognition of different stimulus types. 

Chapter 6: Behavioural Locations Dataset 

The behavioural experiment using location stimuli was designed by Howard Bowman, 

Hannah Bowman, and James Niblett and the dataset was collected by Hannah Bowman and 

James Niblett at the University of Birmingham. The stimuli used were the same as in 

chapter 5 and curated by myself. All data processing and analyses in this thesis were 

performed by myself.  

This dataset was originally analysed by Hannah Bowman and James Niblett for their 

bachelor’s dissertations in 2017. They conducted ANOVAs on the d’ data at the group level 

only and did not conduct any analyses on the hits data or at the individual participants’ 

level. New analyses were conducted by myself for this thesis using ANOVAs and binomial 

regression analyses on the hits data at the group level and binomial regression analyses on 

the hits data at the individual participants’ level as the main analyses. Additionally, new 

ANOVAs were also conducted on the d’ data at the group level for appendix C, and further 

ANOVAs and binomial regression analyses were conducted on hits data comparing two of 

the four lags for appendix D. The inclusion of analyses at the individual level is, as 

mentioned earlier, especially important as the real-world application of the Fringe-P3 

method would be for individual suspects in forensic investigations.  
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2. Methods for Detecting Concealed Information 

2.1. Concealed Information Tests 

As explained in the introduction, there is an important distinction between detecting 

deception versus detecting the presence of concealed crime-related information in a 

participant’s memory. The main method for detecting concealed information is the 

concealed information test (CIT), formerly known as the guilty knowledge test (Lykken, 

1959, 1960; Munsterberg, 1908). While Japan is the only country to predominantly use the 

CIT over other methods of deception detection in law enforcement, the CIT has a huge 

amount of evidence behind it from researchers.  

Concealed information tests are based on the simple idea that guilty participants have 

knowledge of a crime that innocent participants do not. It uses salient stimuli called probe 

stimuli (e.g., a piece of jewellery that was stolen) that are presented infrequently amongst 

frequent non-salient stimuli (e.g., other pieces of jewellery not related to the crime). The 

non-salient stimuli must be of the same or similar type as the probe stimuli, so that an 

innocent person would not be able to work out which is the probe. When a salient probe is 

seen by a participant that is familiar with it (guilty), it generates detectable changes in 

physiological (Ben-Shakhar & Elaad, 2003; Lykken, 1959, 1960), behavioural (Ganis & 

Patnaik, 2009), and neurological (Alsufyani et al., 2019; Bowman et al., 2013, 2014) 

measures. The responses to the probe stimuli are then compared to the irrelevant stimuli 

(key non-salient stimuli). A strong and significantly different reaction to the probe than to 

the irrelevants suggests that the probe is salient to the participant and they are concealing 

information related to that probe and the crime. Meanwhile, innocent participants would 

have no different reaction to the probe, since it would be no more salient to them than the 

irrelevant or any distractor stimuli.  

The two main paradigm types most commonly used with the CIT are personal-item 

paradigms and mock crime paradigms. Personal-item paradigms use personal items and 

autobiographical information such as the participant’s own name and date of birth as 

probe items. Mock crime paradigms have participants commit a mock crime (e.g., steal 

some jewellery) and then use mock-crime-related items and facts as probes (e.g., the 

“stolen” necklace). 

Lykken’s original CIT experiments (1959, 1960), that began to draw people’s attention to 

the CIT, relied solely on skin conductance responses (SCR) as a measure of deception. His 

first experiment (1959) used a mock-crime paradigm, where “guilty” participants 
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committed a mock theft, mock murder, or both, while “innocent” participants did neither. 

He detected deception in 88% of guilty participants and in none of the innocent 

participants. Lykken’s second experiment (1960) used a personal-item paradigm with 

biographical information and detected 100% of the guilty participants.  

A meta-analysis by Meijer et al (2014) compared skin conductance responses, respiration 

line length (RLL), changes in heart rate (HR), and neurological P3 responses in concealed 

information test experiments using mock-crime and personal-item paradigms. They found 

that the P3 had the largest effect size overall, followed by SCR, RLL, then HR. The P3 was 

moderated only by the paradigm type, performing significantly better with the personal-

item paradigm compared to the mock crime paradigm. When compared to the second best 

measure, SCR, the P3 had significantly larger effect sizes than the SCR when using the 

personal-item paradigm but not when using the mock-crime paradigm. While only the 

paradigm type moderated the P3 measure, the SCR measure was moderated by motivation 

level, the number of questions, and whether or not innocent participants were included. 

Meijer et al found that higher motivation levels, a larger number of questions, and 

including innocent participants led to larger mean effect sizes. Ben-Shakhar and Elaad’s 

meta-analysis (2003) also found that higher motivation levels led to larger effect sizes when 

using SCR. The finding that the number of questions did not significantly moderate effect 

sizes in P3 studies is particularly important, as many P3 studies use one repeated probe 

question/stimulus or a very small number of probe stimuli, and this did not impact the 

effect sizes. This means that if law enforcement were to use the P3 measure, they would 

not have to find a large number of different probes related to the crime in order for it to be 

reliable. 

The P3 measure relies on the saliency of critical items, so Meijer et al suggested that the 

difference in effect sizes between the personal-item and mock crime paradigms was 

because personal-item paradigms use more salient stimuli than mock-crime paradigms. 

While mock-crime paradigms try to simulate real life crimes, the participants still know it is 

fake, thus the critical items may not be as salient to them as they could be in a real crime. 

Personal-item paradigms, on the other hand, use much more salient items including real 

autobiographical information about the participant, which would lead to stronger P3s and 

more significant results. Therefore, personal-item paradigms may be the more reliable 

method for research using the P3 to detect concealed information. The concealed 

information experiments conducted for this thesis using the P3 measure are closer to 
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personal-item paradigms and all use real salient stimuli (e.g., the participant’s email 

address or university campus), so the P3 measure should have an advantage. 

Another benefit of the P3 measure over SCR and other physiological measures, is that ERPs 

occur much more rapidly than other physiological responses, meaning there can be much 

less time between trials and more trials can be performed. P3 experiments often present 

each probe stimulus 20 times or more, whereas it is common for physiological experiments 

to show each probe stimulus only a few times or even once. This has the further benefit of 

allowing for the larger number of ERP trials to be averaged together to remove random 

noise, thus resulting in a better signal-to-noise ratio than physiological measures.  

Finally, concealed information tests overcome the main criticism of the CQT - that innocent 

participants may fail the test - as the neutral items in the CIT are specifically chosen to be 

indistinguishable from the probes to truly innocent people, meaning that only guilty 

participants who have prior knowledge of the probe will know its importance and have 

differential reactions to it compared to the neutral items.  

2.2. Electroencephalography, Event-Related Potentials, and the P3 

Electroencephalography (EEG) is a non-invasive method of detecting electrical activity in 

the brain via electrodes placed in a headcap on the scalp. Figure 2.1. presents the layout of 

a 32 channel headcap. The brain consists of neurons which communicate with each other 

via synapses. When a synapse is activated, either electrically or by chemical 

neurotransmitters, it causes ion channels to open or close, generating excitatory or 

inhibitory postsynaptic potentials (PSPs) by changing the potential across the cell 

membrane. EEG cannot detect a single PSP, but when thousands of synapses activate at the 

same time in response to an event, the electrical field their PSPs generate can reach the 

scalp and be detected by individual EEG electrodes as positive or negative voltages.  

EEG’s main strength lies in its ability to provide very high quality temporal information (e.g., 

with a temporal resolution of 1ms) that other methods of neuroimaging such as fMRI 

cannot. The main weakness of EEG is that it does not provide as detailed spatial 

information regarding the source of the activity as other methods such as fMRI can. EEG is 

best used for research that is interested in the timing of activity in the brain, while fMRI is 

better for research regarding the location of activity. This thesis research uses the Fringe-P3 

method, discussed in detail later, which requires the recording of fast responses and high 

quality temporal information, so EEG is the best choice.  
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To record EEG data, a conductive gel is inserted between the electrodes and the skin to 

create a stable connection and reduce impedance. Scalp-electrode impedance is checked 

before and during each experiment to keep it within acceptable levels. All experiments in 

this thesis kept impedances below 10 kOhms. The electrodes then record the electrical 

potential created by synapses activating during the experiment. Each electrode will record 

activity, providing a separate waveform for each electrode. The number of electrodes 

recorded from or used in analyses varies depending on the type of experiment – some 

experiments use all available electrodes, some only use a few. The experiments in this 

thesis recorded from between three and six key electrodes.  

The voltages recorded by electrodes are relative to activity recorded by the reference 

electrode(s). The experiments in this thesis used references formed from either two 

electrodes placed on the mastoids behind each ear or from a combination of a common 

mode sense (CMS) active electrode and a driven right leg (DRL) passive electrode.  

Raw EEG data is recorded according to a sampling rate measured in Hz (the number of 

times the signal is sampled per second). The higher the sampling rate, the higher the 

temporal resolution of the data. All experiments in this thesis used the standard BioSemi 

sampling rate of 2048Hz for recording. However, recording at such a high sampling rate 

generates very large data files, so the data is typically resampled to a lower rate before 

analysis. All experiments in this thesis resampled the data to 512Hz (a commonly used 

rate). 

Raw EEG data contains a huge amount of information, including genuine brain activity and 

non-neural activity (e.g., biological potentials created by muscle and eye movements or 

electrical activity from nearby electrical devices that can be picked up by the electrodes). 

Therefore, raw EEG data undergoes processing to remove as much noise (non-neural 

activity and neural activity not related to the events being studied) as possible, which could 

prevent us from seeing the signal (the response to the event being studied).  

Firstly, the EEG data is filtered to reduce noise. Typical filters are low-pass filters that allow 

frequencies below a certain value (e.g., 45Hz) to pass and attenuate those above it, and 

high-pass filters that allow frequencies above a certain value (e.g., 0.5Hz) to pass and block 

those below it. If both low and high-pass filters are used, then it can be called a band-pass 

filter. Notch filters can also be used to filter out frequencies in a narrow range (e.g., 7-9Hz), 

such as filtering out the steady state visually evoked potentials (SSVEP) that are generated 
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by visual stimuli being presented at regular rapid frequencies, where the waveforms 

oscillate at the stimulus presentation rate.  

While recording EEG data, event codes are marked in the data whenever a specific event 

occurs, such as when a critical stimulus is presented. The EEG data is then split into epochs 

around these event codes (e.g., -100ms pre-stimulus onset to 1500ms post-stimulus), 

resulting in individual trial waveforms for specific events.  

As mentioned earlier, EEG can also record artefacts caused by non-neural sources (e.g., 

blinking) as well as genuine electrical activity in the brain. Muscle and eye movements or 

blinks generate large potentials across the scalp (much larger than ERP signals) which can 

confound our ability to detect genuine brain activity. These artefacts can be detected 

manually, by looking at the EEG data for obvious too-large peaks in activity and/or 

automatically based on the voltage recorded from specific electrodes around the eyes as 

well as the key electrodes being studied. The eye electrodes used in the experiments in this 

thesis are two vertical electrooculogram (VEOG) electrodes placed above and below one 

eye and two horizontal electrooculogram (HEOG) placed on the outer canthus of each eye. 

Trials containing blinks detected by the VEOG and HEOG electrodes as well as the key 

electrodes can then be removed from further analysis. In this thesis, trials with voltages 

that went above 100μV and below -100μV at the eye electrodes or above 50μV and below -

50μV at the key electrodes were rejected in order to reduce the noise and, ideally, leave 

only the signal in the EEG data. 

Even after filtering and epoching, the single trial waveform at this point will still contain 

some background noise from non-response related neural activity. Therefore, the single 

trial data from particular electrodes and conditions (e.g., probe condition trials from the Pz 

electrode) are averaged together. This results in most of the unrelated background noise 

being averaged out, leaving (mostly) only the consistent responses to the events (signal) we 

are looking at. The resulting waveforms are called event-related potentials (ERPs) and are 

used in most statistical analyses.  
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Figure 2.1. The layout of a 32 channel BioSemi headcap for EEG. 

 

This figure was adapted from the BioSemi product website (BioSemi, Amsterdam, The 
Netherlands). It presents the layout of a 32 channel BioSemi headcap for EEG. The key 
electrodes of interest for this thesis are Fz, Cz, and Pz along the middle, with Pz being the 
main electrode of interest. In addition to these 32 EEG channels, two HEOG electrodes are 
usually placed on the outer canthus of each eye along with two VEOG electrodes placed 
above and below one eye to record electrooculogram data for artefact rejection. If using the 
linked mastoids as a reference, then two electrodes can also be placed on the mastoids 
behind each ear, or a combination of the CMS and DRL electrodes can be used as a 
reference.  

 

The ERP component of interest to this thesis is the P3. The P3, also known as the P300, is 

traditionally generated during cognitive tasks where participants are discriminating 

between stimuli, especially when a stimulus is novel, unexpected, or salient to the 

participant. P3s typically appear as positive deflections in ERPs around 250-800ms post-

stimulus (Meijer et al., 2014) and are usually recorded from the Pz, Fz, and Cz electrodes 
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(see figure 2.1 for their locations). The P3 is usually measured according to its amplitude 

(μV; the difference in voltage between the largest positive peak in the relevant time 

window and the mean pre-stimulus baseline) and its latency (ms; the time from stimulus 

presentation to the peak amplitude). The amplitude and latency of the P3 can be affected 

by stimulus and task types and by individual differences such as cognitive capability, age, 

and dementia (Emmerson et al., 1989; Fjell & Walhovd, 2001; Houlihan et al., 1998; Polich, 

2007, 2012; Polich et al., 1986). The P3 can also be broken down into two subtypes: the P3a 

and P3b. P3as (or novelty P3s) are typically earlier, peaking around 250–280ms, and are 

maximal from the Fz and Cz electrodes. The P3b (also often referred to as simply the P3 or 

P300) is usually later, peaking around 300-500ms, and maximal from the Pz electrode 

(Comerchero & Polich, 1999; Polich & Kok, 1995). See figure 2.2. for examples of typical P3 

component patterns. There is some debate about whether the P3 can be broken down into 

further subcomponents and whether the P3a is separate to the novelty P3 (nP3) or 

whether these are variations of the same potential (see Simons et al (2001), Polich (2007), 

and Barry et al (2020)) but this is beyond the scope of the current thesis research, which is 

most interested in differential general P3/P3b responses to probe and irrelevant.  

Figure 2.2. Examples of P3 related components from Barry et al (2020).  

 

This figure, adapted from Barry et al (2020) shows the latency of the P3a and P3b, as well 
as the novelty P3 (nP3) and positive slow wave (+SW). The P3a is typically earlier than the 
P3b, which peaks later and is broader. The nP3 and +SW are not key components for this 
thesis.  

 

The P3 component was first discovered by Sutton et al (1965) when they found a large 

positive peak 300ms post-stimulus when participants could not predict whether the next 

stimulus would be auditory or visual. This peak was much smaller when participants were 

able to predict the stimulus. Since then, there have been thousands of studies into the P3.  
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One of the first studies to show that P3s could be generated by prior knowledge of a 

stimulus was by Karis et al (1984). They showed participants lists of words and later asked 

participants to discriminate between the previously seen words and new words. They 

found larger P3s for the previously seen words compared to the new words, which suggests 

that the P3 could be used to investigate if a person has prior familiarity with a stimulus. 

This finding could then be taken forward to research detecting deception and concealed 

information by comparing P3 responses to crime-related stimuli and irrelevant stimuli, 

where a larger P3 for crime-related stimuli would suggest prior familiarity with it and 

connect that participant to the crime.  

Additionally, there is a wealth of research into the P3 using the oddball paradigm. The 

original 2-part oddball paradigm involves two types of stimuli: frequently presented 

irrelevant/distractor stimuli, and an infrequently presented target stimulus (the oddball). 

The infrequent stimulus will generate a large positive P3 response, while the frequent 

stimuli will generate either a smaller or no P3 response. In the 3-part version, there are 

salient probe stimuli presented in addition to an infrequently presented target and 

frequently presented irrelevant/distractor stimuli. P3s are generated by the target, as it is 

task-relevant, and the probe stimuli, as they are salient to the participant, but not by the 

irrelevant/distract stimuli as they are not salient. This, then, further shows that the P3 can 

be used to detect a participant’s familiarity with a stimulus, as familiar/salient stimuli will 

generate P3s while the unfamiliar/non-salient stimuli will not. In the context of detecting 

concealed information using the P3, if there is a significant P3 response to the probe stimuli 

but not the irrelevant stimuli, then it suggests that the probe stimuli are familiar to the 

participant and they may be concealing information about them.  

The Fringe-P3 method for detecting concealed information used in this thesis research uses 

a similar paradigm to the 3-part oddball paradigm, but with an additional stimulus type. 

The Fringe-P3 method uses four stimulus types: infrequent target stimuli that are task-

relevant, infrequent salient probe stimuli, infrequent non-salient irrelevant stimuli, and 

(in)frequent non-salient distractor stimuli. There are many distractors in each stream, so as 

a class, distractors are presented frequently, but each individual distractor is presented 

extremely infrequently. The irrelevant stimuli are selected key distractor stimuli that are 

repeated as often as the probe and are used for comparison to the probe in the statistical 

analyses.  
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As the P3 has been shown to be generated by familiar stimuli when presented amongst 

unfamiliar stimuli (by Karis et al (1984) and the 3-part oddball paradigm), the P3 then 

began to be used with CITs, which aim to detect concealed knowledge of probe stimuli 

based on differential reactions to them compared to irrelevants. The first CIT experiments 

using the P3 were published by Rosenfeld et al and used mock-crime paradigms where 

participants pretended to steal an item (Rosenfeld, Cantwell, et al., 1988; Rosenfeld, 

Nasman, et al., 1987). Participants were then presented with streams consisting of the 

names of various items presented every 3 seconds, including the name of the stolen item 

(the probe). Participants were told to press a button for ‘no’ for every stimulus except the 

target when asked if they recognised each stimulus (thus being deceptive when saying ‘no’ 

after seeing the probe stimulus). They detected P3s for the name of the stolen item in 70-

90% of participants, providing proof of concept that the P3 could be used with a CIT to 

detect concealed familiarity with a stimulus. Since then, there have been many 

experiments using the P3 with CITs to detect deception and concealed information. As 

mentioned in section 2.1, a meta-analysis by Meijer et al (2014) compared CIT studies using 

the P3 with CIT studies using other physiological measures (e.g., skin conductance 

responses) and found larger effect sizes for CITs using P3s than other measures, thus 

providing further evidence that the P3 is a suitable measure for detecting concealed 

information.  

2.3. Countermeasures and Rapid Serial Visual Presentation 

The CIT used alone is susceptible to countermeasures with physiological (Ben-Shakhar & 

Dolev, 1996), EEG (Rosenfeld et al., 2004), and fMRI (Ganis et al., 2011) measures with 

accuracy rates dropping as low as 18% (Rosenfeld et al., 2004). Countermeasures for 

physiological CITs include participants increasing their response to neutral/irrelevant items 

either physically (e.g., digging their nail into their skin to inflict pain) or mentally (e.g., 

thinking of an exciting memory). Countermeasures for neurological CITs include mental 

tactics such as focusing on not seeing the probe to decrease its saliency or focusing on or 

assigning a covert response to one or more of the irrelevants to increase their saliency. One 

attempt to overcome the impact of countermeasures on the P3 is the complex trial 

protocol (CTP) by Rosenfeld et al (2008). The CTP aims to prevent countermeasures by 

having participants respond to two stimuli within the same trial, the probe or irrelevant 

first, followed by a target or non-target after a delay (e.g., 1.5s), thus separating the 

responses to the probe and target stimuli. They suggest that by separating the two 

responses, they prevent resources being split between the probe and target. This would 
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then lead to a larger P3 for the probe (and a larger difference to the irrelevant), which 

would not be reduced enough by countermeasures to lose significance and allow deceptive 

participants to escape detection. However, research has shown that there are still 

countermeasures that can reduce probe P3s and the differential responses below 

significance, thus reducing accurate detection of concealed information while using the CTP 

(Hu et al., 2015; Lukács et al., 2016; Meixner & Rosenfeld, 2010). The Fringe-P3 method 

used by Bowman et al (2013, 2014) on the other hand, has been shown to have 100% 

accuracy rates with own-name stimuli (Bowman et al., 2013) and be resistant to mental 

countermeasures that attempt to manipulate salience (Bowman et al., 2014). This method 

combines a concealed information test with rapid serial visual presentation (RSVP) and the 

P3. The inclusion of RSVP is why the Fringe-P3 method is resistant to countermeasures.  

RSVP is a method of stimulus presentation where items are shown at such short stimulus 

onset asynchronies (SOAs; the time between stimuli, e.g., 100ms) that they appear on the 

“fringe of awareness” rather than fully in conscious awareness. Studies have found that 

targets can be accurately detected in streams of letter, number, word, colour, and image 

stimuli at these fast speeds (Chun & Potter, 1995; Potter, 1976; Potter et al., 2008, 2010, 

2014).  

Research has also shown that emotional stimuli are better detected in RSVP streams and 

better remembered in post-stream memory tests (Barnard et al., 2004; Potter et al., 2014; 

Versace et al., 2010). Many crimes involve an emotional aspect, so this could mean that the 

crime-related probes are even more easily detected by guilty participants in RSVP streams. 

However, there is less clear evidence on how emotional stimuli affect the CIT. While there 

are many studies showing that emotional arousal and stress experienced by the participant 

during the CIT do not affect the efficiency of the test (Bradley et al., 2011; Kugelmass & 

Lieblich, 1966; Peth et al., 2012), there is very little specifically comparing emotional stimuli 

versus neutral stimuli with the CIT. One study (klein Selle et al., 2017) did compare the use 

of emotional and neutral stimuli with CIT and physiological measures and found that 

emotional stimuli increased detection efficiency for the SCR measure but not for heart rate 

or respiration measures. There is no evidence on how emotional stimuli may affect the P3 

measure during CITs or RSVP combined with CITs. Therefore, we cannot be sure whether 

the increased detection of emotional stimuli in RSVP streams will be the same when 

combined with the CIT and P3 responses.  
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2.4. The Fringe-P3 Method 

The Fringe-P3 method, proposed by Bowman et al (Alsufyani et al., 2019; Bowman et al., 

2013, 2014), combines a CIT with RSVP and EEG. It uses four stimulus types: task-relevant 

targets, salient probes, non-salient irrelevants, and non-salient distractors. One critical 

stimulus (target, probe, or irrelevant) is presented in each RSVP stream and participants are 

tasked with detecting the target. Typically, the target’s only role is to be the focus of the 

task and provides no information about the presence of concealed information. The probe 

stimuli are the stimuli we suspect the participant is concealing knowledge of. The irrelevant 

stimuli are non-salient key distractor stimuli that are used in comparison to the probe. The 

distractor stimuli are non-salient stimuli of the same type as the target, probe, and 

irrelevant and are used to fill the RSVP streams.  

Bowman et al (2013) described how the perceptual system subliminally searches RSVP 

streams for salient stimuli (Subliminal Salience Search; SSS). They suggest that the brain 

(subliminally) attempts to match the items in the stream to templates of salient 

information stored in the brain, such as the person’s real first name. When an RSVP 

stimulus matches a salience template, that stimulus breaks through into conscious 

awareness and is encoded into working memory. This breakthrough generates a P3 

component that can be detected with EEG (Craston et al., 2009; Martens et al., 2006; Vogel 

et al., 1998). Only stimuli that are salient to the participant will match a template, break 

through, be encoded into working memory, and generate a P3. Non-salient stimuli will not 

match a template or generate a P3. As such, the Fringe-P3 method can detect concealed 

information by detecting which stimuli generate P3s and thus must be salient to the 

participant. If a participant was indeed concealing knowledge of the probes (guilty), the 

probes would be salient, generate a P3 response, and there would be a significantly 

different response to the probes compared to the irrelevants. If a participant truly had no 

knowledge of the probes (innocent), the probes would not be salient or generate a P3, and 

there would be no significantly different response to the probes compared to the 

irrelevants.  

In Bowman et al’s 2013 paper, they used the Fringe-P3 method with own-name stimuli. 

Participants chose a fake first name from a list of options and were tasked with pretending 

this was their real first name and looking for it in the streams. Each RSVP stream consisted 

of distractors and one of four critical stimuli: the target (their chosen fake name), the probe 

(their real name), and two key irrelevants (unfamiliar first names). At the end of each trial 

participants were asked “did you see your name?” and were to respond “yes” if they saw 
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their chosen fake name and “no” if they did not (including if they saw their real (probe) 

name). Bowman et al’s analyses compared responses to the probe versus irrelevant, 

focusing on P3as at Fz and Cz, and P3bs at Pz. They found significant results at all three 

electrodes at the group level. At the individual level, they detected significantly different 

responses to the probe (P3as) for 13/15 participants at Fz and 12/15 participants at Cz, and 

significantly different responses to the probe (P3bs) for 12/15 participants at Pz. By 

combining the P3a and P3b analyses with a three-dimensional fisher combined probability 

procedure, they found significantly different responses to the probe for 100% of 

participants. They found no P3as or P3bs for the irrelevants. Figure 2.3 presents the grand 

average for the fake (the target), the probe, and both irrelevants. Clear P3s can be seen for 

the fake and probe but not for the irrelevants. 

Figure 2.3. Grand Average at Pz from Bowman et al (2013). 

 

This plot was taken from Bowman et al (2013) and flipped so that positive is plotted 
upwards on the y axis. The black vertical dashed lines represent the search boundaries for 
the window of interest. The “fake” is the fake name used as the target. There is a clear P3 
positivity for the target and probe that is not present for the irrelevants. The target P3 is 
larger than the probe P3 because it is task relevant.  
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Bowman et al (2014) further investigated the robustness of the Fringe-P3 method by 

testing it against potential countermeasures. They tested two countermeasure types: the 

“probes as low-salient” method, where participants attempted to reduce their response to 

the probe, and the “irrelevant as high-salient” method, where participants attempted to 

increase their response to the irrelevants. Their 2014 experiments followed the same 

method as their 2013 paper, but with participants performing the additional task of trying 

to enact one of the two countermeasure methods. There were three countermeasure 

experiments and one without countermeasures. The first countermeasure experiment 

investigated the probes as low-salient method by informing participants that the 

experiment works by detecting their response to their real name and instructing 

participants to concentrate on “not seeing their name” in order to counter this. The second 

countermeasure experiment investigated the irrelevant as high-salient method by 

informing participants that there were two more names repeated in the experiment and 

instructing them to count how many times they appeared. The final countermeasure 

experiment also investigated the irrelevant as high-salient method by informing 

participants that there were two more names repeated in the streams and instructing them 

to identify one of them and then pretend that that was their real name. At the group level 

they found that, despite the countermeasures in three experiments, they still detected 

significant P3as at Fz and Cz, and P3bs at Pz for the probe and not the irrelevant in all four 

experiments. Using a fisher combined probability procedure at the individual level, they 

found significantly different responses to the probe for 12/12 participants in the no-

countermeasures experiment, 8/10 in the probes as low-salient experiment (and the two 

misses were marginal), 9/10 for the first irrelevant as high-salient experiment, and 10/10 

for the second irrelevant as high-salient experiment.  

The use of RSVP in the Fringe-P3 method is thought to be the reason the method is so 

resistant to countermeasures, as participants cannot consciously control their responses to 

stimuli that are on the fringe of awareness (and thus they are not consciously aware of). By 

the time the stimulus has broken through into conscious awareness and participants realise 

they have seen the probe, a P3 has already been generated, making it too late for 

participants to apply any effective countermeasures. While two of the countermeasure 

experiments did result in one to two participants not having significant differences, 

Bowman et al estimated the area under the Receiver Operating Characteristic curve as 0.95 

and 0.9938 respectively, and so concluded that the effect of interest was not reduced 

enough to suggest participants were able to consciously control their subliminal search 
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system effectively enough to confound the Fringe-P3 method. Therefore, they concluded 

that none of the countermeasures had a substantive effect on the accuracy of detecting 

concealed information. It is also worth noting that the irrelevants used in these 

experiments were taken from a list that was presented to all participants at the start, 

where they were asked to mark any names that they were familiar with so those names 

could be excluded from the streams. As a result, it is possible that the irrelevants may have 

been primed and thus easier to detect in the streams in order to enact a countermeasure. 

In a real forensic setting, the irrelevant names would not be presented beforehand and so 

would not be primed and would be even more difficult to detect.  

The failure of the irrelevant as high salient countermeasure to significantly impact 

detection accuracy also shows that participants found it very difficult to identify the 

repeated stimuli despite being presented up to 50 times. This fits with Avilés et al (2020), 

who investigated potential repetition effects by showing participants RSVP streams of 

words and tasking them with identifying the repeated stimulus (with no information on 

what the stimulus was, other than that it was repeated). They found that the probability of 

detecting an unknown repeated stimulus for the first time was consistent and did not 

increase with more repetitions. Avilés et al propose that stimuli that do not reach a 

threshold of awareness (and thus are not consciously perceived) create fleeting memory 

traces that do not last and dissipate so rapidly that repeated presentations across trials 

cannot accumulate, and therefore, repetition cannot increase the chances of a stimulus 

reaching the threshold of awareness and being consciously perceived. This means that 

presenting the irrelevant many times, as in the Fringe-P3 method, will not increase the 

likelihood of participants detecting it and using it to counter the test.  

A fifth experiment in Bowman et al’s 2014 paper was an innocents test and involved no 

countermeasures. Any “probe” used for an innocents test would actually be an irrelevant 

since it would be non-salient to the participant. Therefore, this innocents experiment did 

not use the participants’ own-names as probes and instead used three irrelevants. They 

found no P3s for the irrelevants and no inflation of the false positive rate. This, combined 

with the irrelevant as high salient countermeasure experiment showing that participants 

found it difficult to “see” the irrelevants even when they were looking for them, and the 

research by Avilés et al (2020) providing evidence that repeating non-salient stimuli does 

not increase their chances of being detected, suggests that truly innocent participants will 

not generate P3s for repeated non-salient stimuli and inflate the false positive rate. This 

serves as a general proof that the method will not inflate the false positive rate, suggesting 
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that future Fringe-P3 research, such as that included in this thesis, does not need to include 

innocent groups unless there is a substantial change in the method. 

Alsufyani et al (2019) took the Fringe-P3 method beyond the use of first name stimuli and 

tested it using face stimuli. This experiment followed the same Fringe-P3 method as 

Bowman et al (2013) except they used face stimuli in place of names and did not task the 

participants with pretending a fake name was their real name. Instead, participants were 

given an unfamiliar target face to look for in the streams and at the end of each stream 

were asked “did you see the target face?” to which they answered “yes” or “no”. The probe 

stimuli were black and white photos of the faces of five famous people (Nelson Mandela, 

Barack Obama, Margaret Thatcher, David Beckham, and Angelina Jolie), and the irrelevants 

were unfamiliar faces. They investigated the effects based on two ERP components that 

had previously been shown to occur when viewing famous faces: the negative N400f (250-

500ms) and the late positive P600 (500-800ms) (Curran & Hancock, 2007; Eimer, 2000; 

Touryan et al., 2011), rather than the P3. The windows selected for analysis were chosen 

using the aggregated grand average of trials analysis (AGAT) described in the next section. 

They found significant differential responses (both N400f and P600) to the probe compared 

to the irrelevant at Fz, Cz, and Pz at the group level. At the individual level for Pz only, there 

were significant differences in responses to the probe and irrelevant for 10/14 participants 

in the N400f window and for 7/14 participants showed significant differences within the 

P600 window. They also used the fisher procedure to combine the N400f and P600 p values 

into one combined p value, resulting in 14/14 participants having significant p values. This 

shows that the Fringe-P3 method can be used with famous face stimuli to differentially 

detect when participants see a familiar face with high accuracy. Figure 2.4 presents the 

grand average at Pz taken from Alsufyani et al (2019). 
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Figure 2.4. Grand Average at Pz from Alsufyani et al (2019). 

 

This plot was taken from Alsufyani et al (2019). There is an N400f negativity followed by a 
P600 positivity for the probe that are not present for the irrelevant. There is also a P3 for 
the target.  

 

A related method to the Fringe-P3 has also been used to present stimuli on the fringe of 

awareness by Rosenzweig and Bonneh (2019, 2020) using eye-tracking equipment to 

measure involuntary eye movements instead of EEG. This was based on the oculomotor 

inhibition (OMI) phenomenon where involuntary microsaccades are inhibited for a short 

time after perceiving a stimulus. The OMI is associated with attention shifts and stimulus 

saliency, and is prolonged by perceptual oddballs (Valsecchi & Turatto, 2009). Rosenzweig 

and Bonneh (2019) showed that the OMI is prolonged by familiarity with a face, including 

during passive viewing of face stimuli on the fringe of awareness in RSVP. Therefore, it can 

be used to detect concealed knowledge, as only stimuli that were familiar to the participant 

would be perceived and cause a prolonged OMI. Their second fringe of awareness 

experiment (Rosenzweig & Bonneh, 2020) was based on a “mock terror” design using the 

Fringe-P3 method. 13 participants in the study group covertly selected a “terror target” 

from 8 options and were given 20 minutes to review a set of video and text information on 

the target. The chosen target’s face, name, and city were used as probes. The 12 

participants in the control group did not pick a target or see any information on any of the 

options. All participants were then shown multiple RSVP streams of stimuli consisting of a 

critical stimulus, followed by a blank screen and two randomly selected colourful “relaxing” 

images to serve as masks. The critical stimulus was either a black and white image of a 

“universally familiar” face used as a reference, or one of the three probe stimuli. The study 

group showed prolonged microsaccade inhibitions for both the reference and probe 

stimuli, while the control group only showed prolonged inhibitions for the reference, and 

their reactions to the probe stimuli were indistinguishable to their reactions to the 

distractors. Based on their inhibition reactions to the stimuli, Rosenzweig and Bonneh were 
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able to accurately identify the chosen target for 100% of participants. This provides further 

evidence that fringe of awareness methods can be accurately used with face stimuli, and 

also shows that the Fringe-P3 method has applications beyond solely the use of EEG and 

the P3. 

The Fringe-P3 method has shown very strong results, up to 100% accuracy, with face and 

own-name stimuli. This thesis will assess the effectiveness of the Fringe-P3 method with 

three more stimulus types: famous names, email addresses, and locations. It will also test 

the method while using the attentional blink (discussed later in this chapter) as a measure 

instead of EEG and the P3.  

2.5. The Aggregated Grand Average of Trials Analysis (AGAT) 

The AGAT (Bowman et al., 2020; Brooks et al., 2017) is a method of analysing ERP data and 

is the main analysis used in chapters 3, 4, and 5. In these chapters, it is used to compare the 

probe and irrelevant and is typically performed on data from the Pz electrode, but is 

sometimes also used on Fz and Cz data. The AGAT uses a data-driven orthogonal contrast 

between probe and irrelevant by merging these into one aggregated ERP. The window of 

interest is then selected based on this aggregated ERP, meaning that neither probe nor 

irrelevant is given biased treatment that could inflate the false positive (type I error) rate. 

Further justification for this approach can be found in Brooks et al (2017), Bowman et al 

(2020), and Friston et al (2006). There is some variation in parameters between the AGAT’s 

implementation in each experiment in this thesis (e.g., window length and boundary 

start/end points), but the general procedure is the same for all.  

Figure 2.5 shows an example of a 250ms – 1000ms window (blue dashed lines) within 

which the algorithm searched for the 100ms window of interest in the email addresses 

experiment in chapter 4. It shows the aggregated grand average as well as the probe and 

irrelevant grand averages.  
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Figure 2.5. Grand Average at Pz for the Aggregated, Probe, and Irrelevant ERPs. 

 

This figure shows the aggregated grand average (red, bold) alongside the probe (green) and 
irrelevant (black) grand averages. The vertical blue dashed lines represent the 250-1000ms 
window within which the algorithm searched for the window of interest.  

 

In this section, I will describe the AGAT method using common parameters for detecting a 

P3. First, the probe and irrelevant trials must be merged into one aggregated ERP for each 

participant. A window 100ms wide is then placed on each participant’s aggregated ERP, 

starting 250-300ms after stimulus onset, and slid along the ERP until the upper boundary is 

reached at 1000ms. The starting boundary of the search window is 250-300ms post-

stimulus. Previously, the AGAT always used a starting boundary of 300ms, as the P3 

typically starts around 300ms, but following the research in chapter 7, this was expanded 

to 250ms to allow for variation in the onset of the P3. The upper boundary is usually 

1000ms as the P3’s positive deflection is expected to have returned to baseline by then 

(although, a negative rebound can continue on past 1000ms). These timings match ERPs 

and analyses from previous studies using the Fringe-P3 method (Bowman et al., 2013, 

2014). The mean amplitude of the aggregated ERP within each window position is then 

calculated and the window of interest (i.e., the window position with the highest mean 

amplitude) is found for each participant. This window of interest is then applied to the 
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separate probe and irrelevant ERPs and the mean amplitude for each within that window is 

calculated and used in further analyses. Mean amplitude measures are used as they are 

more robust against high frequency noise (Luck, 2014). 

For a group level analysis, the AGAT is typically followed by a two-tailed paired samples t-

test on the probe and irrelevant mean amplitudes.  

For an individual participants’ level analysis, the AGAT is followed by a Monte-Carlo 

permutation test, permuting the individual trials for probe and irrelevant. Permutation 

works on the assumption of exchangeability, that if the null hypothesis is true, the data 

could be exchanged between groups thousands of times and the difference between probe 

and irrelevant would still be non-significant, subject to sampling error, and that any specific 

results would be just as likely to be found in one group as in the other. Permutation is used 

for the individual participants’ analysis, as the generation of surrogate ERPs have a better 

signal-to-noise ratio than if t-tests are performed on the single trials, which contain more 

noise. Permutation tests are used instead of bootstrapping, since bootstrapping has been 

shown to be biased with peak measures but permutation is not (Zoumpoulaki et al., 2015).  

To conduct the permutation test, the true irrelevant mean amplitude is subtracted from 

the true probe mean amplitude to provide the true observed difference. The probe and 

irrelevant individual trials are then permuted without replacement to create surrogate 

probe and irrelevant datasets. The same window of interest used with the true data is then 

applied to each of the permuted surrogate datasets and the surrogate probe and irrelevant 

mean amplitudes are calculated. The surrogate irrelevant mean amplitude is then 

subtracted from the surrogate probe mean amplitude and saved as the surrogate 

difference. This is typically repeated 1000-10,000 times. A p value is then calculated as the 

proportion of surrogate differences that are larger than the true observed difference.  

For the individual participants’ level analysis, the AGAT analysis is run on each individual 

participant as if they were a separate experiment. The individual participants are not 

compared with each other, therefore we are not doing multiple comparisons, so 

corrections for the type I error rate are not required. This applies to all individual 

participants’ level analyses in this thesis.  

Fringe-P3 research aims to show high detection rates of familiarity with the probe at both 

the group and individual participants’ level. The individual participants’ level analysis is 

especially important as the real world application of the Fringe-P3 method would be for 



40 
 

individuals rather than groups. For example, the Fringe-P3 method combined with a CIT 

could be used in forensic situations to investigate an individual suspect’s familiarity with 

the face or name of another person of interest, such as an accomplice.  

It should be noted that the inclusion of analyses at the individual participants’ level is 

unusual. Most EEG research analyses effects at the group level only. Analysis at the 

individual participants’ level is less common and more difficult, as it uses less data and is 

more susceptible to noise, so being able to find significant effects at the individual level is 

especially noteworthy.  

2.6. The Attentional Blink 

The experiment in chapter 6 explores the use of the Fringe-P3 method with the attentional 

blink as a measure to detect concealed information instead of the P3. The attentional blink 

(Raymond et al., 1992) is a phenomenon where the detection rate of a second critical 

stimulus in an RSVP stream is significantly lower when it is presented 200-500ms after the 

first critical stimulus (Raymond et al., 1992; Shapiro, Arnell, et al., 1997). The classic 

attentional blink paradigm presents two targets (T1 and T2) in RSVP and varies the lag 

between them (e.g., lag 1 is T2 presented immediately after T1, lag 5 is T2 presented as the 

fifth item after T1). The phenomenon has been heavily researched and been shown to 

occur with letter, number, word, colour, face, and other picture stimuli (Evans & Treisman, 

2005; Ganis & Patnaik, 2009; Joseph et al., 1997; Ross & Jolicœur, 1999; Shapiro, Caldwell, 

et al., 1997). 

Not only does the attentional blink occur when two targets are presented, but it has also 

been shown to occur when the first critical stimulus is an emotional or salient probe 

stimulus (Barnard et al., 2005; Ganis & Patnaik, 2009). This can be combined with the 

Fringe-P3 method to detect concealed information by having the first critical stimulus be 

the probe we suspect the participant is familiar with/concealing knowledge of and the 

second critical stimulus be a target. The probe stimulus would only capture attention and 

cause an attentional blink if it were salient to the participant. Therefore, if a participant 

frequently misses the target when it is presented after the probe but not after an 

irrelevant, then it implies they are familiar with the probe stimulus and are concealing 

information about it. Whereas a truly innocent participant would not be familiar with the 

probe, and therefore would have no difference in detection accuracy when the target is 

presented after probe or irrelevant. Ganis and Patnaik (2009) investigated this using the 

attentional blink with a CIT and face stimuli. Rather than T1 and T2, they used one salient 
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famous face as a probe stimulus and one non-famous target face. They were able to detect 

concealed information in 9 out of 12 participants by looking for a decrease in target 

accuracy when it was presented shortly after the probe. Figure 2.6 presents a bar graph of 

the accuracy differences for individual participants.  

Figure 2.6. Accuracy Difference Bar Graph from Ganis and Patnaik (2009). 

 

This bar graph was taken from Ganis and Patnaik (2009). It shows the difference in accuracy 
between attentional blink trials (where the probe was presented before the target) and 
control trials (where the probe was not presented) for individual participants. Nine of the 
twelve participants had positive differences, meaning they had lower target accuracy in the 
attentional blink trials compared to the control trials.  

 

The Fringe-P3 method using EEG has already been shown to be resistant to 

countermeasures (Bowman et al., 2014), and the attentional blink has also been shown to 

be resistant to the effects of training to adapt to it (Braun et al., 1998). However, there are 

some circumstances in which the attentional blink may not appear.  

Although the attentional blink is a very common phenomenon, there are some people who 

do not experience it, referred to as “nonblinkers” (Martens et al., 2006). Nonblinkers are 

thought to consolidate information to working memory faster than blinkers. Martens et al 
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(2006) compared blinkers and nonblinkers in a letter detection task while measuring their 

attentional blink and ERP for a P3 response. Martens et al (2006) found that nonblinkers 

had an earlier P3 peak in all lags, thus supporting the idea that they consolidate 

information to working memory faster than blinkers. This study also showed that the P3 

measure can be combined with the attentional blink paradigm. This means the attentional 

blink could be combined with the Fringe-P3 method to provide an even more robust 

method of detecting the presence of concealed information. 

Another exception to the attentional blink is lag 1 sparing. This occurs when T2 is presented 

up to 150ms after T1 and is still accurately detected, escaping the blink (Potter et al., 1998; 

Visser et al., 1999). One model of the attentional blink, which can also account for lag 1 

sparing, is the episodic simultaneous type, serial token model (eSTST) by Wyble et al 

(2009). This model explains the attentional blink through competition between working 

memory encoding and attention allocation. This model is based on the idea that there is a 

window of attentional enhancement that is activated when T1 is detected and is kept open 

by consecutive targets, but if a new target is not presented within 200ms or a non-target 

stimulus is presented, then the window is deactivated and attention is briefly suppressed 

while the detected targets are encoded into working memory and consolidated. Any 

further targets that are presented once the window has closed and attention is supressed 

will receive no enhancement and are often missed. This means that multiple targets 

presented consecutively can be detected and encoded, thus accounting for lag 1 sparing, 

but if there is a non-target stimulus between two targets, then the attentional 

enhancement window closes and attention is suppressed, causing the attentional blink. 

Figure 2.7 presents a demonstration of this competition between attention and encoding. 

The theory also states that while multiple targets presented consecutively can be detected, 

this comes at the cost of sequential information as they compete to be encoded in parallel, 

resulting in them often being encoded and recalled out of order or with T2 being recalled 

more accurately than T1. Wyble et al suggest that the attentional blink is the result of the 

brain’s attempt to keep targets episodically distinct, and that targets presented 

consecutively are encoded as one episode, but a target presented after a gap would be a 

separate episode. Such further episodes must wait until the first episode has finished 

encoding and the attentional enhancement window is ready to be opened again before it 

can be detected.  
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Figure 2.7. Competition Between Attention and Encoding from Wyble et al (2009). 

 

This figure was taken from Wyble et al (2009) and is a schematic demonstration of the 
competition between attention and encoding using examples of target letters amongst 
distractor digits. In the first example, attention is excited by the target and then suppressed 
by encoding as the next stimulus is a distractor. In the second example, the first target 
excites attention and opens the attentional enhancement window which is then kept open 
by the following two consecutive targets and is only supressed by encoding when a non-
target stimulus appears. This is how lag 1 sparing occurs. In the third example, attention is 
excited by the first target and is then suppressed by encoding as the following stimulus is a 
distractor. While attention is supressed, the appearance of a (single) second target 
following the distractor cannot boost attention enough to reopen the attentional 
enhancement window and be detected. This is when the attentional blink occurs.  

 

Interestingly, while T2 following a distractor is often missed (T1, D1, T2), it has been shown 

that T2 can cue attention enough that a third target presented immediately after T2 (T1, 

D1, T2, T3) can reactivate the attentional enhancement window and be accurately recalled 

(Nieuwenstein et al., 2005; Olivers et al., 2007; Wyble et al., 2009). The eSTST explains this 

through competing inhibitory and excitatory inputs from working memory, where the 

encoding of T1 into working memory is trying to suppress attention, while T2 tries to excite 

attention but doesn’t succeed enough to be detected itself, but this gives a boost to T3 

which does excite attention enough to be detected and encoded.  

The theory also suggests that the attentional blink is caused by targets only and not 

distractors, unlike other theories that claim that distractors influence the blink (Di Lollo et 
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al., 2005; Olivers et al., 2007; Raymond et al., 1992). This is backed up by studies that 

presented a blank screen/no stimulus between T1 and T2 and still found an attentional 

blink (Ouimet & Jolicœur, 2007; Visser, 2007), and from other research using complex and 

simple distractors that found that the complexity of the distractor stimuli and similarity to 

the target had no influence on the magnitude of the attentional blink (Grandison et al., 

1997; McAuliffe & Knowlton, 2000).  

2.7. Central Aims and Hypotheses 

The overall aim of this thesis is to generalise the Fringe-P3 method by demonstrating its 

efficacy with more stimulus types, specifically famous names, email addresses, and 

locations. The benefits of testing famous name stimuli are two-fold. Firstly, it will show that 

the Fringe-P3 method can work with names other than own-name. Own-name is an 

especially highly salient stimulus, so it is important to show that the Fringe-P3 method is 

still accurate with name stimuli that are salient, but less so than own-name. Secondly, the 

famous name stimuli are two-part stimuli in the form of first and last-name pairs, and so 

will also demonstrate that the Fringe-P3 method can work with multi-part stimuli. This 

opens up the Fringe-P3 method to further multi-part stimuli such as street addresses and 

birthdays in future research. Demonstrating that the Fringe-P3 method can be used 

accurately with email addresses is vital for the detection of a person’s online identity and is 

the first step towards showing that the Fringe-P3 method could be used to aid forensic 

investigations into cybercrime. The use of location stimuli will show that the Fringe-P3 

method can detect familiarity with locations and can work with image stimuli that are more 

complex than greyscale famous faces.  

A further aim of this thesis is to show that the Fringe-P3 method can also work using the 

attentional blink as a measure instead of the P3. The attentional blink is a cheaper method 

to perform than using EEG, and so, if successful, could be used in place of or, preferably, in 

combination with the P3 measure for an even more robust test. By combining the two 

measures, the test would still be able to detect concealed information even if one measure 

did not have a significant result (e.g., if the participant was a non-blinker, they should still 

have a P3, or if their P3 was not significant, they may still show a blink). In addition, the 

attentional blink experiments investigate two task types (categorisation and detection) that 

could affect the participant’s ability to use search strategies when looking for a target in 

RSVP streams (e.g., looking for a turret in the left hand corner of the stimulus when looking 

for a specific castle image). Strategies that focus on one feature of the target might cause 

the participant to not see the probe if it does not also share that feature, and thus reduce 
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the accuracy of the test. These experiments will enable us to investigate whether task type 

affects the impact of search strategies on detection rates of probe stimuli using the Fringe-

P3 method.  

The final research chapter of this thesis covers a proposed new method of analysing ERP 

data to detect P3s. As the shape, amplitude, and latency of the P3 can be affected by 

differences in tasks and stimuli, the matched filter convolution analysis is designed to be 

able to better account for these differences than the AGAT method and should allow us to 

accurately detect P3s in experiments where the ERPs do not fit the typical P3 shape, 

amplitude, and latency.   

The central hypotheses can be broken down into the following: 

1) We hypothesise that the Fringe-P3 method will accurately detect differential ERP 

responses (in the form of a P3) to the probe compared to the irrelevant stimuli in 

chapters 3 to 5. This hypothesis can be further broken down into three further 

hypotheses for the three experiments using different stimulus types: 

a. For chapter 3, we expect to detect significantly different responses to the 

famous name probe stimuli compared to the non-famous unfamiliar name 

irrelevant stimuli, with only the probe stimuli generating a P3.  

b. For chapter 4, we expect to detect significantly different responses to the own 

email address probe stimuli compared to the unfamiliar email address 

irrelevant stimuli, with only the probe stimuli generating a P3. 

c. For chapter 5, we expect to detect significantly different responses to the 

familiar university campus photo probe stimuli compared to the unfamiliar 

university campus photo irrelevant stimuli, with only the probe stimuli 

generating a P3. 

2) We predict that the Fringe-P3 method will accurately detect recognition of multi-item 

stimuli, in particular, the two-part first and last name pairs in chapter 3. We expect to 

detect differential responses to the probe famous name pairs compared to the 

irrelevant unfamiliar name pairs, with only the probe name pairs generating P3’s. 

3) We hypothesise that using the attentional blink as a behavioural measure of 

recognition in chapter 6 will allow us to accurately detect concealed information 

regarding familiarity with location stimuli (university campus photos), with only the 

familiar probe locations generating attentional blinks.  
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4) We predict that the categorisation task in chapter 6 will lead to a stronger attentional 

blink than the detection task.  

5) We hypothesise that the matched filter convolution analysis in chapter 7 will better 

account for variability in P3 shape, amplitude, and latency than the AGAT, thus allowing 

us to detect P3s and differential responses to probe and irrelevant in participants 

whose ERPs do not fit the typical P3 shape and so may not have resulted in significant p 

values when the AGAT was used previously.  
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3. Detecting Concealed Knowledge of Famous Names using EEG 

3.1. Introduction 

This chapter consists of a re-analysis of a dataset using the Fringe-P3 method with famous 

name stimuli collected by Abdulmajeed Alsufyani. Part of the initial data processing (i.e., 

filtering and epoching) was performed by Alsufyani, the rest of the processing and all 

analyses in this chapter were conducted by myself (see section 1.4 for more details on 

previous and new uses of this data). This dataset has now been published in Cortex using 

my analyses, with myself and Alsufyani as co-first authors (Alsufyani et al., 2021). This 

chapter continues previous research into using the Fringe-P3 method with name stimuli, 

that began with Bowman et al’s studies using own-name stimuli (2013, 2014), and will now 

use famous name stimuli.  

As discussed in the literature review (section 2.4), the Fringe-P3 method has been shown to 

be 100% accurate when used with own-name stimuli and is resistant to key 

countermeasures (Bowman et al., 2013, 2014). Own-name stimuli, however, are a very 

special case of salient stimuli as they are one of the most frequently rehearsed stimuli we 

experience from birth. The most well-known demonstration of this is the Cocktail Party 

Effect, where own-names are rapidly and easily detected amongst other word stimuli 

(Cherry & Taylor, 1954; Moray, 1959; Wolford & Morrison, 1980; N. Wood & Cowan, 1995). 

Participants’ responses to their own names have also been shown to be faster and stronger 

compared to other personally familiar or famous names (Cherry & Taylor, 1954; Mack & 

Rock, 1998; Yang et al., 2013). Furthermore, own-name stimuli have been shown to be 

resistant to the attentional blink, while other name and noun stimuli are not (Shapiro, 

Caldwell, et al., 1997). Therefore, it could be argued that the high detection rates and 

strong P3 responses to the own-name probes in Bowman et al’s 2013 and 2014 papers are 

due to the stimuli being own-names and may not be applicable to other name stimuli. The 

current chapter aims to counter this argument by demonstrating that the Fringe-P3 

method can accurately detect familiarity with “weaker” name stimuli that are still salient, 

but less so than own-names. This will be done using famous names: the names of famous 

people that the majority of the public would recognise, and thus would be familiar and 

salient, but to a lesser degree than the participant’s own name.  

In addition, previous Fringe-P3 research has only used single-item stimuli such as the 

participant’s own first name. However, not all types of concealed information are single 

item; many, such as dates (e.g., First September), addresses (e.g., Twenty Two High Street), 
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and full names (e.g., Martin Jones) are multi-item. The lag 1 sparing phenomenon from 

attentional blink research shows that a second target presented shortly after a first target 

can be accurately reported, thereby showing that two stimuli presented in rapid succession 

can be detected, and suggests that the two may be processed together (Bowman & Wyble, 

2007; Chun & Potter, 1995; Hommel & Akyürek, 2005; Simione et al., 2017; Wyble et al., 

2009). This sparing effect has also been shown to occur when three or more targets are 

presented in rapid succession (Nieuwenstein & Potter, 2006; Olivers et al., 2007; Wyble et 

al., 2009). Therefore, the current chapter has the additional aim of showing that the Fringe-

P3 method can detect familiarity with multi-item stimuli. In this study, the multi-item 

stimuli will be first and second (famous) name pairs presented sequentially in RSVP (e.g., 

“Barrack” followed immediately by “Obama”).  

In summary, this research has two main aims: 1) to show that the Fringe-P3 method can 

detect familiarity with weaker (famous) name stimuli than own-names, and 2) that it can 

detect familiarity with multi-item (first and second name pair) stimuli.  

We hypothesise that there will be differential ERP responses (in the form of a P3) to the 

famous name probe stimuli compared to the non-famous/unfamiliar irrelevant name 

stimuli, and that the method will accurately detect recognition of familiar multi-item 

stimuli (first and last name pairs). For both of these hypotheses, we expect the probe 

stimuli to generate P3s while the irrelevant stimuli will not.  

Recall and recognition tests will also be conducted at the end of each block of streams, to 

provide additional evidence on what stimuli breakthrough into conscious awareness. We 

hypothesise that only the salient stimuli, i.e., the famous names, will be reportable in these 

tests.  

3.2. Method 

3.2.1. Participants 
Fifteen participants took part in the experiment, the same number as in the original own-

names experiment (Bowman et al., 2013). Due to a technical error with the recording 

system, one participant was excluded, leaving fourteen participants for analysis (aged 19-

24, 6 male, 8 female). All participants were students at the University of Kent, native 

English speakers, right-handed, had no neurological disorders, and had normal or 

corrected-to-normal vision. All participants gave their informed consent and were paid £10 

for their participation. The University of Kent Sciences Research Ethics Advisory Group 

approved the experiment. 
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3.2.2. Stimuli and Presentation 
The experiment was run in Matlab 2012 using Psychophysics Toolbox Version 3. The stimuli 

were 16-point, light grey, monospaced, sans-serif characters presented on a black 

background at the same location in the middle of the screen. All stimuli were pairs of first 

and second names, presented sequentially (i.e., first name followed immediately by second 

name), similar to Proverbio et al (2009). There were three categories of critical stimuli - 

probe, irrelevant, and target - and five name pairs in each category. Figure 3.1 shows an 

example section of an RSVP stream including a probe name pair.  

The probe stimuli were the names of famous people from different fields: entertainment, 

sport, and politics. These were Justin Bieber, Leonardo DiCaprio, Barack Obama, David 

Beckham, and William Shakespeare. Due to a programming error, three participants (2, 3, 

and 4) were presented with Winston Churchill instead of William Shakespeare, and one 

participant (4) was also presented with Britney Spears instead of David Beckham. We do 

not believe that this error affected participants’ results and further discussion of this can be 

found in appendix A.  

The irrelevant stimuli were randomly generated names: Belia Labbe, Audrey Slater, Annie 

Rand, Blyth Tomayo, and Kylie Carr.  

The target was a single pair of names that participants were instructed to respond to. At 

the start of the experiment, participants were presented with a list of five name pairs and 

were asked to choose their target name pair from the list, similar to Bowman et al (2014). 

Three participants (1, 5, and 6) chose Katherine Stevenson, two participants (9 and 12) 

chose Christopher Steffen, one participant (11) chose Waylon Travis, and the remaining 

eight chose April Harrington. No participant chose Waleed Finch.  

The distractor names were randomly selected from a database of 10,000 pairs of common 

first and second names (50% male, 50% female). This database was created by using 

http://random-name-generator.info, which randomly generates first and last names based 

on the US Census database. The irrelevant and target names were randomly generated 

using the same name generator. Names that shared three or more letters in the same 

position as any of the critical stimuli were not used as distractors. 

All names had a maximum length of 11 characters. The first letter of each name (first and 

second) was uppercase and all other letters were lowercase. In order to ensure that all 

stimuli were the same length, names that were shorter than 11 characters were padded by 

randomly adding “#” or “+” on either side of the name to make them 11 characters (e.g., 
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“###Alice+++”, “###Gregory+”, “Danielle+++”), the same as in Bowman et al (2013, 2014). 

During the streams, distractor names were selected pseudo-randomly from the database 

so that no name could contain two or more letters in the same position as the name 

immediately before it, in order to prevent repetition.  

Figure 3.1. Example Section of an RSVP Stream of Name Stimuli. 

 
Each RSVP stream consisted of 15 pairs of first and second names, one of which was the 
critical pair (target, probe, or irrelevant) while the rest were distractors. The critical name 
pair in this example is the probe name pair Barack Obama.  

 

All stimuli were presented in RSVP streams with an SOA of 133ms, the same as in Bowman 

et al (2013) and Alsufyani et al (2019). Each stream contained 15 pairs of first and second 

names, one of which was a critical name pair while the rest were distractors. The critical 

name pair appeared pseudo-randomly between the 5th and 10th positions (inclusive), in 

order to prevent any start or end of stream effects overlapping with the ERP response to 

the critical stimulus.  

Each trial began with a fixation stimulus (“XXXXXXXXX”) presented for 800ms to focus the 

participant’s attention on the central stimulus presentation area. At the end of each trial, 

the final item, either “---------“ or “=========” (randomly selected) was presented for 

133ms. Participants were then asked to report what the final item was, in order to maintain 

participant’s attention for the whole length of the stream.  

The experiment was divided into 5 blocks. Each block used only one of the five probe name 

pairs and one of the five irrelevant name pairs, which were presented 15 times each. The 

same target name pair was used for every block and was presented 15 times in each block. 
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There were 45 trials total per block. The order in which the trials appeared within each 

block was randomised. Across the whole experiment, there were 75 probe trials, 75 

irrelevant trials, and 75 target trials, resulting in 225 trials overall.  

3.2.3. Tasks 

Practice Trials 

Before the main experiment, participants took part in a practice session consisting of 20 

trials and a recall and recognition test. These practice trials contained only distractors and 

the target and did not contain any of the probe or irrelevant names nor the names of any 

other famous people. This practice session was simply to familiarise the participants with 

the task and RSVP streams and ensure that they could find the target.  

Main Experiment 
Participants were instructed to keep their eyes fixated on the centre of the screen and to 

avoid eye and body movements during each trial to reduce noise in the data. Participants 

were told to look for the target within the streams and to identify the final item in the 

streams. They were not told in advance that famous names would appear in the streams.  

At the end of each stream, after being asked what the final item was, participants were 

asked “Did you see the target name?” Participants responded via a numeric keyboard, 

pressing 1 for “yes” and 2 for “no”. This task was included solely to keep participants 

attention on the streams.  

At the end of each block, participants also completed recall and recognition tests. Recall is 

the more difficult test, since the recognition test will cue participants with a name pair to 

remember, while recall does not. The recall task must be performed before the recognition 

task, otherwise it would not be free recall as the recognition test would cue names to 

recall. 

For the recall test, participants were asked on screen “What did you see?” and entered any 

names they saw during that block using the keyboard. There was no limit on the number of 

names that participants could enter and they were encouraged to enter as many names as 

they could. 

For the recognition test, participants were presented with five name pairs and asked to 

rate how often they thought each name had appeared in that block. The confidence ratings 

were on a scale of 1 to 5, where 1 meant “Not appeared at all” and 5 meant “Appeared 

very often”. The five name pairs were taken from the following categories: target, probe, 

irrelevant, unpresented famous name (the name of a famous person that was not 
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presented in any streams during the experiment), and a distractor. There were five name 

pairs in each category – one for each block – excluding the target, of which there was only 

one for the whole experiment. The five distractor name pairs were randomly selected from 

the distractors database and had the same very small probability (0.14%) of being 

presented in a trial as any of the other potential distractor names in the database. The 

same five distractor name pairs were used in the recognition tests for every participant.  

3.2.4. Recording Apparatus 
We recorded EEG data using the BioSemi ActiveTwo system (BioSemi, Amsterdam, The 

Netherlands) and ActiView software. EEG data were recorded from the Fz, Cz, Pz, P3, P4, 

and Oz electrodes. Electro-oculogram data were recorded from both eyes using two HEOG 

electrodes on the outer canthus of each eye and two VEOG electrodes, one above and one 

below one eye. Data were referenced to a ground formed from a common mode sense 

(CMS) active electrode and driven right leg (DRL) passive electrode. Impedances were kept 

below 10 kOhms. The data were digitized at 2048Hz and filtered with a low-pass of 100Hz 

at the time of recording. 

3.2.5. Analysis Procedure 
The EEG data were analysed using Matlab 2016a and EEGLAB version 13.6.5b. The EEG data 

were re-referenced to the average of the combined mastoids and were resampled to 

512Hz. The data were then filtered with a low-pass of 45Hz, a high-pass of 0.5 Hz, and a 

notch filter between 7 and 9Hz to filter out the SSVEP caused by the stimulus presentation 

rate. The data were then epoched into segments from -100ms to 1200ms, time-locked to 

the onset of the first name of a critical pair. Trial rejection was performed on the eye 

electrodes (with above 100μV and below -100μV as criteria), and on the Pz, Fz, and Cz 

channels (with above 50μV and below -50μV as criteria). Baseline correction was then 

performed on -100ms to 0ms.  

After trial rejection, the maximum number of trials remaining per participant was 75 and 

the minimum remaining was 62 for both probe (M = 71.79, SD = 3.60) and irrelevant (M = 

71.57, SD = 4.22).  

3.2.6. ERP Analysis Procedure 
The ERP data were analysed using the AGAT method (for a detailed description of the 

AGAT, see section 2.5). Data from the Pz electrode were the focus of the group and 

individual level analyses, as the P3 is typically greatest from that electrode (Comerchero & 

Polich, 1999; Polich & Kok, 1995), but data from the Fz and Cz electrodes were also 

analysed at the group level only. The probe and irrelevant ERPs and behavioural data were 
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the focus of all analyses. The target and distractor stimuli provide no information on the 

recognition of famous names, and so were not included in any analyses.   

The window of interest for the AGAT was 100ms long and was searched for between 

300ms and 1000ms, the same as in Alsufyani et al (2019) and Bowman et al (2013, 2014).  

For the group level analysis, a two-tailed paired samples t-test was performed on the probe 

and irrelevant mean amplitudes from the windows of interest.  

For the individual participants’ level analysis, a Monte-Carlo permutation test was 

performed on the probe and irrelevant trials (as described in section 2.5) using 10,000 

permutations.  
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3.3. Results 

3.3.1. Group Level 
Table 3.1 shows the number of times participants answered “yes” when asked at the end of 

the trial if they saw the target in the target, probe, and irrelevant conditions as well as their 

d’ scores. This shows that participants correctly said yes after most target trials and, with 

the exception of participant 2 (who may have misunderstood the instructions), rarely said 

yes (7 or less times) after probe or irrelevant trials (false alarms).  

 

Table 3.1. The Number of Times Participants Answered “Yes” When Asked if They Saw the 

Target in Each Condition. 

Participant Target Probe Irrelevant d’ 

1 62 1 2 2.995 

2 69 30 19 1.854 

3 52 2 3 2.339 

4 70 6 6 2.906 

5 65 4 5 2.666 

6 56 7 5 2.069 

7 73 1 1 4.149 

8 60 2 3 2.676 

9 48 6 1 2.037 

10 74 1 4 4.050 

11 48 7 2 1.913 

12 65 5 2 2.789 

13 66 5 4 2.730 

14 64 7 3 2.552 

Mean 62.286 6.000 4.286 2.695 

Median 64.500 5.000 3.000 2.671 

Std Dev 8.534 7.296 4.497 0.701 

This table shows the number of times participants said “yes” after target trials (hits), and 
probe and irrelevant trials (false alarms). 10/14 participants scored at least 60 hits on 
target. The maximum possible score for each condition was 75. 
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Figure 3.2. Grand Average for All Participants from the Pz Electrode. 

 
All ERPs were time locked to the onset of the first name in a pair. The vertical blue dashed 
lines represent the window within which the algorithm searched for the window of interest. 
Both the target and probe elicited a large P3, but the irrelevant did not. The target elicited 
the largest P3, which is expected since it was task-relevant, but provides no information on 
the recognition of famous names and so is of no further interest. The key comparison is 
between the probe and irrelevant.  

 

Figure 3.2 presents the grand average from Pz and shows that the target and probe elicited 

large P3s at Pz within the 300ms to 1000ms time window, but the irrelevant did not. The 

mean amplitude values (presented in table 3.2) found in the AGAT analysis from Pz for 

probe were larger than those for irrelevant. The bar graph in figure 3.3 shows the grand 

mean amplitudes for target, probe, and irrelevant at Pz.  

A paired samples t-test was conducted on the mean amplitude values for probe and 

irrelevant for all participants and found a highly significant difference between the probe 

(M = 6.077, SD = 1.816, Mdn = 6.497) and the irrelevant (M = 0.372, SD = 1.321, Mdn = 

0.114), t (13) = 9.668, p <0.0001, and a very large effect size, d = 3.593. This is consistent 

with there being a P3 response for probe but not for irrelevant, as expected. 
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Figure 3.3. Grand Mean Amplitudes of Target, Probe, and Irrelevant from the Pz electrode. 

 

This bar graph shows the grand average of the mean amplitudes and the standard error of 
the mean at Pz found within each participant’s window of interest for each condition. The 
same window of interest used for each participant’s probe and irrelevant ERPs in the AGAT 
analysis was used for their target ERP to generate this graph. There was a highly significant 
difference between probe and irrelevant at the group level, t (13) = 9.668, p <0.0001, and a 
very large effect size, Cohen’s d = 3.593. The target was not statistically analysed. 

 
Paired samples t-tests were also conducted on the highest mean amplitudes within the 

300-1000ms window for Fz and Cz data. At Fz, there was a highly significant differences 

between the probe (M = 3.785, SD = 1.797, Mdn = 4.275) and the irrelevant (M = 0.469, SD 

= 0.815, Mdn = 0.538), t (13) = 7.218, p <0.0001, and a very large effect size, d = 2.376. At 

Cz, there was a highly significant difference between the probe (M = 4.874, SD = 1.621, 

Mdn = 5.080) and the irrelevant (M = 0.303, SD = 1.254, Mdn = 0.199), t (13) = 8.182, p 

<0.0001, and a very large effect size, d = 3.154. These results are consistent with there also 

being a P3 for the probe but not for the irrelevant at Fz and Cz, matching the result from Pz. 

The grand averages for Pz (figure 3.2) and for Fz and Cz (figure 3.4) show that the P3 

amplitude was highest at the Pz electrode, as expected. 
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Figure 3.4.  Grand Averages from the Fz and Cz Electrodes. 

 
This figure shows the grand averages for Fz and Cz. The vertical blue dashed lines represent 
the window within which the algorithm searched for the window of interest. 

 

Bowman et al’s previous Fringe-P3 studies (2013, 2014) have found significant P3as for 

own-name stimuli at the Fz and Cz electrodes within a 150-300ms window. Other studies 

using own-name stimuli without the Fringe-P3 method have also found that own-name 

stimuli generated P3as (Fischler et al., 1987; Holeckova et al., 2006; Tateuchi et al., 2012). 

However, the current research found no significant difference between the probe and 

irrelevant conditions within a 150-300ms window at Fz, t (13) = 2.014, p = 0.065, d = 0.766, 

or at Cz, t (13) = 1.537, p = 0.148, d = 0.608, which is consistent with there not being P3as 

(although the p value at Fz is approaching significance). While these results do not fit with 

Bowman et al’s studies showing P3as for own-name stimuli, it does fit with research using 

other familiar name stimuli that did not find a significant difference between familiar and 

unfamiliar names at frontal or central electrodes, and with Tacikowski and Nowicka (2010) 

who found that effects of familiarity were stronger at parietal electrodes. It may be that 

the particularly strong salience of own-name stimuli was behind the generation of P3as in 

the previous own-name studies, and that famous names, with weaker salience, do not 

generate P3as. However, the grand averages (figures 3.2 and 3.4) show a smaller positivity 

for the probe, and to a lesser extent the target, before the main P3 positivity, but this was 

later and wider than a typical P3a and peaked outside of the 150-300ms P3a analysis 

window. It is possible that these smaller positivities were P3as, but as most of the positivity 

occurred outside of the window being analysed, there was no significant difference in the 

analysis window. It is also worth noting that comparisons between the P3as and P3s in the 

present famous names study and those in Bowman et al’s own-names studies (2013, 2014) 

are limited due to differences in the stimuli (this study used multi-item stimuli while 
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Bowman et al used single-item stimuli, which could explain why the current positivities 

were broader) and experimental tasks (this study had no explicit task relating to the 

famous names, while Bowman et al instructed participants to respond deceptively to their 

own names), which could have contributed to the differences in the waveforms. 

Additionally, individual differences can affect the latency of P3as and P3s (Polich, 2007, 

2012), which could explain why the current positivities started later.  

 

3.3.2. Individual Participants’ Level 

Table 3.2. Individual Participants’ Mean Amplitudes and P Values from the Pz Electrode. 

Participant Probe Irrelevant P Value 

1 7.578 1.229 0.0003* 

2 4.638 0.270 0.0379* 

3 7.628 -1.438 0.0002* 

4 5.856 2.559 0.0734 

5 6.801 -1.745 <0.0001* 

6 6.194 -0.315 <0.0001* 

7 8.184 0.641 <0.0001* 

8 3.006 1.258 0.1889 

9 2.613 -0.723 0.025* 

10 8.083 2.271 0.0109* 

11 4.518 -0.325 0.0124* 

12 6.891 -0.278 <0.0001* 

13 7.576 -0.042 0.0019* 

14 5.515 1.846 0.0195* 

Mean 6.077 0.372 0.026 

Median 6.497 0.114 0.006 

Std Dev 1.816 1.321  

This table contains the mean amplitudes from the AGAT analysis for probe and irrelevant as 
well as the p values from the individual participants level analysis. The mean and median 
amplitude values are larger for the probe than the irrelevant for all participants. 12/14 
participants have p values below 0.05. 6/12 participants have p values below 0.001. The 
smallest p value that can be obtained from the 10,000 permutations is 0.0001. The asterisk 
marks p values that were significant at the 0.05 level.  
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Figure 3.5. Individual Participants’ ERPs from the Pz Electrode. 

 

This figure presents each participant’s probe and irrelevant ERPs and p values from Pz. The 
green line represents the probe ERP and the black line represents the irrelevant ERP. The 
dashed vertical blue lines mark the start and end of the AGAT search window. The dotted 
vertical red lines represent the start and end of the window of interest with the highest 
mean amplitude used in the analysis for that participant.  
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Table 3.2 presents the p values and mean amplitudes from the AGAT analysis for each 

participant from Pz. 12 out of 14 participants (86%) had a significant difference between 

the probe and irrelevant mean amplitudes at an alpha level of 0.05. Six participants (43%) 

had p values below 0.001 and six obtained p values between 0.001 and 0.05. The mean p 

value was 0.026 and the median was 0.006. The median is the most suitable measure of 

central tendency here, as the distribution of p values is skewed. Only Pz was analysed at 

the individual level as this was where we expected the P3 to be strongest. 

Figure 3.5 presents the individual participants’ probe and irrelevant ERPs along with their p 

values and windows of interest found in the AGAT analysis from the Pz electrode. Most 

participants have positive peaks in their probe ERP within the 300-1000ms window that are 

not present in their irrelevant ERP. Only two participants (4 and 8) did not have significant 

differences between their probe and irrelevant mean amplitudes in the analysis. 

Participant 4 had a positivity peaking around 650ms for the probe, and the AGAT correctly 

selected this as the window of interest, but there was not enough difference between the 

probe and irrelevant mean amplitudes to reach significance (p = 0.073). This is most likely 

due to the high noise level in the data causing the irrelevant to be positive within that 

window.  

Participant 8 had a positivity peaking around 410ms for the probe, but as the irrelevant was 

negative at the same time, that window had a smaller amplitude in the aggregated ERP, 

which resulted in it not being selected as the window of interest. Instead, a window 

centred around 624ms was chosen, which had a smaller probe positivity, resulting in a 

smaller difference between the probe and irrelevant and a high p value (p = 0.189). The 

irrelevant being negative during the earlier probe positivity is likely to be due to noise in 

the data.  

Participant 12, on the other hand, was one of the four participants with the largest 

significant differences, and showed a high positive peak for probe which resulted in a high 

probe – irrelevant mean amplitude difference and a highly significant p value (p < 0.0001). 

Figure 3.6 shows the null hypothesis distributions for participants 8 and 12. It can be seen 

that the true observed value (probe – irrelevant mean amplitude) could not reject the null 

hypothesis for participant 8, resulting in the high p value. In contrast, the true observed 

value for participant 12 is beyond the range of surrogate values, rejecting the null 

hypothesis and resulting in the highly significant p value.  
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Figure 3.6. Null Hypothesis Distributions for Participants 8 and 12. 

 

This figure shows the probe - irrelevant mean amplitude differences from the permutation 
analyses for participants 8 and 12. The dashed vertical blue lines represent the true 
observed value. 

 

3.3.3. Recall and Recognition Tests 
Participants’ recall scores are presented in table 3.3. There were five probes and five 

irrelevants used in the experiment, so total recall scores are out of five. All fourteen 

participants recalled two or more of the probes. Thirteen of the participants (93%) recalled 

at least three probes. Only two participants were able to recall any irrelevants, both 

recalling one each. A paired samples t-test found a significant difference between probe 

recall scores (M = 4.214, SD = 0.975, Mdn = 4.5) and irrelevant recall scores (M = 0.143, SD 

= 0.363, Mdn = 0), t (13) = 13.350, p <0.0001, and a very large effect size, d = 5.534. The 

recall measure was found not to be normally distributed, so a Wilcoxon's signed-rank test 

was performed in addition and also found a highly significant difference between probe 

and irrelevant recall scores, Z = -3.347, p < 0.001 (approx.).  

Participants’ final confidence ratings from the recognition tests are presented in table 3.4. 

These final confidence ratings are the means of the confidence ratings given at the end of 

each of the five blocks. The main comparisons were probe (M = 4, SD = 0.532, Mdn = 4) 

against un-presented famous name (M = 1.286, SD = 0.321, Mdn = 1.2), and irrelevant (M = 

1.586, SD = 0.454, Mdn = 1.5) against distractor name (M = 1.50, SD = 0.280, Mdn = 1.5). 

The paired samples t-tests found a highly significant difference between the probe and 

unpresented famous name confidence ratings, t (13) = 16.480, p <0.0001, and a very large 

effect size, d = 6.179. There was no significant difference between the irrelevant and the 

distractor, t (13) = 0.763, p = 0.459, and a small effect size, d = 0.227, suggesting that 
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participants were able to recognise the probe names but not the irrelevant names, despite 

the irrelevants being presented the same number of times in the streams.  

Table 3.3. Participants’ Recall Test Scores for Probe and Irrelevant. 

Participant Probe Irrelevant 

1 2 0 

2 5 0 

3 5 0 

4 4 0 

5 4 1 

6 5 0 

7 5 0 

8 4 0 

9 3 1 

10 3 0 

11 5 0 

12 5 0 

13 4 0 

14 5 0 

Mean 4.214 0.143 

Median 4.500 0 

Std Dev 0.975 0.363 

This table presents the total number of probe and irrelevant names recalled by each 
participant during the recall tests at the end of each block. The highest possible score is 5. 
All participants recalled at least two probes and 13/14 recalled at least three probes. Only 
two participants recalled one irrelevant.   
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Table 3.4. Participants’ Confidence Ratings from the Recognition Tests. 

Participant Probe Irrelevant Unpresented 
Famous 

Distractor 

1 3.8 1 1 1 

2 3.8 2.4 2 1.8 

3 4 1.6 1 1.6 

4 4.4 1.8 1.4 1.2 

5 4.2 2 1.6 1.6 

6 4 1.2 1 1.8 

7 4.8 1.4 1.4 1.4 

8 3.4 1.2 1.2 1.4 

9 3.4 2.2 1.8 1.8 

10 4 2 1.2 1.8 

11 4 1.4 1 1.2 

12 5 1 1.2 1.4 

13 4.2 1.8 1.2 1.2 

14 3 1.2 1 1.8 

Mean 4.000 1.586 1.286 1.500 

Median 4.000 1.500 1.200 1.500 

Std Dev 0.532 0.454 0.321 0.280 

This table shows the final confidence ratings in each category for all participants. These 
ratings are the means of the ratings given at the end of the five blocks, where 1 meant the 
participant thought the name pair did not appear at all, and 5 meant the name pair 
appeared very often. Each participant’s highest recognition score was for probe and only 
probes were given scores of 3 and above.  
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3.4. Discussion 

The first aim of the current research was to show that the Fringe-P3 method could 

accurately detect familiarity with weaker (famous) name stimuli that are still salient, but 

less so than the own-name stimuli used in Bowman et al’s previous research (2013, 2014). 

The experiment found a highly significant difference between probe and irrelevant and a 

very large effect size at the group level, as expected. However, it is the individual 

participants’ level results that are key, as the practical application of the Fringe-P3 method 

would be for individual participants, such as in forensic investigations. There was a 

significant difference between probe and irrelevant for 12 of the 14 participants (86%), 

with six of these having highly significant p values below 0.001. This demonstrates that the 

Fringe-P3 method can indeed accurately detect familiarity using weaker (famous) name 

stimuli and that broad familiarity with a stimulus is enough for it to be salient and generate 

a detectable P3. These results fit with other research that has used famous names as 

stimuli without RSVP and found that famous names elicited a P3 response (Pickering & 

Schweinberger, 2003; Proverbio et al., 2009; Schweinberger et al., 2002; Stenberg et al., 

2009; Tacikowski et al., 2011; Tacikowski & Nowicka, 2010). 

The recall and recognition results further support these findings, with significant 

differences for recall between probe and irrelevant and significant differences for 

recognition between probe and un-presented famous names but not for irrelevant and 

distractor names. This suggests that the famous probe name pairs were salient to the 

participants and broke through into conscious awareness, allowing them to be recalled and 

recognised, while the irrelevant and distractor name pairs were not salient and so could 

not reliably be recalled or recognised.  

The second aim of this research was to show that the Fringe-P3 method could accurately 

detect familiarity with multi-item stimuli, in this case: first and second name pairs 

presented consecutively. The ERP results show that famous name pairs did differentially 

breakthrough into consciousness and generate P3s for individual participants, while 

irrelevants did not, thus showing that multi-item stimuli can be effectively used with the 

Fringe-P3 method. This fits with theories of the attentional blink and lag 1 sparing that 

propose that two consecutive targets are processed together and can both be accurately 

reported (Bowman & Wyble, 2007; Hommel & Akyürek, 2005; Simione et al., 2017; Wyble 

et al., 2009). Research has also shown that three or more consecutive targets can be 

accurately reported and not generate an attentional blink (Nieuwenstein & Potter, 2006; 

Olivers et al., 2007; Wyble et al., 2009), meaning that it may be possible to use the Fringe-
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P3 method with three or more item stimuli such as addresses (e.g., Twenty Two High 

Street).  

Additionally, the P3 generated by famous name stimuli in the current research is broader 

(approx. 400-1000ms) than the P3 elicited by own-name stimuli (approx. 300-600ms in 

Bowman et al (2013) and 300-780ms in Bowman et al (2014)). This is likely to be caused by 

the famous name stimuli being two-part stimuli, and thus essentially being two salient 

names presented rapidly. It can be seen in figure 3.2 that there is only one P3, rather than 

two distinct P3s for the first and then second name stimuli, which further suggests that the 

name pairs are processed together, resulting in a single extended P3. This fits with research 

into the attentional blink that found a single long P3 for lag 1 (Craston et al (2009); see also 

Jones et al (2020) and Pincham et al (2016) for further discussion of extended P3s).  

The extended P3 also provides further justification for the use of the mean amplitude 

measure with the Fringe-P3, instead of the peak-to-peak method used in Bowman et al’s 

previous research (2013, 2014). The peak-to-peak method uses the difference between the 

maximum positive peak and the following negative deflection within a specified window. 

While this was suitable for Bowman et al’s own-name research, where their ERPs had a 

positive peak followed by a negativity, such a negativity is not present in the ERPs of the 

current experiment. Therefore, the mean amplitude measure is more suitable than peak-

to-peak for this data and is similar to the measures Alsufyani et al used in their Fringe-P3 

study (2019) and that Craston et al (2009) used to analyse an extended P3 generated by T1 

and T2 at lag 1.   

In both the current research and the experiment by Alsufyani et al (2019), participants 

were not given a task related to the fame-related stimuli nor were they told in advance that 

fame-related stimuli would be present. As such, these experiments allow us to investigate 

whether the brain still selects salient stimuli even when there is no task related to them. In 

Bowman et al’s own-name experiments (2013, 2014), participants were given explicit tasks 

relating to the own-name stimuli (e.g., look for your fake own-name), thereby turning it 

into a detection task. While the two fame-related experiments (the famous names 

reported here and the famous faces in Alsufyani et al (2019)) did not involve explicit tasks 

for the fame-related stimuli, participants are likely to realise at some point that fame-

related stimuli are present and may start to (at least implicitly) look for fame-related 

stimuli, thus turning it into an implicit identification task. Therefore, the results of the 

fame-related experiments show that the Fringe-P3 method can accurately detect when 
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stimuli are both intrinsically salient (but not related to an explicit task, at least initially) and 

being searched for in an implicit identification task.  

In summary, the results of this research showed that the Fringe-P3 method can accurately 

detect when participants perceived name stimuli that are salient, but less so than own-

names, and that the method is effective with multi-item stimuli. Significant differences 

were found between the famous probe names and unfamiliar irrelevant names at both the 

group and individual participant levels. These results further demonstrate the applicability 

of the Fringe-P3 method to forensic situations beyond use with only own-name and famous 

face stimuli to now include other familiar name stimuli. The results also open the method 

up to use with multi-item stimuli such as full names, dates, and street addresses. These 

results, especially at the individual participants’ level, are particularly important in regard 

to practical applications to forensic situations, where it could be used to detect whether or 

not a suspect is concealing knowledge of a specific person. In this case, if the suspect was 

familiar with a particular person (guilty), their name would be salient and would 

differentially breakthrough into awareness and generate a detectable P3 component. If the 

suspect was truly not familiar with the person (innocent), their name would not be salient 

and would not break into conscious awareness, generate a P3 or have a significant 

difference to the irrelevant. This method, therefore, could be used to identify criminals 

based on their familiarity with certain people, such as victims and accomplices.  
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4. Detecting Concealed Knowledge of Email Addresses using 

EEG 

4.1. Introduction 

This chapter is an analysis of a dataset using the Fringe-P3 method with email address 

stimuli collected by Claire Miller and Weiyan Hwang. All data processing and analyses in 

this chapter were conducted by myself (see section 1.4 for more details on previous and 

new uses of this data). This dataset and my analyses have now been published in the 

European Journal of Neuroscience (Harris et al., 2020). This chapter continues the use of 

the Fringe-P3 method with identity related information. While previous research used real 

world identity information in the form of names, the current chapter is a proof of concept 

experiment investigating the use of the Fringe-P3 method with online identities in the form 

of email addresses. This chapter contains the only experiment in this thesis that involves 

direct deception detection, as it asks participants to pretend a fake email address is their 

own email address.  

Forensic investigations into cybercrime often know the online identity associated with a 

crime (e.g., email address, username), but are unable to link that online identity to a real 

world suspect. The current experiment attempts to show that the Fringe-P3 method can be 

used to link online identities to real world suspects by detecting their familiarity with that 

online identity.  

We envision the Fringe-P3 method being used in situations where the police already know 

the online identity associated with a crime and suspect that a particular real world person 

is the user of that online identity. The police would then use the Fringe-P3 method with the 

real world individual, using the online identity as the probe to see if they are familiar with 

it. If the real world individual is indeed familiar with the probe online identity, then it will 

breakthrough into conscious awareness and generate a detectable P3. The police can then 

infer that the real world individual has a link with the online identity. Meanwhile, if an 

individual was truly not familiar with the probe online identity, then it would not 

breakthrough into conscious awareness and generate a P3. 

So far, the Fringe-P3 method has only been used with name and face stimuli, but one of its 

core components, RSVP, has been used successfully with a much wider variety of stimuli 

including letter and number stimuli (Chun & Potter, 1995; Potter et al., 2008). RSVP 

streams of letters have even been used with EEG as a P3-speller (Acqualagna & Blankertz, 
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2013; Chennu et al., 2013), where participants search for a specific letter in RSVP streams, 

which generates a detectable P3 when it breaks through into conscious awareness, 

allowing participants to spell words. The email addresses used in the current Fringe-P3 

experiment consist of strings of letters and numbers, and so the target and salient probe 

stimuli should be detectable, breakthrough into conscious awareness, and generate P3s.  

The main aim of the current experiment is to provide a proof of concept that the Fringe-P3 

method can be used with online identities, beginning with email addresses. We will 

investigate this by testing university students with their own university email address as the 

online identity probe.  

We hypothesise that there will be significantly different responses (in the form of a P3) to 

the participants’ own email address probe stimuli compared to the unfamiliar email 

address irrelevant stimuli, with only the probe stimuli breaking through into conscious 

awareness and generating a P3.  

4.2. Method 

4.2.1. Participants 
Fifteen students from the University of Birmingham took part in the experiment and gave 

their informed consent. Three participants were excluded due to a technical error with the 

recording system. One further participant was excluded for having less than half the trials 

remaining after trial rejection, leaving eleven participants for analysis. The eleven 

participants were aged 19 - 28 (M = 23.27, SD = 2.9), seven female and four male. All 

participants had normal or corrected-to-normal vision and no known neurological 

disorders. The STEM Research Ethics Committee of the University of Birmingham granted 

ethical approval for the experiment. 

4.2.2. Stimuli and Presentation 
All stimuli were email addresses using the University of Birmingham’s email format. 

University of Birmingham email addresses are generated according to a set of rules, using 

three letters from the student’s initials followed by three numbers (e.g., ABC123). If the 

student does not have three initials from their names, an X is added between their two 

initials (e.g., CXD456). All stimuli generated for this experiment matched this format.  

There were three critical stimuli: probe, target, and irrelevant. The target stimulus was an 

email address generated at random that participants were to look for within the RSVP 

streams. Participants were tasked with pretending this target email address was their own 

and to look for it in the streams. The probe stimulus was the participant’s real email 
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address, which they were not warned would appear in the streams. The irrelevant stimulus 

was a randomly generated unfamiliar email address that was not shown to the participants 

before the RSVP streams. These critical stimuli were presented amongst unfamiliar 

distractor stimuli. A bank of 3667 distractors was randomly generated, with the condition 

that they could not have more than two characters the same as any of the critical stimuli. 

Each distractor had the same small chance (0.38%) of appearing in a stream. Distractors 

and irrelevant stimuli are the same in terms of generation procedure and unfamiliarity, but 

each individual distractor is presented very infrequently while the irrelevant stimuli are 

presented as frequently as the probe and target stimuli.  

Figure 4.1. Example Section of an RSVP Stream of Email Address Stimuli. 

 

Each RSVP stream consisted of 15 email addresses, one of which was the critical stimulus 
(target, probe, or irrelevant) while the rest were distractors.   

 

The stimuli were presented in streams of 15 items. One critical stimulus appeared in each 

stream, placed randomly between the fifth and eighth items (inclusive) of each stream. 

Distractors were selected pseudorandomly from the bank to fill the rest of the stream 

while ensuring that each distractor could not contain more than one character in the same 

position as the stimulus before it. Figure 4.1 shows an example section of a stream. At the 

start of each stream there was a fixation stimulus (“XXXXXX”) in the centre of the screen to 

focus the participant’s attention on the presentation area, and at the end there was a final 

item (“------” or “======”), which was chosen randomly. After the final item, participants 

were asked if they saw their email address (responding “yes” if they saw the target email 
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address) and which of the two possibilities the final item was. This final item question was 

to ensure that participants paid attention to the full length of the stream.    

Streams were presented in five blocks of 36 trials. Participants were given the opportunity 

to take a break after each block. In each block, the critical stimuli were randomly presented 

12 times each with one critical stimulus per stream. Over the five blocks, the target, probe, 

and irrelevant were presented 60 times each, with 180 trials in the whole experiment.  

The Stimulus Onset Asynchrony (SOA) for each participant was chosen using a staircase 

procedure during practice trials to find the speed where the hit rate for the target was 75% 

and correct rejection rate was 80% for each participant. The SOAs used in the experiment 

were within a range of 100 – 250ms.  

4.2.3. Recording Apparatus 
The EEG data were recorded using the BioSemi ActiveTwo system (BioSemi, Amsterdam, 

The Netherlands) and ActiView software. Electroencephalographic data were recorded 

from Fz, Cz, and Pz. Electro-oculogram data were recorded from both eyes using two HEOG 

electrodes on the outer canthus of each eye and two VEOG electrodes, one above and one 

below the right eye. Linked mastoids were used as a reference. Impedances were kept 

below 10kOhm. The data were digitised as 2048Hz. 

4.2.4. Analysis Procedure 
The EEG data were analysed using Matlab 2016a and EEGLAB version 13.6.5b. The data 

were resampled to 512Hz and underwent a high-pass filter of 0.5Hz and low-pass filter of 

45Hz, before being epoched into segments from -100ms to 1500ms, time-locked to the 

onset of the critical stimulus. Trial rejection was performed on the eye electrodes (with 

above 100μV and below -100μV as criteria), and on the Pz, Fz, and Cz channels (with above 

50μV and below -50μV as criteria). Baseline correction was then performed from -100ms to 

0ms.  

After trial rejection, the maximum number of trials remaining per participant for probe and 

irrelevant was 60 and the minimum remaining was 46 for probe (M = 54.91, SD = 5.09) and 

40 for irrelevant (M = 53.91, SD = 6.49).  

4.2.5. ERP Analysis Procedure 
The main analysis was the AGAT (for a detailed description, see section 2.5). Data from the 

Pz electrode were the focus of the group and individual level analyses, as we expect the P3 

to be strongest there (Comerchero & Polich, 1999; Polich & Kok, 1995), but data from the 

Fz and Cz electrodes were also analysed at the group level only. No behavioural data was 
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provided, therefore all analyses used the ERP data only. The probe and irrelevant ERPs 

were the focus of all analyses. The target and distractor stimuli provide no information on 

the recognition of a participant’s own email address, and so were not used in any analyses.  

The search algorithm used a window of 100ms and searched between 250ms and 1000ms 

to find the window of interest. The 250ms start point is 50ms earlier than in the famous 

names chapter and was chosen based on the conclusions of chapter 7, which suggested 

250ms as the start point for the AGAT to allow for individual differences around the start of 

the P3 response (typically around 300ms). The search algorithm selects the window of 

interest from the aggregated ERP, so this earlier start point will not be biased towards 

probe or irrelevant. 

For the group level analysis, two-tailed paired samples t-tests were performed on the 

probe and irrelevant mean amplitudes from the windows of interest.  

For the individual level analysis, a Monte Carlo permutation test was performed on the 

probe and irrelevant trials (as described in section 2.5) using 10,000 permutations.  

4.3. Results 

4.3.1. Group Level 
A grand average of target, probe, and irrelevant from the Pz electrode is presented in 

figure 4.2, where it can be seen that there is a clear P3 response for the probe condition 

that is not present for the irrelevant condition. Table 4.1 presents the individual mean 

amplitudes from Pz for probe and irrelevant as well as the overall mean, median, and 

standard deviation. 

A paired samples t-test was performed on the mean amplitude data for all participants 

from Pz. There was a significant difference between probe (M = 5.615, SD = 3.293, Mdn = 

4.792) and irrelevant (M = 0.703, SD = 1.744, Mdn = 0.509) at Pz, t(10) = 4.246, p = 0.0017, 

and a very large effect size, d = 1.864. This is consistent with there being a P3 response for 

probe but not for irrelevant, as expected. 

Paired samples t-tests were also performed on the mean amplitude data from Cz and Fz 

and found a significant difference between probe (M = 5.440, SD = 3.372, Mdn = 4.120) and 

irrelevant (M = 1.119, SD = 1.424, Mdn = 1.204) at Cz, t(10) = 3.835, p = 0.0033, d = 1.669, 

and between probe (M = 4.092, SD = 2.041, Mdn = 3.710) and irrelevant (M = 1.208, SD = 

1.165, Mdn = 1.058) at Fz, t(10) = 3.504, p = 0.0057, d = 1.736. These results are consistent 
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with there also being a P3 response for the probe but not the irrelevant at Cz and Fz, 

matching the result from Pz.  

Figure 4.2. Grand Average for All Participants from the Pz Electrode. 

 

The vertical blue dashed lines represent the window within which the algorithm searched 
for the window of interest. A clear P3 positivity can be seen for the target and probe that is 
not present for irrelevant. The target elicited the largest P3, which is expected since it was 
task-relevant, but provides no information on the recognition of a participant’s own email 
address and so is of no further interest. The key comparison is between the probe and 
irrelevant. 

 

Figure 4.3 presents a bar graph of the grand mean amplitudes for the target, probe, and 

irrelevant from the Pz electrode. It can be seen that the probe grand mean amplitude was 

significantly larger than the irrelevant grand mean amplitude within the window of 

interest. The target grand mean amplitude is smaller than the probe grand mean amplitude 

despite having a larger peak in the grand average ERP (figure 4.2). This is because, to create 

this bar graph, the target mean amplitude for each participant was calculated using the 

same window of interest that was selected from the aggregated ERP in the AGAT analysis 

for the probe and irrelevant. For most participants, the target ERP peaked outside of this 

window of interest. See appendix B for further explanation. As the target provides no 
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information on the recognition of a participant’s own email address, it was not involved in 

the main analyses and the target grand mean amplitude does not affect our conclusions.  

Figure 4.3. Grand Mean Amplitudes of Target, Probe, and Irrelevant from the Pz electrode. 

 

This bar graph shows the grand average of the mean amplitudes and the standard error of 
the mean at Pz found within each participant’s window of interest for each condition. The 
same window of interest used for each participant’s probe and irrelevant ERPs in the AGAT 
analysis was used for their target ERP to generate this graph. There was a significant 
difference between probe and irrelevant at the group level, t (10) = 4.246, p = 0.0017, and a 
very large effect size, Cohen’s d = 1.864. The target was not statistically analysed.  

 

Previous Fringe-P3 studies using own-name stimuli (Bowman et al., 2013, 2014) have found 

significant P3a’s at Fz and Cz within a 150-300ms window. No significant difference was 

found between the probe and irrelevant during this window for the current study at Fz, t 

(10) = -0.213, p = 0.836, d = -0.068, or Cz, t (10) = -0.207, p = 0.840, d = -0.069. As P3as were 

also not found when using famous name stimuli, it seems likely that the uniquely strong 

salience of own-name stimuli resulted in the P3as found in the previous own-name studies 

and that other stimuli that are salient, but less so than own-names, such as email addresses 

and, perhaps, famous names, do not generate P3as. Figure 4.4 presents grand average 

ERPs for Fz and Cz.  
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Figure 4.4. Grand Averages from the Fz and Cz Electrodes. 

 

The vertical blue dashed lines represent the window within which the algorithm searched 
for the window of interest. Similar to the Pz electrode, a clear P3 positivity can be seen for 
the target and probe at both Fz and Cz that is not present for irrelevant.  

 

4.3.2. Individual Level 
Figure 4.5 shows the ERPs for each individual participant and their window of interest from 

the AGAT analysis. Table 4.1 shows the mean amplitudes and p values for each participant 

obtained from the permutation tests on the probe and irrelevant data from Pz. There were 

seven out of eleven participants (64%) with a significant difference between the probe and 

irrelevant at an alpha of 0.05, with three (27%) of these having highly significant p values of 

less than 0.001. The mean p value was 0.103 and the median p value was 0.026. The 

median is the more appropriate measure of central tendency, rather than the mean, due to 

the skewed distribution of p values. Only Pz was analysed at the individual level as this was 

where we expected the P3 to be strongest. 
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Table 4.1. Individual Participants’ Mean Amplitudes and P Values from the Pz Electrode. 

Participant Probe Irrelevant P Value 

1 4.792 3.537 0.2803 

2 12.197 -1.259 < 0.0001* 

3 10.842 2.551 < 0.0001* 

4 6.657 0.722 0.0004* 

5 1.681 -0.999 0.0264* 

6 3.199 0.509 0.1125 

7 5.492 -0.919 0.0062* 

8 4.141 0.481 0.0357* 

9 6.287 -1.045 0.002* 

10 2.623 0.926 0.271 

11 3.853 3.234 0.4027 

Mean 5.615 0.703 0.103 

Median 4.792 0.509 0.026 

Std Dev 3.293 1.744 0.145 

This table shows the probe and irrelevant mean amplitudes from the window of interest and 
the p values for each participant. The mean amplitude values are larger for the probe than 
the irrelevant for all participants. 7 of the 11 participants (64%) had significant p values, 
with three of these participants having p values smaller than 0.001. The smallest p value 
that can be obtained from the 10,000 permutations is 0.0001. The asterisk marks p values 
that were significant at the 0.05 level. 
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Figure 4.5. Individual Participants’ ERPs from the Pz Electrode. 

 

The green ERPs are the probe and the black ERPs are the irrelevant. The vertical blue 
dashed lines represent the window within which the algorithm searched for the window of 
interest. The vertical red dotted lines represent the window of interest selected for that 
participant. For participants that had significant p values, a positivity in the probe ERP can 
be seen that is not present in the irrelevant ERP. 
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4.4. Discussion 

This research presented an initial investigation into the use of the Fringe-P3 concealed 

information test for online identities, to link real world identities to online identities (e.g., 

email addresses, Skype addresses, usernames for online forums) connected to online 

crimes. The main aim of this experiment was to show that the Fringe-P3 method could be 

used to successfully detect familiarity with a participant’s real own email address. The 

group level analysis found a significant difference between responses to the probe and 

irrelevant stimuli at the group level and a clear P3 response for the participants’ own 

(probe) email addresses but not for the unfamiliar irrelevant email addresses, as expected. 

These results show that the method was successful in detecting when participants saw 

their own email address amongst non-familiar email addresses, even when they were 

trying to pretend the target email address was their own.  

In addition to the group level analysis, a significant difference was found between the 

probe and irrelevant for seven out of eleven participants (64%) in the individual level 

analysis. Three of these participants had highly significant differences with p values smaller 

than 0.001. These promising results show that the method can work for an individual 

participant as well as at the group level, which is vital to forensic investigations where the 

method would most commonly be used with individuals.  

While these results are generally significant at the individual level, as well as at group level, 

previous Fringe-P3 research using own names (Bowman et al., 2013, 2014) and faces 

(Alsufyani et al., 2019) have found even stronger results at the individual level. There are a 

few possible reasons why four participants did not have significant differences between 

their probe and irrelevant in this individual level analysis. The following explanations 

warrant further research that may result in improvements to make the Fringe-P3 concealed 

information test more successful.  

One potential explanation is that participants’ university email addresses may not be as 

salient to them as expected, especially compared to own names (Bowman et al., 2013, 

2014). Our own names have especially significant meaning to us, making them highly 

salient and stand out more easily among other stimuli (Cherry & Taylor, 1954; Mack & 

Rock, 1998; Moray, 1959; Wolford & Morrison, 1980; N. Wood & Cowan, 1995; Yang et al., 

2013), to the point of even escaping an attentional blink when presented shortly after 

another critical stimulus (Shapiro et al., 1997). In contrast, University email addresses are 

generated according to university rules, and not chosen by the participant, so they may not 
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have the same level of meaning and salience to all participants. This may have contributed 

to why the email addresses did not stand out as significantly in the streams compared to a 

participant’s own name.  

There is also a potential perceptual issue with the email address stimuli, since they are 

generated following the same rules and are the same length, making them very 

homogenous. Additionally, due to the generation rules, several stimuli have an X in the 

middle, further adding to their homogeneity. When distractors are too similar to the target 

(e.g., same category or colour), the distractors can capture attention (Folk et al., 1992; Su 

et al., 2011). There needs to be heterogeneity in RSVP stimuli in order for the critical salient 

stimuli to stand out from the distractors. It is possible the homogeneity of the email 

address stimuli may have contributed to some participants not demonstrating a significant 

effect, compared to previous research that used more heterogeneous stimuli, such as own-

names (Bowman et al., 2013, 2014), famous names (Chapter 3), and famous faces 

(Alsufyani et al., 2019). 

Finally, there is the possibility that some participants were (whether consciously or not) 

using a search strategy when looking for the target, such as looking for the first letter of the 

target email address and only processing the rest of the stimuli if the first letter matched. 

This could mean they did not read the probe if it did not start with the same letter as the 

target, which would prevent a P3 response. This fits with the glance-look model of 

cognitive control (Su et al., 2011), which argues that stimuli in RSVP streams are first 

“glanced” at to process the broad category or meaning of the stimulus (in our example, if it 

begins with a specific letter). If a stimulus matches the target category, then it receives a 

deeper “look”, where specific meaning and detail is analysed (and the rest of that email 

address would be read). Additionally, the glance-look theory posits that distractor stimuli 

that are in the same or a semantically related category as the target can capture attention, 

receive a deeper “look”, and initiate an attentional blink, causing participants to miss a 

target or probe stimulus presented shortly after (Folk et al., 1992; Su et al., 2011). In the 

case of email addresses, this could mean that distractors that began with the same letter as 

the target could have captured attention, reducing the chance of the participant seeing the 

probe and invoking a P3 if it appeared shortly after. A future experiment should attempt to 

prevent this search strategy by finding a task that forces participants to read the whole 

email address. Chapter 6 will investigate two task types that could affect the participant’s 

ability to use search strategies when looking for image stimuli in RSVP streams. 
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Research into these potential issues outlined above could lead to improvements in both 

the stimuli and procedures used for future online identity deception experiments, and 

hence could potentially result in even stronger individual participant level responses. 

Despite these possible issues, the current study found significant results at both the group 

and individual level, thus providing the intended proof of principle demonstration that this 

method can successfully detect recognition of a participant’s own email address. This is a 

vital step towards linking online identities to real world identities and aiding those fighting 

cybercrime. 
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5. Detecting Concealed Knowledge of Locations using EEG 

5.1. Introduction 

This chapter contains an analysis of a dataset collected by myself at the University of Kent 

for my master’s dissertation. New data processing and all new analyses were conducted for 

this chapter (see section 1.4 for details on previous and new uses of this data). This data set 

moves away from identity related information and instead tests the Fringe-P3 method with 

location information in the form of photographs.  

The Fringe-P3 method combined with a concealed information test has the potential to 

show that a participant is familiar with a location, such as one where a crime occurred, and 

may be concealing information regarding it. Specifically, the method could be used in 

forensic investigations where the police already know that a specific location was involved 

in a crime and suspect that a particular person has been to that location and may be linked 

to the crime. The method would then be used to detect the suspect’s familiarity with that 

location, thereby linking them to it. Such locations could be indoors or outdoors, but the 

current experiment will focus on photographs of the exteriors of buildings.  

The Fringe-P3 method has already been shown to accurately detect familiarity with images 

of famous faces by Alsufyani et al (2019), showing that the method can work with some 

image stimuli. A related method to the Fringe-P3 has also been used by Rosenzweig and 

Bonneh (2019, 2020) to detect familiarity with face image stimuli on the fringe of 

awareness using involuntary eye movements. However, these studies have only used 

images of faces and not other types of images. Our brains are especially good at detecting 

faces, to the point where there are specific areas of the brain that are thought to be 

dedicated to perceiving and recognising faces, such as the fusiform face area and occipital 

face area (Iidaka, 2014; Kanwisher et al., 1997; Pitcher et al., 2011). Therefore, it is 

important that we test the Fringe-P3 method with location image stimuli, not only to aid 

forensic investigations by linking suspects to locations, but also to show that the method 

can detect familiarity with picture stimuli that are more complex than the greyscale famous 

faces used by Alsufyani et al (2019).  

While the Fringe-P3 method has only been tested with one type of image stimuli (faces), 

there have been many studies using one of its core components, RSVP, with a variety of 

image stimuli, especially while researching the attentional blink. These studies have shown 

that picture stimuli, including people, faces, objects, vehicles, plants, and animals can be 

accurately detected in RSVP streams (Balas & Momsen, 2014; Ganis & Patnaik, 2009; 
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Junghöfer et al., 2001; Potter, 1976; Potter et al., 2014; Trippe et al., 2007; Versace et al., 

2010), including when the target picture is only briefly described (e.g., “a boat” or “a 

smiling couple”) and not shown in advance (Potter, 1976; Potter et al., 2014). Image targets 

can even be detected in RSVP streams with SOAs as fast as 13ms (Potter et al., 2014). 

Additionally, some studies have shown that picture stimuli with emotional or threatening 

content are even better detected than neutral pictures in RSVP streams and are better 

remembered in post-stream memory tests (Junghöfer et al., 2001; Potter et al., 2014; 

Trippe et al., 2007; Versace et al., 2010). Many crimes involve an emotional or threatening 

aspect, so this could mean that some crime-related picture stimuli may be even more easily 

detected by guilty suspects in RSVP streams.  

Another core component of the current research is the concealed information test. There 

are some studies that have successfully used CITs with location stimuli by presenting the 

name of a location, such as “London” (Meixner & Rosenfeld, 2011; Rosenzweig & Bonneh, 

2020), but there do not appear to be any that have used pictures of locations. There are, 

however, several studies that have successfully used CITs to detect familiarity with pictures 

of objects (Ambach et al., 2010; Cutmore et al., 2009; Matsuda et al., 2013) as well as faces 

(Cutmore et al., 2009; Ganis & Patnaik, 2009; Lancry-Dayan et al., 2018; Rosenzweig & 

Bonneh, 2019, 2020), based on ERPs, eye movements, and the attentional blink. 

The location picture stimuli used in this chapter were taken from a database used by 

Konkle et al (2010) to investigate memory for scenes using photographs of a variety of 

locations. They did not use RSVP or a CIT but did show participants (slower) streams of 

location image stimuli. In this experiment, participants were shown 2,912 pictures of 

locations from 128 scene categories (e.g., golf course, amusement park). The images were 

shown in 10 blocks of streams with each image shown for 3s, followed by a fixation 

stimulus and then the next image. At the end of all of the blocks there was a 20 minute 

break followed by forced choice recognition tests, where participants had to choose which 

of two images they had previously seen during the blocks. They found that recognition 

memory performance was high with accuracy varying between 76% and 96% depending on 

how many images participants were shown from that scene category during the streams (1-

64). While this study presented the images at a much slower rate than in Fringe-P3 

research, it does show that participants can remember and recognise location stimuli when 

they have only seen them for a short amount of time amongst a large number of other 

location stimuli. This, combined with the previously discussed RSVP and CIT research using 

other picture stimuli, suggests that participants should be able to perceive and detect 
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location image stimuli in the Fringe-P3 concealed information test used in the current 

study.  

The main aim of this chapter is to show that the Fringe-P3 method can accurately detect 

familiarity with location picture stimuli, specifically photographs of the exterior of familiar 

buildings from the participant’s university campus. Furthermore, this chapter aims to show 

that the Fringe-P3 method can work with picture stimuli that are more visually complex 

than the greyscale face stimuli used in previous Fringe-P3 research. We will test this with 

University of Kent students by comparing their ERP and behavioural responses to images of 

buildings on their own University of Kent campus (familiar probe) compared to buildings on 

the University of Birmingham campus (unfamiliar irrelevant).  

We hypothesise that there will be significantly different responses to the probe campus 

image stimuli compared to the irrelevant campus stimuli, with only the probe stimuli 

generating a P3 response. We also predict that only the salient stimuli (i.e., probe 

locations) will be reliably recognised in the end-of-block and end-of-experiment recognition 

tests. 

5.2. Method 

5.2.1. Participants 
Eight students from the School of Computing at the University of Kent took part in the 

experiment. All participants were male, aged between 23 and 36 (M = 27.75, SD = 4.77), 

had normal or corrected-to-normal vision and had no neurological disorders. All 

participants gave their informed consent and were paid for their participation. The 

University of Kent Sciences Research Ethics Advisory Group approved the experiment. 

5.2.2. Stimuli and Presentation 
The experiment was run in MATLAB R2014a using Psychophysics Toolbox version 3. All 

stimuli were 256px x 256px colour photographs of buildings presented on a black 

background at the same location in the middle of the screen. There were three categories 

of critical stimuli - probe, irrelevant, and target - and three images in each category. Figure 

5.1 shows the critical stimuli used. 

The three probe stimuli were photographs of buildings on the University of Kent’s 

Canterbury Campus. A pilot study had been conducted previously to find which three 

University of Kent buildings were the most recognisable in RSVP streams to University of 

Kent students; these three most recognisable images were used as the probe stimuli in the 

current experiment. The three irrelevant stimuli were photographs of buildings on the 
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University of Birmingham campus. The target stimuli were three photographs of buildings 

chosen from Konkle et al’s database (2010). A fourth target stimulus, also chosen from this 

database, was used only for the practice trials and not included in the main experiment. All 

of the distractors were taken from Konkle et al’s database. As our probe and irrelevant 

stimuli were photographs of the outside of buildings, we only used distractors from Konkle 

et al’s database that were also photographs of building exteriors. This resulted in the 

formation of a database of 411 distractors for the current experiment.  

Figure 5.1. The Probe, Irrelevant, and Target Stimuli. 

Probe Stimuli – University of Kent Campus

 

Irrelevant Stimuli – University of Birmingham Campus

 

Target Stimuli

 

This figure presents the three probe, irrelevant, and target stimuli used in the main 
experiment. 
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All stimuli were presented in RSVP streams with an SOA of 167ms. This SOA was slower 

than previous Fringe-P3 research (133ms in chapter 3 and Bowman et al (2013), 100ms in 

Bowman et al (2014)) as it was thought that the location image stimuli would be more 

visually complex than name and face stimuli, so may need longer to be perceived and 

recognised within the RSVP streams. While picture targets have been shown to be detected 

in RSVP streams with faster SOAs, these targets were task relevant and would be expected 

to stand out more easily in the streams, whereas the current experiment’s main focus is on 

the probe stimuli, which are not task relevant and, therefore, may not stand out as easily. 

Additionally, this SOA of 167ms was also used in two of Potter’s RSVP experiments with 

picture stimuli (Potter, 1975, 1976) along with four other SOAs, one of which was faster in 

each experiment (113ms in 1975 and 125ms in 1976). While targets were detected by 

participants at the faster SOAs, their accuracy was lower than for 167ms, and the 

difference in accuracy between 125ms and 167ms was significant (Potter, 1976). Therefore, 

167ms was chosen as a suitable SOA for the current experiment. 

Each stream consisted of 18 location stimuli and started with a fixation stimulus 

(“XXXXXXX”) presented for 800ms. Each stream contained one critical stimulus, which 

appeared randomly between the 5th and 9th positions in the stream (inclusive). The other 

positions in the streams were filled by distractors, pseudorandomly selected from our 

database so that each distractor could only appear once in each stream. Each stream ended 

with one of two final items (“-------” or “=======”), which were included to ensure 

participants watched the entire stream. Figure 5.2 shows a section of an example stream. 

There were three blocks of 75 trials. Each block was assigned one probe, one target, and 

one irrelevant stimulus, which were shown 25 times each within that block. The order in 

which the trials appeared within each block was randomised. Across the whole experiment 

there were 75 probe trials, 75 irrelevant trials, and 75 target trials, resulting in 225 trials 

overall. 
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Figure 5.2. Example Section of an RSVP Stream of Location Stimuli. 

 

This is a section of an example stream, including one probe stimulus amongst distractors.  

 

5.2.3. Tasks 

Practice Trials 

Before starting the main experiment, participants took part in ten practice trials to 

familiarise themselves with the task and viewing the streams. Six of these trials contained a 

target (that was not used in the main experiment) and the remaining four contained only 

distractors. None of the practice trials contained a probe or irrelevant stimulus or buildings 

from the University of Kent or University of Birmingham campuses.  

Main Experiment 

Participants were instructed to keep their eyes fixated on the centre of the screen and to 

avoid eye and body movements during each trial to reduce noise in the data. Participants 

were tasked with looking for the target and the final item in each stream. They were also 

told that “there will be images included of the university you are at” but were not given a 

specific task for these images. 

At the end of each stream, participants were asked what the final item was and “did you 

see the target image?” Participants responded via a numeric keyboard, pressing 1 for “yes” 

and 2 for “no”. Participants were shown the target stimulus when they were asked if they 

saw it at the end of each stream as a reminder. Both the target and final item tasks were 

included solely to keep participants’ attention on the streams. 
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At the end of each block there was a recognition test on the screen consisting of five more 

questions. Participants were shown five images (separately) and asked “How many times 

did you see the following image?” next to each image. The five images were the target, 

probe, and irrelevant for that block, as well as a distractor and an “unpresented image” of a 

building on the University of Kent campus that was not shown in the streams. The same 

images were used for all participants. The response options were on a scale of 1 to 5, 

starting with 1 meaning “Never” and increasing through “Maybe once or twice”, “A few 

times”, “Many times”, and ending with 5 meaning “A lot”. The three distractor images were 

randomly selected from the distractors database and had the same small probability 

(4.14%) of being presented in a trial as any of the other potential distractor images in the 

database. 

At the end of the final block, participants were also asked “Before the experiment, were 

you familiar with the University of Kent Campus?” to which all participants responded 

“yes”, and “Before the experiment, were you familiar with the University of Birmingham 

Campus?” to which all participants responded “no”. If there had been any participants that 

had responded “yes” to the University of Birmingham question, they would have been 

excluded from the analyses due to the likelihood of familiarity with the irrelevant stimuli. 

Participants were not asked about familiarity with the University of Birmingham before 

participating in the experiment as the question may have warned them that images of the 

University of Birmingham may be presented.  

At the end of the experiment, participants were given a printed paper questionnaire, 

containing the three Kent Probe and three Birmingham Irrelevant stimuli presented in a 

random order amongst five more University of Kent and five more University of 

Birmingham images that were not presented in the experiment. Participants were asked to 

rate how well they felt they saw each image within the experiment on a scale of 1 (“Did not 

see”) to 5 (“Saw easily”).  

5.2.4. Recording Apparatus 
We recorded EEG data using the BioSemi ActiveTwo system and ActiView software. EEG 

data were recorded from the Pz, Fz, Cz, P3, P4, and Oz electrodes. Electro-oculogram data 

were recorded from both eyes using two HEOG electrodes on the outer canthus of each 

eye and two VEOG electrodes, one above and one below one eye. A common mode sense 

(CMS) active electrode and a driven right leg (DRL) passive electrode were used to form a 

ground and the linked mastoids were used as a reference. The data were digitized at 

2048Hz and impedances were kept below 10 kOhms. 
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5.2.5. Analysis Procedure 
The EEG data were analysed using MATLAB R2016a and EEGLAB v13.6.5b. The EEG data 

were resampled to 512Hz and then subjected to a high-pass filter of 0.5 Hz, a low-pass filter 

of 45 Hz, and a notch filter between 7 and 9Hz to filter out the SSVEP caused by the 

stimulus presentation rate. The data were then epoched into segments from -100ms to 

1500ms, time-locked to the onset of the critical stimulus. Trial rejection was performed on 

the eye electrodes (with above 100μV and below -100μV as criteria), and on the Pz, Fz, and 

Cz channels (with above 50μV and below -50μV as criteria). Baseline correction was then 

performed on -100ms to 0ms. 

After trial rejection, the maximum number of trials remaining was 75 for probe, irrelevant, 

and target, and the minimum was 51 for probe (M = 66.75, SD = 9.56), 49 for irrelevant (M 

= 67.38, SD = 10.42), and 43 for target (M = 65.88, SD = 11.05).  

5.2.6. ERP Analysis Procedure 
The ERP data were analysed using the AGAT method (for a detailed description of the 

AGAT, see section 2.5). Data from the Pz electrode were the focus of the group and 

individual level analyses, as the P3 is typically greatest from that electrode (Comerchero & 

Polich, 1999; Polich & Kok, 1995), but data from the Fz and Cz electrodes were also 

analysed at the group level only. The probe and irrelevant ERPs and behavioural data were 

the initial focus of all analyses. However, additional analyses were conducted using the 

target ERPs. The distractor stimuli provide no information on the recognition of familiar 

locations and so were not included in any analyses.   

The AGAT search algorithm used a window with a width of 100ms and searched between 

300ms and 1000ms to find the window of interest. For the main probe-irrelevant 

comparisons, the window of interest for each participant was found from their aggregated 

probe and irrelevant ERP. For the additional target-irrelevant comparisons, the window of 

interest for each participant was found from their aggregated target and irrelevant ERP.  

For the group level analysis, two-tailed paired samples t-tests compared the probe and 

irrelevant mean amplitudes, and the target and irrelevant mean amplitudes.  

For the individual level analysis, a Monte Carlo permutation test was performed on the 

probe and irrelevant trials (as described in section 2.5) and the target and irrelevant trials 

using 10,000 permutations.  
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5.3. Results 

5.3.1. Group Level 
Table 5.1 shows the number of times participants answered “yes” when asked at the end of 

the trial if they saw the target in the target, probe, and irrelevant conditions as well as their 

d’ scores. This shows that participants correctly said yes (hit) after most target trials and 

rarely said yes (5 or less times) after probe or irrelevant trials (false alarms). Only 

participant 2 said yes on less than half of the target trials. 

Table 5.1. The Number of Times Participants Answered “Yes” When Asked if They Saw the 

Target in Each Condition. 
Participant Target Probe Irrelevant d’ 

1 72 2 1 3.804 

2 32 1 0 2.290 

3 62 4 2 2.692 

4 48 3 2 2.192 

5 73 0 1 4.407 

6 52 5 3 2.119 

7 70 1 0 3.976 

8 49 0 5 2.228 

Mean 57.250 2.000 1.750 2.964 

Median 57.000 1.500 1.500 2.491 

Std Dev 14.489 1.852 1.669 0.941 

This table shows the number of times participants said “yes” after target trials (hits), and 
probe and irrelevant trials (false alarms). 4/8 participants scored hits on at least 60 target 
trials and 7/8 participants scored hits on over half the target trials. The maximum possible 
score for each condition was 75.  

 

The grand averages show that there was a large positivity for the target at Pz (figure 5.3), 

Fz, and Cz (figure 5.5). There is also a smaller positivity for both probe and irrelevant at Pz, 

Fz, and Cz, that is clearest at Fz and Cz.  
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Figure 5.3. Grand Average for All Participants from the Pz Electrode. 

 

This figure presents the grand average for target, probe, and irrelevant at Pz. The blue 
dashed vertical lines represent the window within which the algorithm searched for the 
window of interest. There is a large positivity for the target and a small positivity for the 
probe and irrelevant.  

 

Probe-Irrelevant Comparison 

Table 5.2 presents each participant’s probe and irrelevant mean amplitudes from Pz within 

their window of interest. A paired samples t-test was conducted on the probe and 

irrelevant mean amplitude data from Pz and found no significant difference between probe 

(M = 2.614, SD = 1.250, Mdn = 2.696) and irrelevant (M = 3.077, SD = 1.732, Mdn = 3.219), 

t(7) = -1.473, p = 0.184, d = -0.307. This result, combined with the grand average in figure 

5.3, shows that there was not a significantly larger P3 positivity for the probe compared to 

the irrelevant at Pz.  

The bar graph in figure 5.4 shows the grand mean amplitudes for target, probe, and 

irrelevant at Pz using the windows of interest found during the probe-irrelevant 

comparison AGAT analysis. The target grand mean amplitude is larger than the probe or 

irrelevant, which is expected since it is task relevant. The irrelevant grand mean amplitude 

is slightly larger than the probe grand mean amplitude, but this difference is not significant.   
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Figure 5.4. Grand Mean Amplitudes of Target, Probe, and Irrelevant from the Pz Electrode 

using the Window of Interest from the Probe-Irrelevant Comparison. 

 

This bar graph shows the grand average of the mean amplitudes and the standard error of 
the mean at Pz found within each participant’s window of interest for each condition. The 
windows of interest used for all three of these means were the same windows used in the 
probe-irrelevant AGAT analysis. There was no significant difference between probe and 
irrelevant at the group level, t(7) = -1.473, p = 0.184, d = -0.306.  

 

The results from Pz were the main focus of the analysis, as the P3 is typically strongest from 

that electrode, but the mean amplitude data from Fz and Cz were also analysed. Paired 

samples t-tests found no significant difference between probe (M = 3.367, SD = 1.875, Mdn 

= 3.350) and irrelevant (M = 3.562, SD = 2.332, Mdn = 3.658) at Fz, t(7) = -0.273, p = 0.793, 

d = -0.092, and no significant difference between probe (M = 2.889, SD = 1.208, Mdn = 

3.005) and irrelevant (M = 4.022, SD = 2.285, Mdn = 2.844) at Cz, t(7) = -1.776, p = 0.119, d 

= -0.620. These results are consistent with there not being a significantly larger P3 for 

probe compared to irrelevant at Fz or Cz, matching the result from Pz. 

As there was not a significantly larger P3 for the probe within the 300-1000ms window at 

Pz, Fz, or Cz and the irrelevant is larger than the probe in the Fz and Cz grand averages 

within the 150-300ms window that is associated with P3as (figure 5.5), a P3a analysis was 

not conducted at Fz and Cz.  
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Figure 5.5. Grand Averages from the Fz and Cz Electrodes. 

 

This figure presents the grand average for target, probe, and irrelevant at Fz and Cz. The 
blue dashed vertical lines represent the window within which the algorithm searched for the 
window of interest. There is a large positivity for the target and a small positivity for the 
probe and irrelevant. 

 

Target-Irrelevant Comparison 

The probe-irrelevant comparison results show that there was not a large positivity for the 

probe and there was no significant difference between probe and irrelevant at the group 

level. There was, however, a large positivity for the target in the Pz, Fz, and Cz grand 

averages (figures 5.3 and 5.5). This suggests that location stimuli can generate strong P3s 

and that there was an issue with our method or our specific probe or irrelevant stimuli that 

caused the probe ERPs to not be significantly different to the irrelevant ERPs. Therefore, 

the AGAT analysis was also used to compare the target and irrelevant data, using an 

aggregated target and irrelevant ERP (instead of the previous probe and irrelevant 

aggregated ERP) to find a new window of interest for each participant. Figure 5.6 contains a 

bar graph of the grand mean amplitudes for target, probe, and irrelevant from these 

windows. The target grand mean amplitude is over twice as large as the probe and 

irrelevant grand mean amplitudes. Table 5.3 presents the individual target and irrelevant 

mean amplitudes at Pz for each participant. 
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Figure 5.6. Grand Mean Amplitudes of Target, Probe, and Irrelevant from the Pz Electrode 

using the Window of Interest from the Target-Irrelevant Comparison. 

 

This bar graph shows the grand average of the mean amplitudes and the standard error of 
the mean at Pz found within each participant’s window of interest for each condition. The 
windows of interest used for all three of these means were the same windows used in the 
Target-Irrelevant AGAT analysis. There was a significant difference between target and 
irrelevant at the group level, t(7) = 2.801, p = 0.026, d = 1.517. 

 

Paired samples t-tests were conducted on the target and irrelevant mean amplitudes and 

found a significant difference between target (M = 10.116, SD = 6.572, Mdn = 8.771) and 

irrelevant (M = 2.830, SD = 1.723, Mdn = 2.776) at Pz, t(7) = 2.801, p = 0.026, and a very 

large effect size, d = 1.517. There was also a significant difference between target (M = 

12.086, SD = 7.558, Mdn = 10.208) and irrelevant (M = 3.575, SD = 2.045, Mdn = 3.971) at 

Cz, t(7) = 2.827, p = 0.026, and a very large effect size, d = 1.537. There was not, however, a 

significant difference between target (M = 10.070, SD = 7.868, Mdn = 7.387) and irrelevant 

(M = 3.739, SD = 2.501, Mdn = 3.901) at Fz, t(7) = 2.047, p = 0.080, d = 1.084. These results 

show that there was a significantly larger P3 for the target compared to the irrelevant at Pz 

and Cz, but not at Fz. 
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5.3.2. Individual Level 

Probe-Irrelevant Comparison 
None of the participants had a significant difference between probe and irrelevant at Pz. 

Table 5.2 shows the mean amplitudes from the window of interest and the p value for each 

participant. The mean p value was 0.583 and the median p value was 0.659. Figure 5.7 

presents the ERPs for each participant and the window of interest found for the probe and 

irrelevant comparison. Only Pz was analysed at the individual level as this was where we 

expected the P3 to be strongest. 

Table 5.2. Individual Participants’ Mean Amplitudes and P Values for Probe and Irrelevant 

from the Pz Electrode. 
Participant Probe Irrelevant P Value 

1 3.375 4.531 0.7206 

2 4.798 5.381 0.6001 

3 2.671 2.517 0.4632 

4 2.720 3.921 0.7318 

5 1.777 0.334 0.1081 

6 3.266 4.259 0.6688 

7 0.849 1.308 0.6483 

8 1.457 2.364 0.7224 

Mean 2.614 3.077 0.583 

Median 2.696 3.219 0.659 

Std Dev 1.250 1.732 0.211 

This table shows the probe and irrelevant mean amplitudes and the p values for each 
participant. None of the p values were significant. 
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Figure 5.7. Individual Participants’ ERPs for Probe and Irrelevant from the Pz Electrode. 

 

The green ERPs are the probes and the black ERPs are the irrelevants. The blue dashed 
vertical lines represent the window within which the algorithm searched for the window of 
interest. The red dotted vertical lines represent the window of interest found for each 
participant.   

 

It can be seen in figure 5.7 that participant 2 had a positivity for probe between 300 and 

400ms. This could potentially be a P3 but, as the irrelevant was low at this point but high 

later on, this 300-400ms window did not have the highest mean amplitude in the 

aggregated ERP, and so was not selected as the window of interest by the AGAT for 

analysis. Instead, a much later window was chosen where both probe and irrelevant were 

high and there was no significant difference. Participants 1 and 6 have positivities for probe 

within their selected windows of interest that also could have potentially been P3s, but the 

irrelevant was also high within these windows, so there was no significant difference.  
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Target-Irrelevant Comparison 

Five of the eight participants (63%) had a significant difference between target and 

irrelevant at Pz. Participant 8 was only just above the 0.05 significance threshold (p = 

0.0515). Table 5.3 shows the mean amplitudes from the window of interest and the p value 

for each participant. The mean p value was 0.135 and the median p value was 0.008. The 

median is the more suitable measure of central tendency due to the skewed distribution of 

p values. Figure 5.8 shows the ERPs for each participant and the window of interest found 

for the target and irrelevant comparison. Only Pz was analysed at the individual level. 

Table 5.3. Individual Participants’ Mean Amplitudes and P Values for Target and Irrelevant 

from the Pz Electrode. 
Participant Target Irrelevant P Value 

1 23.094 3.101 <0.0001* 

2 10.839 4.390 0.0123* 

3 6.702 2.450 0.0039* 

4 6.347 3.944 0.1457 

5 14.538 0.182 <0.0001* 

6 2.742 5.363 0.8704 

7 12.025 1.122 <0.0001* 

8 4.640 2.086 0.0515 

Mean 10.116 2.830 0.135 

Median 8.771 2.776 0.008 

Std Dev 6.572 1.723 0.301 

This table shows the target and irrelevant mean amplitudes and the p values for each 
participant. 5/8 (63%) had significant p values. The target mean amplitude was larger than 
the irrelevant mean amplitude for all participants except participant 6. The asterisk 
indicates a significant p value.  
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Figure 5.8. Individual Participants’ ERPs for Target and Irrelevant from the Pz Electrode. 

  

The red ERPs are the targets and the black ERPs are the irrelevants. The blue dashed vertical 
lines represent the window within which the algorithm searched for the window of interest. 
The green dotted vertical lines represent the window of interest found for each participant. 
The target is visibly larger than the irrelevant within the search window for all of the five 
participants with significant p values, with participants 1, 5 and 7 having especially clear P3 
positivities and highly significant p values.  

 

5.3.3. Recognition Tests 
Participants’ confidence ratings from the end-of-block recognition tests are presented in 

table 5.4. These confidence ratings are the means of the ratings given in the recognition 

tests at the end of each of the three blocks.  

The main comparisons were probe (M = 3.167, SD = 0.563, Mdn = 3.333) against an 

unpresented University of Kent image (M = 1.667, SD = 0.535, Mdn = 1.667), irrelevant (M = 

2.250, SD = 0.496, Mdn = 2.167) against distractor (M = 3, SD = 0.797, Mdn = 3), probe 

against irrelevant, and irrelevant against an unpresented University of Kent image. The 

paired samples t-tests found a significant difference between the probe and unpresented 

Kent image scores, t(7) = 4.348, p = 0.003, and a very large effect size, d = 2.732, with the 

probe scores being significantly larger than the unpresented Kent image scores. There was 

a significant difference between irrelevant and distractor, t(7) = -2.908, p = 0.023, and a 
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very large effect size, d = -1.130, with the irrelevant scores being significantly smaller than 

the distractor scores. There was also a significant difference between probe and irrelevant 

scores, t(7) = 3.788, p = 0.007, and a very large effect size, d = 1.727, with the probe scores 

being significantly larger than the irrelevant scores. This shows that there was a significant 

difference in recognition even though the probe stimuli did not generate significantly larger 

P3s than the irrelevants. Finally, there was a significant difference between irrelevant and 

unpresented Kent image, t(7) = 2.498, p = 0.041, and a very large effect size, d = 1.132, with 

the irrelevant scores being significantly larger than the unpresented image scores.  

Table 5.4. Participants’ Confidence Ratings from the End-of-Block Recognition Tests. 

Participant Probe Irrelevant Unpresented 
Kent 

Distractor 

1 3.0 1.7 1.7 2.0 

2 3.7 2.0 2.0 2.0 

3 2.7 2.3 2.3 4.3 

4 2.7 1.7 1.3 2.7 

5 3.7 2.0 1.0 3.7 

6 3.7 2.7 1.0 3.0 

7 3.7 3.0 1.7 3.3 

8 2.3 2.7 2.3 3.0 

Mean 3.167 2.250 1.667 3.000 

Median 3.333 2.167 1.667 3.000 

Std Dev 0.563 0.496 0.535 0.797 

This table shows the final confidence ratings in each category from the recognition tests 
given at the end of each block for all participants. These ratings are the means of the 
ratings given at the end of each block, where 1 meant the participant thought the location 
never appeared and 5 meant the location appeared a lot.  

 

Table 5.5 presents participants’ confidence ratings from the recognition test at the end of 

the experiment. This test presented all three probes and irrelevants along with five 

unpresented University of Kent and University of Birmingham images. The confidence 

ratings are the mean ratings from these categories.  

The main comparisons were probes (M = 4.167, SD = 0.797, Mdn = 4.167) against 

unpresented University of Kent images (M = 1.95, SD = 0.621, Mdn = 2.1), irrelevants (M = 

3.083, SD = 1.035, Mdn = 3) against unpresented University of Birmingham images (M = 

1.35, SD = 0.542, Mdn = 1.2), and probes against irrelevants. The paired samples t-tests 
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found a highly significant difference between the probe and unpresented Kent image 

scores, t(7) = 7.130, p <0.0001, and a very large effect size, d = 3.103, with the probe scores 

being significantly larger than the unpresented Kent image scores. There was a significant 

difference between the irrelevant and unpresented Birmingham image scores, t(7) = 4.617, 

p = 0.002, and a very large effect size, d =2.098, with the irrelevant scores being 

significantly larger than the unpresented Birmingham image scores. There was also a highly 

significant difference between probe and irrelevant, t(7) = 5.814, p = 0.001, and a very large 

effect size, d = 1.173, with the probe scores being significantly larger than the irrelevant 

scores, thus, again, showing that there was a significant difference in probe and irrelevant 

recognition even though there was not a significant difference in probe and irrelevant ERPs. 

Table 5.5. Participants’ Confidence Ratings from the End-of-Experiment Recognition Tests. 

Participant Probe Irrelevant Unpresented 
Kent 

Unpresented 
Birmingham 

1 3.7 3.0 1.8 1.4 

2 5.0 3.7 2.4 1.4 

3 4.3 3.0 2.6 2.6 

4 3.3 2.3 2.4 1.0 

5 5.0 3.7 1.2 1.0 

6 5.0 5.0 2.6 1.4 

7 3.0 1.7 1.4 1.0 

8 4.0 2.3 1.2 1.0 

Mean 4.167 3.083 1.950 1.350 

Median 4.167 3.000 2.100 1.200 

Std Dev 0.797 1.035 0.621 0.542 

This table shows the final confidence ratings in each category given at the end of the 
experiment for all participants. These ratings are the means of the ratings given at the end 
of the experiment, where 1 meant the participant felt they did not see the image and 5 
meant the participant felt they saw the image easily.  
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5.4. Discussion 

There were two main aims for this experiment. Firstly, to show that the Fringe-P3 method 

could accurately detect familiarity with location image stimuli and secondly, as an 

extension to this, show that the Fringe-P3 method could work with image stimuli that are 

more complex than the previously used greyscale famous face stimuli (Alsufyani et al., 

2019). It was predicted that there would be a large P3 for the probe stimuli but not for the 

irrelevant stimuli and there would be a significant difference between the probe and 

irrelevant mean amplitudes. The ERP data did not show a large P3 for the probe and the 

analyses did not find a significant difference between the probe and irrelevant at the group 

or individual participants’ level. The ERP data did, however, show a large P3 for the target. 

To further investigate this, analyses were also performed on the target ERP data, 

comparing it to the irrelevant, to see if target location stimuli can breakthrough into 

awareness and generate significantly larger P3s than irrelevants. This would help us 

understand if it was the use of location stimuli in general that led to the lack of significant 

results for the probe-irrelevant comparison or whether there was an issue with our method 

or specific probe or irrelevant stimuli. The target analysis found a significant difference 

between target and irrelevant at Pz, where we expected the P3 to be strongest, and at Cz 

but not at Fz at the group level and significant differences for five of the eight participants 

at Pz at the individual level. These results show that location stimuli can breakthrough into 

conscious awareness, generate strong P3s, and be successfully detected by the Fringe-P3 

method at both the group and, most importantly, at the individual participants’ level. This 

also suggests that, since target locations did generate strong P3s, there was some aspect of 

the method or probe or irrelevant stimuli that caused the probes to not generate strong 

P3s that were significantly different to the irrelevants. While the probe-irrelevant results 

were not as expected, the target-irrelevant results are promising and mean that future 

experiments using the Fringe-P3 method with location stimuli, with some methodological 

and stimulus improvements, could result in accurate detection of familiarity with probe 

location image stimuli.  

While there was not a significant difference between probe and irrelevant, it can be seen in 

the grand averages (figures 5.3 and 5.5), especially at Fz and Cz, that there is a small 

positivity for both probe and irrelevant. If there had been no brain response to the probe 

or irrelevant stimuli, then the ERPs should stay around zero, however, the presence of the 

positivity suggests that there may have been a P3-like response to the stimuli but this was 

weak, temporally-jittered (i.e., the latency varied considerably across trials, affecting the 
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breadth and amplitude of the positivity), and, as it occurred for both probe and irrelevant, 

there was no significant difference between the two. It is also worth noting that there was 

a negativity only for the probe following the positivity in the grand averages (figures 5.3 

and 5.5) and in some individual participants’ ERPs (it can be seen most clearly for 

participants 1 and 6 in figure 5.7). This suggests that, while the probe did not generate 

significantly stronger P3s than the irrelevant, there is something extra happening in the 

brain response for the probe that is not present for the irrelevant, which could be an effect 

of familiarity with the probe. This may relate to the MERMER, which is an ERP pattern 

consisting of a P3 positivity followed by a negativity that has been highlighted as a marker 

of concealed information (Farwell & Smith, 2001). It is possible that probe location image 

stimuli may generate a MERMER that irrelevants do not. A future experiment using the 

Fringe-P3 method could investigate if there is indeed a MERMER for probe location images 

and if this could be used to detect concealed knowledge of the probe in addition to or 

instead of the standard P3 AGAT analysis in Fringe-P3 experiments. 

The most likely reason for why the probe stimuli did not generate large P3s may be due to 

participants using search strategies when looking for the target. One such search strategy 

could be to look at a particular feature of the target image in a specific location, for 

example, the turrets of the castle in the second target image or the tree in the bottom left 

of the third target image (figure 5.1). By narrowing focus to a specific feature in a specific 

location, the participant will not be viewing the entire image space, meaning that stimuli 

that do not share that feature in that location, such as the probe stimuli, will be less likely 

to capture attention, breakthrough into awareness, and generate a P3. It is also possible 

that the feature being searched for may be shared with an irrelevant or distractor, which 

could mean these might breakthrough into awareness while the probe does not. For 

example, if the participant did indeed look for turrets in the second target image, they may 

also detect the second irrelevant image, as this also contains a turret-like feature in a 

nearby location. One potential way to counter search strategies would be to have the 

target be a category of target images rather than one specific image (e.g., “castles” or 

“cafés”). This would force participants to view the whole image space rather than look for a 

specific feature or in a specific location, as they would not know exactly what the target 

looked like in advance. The attentional blink experiment in chapter 6 tests this idea using 

location stimuli by comparing the use of specific target images versus a category of target 

images.   
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The results of the end-of-block recognition tests from the current experiment found 

significantly higher recognition scores for the probe stimuli (M = 3.167) compared to the 

irrelevant stimuli (M = 2.250) and for the probes compared to the unpresented Kent 

buildings (M = 1.667). These comparisons were also significant for the end-of-experiment 

recognition test results. This fits with our expectation that the probe stimuli would be 

familiar to University of Kent students and would breakthrough into conscious awareness 

enough to be recognised in the streams. However, there was not a stronger positivity for 

the probe compared to the irrelevant despite these recognition results. The mean 

recognition score for the probe stimuli in the end-of-block tests was 3.167 out of 5, which is 

lower than anticipated based on previous experiments (i.e., 4 out of 5 in the famous names 

experiment in chapter 3). These results suggest that, while the probes were significantly 

more recognisable than the irrelevants and unpresented images, they were not as highly 

recognisable as expected or recognisable enough to generate stronger P3s. It is possible 

that a future experiment with different probe stimuli may result in increased recognition 

and differential P3s.  

The end-of-block recognition results also found that the irrelevant stimuli (M = 2.250) had 

significantly higher recognition scores than the unpresented Kent images (M = 1.667), 

which is counter-intuitive as we expected neither to breakthrough into awareness nor be 

recognised. This result suggests that some irrelevants were consciously seen by some 

participants in the streams, although this was not enough to generate a strong P3. The end-

of-experiment recognition results also found that the irrelevant stimuli (M = 3.083) had 

significantly higher recognition scores than the unpresented Birmingham images (M = 

1.350), which further supports the possibility that the irrelevants were consciously seen. 

However, the irrelevant stimuli were shown on screen during the end-of-block recognition 

tests (where they received lower ratings) and this could, at least partially, explain their 

recognition in the later end-of-experiment test.  

Interestingly, the end-of-block recognition results also found that the distractors (M = 3.00) 

had significantly higher recognition scores than the irrelevants (M = 2.250) and that over 

half the participants had scores between 3 and 4.3 out of 5 for the distractors. We 

expected there to be no significant difference between irrelevants and distractors, as these 

stimuli were not expected to breakthrough into conscious awareness and therefore would 

not be recognisable. However, these results suggest that some distractors did in fact 

breakthrough into awareness enough to later be recognised and given scores of 3 or more 

by some participants in the tests. This suggests a potential problem with the method or 
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stimuli that allowed these non-salient stimuli to be detected. More research would need to 

be done to be certain why this happened, but we suggest three possible explanations. 

Firstly, the critical stimuli, including the irrelevants, were limited to appearing between the 

5th and 9th positions in the streams, whereas the distractors could appear at any point. 

Therefore, the distractors could have been more easily recognised if they were the first or 

last location stimulus of a stream. Secondly, we did not control for the visual salience of the 

stimuli (the innate perceptual qualities that make some stimuli stand out more compared 

to others), so it is possible that some of the distractors may have been more visually salient 

than the irrelevants, which would make them stand out and be more recognisable. Future 

research should attempt to control for the visual salience of the stimuli. Thirdly, RSVP is 

used so that stimuli appear on the fringe of awareness and only salient stimuli should be 

able to breakthrough into conscious awareness. However, the SOA used in the current 

experiment may have been too slow and allowed non-salient stimuli to enter conscious 

awareness and be recognisable, including the distractors used in the recognition tests. 

The current experiment used an SOA of 167ms, which is slower than previous Fringe-P3 

research which used 133ms in chapter 3 and Bowman et al (2013) and 100ms in Bowman 

et al (2014). The slower SOA was chosen as it was thought that location image stimuli are 

much more visually complex compared to the names and greyscale famous faces used in 

previous studies (Alsufyani et al., 2019; Bowman et al., 2013, 2014) and this would mean 

that none of the critical stimuli would be perceived and breakthrough into awareness if 

they were presented too fast. However, it is possible that the 167ms SOA was so slow that 

participants were able to consciously see non-salient stimuli, including the irrelevants and 

distractors, rather than just the salient target and probe stimuli. This possibility is 

supported by evidence from the grand average and individual participants’ ERPs in figures 

5.3 and 5.5. These show that both the probe and irrelevant were substantially above zero 

within the 300-1000ms AGAT search window. Is it possible that these positivities were P3-

like responses for both the probe and irrelevant, but these were weak and temporally-

jittered. The end-of-block recognition scores in table 5.4 also show that the irrelevants and 

distractors received higher ratings than the unpresented Kent images, and the analysis 

found that these irrelevant scores were significantly larger than the unpresented image 

scores, which, again, suggest that the irrelevants may have been consciously perceived. To 

prevent the non-salient stimuli from breaking through into awareness, future research 

using the Fringe-P3 method with location stimuli should consider using a staircase method 

(Cornsweet, 1987) to find the most suitable SOA for each participant. Using a staircase 
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procedure during practice trials, as used in the email addresses experiment in chapter 4, 

would allow us to account for individual differences and find an SOA specific to each 

participant where their target accuracy stays around predefined levels, for example, at a hit 

rate of 75% and a correct rejection rate of 80%. This would prevent the SOA from being so 

slow that it allows non-salient stimuli to be detected or so fast that it prevents the 

detection of salient stimuli.  

Future research should also look into adding more distractor stimuli if possible. While 

Konkle et al’s (2010) database consists of over 4000 stimuli, most of these were not 

photographs of building exteriors (e.g., golf courses, the inside of classrooms). As our probe 

and irrelevant stimuli were photographs of building exteriors, the distractors needed to be 

too, so most of Konkle et al’s images were not suitable for this experiment and only 411 

were used. Each distractor had a 4.14% chance of appearing in a stream, so it is likely that 

each distractor appeared more than once (but not as frequently as a critical stimulus) 

throughout the 225 streams. This should not have been a problem for the Fringe-P3 

method as it has been shown that repeating non-salient stimuli does not increase their 

chance of breaking through into awareness from RSVP streams (Avilés et al., 2020), so they 

should not have been consciously seen. However, as we suspect that the SOA was slow 

enough to allow non-salient stimuli to be consciously seen (and our SOA was slower than 

the 84-133ms that Avilés et al analysed), it is possible that this repetition could have 

impacted the current study. A single distractor breaking through into awareness, even 

multiple times, would not have a substantial impact on the ERP results as the response 

would only occur in a small number of trials and would be averaged out when creating the 

ERPs. However, if multiple distractors were breaking through into awareness multiple 

times, then it could affect a larger number of trials and, thus, start impacting the ERPs. 

Additionally, the glance-look model of cognitive control suggests that distractors that are in 

the same or semantically related category as a target can capture attention and even 

generate an attentional blink, causing the participant to miss the following critical stimulus 

(Folk et al., 1992; Su et al., 2011). It is possible that some participants’ ERPs, and therefore 

their P3s, could have been affected by this. Future research should use a larger database of 

distractors so that each distractor is very unlikely to appear more than once in order to 

prevent this possibility.  

Similarly, as the distractors are all photographs of real buildings, it is possible that 

participants may recognise some of them. While the buildings were not known by the 

experimenters to be famous buildings, one participant did mention after the experiment 
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that one of the distractors was a castle from their home city and they had consciously seen 

it more than once in the streams. It would not be feasible to check that every participant is 

unfamiliar with every distractor, therefore, again, the most suitable way to overcome this 

problem in a future experiment would be to decrease the chances of a distractor being 

repeated by increasing the number of distractors in the database. Previous Fringe-P3 

experiments have used much larger databases of 3667 email address distractors (chapter 

4) and 1,000-10,000 name distractors (chapter 3; Bowman et al, 2013, 2014). However, 

location image distractors cannot be generated like the email address and name 

distractors, so it would be very difficult to find several thousand suitable location image 

distractors. Alsufyani et al’s (2019) famous faces experiment used the same number of 

trials (225) as the current study but had a bank of 524 face image distractors and found 

significant results, therefore, it seems reasonable that future Fringe-P3 experiments using 

image stimuli should aim for (approximately) a minimum of 500 image distractors per 200 

trials to reduce concerns about the distractors impacting the results.  

It would also be beneficial to run the counterbalanced experiment at the University of 

Birmingham with the same stimuli but using the Birmingham images as the probe stimuli 

and the Kent images as the irrelevant stimuli. It is possible that the Kent images were 

simply not buildings the Kent participants were familiar with, or that the Kent stimuli had 

low visual salience and did not stand out more than the other stimuli, and this is why they 

did not generate large P3s. The University of Birmingham images, on the other hand, are 

brightly coloured, so may have higher visual salience and stand out more easily. If the 

counterbalanced study finds that the Birmingham students generate a strong P3 for the 

Birmingham probe stimuli, while the Kent students did not generate a strong P3 for the 

Kent probe stimuli, then it would suggest that the specific Kent stimuli were the reason 

they did not generate a large P3 in the current experiment. Future Fringe-P3 experiments 

using images should control for visual salience to prevent this possibility impacting the 

results. Similarly, if the Kent irrelevants did generate P3s for the Birmingham students, then 

it would suggest a further problem with the method.  

Finally, this experiment only had 8 participants whereas previous Fringe-P3 studies have 

had 15. Preliminary analyses suggested that the experiment had potential problems with 

the method, so further participants were not collected for this experiment. Future 

experiments should include more participants as this would lead to more reliable results.  
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In summary, the results of this chapter provide a stepping stone towards using the Fringe-

P3 method with location image stimuli. It has shown that location image stimuli can 

generate differential P3s, but that this was limited to the target stimuli. Methodological 

improvements, especially regarding the SOA and selection of stimuli, should increase the 

reliability of the experiment and may result in the probe stimuli generating strong P3s as 

well as the targets in future research.  
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6. Detecting Concealed Knowledge of Locations using the 

Attentional Blink 

6.1. Introduction 

This chapter contains an analysis of a dataset using the Fringe-P3 method with location 

image stimuli collected by Hannah Bowman and James Niblett at the University of 

Birmingham. All data processing and analyses in this chapter were performed by myself 

(see section 1.4 for details on previous and new uses of this data). This experiment used 

the attentional blink as a behavioural measure to detect concealed information instead of 

EEG and the P3. The location stimuli used for this experiment were the same as those used 

in chapter 5’s EEG experiment with location stimuli, but, as this experiment was conducted 

at the University of Birmingham, the Birmingham images were used as probes and the 

University of Kent images were used as irrelevants, the reverse of in chapter 5.  

The attentional blink is a behavioural phenomenon where a second critical stimulus is less 

accurately detected when presented 200-500ms after a first critical stimulus in RSVP 

(Raymond et al., 1992; Shapiro, Arnell, et al., 1997). The phenomenon has been shown to 

occur with letter, number, word, colour, face, and other picture stimuli (Evans & Treisman, 

2005; Ganis & Patnaik, 2009; Joseph et al., 1997; Ross & Jolicœur, 1999; Shapiro, Caldwell, 

et al., 1997). This is not limited to when the target is a specific stimulus (e.g., the letter “A” 

or a specific image) in a detection task but has also been shown to occur when the target is 

a category (e.g., letters amongst numbers or pictures of animals) (Bowman & Wyble, 2007; 

Broadbent & Broadbent, 1987; Chun & Potter, 1995; Potter et al., 2010). The classic 

paradigm presents two targets (T1 & T2) as the two critical stimuli with T2 presented at 

specific lags following T1 (e.g., lag 1 is the stimulus immediately following T1, lag 7 is the 

seventh stimulus following T1). The detection of T1 generates an attentional blink and 

causes T2 to be missed if it is presented 200-500ms after T1. The eSTST model (Wyble et 

al., 2009) proposes that the attentional blink is caused by competition between working 

memory encoding and attention allocation. They suggest that T1 activates a window of 

attentional enhancement which is then deactivated if another target is not presented 

within 200ms, after which attention is supressed while the detected target(s) is encoded 

into working memory. Any targets presented while attention is suppressed will not be 

detected. See section 2.6 in chapter 2 for more on the attentional blink and the eSTST 

model. 
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The attentional blink has, importantly, also been shown to occur when the first critical 

stimulus is a salient probe rather than a target (Barnard et al., 2005; Ganis & Patnaik, 

2009). This allows the attentional blink paradigm to be used to detect concealed 

information, as the probe stimulus would only breakthrough into conscious awareness and 

generate an attentional blink if it was salient. Therefore, if the participant’s target accuracy 

is worse when the target is presented 200-500ms after the probe, then it suggests they are 

familiar with the probe and are concealing information about it.  

There are two main exceptions to the attentional blink: lag 1 sparing and nonblinkers. Lag 1 

sparing occurs when the second critical stimulus is presented up to 150ms after the first 

critical stimulus and is still accurately detected (Bowman et al., 2008; Bowman & Wyble, 

2007). The eSTST model explains lag-1 sparing through its attentional enhancement 

window, which is activated by the first target and only closes if another target is not 

presented within 200ms of the previous target. Therefore, a second target presented at lag 

1 that is within 150ms of the first target would be detected within this attentional 

enhancement window and be encoded into working memory, thus escaping the attentional 

blink (Wyble et al., 2009). Nonblinkers, on the other hand, are people who do not 

experience an attentional blink regardless of lag. Nonblinkers have been shown to 

consolidate information into working memory faster than blinkers, and this is thought to be 

the reason why they do not experience an attentional blink (Martens et al., 2006).  

The attentional blink paradigm would be relatively simple to use while recording 

behavioural and EEG responses at the same time. The combination of these two measures 

would reduce the chance of random errors and lead to an even more robust and 

countermeasure resistant method of detecting concealed information. It will also be 

helpful for cases where individual differences may make one test fail to detect familiarity, 

for example if someone is a nonblinker but still generates a P3, or where someone’s P3 is 

not strong enough to have a significant result in the AGAT analysis but they still show a 

strong attentional blink. Martens et al’s study on nonblinkers (2006) has already shown 

that the attentional blink paradigm can be successfully combined with EEG to measure P3s 

concurrently. The combined use of EEG and the attentional blink to detect concealed 

information is a future goal of Fringe-P3 research. 

In addition to testing the use of the attentional blink with the Fringe-P3 method, this 

chapter will also investigate the use of search strategies by participants to help them find 

the target. Such search strategies include looking for a specific distinctive feature of the 
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target, rather than looking for the whole target. For example, if the target was a word, then 

the search strategy could be to look for the first letter of that word and ignore all words 

that do not start with that letter. In the current experiment, which used images of castles 

as targets (figure 6.1), an example of a distinctive feature could be a turret in the top left 

corner. By looking for this specific feature, especially if they are only looking at a particular 

area (e.g., top left corner) of the images, the participant is far less likely to perceive images 

that do not share this feature. Therefore, if the probe stimulus does not share this feature, 

it will not be perceived, breakthrough into awareness, or generate a P3 or attentional blink. 

As a result, the fringe-P3 concealed information test would not detect the probe as being 

familiar and the participant would be seen as “innocent”. This fits with the glance-look 

model of cognitive control (Su et al., 2011), which suggests that RSVP stimuli are first 

“glanced” at to process the broad features or meaning of that stimulus (e.g., turret-like 

shape in the top left corner). If the stimulus matches the broad features or meaning of the 

target, then it receives a deeper “look” to analyse the specific meaning and detail of the 

stimulus, at which point the participant would be able to detect if it was the specific target 

or not. If the stimulus does not match the broad features or meaning of the target during 

the “glance”, then it will not receive the deeper “look” and will be analysed no further. 

Therefore, probe stimuli that do not match the same general features as the target will not 

receive the deeper “look” and therefore will not be perceived enough to breakthrough into 

conscious awareness and generate a P3 or attentional blink. It is vital that the task used in 

Fringe-P3 concealed information tests forces the participant to view the whole of the 

stimuli and not focus on one specific feature in order to counter the potential effects of 

such search strategies. It is also possible that location stimuli are more visually complex 

stimuli than the previously used words and greyscale faces, which may make detecting 

location targets a harder task, meaning participants may be even more likely to use a 

search strategy to aid them. The current experiment investigated search strategies by 

comparing two groups of participants with different search task types: categorisation and 

detection. 

For the detection task, participants will be shown their specific target image before the 

blocks of streams and will look for that in the streams, as done in previous Fringe-P3 

experiments (Alsufyani et al., 2019; Bowman et al., 2013, 2014) and in chapters 3, 4, and 5 

of this thesis. For the categorisation task, participants will not be shown any of the target 

stimuli before the blocks and will instead be told to look for a category of targets: castles. 

Participants will not be informed about search strategies nor told to use or not use any in 
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the streams. It is expected that participants in the detection group will be more likely to 

use search strategies, as they will know what their target looks like and therefore could 

look for a specific feature such as a turret. On the other hand, participants in the 

categorisation group will not know what any of the specific targets will look like and, 

therefore, will not be able to look for a specific known feature. The categorisation 

participants will be forced to look at the streams more holistically and, as a result, are more 

likely to see the probe stimulus. As such, we expect that there will be an attentional blink in 

both groups, but that it will be more pronounced in the categorisation group. 

There are two main aims of this chapter. Firstly, we seek to show that the attentional blink 

can be successfully used to detect concealed information using the Fringe-P3 method with 

location stimuli. Secondly, we seek to investigate two different search task types – 

categorisation and detection – to see how these impact the accuracy of the method in 

detecting concealed information and, through this, how they impact the effectiveness of 

search strategies.  

We predict that the probe stimuli will generate attentional blinks (leading to fewer hits on 

target) while the irrelevants will not, and that these attentional blinks will occur at lags 1 

and 3 (within the 200-500ms window following the first critical stimulus), but not at lags 5 

and 7 (more than 500ms after the first critical stimulus). As such, we also predict that there 

will be an interaction between stimulus type (probe or irrelevant) and lag, with there being 

a bigger difference in the amount of hits inside than outside the blink for the probe 

condition compared to the irrelevant condition (i.e., a bigger attentional blink for probe 

than irrelevant). Finally, we expect that there will be a significant interaction between task 

type, stimulus type, and lag, with stronger attentional blinks occurring in the categorisation 

group than the detection group. 

6.2. Method 

6.2.1. Participants 
All participants were students at the University of Birmingham and had normal or 

corrected-to-normal vision and no known neurological disorders. All participants gave their 

informed consent and were rewarded with Research Participation Scheme credit for their 

participation. The STEM Research Ethics Committee of the University of Birmingham 

granted ethical approval for the experiment. 

30 participants took part in the categorisation group. Three were excluded due to 

familiarity with the University of Kent campus, as this would prevent the Kent stimuli being 
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useable as unfamiliar irrelevant stimuli, leaving 27 participants for the categorisation 

group. 22 participants took part in the detection group, none of which were familiar with 

the University of Kent campus. 

The binomial regression analysis cannot complete if a participant’s hit count is too close to 

ceiling, therefore additional exclusion criteria (as explained fully in section 6.2.4) resulted in 

11 more participants being excluded from all categorisation analyses and six more 

participants being excluded from all detection analyses.  

Following all exclusions, there were 16 participants in the categorisation group, all female, 

aged 18-20 (M = 19.19, SD = 0.75), and 16 in the detection group, 14 female and 2 male, 

aged 18-20 (M = 19, SD = 0.73). 

6.2.2. Stimuli and Presentation 
All stimuli were 256px x 256px colour photographs of buildings presented on a black 

background at the same location in the middle of the screen. The image stimuli were the 

same images as used in chapter 5 but were separated into conditions differently. For both 

the categorisation and detection tasks, the probe stimuli were three images of buildings 

from the University of Birmingham campus, and the irrelevant stimuli were three images of 

buildings from the University of Kent Canterbury campus. For the categorisation task, there 

were 10 target images of castles. For the detection task, there were three target images of 

castles. All target images were taken from Konkle et al’s (2010) database of images of 

scenes. The bank of distractor stimuli was the same as used in chapter 5 and were all 

photographs of building exteriors taken from Konkle et al’s database. The three target 

stimuli were removed from the bank of distractors for the detection task, and all images of 

castles were removed from the bank of distractors for the categorisation task. Figure 6.1 

shows examples of the stimuli used. 

All streams consisted of 16 images, one of which was either a probe or an irrelevant. Half of 

the streams also contained a target image, split equally between those containing probes 

and irrelevants. Randomly selected distractor stimuli filled the remaining spaces in the 

streams.  

There were 240 streams total, separated into three blocks of 80 streams. Each block was 

allocated one probe and one irrelevant image, which were presented 40 times each per 

block and 120 times each across the whole experiment. Half of the trials also contained a 

target image, with 40 trials per block (120 trials total). In each block there were 20 trials 

with both a target and probe and 20 trials with both a target and irrelevant. Across the 



111 
 

whole experiment, there were 60 trials with both a target and a probe and 60 trials with 

both a target and an irrelevant. For the detection task, the three target images were 

separated into one for each block and shown 40 times each. For the categorisation task, 

each of the 10 castle images was presented an equal number of times (4) in every block. 

Figure 6.1. Examples of the Critical Stimuli. 

Probe Stimuli – University of Birmingham Campus 

 

Irrelevant Stimuli – University of Kent Campus 

 

Examples of Target Stimuli 

 

This figure presents the three probe stimuli, three irrelevant stimuli, and three examples of 
target stimuli.  
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The probe and irrelevant stimuli were still presented in trials where the target was not 

present. This repetition should not lead to either probe or irrelevant being more likely to be 

perceived, as repeated presentations of a non-salient stimulus has been shown not to 

increase the chances of it being perceived (Avilés et al., 2020). Therefore, the critical stimuli 

would still only breakthrough into awareness if they were salient and would not 

breakthrough if they were non-salient, despite the number of repetitions. 

The SOA was 144ms. This was slower than the 133ms used in the famous faces and own-

names Fringe-P3 studies (Alsufyani et al., 2019; Bowman et al., 2013) but faster than the 

167ms used in chapter 5’s EEG experiment with location stimuli. It was thought that the 

167ms SOA used in chapter 5 was too slow and led to non-salient distractor and irrelevant 

stimuli breaking through into awareness. Therefore, the SOA needed to be faster for the 

current experiment. However, it was also thought that location stimuli are more complex 

than name and face stimuli and would need longer to be processed and breakthrough into 

awareness, therefore the SOA of 133ms used in previous Fringe-P3 experiments might be 

too fast. RSVP studies using picture stimuli by Potter (1975, 1976) also showed that target 

accuracy was lower at SOAs of 113ms and 125ms compared to 167ms and that the 

difference in accuracy between 125ms and 167ms was significant (Potter, 1976). As a 

result, the SOA of 144ms was chosen to be faster than the previous 167ms used in chapter 

5 but slower than the fast SOAs in Potter’s and Bowman et al’s experiments.  

The streams were divided into four separate lags: 1, 3, 5, 7. There was 144ms between the 

first critical stimulus (probe or irrelevant) and the target for lag 1, 432ms for lag 3, 720ms 

for lag 5, and 1008ms for lag 7. Each lag was used 10 times in each of the three blocks, 

meaning each lag was used 30 times for each participant across the whole experiment, 

with the target following the probe in half (15) of those trials and the target following the 

irrelevant in the other 15 trials. Figure 6.2 shows an example of a stream and the lag 

positions.  
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Figure 6.2. Section of an Example Stream. 

 

This figure shows a section of an example stream, featuring a probe stimulus and a target 
stimulus (at lag 3). Marked in grey are the four lag positions. 

 

6.2.3. Tasks 
Participants were told to look for a target image in the streams and that the target would 

not always be present. They were shown a practice trial to adjust to the experiment before 

beginning. This practice trial contained a target that was not used in the rest of the 

experiment.  

Participants in the detection group were shown the target image for that block before each 

stream, so they would know what their specific target was. Participants in the 

categorisation group were not shown any of the 10 castle targets before the streams and 

were only told to look for images of castles.  

At the end of each stream, participants were asked if they saw a target image and 

responded yes or no via their keyboard with the 1 or 2 keys respectively. At the end of the 

experiment, participants were also asked if they were familiar with the University of Kent 

Canterbury campus so that any who said yes could be excluded. Participants were not 

asked if they were familiar with the University of Kent campus before participating in the 

experiment as the question may have warned them that images of the University of Kent 

may be presented. Breaks were offered between blocks. 
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6.2.4. Analysis Procedure 

ANOVAs and Binomial Regression Analysis 
All of the main analyses used the hits data only. While d’ scores can usually provide more 

information on target accuracy than hits alone (since they consider the number of false 

alarms as well as hits), d’ scores would not be appropriate for our analyses because the 

false alarm data cannot be sorted into the separate lags or collapsed lags. This is because 

the lags are based on when the target is presented and there is no target presented when 

there is a false alarm, so there is no lag information associated with false alarms. Therefore, 

d’ scores cannot be used to compare target accuracy inside and outside of the attentional 

blink window, which is necessary for attentional blink research. The hit counts, on the 

other hand, can be separated into all lags and conditions, so are the more appropriate data 

for analysis. Additionally, the binomial regression analysis uses data at the individual trial 

level (hit or miss), so can only be performed using hits data. Therefore, all main analyses 

only used hits data. Although not used in the main analyses, the overall d’ scores for 

categorisation and detection can be found in appendix C. 

The main aim of the lag analyses was to compare the hits inside and outside the attentional 

blink window, therefore the four separate lags were combined into two “collapsed lags”, 

with lags 1 and 3 collapsed to be “inside the blink” since they are within the 500ms 

attentional blink window, and lags 5 and 7 collapsed to be “outside the blink” since they 

are beyond the 500ms attentional blink window. The collapsed lags were used in the group 

level ANOVAs and the group and individual level binomial regression analyses. The separate 

lags could not be used in the binomial regression analysis, so were only used in additional 

ANOVAs at the group level.  

ANOVAs were performed on the group level hits data in SPSS 24. There were four main 

effects: search task type (categorisation v detection), stimulus type (probe v irrelevant), 

collapsed lag (inside v outside the attentional blink window), and separate lag (1, 3, 5, 7). 

We were also interested in two-way interactions between stimulus type and collapsed lag, 

and between stimulus type and separate lag, as well as three-way interactions between 

search task type, stimulus type, and collapsed lag, and between search task type, stimulus 

type, and separate lag.  

A binomial regression analysis was used to analyse the data at the individual participants’ 

level in Matlab 2016a. This used the generalised linear model with a probit link function 

and a linear hypothesis test. There were two main effects - stimulus type and collapsed lag 

- and a two-way interaction between stimulus type and collapsed lag. The binomial 
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regression analysis was also performed on the group level data as an additional analysis. An 

alpha level of 0.05 was used for all statistical analyses. 

Additional Exclusion Criteria 

There were several participants whose hit counts were close to ceiling. When this happens, 

the binomial regression analysis, in particular fitting the generalised linear model, will reach 

an iteration limit and will not converge. The hits are divided into four bins for the analysis: 

ProbeOut (the target presented after the probe outside of the 500ms attentional blink 

window), ProbeIn (the target presented after the probe inside the attentional blink 

window), IrrelOut (the target presented after the irrelevant outside the attentional blink 

window), and IrrelIn (the target presented after the irrelevant inside the attentional blink 

window). Every participant who had scored a full amount of hits on at least one of the four 

bins threw an “iteration limit reached” warning and the analysis could not be completed. 

The capacity to observe a significant attentional blink effect is also impacted by proximity 

to ceiling, since the range of possible scores is restricted by the ceiling, limiting potential 

differences between conditions. Therefore, some participants had to be excluded. In order 

to be fair, participants’ hits for the ProbeOut and IrrelOut bins were calculated and added 

together. The maximum possible score was 60. The distribution of these scores showed a 

clear bimodality, with a higher mode reflecting a clear compression to ceiling. We excluded 

all participants who scored above the intersection between these two modes. The score at 

the intersection was 55 for categorisation and 56 for detection, therefore participants with 

scores of 55 or above were excluded from both groups. 11 participants were excluded from 

all categorisation analyses and 6 participants were excluded from all detection analyses, 

leaving 16 participants in both groups. 
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6.3. Results 

6.3.1. Group Level 

Blink Curves 
Figure 6.3 contains the blink curves for the categorisation and detection search tasks with 

collapsed lag on the x-axis. In both search tasks, the mean hits for the irrelevant condition 

were very similar inside and outside the blink window, showing that the timing of the 

target did not affect detection accuracy in the irrelevant condition. The mean hits for the 

probe condition, on the other hand, were smaller inside the blink window than outside, 

thus demonstrating an attentional blink when the probe was presented within the 200-

500ms attentional blink window but not outside that window.  

Figure 6.3. Blink Curves for the Categorisation and Detection Collapsed Lags. 

 

These blink curves show the mean hits and standard error of the mean for the collapsed 
lags and stimulus types for both the categorisation and detection tasks. The mean hits for 
the probe condition inside the blink window was smaller than the others, demonstrating an 
attentional blink.   

 

Figure 6.4 contains the blink curves for the categorisation and detection search tasks with 

the four separate lags on the x-axis. In both search tasks, the mean hits for the probe was 

smallest at lag 1 and increased as lag length increased. This suggests an attentional blink 

when the target is presented at lag 1 after the probe. The irrelevant mean hits were stable 

and varied only slightly across the lags, showing no attentional blink.  

Both figures 6.3 and 6.4 suggest that the presence of the probe caused an attentional blink 

inside the 200-500ms attentional blink window but not outside of the window, and that the 

irrelevant caused no attentional blink.  
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Figure 6.4. Blink Curves for the Categorisation and Detection Separate Lags. 

 

These blink curves show the mean hits and standard error of the mean for the separate lags 
and two stimulus types for both the categorisation and detection tasks. The mean hits for 
the probe condition at lag 1 was smaller than the others, demonstrating an attentional 
blink.   

 

Categorisation 

Table 6.1 shows the total hits for each participant for each of the collapsed lags and 

stimulus types in the categorisation task group.  

A 2x2 repeated measures ANOVA was performed on the stimulus type and collapsed lag 

data for the categorisation group. There was a significant main effect of collapsed lag 

(F(1,15) = 7.979, p = 0.0128), showing that there were significantly fewer hits inside the 

blink window than outside. There was also a significant interaction between stimulus type 

and collapsed lag (F(1,15) = 9.507, p = 0.0076), showing that there was a bigger difference 

in the amount of hits inside than outside the blink window for the probe condition 

compared to the irrelevant condition (i.e., a bigger attentional blink for probe than 

irrelevant). These results match our hypothesis that there would be an attentional blink in 

the probe condition but not in the irrelevant condition. There was not, however, a 

significant main effect of stimulus type (F(1,15) = 0.352, p = 0.5616), which does not match 

our expectation that there would be significantly fewer hits overall in the probe condition 

than the irrelevant condition.  

A two-tailed binomial regression analysis was also performed on the stimulus type and 

collapsed lag data. There was a significant main effect of collapsed lag (F(1,60)  = 9.694, p = 

0.0028) and a significant two-way interaction between stimulus type and collapsed lag 

(F(1,60)  = 9.694, p = 0.0028), but there was not a significant main effect of stimulus type 

(F(1,60)  = 0.185, p = 0.6686). These results match the 2x2 ANOVA results. 



118 
 

Table 6.1. Collapsed Lag Hits for Categorisation. 

Participant Probe Outside Probe Inside Irrel. Outside Irrel. Inside 

1 27 25 25 18 

2 26 22 18 25 

3 24 21 25 23 

4 25 20 21 23 

5 24 18 20 21 

6 27 23 27 28 

7 18 16 19 13 

8 25 18 24 23 

9 23 26 26 25 

10 27 21 27 26 

11 20 20 17 23 

12 28 24 23 27 

13 22 12 20 16 

14 22 21 17 20 

15 20 19 26 24 

16 26 18 25 25 

Mean 24.00 20.25 22.50 22.50 

Median 24.5 20.5 23.5 23 

Std Dev 2.94 3.51 3.60 4.05 

This table shows the number of hits per participant for the collapsed lags and stimulus 
types. The maximum number of hits per column for each participant was 30.  
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Table 6.2 shows the total hits for each participant for each of the four separate lags and 

two stimulus types in the categorisation task group. 

A 2x4 repeated measures ANOVA was conducted on the separate lag and stimulus type 

data. There was a significant main effect of separate lag (F(3,45) = 5.315, p = 0.0032), with 

the fewest hits at lag 1, and a significant interaction between stimulus type and separate 

lag (F(3,45) = 13.579, p <0.0001), with a bigger difference in hits inside than outside the 

attentional blink window in the probe condition. These results match our expectation that 

there would be an attentional blink when the target was presented at the short lags (1 & 3) 

after the probe. There was not a significant main effect of stimulus type (F(1,15) = 0.352, p 

= 0.5616). These results match the 2x2 ANOVA and binomial regression results.  

Table 6.2. Separate Lag Hits for Categorisation. 
Partici-

pant 

Probe 

Lag 1 

Probe 

Lag 3 

Probe 

Lag 5 

Probe 

Lag 7 

Irrel. 

Lag 1 

Irrel. 

Lag 3 

Irrel. 

Lag 5 

Irrel. 

Lag 7 

1 12 13 13 14 10 8 12 13 

2 9 13 13 13 13 12 9 9 

3 7 14 12 12 11 12 13 12 

4 9 11 14 11 13 10 12 9 

5 8 10 12 12 12 9 10 10 

6 11 12 14 13 13 15 14 13 

7 6 10 9 9 8 5 8 11 

8 7 11 12 13 13 10 13 11 

9 11 15 10 13 13 12 12 14 

10 12 9 14 13 13 13 13 14 

11 9 11 10 10 11 12 9 8 

12 10 14 14 14 13 14 12 11 

13 4 8 11 11 7 9 11 9 

14 9 12 10 12 9 11 9 8 

15 8 11 7 13 14 10 11 15 

16 7 11 13 13 13 12 11 14 

Mean 8.69 11.56 11.75 12.25 11.63 10.88 11.19 11.31 

Median 9 11 12 13 13 11.5 11.5 11 

Std Dev 2.21 1.90 2.08 1.39 2.09 2.45 1.76 2.33 

This table shows the number of hits per participant for each of the separate lags and two 
stimulus types. The maximum number of hits per column for each participant was 15. 
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Detection 

Table 6.3 shows the total hits for each participant for each of the collapsed lags and 

stimulus types in the detection task group.  

A 2x2 repeated measures ANOVA was performed on the stimulus type and collapsed lag 

data for the detection group. There was a significant main effect of stimulus type (F(1,15) = 

27.310, p = 0.0001), showing that there were significantly fewer hits in the probe condition, 

and a significant main effect of collapsed lag (F(1,15) = 8.675, p = 0.0100), showing that 

there were significantly fewer hits inside the blink window compared to outside. There was 

also a significant interaction between stimulus type and collapsed lag (F(1,15) = 7.804, p = 

0.0136), showing that there was a bigger difference in the amount of hits inside than 

outside the blink window for the probe condition compared to the irrelevant condition (i.e., 

a bigger attentional blink for probe than irrelevant). These results match our hypotheses 

that there would be an attentional blink for the probe condition but not for the irrelevant 

condition.  

A two-tailed binomial regression analysis was also performed on the stimulus type and 

collapsed lag data. There was a significant main effect of stimulus type (F(1,60)  = 12.251, p 

= 0.0009), a significant main effect of collapsed lag (F(1,60)  = 9.998, p = 0.0025), and a 

significant interaction between stimulus type and collapsed lag (F(1,60)  = 6.682, p = 

0.0122). These results match those of the 2x2 ANOVA. 



121 
 

Table 6.3. Collapsed Lag Hits for Detection. 

Participant Probe Outside Probe Inside Irrel. Outside Irrel. Inside 

1 21 23 23 24 

2 25 13 22 22 

3 25 17 25 23 

4 26 25 26 26 

5 23 16 24 18 

6 27 17 26 27 

7 26 29 26 25 

8 20 14 19 20 

9 25 23 27 27 

10 22 19 20 24 

11 22 16 23 23 

12 22 22 25 27 

13 18 13 20 18 

14 19 19 23 18 

15 27 23 27 27 

16 27 28 27 29 

Mean 23.44 19.81 23.94 23.63 

Median 24 19 24.5 24 

Std Dev 2.97 5.08 2.64 3.59 

This table shows the number of hits per participant for the collapsed lags and stimulus 
types. The maximum number of hits per column for each participant was 30.  
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Table 6.4 shows the total hits for each participant for each of the four separate lags and 

two stimulus types in the detection task group. 

A 2x4 repeated measures ANOVA was also performed on the stimulus type and separate 

lag data. There was a significant main effect of stimulus type (F(1,15) = 27.310, p = 0.0001), 

a significant main effect of separate lag (F(3,45) = 4.918, p = 0.0049), and a significant 

interaction between stimulus type and separate lag (F(3,45) = 3.681, p = 0.0187). This fits 

with our expectation that there would be fewer hits for the short lags (1 & 3) and a bigger 

attentional blink in the probe condition and matches the 2x2 ANOVA and binomial 

regression results.  

Table 6.4. Separate Lag Hits for Detection. 

Partici-

pant 

Probe 

Lag 1 

Probe 

Lag 3 

Probe 

Lag 5 

Probe 

Lag 7 

Irrel. 

Lag 1 

Irrel. 

Lag 3 

Irrel. 

Lag 5 

Irrel. 

Lag 7 

1 9 14 9 12 13 11 14 9 

2 4 9 12 13 11 11 11 11 

3 9 8 11 14 13 10 11 14 

4 13 12 14 12 13 13 13 13 

5 9 7 10 13 9 9 14 10 

6 6 11 12 15 14 13 14 12 

7 15 14 14 12 11 14 14 12 

8 7 7 10 10 10 10 9 10 

9 11 12 14 11 13 14 13 14 

10 10 9 11 11 11 13 10 10 

11 8 8 9 13 11 12 12 11 

12 10 12 11 11 13 14 12 13 

13 6 7 9 9 11 7 13 7 

14 5 14 12 7 9 9 10 13 

15 9 14 14 13 14 13 14 13 

16 14 14 14 13 15 14 14 13 

Mean 9.06 10.75 11.63 11.81 11.94 11.69 12.38 11.56 

Median 9 11.5 11.5 12 12 12.5 13 12 

Std Dev 3.13 2.84 1.93 1.97 1.81 2.18 1.71 1.97 

This table shows the number of hits per participant for each of the separate lags and two 
stimulus types. The maximum number of hits per column for each participant was 15. 
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The categorisation and detection task groups had similar results. Both had significant main 

effects of collapsed lag and separate lag, showing that hits performance was worse in lags 1 

and 3/inside the attentional blink window. Both also had significant interactions between 

collapsed lag and stimulus type and between separate lag and stimulus type, showing that 

there was more evidence for an attentional blink for probe than for irrelevant. However, 

only the detection group had a significant main effect of stimulus type, showing that there 

was a significant difference between hits performance in the probe and irrelevant 

conditions for the detection task but no significant difference for the categorisation task.  

Three-way Analyses 

A 2x2x2 mixed ANOVA was performed on the search task type, stimulus type, and collapsed 

lag data. There was a significant main effect of stimulus type (F(1,30) = 11.256, p = 0.0022), 

a significant main effect of collapsed lag (F(1,30) = 16.648, p = 0.0003), and a significant 

two-way interaction between stimulus type and collapsed lag (F(1,30) = 17.288, p = 

0.0002). These results match the 2x2 ANOVA results and our predictions that there would 

be fewer hits in the probe condition than the irrelevant condition, fewer hits inside the 

attentional blink window than outside, and more evidence for an attentional blink for 

probe than for irrelevant. There was also a significant two-way interaction between search 

task type and stimulus type (F(1,30) = 5.574, p = 0.0249), which fits with the finding of a 

significant main effect of stimulus type in the 2x2 ANOVA for the detection task group but 

not for the categorisation task group and shows that hits performance was better in the 

irrelevant condition than the probe condition in the detection group but there was no 

difference in the categorisation group. There was not, however, a significant main effect of 

search task type (F(1,30) = 0.140, p = 0.7113), showing that there was not a significant 

difference between the two tasks overall. There was also not a significant two-way 

interaction between search task type and collapsed lag (F(1,30) = 0.010, p = 0.9214) or a 

significant three-way interaction between search task type, collapsed lag, and stimulus type 

(F(1,30) = 0.066, p = 0.7985). The three-way interaction is key, as it does not match our 

prediction that there would be a more pronounced attentional blink for the categorisation 

task compared to the detection task.  

A 2x2x4 mixed ANOVA was also performed on the search task type, stimulus type, and the 

separate lags data. There was a significant main effect of stimulus type (F(1,30) = 11.256, p 

= 0.0022) and a significant main effect of separate lag (F(3,90) = 9.774, p <0.0001), but 

there was not a significant main effect of search task type (F(1,30) = 0.140, p = 0.7113). 

There was a significant two-way interaction between stimulus type and separate lag 
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(F(3,90) = 13.505, p <0.0001), and between search task type and stimulus type (F(1,30) = 

5.574, p = 0.0249). However, there was not a significant two-way interaction between 

search task type and separate lag (F(3,90) = 0.475, p = 0.7005) and there was not a 

significant three-way interaction between search task type, separate lag, and stimulus type 

(F(3,90) = 0. 0.779, p = 0.5085). These results match the 2x2x2 mixed ANOVA results.  
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6.3.2. Individual Participants’ Level 

Categorisation 
Table 6.5 shows the individual participants’ results from the two-tailed binomial regression 

analysis for the categorisation group. There were four significant results; one participant 

(15) had a significant main effect of stimulus type, one participant (13) had a significant 

main effect of collapsed lag, and two participants (2 and 12) had a significant two-way 

interaction between stimulus type and collapsed lag.  

Table 6.5. Individual Binomial Regression Results for Categorisation.  
Stimulus Type  

Main Effect 

Collapsed Lag  

Main Effect 

Stim. Type x Coll. Lag 

Interaction 

Participant F p F p F p 

1 3.532 0.0627 3.532 0.0627 0.534 0.4662 

2 0.970 0.3267 0.189 0.6648 5.326 0.0228* 

3 0.411 0.5226 1.175 0.2806 0.023 0.8800 

4 0.084 0.7718 0.441 0.5080 2.176 0.1428 

5 0.083 0.7738 1.038 0.3103 1.974 0.1627 

6 1.563 0.2138 0.292 0.5901 1.563 0.2138 

7 0.126 0.7230 2.154 0.1449 0.538 0.4649 

8 0.469 0.4949 2.641 0.1068 1.389 0.2409 

9 0.189 0.6648 0.189 0.6648 0.911 0.3419 

10 1.024 0.3137 2.564 0.1120 1.024 0.3137 

11 0.005 0.9428 1.372 0.2439 1.372 0.2439 

12 0.314 0.5760 0.032 0.8590 4.167 0.0435* 

13 0.094 0.7594 6.726 0.0107* 1.259 0.2642 

14 1.325 0.2520 0.119 0.7309 0.575 0.4499 

15 5.327 0.0228* 0.493 0.4841 0.123 0.7269 

16 1.143 0.2873 2.579 0.1110 2.579 0.1110 

Mean 1.041 0.482 1.596 0.368 1.596 0.318 

Median 0.440 0.509 1.107 0.295 1.315 0.254 

Std Dev 1.451 0.278 1.766 0.274 1.435 0.235 

This table shows the F and p values for the individual participants in the categorisation 
group. The asterisk marks significant p values at the 0.05 level. The degrees of freedom for 
all participants were 1, 116. 

 



126 
 

Detection 

Table 6.6 shows the individual participants’ results from the two-tailed binomial regression 

analysis for the detection group. There were five significant results; three participants (2, 3, 

and 5) had a significant main effect of collapsed lag and two participants (2 and 6) had a 

significant two-way interaction between stimulus type and collapsed lag. No participants 

had a significant main effect of stimulus type. 

Table 6.6. Individual Binomial Regression Results for Detection.  
Stimulus Type  

Main Effect 

Collapsed Lag  

Main Effect 

Stim. Type x Coll. Lag 

Interaction 

Participant F p F p F p 

1 0.397 0.5297 0.397 0.5297 0.032 0.8587 

2 0.804 0.3718 5.201 0.0244* 5.201 0.0244* 

3 1.184 0.2788 4.076 0.0458* 1.184 0.2788 

4 0.064 0.8015 0.064 0.8015 0.064 0.8015 

5 0.338 0.5622 6.389 0.0128* 0.013 0.9088 

6 2.687 0.1039 2.687 0.1039 4.987 0.0275* 

7 1.725 0.1917 0.772 0.3813 1.725 0.1917 

8 0.822 0.3666 0.822 0.3666 1.667 0.1993 

9 2.264 0.1351 0.172 0.6787 0.172 0.6787 

10 0.399 0.5290 0.069 0.7929 2.010 0.1590 

11 2.338 0.1290 1.211 0.2734 1.211 0.2734 

12 3.442 0.0661 0.338 0.5624 0.338 0.5624 

13 1.658 0.2004 1.658 0.2004 0.275 0.6009 

14 0.397 0.5299 0.994 0.3208 0.994 0.3208 

15 0.861 0.3553 0.861 0.3553 0.861 0.3553 

16 0.216 0.6433 1.160 0.2838 0.216 0.6433 

Mean 1.225 0.362 1.679 0.358 1.309 0.430 

Median 0.841 0.361 0.928 0.338 0.928 0.338 

Std Dev 1.016 0.219 1.923 0.257 1.616 0.292 

This table shows the F and p values for the individual participants in the detection group. 
The asterisk marks significant p values at the 0.05 level. The degrees of freedom for all 
participants were 1, 116. 
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One-Tailed Binomial Regression 

The binomial regression analysis is two-tailed by default and the results in the tables 6.5 

and 6.6 are from these two-tailed analyses. However, since we have directional 

hypotheses, a one-tailed binomial regression analysis would be more suitable. Therefore, 

the outcomes of the main effect and interaction equations were used to turn it into a one-

tailed test. When the outcome of the equation matched our expectation, the p value was 

halved. When the outcome did not match our expectation, the p value was halved and then 

subtracted from one. In cases where the outcome of the equation was zero, this was 

treated as a positive result. The equations are explained below, where ProbeOut is the 

target presented after the probe outside of the 500ms attentional blink window, ProbeIn is 

the target presented after the probe inside the attentional blink window, IrrelOut is the 

target presented after the irrelevant outside the attentional blink window, and IrrelIn is the 

target presented after the irrelevant inside the attentional blink window.  

Stimulus Type Main Effect = (ProbeOut + ProbeIn) - (IrrelOut + IrrelIn) 

For the stimulus type main effect, we expected ProbeIn to have fewer hits than IrrelOut and 

IrrelIn, so the outcome of the equation would be negative. When the outcome of the 

equation was negative, as expected, we halved the p value. When the outcome of the 

equation was positive, we halved the p value and subtracted it from one.  

Collapsed Lag Main Effect = (ProbeOut + IrrelOut) - (ProbeIn + IrrelIn) 

For the collapsed lag main effect, we expected the collapsed lags outside the blink window 

(ProbeOut and IrrelOut) to have more hits than those inside the blink window (ProbeIn and 

IrrelIn), so the outcome of this equation would be positive. When the outcome of the 

equation was positive, as expected, we halved the p value. When the outcome of the 

equation was negative, we halved the p value and subtracted it from one.  

Stimulus Type * Collapsed Lag Interaction = (ProbeOut – ProbeIn) – (IrrelOut – IrrelIn) 

For the interaction, we expected there to be a similar number of hits for ProbeOut, IrrelOut, 

and IrrelIn, but there would be less hits for ProbeIn, so the outcome of this equation would 

be positive. When the outcome of the equation was positive, as expected, we halved the p 

value. When the outcome of the equation was negative, we halved the p value and 

subtracted it from one.  
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Categorisation 

There were five significant results in the one-tailed binomial regression analysis for the 

categorisation group. One participant had a significant main effect of stimulus type (M = 

0.464, Med = 0.454, SD = 0.299): participant 15 (F(1,116) = 5.327, p = 0.0114). Two 

participants had a significant main effect of collapsed lag (M = 0.290, Med = 0.199, SD = 

0.280): participant 1 (F(1,116) = 3.532, p = 0.0314) and 13 (F(1,116) = 6.726, p = 0.0054). 

Two participants had a significant interaction between stimulus type and collapsed lag (M = 

0.284, Med = 0.127, SD = 0.297): participant 2 (F(1,116) = 5.326, p = 0.0114), and 12 

(F(1,116) = 4.167, p = 0.0217). There was one additional significant p value for the collapsed 

lag main effect in the one-tailed test compared to the two-tailed test. 

Table 6.7 presents the number of p values below certain values (e.g., p <= 0.1) where the 

outcome of the equation was in the expected direction. It includes the results from both 

the one-tailed and two-tailed versions of the binomial regression analysis for the 

categorisation group. Overall, there were more p values below 0.05, 0.1, and 0.2 in the 

one-tailed test compared to the two-tailed test. The number of equation outcomes in the 

expected direction overall for the interaction is especially important as this shows that, 

while there were few significant p values, most of the equation outcomes (12/16) were in 

the expected direction. This provides evidence that there may have been an attentional 

blink effect for most participants, but this was only strong enough to reach significance for 

a few.  

Table 6.7. One and Two-Tailed Results for Categorisation. 

Number of results in the 

expected direction 

One-Tailed Two-Tailed 

Stim. 

Type 

Coll. 

Lag 

Interaction Stim. 

Type 

Coll. 

Lag 

Interaction 

With significant p values (p 

<= 0.05) 

1 2 2 1 1 2 

With p values <= 0.1 1 6 5 1 2 2 

With p values <= 0.2 4 8 10 1 6 5 

Num. equation outcomes 

in the expected direction 

overall 

8 12 12 8 12 12 

This table presents the number of p values below certain values where the outcome of the 
equation was in the expected direction for the categorisation group. Each cell is out of 16.  
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Detection 

There were six significant results in the one-tailed binomial regression analysis for the 

detection group. One participant had a significant main effect of stimulus type (M = 0.232, 

Med = 0.185, SD = 0.209): participant 12 (F(1,116) = 3.442, p = 0.0330). Three participants 

had a significant main effect of collapsed lag (M = 0.332, Med = 0.180, SD = 0.310): 

participant 2 (F(1,116) = 5.201, p = 0.0122), 3 (F(1,116) = 4.076, p = 0.0229) and 5 (F(1,116) 

= 6.389, p = 0.0064). Two participants had a significant interaction between stimulus type 

and collapsed lag (M = 0.317, Med = 0.291, SD = 0.269): participant 2 (F(1,116) = 5.201, p = 

0.0122), and 6 (F(1,116) = 4.987, p = 0.0137). There was a significant p value for the 

stimulus type main effect in the one-tailed test when there were none in the two-tailed 

test. 

Table 6.8 presents the number of p values below certain values where the outcome of the 

equation was in the expected direction. It includes the results from both the one-tailed and 

two-tailed versions of the binomial regression analysis for the detection group. Overall, 

there were more p values below 0.05, 0.1, and 0.2 in the one-tailed test compared to the 

two-tailed test. The number of equation outcomes in the expected direction overall for the 

interaction shows that most of the equation outcomes (13/16) were in the expected 

direction. This matches the categorisation group and, again, provides evidence that there 

may have been an attentional blink effect for most participants, but this was only strong 

enough to reach significance for a few.  

Table 6.8. One and Two-Tailed Results for Detection. 

Number of results in the 

expected direction 

One-Tailed Two-Tailed 

Stim. 

Type 

Coll. 

Lag 

Interaction Stim. 

Type 

Coll. 

Lag 

Interaction 

With significant p values (p 

<= 0.05) 

1 3 2 0 3 2 

With p values <= 0.1 4 4 4 1 3 2 

With p values <= 0.2 9 9 7 4 4 4 

Num. equation outcomes 

in the expected direction 

overall 

15 11 13 15 11 13 

This table presents the number of p values below certain values where the outcome of the 
equation was in the expected direction for the detection group. Each cell is out of 16. 
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6.4. Discussion 

There were two main aims for this study. Firstly, we wanted to show that the attentional 

blink can be successfully combined with the Fringe-P3 method to detect familiarity with 

location stimuli, and secondly, to see how two different search task types (categorisation 

and detection) might impact the attentional blink.  

At the group level, the two-way analyses found significant main effects of collapsed lag and 

separate lag, and significant two-way interactions between stimulus type and collapsed lag, 

and between stimulus type and separate lag in both the detection and categorisation task 

groups. However, there was only a significant main effect of stimulus type in the detection 

group. The three-way analyses found significant main effects of stimulus type, collapsed 

lag, and separate lag, and significant two-way interactions between stimulus type and 

collapsed lag, stimulus type and separate lag, and search task type and stimulus type. There 

was not a significant main effect of search task type, nor were there significant two-way 

interactions between search task type and collapsed lag or search task type and separate 

lag. There were, most importantly, not significant three-way interactions between search 

task type, collapsed lag, and stimulus type or between search task type, separate lag, and 

stimulus type.  

The significant main effects of separate lag and collapsed lag show that target accuracy was 

lower inside the 200-500ms attentional blink window than outside it. The significant 

interactions between stimulus type and separate lag and between stimulus type and 

collapsed lag show that the attentional blink effect was strongest for the probe. These 

findings match our hypotheses and demonstrate an attentional blink in both groups. 

However, there was not a significant main effect of search task type or a significant three-

way interaction between search task type, stimulus type, and collapsed lag, showing that 

there was no significant difference between hits performance for the categorisation and 

detection tasks overall, and that the attentional blink was not stronger for the 

categorisation task. These findings are inconsistent with our hypotheses.  

At the individual participants’ level, there were four significant results for categorisation 

and five significant results for detection in the two-tailed analyses. There were four 

significant results for the key interaction between stimulus type and collapsed lag (two for 

categorisation and two for detection), showing that the attentional blink effect can be 

found individually. In the additional one-tailed analyses, there were five significant results 

(two for the interaction) for categorisation and six significant results (two for the 
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interaction) for detection. Although the majority of individual p values did not reach 

significance in the one- and two-tailed analyses, the mean and median p values for the 

interaction in both analyses for the categorisation and detection groups were the correct 

side of chance for our expectation. The outcome of the interaction equation was in the 

expected direction for most participants (12/16 for categorisation and 13/16 for detection) 

despite there being few significant p values. This suggests that there could be an 

attentional blink effect occurring for most individuals, but it was only strong enough to 

reach significance for a few participants in the current experiment. The “expected 

direction” analysis is somewhat analogous to the results that would be seen if a simple 

machine learning approach were applied, where individuals would simply be classified into 

the most likely of the two possible outcomes, with no assessment of the confidence in that 

outcome. Most importantly, though, these findings suggest that future experiments with 

methodological improvements may detect more significant results at the individual 

participant’s level, which, as a result, could more strongly demonstrate that the Fringe-P3 

method combined with the attentional blink paradigm could be used to detect concealed 

information at the individual participants’ level.  

The presence of a significant main effect of stimulus type at the group level for the 

detection task but not for the categorisation task, and a significant interaction between 

search task type and stimulus type in the three-way ANOVAs, could suggest that the 

detection task would be more suitable for using the attentional blink to detect concealed 

information as it resulted in a larger difference between the probe and irrelevant 

conditions. However, there was no significant main effect of search task type, so the 

different tasks did not have a significant effect on participants’ overall hits performance, 

and there was no significant three-way interaction between search task type, stimulus 

type, and collapsed lag, so neither task led to a more pronounced attentional blink than the 

other. These results are surprising, as we expected there to be a significant main effect of 

search task type and a significant three-way interaction, with the probe generating a more 

pronounced attentional blink in the categorisation group than in the detection group, 

making the categorisation task better for detecting concealed information. This was 

expected as it was thought that having participants look for a category of target images, as 

opposed to detecting a specific target image, would force the participants to view the 

whole of the image space in the streams, thereby preventing them from using search 

strategies based on specific features or specific locations within the image space that could 

result in them missing the probe. However, the results did not support these hypotheses. 
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Potential methodological flaws that may have contributed to these non-significant results 

and future improvements to these methods are discussed later in this section.  

It should also be noted that, although not part of the main analyses, the d’ scores in 

appendix C show that, while there was not a significant main effect of search task type in 

the hits data, there was a significant main effect of search task type in the d’ scores data. D’ 

scores represent target accuracy, taking into account the number of false alarms as well as 

hits. Overall target accuracy was significantly higher in the detection task group than the 

categorisation task group. This was expected, as the detection task has specific targets to 

look for and therefore should be easier than the categorisation task. As the hits data did 

not have a significant difference, this difference in d’ accuracy must be caused by there 

being significantly more false alarms for the categorisation task, as can be seen in the 

tables of hits and false alarms in appendix C (tables C.1 and C.2). The d’ data was not 

included in the main analyses as the false alarms could not be separated into the four 

separate lags or collapsed lags, so could not be used to compare accuracy inside and 

outside of the attentional blink window, and the binomial regression analysis can only be 

run on hit and miss data, so d’ scores could not be used in the individual participants’ level 

analyses. Therefore, this significant difference in false alarms and accuracy could not be 

taken into account in the main analyses in the current study.  

One of the main limitations encountered with both groups was the number of participants 

whose total hits scores were at ceiling. This prevented the binomial regression analyses 

from being run on their data and resulted in 11 participants being excluded from the 

categorisation analyses and 6 from the detection analyses (these exclusions are explained 

fully in section 6.2.4). It is thought that so many participants’ hits scores reached ceiling 

due to the 144ms SOA used for both tasks. This SOA was chosen to be faster than the 

previous Fringe-P3 experiment using location stimuli from chapter 5, which used an SOA of 

167ms that was thought to be too slow and allowed non-salient stimuli to be consciously 

perceived. However, the current SOA was still slower than other Fringe-P3 research that 

used SOAs of 133ms (Alsufyani et al., 2019; Bowman et al., 2013) and 100ms (Bowman et 

al., 2014) with famous face and own-name stimuli. The current SOA was chosen to be 

slower than 133ms because the location images were thought to be more visually complex 

than names and greyscale faces and, therefore, may need longer in order to be perceived 

enough to be (subliminally) recognised as salient or not. It is possible, however, that this 

144ms SOA was still too slow and allowed participants to consciously see more items in the 

streams than just the critical stimuli, thus interfering with the attentional blink and leading 
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to high hit counts in all conditions. Future research could consider using an SOA of 133ms, 

which has been shown to be suitable for Fringe-P3 research in the famous names 

experiment in chapter 3 and in the Fringe-P3 experiments by Bowman et al (2013) and 

Alsufyani et al (2019). However, an even more appropriate suggestion would be to use a 

staircase procedure to select the best SOA for each participant. This would involve 

adjusting the SOA during practice trials to find the SOA where the participant’s hit rate for 

the target is 75% and correction rejection rate is 80%. This would ensure that the correct 

SOA is chosen for each participant so that it is neither too fast nor too slow and reduces the 

chance of participants’ scoring too close to ceiling, thus allowing the binomial regression 

analysis to work for all participants and reduce the need for exclusions. This staircase 

procedure was used successfully in chapter 4 for the Fringe-P3 experiment using email 

address stimuli.  

Due to the slow SOA, when the target was presented at lag 3, it was 432ms after the probe 

or irrelevant, which is close to the end of the 200-500ms attentional blink window. It was 

thought that participants may have recovered from an attentional blink by the time the 

target was presented at lag 3, and that may have affected both the collapsed lag and 

separate lag analyses. Therefore, additional group and individual level analyses comparing 

lag 1 with lag 7 only were conducted. However, these analyses did not find a substantial 

improvement of the results at the group or individual participants’ level. Therefore, it was 

concluded that the inclusion of lag 3 (and 5) did not have a substantial impact on the 

collapsed lag and separate lag analyses. The full results of the lag 1 v 7 analyses can be 

found in appendix D.  

There were two main aims of this chapter: to show that the Fringe-P3 method combined 

with the attentional blink could be used to detect familiarity with a salient probe, and to 

investigate how two different search tasks could affect the attentional blink. The results 

from the two groups successfully act as a proof of concept that the attentional blink can 

indeed be used to detect familiarity with a probe stimulus in the context of detecting 

concealed information. The significant interactions between stimulus type and collapsed 

lag, and stimulus type and separate lag, demonstrate that target accuracy was lowest when 

the target was presented within 200-500ms of the probe, thus demonstrating an 

attentional blink for the probe as expected. There were also some significant results at the 

individual level, showing that there is potential for the method to be used for individual 

participants. Future research using the suggested methodological improvements may find 

stronger results, particularly at the individual participants’ level. This method could also be 
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combined with EEG to test for a P3 alongside an attentional blink. This would provide an 

even more robust test where, for example, even if the participant does not experience an 

attentional blink after the probe (such as non-blinkers), they may still generate a P3 for the 

probe and thus suggest they are concealing information. The results of the categorisation 

versus detection comparisons were inconclusive as there was no significant main effect of 

search task type or significant three-way interaction between search task type, stimulus 

type, and collapsed lag using the hits data but there was a significant main effect of search 

task type using the d’ prime data. More research needs to be done to compare the two task 

types, taking into account the suggested methodological improvements.   
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7. Matched Filter Convolution Analysis for using EEG to Detect 

Concealed Information 

7.1. Introduction 

This chapter uses the same email addresses dataset used in chapter 4. For information on 

the experiment and collection of this data, please see chapter 4. The current chapter 

explores ways to more accurately classify and detect P3s at the individual participants’ level 

through variations of the AGAT and a matched filter convolution analysis (MFC).  

The Fringe-P3 concealed information test can be used to detect concealed information 

(through the presence of P3s) at both the group and individual participants’ level. Real 

forensic situations are mostly focused on individual suspects, therefore, having a sensitive 

and reliable analysis for detecting P3s at the individual participants’ level is key. The classic 

P3 (also called the P3b) appears as a positive deflection around 250-800ms post-stimulus, 

usually peaking around 300-500ms, and is maximal from the Pz electrode (Comerchero & 

Polich, 1999; Meijer et al., 2014; Polich & Kok, 1995). Sometimes a P3a is also present and 

appears before the P3b, peaking around 250–280ms, and is maximal from the Fz and Cz 

electrodes. While there is a classic P3 waveform, the latency, amplitude, breadth, and 

overall shape of the P3 can vary depending on the stimuli and tasks involved (Polich, 2007, 

2012). Any analysis to detect P3s needs to be able take this variability into account in order 

to be reliable in both experimental and real forensic situations. The matched filter 

convolution analysis proposed in this chapter attempts to account for such variance.  

Figure 7.1 presents the grand averages at Pz from three Fringe-P3 experiments: a) Bowman 

et al’s (2013) first Fringe-P3 experiment using own-names, b) the experiment in chapter 3 

using famous names, and c) Alsufyani et al’s (2019) experiment using famous faces. These 

plots demonstrate some ways in which P3s can vary for different stimuli and slightly 

different methods. The probe and target waveforms in the own-names (a) and famous 

names (b) plots have large P3 positivities, but the own-names P3s peak between 450ms 

and 500ms, while the famous names P3s peak later, between 600ms and 650ms. Both also 

have smaller early positivities before the main P3, but these positivities in the own-names 

experiment peak within the 150-300ms P3a window while the positivities in the famous 

names experiment peak outside of the P3a window, so it is unclear whether these are late 

P3as or not. The probe and target in the own-names experiment also have a negativity 

following the P3 which is not present for the famous names. The famous names P3s, on the 
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other hand, are broader than the own-names P3s, which is most likely due to the famous 

names experiment using multi-item stimuli (first and second names presented 

consecutively) while the own-names experiment used single-item stimuli (first names only). 

These two grand averages show that even though the two experiments used very similar 

methods and both used name stimuli, even a small change to the method and stimuli 

(multi-item famous names instead of single-item own-names) can have a substantial effect 

on the ERPs. The famous faces experiment (c), which used pictures of faces as stimuli 

instead of names, has an even more different grand average. While the target has a large, 

broad P3, peaking between 500ms and 550ms, similar to the famous names experiment, 

the probe, on the other hand, does not have a P3 but instead has a negativity followed by a 

positivity that were interpreted as an N400f followed by a P600. This demonstrates that 

not only can ERPs vary between different stimulus types and experiments, but they can 

even vary within the same participant in one experiment with one stimulus type. These 

variations in P3 amplitude, shape, and latency demonstrate how vital it is that methods of 

analysing and classifying P3s take into account potential differences from the classic P3 

waveform and from P3s from other experiments. 
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Figure 7.1. Grand Averages at Pz from Fringe-P3 Experiments Using Different Stimuli. 

 

These plots are grand averages at Pz from Fringe-P3 experiments. Plot (a) was taken from 
Bowman et al’s (2013) experiment using own-name stimuli. There is a clear P3a, P3b, and a 
post-P3 negativity for probe and target. Plot (b) was taken from the experiment using 
famous name stimuli in chapter 3. There is a clear P3b and a smaller positivity before the 
P3b that is outside of the 150-300ms P3a window. Plot (c) was taken from Alsufyani et al’s 
(2019) experiment using famous face stimuli. There is a negativity (N400f) followed by a 
positivity (P600) for the probe while the target only has a positivity (P3) and no negativity.  
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In Bowman et al’s two own-names Fringe-P3 experiments (2013, 2014), peak-to-peak 

analyses were used, as those datasets had clear negativities and positivities to compare. 

However, the three Fringe-P3 EEG datasets in this thesis (chapters 3, 4, and 5) did not have 

clear negativities, so a peak-to-peak analysis would not have been appropriate. Instead, the 

AGAT, using mean amplitude measures, was used as the main analysis (see section 2.5 for a 

full description of the AGAT). The AGAT does allow for some variation in the latency and 

amplitude of the P3, as it searches for a window of interest (on the aggregated ERP) with 

the highest mean amplitude within a 300-1000ms window. However, this analysis, as 

applied in the Fringe-P3 work in this thesis, is based purely on peak amplitude and does not 

take into account negativities or differences in the breadth and overall shape of the P3s. 

The AGAT could be modified to detect negativities, but only if there is a precedent in the 

literature for a negative effect. The MFC proposed in the current chapter can take into 

account all of these details by default.  

The core feature of the MFC is that it allows us to search more accurately for a P3 based on 

the shape of other real P3s from the same experiment, rather than relying on the shape of 

the classic P3 or P3s from other experiments using different methods or stimuli. By using 

P3s from the same experiment, we can take into account any differences in latency, shape, 

or negativities caused by that experiment’s method or stimuli.  

The MFC is related to previous work on a weight template method by Alsufyani et al (2018) 

(see also Alsufyani (2018)). The weight template method is focused on inter-participant 

variability within the same experiment, where, for example, one participant’s P3 may have 

more negativity than the others and so may not be detected and classified as a P3 by other 

analysis methods. Instead of basing the analysis on mean amplitude or peak-to-peak 

measures, the weight template analysis classifies P3s for the probe and irrelevant based on 

an individual-specific template made from that participant’s target ERP. P3s are typically 

strongest for the target, so using the target ERP for the template should provide a clear 

example of that participant’s personal P3 shape. The method begins by normalising the 

probe, target, and irrelevant ERPs. The weight template is then created from that 

participant’s target-irrelevant difference time series within the P3 window. This template is 

then applied at a fixed position within the P3 window on the probe-irrelevant difference 

time series and the two time series are multiplied point-by-point. This increases points 

where the probe-irrelevant and target-irrelevant differences are both greater (i.e., where a 

P3 is). The resulting vector is then summed to create the true observed weighted 

difference and a permutation test is run to find the p value. They found that their weight 



139 
 

template had a higher hit rate at detecting P3s than the peak-to-peak method. However, 

this method will only work well when the target and probe P3s are similar. If the probe and 

target P3s have very different shapes or latencies, then the target P3 template may not be 

similar enough to the probe P3s to correctly detect them. This method will also not work 

well if the target and probe ERPs contain different components. For example, it can be seen 

in the grand average from the famous faces experiment (Alsufyani et al., 2019) in figure 

7.1c, that there is an N400f negativity for the probe followed by a P600 positivity, whereas 

the target has no negativity but instead has a large P3 positivity. The weight template 

would not be appropriate for this data since the target and probe ERPs are so different. The 

MFC proposed in this chapter, on the other hand, would be suitable.   

The MFC does not rely on the target and probe ERPs being similar as it does not use the 

target ERP as the template. Instead, it averages the probe ERPs from all other participants 

(leaving out the current participant being analysed) and uses this minus-one grand average 

as the filter template (see section 7.4.1 for the full procedure). This allows us to then detect 

P3s for individuals based on their similarity to probe P3s from other individuals in the same 

experiment. While this does mean that the MFC will not be as well tailored to the shape of 

each participant’s personal P3 shape (as it uses other peoples’ P3’s as a template), it will be 

more tailored to the shape of the P3 generated by the specific stimuli and task. The MFC 

will also slide the filter template along the real ERPs within a broad search window and, 

therefore, will also take into account individual differences in the latency of the P3.  

This chapter will compare the MFC with the AGAT using the EEG data from the email 

addresses experiment in chapter 4. We expect that the MFC will be able to correctly classify 

some P3s that the AGAT analysis missed. A significant difference between the probe and 

irrelevant in the analysis is consistent with there being a P3. Therefore, we will measure the 

success of the MFC variations by the number of significant p values compared to the AGAT. 
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7.2. The Dataset and Analysis Methods 

7.2.1. The Dataset 
The EEG data used for this chapter was the email addresses data used in chapter 4. Full 

details of the experimental method and data analysis procedures can be found in section 

4.2 of chapter 4. The following is a summary of those procedures. 

Data from eleven participants, aged 19 - 28 (M = 23.27, SD = 2.9), seven female and four 

male, were included in the analyses. The EEG data were recorded using the BioSemi 

ActiveTwo system and ActiView software. Electroencephalographic data were recorded 

from Fz, Cz, and Pz but only Pz was used in the current analyses as that is where the P3 is 

expected to be strongest. Electro-oculogram data were recorded from both eyes using two 

HEOG electrodes on the outer canthus of each eye and two VEOG electrodes, one above 

and one below the right eye. The linked mastoids were used as a reference and 

impedances were kept below 10kOhm. The data were digitised at 2048Hz. 

The EEG data were then analysed using Matlab 2016a and EEGLAB version 13.6.5b. The 

data were first resampled to 512Hz, then underwent a high-pass filter of 0.5Hz and low-

pass filter of 45Hz, before being epoched into segments from -100ms to 1500ms, time-

locked to the onset of the critical stimulus. Trial rejection was performed on the eye 

electrodes (with above 100μV and below -100μV as criteria), and on the Pz, Fz, and Cz 

channels (with above 50μV and below -50μV as criteria). Baseline correction was then 

performed from -100ms to 0ms.  

After trial rejection, the maximum number of trials remaining per participant for probe and 

irrelevant was 60 and the minimum remaining was 46 for probe (M = 54.91, SD = 5.09) and 

40 for irrelevant (M = 53.91, SD = 6.49).  

Due to the small number of participants (11) in this dataset, we will not be able to report 

robust statistical differences between the AGAT and MFC methods. Therefore, the 

inferences made in this chapter must be considered provisional at this stage.  

7.2.2. The ERPs and Analyses 
All statistical analyses were performed at the individual participants’ level, using data from 

the Pz electrode and the probe and irrelevant conditions only. The analyses used were the 

AGAT analysis (explained in full in section 2.5) and several versions of the MFC (each 

explained later in the relevant sections of this chapter). Every version of the AGAT and MFC 

used permutation tests with 10,000 permutations to calculate the p value.  
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As mentioned in section 2.5, the individual participants’ level analyses treat each 

participant as a separate experiment and do not compare them with each other, so 

corrections for the type I error rate are not required. This applies to all versions of the 

individual AGAT and MFC analyses. Corrections for multiple comparisons are only required 

in section 7.8.1, when the four measures of the MFC are compared with each other, 

resulting in six comparisons.  

Figure 7.2 shows the individual participants’ probe and irrelevant ERPs from Pz and figure 

7.3 shows the grand average for probe and irrelevant from Pz.  

Figure 7.2. Individual Participants’ Probe and Irrelevant ERPs. 

 

This figure shows the individual participant’s probe (green) and irrelevant (black) ERPs from 
Pz up to 1500ms post-stimulus.  
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It can be seen in figure 7.2 that there are clear P3 positivities for the probe but not the 

irrelevant for participants 2, 3, 4, 7, 8, and 9. Participant 5 has a positivity for the probe 

around 250-400ms, which could also be a P3, but this is less likely to be detected by the 

standard AGAT analysis as it starts before the AGAT’s 300-1000ms search window. It may, 

however, be detected by the MFC as it uses a wider search window. Participant 6 has two 

positivities for the probe around 550-650ms and 750-900ms but the irrelevant also has 

positive deflections at the same time. Similarly, participant 1 has a positivity for the probe 

around 200-400ms but the irrelevant also has a positivity at this time. The AGAT is less 

likely to detect a significant difference for these participants due to similar amplitudes for 

the probe and irrelevant, however, as the MFC takes into account the shape of the 

waveform and not just the amplitude, it is possible that the MFC may be able to detect 

differential P3s for these participants. There is a clearer positivity for the probe around 

1150-1300ms for participant 6, however the P3 positivity is typically over by this time, so 

this is less likely to be a P3. Overall, it is likely that both the AGAT and the MFC will detect 

P3s (and significant differences) for participants 2, 3, 4, 7, 8, and 9 as they have clear 

positivities for the probe that are not present for the irrelevant. However, the MFC may 

also be able to detect P3s for participants 1, 5, and 6, that the AGAT is less likely to detect. 

Due to the noise and drift in the data, it is less likely that the AGAT or MFC will detect P3s 

for participants 10 and 11.  

 



143 
 

Figure 7.3. Grand Average for Probe and Irrelevant. 

 

This figure shows the grand average from Pz for all participants. A clear P3 positivity can be 
seen for the probe but not the irrelevant.  
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7.3. 300-1000ms AGAT 

The first analysis was the AGAT analysis as described in section 2.5. This AGAT used the 

standard search window of 300-1000ms, matching the P3 bounding windows used in 

Bowman et al’s own-names experiments (2013, 2014) and in chapters 3 and 5 of this thesis. 

This is the default analysis and will serve as a baseline against which the MFC variations will 

be compared. 

7.3.1. 300-1000ms AGAT Results 
Table 7.1 shows that six of eleven participants (55%) had significant p values. 

Table 7.1. Mean Amplitude and P Value Results of the 300-1000ms AGAT. 

Participant Probe Irrelevant P Value 

1 3.017 4.746 0.7640 

2 12.197 -1.259 < 0.0001* 

3 10.842 2.551 < 0.0001* 

4 6.657 0.722 0.0003* 

5 0.945 -0.771 0.1434 

6 3.199 0.509 0.1080 

7 5.492 -0.919 0.0065* 

8 4.141 0.481 0.0457* 

9 6.287 -1.045 0.0024* 

10 2.623 0.926 0.2719 

11 3.853 3.234 0.3971 

Mean 5.387 0.834 0.158 

Median 4.141 0.509 0.046 

Std Dev 3.468 1.945 0.240 

Num Sig   6 

This table shows the probe and irrelevant mean amplitudes in the window of interest and 
the p values for each participant. 55% of participants (6/11) had significant p values. The 
asterisk marks p values that were significant at the 0.05 level. 

 

The 300-1000ms window is the standard search window for the AGAT, but a 300-1500ms 

AGAT was also run, as some versions of the MFC in this chapter have search windows up to 

1500ms. There was no substantive difference in results to the standard 300-1000ms 

version, with the same number of significant p values (6 total, M = 0.210, Med = 0.038, SD = 

0.316). Only three participants (7, 13, and 14) had different (later) windows of interest 
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selected by the 300-1500ms version, none of which were significant in either version of the 

AGAT. As there was no substantive difference between the 300-1000ms and 300-1500ms 

AGAT, the standard 300-1000ms AGAT will still be used as the baseline against which the 

MFC will be compared. 

7.4. Non-Weighted Matched Filter Convolution Analysis 

The MFC uses a filter template made from other participants’ probe ERPs as a template of 

what the probe P3 for that experiment looks like. The MFC slides this filter template along 

the individual participant’s probe and irrelevant ERPs (separately) and calculates the 

covariance, correlation, dot product, and cosine at each point. Calculating these distance 

measures allows us to detect P3s by finding the window where that participant’s ERP most 

closely resembles (e.g., correlates with) the filter template and, therefore, most closely 

resembles the expected P3 shape for that experiment. An additional objective is to assess 

the effectiveness of the four distance measures as part of the MFC. By using a leave-one-

out procedure to generate the filter template, we will not bias the template towards the 

current participant being analysed, as their data is left out of their template. This first 

version of the MFC does not involve any weighting, so is referred to as the non-weighted 

MFC (a weighted MFC is introduced in section 7.5).  

7.4.1. Non-Weighted MFC Procedure 
1) Generate a “minus-one” grand average, using a leave-one-out procedure by averaging 

together the probe ERPs from all participants, excluding the current participant being 

analysed (referred to from this point onwards as the “current participant”). For example, to 

analyse participant 1, the minus-one grand average would be the average of participants 2-

11. Figure 7.4 presents the minus-one grand averages and the sections used as filter 

templates for each participant.  

2) The filter template is cut from the minus-one grand average from 300ms to 1000ms, 

making it 700ms long. These filter template sections are marked with vertical blue dashed 

lines on figure 7.4. The 300-1000ms window for the filter template was chosen because the 

P3 positivity typically starts around 300ms and has returned to baseline by 1000ms. In 

experiments where the P3 in the grand average starts earlier than 300ms or ends later than 

1000ms, this window will still contain the main body of the positivity so will still provide a 

reliable template for the P3.  
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3) The filter template is then placed at the starting point of the search window (e.g., 

150ms) on the current participant’s probe ERP and slid along the ERP until the upper edge 

of the template reaches the end of the search window (e.g., 1500ms). At each position, the 

covariance, correlation, dot product, and cosine are calculated between the filter template 

and the ERP, resulting in convolution time series. The largest covariance, correlation, dot 

product, and cosine results are saved. This is then repeated with the irrelevant ERP, using 

the same filter template. The difference between the largest covariance, correlation, dot 

product, and cosine results for probe and irrelevant are calculated as the true observed 

results.   

4) The individual trial data then undergoes a permutation test, permuting the current 

participant’s probe and irrelevant trials 10,000 times to create surrogate probe and 

irrelevant ERPs. The same filter template is then slide along these surrogate ERPs, as in step 

3, and the difference between the largest covariance, correlation, dot product, and cosine 

results for probe and irrelevant are found and saved as the surrogate difference for each 

permutation. The p value is calculated as the proportion of surrogate differences that are 

greater than or equal to the true observed difference.  
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Figure 7.4. Minus-One Probe Grand Averages and Filter Templates. 

 

This figure presents the minus-one probe grand averages from Pz for each participant. The 
blue vertical dashed lines represent the 300-1000ms window used as the filter template in 
the analyses. For example, the “leaving out participant 1” plot is the average of participants 
2-11 and the section within the blue dashed lines would be used as the filter template to 
analyse participant 1.  
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7.4.2. 150-1500ms Non-Weighted MFC 
The first version of the non-weighted MFC used a search window of 150-1500ms. The 

150ms start point was chosen to allow for individual variability before the typical P3 onset 

at 300ms. The 1500ms end point was chosen to allow for variability in the latency of the P3 

beyond the typical 1000ms end point.  

Results 

Table 7.2 shows that the covariance measure had the highest number of significant p 

values of the four measures, with six significant results (55%). This is the same number of 

significant results as the 300-1000ms AGAT (section 7.3). All other measures had less 

significant p values than the 300-1000ms AGAT. Interestingly, the 150-1500ms MFC 

covariance measure found a significant p value for participant 6 but not for participant 8, 

while the 300-1000ms AGAT found a significant p value for participant 8 but not for 

participant 6. This shows that, despite finding the same number of significant p values, the 

covariance measure did not detect P3s for exactly the same participants.  

Table 7.2. P Value Results Summary of the 150-1500ms Non-Weighted MFC. 

Participant Covariance Correlation Dot Product Cosine 

1 0.078 0.0548 0.5616 0.4206 

2 0.0005* 0.0423* 0.0068* 0.0175* 

3 < 0.0001* 0.0002* < 0.0001* 0.0014* 

4 < 0.0001* 0.0006* 0.1415† 0.2504† 

5 0.945 0.9908 0.3537 0.3428 

6 0.0486*† 0.0513 0.3625 0.3698 

7 0.0227* 0.0536† 0.0482* 0.1386† 

8 0.3468† 0.344† 0.0395* 0.0371* 

9 0.0012* 0.0155* 0.0123* 0.0175* 

10 0.3122 0.3349 0.4256 0.4297 

11 0.489 0.5171 0.4615 0.4626 

Mean 0.204 0.219 0.219 0.226 

Median 0.049 0.054 0.142 0.250 

Std Dev 0.300 0.311 0.215 0.187 

Num Sig 6 4 5 4 

This table show the results of the covariance, correlation, dot product, and cosine measures 
for the MFC with a 150-1500ms search window. The covariance measure had the highest 
number of significant p values. The asterisk marks p values that were significant at the 0.05 
level. The dagger (†) marks p values that have changed significance compared to the 300-
1000ms AGAT. 
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7.4.3. 200-1100ms Non-Weighted MFC 
The large 150-1500ms search window from the previous version resulted in some windows 

of interest being chosen that were late in the ERP, past the point where the P3 has usually 

finished and were thus not likely to be P3s. For example, all of participant 1’s windows of 

interest, except for the cosine measure, were around 740ms to 1440ms. While the MFC is 

intended to detect P3s that do not fit the typical shape and timing, it is very unlikely that 

P3s would appear so late after the stimulus when they typically peak far earlier, around 

300-500ms post-stimulus. We cannot risk the MFC misclassifying other ERP components or 

drift as P3s, therefore, a shorter search window was tested in this second version of the 

MFC: 200-1100ms. These specific timings were chosen because they provide 100ms of 

flexibility on either side of the typical 300-1000ms P3 window to allow for variation in the 

start and end of the P3 for each participant, while still narrowing focus around the 300-

1000ms window where P3s are most expected to occur.  

Results 

It can be seen in table 7.3 that the number of significant results for covariance decreased 

by one compared to the previous 150-1500ms version (section 7.4.2), while the number of 

significant results increased by one for correlation and dot product and increased by two 

for cosine. The cosine measure had the biggest difference in results between the 150-

1500ms and 200-1100ms versions of the MFC, but none of the measures had a higher 

number of significant p values than the 300-1000ms AGAT (section 7.3).  
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Table 7.3. P Value Results Summary of the 200-1100ms Non-Weighted MFC. 

Participant Covariance Correlation Dot Product Cosine 

1 0.7922 0.8220 0.7129 0.7393 

2 < 0.0001* < 0.0001* 0.0011* 0.0021* 

3 < 0.0001* < 0.0001* < 0.0001* < 0.0001* 

4 0.0001* 0.0002* 0.0244*† 0.0487*† 

5 0.0771 0.0742 0.0681 0.0579 

6 0.1251† 0.1388 0.3233 0.3295 

7 0.0003* 0.0002*† 0.0114* 0.0009*† 

8 0.3474 0.3450 0.0367* 0.0345* 

9 0.0004* 0.0001* 0.0074* 0.0063* 

10 0.8119 0.8453 0.4609 0.4571 

11 0.4975 0.5217 0.4137 0.4746 

Mean 0.241 0.250 0.187 0.196 

Median 0.077 0.074 0.037 0.049 

Std Dev 0.322 0.335 0.248 0.260 

Num Sig 5 5 6 6 

This table show the results of the covariance, correlation, dot product, and cosine measures 
for the MFC with a 200-1100ms search window. The dot product and cosine measures had 
the highest number of significant p values. The asterisk marks p values that were significant 
at the 0.05 level. The dagger (†) marks p values that have changed significance compared 
to the 150-1500ms non-weighted MFC. 

 

7.4.4. 300-1000ms (Fixed Position) Non-Weighted MFC 
The final version of the non-weighted MFC did not slide the filter template along the search 

window, but instead placed it in a fixed position at 300-1000ms. This version was tested to 

investigate how narrowing the window to the standard P3 window would affect the results 

and to test whether having a broader search window, as used in the previous versions, was 

indeed beneficial to detecting P3s.  

Results 
Table 7.4 shows that restricting the MFC to the 300-1000ms P3 window resulted in one less 

significant p value for cosine in this version compared to the 200-1100ms version (section 

7.4.3). The other measures had the same number of significant results as the 200-1100ms 

version. The loss of one significant result for cosine suggests that reducing the search 

window to a fixed 300-1000ms window was too restrictive and having some flexibility 

around the start and end the typical P3 window is beneficial to detecting P3s.  
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Table 7.4. P Value Results Summary of the 300-1000ms Non-Weighted MFC. 

Participant Covariance Correlation Dot Product Cosine 

1 0.7703 0.8108 0.6994 0.7008 

2 < 0.0001* < 0.0001* 0.0007* 0.0008* 

3 < 0.0001* 0.0026* < 0.0001* 0.0001* 

4 < 0.0001* < 0.0001* 0.0252* 0.0574† 

5 0.2826 0.2644 0.0738 0.0628 

6 0.0801 0.0825 0.2593 0.2601 

7 0.0003* 0.0004* 0.0120* 0.0029* 

8 0.2465 0.3334 0.0472* 0.0493* 

9 0.0008* 0.0006* 0.0066* 0.0040* 

10 0.8097 0.8447 0.4567 0.4434 

11 0.5927 0.6224 0.4029 0.5196 

Mean 0.253 0.269 0.180 0.191 

Median 0.080 0.083 0.047 0.057 

Std Dev 0.323 0.339 0.240 0.252 

Num Sig 5 5 6 5 

This table shows the results of the covariance, correlation, dot product, and cosine 
measures for the MFC with a 300-1000ms fixed window. The dot product measure had the 
highest number of significant p values. The asterisk marks p values that were significant at 
the 0.05 level. The dagger (†) marks p values that have changed significance compared to 
the 200-1100ms non-weighted MFC. 

 

Of the three versions of the non-weighted MFC, the 200-1100ms version is the better 

choice as it has a smaller window than the full 150-1500ms version, and so reduces the 

chances of detecting a late component that is not a P3, but still allows for individual 

flexibility in the start and end of potential P3s. The dot product and cosine measures had 

the highest number of significant results (6 each, 55%) in the 200-1100ms version, which is 

the same amount as the 300-1000ms AGAT.  
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7.5. Weighted Matched Filter Convolution Analysis 

The weighted MFC takes the non-weighted MFC one step further by adding a weighting 

template. The weighted MFC begins the same as the non-weighted MFC by sliding the filter 

template along the ERP and creating covariance, correlation, dot product, and cosine time 

series. However, these time series then undergo additional steps where they are weighted 

by multiplying point-by-point with the weighting template. This weighting template is made 

from the full length of the minus-one grand average and does not slide but stays in its 

“original” position, so it will give greater weighting to points in the convolution time series 

that are closer (in time) to the peak of the weighting template (and therefore are closer to 

the peak of the minus-one grand average and are more likely to be P3s). The further in time 

a point of the convolution time series is from the peak of the weighting template, the less 

emphasis it will receive. High convolution results (e.g., a strong correlation) that occur close 

in time to the peak of the minus-one grand average are more likely to be P3s and will 

receive greater weighting, whereas high convolution results that occur very early before or 

very late after the peak are less likely to be P3s and will receive less weighting. This should 

lead to greater accuracy in the detection of P3s as it places additional emphasis on the 

results that most closely resemble the real probe P3 pattern for that stimulus type but still 

allows for variance in the latency of genuine P3s while reducing the chance of incorrectly 

classifying other early or late positivities as P3s when they are unlikely to be. 

7.5.1. Weighted MFC Procedure 
Figures 7.5, 7.6, and 7.7 provide visual aids for the following explanation using participant 

2’s data and the covariance measure as examples.  

1) Follow steps 1-3 of the non-weighted MFC procedure in section 7.4.1. The weighted MFC 

starts the same as the non-weighted MFC, by sliding the filter template along the individual 

participant’s ERP (as shown in figure 7.5) and calculating the covariance, correlation, dot 

product, and cosine at each point. This results in time series of covariance, correlation, dot 

product, and cosine results, as shown in figure 7.6a. The orange and pink vertical lines in 

figure 7.5a and b mark the peak of the filter template (red waveform) as it slides along the 

probe ERP (green waveform). 
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Figure 7.5. Example of the Filter Sliding and the Filter’s Peak Position Timings. 

 

This figure uses participant 2’s data as an example of how the filter template slides along 
the participant’s probe ERP. The orange and pink vertical lines show the position of the peak 
of the filter as it slides. 

 

2) The weighting template uses the full length of the minus-one grand average (-100 to 

1500ms). As the minus-one grand average can be negative at points, the absolute values 

are used for creating the weighting template. The absolute minus-one grand average 

(𝑎𝑏𝑠𝐺𝐴) is then normalised by dividing each point by the sum of all points and multiplying 

by the total number of points, resulting in the weighting template (𝑊𝑡𝑒𝑚𝑝; figure 7.6b).  

𝑊𝑡𝑒𝑚𝑝(𝑡) =  
𝑎𝑏𝑠𝐺𝐴(𝑡). 𝑁

∑ 𝑎𝑏𝑠𝐺𝐴(𝑡)𝑁
𝑡=1

 

Where t is time in the time series and N is the length of the time series. 

3) The weighting template is then applied to the convolution time series (e.g., time series of 

covariance results in figure 7.6a). Each point in the convolution time series is then 

multiplied point-by-point with the weighting template (figure 7.6b).  

𝑟𝑒𝑠(𝑡) = 𝑊𝑡𝑒𝑚𝑝(𝑡) . 𝐶𝑜𝑛𝑣(𝑡) 

Where Conv is the convolution time series. 

Each point in the convolution time series represents a window of 700ms (not one 

millisecond). Therefore, the x-axis of the convolution time series (figure 7.6a) is labelled 

using the position of the peak of the filter template over the original ERP within the search 

window. The x-axis begins with the position of the peak when the template was first placed 

over the original ERP (the orange line in figure 7.5a) and increases by one time point (e.g., 

1ms) each time the filter slides. The millisecond of the convolution time series x-axis is 

paired with the same millisecond from the weighting template for the point-by-point 
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multiplication (as shown by the orange and pink lines in figure 7.6) to create the weighted 

convolution time series (figure 7.7). The highest result is then saved as the true observed 

value. 

Figure 7.6. Example of a Probe Covariance Time Series and a Weighted Template. 

This figure shows an example of a convolution time series (i.e., probe covariance time 
series) and a weighting template. The orange and pink lines demonstrate which 
milliseconds of the time series are multiplied together.   

Figure 7.7. Example of a Weighted Covariance Time Series. 

 

This figure shows the final weighted covariance time series.  

 

4) The data then undergoes a permutation test, similar to step 4 of the non-weighted MFC 

but with the additional weighting step. The current participant’s probe and irrelevant trials 

are permuted to create surrogate probe and irrelevant ERPs. The same filter template is 

then slide along these surrogate ERPs to create the surrogate covariance, correlation, dot 

product, and cosine convolution time series, which are then weighted using the same 

weighting template according to step 3 above and the highest value saved. The p value is 

calculated as the proportion of surrogate results that are above or equal to the true 

observed value.  
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7.5.2. 150-1500ms Weighted MFC 
The first version of the weighted MFC used a search window of 150-1500ms. This was 

chosen to match the first version of the non-weighted MFC to compare how much of an 

affect the weighting had on the results.   

Results 

Table 7.5 shows that the 150-1500ms weighted MFC had a higher number of significant 

results than the 150-1500ms non-weighted MFC (section 7.4.2) for the correlation, dot 

product, and cosine measures, suggesting that the weighting did improve the ability to 

detect P3s for those measures. The covariance measure had one less significant result in 

the weighted MFC version.   

Table 7.5. P Value Results Summary of the 150-1500ms Weighted MFC. 

Participant Covariance Correlation Dot Product Cosine 

1 0.2454 0.2256 0.6823 0.7201 

2 < 0.0001* 0.0037* 0.0030* 0.0069* 

3 < 0.0001* < 0.0001* < 0.0001* < 0.0001* 

4 < 0.0001* < 0.0001* 0.0330*† 0.0594 

5 0.2591 0.2970 0.2057 0.2056 

6 0.0727† 0.0762 0.3089 0.3148 

7 0.0002* 0.0003*† 0.0113* 0.0275*† 

8 0.2776 0.3377 0.0425* 0.0377* 

9 0.0004* 0.0011* 0.0061* 0.0042* 

10 0.6207 0.6554 0.4381 0.4402 

11 0.5110 0.5411 0.4029 0.5246 

Mean 0.181 0.194 0.194 0.213 

Median 0.073 0.076 0.043 0.059 

Std Dev 0.223 0.238 0.234 0.252 

Num Sig 5 5 6 5 

This table show the results of the covariance, correlation, dot product, and cosine measures 
for the MFC with default weighting and a 150-1500ms search window. The dot product 
measure had the highest number of significant p values. The asterisk marks p values that 
were significant at the 0.05 level. The dagger (†) marks p values that have changed 
significance compared to the 150-1500ms non-weighted MFC. 
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7.5.3. 200-1100ms Weighted MFC 
While the 150-1500ms weighted MFC had a higher number of significant results than the 

150-1500ms non-weighted MFC, none of the measures had a higher number of significant 

results than the 200-1100ms non-weighted MFC. Therefore, this next version tested the 

weighted MFC with the shorter 200-1100ms window, to see if using a shorter window 

would further aid the weighted MFC in detecting genuine P3s and preventing the detection 

of late non-P3 positivities.  

Results 

Table 7.6 shows that the 200-1100ms weighted MFC had one additional significant p value 

for every measure compared to the 150-1500ms weighted MFC (section 7.5.2). This shows 

that the shorter window, again, prevented late peaks being selected that are unlikely to be 

P3s and instead selected earlier peaks that were more likely to be P3s. The current version 

also had one additional significant p value for the covariance, correlation, and dot product 

measures compared to the 200-1100ms non-weighted MFC (section 7.4.3), suggesting that 

the weighting did aid the classification of P3s. Most importantly, the current version 

resulted in the highest number of significant p values so far out of all analyses, including 

the AGAT (7/11 for the dot product measure, 64%). This shows that using a combination of 

the weighted MFC and the shorter search window led to an increased ability to detect P3s.  
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Table 7.6. P Value Results Summary of the 200-1100ms Weighted MFC. 

Participant Covariance Correlation Dot Product Cosine 

1 0.9980 0.9953 0.7140 0.7575 

2 < 0.0001* < 0.0001* 0.0013* 0.0031* 

3 < 0.0001* < 0.0001* < 0.0001* < 0.0001* 

4 < 0.0001* < 0.0001* 0.0269* 0.0593‡ 

5 0.0020*†‡ 0.0005*†‡ 0.0004*†‡ 0.0015*†‡ 

6 0.0738 0.0800 0.3151 0.3211 

7 < 0.0001* < 0.0001* 0.0002* < 0.0001* 

8 0.2806 0.3441 0.0409* 0.0376* 

9 < 0.0001* < 0.0001* 0.0042* < 0.0001* 

10 0.9725 0.9823 0.4659 0.4598 

11 0.5157 0.5430 0.4042 0.5231 

Mean 0.258 0.268 0.179 0.197 

Median 0.002 0.001 0.027 0.038 

Std Dev 0.395 0.398 0.253 0.272 

Num Sig 6 6 7 6 

This table show the results of the covariance, correlation, dot product, and cosine measures 
for the MFC with default weighting and a 200-1100ms search window. The dot product 
measure had the highest number of significant p values. The asterisk marks p values that 
were significant at the 0.05 level. The dagger (†) marks p values that have changed 
significance compared to the 150-1500ms weighted MFC and the double dagger (‡) marks p 
values that have changed significance compared to the 200-1100ms non-weighted MFC.  
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7.6. α Weighted Matched Filter Convolution Analysis 

The final version of the weighted MFC used an α parameter to vary the strength of the 

weighting. This was to investigate if there was a particular strength of weighting that led to 

more optimised classification of P3s than either the non-weighted or the default fully 

weighted versions. The α used were 0, 0.25, 0.5, 0.75, and 1. Where α = 0, the weighting is 

the same as the default full weighting. Where α = 1, it will result in a time series of 1s, 

making the weighting effect the same as using no weighting. If varying the α makes a 

substantial difference to the number of significant results, then the next version could 

involve an algorithm that finds the best α value for that participant, rather than using one 

of the five arbitrary α values chosen here. All α versions used a search window of 150-

1500ms. This search window was chosen to allow full flexibility for the MFC and to see how 

titrating the α may impact potential incorrect detection of late peaks that are not P3s.  

7.6.1. α Weighted MFC Procedure 
1) Follow steps 1 and 2 of the default weighted MFC procedure in section 7.5.1.  

2) After creating the weighting template, introduce an α parameter to affect the strength 

of the weighting, where 0 ≤ α ≤ 1. 

𝑊𝑡𝑒𝑚𝑝(𝑡) = (𝛼. 1) + ((1 − 𝛼). 𝑊𝑡𝑒𝑚𝑝(𝑡)) 

3) Step 3 here is the same as step 3 of the default weighted MFC procedure in section 7.5.1 

but using the α weighting template (𝑊𝑡𝑒𝑚𝑝) in place of the default weighting template 

(𝑊𝑡𝑒𝑚𝑝) for the point-by-point multiplication with the convolution time series. 

𝑟𝑒𝑠(𝑡) =  𝑊𝑡𝑒𝑚𝑝(𝑡) . 𝐶(𝑡) 

4) Perform the permutation test the same as in step 4 of the default weighted MFC 

procedure in section 7.5.1 but continue using the α weighting template (𝑊𝑡𝑒𝑚𝑝) in place 

of the default weighting template (𝑊𝑡𝑒𝑚𝑝) for the point-by-point multiplication with the 

surrogate convolution time series.  
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7.6.2. α Weighted MFC Results 
The following five tables (7.7 through to 7.11) show the results of the different α weighted 

filters. The tables all show the results of the covariance, correlation, dot product, and 

cosine measures for their respective α weighted MFC.  

Table 7.7 shows the results of the α weighted MFC where α = 0. An α of 0 is the same as 

using the default full weighting and the number of significant p values here matches the 

number found in the 150-1500ms default fully weighted MFC (section 7.5.2), as expected.  

Table 7.7. P Value Results Summary Where α = 0. 

Participant Covariance Correlation Dot Product Cosine 

1 0.2461 0.2244 0.6815 0.7206 

2 < 0.0001* 0.0031* 0.0017* 0.0037* 

3 < 0.0001* < 0.0001* < 0.0001* < 0.0001* 

4 < 0.0001* < 0.0001* 0.0292* 0.0581 

5 0.2611 0.3008 0.2100 0.2101 

6 0.0705 0.0777 0.3108 0.3156 

7 0.0003* 0.0016* 0.0132* 0.0307* 

8 0.2817 0.3437 0.0413* 0.0380* 

9 0.0004* 0.0016* 0.0078* 0.0045* 

10 0.6083 0.6444 0.4347 0.4360 

11 0.5219 0.5553 0.4073 0.5282 

Mean 0.181 0.196 0.194 0.213 

Median 0.071 0.078 0.041 0.058 

Std Dev 0.223 0.238 0.234 0.253 

Num Sig 5 5 6 5 

This table presents the p values for each measure. The dot product measure had the highest 
number of significant p values. The asterisk marks p values that were significant at the 0.05 
level.  
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Table 7.8 shows the results of the α weighted MFC where α = 0.25. The cosine measured 

had one less significant result than the α = 0 version. The other measures had the same 

number of significant p values as the α = 0 version.  

Table 7.8. P Value Results Summary Where α = 0.25. 

Participant Covariance Correlation Dot Product Cosine 

1 0.1731 0.1499 0.6823 0.7085 

2 0.0001* 0.0044* 0.0023* 0.0060* 

3 < 0.0001* < 0.0001* < 0.0001* < 0.0001* 

4 < 0.0001* < 0.0001* 0.0331* 0.0575 

5 0.3179 0.3689 0.2746 0.2588 

6 0.0671 0.0727 0.3122 0.3190 

7 0.0007* 0.0026* 0.0161* 0.0677† 

8 0.2955 0.3717 0.0460* 0.0419* 

9 0.0003* 0.0019* 0.0098* 0.0152* 

10 0.5870 0.6258 0.4422 0.4442 

11 0.5116 0.5395 0.3992 0.5126 

Mean 0.178 0.194 0.202 0.221 

Median 0.067 0.073 0.046 0.068 

Std Dev 0.220 0.239 0.234 0.246 

Num Sig 5 5 6 4 

This table presents the p values for each measure. The dot product measure had the highest 
number of significant p values. The asterisk marks p values that were significant at the 0.05 
level. The dagger (†) marks the p value that has changed significance compared to the α = 0 
version. 
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Table 7.9 shows the results of the α weighted MFC where α = 0.5. All measures had the 

same number of significant results as the α = 0.25 version.  

Table 7.9. P Value Results Summary Where α = 0.5. 

Participant Covariance Correlation Dot Product Cosine 

1 0.1340 0.1074 0.6808 0.6757 

2 < 0.0001* 0.0087* 0.0020* 0.0054* 

3 < 0.0001* < 0.0001* < 0.0001* < 0.0001* 

4 < 0.0001* < 0.0001* 0.0423* 0.0587 

5 0.4233 0.4830 0.3266 0.3078 

6 0.0648 0.0684 0.3235 0.3321 

7 0.0012* 0.0040* 0.0225* 0.1130 

8 0.3332 0.3786 0.0400* 0.0357* 

9 0.0007* 0.0029* 0.0110* 0.0189* 

10 0.5596 0.5888 0.4431 0.4458 

11 0.5184 0.5504 0.4100 0.5175 

Mean 0.185 0.199 0.209 0.228 

Median 0.065 0.068 0.042 0.113 

Std Dev 0.228 0.246 0.237 0.239 

Num Sig 5 5 6 4 

This table presents the p values for each measure. The dot product measure had the highest 
number of significant p values. The asterisk marks p values that were significant at the 0.05 
level.  
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Table 7.10 shows the results of the α weighted MFC where α = 0.75. The dot product 

measure had one less significant p value than α = 0.5 version. The other measures had the 

same number of significant results as the α = 0.5 version.  

Table 7.10. P Value Results Summary Where α = 0.75. 

Participant Covariance Correlation Dot Product Cosine 

1 0.0880 0.0638 0.6472 0.6260 

2 0.0001* 0.0128* 0.0027* 0.0077* 

3 < 0.0001* < 0.0001* < 0.0001* < 0.0001* 

4 < 0.0001* < 0.0001* 0.0600† 0.0830 

5 0.6674 0.7976 0.3538 0.3402 

6 0.0567 0.0612 0.3256 0.3345 

7 0.0009* 0.0072* 0.0321* 0.1270 

8 0.3501 0.3621 0.0415* 0.0351* 

9 0.0017* 0.0053* 0.0122* 0.0164* 

10 0.4516 0.4758 0.4327 0.4339 

11 0.5086 0.5367 0.4086 0.4974 

Mean 0.193 0.211 0.211 0.227 

Median 0.057 0.061 0.060 0.127 

Std Dev 0.251 0.283 0.229 0.226 

Num Sig 5 5 5 4 

This table presents the p values for each measure. The covariance, correlation, and dot 
product measures were tied for the highest number of significant p values. The asterisk 
marks p values that were significant at the 0.05 level. The dagger (†) marks the p value that 
has changed significance compared to the α = 0.5 version. 
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Table 7.11 shows the results of the α weighted MFC where α = 1. An α of 1 is the same as 

using no weighting. The number of significant results for the covariance and correlation 

measures here are different to those found in the 150-1500ms non-weighted MFC (section 

7.4.2), but these differences can be explained simply by the randomisation in the 

permutation procedure, as both of the p values that changed significance are close to 0.05.  

All measures had the same number of significant results as the α = 0.75 version.  

Table 7.11. P Value Results Summary Where α = 1. 

Participant Covariance Correlation Dot Product Cosine 

1 0.0667 0.0461*†‡ 0.5551 0.4238 

2 0.0002* 0.0438* 0.0048* 0.0188* 

3 < 0.0001* 0.0002* < 0.0001* 0.0011* 

4 < 0.0001* 0.0009* 0.1482 0.2551 

5 0.9469 0.9930 0.3518 0.3433 

6 0.0510‡ 0.0510 0.3642 0.3700 

7 0.0221* 0.0556† 0.0437* 0.1372 

8 0.3410 0.3349 0.0356* 0.0315* 

9 0.0022* 0.0131* 0.0132* 0.0193* 

10 0.3168 0.3347 0.4285 0.4341 

11 0.4988 0.5256 0.4658 0.4607 

Mean 0.204 0.218 0.219 0.227 

Median 0.051 0.051 0.148 0.255 

Std Dev 0.302 0.312 0.215 0.188 

Num Sig 5 5 5 4 

This table presents the p values for each measure. The covariance, correlation, and dot 
product measures were tied for the highest number of significant p values. The asterisk 
marks p values that were significant at the 0.05 level. The dagger (†) marks p values that 
have changed significance compared to the α = 0.75 version and the double dagger (‡) 
marks p values that have changed significance compared to the 150-1500ms non-weighted 
MFC, most likely due to the randomisation in the permutation. 

 

As can be seen from tables 7.7 through to 7.11, the number of significant p values slowly 

decreased for the dot product and cosine measures as α increased. The number of 

significant results for the covariance and correlation measures did not change. Varying the 

α did not greatly affect the number of significant results overall and did not lead to a higher 
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number of significant results than the 150-1500ms non-weighted or default weighted 

MFCs. Therefore, the α weighted MFC was tested no further.  

The 200-1100ms default weighted MFC (section 7.5.3) remains the version with the highest 

number of significant results.  

 

7.7. 250-1000ms AGAT 

After seeing that the version of the MFC with the highest number of significant p values 

used a search window of 200-1100ms and had detected several P3s that started before 

300ms, we needed to also test the AGAT with an earlier starting point for the search 

window for a fair comparison. Therefore, the AGAT was tested using a 250-1000ms search 

window instead of the typical 300-1000ms window. While using a 250-1000ms window 

would be too unnecessarily restrictive for the MFC - which was specifically intended to 

allow for variation - this is a suitable window for the AGAT as it still allows for some 

variation at the start while also remaining close to the 300-1000ms search window that has 

been tested and successfully used in the AGAT for previous Fringe-P3 research.  

7.7.1. 250-1000ms AGAT Results 
As can be seen in table 7.12, the 250-1000ms AGAT resulted in seven significant p values 

(64%). This is an increase of one additional significant result compared to the 300-1000ms 

AGAT (section 7.3) and matches the highest number of significant results found by the 200-

1100ms weighted MFC (section 7.5.3). The additional significant result was for participant 

5, whose window of interest (selected by the current AGAT) was 263-363ms. This is 

consistent with this participant having a P3 for the probe that was not detected by the 

previous AGAT because it began before the standard 300-1000ms search window.   
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Table 7.12. Mean Amplitude and P Value Results of the 250-1000ms AGAT. 

Participant Probe Irrelevant P Value 

1 4.792 3.537 0.2803 

2 12.197 -1.259 < 0.0001* 

3 10.842 2.551 < 0.0001* 

4 6.657 0.722 0.0004* 

5 1.681 -0.999 0.0264*† 

6 3.199 0.509 0.1125 

7 5.492 -0.919 0.0062* 

8 4.141 0.481 0.0357* 

9 6.287 -1.045 0.002* 

10 2.623 0.926 0.2710 

11 3.853 3.234 0.4027 

Mean 5.615 0.703 0.103 

Median 4.792 0.509 0.026 

Std Dev 3.293 1.744 0.145 

Num Sig   7 

This table shows the probe and irrelevant mean amplitudes in the window of interest and 
the p values for each participant. 64% of participants (7/11) had significant p values. The 
asterisk marks p values that were significant at the 0.05 level. The dagger (†) marks the p 
value that has changed significance compared to the 300-1000ms AGAT. 
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7.8. Comparing the AGAT and MFC 

Table 7.13 presents the median p values for each analysis method and measure. The 

median is the more appropriate measure of central tendency than the mean, due to the 

skewed distribution of p values, so is more suitable for comparing the MFC and AGAT.  

Table 7.13. Median P Values for Each Analysis Method and Measure. 
Analysis Method AGAT Covariance Correlation Dot 

Product 
Cosine 

AGAT 300-1000ms 0.046     

AGAT 250-1000ms 0.026*     

Non-Weighted MFC 150-1500ms  0.049 0.054 0.142 0.250 

Non-Weighted MFC 200-1100ms  0.077 0.074 0.037 0.049 

Non-Weighted MFC 300-1000ms  0.080 0.083 0.047 0.057 

Weighted MFC 150-1500ms  0.073 0.076 0.043 0.059 

Weighted MFC 200-1100ms  0.002 0.001* 0.027 0.038 

Weighted MFC α = 0  

150-1500ms 

 0.071 0.078 0.041 0.058 

Weighted MFC α = 0.25  

150-1500ms 

 0.067 0.073 0.046 0.068 

Weighted MFC α = 0.5  

150-1500ms 

 0.065 0.068 0.042 0.113 

Weighted MFC α = 0.75  

150-1500ms 

 0.057 0.061 0.060 0.127 

Weighted MFC α = 1  

150-1500ms 

 0.051 0.051 0.148 0.255 

Min 0.026 0.002 0.001 0.027 0.038 

Max 0.046 0.080 0.083 0.148 0.255 

This table contains the medians of every analysis method and MFC measure in this chapter. 
The smallest median p values for the AGAT and the MFC are marked by an asterisk.  

 

The 200-1100ms weighted MFC has the smallest median p values for each of the four 

measures across all versions of the MFC. The correlation measure in this version had the 

smallest median p value (p = 0.001) overall, but it was the dot product measure in this 

version that resulted in the highest number of significant p values across all measures and 

versions of the MFC. The median p value for the 250-1000ms AGAT was smaller (p = 0.026) 

than the 300-1000ms AGAT (p = 0.046). All four measures of the 200-1100ms weighted 



167 
 

MFC had smaller median p values than the 300-1000ms AGAT, but only the correlation and 

covariance measures had smaller median p values than the 250-1000ms AGAT (although 

the dot product median p value was only very slightly larger).  

Table 7.14 presents the number of significant p values found for each analysis method and 

measure. The 250-1000ms AGAT and the dot product measure of the 200-1100ms 

weighted MFC had the highest number of significant p values (7). 

 

Table 7.14. Number of Significant P Values for Each Analysis Method and Measure. 
Analysis Method AGAT Covariance Correlation Dot 

Product 
Cosine 

AGAT 300-1000ms 6     

AGAT 250-1000ms   7*     

Non-Weighted MFC 150-1500ms  6 4 5 4 

Non-Weighted MFC 200-1100ms  5 5 6 6 

Non-Weighted MFC 300-1000ms  5 5 6 5 

Weighted MFC 150-1500ms  5 5 6 5 

Weighted MFC 200-1100ms  6 6   7* 6 

Weighted MFC α = 0  

150-1500ms 

 5 5 6 5 

Weighted MFC α = 0.25  

150-1500ms 

 5 5 6 4 

Weighted MFC α = 0.5  

150-1500ms 

 5 5 6 4 

Weighted MFC α = 0.75  

150-1500ms 

 5 5 5 4 

Weighted MFC α = 1  

150-1500ms 

 5 5 5 4 

Min 6 5 4 5 4 

Max 7 6 6 7 6 

Both the 250-1000ms AGAT and the dot product measure of the 200-1100ms weighted MFC 
resulted in 7 significant p values, the highest number of significant results overall (marked 
by an asterisk in the table).  



168 
 

7.8.1. Statistical Analysis 

AGAT – MFC Comparisons 
The individual participants’ p values were used to compare the AGAT and the MFC. The 

200-1100ms weighed MFC had the smallest median p values and the highest number of 

significant p values of all versions of the MFC, so this version of the MFC was compared to 

the AGAT. The correlation measure had the smallest median p value and the dot product 

had the highest number of significant p values, so these two measures of the 200-1100ms 

weighted MFC were compared against both the 300-1000ms original AGAT and the 250-

1000ms extended AGAT.  

To compare the individual p values, they were first transformed by a probit function (the 

inverse cumulative distribution of the standard normal distribution). Some of the original p 

values were 0 and would become “–infinity” following the probit transformation (which 

cannot be used in the statistical analyses), therefore, p values of 0 were changed to 

0.00001 before undergoing the probit transformation. The resulting values for both 

versions of the AGAT and the dot product measure of the weighted MFC were found to be 

normally distributed but the correlation measure was not, so Wilcoxon’s signed-rank tests 

were used to compare the transformed p values. Table 7.15 presents the medians of the 

original and probit-transformed p values for the 300-1000ms and 250-1000ms AGAT 

analyses and the dot product and correlation measures of the 200-1100ms weighted MFC. 

Table 7.15. Median P Values for the AGAT and MFC Analyses. 

 300-1000ms 

AGAT 

250-1000ms 

AGAT 

Weighted MFC 

Dot Product 

Weighted MFC 

Correlation 

Original P Values 0.046 0.026 0.027 0.001 

Probit-transformed 

P Values 

-1.688 -1.937 -1.928 -3.291 

This table contains the medians of the original and probit-transformed p values from the 
300-1500ms and 250-1000ms AGAT analyses and the dot product and correlation measures 
of the 200-1100ms weighted MFC. All of the original median p values are below 0.05.  

 

The Wilcoxon’s signed-rank test did not find a significant difference between the 300-

1000ms AGAT and the 200-1100ms weighted MFC’s dot product measure, Z = -.0561, p = 

0.5751, or between the 300-1000ms AGAT and the correlation measure, Z = 0, p = 1.  
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There was also not a significant difference between the 250-1000ms AGAT and the 200-

1100ms weighted MFC’s dot product measure, Z = -1.274, p = 0.2026, or the 250-1000ms 

AGAT and the correlation measure (Z = -0.267, p = 0.7896).  

These analyses found no significant differences between the 200-1100ms MFC and both 

versions of the AGAT. Therefore, no further statistical analyses were conducted to compare 

the AGAT and MFC methods. While this does not support our hypothesis that the MFC 

would be able to detect P3s that the AGAT did not (and thus have more significant p 

values), the results suggest that the AGAT also did not perform significantly better than the 

MFC and, instead, they performed similarly.  

 

MFC Measure Comparisons 

All versions of the MFC used four different measures of distance: covariance, correlation, 

dot product, and cosine. The dot product measure of the 200-1100ms weighted MFC 

resulted in the highest number of significant p values (7) out of all measures across all 

versions of the MFC, but the correlation measure of the 200-1100ms weighted MFC had 

the smallest median p value (p = 0.001). In order to compare the four measures, all of the 

individual p values for each measure across every version of the MFC were combined 

before undergoing the same probit transformation procedure used for the AGAT-MFC 

comparison. There are 10 versions of the MFC and 11 participants, so there were 110 p 

values for each measure in the analysis. The transformed p values for the four measures 

were all found to be normally distributed, so paired t-tests were conducted on the data. 

Table 7.16 presents the medians of the original and transformed p values and table 7.17 

presents the results of the paired t-tests on the transformed p values.  

 

Table 7.16. Median P Values for the Four Measures Across all Versions of the MFC. 

 Covariance Correlation Dot Product Cosine 

Original P Values 0.066 0.058 0.045 0.065 

Probit-transformed P Values -1.508 -1.569 -1.697 -1.512 

This table contains the medians of the original and probit-transformed p values for the four 
measures across every version of the MFC. Dot product is the only measure with an original 
median p value below 0.05.  
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As there are six comparisons, the Holm-Bonferroni correction was applied to adjust the 

significance level for each comparison accordingly. To perform the Holm-Bonferroni 

correction, the original p values are first ranked from smallest to largest. The significance 

level for each comparison is then adjusted as: significance level = α / (n – rank + 1). For 

example, the significance level for the covariance-correlation comparison is 0.05/(6-1+1) = 

0.0083.  

 

Table 7.17. Results of the Paired t-tests on the Four Measures’ Transformed P Values. 

Comparison t p 

Holm-Bonferroni  

Corrected Significance Level 

Covariance - Correlation -5.522 < 0.0001* 0.0083 

Covariance - Cosine -4.455 < 0.0001* 0.01 

Covariance - Dot Product -3.833 0.0002* 0.0125 

Dot Product - Cosine -3.213 0.0017* 0.0167 

Correlation - Cosine -2.449 0.0159* 0.025 

Correlation - Dot Product -1.594 0.1139 0.05 

This table contains the results of the paired t-tests on the four measures across every 
version of the MFC. The degrees of freedom were 109. The Holm-Bonferroni correction was 
applied and the resulting significance level for each comparison is listed. The only 
comparison that was not significant was the correlation-dot product comparison. 

 

The results of the paired t-tests in table 7.17 show that there were significant differences 

for all of the comparisons except the correlation-dot product comparison. These results, 

combined with the median p values in table 7.16, provide evidence that, overall, the 

correlation and dot product measures had significantly smaller p values than the 

covariance and cosine measures, so may be the more appropriate measures for the MFC. 

There was not a significant difference between the correlation and dot product measures, 

suggesting that they may be equally appropriate for future MFC research.  
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7.9. Discussion 

This chapter tested several variations of a new MFC analysis and compared it against the 

AGAT. A significant difference (p <= 0.05) between probe and irrelevant is consistent with 

there being a P3. Therefore, we used the p values to compare the AGAT and the MFC. We 

expected that the MFC would be able to detect some P3s that the AGAT did not and, as a 

result, the MFC would find more participants with significant p values. As mentioned earlier 

in section 7.2.1, the small number of participants (11) limits our ability to report robust 

statistical differences between the AGAT and the MFC. Therefore, the inferences in this 

discussion must be considered provisional. 

The standard AGAT used a search window of 300-1000ms and found significant results for 

six participants. This number was used as a baseline against which the MFC was compared. 

As can be seen in table 7.14, only one version of the MFC, the 200-1100ms weighted MFC, 

resulted in a higher number of significant results than the original 300-1000ms AGAT. The 

dot product measure in the 200-1100ms weighted MFC resulted in seven significant results 

while all other versions of the MFC resulted in six or fewer significant p values. The 200-

1100ms weighted MFC also had the smallest median p values for each of the four measures 

across all versions of the MFC and had the smallest median p value overall (for correlation) 

as can be seen in table 7.13. As the 200-1100ms MFC used a search window with an earlier 

start point than the 300-1000ms AGAT and found a P3 for participant 5 that started before 

300ms, the AGAT was then run again with a 250-1000ms search window for a fairer 

comparison. This version of the AGAT also found significant results for the same seven 

participants. Therefore, the MFC did not appear to demonstrate an increased ability to 

detect P3s over the AGAT, once the AGAT’s search window was extended to account for an 

earlier onset for P3s. Statistical analyses were conducted on the individual p values 

comparing the dot product and correlation measures of the 200-1100ms weighted MFC 

with both the 300-1000ms and 250-1000ms AGAT and found no significant differences. This 

shows that neither the AGAT nor MFC performed significantly better than the other on this 

dataset.   

Six participants (2, 3, 4, 7, 8, and 9) had clear P3s in their ERPs (figure 7.2) and significant p 

values in both versions of the AGAT and in at least one measure in every version of the 

MFC. Two participants, 10 and 11, did not have significant p values in any analyses and had 

noisy ERPs, so simply may not have had P3s to detect. Participant 1 only had a significant p 

value (p = 0.0461) in the 150-1500ms α weighted MFC where α = 1, which was the same as 

having no weighting. Participant 1’s p value had not been significant in the equivalent 150-
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1500ms non-weighted MFC version (p = 0.0548), but this was marginal and likely due to the 

randomisation in the permutation procedure. However, the window of best fit (where the 

covariance, correlation, dot product or cosine result was highest) selected for this 

participant was late in the search window (around 740ms to 1440ms), so it is less likely that 

this was a P3. This participant did not have significant p values in any of the analyses using 

shorter search windows ending at 1100ms or 1000ms. Participant 6 only had a significant p 

value for the covariance measure in the 150-1500ms non-weighted MFC (p = 0.0486) but 

this was not significant in any other measure or version of the MFC.  

Participant 5 was the participant whose change of result from non-significant to significant 

led to the highest number of significant results (seven) and had significant p values for all 

measures in the 200-1100ms weighted MFC and the 250-1000ms AGAT. In these analyses, 

the selected window of interest for the AGAT and the window of best fit for the MFC had 

started between 250ms and 300ms, whereas in versions of the MFC with longer search 

windows, this participant had a window of best fit that ended later than 1100ms. This 

suggests that detection of a P3 for this participant using the MFC was aided by the shorter 

search window and the elimination of later peaks that were unlikely to be P3s. However, 

this participant’s p values in the 200-1100ms non-weighted MFC were just above 

significance for all measures, with p values between 0.0579 and 0.0771, while their p 

values in the weighted version with the same search window were between 0.0004 and 

0.002. This suggests that the shorter window alone could not account for their significant 

result in the 200-1100ms weighted MFC, but that the addition of the weighting also aided 

the detection of the P3 for this participant using the MFC. Both the weighting and the 

shorter window, (separately) increased the number of significant results found, but it was 

the combination of the two that led to the greatest improvement and the highest number 

of significant p values. 

While the MFC did not perform significantly better than the AGAT overall on this dataset, 

the fact that the results of the weighted MFC with a shorter search window matched the 

results of the AGAT with the extended search window, suggests that the MFC could be at 

least equal to the AGAT. Further research should replicate these methods using the 

weighted MFC with a 200-1100ms search window and the AGAT with a 250-1000ms search 

window on different EEG datasets to see if the overall findings remain the same as this 

study or if one method will result in the correct classification of more P3s than the other 

with different data. Additionally, including a larger number of participants in further 
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research would enable us to report more robust statistical differences between the two 

methods.  

It would also be interesting to compare the AGAT and the weighted MFC to Alsufyani et al’s 

weight template method (2018). In particular, they should be compared on a) datasets 

similar to the famous faces dataset (Alsufyani et al., 2019), where the probe and the target 

ERPs do not have similar shapes, and b) on datasets where the probe and target ERPs do 

have similar shapes. The results of these investigations could help to demonstrate the 

situations in which the different analyses would be most suitable.  

Overall, the dot product measure detected the highest number of significant results in 

most versions of the MFC. The dot product measure in the 200-1100ms weighted MFC had 

the highest number of significant p values and the correlation measure had the smallest 

median p value of the four measures and of all MFC variations. The results of the statistical 

comparisons of the measures found that both the dot product and correlation measures 

had significantly smaller p values overall than the covariance and cosine measures, but 

there was not a significant difference between the correlation and dot product measures. 

This suggests that the correlation and dot product measures may be the most suitable for 

use with the MFC. Further research into the MFC could pay extra attention to the 200-

1100ms weighted version using the dot product and correlation measures.  

While the 200-1100ms weighted MFC variation matched the number of significant p values 

from the 250-1000ms AGAT, more research needs to be done to demonstrate its reliability 

and what type of data it is most suitable for before it could be suggested for use in place of 

the AGAT. Therefore, the AGAT remains our recommended analysis for detecting P3s using 

the Fringe-P3 method for the moment. Future research using the AGAT method to detect 

P3s should consider extending the search window to 250-1000ms to account for variability 

in the onset of a P3 positivity.   
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8. Conclusions and Future Work 

This thesis generalised the Fringe-P3 method by demonstrating its efficacy with a wider 

variety of stimuli beyond the own-name and famous face stimuli that had been used 

previously (Alsufyani et al., 2019; Bowman et al., 2013, 2014). This thesis first tested the 

Fringe-P3 method with famous name (chapter 3), email address (chapter 4), and location 

image stimuli (chapter 5) using EEG. It then tested the use of the Fringe-P3 method with a 

behavioural measure, the attentional blink, which could be used as an alternative to or in 

addition to EEG and the P3 to detect concealed information (chapter 6). This attentional 

blink experiment also investigated two target search tasks (categorisation and detection) 

and their impact on the strength of the attentional blink and participants’ use of visual 

search strategies. Finally, chapter 7 tested a potential alternative method of analysing EEG 

data: the matched filter convolution analysis.  

8.1. Generalising the Fringe-P3 Method using EEG 

The Fringe-P3 method had previously been demonstrated using own-name (Bowman et al., 

2013, 2014) and famous face stimuli (Alsufyani et al., 2019) and detected familiarity with 

the probe stimuli for 100% of participants. Own-names have particularly strong salience, 

being perhaps the most frequently rehearsed stimuli we encounter, and there are thought 

to be areas of the brain specifically dedicated to processing and recognising faces. It could 

be argued that the own-names and famous faces experiments had such high detection 

rates simply because of the highly salient stimuli. Therefore, the Fringe-P3 method needed 

to be tested with other stimuli to demonstrate that it can be used with stimuli that are not 

as uniquely salient. Therefore, this thesis tested the Fringe-P3 method with three different 

stimulus types: famous names, email addresses, and location images.  

The EEG experiment in chapter 3 tested the Fringe-P3 method with name stimuli, using 

famous names as the probes. The first aim of this experiment was to show that the strong 

results from the previous own-name experiments (Bowman et al., 2013, 2014) were not 

limited to only the highly salient own-name stimuli and the Fringe-P3 method could have 

similarly strong results using other familiar name stimuli that are still salient, but less so 

than own-names. The second aim was to show that the Fringe-P3 method could work with 

multi-item stimuli, in the form of first and last name pairs presented consecutively. The 

analyses found highly significant results at the group level and significant results for 12 of 

14 participants (86%) at the individual participants’ level, thereby demonstrating that the 

Fringe-P3 method can detect familiarity with both famous name stimuli and multi-item 
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stimuli. This opens up the method for use with other familiar name stimuli and with other 

multi-item stimuli. Both of these are beneficial for the method’s potential real world 

application in forensic investigations as the method could be used to detect familiarity 

with, for example, the names of accomplices or victims as well as multi-item information 

such as addresses and dates.  

The EEG experiment in chapter 4 tested the Fringe-P3 method with email address stimuli, 

using the participant’s own email address as the probe. It aimed to demonstrate that the 

Fringe-P3 method could be used to detect familiarity with online identities, beginning with 

email addresses. This study found significant results at the group level and for 7 of 11 

participants (64%) at the individual participants’ level, thereby successfully providing proof 

of concept that the Fringe-P3 method can be used to detect concealed information of an 

online identity. This opens up the Fringe-P3 method to be used with other online 

identifiers, such as usernames. The real world application of this would be in situations 

where the police already know a person’s real world identity and suspect that person may 

be the user of a specific online identity that is associated with a crime. The Fringe-P3 

method could then show that suspect is familiar with that online identity, thereby linking 

them to it. While this experiment successfully detected familiarity with the participant’s 

own email addresses for 64% of participants, it also highlighted some potential 

methodological flaws that may have prevented the method working for more participants 

at the individual participants’ level. These included the potential impact of participants 

using search strategies to help them find the target that also, as a side effect, reduce their 

chances of seeing the probe and prevents the Fringe-P3 method from working as 

accurately. The experiment in chapter 6 investigated two target search tasks 

(categorisation and detection) that may prevent participants from using such search 

strategies.  

The EEG experiment in chapter 5 tested the Fringe-P3 method with pictures of locations as 

stimuli, using photographs of the participants’ own university campus as the probe stimuli. 

The first aim of this experiment was to demonstrate that the Fringe-P3 method could be 

used to detect familiarity with pictures of locations. The second aim was to show that the 

Fringe-P3 method could be used with image stimuli that are more visually complex than 

the greyscale face stimuli that had been used previously (Alsufyani et al., 2019). This would 

help forensic investigations link suspects to locations involved in crimes and would open up 

the method for use with other image stimuli beyond only greyscale faces. The experiment 

found a large P3 for the target and significant differences between the target and the 
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irrelevant at the group level and for five of the eight participants (63%) at the individual 

participant’s level. This shows the Fringe-P3 method can detect familiarity with target 

location stimuli. However, there were no significant differences between the probe and the 

irrelevant at the group or individual participants’ level. There were small positivities for 

both probe and irrelevant that may have been weak, temporally-jittered P3s, but as these 

were weak and present for both probe and irrelevant, there was no significant difference 

between the two. Additionally, there was a negativity following the positivity only for the 

probe, which could be related to the MERMER (Farwell & Smith, 2001) that has been 

highlighted as a marker of concealed information, but further research would be needed to 

investigate if probe location images can indeed generate a detectable MERMER. Since 

there were significant results for the target stimuli, this shows that location stimuli can 

generate strong P3s and suggests that the probe stimuli may not have generated 

significantly stronger P3s than the irrelevant stimuli due to a problem with the method or 

with the probe or irrelevant stimuli themselves, rather than because they were location 

images. It was thought that the slow SOA used for this experiment allowed the non-salient 

irrelevant and distractor stimuli to break through into awareness, which affected the 

results. It was also thought that participants may have used search strategies to help them 

find the target which then decreased their chances of seeing the probe, the same as in the 

email addresses experiment. A future experiment with methodological improvements (e.g., 

for SOA and stimuli) should be conducted to see if such improvements lead to a more 

robust test that can detect familiarity with probe location stimuli. An example of a 

potential future experiment and methodological improvements is described in section 

8.4.6.  

The finding of significant results at the individual level for the EEG famous names, EEG 

email addresses, and attentional blink locations experiments is especially important, as the 

real-world application of the Fringe-P3 method would be for individual suspects in forensic 

investigations. Additionally, finding significant effects at the group level is not a major 

challenge, but finding significant results at the individual level is less common and more 

difficult (due to less data and more susceptibility to noise), so to find significant results for 

more than half of the participants in these experiments is especially noteworthy.  

8.2. The Attentional Blink and Search Strategies 

The experiment in chapter 6 used location image stimuli to investigate the use of the 

attentional blink paradigm with the Fringe-P3 method as an alternative measure for 

detecting concealed information that could be used instead of or in addition to EEG. The 
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first aim of this chapter was to show that the attentional blink paradigm could be combined 

with the Fringe-P3 method to detect familiarity with location image stimuli. This study 

found significant results at the group level for both the categorisation and detection 

experiments, which shows that participants did experience attentional blinks when the 

target was presented shortly after the probe stimulus and, therefore, suggests that they 

were familiar with the probe. There were also some significant results at the individual 

participants’ level, which suggests that the method could potentially be used to detect 

familiarity in individuals, however more research with some methodological improvements 

is needed to demonstrate this more strongly. As with the EEG experiment using location 

stimuli, it was thought that problems with the SOA had negatively impacted the results.  

The second aim of this chapter was to compare the categorisation and detection tasks to 

see how these affected the accuracy of the Fringe-P3 method and, through this, how these 

tasks impacted the effectiveness of participants using visual search strategies. It was 

thought that the categorisation task would prevent participants using search strategies and 

lead to a stronger attentional blink than the detection task, since participants in the 

categorisation task were searching for a category of target and did not know in advance 

what the specific target looked like, so could not search for a specific known feature. The 

experiment found that there was no significant difference between the two search tasks 

using the hits data but did find a significant difference using the d’ data. The information 

provided by the d’ data, however, was limited as d’ scores cannot be associated with 

specific lags, so can only provide information on differences in overall target accuracy 

between search tasks and between the probe and irrelevant conditions but cannot be used 

to compare accuracy inside and outside the attentional blink window. The hits data was 

also limited by many participants scoring close to ceiling, which reduces our capacity to be 

able to detect an attentional blink. Therefore, the results of the tasks comparisons were 

inconclusive and future research would be needed to draw firmer conclusions on any 

differences between the two tasks.  

8.3. The Matched Filter Convolution Analysis 

The final study, in chapter 7, tested a potential alternative method for analysing EEG data, 

the MFC. This was compared against the AGAT analysis, which has been used for previous 

Fringe-P3 research, including the three EEG experiments in this thesis. It was thought that 

the MFC would be better able to account for variance in the shape and latency of the P3, as 

well as any negativities, and, therefore, would be able to detect differential responses that 

the AGAT analysis had missed. This study found that using the weighted MFC with a search 
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window of 200-1100ms found a significant p value (which is consistent with there being a 

differential P3) for one additional participant (seven total) that the standard 300-1000ms 

AGAT had not found to be significant (six total). However, when the search window for the 

AGAT was extended to 250-1000ms to allow for more variation in the onset of the P3, the 

AGAT also found a significant p value for the same additional participant, equalling the 

weighted MFC in finding seven significant results overall.  

The dot product measure of the 200-1100ms weighted MFC had the highest number of 

significant p values and the correlation measure had the smallest median p value of all 

measures and versions of the MFC. The 300-1000ms and 250-1000ms AGAT were 

compared against the correlation and dot product measures of the 200-1100ms weighted 

MFC and we found no significant differences. Therefore, the MFC did not demonstrate an 

increased ability to detect P3s over the AGAT on this dataset. More research is needed to 

investigate if the AGAT and MFC still perform equally or if one performs better with other 

datasets. The four measures of the MFC were also compared, and the correlation and dot 

product measures were found to have significantly smaller p values overall than the 

covariance and cosine measures, but there was not a significant difference between the 

correlation and dot product measures. This suggests that correlation and dot product may 

be the more suitable measures for use with the MFC and future research using the MFC 

should consider focusing on these two measures. It was also suggested that future research 

using the AGAT analysis use a search window that starts at 250ms instead of 300ms to 

allow for individual differences in the onset of the P3.  

8.4. Limitations and Future Work 

The email address and location experiments in this thesis had some limitations which could 

be investigated and/or overcome in future work. The main limitations were often shared 

with more than one experiment and included participants using search strategies and 

problems with the SOA and distractor databases.   

8.4.1. Search Strategies 
The key limitation that is thought to have affected both the email addresses experiment in 

chapter 4 and the locations EEG experiment in chapter 5 was participants using search 

strategies to help them find the target. These search strategies involve looking for a specific 

feature of the target within the streams (e.g., the first letter of an email address or a turret 

in the top left corner of a location image) which, as a result, means that all other stimuli 

that do not share the feature, including the probe, are less likely to breakthrough into 
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awareness. This, then, decreases our chances of detecting the participant’s familiarity with 

the probe, if they frequently miss the probe due to using this search strategy. This fits with 

the glance-look model of cognitive control, which posits that stimuli in RSVP streams are 

first “glanced” at to process the broad information about the stimulus (such as category or 

if it starts with a specific letter) and stimuli only receive a further “look” to understand the 

rest of the details if the stimulus matches the target category or feature. We suspect that 

some participants used this search strategy to help them find the email address and 

location targets, which caused them to frequently miss the probe stimuli and contributed 

to why we did not detect differential responses for some participants.  

To overcome the problem search strategies pose, a task must be found that forces 

participants to view the whole of the stimulus space and prevents them focusing on only 

one feature or area. The attentional blink experiment in chapter 6 attempted to investigate 

this by comparing two tasks: categorisation and detection. It was thought that the 

categorisation task would prevent participants using search strategies and lead to a 

stronger attentional blink than the detection task. However, the results of the comparisons 

were inconclusive. This experiment had several methodological issues that are likely to 

have impacted the results, including problems with the SOA and distractor databases 

(discussed in the next two sections). Future research could replicate this experiment with 

some methodological improvements, to see if there is indeed any difference in the 

magnitude of the attentional blink from the two tasks. Additionally, this experiment did not 

specifically inform participants about search strategies nor did it instruct participants to use 

or avoid using search strategies. Another future experiment could use the classic 

attentional blink paradigm (without a CIT) with two targets instead of a probe and a target 

(to avoid any potential issues with probe salience) to compare three groups: one where 

participants are given no information or instruction regarding search strategies (the control 

group), a second group where participants are given information on search strategies but 

are instructed not to use them, and a third group that are given information on search 

strategies and are instructed to use them. The group that is instructed to use search 

strategies could provide information on how much search strategies impact the attentional 

blink, while the group that is instructed not to use search strategies could provide a 

guideline for what the attentional blink may look like if a task was found that prevented the 

use of search strategies. A more detailed description of this potential future experiment 

can be found in section 8.4.7.  



180 
 

8.4.2. Stimulus Onset Asynchrony 
The SOA was 167ms in the EEG locations experiment and 144ms in the attentional blink 

locations experiment. These SOAs were slower than the famous names experiment in 

chapter 3 and the previous own-names (Bowman et al., 2013, 2014) and famous faces 

(Alsufyani et al., 2019) experiments, which used SOAs of 100ms and 133ms. The slower 

SOAs were chosen for the two locations experiments as it was thought that location images 

were more visually complex than names and greyscale faces, so would need more time to 

be perceived enough to be (subliminally) recognised as familiar. However, it is now thought 

that the slower SOAs were too slow and allowed participants to consciously see the non-

salient irrelevant and distractor stimuli as well as the salient stimuli. For the EEG 

experiment, there was evidence in the recognition tests that the irrelevants had broken 

through into awareness enough to be given significantly higher recognition scores than 

unpresented images. There was also evidence of a small positivity in the ERP data for the 

irrelevant that was similar to the probe ERP, further suggesting that the irrelevants did 

break through into awareness. For the attentional blink experiment, the slower SOA was 

thought to have allowed participants to see (almost) all of the target stimuli and resulted in 

many participants scoring hits near or at ceiling, which reduced our ability to detect an 

attentional blink. This also meant that 17 participants had to be excluded because the 

binomial regression analysis cannot complete if participants’ hits are at ceiling. Therefore, a 

faster SOA is needed for future experiments using location image stimuli to prevent these 

problems from reoccurring.  

Future Fringe-P3 experiments should consider using an SOA of at least 133ms (to match 

previous Fringe-P3 experiments) or using a staircase procedure to select the best SOA for 

each participant. The staircase procedure works by titrating the SOA during practice trials 

(featuring a target stimulus and distractor stimuli but no probe or irrelevant stimuli) until 

that participant’s hit rate is, for example, 75% and their correct rejection rate is 80%. By 

personalising the SOA for each participant, it will ensure that the SOA is not so slow that 

the participant consciously sees all of the stimuli (including the non-salient stimuli) and 

their hits reach ceiling, but also not so fast that the task is too hard and the probe is 

unlikely to break through into conscious awareness. A staircase procedure was successfully 

used for the email addresses experiment in chapter 4, with SOAs ranging between 100ms 

and 250ms, and found stronger results at the individual participants’ level than the two 

locations experiments.  
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8.4.3. Distractor Stimuli 
Another methodological issue for both of the locations experiments were the distractor 

databases. These databases contained around 400 distractors, which is much smaller than 

the databases used in previous Fringe-P3 research. For example, the email addresses 

experiment in chapter 4 had a database of 3667 distractors, and the famous and own-

names experiments (chapter 3; Bowman et al, 2013, 2014) had databases of 1,000-10,000 

distractors. The smaller databases led to distractors repeating more than once in the 

streams, which, combined with the slow SOA, meant that participants were likely to start 

seeing and recognising distractors, which could have confounded the results. However, the 

names experiments used a name generator website to generate thousands of names and 

the email addresses experiment used code to generate thousands of email addresses. 

Location image stimuli cannot be randomly generated, so selecting distractors for image 

experiments is not as easy as for text based experiments. We extracted our target and 

distractor location images from Konkle et al’s (2010) database of over 4000 photographs of 

scenes, but most of these scenes were not suitable for use as distractors in our 

experiments. As our critical stimuli were all photographs of the exteriors of buildings, the 

distractor stimuli also needed to be building exteriors. Therefore, all photographs that were 

not of the exteriors of buildings had to be removed from the database, which left around 

400 suitable distractors. The famous faces experiment by Alsufyani et al (2019) also used 

photographs as stimuli and had a database of 524 distractors and the same number of trials 

(225) as the locations EEG experiment. They found strong results at both the group and 

individual participants’ level, which suggests that approximately 500 distractors were 

enough to prevent interference from repetition. Future research could consider using a 

distractor database of at least 500 distractors per 200 trials to reduce concerns about the 

distractors repeating. On the other hand, Avilés et al (2020) found that repeating non-

salient stimuli did not increase their chances of being consciously seen for the first time in 

RSVP streams with SOAs of 84–133ms. Therefore, it may be that the slow SOAs of 144ms 

and 167ms used in the locations experiments were the main reason the distractors were 

consciously seen and using a faster SOA would prevent the distractors being consciously 

seen regardless of the number of repetitions, even with a small distractor database.  

8.4.4. Other Limitations and Suggestions for Improvement 
The two locations experiments used photographs from two university campuses as the 

probe and irrelevant stimuli. As such, both experiments would benefit from having the 

counterbalanced studies run at the other university, with the probe and irrelevant stimuli 

switched. This would allow us to be more confident that the generation of P3s or 
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attentional blinks for the probe stimuli was due to them being familiar and not due to 

another factor, such as higher visual salience. For example, if the Birmingham images 

generate P3s and attentional blinks when used as probes with Birmingham students but 

the Kent images do not when used as probes with Kent students, then it would suggest that 

there is an issue with the Kent stimuli and we cannot confidently conclude that the 

Birmingham stimuli stood out to Birmingham students solely due to familiarity. On a 

related note, future Fringe-P3 experiments using image stimuli should attempt to control 

for visual salience as much as possible, to reduce the possibility of this impacting the 

results.  

The email addresses experiment in chapter 4 was also limited by potential perceptual 

issues. All email address stimuli were generated according to the rules used to create the 

University of Birmingham’s real email addresses and consisted of three letters followed by 

three numbers. As a result, all of the email address stimuli were very homogenous. 

Research has shown that distractors that are too similar to a target can capture attention 

(Folk et al., 1992; Su et al., 2011), so the lack of variety in the email addresses could have 

meant that the probe did not stand out more easily than the irrelevant or distractors for 

some participants. Future research should ensure, where possible, that there is greater 

heterogeneity in the stimuli used to prevent potential interference from similar non-salient 

stimuli.   

8.4.5. Other Future Work 
The MFC needs to be tested on a wider variety of datasets in order to evaluate its accuracy 

and reliability with other data beyond the email addresses dataset. Several versions of the 

MFC should be tested, but particular attention should be paid to the weighted MFC using a 

200-1100ms search window, as that version detected the highest number of significant 

results on the email addresses dataset. Future research should continue to compare the 

MFC to the AGAT to investigate if they continue to perform equally or if one is able to 

detect more P3s than the other on different datasets. The MFC should also be compared to 

Alsufyani et al’s weight template (2018) on a variety of datasets. It is possible that each of 

these three analyses may be more appropriate for data with different features. For 

example, it was thought the MFC would be more suitable than the weight template for 

detecting P3s in datasets where the target and probe ERPs are very different, as the weight 

template uses the target as a template to detect P3s for the probe (which relies on them 

being similar), whereas the MFC uses other participant’s probe ERPs as the template. By 

comparing these three analyses, we may find that each analysis has types of datasets for 
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which it will be more or less reliable. This, then, could lead to certain analyses being 

recommended for certain types of data, and, as a result, more reliable detection of 

concealed information in those experiments. 

In the EEG experiment using location stimuli (chapter 5), there was some evidence of a 

negativity following the small positivity for the probe only. This could be related to the 

MERMER (Farwell & Smith, 2001), which has been suggested as a marker of concealed 

information. Future research using location image stimuli could also analyse the MERMER 

to see if probe location stimuli do indeed generate a MERMER and if this is significantly 

different to the irrelevant. If future research does find a strong MERMER for the probe but 

not the irrelevant, then this could potentially be used instead of or in addition to the 

standard P3 analysis to detect concealed information of location image stimuli using the 

Fringe-P3 method.   

Another important future experiment would be to replicate the countermeasures 

experiments by Bowman et al (2014) using different stimuli. These experiments instructed 

participants to use certain countermeasures (such as trying to make a non-salient stimulus 

salient) while taking part in Fringe-P3 experiments using own-name stimuli and concluded 

that the countermeasures did not affect the detection of concealed information. Since 

these experiments, Avilés et al (2020) have investigated potential repetition effects by 

tasking participants with finding the repeated words in RSVP streams and found that the 

probability of detecting an unknown repeated stimulus for the first time did not increase 

with more repetitions. Therefore, we believe that countermeasures should still not be able 

to confound the detection of concealed information in experiments using other stimuli. 

However, a future experiment should replicate this study with other stimuli, such as the 

famous name stimuli, to confirm this.   

Finally, the amplitude and latency of P3s has been shown to be affected by individual 

differences (see Polich, 2007, 2012 for reviews) such as cognitive capability (Houlihan et al., 

1998), age (Emmerson et al., 1989; Fjell & Walhovd, 2001; Howard & Polich, 1985; Polich, 

1996, 1997; Polich et al., 1990), dementia (Polich et al., 1986), Alzheimer’s disease (Jeong, 

2004), Parkinson’s disease (Hansch et al., 1982; Polich & Criado, 2006; Stanzione et al., 

1991), anxiety disorders (Bauer et al., 2001; Enoch et al., 2001), and depression (Gangadhar 

et al., 1993; Vandoolaeghe et al., 1998). Therefore, the Fringe-P3 method needs to be 

tested with a much wider variety of people, especially groups with the aforementioned 

individual differences, in order to confirm whether or not the Fringe-P3 method can be 
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used effectively with them. Similarly, the AGAT, weight template, and MFC could also be 

compared using these datasets to see if one of the analyses is more sensitive to detecting 

P3s that are affected by these individual differences. This information is vital if the Fringe-

P3 method were to be used in real forensic situations, as the police would need to know if 

the test can or cannot be used reliably with their suspect. 

8.4.6. Future Experiment: Locations 
The EEG experiment in chapter 5 analysed the Fringe-P3 method using location image 

stimuli. This experiment provided evidence that (target) location image stimuli can 

breakthrough into awareness, generate a P3, and familiarity with them can be detected. 

However, these results were only found for the target stimuli and not the probe stimuli. A 

future experiment should test location image stimuli again to see if the methodological 

improvements described below result in a more robust test that can detect familiarity with 

probe location stimuli as well as targets.  

Participants 
The EEG locations experiment in chapter 5 tested only 8 participants. Preliminary analyses 

on the data from those participants had already suggested that the experiment had 

potential methodological problems, so no more participants were tested. However, a 

future experiment should include a larger number of participants as this will lead to more 

reliable results. Previous Fringe-P3 research included 14-15 participants and found 

significant results at the group and individual level (Bowman et al., 2013; Alsufyani et al., 

2019). Therefore, it is recommended that at least 14 participants are included for future 

Fringe-P3 experiments.  

Counterbalancing 
The experiment should be counterbalanced by running it at both the University of Kent 

(using Kent images as probes and Birmingham images as irrelevants) and the University of 

Birmingham (using Birmingham images as probes and Kent images as irrelevants). This will 

allow us to more robustly test that the probe images are breaking through into awareness 

and generating P3s because the participant is familiar with them, rather than due to any 

other aspect of the images (e.g., higher visual salience). If the Kent images only generate 

P3s for Kent students and not Birmingham students, and the Birmingham images only 

generate P3s for Birmingham students and not Kent students, then we can more reliably 

conclude that these P3s were generated due to familiarity. On the other hand, if, for 

example, only the Birmingham images generate P3s for Birmingham students, but the Kent 
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images do not generate P3s for Kent students, then it could be that there was some other 

aspect of the Birmingham images that caused them to generate P3s, rather than familiarity.  

Stimuli and Presentation 

The following procedure will focus on describing the experiment that could be run at the 

University of Kent with the Kent images as probes and the Birmingham images as 

irrelevants. To run the procedure at the University of Birmingham, simply switch the 

Birmingham images to be probes and the Kent images to be irrelevants.  

Some buildings at the University of Kent have been redecorated since the original 

experiment, including two of the buildings previously used as probe images, so new 

photographs should be taken for the probe and irrelevant stimuli. A behavioural pilot study 

should then be run to find the most recognisable stimuli. This pilot study should show 

participants RSVP streams of buildings, including several photographs of University of Kent 

buildings, and task participants with detecting images of the University. At the end of each 

stream, participants should be asked if they saw an image of their university. The three 

images with the highest detection rates should then be used as probe images for the main 

experiment. Recognition tests could also be conducted following the streams to further 

asses which buildings broke through into conscious awareness. These recognition tests 

could show participants the presented university images and some images of other 

university buildings that were not presented in the streams. The unpresented images 

should be included to help us check that participants are not simply giving random ratings 

or the same rating to all images in the recognition test. Recall tests are not recommended 

as participants may not know the names of the buildings they saw and may not provide 

clear enough descriptions that would enable to experimenter to be sure which building 

they saw and are describing. The same pilot study should be run at the University of 

Birmingham to find the three most recognisable University of Birmingham buildings to be 

used as the irrelevant stimuli for University of Kent students and as probe stimuli for the 

University of Birmingham students.  

The three most highly recognised University of Kent buildings (by Kent students) would be 

used as probe stimuli. The three most recognised University of Birmingham buildings (by 

Birmingham students) would be used as irrelevant stimuli. The targets would be three 

unfamiliar buildings chosen from the same database as the distractors.  

The experiment in chapter 5 selected targets and created a database of distractors from 

Konkle et al’s (2010) database of scenes. This same database could be used for this future 



186 
 

experiment or additional/replacement images could be used if available. The experiment in 

chapter 5 had a database of 411 distractors, which led to some distractors repeating, 

therefore it is recommended that a larger distractor database is used to prevent repetition 

if possible. However, as discussed earlier in this chapter in sections 8.4.2 and 8.4.3, it was 

thought that the slow SOA allowed participants to see non-salient items in the streams, 

including distractors, and that a faster SOA should prevent participants seeing non-salient 

items even when they are repeated. Therefore, an increase in the SOA is a more important 

improvement for this future experiment than increasing the number of distractors, so the 

same database of 411 distractors could be used again if additional/replacements images 

are not available.  

The SOAs used in both chapters 5 (167ms) and 6 (144ms) were slow enough that 

participants could consciously see non-salient items in the streams. Previous Fringe-P3 

research has used SOAs of 133ms and found significant results at the group and individual 

level. Therefore, an SOA of 133ms could be suggested for this future locations experiment. 

However, the slower SOAs used for chapters 5 and 6 were chosen as it was thought that 

complex location stimuli may need more time to be consciously perceived than visually 

simpler stimuli such as names. Therefore, a more appropriate improvement would be to 

use a staircase method to select the SOA. Using a staircase method (Cornsweet, 1987) 

would allow us to find the most suitable SOA for each individual participant, where the SOA 

is fast enough that non-salient stimuli are not consciously perceived but not so fast that the 

salient stimuli cannot be consciously perceived. This staircase method could be run during 

practice trials to find the most suitable SOA within a range of 100-150ms. This range is 

suggested as 100ms has been successfully used with (visually simpler) name stimuli by 

Bowman et al (2014) and 150ms is shorter than the 167ms that was found to be too slow in 

chapter 5. Using this range should allow us to find a faster SOA while still accounting for the 

complexity of location image stimuli and for participants who may need slower SOAs. The 

practice trials should contain only distractors and a target (which should be different to the 

targets used in the main experiment and should not be present in every trial). No probes or 

irrelevants should be presented in any practice trials. Participants should be tasked with 

looking for the target and answering “yes” or “no” at the end of each trial when asked if 

they saw it. An algorithm could be written to automatically adjust the SOA until an SOA is 

found where the target accuracy rate is closest to 75% and the correct rejection rate is 

closest to 80%. This SOA would then be used for that participant for the whole experiment.  
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Tasks 

For the main experiment, participants could simply be told to look for the target image. 

Alternatively, this task could be modified to more directly detect deception by telling 

participants to pretend that the target is a building from their university and to respond 

“yes” when asked if they saw their university after seeing the target and to respond “no” if 

they saw any other buildings, including ones from their real university.  

Recognition tests should also be run at the end of each block, similar to the experiment in 

chapter 5. Participants should be asked to rate the target, probe, irrelevant, and a 

distractor for that block as well as an unpresented image on a scale from 1 (never saw) to 5 

(saw very frequently). This will allow us to further investigate if the probe was recognised 

more than the other images, and if any irrelevant or distractor images broke through into 

conscious awareness and were recognised. The unpresented building could be a random 

building or a building from their university that was not used as a probe. If using distractors 

in the recognition tests, ensure they are not used as distractors again in any RSVP trials 

after that test.  

Analyses 

The main analyses should use the AGAT with a search window of 250-1000ms to analyse 

the ERP data at the group and individual participants’ level. This search window was 

recommended by the conclusions of chapter 7 and was used in the email addresses 

experiment in chapter 4. 

Paired t-tests or Wilcoxon’s signed rank tests could be used to analyse the recognition data 

(depending on whether the data is normally distributed). The same comparisons used in 

chapter 5 could be used for this future experiment: probe against an unpresented image, 

probe against irrelevant, irrelevant against distractor, and irrelevant against an 

unpresented image.  

Further Work 

If this improved method successfully detects familiarity with probe location stimuli at the 

individual participants’ level, then further research can be done using this method with 

these changes. For example, the method could be combined with the attentional blink 

paradigm, to test the detection of P3s and attentional blinks at the same time. The method 

for this would be mostly the same, but with two critical stimuli (probe/irrelevant and 

target) presented in critical trials instead of one, with the target appearing a different lags 

after the probe/irrelevant stimuli. This method should lead to P3s for the probe (and 

target) but not the irrelevant and an attentional blink for probe trials but not irrelevant 
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trials. The target may generate its own distinct P3 if presented at a long lag after the probe 

(and in irrelevant trials) or may result in a broad P3, merged with the probe P3, when 

presented shortly after the probe (similar to the broad P3s found for the two-part famous 

name stimuli in chapter 3). 

While the AGAT should be the main analysis, the MFC analysis from chapter 7 could also be 

run on the data from this future experiment. This would allow us to further investigate the 

MFC and compare it to the AGAT on another dataset.  

Using a staircase procedure to find a suitable SOA for each participant in this experiment 

will also provide us with the range, mean, and median SOA that can be successfully used 

with location image stimuli for the Fringe-P3 method. This could then be used for future 

Fringe-P3 research using location images and other visually complex stimuli.  

8.4.7. Future Experiment: Search Strategies 
The experiment in chapter 6 investigated the impact of two task types (detection and 

categorisation) on the attentional blink, with the expectation that the categorisation task 

would prevent participants from using search strategies to detect the target and, therefore, 

would lead to a more pronounced attentional blink than the detection task. The results of 

this comparison were inconclusive. The experiment described below is designed to more 

directly investigate the impact of search strategies on the attentional blink, which would 

then allow us to better investigate potential tasks that could prevent participants from 

using search strategies in future attentional blink experiments.  

Participants 

The original experiment in chapter 6 tested two groups of participants, with 30 participants 

in the categorisation group and 22 participants in the detection group (52 overall). 

However, familiarity with the University of Kent (which was used as irrelevant stimuli) and 

problems with participants scoring too close to ceiling and preventing the binomial 

regression analysis from completing, resulted in 14 participants being excluded from the 

categorisation group and six being excluded from the detection group, leaving 16 

participants for each group. An attentional blink experiment is quicker and easier to run 

than an EEG experiment, so it can test more participants. The proposed future experiment 

contains three groups rather than two used previously, so it is recommended that 20-30 

participants be tested for each group (60-90 overall). The participants should be divided 

equally into one of three groups, which will be described later in this section. 
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Stimuli and Presentation 

All participants will take part in a typical two-target attentional blink experiment, without 

probe stimuli or the detection of concealed information.   

The stimuli used can be the locations from Konkle et al’s (2010) database that were used 

for chapters 5 and 6. As there are no probe stimuli in this experiment, the stimuli used do 

not need to be restricted to be of the same type as a probe (unlike chapters 5 and 6 where 

we could only use the outside of buildings to match the probes, so were limited to 411 

distractors). Therefore, the entirety of Konkle et al’s (2010) database of locations can be 

used for this experiment, which contains over 4000 images. 

As the targets will be presented at different lags, a staircase method to choose the SOA is 

not recommended for this experiment, as it would change the lag between the targets for 

each participant. Therefore, an SOA of 133ms is recommended instead, as this has been 

used in previous Fringe-P3 experiments, including Alsufyani et al’s (2019) experiment using 

famous face images, which found significant results at the group and individual level. 

Alternatively, if the future experiment described in section 8.4.6 has been successfully 

conducted using a staircase procedure to select the SOA, then the mean or median of the 

SOAs used in that experiment could be used as the SOA for this experiment, as both 

experiments use location image stimuli. 

All participants would be given the same main task – to look for the two targets in the 

streams and report when they had seen them - but may also be given an additional task 

depending on their group.  

Streams should contain zero, one, or two targets. The two targets would be presented at 

different lags across the experiment, with target one (T1) presented before target two (T2). 

The following description of the lags assumes an SOA of 133ms would be used. The lags 

should be lag 2 (e.g., T2 presented 266ms after T1), 3 (e.g., 399ms after T1), 5 (e.g., 665ms), 

and 6 (e.g., 798ms). Lags 2 and 3 occur within the typical 250-500ms window where the 

attentional blink occurs, while lags 5 and 6 are outside of the window, so should not result 

in attentional blinks. Lag 1 is not recommended as it would present T2 133ms after T1, 

which is within the 150ms window where lag-1 sparing can occur and could prevent an 

attentional blink, meaning we could not use that lag to reliably compare the attentional 

blink between groups. Additionally, lag 4 is not recommended as it would present T2 

532ms after T1, which is very close to the end of the typical 250-500ms attentional blink 

window and, due to individual variance, could be within the attentional blink window for 
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some participants but outside of it for others, making it unreliable to compare groups. The 

position of T1 within the streams should be varied so it does not always appear in the same 

position.  

Tasks and Groups 

The participants would be divided equally into three groups: a strategy group, a no-strategy 

group, and a control group.  

The strategy group would be given information on a feature-based search strategy where 

participants look for a specific feature of the target images (e.g., a turret in the top left 

corner) to help them detect the targets. They would then be tasked with using that search 

strategy to detect the targets in the experiment. Alternatively, the participants could be 

given information on a range of search strategies and instructed to use any of them and 

report at the end of each block which strategy they used. 

The no-strategy group would be given information on the same feature-based search 

strategy but would be instructed not to use it or any other strategy, but to simply look for 

the targets in the streams.  

The control group would be given no information on search strategies and no instructions 

regarding them. They would only be told to look for the targets in the streams. This should 

serve as a baseline against which the strategy and no-strategy groups can be compared.  

The strategy group should allow us to investigate what the results of an attentional blink 

experiment look like when participants are actively using strategies and how much the 

attentional blink is impacted by strategies compared to the control and no-strategy groups. 

The no-strategy group should provide us with an example of what the attentional blink 

looks like when search strategies have been prevented. This can then be used in 

comparison with the control and strategy groups but could also be used as a baseline in 

future experiments to better investigate if tasks that aim to prevent search strategies (such 

as the categorisation task in chapter 6) do indeed prevent search strategies.  

Further Work 
Following this experiment, the categorisation and detection tasks from chapter 6 could be 

compared again in another experiment (with additional methodological improvements as 

suggested in chapter 6, such as increasing the SOA to 133ms). As we would now have a 

baseline for what the attentional blink looks like when search strategies are and are not 

used, we could use this to better investigate if the detection and categorisation tasks 

influence the use of search strategies. Specifically, we would now have an idea of what the 
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attentional blink should look like if the categorisation task did prevent the use of search 

strategies.  

8.5. Practical Applications of the Fringe-P3 Method 

The overall aim of the Fringe-P3 method is for it to be used in practical situations to help 

law enforcement detect deception and concealed information. Here, I will outline some 

example scenarios where the Fringe-P3 method could be used, as well as a response to 

some ethical concerns about the use of the method in real forensic situations.  

Scenario 1: Familiar Names 
The famous names experiment in chapter 3 showed that the Fringe-P3 method can detect 

familiarity with familiar (famous) names. In a real forensic investigation, this method could 

be used to detect familiarity with the name of an accomplice or victim (instead of a famous 

name) by using the accomplice/victim’s name as the probe stimulus. If the suspect has a 

significantly stronger P3 for the probe compared to the irrelevant, then we can infer that 

they are familiar with the accomplice/victim. This, then, would help police link that suspect 

to the crime and find potential accomplices.  

Scenario 2: Online Identities 

The email addresses experiment in chapter 4 showed that the Fringe-P3 method can detect 

familiarity with online identities in the form of email addresses. In a real forensic situation, 

the Fringe-P3 method would be used when the police already know that a particular email 

address is associated with a crime and suspect that a specific individual is the user of that 

email address. They would then use the Fringe-P3 method to detect if that suspect is 

familiar with that email address, thereby linking them to it. The results of the email 

addresses experiment combined with the own-names (Bowman et al., 2013, 2014) and 

famous names (chapter 3) experiments, also suggests that the Fringe-P3 method could 

detect familiarity with other online (user)names (e.g., twitter handles and forum 

usernames) as well as email addresses.  

Ethics 
The main ethical concern raised regarding the Fringe-P3 method is concern that deception 

detection, especially using brain activity, is an invasion of privacy. However, two methods 

of deception detection are already widely used by police: fingerprinting and DNA testing. 

Fingerprints and DNA can prove that someone was at the scene of a crime or touched a 

crime-related object when they say they haven’t, which is analogous to the Fringe-P3 

method showing that a suspect recognises a crime-related location or object. P3s are 

essentially fingerprints within the brain. Furthermore, the Fringe-P3 method is not mind 
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reading and cannot tell the experimenter what the participant is thinking. Therefore, the 

ethics of the Fringe-P3 method, fingerprinting, and DNA testing are no different. 

Additionally, the Fringe-P3 method should be used in practice similar to police questioning, 

with suspects having the right to refuse to take part in a Fringe-P3 test just as they can 

refuse to answer a question. 

8.6. Overall Conclusions 

Overall, this thesis has successfully achieved its main aim of generalising the Fringe-P3 

method and has demonstrated that the Fringe-P3 method has the potential to be used with 

a wider variety of stimuli, including famous names, email addresses, location images, and 

multi-item stimuli. It has also shown that the attentional blink paradigm can be used with 

the method to detect concealed information, which, combined with EEG, could result in an 

even more robust test. Finally, this thesis proposed the MFC, which has the potential to 

detect P3s that other analyses miss. The results of this thesis are promising for the Fringe-

P3 method’s real world application for detecting (concealed) recognition of crime-related 

stimuli by suspects in forensic investigations. The success of the famous names experiment 

suggests that that method could be used to detect familiarity with the names of 

accomplices or victims and the email addresses experiment suggests that it could be used 

to detect familiarity with online identities. The locations experiments, once improved by 

methodological changes, have the potential to suggest that the method could also be used 

to detect familiarity with the location of a crime.  
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Glossary 

AGAT – Aggregated Grand Average of Trials. This is the main analysis used for EEG Fringe-

P3 research at the group and individual participants’ level. It uses a data-driven orthogonal 

contrast between probe and irrelevant by merging these into one aggregated ERP. The 

100ms wide window with the highest mean amplitude is found from this aggregated ERP 

and selected as the window of interest. This window of interest is then applied separately 

to the probe and irrelevant ERPs and the difference between their mean amplitudes 

(within that window) is calculated. A paired-samples t-test is performed on these 

differences at the group level and a permutation test is performed at the individual 

participants’ level. See section 2.5 for more detail.  

 Search Window – The window within which the AGAT searches for the window of 

interest on the aggregated ERP. This is typically 300-1000ms or 250-1000ms, to include 

most of the P3’s positivity (if present). See section 2.5 for more detail. 

 Window of Interest – A 100ms wide window found by the AGAT analysis. This 

window is selected from the aggregated ERP and then applied separately to the probe and 

irrelevant ERPs. The mean amplitudes are calculated within this window for the probe and 

irrelevant ERPs and used in statistical analyses to see if they are significantly different. See 

section 2.5 for more detail. 

Attentional Blink – The attentional blink is a behavioural phenomenon where the detection 

rate of a second critical stimulus is significantly lower when it is presented within 200-

500ms after a first critical stimulus. This occurs when the two critical stimuli are both 

targets and when the first critical stimulus is a salient probe and the second is a target. This 

second case can be used to detect concealed information; if the target is consistently 

missed when presented shortly after the probe, then it suggests the participant is familiar 

with the probe and is concealing information about it. See section 2.6 for more detail.  

CIT – Concealed Information Test. CITs were formerly known as Guilty Knowledge Tests. 

CITs are based on the idea that guilty participants have knowledge of a crime that innocent 

participants do not. It presents a participant with infrequent salient stimuli (probes) 

amongst frequent non-salient stimuli (distractors). If the participant has a significantly 

different reaction to the probe compared to the other stimuli, then it suggests they are 

familiar with the probe stimulus and may be concealing information about it. See section 

2.1 for more detail.  



194 
 

EEG – Electroencephalography. EEG is a non-invasive method of detecting electrical activity 

in the brain via electrodes placed on the scalp. The electrodes detect negative or positive 

electrical fields generated by the activation of synapses within the brain. These synapses 

are activated by events, such as the recognition of a stimulus. See section 2.2 for more 

detail.  

 Electrodes – The parts of EEG equipment that detect the positive and negative 

voltages at the scalp. The number of electrodes used for EEG varies depending on the 

experiment and the system used. See figure 2.1 in section 2.2 for the standard location of 

electrodes on the scalp for a 32-channel BioSemi system.  

 ERP – Event-related potentials. ERPs are the waveforms used in most EEG statistical 

analyses. They are created from EEG data following a processing procedure. First, the EEG 

data is filtered to reduce noise (activity not related to the signal) and then epoched 

(trimmed) to the time around the event of interest. Single trials still contain some noise, so 

the trials are then averaged together to create the ERPs. This results in most of the random 

noise being averaged out while the consistent signal remains in the ERP. See section 2.2 for 

more detail.  

 Noise – This is random activity recorded by EEG that is not related to the event 

being investigated. The brain is always doing multiple things at once and is not solely 

focused on the event being investigated, which generates noise. Eye and muscle 

movements and electrical devices in the room can also be recorded by EEG, causing more 

noise. However, noise in the data can be reduced through filtering procedures and 

averaging trials into ERPs before analysis. See section 2.2 for more detail. 

 Signal – This is the consistent response in the waveforms that occurs following the 

event being investigated.  

 Trial – One RSVP stream in the EEG and attentional blink experiments. 

 Waveform – The timeseries of positive and negative voltages recorded by EEG.  

Fringe-P3 Method – The Fringe-P3 method combines EEG (P3) and RSVP with a CIT to 

detect concealed information. It presents critical stimuli (targets, salient probes, non-

salient irrelevants) amongst non-salient distractor stimuli in RSVP streams and records 

brain responses through EEG. If a participant has a significantly larger P3 response for a 

probe stimulus compared to an irrelevant stimulus, then it suggests they are familiar with 

the probe stimulus and are concealing information about it. See section 2.4 for more detail.  
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MFC – Matched Filter Convolution Analysis. The MFC is a new analysis for detecting P3s at 

the individual participants’ level proposed in this thesis in chapter 7. It uses the average of 

other participants’ probe ERPs (excluding the current participant being analysed) as a filter 

template for what the probe P3 for that experiment looks like. The analysis can then detect 

P3s for the current participant by comparing their ERPs to the filter template. This allows us 

to account for any differences (compared to the classic P3) in the P3’s shape, latency, and 

any negativities that can occur due to the different types of stimuli or methods used in an 

experiment. Several versions of the MFC are explored in chapter 7.  

P3 – The P3 (aka P300 or P3b) is the component of interest in EEG Fringe-P3 research. The 

P3 is a positive deflection in ERPs around 250-800ms post-stimulus. It is usually recorded 

from the Pz, Fz, and Cz electrodes and is strongest at Pz. It is typically generated during 

cognitive tasks where participants are discriminating between stimuli, especially when a 

stimulus is novel, unexpected, or salient to the participant. As it is generated when a 

stimulus is salient, it is used to detect familiarity with a stimulus in the Fringe-P3 method. 

See section 2.2 for more detail on EEG and the P3 and section 2.4 for more detail on the 

Fringe-P3 method. 

RSVP – Rapid Serial Visual Presentation. A method of presenting visual stimuli so rapidly 

(e.g., 10 stimuli per second) that they appear on the fringe of awareness rather than in 

conscious awareness. Critical stimuli (e.g., targets) are presented amongst distractor stimuli 

in streams (e.g., 1 target name presented amongst 19 distractor names). Salient stimuli 

such as targets and familiar probe stimuli can breakthrough from the fringe into conscious 

awareness, while non-salient stimuli such as irrelevants and distractors do not 

breakthrough. When a stimulus breaks through into awareness, it generates a P3 that can 

be detected by EEG. See section 2.3 for more detail.  

 SOA – Stimulus Onset Asynchrony. The speed of an RSVP stream, i.e., the time in 

milliseconds between stimuli in RSVP streams. For example, an SOA of 100ms presents a 

stimulus every 100ms, resulting in 10 stimuli per second.  
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Appendix A: Discussion of the Programming Inconsistencies 

Due to a programming error, Participants 2 and 3 were shown one different probe name 

pair and Participant 4 was shown two different probe name pairs to the other participants. 

We do not believe this error affected these participants’ results. Both participants 2 and 3 

scored 5/5 for probe recall and 0/5 for irrelevant recall, had high recognition scores for 

probe and low for the irrelevant, and had significant p values, similar to the majority of 

participants that saw the original probe names. This suggests the error had no effect on 

their results. Participant 4 did not have a significant p value but still recalled 4 of the 5 

probes and none of the irrelevants and scored high in the recognition test for probe (4.4) 

and low for irrelevant (1.6), showing that they still saw and recognised the probes but not 

the irrelevants. In comparison, participant 1 was presented with all of the original probe 

names and had a significant p value but scored lower for recall (2/5) and recognition (3.8) 

of the probes, so it seems unlikely that the programming error would have had an effect 

and been the reason behind participant 4’s non-significant p value. Instead, noise in the 

ERP data is the more likely reason.   

We also ran the ERP analyses while excluding the participants who saw different probe 

names in error and the results were the same (t (10) = 9.026, p <0.0001, d = 3.528, at the 

group level) or better (10/11 significant at the individual level). This shows that the 

programming error and inclusion of these participants did not have a substantive effect on 

the results or impact our conclusions. 
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Appendix B: Discussion of the Target Grand Mean Amplitude 

Figure B.1 further demonstrates why the target grand mean amplitude was smaller than 

the probe grand mean amplitude in figure 4.3, despite having a larger peak in figure 4.2. It 

can be seen the target (red) peaked earlier or later than the aggregated ERP (blue) for most 

participants and therefore did not peak within the window of interest selected from the 

aggregated ERP, resulting in a smaller mean amplitude in that window. It can also be seen 

that participant 6’s target ERP peak was much higher than of the other participants, and so 

may have increased the amplitude in the target grand average in figure 4.2. 

Figure B.1. Individual Target and Aggregated ERPs at Pz. 

 

The red ERPs are the target and the blue ERPs are the aggregated ERP used to find the 
window of interest for the probe-irrelevant AGAT analysis. The vertical blue dashed lines 
represent the window within which the algorithm searched for the window of interest. The 
vertical red dotted lines represent the window of interest selected for that participant.  
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Appendix C: D Prime Scores 

The main analyses used hits data only, as this was more appropriate for two reasons. 

Firstly, false alarms are not associated with specific lags, so d’ scores cannot be sorted into 

the separate or collapsed lags. Therefore, d’ scores cannot be used to compare target 

accuracy inside and outside of the attentional blink window, which is necessary for 

attentional blink research. Secondly, the binomial regression analysis can only use hits and 

misses from individual trials, so d’ scores cannot be used at the individual participants level, 

which is vital to the Fringe-P3 method if it is to be used in real forensic investigations, 

which will focus on individuals. Therefore, d’ scores were not used in the main analyses. 

The d’ scores can, however, provide some information on overall target accuracy in the two 

search task types. Additionally, as a probe or irrelevant stimulus was still presented in 

target-absent trials, the false alarms and d’ scores can be separated into the probe and 

irrelevant conditions and, therefore, can also provide information on the overall accuracy 

in the two stimulus type conditions. 

The overall d’ scores for categorisation can be found in table C.1 and the d’ scores for 

detection can be found in table C.2. It can be seen that there were fewer false alarms and 

higher d’ scores in the detection group compared to the categorisation group. This is 

expected, as participants in the detection group were shown a specific target to search for, 

which is an easier task than looking for a category of targets, as the categorisation group 

did.  

A 2x2 mixed ANOVA was performed on the search task type and stimulus type d’ data. 

There was a significant main effect of search task type (F(1,30) = 32.421, p <0.0001), 

showing that participants’ target accuracy was significantly higher in the detection group 

compared to the categorisation group. This fits with our expectation that the categorisation 

task would be more difficult than the detection task. There was also a significant main 

effect of stimulus type (F(1,30) = 8.776, p = 0.0059), showing that participants’ target 

accuracy was significantly higher in the irrelevant condition compared to the probe 

condition. This fits with our expectation that there would be an attentional blink that would 

cause the participant to miss the target in the probe condition. There was not a significant 

interaction between search task type and stimulus type (F(1,30) = 0.152, p = 0.6996). 

These results are different to the 2x2x2 and 2x2x4 mixed ANOVAs performed on the hits 

data. Both the hits and d’ analyses found a significant main effect of stimulus type, 

however, the hits analysis did not find a significant main effect of search task type while the 
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d’ analysis did find this to be significant. As the hits comparison was not significant, the 

significant difference between d’ scores in the detection and categorisation groups must be 

caused by there being significantly more false alarms in the categorisation group. The hits 

analysis also found a significant interaction between search task type and stimulus type, 

which was not significant in the d’ analysis, showing that the different search task types did 

not affect the difference in target accuracy between the probe and irrelevant conditions 

even though it affected the number of hits.  

Table C.1. Overall D Primes for Categorisation. 

 Probe Irrelevant 

Participant Hits False Alarms d' Hits False Alarms d' 

1 52 6 2.392 43 2 2.407 

2 48 4 2.343 43 2 2.407 

3 45 6 1.956 48 2 2.676 

4 45 11 1.577 44 9 1.659 

5 42 9 1.561 41 6 1.759 

6 50 0 3.361 55 0 3.777 

7 34 24 0.421 32 13 0.867 

8 43 7 1.765 47 5 2.166 

9 49 11 1.805 51 15 1.711 

10 48 22 1.182 53 25 1.402 

11 40 4 1.932 40 7 1.623 

12 52 13 1.894 50 16 1.590 

13 34 7 1.360 36 3 1.898 

14 43 18 1.097 37 19 0.774 

15 39 15 1.060 50 14 1.695 

16 44 15 1.297 50 10 1.935 

Mean 44.250 10.750 1.688 45.000 9.250 1.897 

Median 44.500 10.000 1.671 45.500 8.000 1.735 

Std Dev 5.592 6.728 0.674 6.593 7.188 0.713 

This table shows the overall hits, false alarms, and d’ scores for probe and irrelevant in the 
categorisation group. There were some cases with a false alarm rate of 0 so the Macmillan 
and Kaplan (1985) correction was applied. 
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Table C.2. Overall D Primes for Detection. 

 Probe Irrelevant 

Participant Hits False Alarms d' Hits False Alarms d' 

1 44 0 3.017 47 3 2.428 

2 38 1 2.469 44 2 2.457 

3 42 1 2.652 48 0 3.236 

4 51 0 3.430 52 1 3.239 

5 39 1 2.513 42 0 2.918 

6 44 1 2.751 53 2 3.026 

7 55 1 3.511 51 0 3.430 

8 34 3 1.813 39 2 2.219 

9 48 1 2.970 54 0 3.676 

10 41 0 2.871 44 1 2.751 

11 38 0 2.735 46 1 2.856 

12 44 1 2.751 52 1 3.239 

13 31 0 2.436 38 1 2.469 

14 38 0 2.735 41 0 2.871 

15 50 1 3.095 54 0 3.676 

16 55 1 3.511 56 2 3.335 

Mean 43.250 0.750 2.829 47.563 1.000 2.989 

Median 43.000 1.000 2.751 47.500 1.000 2.972 

Std Dev 7.066 0.775 0.440 5.785 0.966 0.447 

This table shows the overall hits, false alarms, and d’ scores for probe and irrelevant in the 
detection group. There were some cases with a false alarm rate of 0 so the Macmillan and 
Kaplan (1985) correction was applied. 
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Appendix D: Lag 1 v Lag 7 Analyses 

The separate lag blink curves in figure 6.4 show that the mean hits for the probe condition 

at lag 1 were noticeably smaller than the later lags, but lag 3 was not much smaller than 

lags 5 and 7. Since lag 3 is 432ms after the target, it is close to end of the 200-500ms 

attentional blink window, so it is possible that participants may have recovered from an 

attentional blink by then and were able to detect the target more easily again. Therefore, 

additional analyses were conducted comparing only lags 1 and 7 to see if there were more 

significant differences between these two lags and, as a result, see if the inclusion of lag 3 

had affected the main collapsed lag and four separate lag analyses.  

Group Level 
Categorisation 

A 2x2 repeated measures ANOVA was performed on the stimulus type and lag data. There 

were significant main effects of lag (F(1,15) = 17.245, p = 0.0009) and stimulus type (F(1,15) 

= 6.486, p = 0.0223), and a significant interaction between stimulus type and lag (F(1,15) = 

31.134, p = 0.0001). These results mostly match the collapsed lag and separate lag 

ANOVAs, except for the stimulus type main effect, which was significant for the lag 1 v 7 

analysis but was not significant for the separate lags or collapsed lag analyses. This means 

that there was a significant difference between probe and irrelevant in the lag 1 v 7 

analysis that was not significant when including lags 3 and 5. This matches our original 

hypotheses.  

A two-tailed binomial regression analysis was also conducted on the stimulus type and lag 

data. There was a significant main effect of lag (F(1,60) = 6.343, p = 0.0145) and a 

significant interaction between stimulus type and lag (F(1,60) = 8.905, p = 0.0041), which 

matches the previous analyses. There was not a significant main effect of stimulus type 

(F(1,60) = 2.553, p = 0.1153), which does not match the 2x2 ANOVA in the lag 1 v 7 analysis 

above but does match the four separate lag and collapsed lag analyses.  
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Detection 

A 2x2 repeated measures ANOVA was performed on the stimulus type and lag data. There 

were significant main effects of lag (F(1,15) = 6.846, p = 0.0195) and stimulus type (F(1,15) 

= 9.304, p = 0.0081), and a significant interaction between stimulus type and lag (F(1,15) = 

9.164, p = 0.0085).  

A two-tailed binomial regression analysis was conducted on the stimulus type and lag data 

and also found significant main effects of stimulus type (F(1,60) = 5.019, p = 0.0288) and lag 

(F(1,60) = 4.614, p = 0.0358), and a significant interaction between stimulus type and lag 

(F(1,60) = 6.817, p = 0.0114).  

The lag 1 v 7 ANOVA and binomial regression results match each other and match the 

results from the separate lag and collapsed lag analyses. 

Three-way interaction 

A 2x2x2 mixed ANOVA was conducted on the search task type, stimulus type, and lag data. 

There were significant main effects of stimulus type (F(1,30) = 15.760, p = 0.0004) and lag 

(F(1,30) = 22.027, p = 0.0001), and a significant interaction between stimulus type and lag 

(F(1,30) = 31.655, p < 0.0001). There was not a significant main effect of search task type 

(F(1,30) = 0.050, p = 0.8250), or significant interactions between search task type and 

stimulus type (F(1,30) = 0.288, p = 0.5956), search task type and lag (F(1,30) = 0.533, p = 

0.4710), or search task type, lag, and stimulus type (F(1,30) = 0.363, p = 0.5512). 

Most of these results were similar to the four separate lag and collapsed lag three-way 

analyses, with the only differences being that the interaction between search task type and 

stimulus type was non-significant in the lag 1 v 7 analysis when it had been significant in 

the four separate lag and collapsed lag analyses.   
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Individual Participants’ Level 

Since the lag 1 v 7 analyses only used hits from two lags instead of four, the maximum 

number of hits in any of the four bins used in the binomial regression analyses was half the 

size (15) of the collapsed lag analyses (30), as, for example, the ProbeIn bin now only had 

hits from lag 1, whereas previously it had hits from lags 1 and 3. Therefore, there was less 

chance of variation in scores and more chance of participants scoring at ceiling in the lag 1 

v 7 analyses. As discussed in section 6.2.4, the capacity to observe an attentional blink is 

impacted by proximity to ceiling, and the binomial regression analysis cannot complete if 

any of the four bins are at ceiling. By using half the data, more participants were at ceiling 

and three more participants had to be excluded from the lag 1 v 7 analysis as the binomial 

regression analysis could not complete: participant 15 for categorisation and participants 6 

and 7 for detection. This left 15 participants in the categorisation group and 14 in the 

detection group. If the lag 1 v 7 analyses were to be used in future research, more trials 

would need to be conducted in order to have a greater capacity to observe the attentional 

blink and include more participants in the analyses.  

Categorisation 

There were three significant results in the two-tailed binomial regression analysis. One 

participant had a significant main effect of lag (M = 0.384, Med = 0.439, SD = 0.269): 

participant 13 (F(1,56) = 5.522, p = 0.0223). Two participants had a significant interaction 

between stimulus type and lag (M = 0.398, Med = 0.287, SD = 0.362): participant 2 (F(1,56) 

= 5.377, p = 0.0241) and 8 (F(1,56) = 5.070, p = 0.0283). No participant had a significant 

main effect of stimulus type (M = 0.506, Med = 0.439, SD = 0.280). This is a decrease of one 

significant result (for stimulus type) compared to the two-tailed collapsed lag analysis.   

There were seven significant results in the one-tailed binomial regression analysis. One 

participant had a significant main effect of stimulus type (M = 0.361, Med = 0.269, SD = 

0.254): participant 16 (F(1,56) = 3.663, p = 0.0304). Two participants had a significant main 

effect of lag (M = 0.253, Med = 0.220, SD = 0.233): participant 13 (F(1,56) = 5.522, p = 

0.0112) and 16 (F(1,56) = 3.663, p = 0.0304). Four participants had a significant interaction 

between stimulus type and lag (M = 0.200, Med = 0.144, SD = 0.183): participant 2 (F(1,56) 

= 5.377, p = 0.0120), 4 (F(1,56) = 3.003, p = 0.0443), 8 (F(1,56) = 5.070, p = 0.0141), and 12 

(F(1,56) = 3.752, p = 0.0289). This is an increase of four significant results compared to the 

one-tailed lag 1 v 7 analysis (one for stimulus type, one for lag, and two for the interaction) 

and an increase of two significant results (for the interaction) compared to the one-tailed 

collapsed lag analysis. 
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Table D.1 presents the number of p values below certain values where the outcome of the 

equation was in the expected direction for the categorisation group in the lag 1 v 7 analysis. 

Overall, there were more p values below 0.05, 0.1, and 0.2 in the one-tailed test compared 

to the two-tailed test. The number of equation outcomes in the expected direction overall 

for the interaction shows that almost all of the equation outcomes (14/15) were in the 

expected direction.  

Table D.1. One and Two-Tailed Results for Categorisation in the Lag 1 v 7 Analysis. 

Number of results in the 

expected direction 

One-Tailed Two-Tailed 

Stim. 

Type 

Coll. 

Lag 

Interaction Stim. 

Type 

Coll. 

Lag 

Interaction 

With significant p values (p 

<= 0.05) 

1 2 4 0 1 2 

With p values <= 0.1 1 5 6 1 2 4 

With p values <= 0.2 5 7 10 1 5 6 

Num. equation outcomes 

in the expected direction 

overall 

10 13 14 10 13 14 

This table presents the number of p values below certain values where the outcome of the 
equation was in the expected direction for the categorisation group in the lag 1 v 7 analysis. 
Each cell is out of 15 participants.  

 

Detection 

There were four significant results in the two-tailed binomial regression analysis. One 

participant had a significant main effect of stimulus type (M = 0.409, Med = 0.335, SD = 

0.321): participant 14 (F(1,56) = 7.195, p = 0.0096). One participant had a significant main 

effect of lag (M = 0.480, Med = 0.576, SD = 0.324): participant 2 (F(1,56) = 5.687, p = 

0.0205). Two participants had a significant interaction between stimulus type and lag (M = 

0.350, Med = 0.335, SD = 0.264): participant 1 (F(1,56) = 4.045, p = 0.0491) and 2 (F(1,56) = 

5.687, p = 0.0205). There was a significant main effect of stimulus type for one participant 

in the lag 1 v 7 analyses whereas there had been none in the collapsed lag analysis, 

however there were two less significant results for the main effect of lag in the lag 1 v 7 

analysis compared to the collapsed lag analysis, meaning that there was one less significant 

result overall for the lag 1 v 7 analysis compared to the two-tailed collapsed lag analysis.  

There were eight significant results in the one-tailed binomial regression analysis. Two 

participants had a significant main effect of stimulus type (M = 0.276, Med = 0.188, SD = 

0.281): participant 9 (F(1,56) = 2.845, p = 0.0486) and 14 (F(1,56) = 7.195, p = 0.0048). 
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Three participants had a significant main effect of lag (M = 0.375, Med = 0.288, SD = 0.369):  

participant 2 (F(1,56) = 5.687, p = 0.0102), 3 (F(1,56) = 3.486, p = 0.0336)  and 14 (F(1,56) = 

2.958, p = 0.0455). Three participants had a significant interaction between stimulus type 

and lag (M = 0.319, Med = 0.167, SD = 0.374): participant 1 (F(1,56) = 4.045, p = 0.0246), 2 

(F(1,56) = 5.687, p = 0.0102), and 13 (F(1,56) = 3.345, p = 0.0364). This is an increase of four 

significant results compared to the two-tailed lag 1 v 7 analysis (one for stimulus type, two 

for lag, and one for the interaction) and an increase of two significant results compared to 

the one-tailed collapsed lag analysis (one for stimulus type and one for the interaction).  

Table D.2 presents the number of p values below certain values where the outcome of the 

equation was in the expected direction for the detection group in the lag 1 v 7 analysis. 

Overall, there were more p values below 0.05, 0.1, and 0.2 in the one-tailed test compared 

to the two-tailed test. The number of equation outcomes in the expected direction overall 

for the interaction shows that most of the equation outcomes (11/14) were in the expected 

direction. 

Table D.2. One and Two-Tailed Results for Detection in the Lag 1 v 7 Analysis. 

Number of results in the 

expected direction 

One-Tailed Two-Tailed 

Stim. 

Type 

Coll. 

Lag 

Interaction Stim. 

Type 

Coll. 

Lag 

Interaction 

With significant p values (p 

<= 0.05) 

2 3 3 1 1 2 

With p values <= 0.1 5 5 6 2 3 3 

With p values <= 0.2 7 5 8 5 5 6 

Num. equation outcomes 

in the expected direction 

overall 

12 11 11 12 11 11 

This table presents the number of p values below certain values where the outcome of the 
equation was in the expected direction for the detection group in the lag 1 v 7 analysis. Each 
cell is out of 14 participants.  

 

Table D.3 presents a summary of the number of significant p values found in the two-tailed 

and one-tailed binomial regression analyses for the collapsed lag and lag 1 v 7 analyses at 

the individual participants’ level. There were more significant results in the one-tailed 

analyses compared to the two-tailed analyses for both the collapsed lag and lag 1 v 7 

analyses. There were more significant results in the collapsed lag analyses than the lag 1 v 7 

analyses when using the two-tailed binomial regression, but more significant results in the 

lag 1 v 7 analyses when using the one-tailed binomial regression. However, in both 

analyses, the majority of participants did not have significant results, so statistical analyses 
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comparing the results of the collapsed lag and lag 1 v 7 analyses were not conducted. 

Overall, the exclusion of lags 3 and 5 in the lag 1 v 7 analyses did not lead to a greatly 

improved number of significant results compared to the collapsed lag analyses.  

Table D.3. Number of Significant Results in the Collapsed Lag and Lag 1 v 7 Analyses. 

  Two-tailed 

Collapsed Lag 

One-tailed 

Collapsed Lag 

Two-tailed 

Lag 1 v 7 

One-tailed 

Lag 1 v 7 

C
a

te
g

o
ri

sa
ti

o
n

 Stim. Type 1 1 0 1 

(Coll.) Lag 1 2 1 2 

Interaction 2 2 2 4 

Total 4 5 3 7 

D
et

ec
ti

o
n 

Stim. Type 0 1 1 2 

(Coll.) Lag 3 3 1 3 

Interaction 2 2 2 3 

Total 5 6 4 8 

This table presents the number of significant results found in the two-tailed and one-tailed 
binomial regression analyses for the collapsed lag and lag 1 v 7 analyses for comparison. 
Excluding the total rows, the cells in the collapsed lag analyses are out of 16 and the cells in 
the Lag 1 v 7 analyses are out of 15 for categorisation and 14 for detection.  

 

Discussion 

For the detection task, the group level lag 1 v 7 analyses were the same as the four 

separate lag and collapsed lag analyses. For the categorisation task, there were some 

differences between the group level lag 1 v 7 analyses and the separate lag and collapsed 

lag analyses, with a significant main effect of stimulus type in the lag 1 v 7 2x2 ANOVA that 

was not present in the collapsed lag or separate lags ANOVAs. This same main effect, 

however, was not significant in the lag 1 v 7 binomial regression. The three-way lag 1 v 7 

analysis also found similar results to the collapsed lag analyses, with the only difference 

being that there was not a significant two-way interaction between search type and 

stimulus type, when this had been significant in the collapsed lag analyses.  

At the individual participants’ level, there were two additional significant results compared 

to the collapsed lag analyses for both the categorisation and detection tasks when using 

the one-tailed binomial regression, but there was one less significant result compared to 

the collapsed lag analyses for both categorisation and detection when using the two-tailed 

binomial regression. The exclusion of lags 3 and 5 did not lead to a substantial change in 

the number of significant results for individuals and the majority were still non-significant.  
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While there were some differences between the lag 1 v 7 analyses and the four separate 

lag and collapsed lag analyses, there were less differences than anticipated, especially at 

the individual participants’ level. This suggests that lag 3 being close to the end of the 200-

500ms attentional blink window did not have a substantial impact on the group or 

individual participants’ level analyses. Therefore, lag 3 at 432ms does not need to be 

excluded from the current study or future studies using this SOA.  
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