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Abstract
Schurz (2019, ch. 4) argues that probabilistic accounts of induction fail. In particular, he 
criticises probabilistic accounts of induction that appeal to direct inference principles, 
including subjective Bayesian approaches (e.g., Howson 2000) and objective Bayesian 
approaches (see, e.g., Williamson 2017). In this paper, I argue that Schurz’ preferred direct 
inference principle, namely Reichenbach’s Principle of the Narrowest Reference Class, 
faces formidable problems in a standard probabilistic setting. Furthermore, the main alter-
native direct inference principle, Lewis’ Principal Principle, is also hard to reconcile with 
standard probabilism. So, I argue, standard probabilistic approaches cannot appeal to direct 
inference to explicate the logic of induction. However, I go on to defend a non-standard 
objective Bayesian account of induction: I argue that this approach can both accommodate 
direct inference and provide a viable account of the logic of induction. I then defend this 
account against Schurz’ criticisms.

Keywords  Induction · Direct inference · Principle of the Narrowest Reference Class · 
Principal Principle · Bayesianism · Logical probability

1  Introduction

There are two problems of induction. The more famous of the two, the problem of induc-
tive justification, is the problem that there seems to be no justification of inductive infer-
ence which could convince sceptical detractors that we ought to draw even simple induc-
tive inferences. This is the problem usually attributed to David Hume, and the problem 
over which most ink has been spilt. It has proven intractable: most philosophers would 
agree that there is indeed no such justification, although Schurz (2019) is more optimistic, 
arguing interestingly that metainduction offers a solution to Hume’s problem.

The second problem is perhaps the more pressing of the two. This is the problem of induc-
tive logic—the problem that there seems to be no viable logic of inductive inference that 
can tell us which inductive inferences we ought to draw. This is the more pressing prob-
lem because inductive inferences are central to science and these inferences are often com-
plex and contentious; a viable inductive logic could offer useful guidance. The problem of 
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inductive justification, on the other hand, is largely academic: there are in fact no detractors 
who abstain from drawing all inductive inferences in practice.1 As Hume himself notes,

Whoever has taken the pains to refute the cavils of this total scepticism, has really 
disputed without an antagonist, and endeavour’d by arguments to establish a faculty, 
which nature has antecedently implanted in the mind, and render’d unavoidable. 
(Hume 1739, 183)

Again, most philosophers would agree that, following the demise of Carnap’s programme 
for inductive logic, a general inductive logic is unattainable. On the other hand, many 
would maintain that probabilistic approaches to induction are helpful in a range of cases. 
Schurz (2019, ch. 4) argues against probabilistic accounts of induction, however.

This paper focuses on the second, more pressing problem—the problem of inductive 
logic—though it also contains some brief remarks about the problem of inductive justifica-
tion. The goal of the paper is to examine whether there is some viable probabilistic account 
of induction, and, if so, what that account is. I argue in Sect. 2 that direct inference, which 
requires that epistemic probabilities be directly calibrated to non-epistemic probabilities 
where possible, offers the most promising route to a probabilistic account of induction. 
There are two forms of direct inference. The Principle of the Narrowest Reference Class 
calibrates epistemic probabilities to generic frequencies, while the Principal Principle cali-
brates them to single-case chances. In Sect. 3 I consider a problem for the Principle of the 
Narrowest Reference Class which shows that in a standard probabilistic framework one 
cannot appeal to this direct inference principle to provide an adequate account of induction. 
In Sect. 4 I recount another problem, which shows that the standard probabilistic frame-
work fails to properly accommodate the Principal Principle. Thus the standard probabilis-
tic framework cannot employ direct inference to account for induction after all. However, 
I argue that a non-standard version of objective Bayesianism can successfully accommo-
date direct inference (Sect.  5). I counter Schurz’ criticisms of objective Bayesianism in 
Sect. 6 and conclude that it does indeed provide a viable probabilistic account of the logic 
of induction (Sect. 7).2

1  Williams (1947, ch. 1) claims that the problem of inductive justification is not purely academic, suggest-
ing that, 

Having, spiked the guns of reason, [the skeptic] has invited positive unreason to invade the citadel. 
All conscious and moral existence is a little clearing in the festering jungle of superstition, whose 
prowling terrors are fought off only by the courage and confidence of those who know what it is 
to know. Even within our circle now every doubt which unnerves the defenders of empirical rea-
son is exploited by agents of the enemy, persons who are hostile to reason on principle: the logic 
haters, mystery lovers, and spell-binders. The obsequies of inductive logic are no sooner austerely 
announced by the skeptic than they are exultantly celebrated by enthusiasts reveling in the opportu-
nity to advance some extra-scientific dispensation… (Williams 1947, 19)

Williams overstates his case, however. Despite the long absence of any established justification of induc-
tion, inductive practice has grown hugely, ousting innumerable examples of superstition and quackery along 
the way.
2  The arguments of this paper do not hang on any particular definition of inductive inference, and no pre-
cise definition will be given. It will suffice to say that inductive inferences include inferences about a new 
case made partly on the basis of data or statistics about other cases. Examples will be provided below.
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2 � The Promise of Direct Inference

The standard probabilistic response to the inductive logic problem proceeds from one of 
two general frameworks: that of Bayesianism or that of logical probability.

In the Bayesian framework, probabilities are epistemic—they are an agent’s rational 
degrees of belief. If L is the agent’s language, in which she can express propositions A and 
E, we denote by BE(A) her degree of belief in A, supposing only E. The standard Bayesian 
approach maintains that all conditional beliefs are conditional probabilities:

CBCP. There is a probability function P∅ such that BE(A) = P�(A|E) for all A and E.

This motivates the principle of Bayesian Conditionalisation, which governs how degrees of 
belief should track evidence:

Conditionalisation. On evidence E, believe A to degree BE(A) = P�(A|E).

Here the prior probability function P∅ is either a function that is appropriate in the total 
absence of evidence (a blank-slate function) or a probability function that was appropriate 
at some initial time, evidence prior to which is not made explicit (an initial function).

According to logical probability, on the other hand, probability is fundamentally a rela-
tion between propositions. If L is a language that is appropriate to the problem domain, 
in which A and E are expressible propositions, we denote by CE(A) the degree to which E 
confirms A. The logical theory of probability maintains that degrees of conditional confir-
mation are conditional probabilities:

CCCP. There is a probability function P∅ such that CE(A) = P�(A|E) for all A and E.

Here the prior P∅ is a blank-slate function. Most proponents of logical probability, such 
as Keynes (1921) and Carnap (1950), hold that logical probabilities underwrite rational 
degrees of belief: BE(A) is rational just if BE(A) = CE(A) for some appropriate confirmation 
function CE.3

Although these two general frameworks differ as to the fundamental nature of prob-
ability, they broadly agree about three things: firstly, the need for an appropriate prior prob-
ability function P∅ ; second, that conditional probabilities play an absolutely central role; 
and third, that these conditional probabilities P�(A|E) underwrite rational degrees of belief.

There are three main implementations of these two general approaches.
Strictly subjective Bayesianism (de Finetti 1937; Howson 2000) maintains that any 

probability function P∅ constitutes a rationally permissible prior: it is up to the individual 
as to which such function her beliefs conform to via CBCP. Unfortunately, this approach 
does not seem to help much with the inductive logic problem. Consider a simple example. 
Suppose we randomly sample 21-year-olds and infer that 17% of 21-year-olds develop a 

3  Karl Popper might be an exception (see, e.g., Rowbottom 2008). However, Popper was also an anti-induc-
tivist—he argued instead for a falsificationist methodology. Consequently, we need not consider his view 
further here.
  Williamson (2000, ch. 10), Franklin (2001), Maher (2006), Mura (2008), Paris and Vencovská (2015) and 
Bird (2017, §5) are recent proponents of versions of logical probability.
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cough in the next 12 months (proposition E). How confident should we be that Cheese-
wright, who is 21, will get a cough in the next year (A)? According to strictly subjective 
Bayesianism, any degree of belief in A is rationally permissible, since any prior is permis-
sible. Even where we have the full details of the sample—i.e., if we know which 21-year-
olds were sampled and which developed a cough—rather than just the inferred frequency 
of coughs, it is still the case that any degree of belief would be rationally permissible. 
Since the account claims that any degree of belief in A is rationally permissible, it does not 
provide a logic of induction, because it admits both beliefs that can be considered induc-
tive (e.g., BE(A) ≈ 0.17 ) and beliefs that are non-inductive (e.g., the belief BE(A) = P�(A) 
which is not influenced by the sample at all). At best then, strictly subjective Bayesian-
ism merely provides a conditional logic of induction: only if one conforms to a prior that 
permits induction does it provide an account of learning from experience (Howson 2000). 
For similar reasons, strictly subjective Bayesianism cannot be said to solve the problem 
of inductive justification, because it deems both inductive and non-inductive priors to be 
rationally permissible and provides no grounds for preferring the former over the latter. At 
best it merely provides a conditional justification of induction: only if one adopts an induc-
tive prior should one learn inductively from experience.

The second specific approach is an implementation of logical probability: Carnap’s pro-
gramme. Carnap (1952) sought to objectively constrain the choice of the blank-slate func-
tion P∅ . Now, by far the most natural choice of P∅ is the equivocator function P= , which 
gives each state description the same probability (Williamson 2017,  ch. 4).4 As Carnap 
realised, however, the equivocator function is non-inductive: CCCP ensures that there is 
no learning from experience if P� = P= , because CE(A) = P=(A|E) = P=(A) = 0.5 for an 
atomic sentence A and logically independent evidence E. So Carnap instead opted for a 
continuum of permissible blank-slate functions, P� = c� , parameterised by a constant 
� ∈ [0,∞) , each of which does allow learning from experience.

Carnap’s programme offers more guidance than strictly subjective Bayesianism, but 
still does not help much with the problem of inductive logic. Although Carnap dismissed 
the non-inductive equivocator function, his account is nevertheless very permissive: the 
degree to which the sample of 21-year-olds confirms the proposition that Cheesewright 
will get a cough can be anywhere between 0.17 and 0.5. Carnap provides no clear guidance 
as to which value to opt for. Nor does Carnap’s programme help to address the problem of 
inductive justification. This is because the exchangeability condition—a key condition to 
which Carnap appeals to help narrow down the blank-slate functions to a continuum—is 
not universally appropriate. As Gillies (2000,  77–83) explains, this condition is usually 
only appropriate in the context of a sequence of outcomes that are believed to be objec-
tively probabilistically independent. Thus Carnap’s programme cannot provide a general 
justification of induction.5

The third specific approach, empirically-based Bayesianism, is a version of Bayesian-
ism that employs a direct inference principle in addition to the usual axioms of probability. 

5  Carnap acknowledged the limitations of his approach and later became more sympathetic to a Bayesian 
approach (see Carnap 1962; 1968).

4  More precisely, suppose L is a first-order predicate language with constant symbols t1, t2,… and atomic 
sentences a1, a2,… , where the atomic sentences are ordered in such a way that sentences a1,… , arn

 involv-
ing only the first n constant symbols appear before those involving tn+1 , for each n. The n-states �n ∈ Ωn are 
the sentences of the form ±a1 ∧ ±a2 ∧⋯ ∧ ±arn

 where ±ai is either ai or ¬ai for each i = 1,… , rn . These are 
the state descriptions involving only the first n constants. For each n, the equivocator function gives each 
n-state the same probability.
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A direct inference principle requires that degrees of belief be directly calibrated to non-
epistemic probabilities insofar as one has evidence of them. There are two variants of this 
approach. One variant takes non-epistemic probabilities to be generic frequencies or pro-
pensities, and maintains that one should calibrate a degree of belief to a generic probability 
in a suitable reference class of individuals. The other variant takes non-epistemic probabili-
ties to be single-case chances, and maintains that one should calibrate a degree of belief to 
such a chance. Prima facie, this approach offers a more promising way of tackling the prob-
lem of inductive logic. According to this approach, one should believe that the 21-year-old 
Cheesewright will get a cough to degree 0.17 or thereabouts, given a sample that warrants 
the inference that approximately 17% of 21-year-olds get a cough (E). This, at least, is 
concrete inductivist advice, although how concrete it is depends on what can be said about 
exactly how close to 0.17 one’s degree of belief should be.

This third approach also takes a more promising line with regard to the problem of 
inductive justification: some suitable justification of the direct inference principle might 
convince any detractor who accepts the existence of non-epistemic probabilities of the mer-
its of inductive inference. Admittedly, someone sceptical about whether a sample should 
guide our inferences about an unsampled individual might also be sceptical about the claim 
that there are non-epistemic probabilities. Nevertheless, depending on how the details are 
fleshed out, this line of argument promises to make some modest headway with the prob-
lem of inductive justification.

So, while there are gaps in the account that need to be filled, some version of empiri-
cally-based Bayesianism that appeals to a direct inference principle seems to offer the most 
promise with regard to the two problems of induction. But which version of empirically-
based Bayesianism? Not any standard version: as I argue in Sect. 3, 4, both standard Bayes-
ianism and logical probability struggle to accommodate either of the two kinds of direct 
inference principle in a way that can secure induction. However, we shall see that there is 
one non-standard version of Bayesianism that does not succumb to these problems and that 
can fill the gaps identified above, offering an account of inductive logic and making some 
progress with the problem of inductive justification (Sect. 5, 6).

3 � The Principle of the Narrowest Reference Class

The idea of direct inference dates back at least to Leibniz (Cussens 2018). Leibniz took 
probability to be an epistemic concept at root: probabilities are degrees of certainty (Hack-
ing 1975, 89). And Leibniz says,

One may still estimate likelihoods a posteriori, by experience; to which one must 
have recourse in default of a priori reasons. For example, it is equally likely that a 
[particular] child should be born a boy or a girl, because the number of boys and girls 
is very nearly equal all over the world. (Leibniz 1714, 570)

We normally perform direct inference without thinking about it—indeed, research con-
ducted by Bastos and Taylor (2020a, b) suggests that even parrots can perform a fairly 
sophisticated form of direct inference. However, the question arises as to whether there is 
some explicit direct inference principle that can guide induction in more complex situa-
tions. Reichenbach put forward one such principle: a principle for using generic frequen-
cies to guide single-case inferences:
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We then proceed by considering the narrowest class for which reliable statistics can 
be compiled. If we are confronted by two overlapping classes, we shall choose their 
common class. Thus, if a man is 21 years old and has tuberculosis, we shall regard 
the class of persons of 21 who have tuberculosis. (Reichenbach 1935, 374)

This policy has become known as the Principle of the Narrowest Reference Class. The 
principle is intuitively plausible and widely endorsed—Schurz (2019,  58) is one recent 
advocate, for example. A simple version of the principle can be expressed as follows:6

PNRC. BE(�(c)) = x if E determines that the frequency P∗
𝜌̂
(𝛼) = x and determines that 

𝜌̂ is the unique narrowest reference class containing c for which P∗
𝜌̂
(𝛼) is available, and 

contains no information more pertinent to �(c).

Here � and � denote properties and c denotes an individual. A property such as � deter-
mines a reference class 𝜌̂ , namely the set of individuals that instantiate the property � . 
P∗
𝜌̂
(𝛼) is the frequency of � in the reference class 𝜌̂ . Clearly, something further needs to be 

said about when other information is more pertinent to �(c) than the frequency informa-
tion, and we shall return to this point below.

Although PNRC is intuitively plausible, I will argue that it fails to yield an adequate 
account of induction, when integrated into a standard probabilistic framework such as the 
standard Bayesian framework or that of logical probability.

Let us consider some consequences of PNRC in the standard Bayesian framework, 
which takes conditional degrees of belief to be conditional probabilities (CBCP).7 Let 
proposition A abbreviate �(c) ; for example, A might be the proposition that Cheesewright 
gets a cough in the next year. Let R abbreviate �(c) , e.g., Cheesewright is 21. Let S stand 
for �(c) , e.g., Cheesewright has tuberculosis. Let X be P∗

𝜌̂
(𝛼) = x , e.g., the statement that 

the frequency of coughs in the reference class of 21-year-olds is 0.17. Let Y be P∗
�̂�
(�) = y , 

where y > x , e.g., the statement that the frequency of coughs in the reference class of 
21-year-olds with tuberculosis is 0.97.

Then PNRC apparently leads to the following inferences about Cheesewright: 

 1.	� P�(A|XR) = 0.17

 2.	� P�(A|YRS) = 0.97

 3.	� P�(A|XYR) = 0.17

 4.	� P�(A|XYRS) = 0.97

 5.	� P�(A|XYRS̄) = 0.17.

 Note that, for these conditional probabilities to be well defined, the probabilities of the 
propositions conditioned on must be non-zero. Thus these uses of PNRC presuppose that 
that P�(XYRS) > 0 and P�(XYRS̄) > 0.

6  More complicated versions of the Principle of the Narrowest Reference Class say something about what 
to do in the presence of statistics from multiple narrowest reference classes (see, e.g., Thorn 2019).
7  The following argument is cast in terms of the Bayesian framework because that is the usual setting for 
direct inference. However, similar points can be made about the logical framework, on account of its appeal 
to the analogous principle CCCP. Carnap (1950, §94) and Paris and Vencovská (2015, ch. 15), for example, 
argue that their versions of the logical theory validate direct inference.
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These implications of PNRC are all very natural. Indeed, it is hard to see what specific 
values other than these an inductivist would advocate in these five alternative scenarios. 
However, it turns out that these consequences of PNRC are inconsistent.8

To see this, observe that by the theorem of total probability,

i.e.,

where s
df
=P�(S|XYR) . But this can only hold if s = 0 , which contradicts the presupposition 

that P�(XYRS) > 0.
This poses a problem for the Bayesian: it seems that Bayesianism cannot accommo-

date even a very simple version of the Principle of the Narrowest Reference Class, namely 
PNRC. This is essentially because standard Bayesianism assumes CBCP, which turns con-
sequences of PNRC into constraints on a single probability function, namely the prior P∅ , 
and these constraints soon become unsatisfiable. Note that exactly the same problem would 
arise in the general framework of logical probability, because it assumes the analogous 
principle CCCP. This poses a problem for standard probabilistic accounts of induction that 
appeal to PNRC or one of its generalisations.

Let us examine the options for such accounts. Is there some way of avoiding the 
problem?

As Equation  i shows, the inconsistency is generated by consequences 3, 4 and 5 of 
PNRC: 

3.	� P�(A|XYR) = 0.17

4.	� P�(A|XYRS) = 0.97

5.	� P�(A|XYRS̄) = 0.17.

 The inconsistency would be avoided if one were able to deny that PNRC yields all three of 
these three constraints on the prior. This would be possible if, in at least one of these three 
cases, what is conditioned upon contains information that can be deemed more pertinent to 
A than the frequency that is being used to inform the degree of belief. If so, PNRC would 
not apply in that case and no contradiction would be derivable: the probabilistic account 
would be able to accommodate PNRC, after all.

However, we shall see that denying any of these three conditions would be problematic 
because PNRC would then be very easily defeated. I will go on to argue that this prob-
lem shows that one cannot, after all, appeal to PNRC to provide an adequate probabilistic 
account of induction.

First consider consequence 3. One can reject this identity if one can deem Y to be more 
pertinent to A than XR, i.e., if one can deem the frequency in a narrower reference class to 
be more pertinent to A than that in a wider reference class, even where there is evidence 
only that the individual is a member of the wider reference class—not the narrower refer-
ence class. There are several difficulties with this strategy. Firstly, it conflicts with the idea 

(i)P�(A|XYR) = P�(A|XYRS)P�(S|XYR) + P�(A|XYRS̄)P�(S̄|XYR)

0.17 = 0.97s + 0.17(1 − s),

8  This kind of inconsistency was identified by Wallmann and Hawthorne (2020,  §5.2), though neither 
author takes it to be of concern (personal communication). I will argue that the inconsistency  leads to a 
problem that is decisive in this context.
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behind PNRC, which is to calibrate a degree of belief to the frequency in the narrowest 
reference class that is known to apply to the particular individual. Second, it severely limits 
the applicability of PNRC, because we almost always do have superfluous frequency data 
that are of questionable relevance to an individual of interest. If these data defeat PNRC, 
then direct inference would appear to be rarely warranted.

Worse still, a mischief maker would be able to undermine any particular application of 
PNRC by reliably informing the agent seeking to apply PNRC of some statistic that is of 
dubious relevance. You might intend to use PNRC to calibrate your degree of belief that 
Cheesewright gets a cough to the frequency of coughs within some reference class that 
includes Cheesewright. The mischief maker then tells you that 35% of 21-year-olds who 
have COVID-19 develop a cough, where it is unknown to you whether Cheesewright has 
COVID-19. That would be enough to undermine your use of PNRC, if the above strategy is 
pursued. Not only would the proponent of probabilistic induction fail to convince a detrac-
tor of the merits of induction, but a mischievous detractor would be able to undermine the 
proponent’s own use of induction.

Let us turn next to consequence 4. To reject the identity P�(A|XYRS) = 0.97 , one would 
have to maintain that statistics in wider reference classes are more pertinent to an indi-
vidual than those in narrower reference classes: X defeats YRS. This strategy would even 
more blatantly conflict with the aim of PNRC. As with the previous strategy, this would 
also render PNRC impotent, because it would be enough for the mischief maker to report 
the frequency of coughs in people of all ages in order to undermine any use of PNRC on 
some narrower reference class.

Suppose, then, that we grant consequences 3 and 4. Now consider consequence 5. 
Rejecting the identity P�(A|XYRS̄) = 0.17 would require claiming that a narrower reference 
class frequency defeats a wider reference class frequency in cases where the individual is 
not a member of the narrower reference class. Now, while consequence 5 is prima facie 
plausible, it turns out that one can indeed provide some grounds for rejecting it, along the 
following lines. Suppose frequencies are conditional probabilities, so that P∗

𝜌̂
(𝛼) = P∗(𝛼|𝜌) 

etc.9 Then,

which we can write as:

where x
df
=P∗(𝛼|𝜌), ydf=P∗(𝛼|𝜌𝜎), zdf=P∗(𝛼|𝜌𝜎̄) and t

df
=P∗(�|�).

In the Cheesewright example, � is the attribute getting a cough in the next year, � is the 
reference class of 21-year-olds, � is the reference class of those with tuberculosis, x = 0.17 , 
y = 0.97 , and we have

Assuming that t > 0 , this equation can only hold if z < 0.17 . It follows that P�(A|XYRS̄) 
should be less than 0.17, contra consequence 5. One can see this as follows. Let us refer to 

(ii)P∗(𝛼|𝜌) = P∗(𝛼|𝜌𝜎)P∗(𝜎|𝜌) + P∗(𝛼|𝜌𝜎̄)P∗(𝜎̄|𝜌)

x = yt + z(1 − t),

0.17 = 0.97t + z(1 − t).

9  Here P∗ is the frequency function relative to the trivial reference class, which contains all individuals as 
members. See for example Gillies (2000, ch. 5) for an account that takes frequencies to be conditional prob-
abilities.
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the claim that P∗(𝛼|𝜌𝜎̄) < 0.17 as proposition Z. As we have just seen, Z follows from XY. 
For each z ∈ [0, 1] , let Zz be the claim that P∗(𝛼|𝜌𝜎̄) = z . Then,

since P�(Z0.17|XYZRS̄) = 0 . Note that the third equality holds by an application of PNRC: 
P�(A|XYZRS̄Zz) = P∗(𝛼|𝜌𝜎̄) = z for z ∈ [0, 0.17) , or 0 for z ∈ [0.17, 1] . So, if we assume 
that frequencies are conditional probabilities and that P∗(𝜎|𝜌) > 0 , we reach the conclusion 
that P�(A|XYRS̄) < 0.17 . In which case, consequence 5 cannot hold: YS̄ provides pertinent 
evidence that defeats the attempt to apply PNRC. This provides some reason to think that 
YS̄ is a defeater.

However, admitting YS̄ as a defeater opens the door to our mischief maker to undermine 
any application of PNRC, as we shall now see.

Suppose we have evidence XR and wish to apply PNRC to set P�(A|XR) = x , where 
0 < x < 1 . Then our mischief maker reliably informs us that there are some features � that 
are positively relevant to � but which do not all apply to individual c. (In real scenarios, 
there will always be some such features. We do not need to know precisely what the fea-
tures are, nor precisely how relevant they are.) That � makes a positive difference to � is 
captured by the following proposition Y:

That � does not apply to c is captured by the proposition 𝜎̄(c) , abbreviated by S̄ . Given the 
evidence YS̄ provided by the mischief-maker, one needs to consider P�(A|XYRS̄) instead of 
P�(A|XR) . And it turns out that if we reject consequence 5 then YS̄ is a defeater here: it pre-
vents us from using PNRC to set P�(A|XYRS̄) = x . This is because the theorem of total 
probability forces P�(A|XYRS̄) < x , even where the difference � makes is unknown. To see 
this, let Zz be the proposition P∗

�𝜌𝜎̄
(𝛼) = z . Then,

since P�(Zx|XYRS̄) = 0.
Let us return to our specific example. Given XR, which says that 17% of 21-year-olds get 

a cough in the next year and Cheesewright is a 21-year-old, we might want to use PNRC to 
directly infer a degree of belief 0.17 that Cheesewright gets a cough. But then we are reli-
ably informed that there is some set of factors that do not apply to Cheesewright but make 
a positive difference to the proposition that he gets a cough. Although this information is 
hardly surprising, if one rejects consequence 5 then this information alone is sufficient to 
defeat our use of PNRC, even if we can neither specify the factors nor the difference they 

P�(A|XYRS̄) = P�(A|XYZRS̄)

=∫
1

0

P�(A|XYZRS̄Zz)P�(Zz|XYZRS̄) dz

=∫
0.17

0

zP�(Zz|XYZRS̄) dz

<0.17

(P∗
�𝜌𝜎
(𝛼) > x) ∧ (P∗

�𝜌𝜎̄
(𝛼) < x).

P�(A|XYRS̄) =∫z

P�(A|XYRS̄Zz)P�(Zz|XYRS̄) dz

=∫
x

0

zP�(Zz|XYRS̄) dz

<x
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make.10 This makes PNRC all too easy to undermine. The only way to render PNRC more 
robustly applicable is to insist on consequence 5—a move that blocks these mischievous 
defeaters.

We thus have a dilemma. If we affirm consequence 5, which has the merit of being 
intuitively plausible, we block the mischief maker. However, this comes at the expense of 
inconsistency: consequences 3-5 cannot all hold together. On the other hand, if we reject 
consequence 5, in line with the argument from Equation  ii, then we enable the mischief 
maker to undermine even the simplest use of PNRC. This last point also goes for conse-
quences 3 and 4: if we deny any of 3-5, we permit the mischievous inductive detractor to 
undermine our own inductive inferences.

The Bayesian would normally be inclined to take the second horn of the dilemma here, 
suggesting that it is no matter that PNRC is so easily undermined, as long as we take all 
potential underminers into account by employing the theorem of total probability. Such a 
response might proceed as follows. Suppose for simplicity that there are only finitely many 
properties that define reference classes, namely �, �1,… , �k . Let S1,… , S2k be propositions 
predicating all the various combinations of �1,… , �k applied to c, e.g., 
𝜎1(c)𝜎̄2(c)⋯ 𝜎̄k−1(c)𝜎̄k(c) . For each such Si , let Zi

z
 be the claim that the frequency of � is z 

in the reference class picked out by � together with the combination of properties appearing 
in Si , e.g., P∗

�𝜌𝜎1𝜎̄2⋯𝜎̄k−1𝜎̄k
(𝛼) = z . Note that such reference classes are narrowest reference 

classes. Then the Bayesian would require just that:

where the second identity follows by PNRC.
While this approach is perfectly in accord with the standard Bayesian framework, it is 

not an adequate response in this context because it undermines the appeal to PNRC to pro-
vide an adequate account of induction. The problem is that this approach does not commit 
to any precise value for P�(A|XR) . Indeed, any value in the unit interval is deemed ration-
ally permissible for P�(A|XR) , as long as the values P�(Z

i
z
Si|XR) are set accordingly. So, 

when it comes to providing an account of induction, this approach suffers from exactly 
the same problems that beset strictly subjective Bayesianism: inductive inference and non-
inductive inference are placed on an equal footing. What we wanted from an appeal to 
PNRC was to force a value of 0.17 or thereabouts for P�(A|XR) , to show how induction can 
be rationally required rather than merely rationally permissible—which it is anyway in the 
absence of direct inference.

P�(A|XR) =
2k∑

i=1
∫z

P�(A|XRZi
z
Si)P�(Z

i
z
Si|XR) dz

=

2k∑

i=1
∫z

zP�(Z
i
z
Si|XR) dz

10  In order to make � more concrete, one might try to construct a suitable reference class. For instance, 
consider the reference class � consisting of those individuals not called ‘Cheesewright’ who get a cough in 
the next year. We know that this reference class makes a positive difference: P∗

�̂�
(�) = 1 and P∗

�𝜌𝜎̄
(𝛼) ≈ 0 , and 

that Cheesewright is not a member of � , i.e., S̄ . So we might consider P�(A|XYRS̄) instead of P�(A|XR) . 
Now, P�(A|XYRS̄) ≈ 0 , not 0.17. Thus YS̄ apparently defeats our proposed use of PNRC.
  However, as Thorn (2012) discusses, there are independent reasons to avoid gerrymandered reference 
classes when applying the Principle of the Narrowest Reference Class.
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In sum, while an appeal to direct inference stands out as the most promising strategy 
for a probabilistic account of induction, neither the standard Bayesian framework nor that 
of logical probability can accommodate PNRC in a way that secures inductive inference. 
Thus the proponent of one of these standard probabilistic approaches needs to turn to 
some other implementation of direct inference in order to provide an account of induction. 
However, we shall see next that standard probabilistic approaches also struggle to success-
fully accommodate the main alternative to the Principle of the Narrowest Reference Class, 
namely David Lewis’ Principal Principle.

4 � The Principal Principle

Lewis (1980) uses single-case chances rather than generic frequencies to constrain prior 
probabilities:

Principal Principle. P�(A|XE) = x , where X says that the chance at time t of proposition 
A is x and E is any proposition that is compatible with X and admissible at time t.

Again, something needs to be said about when the additional evidence E is compatible 
with X and admissible, or instead defeats the application of the Principal Principle. Lewis 
specified that matters of fact up to time t are admissible, but remained non-committal about 
which other propositions are admissible.

The Principal Principle is immune to the problem for PNRC posed above, because ref-
erence classes have no bearing when the chances are single-case. However, the Principal 
Principle faces the following problem, due to Wallmann and Williamson (2020).

Suppose E is a proposition about matters of fact no later than the present, A says that it 
will rain tomorrow in Abergwyngregyn, and X says that the present chance of A is 0.7. The 
Principal Principle implies: 

6.	� P�(A|XE) = 0.7.

 Now consider an unrelated proposition F, which says that Fred’s fibrosarcoma will recur. 
Suppose the following assignment of probability is rationally permissible: 

7.	� P�(F|XE) = 0.3.

 In the standard Bayesian framework with the Principal Principle, such an assignment of 
degree of belief would be permissible as long as E does not determine that the chance of F 
is something other than 0.3. Such an assignment would also be permissible in the frame-
work of logical probability, if E were to provide some relatively weak evidence against F. 
Suppose then that E provides at best weak evidence relating to F. In particular, suppose 
that E provides less compelling evidence than the present chance of F, in the sense that the 
present chance of F would trump E in determining strength of belief in F: P(F|XYE) = y , 
where Y says that the present chance of F is y.

Now consider the case in which A and F turn out to have the same truth value, i.e., 
A ↔ F . Conditional on A ↔ F , the propositions A and F must be given the same 
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probability.11 What probability should that be? Since there is excellent evidence relating 
to A, namely the present chance of A, and at best weak evidence relating to F, it should 
at least be permissible that the probability of A is more strongly influenced by the present 
chance of A than by the weak evidence relating to F: 

8.	� P�(A|XE(A ↔ F)) > 0.5.

The problem is that assignments 6-8 are inconsistent (Wallmann and Williamson 
2020, §3.1). Arguably, then, neither the standard Bayesian framework nor that of logical 
probability can adequately accommodate the Principal Principle. Assignment 6 is just a 
simple application of the Principal Principle. Assignment 7 concerns an unrelated proposi-
tion. To violate assignment 8 would be to hold that an uninformed or weakly informed cre-
dence in an unrelated proposition should be as strong a determinant of your degree of belief 
in A as the present chance of A, where a conflict arises. This works against the intended 
goal of the Principal Principle, which is to ensure that credences are guided by chances. 
Moreover, to deny assignment 8 would be to maintain that although the present chance of 
F should trump E in determining strength of belief in F, P(F|XYE) = y , the present chance 
of A together with the fact that A and F have the same truth value should bizarrely have no 
special influence on strength of belief in F.12

It is worth observing that this problem for the Principal Principle also extends to the 
Principle of the Narrowest Reference Class. Suppose assignment 6 is generated by an 
application of PNRC with respect to a frequency in a very narrow reference class, instead 
of by an application of the Principal Principle: e.g., the frequency of rain in Abergwyngr-
egyn after days on which the prevailing conditions are just like today’s. Suppose assign-
ment 7, on the other hand, is induced by a frequency in a very wide reference class: e.g., 
the frequency of recurrence of fibrosarcoma in vertebrates. Then assignment 8 remains 
permissible. After all, the core idea of the Principle of the Narrowest Reference Class is 
that frequencies in narrower reference classes should prevail over those in wider reference 
classes when determining rational degrees of belief. However, assignments 6-8 are incon-
sistent. Hence, the standard Bayesian framework fails to accommodate simple rational 
belief assignments that are in line with the Principle of the Narrowest Reference Class.

So we see then that neither kind of direct inference principle sits easily in a standard 
Bayesian framework, because the direct inferences we might want (1-5 in the case of PNRC 
and 6-8 in the case of both the Principal Principle and PNRC) over-constrain the prior P∅ , 
thanks to CBCP. Recasting direct inference in the framework of logical probability would 

11  This is a consequence of the axioms of probability: for any probability function P, P(A|A ↔ F) =

P(A ∧ F|A ↔ F) + P(A ∧ ¬F|A ↔ F) = P(A ∧ F|A ↔ F) + 0 = P(A ∧ F|A ↔ F) + P(¬A ∧ F|A ↔ F) = P(F|A ↔ F).
12  One might suggest moving from Lewis’ Principal Principle to some other principle that calibrates 
degrees of belief to chances. The main alternative is a version of the Principal Principle that appeals to con-
ditional chance (Hall 1994; 2004):

Conditional Principal Principle. P�(A|XE) = x , where X says that the chance at t of A, conditional on E, is x.
  However, Wallmann and Williamson (2020, §3.2) show that the Conditional Principal Principle does not 
avoid the problem for the Principal Principle outlined above.
  See Wallmann and Williamson (2020) for more detail and for responses to further suggestions for avoiding 
the above problem.
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not help, since logical probability presupposes CCCP, which is analogous to CBCP. One 
might therefore think that the prospects of any probabilistic approach to induction are dim.

However, this conclusion would be too hasty. There is a non-standard Bayesian approach 
that avoids the above problems by avoiding CBCP, as we shall see next.

5 � Objective Bayesian Inductive Inference

We noted in Sect.  2 that while strictly subjective Bayesianism leaves rational degree of 
belief largely unconstrained, empirically-based Bayesianism appeals to some direct infer-
ence principle to constrain rational degrees of belief given appropriate evidence. Objective 
Bayesianism holds that degrees of belief should be heavily constrained even in the absence 
of evidence. This is often achieved by means of the following principle. If Ω is a finite, 
indivisible set of mutually exclusive and exhaustive alternatives, then:

Maximum Entropy Principle. PE is a probability function, from all those that satisfy 
constraints imposed by E, that maximises the entropy function, 

In the absence of any evidence, the Maximum Entropy Principle selects the equivoca-
tor function P= , which gives each alternative the same probability, P=(�) = 1∕|Ω| for all 
� ∈ Ω . If there is substantive evidence, the Maximum Entropy Principle selects a probabil-
ity function that is as equivocal as possible in the circumstances.

There are two versions of objective Bayesianism. The version most widely adopted is 
situated within the standard Bayesian framework and presumes CBCP. Some advocates 
of this version, particularly in the physical sciences, follow Jaynes (1957) in adopting the 
Maximum Entropy Principle, while others, particularly in the statistics community, fol-
low Jeffreys (1939) in using other methods for determining ‘objective’ or ‘default’ priors. 
Either way, they can be considered advocates of what we shall call standard objective 
Bayesianism.

The alternative version of objective Bayesianism is that of Williamson (2010) and col-
laborators. This departs from the standard version in the following key ways.

Firstly, it rejects CBCP as a universal principle. While this move is a departure from 
standard Bayesianism, it does not amount to a rejection of probabilism. This is because the 
alternative version does take conditional beliefs to be probabilities:

CBP. For any E, there is a probability function PE such that BE(A) = PE(A) for all A.

By rejecting CBCP, this version of objective Bayesianism also eschews Conditionalisation 
as a norm that governs the updating of degrees of belief (Williamson 2010). In place of 
Conditionalisation, the Maximum Entropy Principle is used to constrain the choice of the 
belief function, on evidence E. This often gives results that agree with those produced by 
Conditionalisation, but not always. Use of the Maximum Entropy Principle has the advan-
tage that it becomes possible to revise degrees of belief away from 0 and 1 in the light of 
unexpected evidence—something that it is not possible to do with Conditionalisation. In 

H(P)
df
= −

∑

�∈Ω

P(�) logP(�).
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addition, the Maximum Entropy Principle can handle certain other cases that are problem-
atic for Conditionalisation (Williamson 2010, §4.2).13

Second, while the standard Bayesian framework, which appeals to CBCP and Condi-
tionalisation, requires that evidence be expressible in the domain of the probability func-
tion, i.e., in the algebra of Ω , the alternative version of objective Bayesianism does not 
require this. This is advantageous because a framework in which the object language is not 
cluttered with all possible evidential propositions more accurately represents actual prac-
tice. In practice one cannot express all possible evidence, and even where one might be 
able to express one’s evidence it is often undesirable to do so. After all, we take proposi-
tions as evidence at least in part so they can be removed from the context of inquiry in 
order to focus on other propositions that are of immediate interest. Moreover, it is easier to 
represent and calculate probabilities defined over a smaller domain. Thus this approach to 
evidence leads to a more streamlined intellectual economy.

Third, this alternative version of objective Bayesianism incorporates direct inference. 
(Jaynes, in contrast, rejected the existence of non-epistemic probabilities.) The following 
direct inference principle is used to calibrate degrees of belief to single-case chances (Wil-
liamson 2021b):

Chance Calibration. If, according to current evidence E, the current chance function P∗ 
lies in the set ℙ∗ of probability functions, then PE ∈ ⟨ℙ∗⟩ , the convex hull of ℙ∗.14

Here we take current evidence to be evidence about matters of fact up to the present. The 
qualification that E is current evidence is intended to ensure that E is admissible with 
respect to the present chance. Unlike the Principal Principle, this direct inference principle 
does not presuppose CBCP. Note that it requires a previous inference to a claim about the 
chance function. The agent needs to have established that P∗ ∈ ℙ

∗ from some previous 
body of evidence, and, having been established, the proposition P∗ ∈ ℙ

∗ is then included in 
the current body of evidence E.

Alternatively, degrees of belief can be calibrated to generic frequencies by means of 
some version of the Principle of the Narrowest Reference Class, such as the following:

Frequency Calibration. If, according to E, the frequency P∗
𝜌̂
(𝛼) ∈ X , and 𝜌̂ is the unique 

narrowest reference class containing c with respect to which E determines non-trivial 
bounds on the frequency of � , and E includes no more pertinent information, then 
PE(�(c)) ∈ ⟨X⟩ , the convex hull of X.

13  Kyburg (1977) also rejects Conditionalisation, in response to an objection of Levi (1977) that Kyburg’s 
implementation of the Principle of the Narrowest Reference Class conflicts with Conditionalisation—
see also Seidenfeld (2007,  §3) on this point. While Kyburg’s theory is usually classed as non-Bayesian, 
the approach presented here is more naturally classed as a Bayesian theory, albeit non-standard. This is 
because it takes probabilities to be rational degrees of belief and because updating by maximising entropy 
often produces results that agree with Conditionalisation. This approach can be viewed as a development 
of Bayesianism that resolves certain difficulties with the standard approach. Kyburg’s theory of evidential 
probability, on the other hand, is closer to logical probability, and does not appeal to the Maximum Entropy 
Principle.
14  Recall that a probability function P is in the convex hull of a set of probability functions iff it is a mix-
ture of probability functions in that set, i.e., iff there are functions Q and R in the set and some real number 
� in the unit interval such that P(�) = �Q(�) + (1 − �)R(�) for each � ∈ Ω.
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Again, this presumes some previous inference from data to the frequency proposition 
P∗
𝜌̂
(𝛼) ∈ X.
The approach leaves open the question of whether the required inferences to chances or 

frequencies are performed using classical or Bayesian statistical inference. If the former, 
this version of objective Bayesianism can be thought of as marrying classical statistical 
inference (inference to generic frequencies or single-case chances) with Bayesian inference 
(inference from these non-epistemic probabilities to rational belief and action).

The fourth departure from Jaynes’ objective Bayesianism, as well as from the logi-
cal approach to probability, is that this version of objective Bayesianism does not require 
that rational degrees of belief be uniquely determined by the evidence. For example, the 
agent’s probabilities may be relative to the set Ω of indivisible alternatives as well as to the 
explicit evidence E. Here Ω can be thought of as determined by the agent’s language: if this 
language can be explicated by a finite propositional language L then Ω is the set of state 
descriptions of L , and a similar account can be provided if L is a first-order predicate lan-
guage (Williamson 2017). In addition, inferences from evidence to non-epistemic probabil-
ities can depend on the agent’s utilities, as we note below. Finally, there may be multiple 
functions with maximum entropy, or indeed no maximum entropy function, in which case 
any function with sufficiently great entropy is rationally  permitted, with what counts as 
‘sufficient’ dependent on the agent’s interests. Thus, this version of objective Bayesianism 
relativizes probabilities to an agent’s language, utilities and interests, as well as evidence, 
and leaves some role for subjectivity.15 It should be thought of as a very highly constrained 
version of Bayesianism, but not uniquely constrained.

On the other hand, this version of objective Bayesianism is not over-constrained, as is 
standard Bayesianism with CBCP and the direct inference principles discussed in Sect. 3 
and 4. This is because, without CBCP, direct inference constrains a different probability 
function PE for each body of evidence E. In contrast, standard Bayesianism with CBCP 
and either PNRC or the Principal Principle constrain a single prior probability function 
P∅ . To get a sense of the extra degrees of freedom that this version of objective Bayesian-
ism offers, observe that in this framework the five consequences of PNRC discussed in §3 
would amount to: 

1′.	� PXR(A) = 0.17

2′.	� PYRS(A) = 0.97

3′.	� PXYR(A) = 0.17

4′.	� PXYRS(A) = 0.97

5′.	� PXYRS̄(A) = 0.17.

15  Indeed, this version of objective Bayesianism arguably handles subjectivity in a better way than does the 
standard Bayesian framework. Suppose at least two degrees of belief in A are rationally permissible, x and 
y, and then some evidence irrelevant to A is obtained. In the standard Bayesian framework, one needs to 
select one of these degrees of belief—x say—and conditionalise on the new evidence, after which degree 
of belief x must be retained. This flies in the face of common sense: if y was rationally permissible before 
learning the irrelevant evidence, it should still be rationally permissible. Common sense is salvaged by 
updating via the Maximum Entropy Principle rather than Conditionalisation. If both x and y satisfy con-
straints imposed with the evidence before the arrival of the new information, and have sufficiently great 
entropy, then they will also be compatible with the evidence and have sufficiently great entropy after adding 
the irrelevant information. Thus both remain rationally permissible, as required.
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 Here, each of these consequences constrains a different probability function, so they can-
not be mutually inconsistent. Similarly, the three conditions introduced in Sect. 4 translate 
as: 

6′.	� PXE(A) = 0.7.
7′.	� PXE(F) = 0.3.
8′.	� PXE(A↔F)(A) > 0.5.

 While 6′ and 7′ constrain the same probability function, PXE , they are consistent con-
straints on this function. Moreover, 8′ constrains a different probability function, PXE(A↔F) , 
and so cannot be incompatible with 6′ and 7′.

We see, then, that the inconsistencies of Sect. 3 and 4 simply do not arise in this alterna-
tive Bayesian framework.16

Having seen how this approach avoids the problems of Sect. 3 and 4, we next turn to the 
question of how it captures inductive inference.

If A is the atomic proposition �(c) , the Maximum Entropy Principle mandates a mid-
dling degree of belief in A, P�(A) = 0.5 , in the absence of any evidence. Suppose the agent 
learns that a sample from reference class 𝜌̂ yields proportion x for � (proposition X), and 
that individual c satisfies � (proposition R). Suppose next that, from XR, the agent is pre-
pared to use interval I as her best estimate of the chance P∗(�(c)) , i.e., she establishes that 
P∗(�(c)) ∈ I (proposition Y) and is not prepared to commit to the chance lying in any nar-
rower interval. Chance Calibration requires that her degree of belief in A should match this 
constraint on the chance, PXYR(�(c)) ∈ I . The Maximum Entropy Principle then requires 
that she should choose a maximally equivocal value from within that interval—i.e., the 
value closest to 0.5:

Williamson (2017, §7.3) breaks this inference down further into a series of small steps, 
by appealing to Frequency Calibration rather than Chance Calibration. These steps can be 
summarised as follows. Suppose 𝜌̂ is the (unique narrowest) reference class of our sample 
s (e.g., 21-year-olds) and let 𝜎̂ be a reference class of similar samples (e.g., similar samples 
of a hundred 21-year-olds). Take X̄ to be the function that maps a sample in 𝜎̂ to the mean 

16  Does that mean that 1� − 8� should all hold in this setting? Recall that 5, although intuitively plausible, is 
questionable, for the reasons discussed in Sect. 3: as Eq. ii shows under certain assumptions, the frequency 
of getting a cough in the reference class of those without tuberculosis must be less than 0.17. This argument 
against 5 also brings 5′ into question: given that the frequency is not 0.17, is it reasonable to believe that 
Cheesewright gets a cough to degree 0.17?
  While we do not need to settle this question here, we should note that denying 5′ would open the door to 
the mischief-maker argument of Sect. 3. Thus some further account would need to be given of how to avoid 
the mischief maker. The key point here is that there is no inconsistency in this alternative framework that 
compels one to deny any of 1� − 5� . The Bayesian can endorse all these applications of the Principle of the 
Narrowest Reference Class, by moving from standard Bayesianism to the non-standard objective Bayesian 
framework.
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of that sample; X̄(s) is thus the mean of our sample (e.g., 0.17, the proportion of members 
of the sample who get a cough). Then: 

	 (i)	 Let � be the threshold such that the agent would infer that P∗
𝜌̂
(𝛼) ∈ I should her 

credence in this proposition meet threshold � . � can be determined from the agent’s 
utilities by means of Bayesian decision theory.17

	 (ii)	 Let I� be the function that maps a sample to the confidence interval determined by 
the sample mean and confidence level �.

	 (iii)	 One can infer that in approximately 100�% of samples, the corresponding confidence 
interval would capture the frequency P∗

𝜌̂
(𝛼) , i.e., P∗

𝜎̂
(P∗

𝜌̂
(𝛼) ∈ I𝜏 ) ≈ 𝜏.

	 (iv)	 Now consider our specific sample s, which is known to be in the reference 
class 𝜎̂ of similar samples. If there is no more pertinent evidence in E (includ-
ing evidence gained from the sample itself), Frequency Calibration requires that 
PE(P

∗
𝜌̂
(𝛼) ∈ I𝜏 (s)) ≈ 𝜏.

	 (v)	 By (i), the agent establishes that P∗
𝜌̂
(𝛼) ∈ I𝜏 (s) . This is added to E to give a new body 

of evidence E′.
	 (vi)	 If E′ also determines that individual c is a member of reference class 𝜌̂ , and E′ 

contains no evidence more pertinent to c, then a second application of Frequency 
Calibration requires that PE� (�(c)) ∈ I� (s).

	 (vii)	 The Maximum Entropy Principle then further narrows down PE� (�(c)) to the most 
equivocal value in I� (s).

This sequence of steps highlights the interplay between classical and Bayesian methods: 
step (i) appeals to Bayesian decision theory, (ii–iii) to classical statistics (frequentist con-
fidence interval estimation methods), and (iv–vii) to the non-standard variant of objective 
Bayesianism.

In this alternative version of objective Bayesianism, then, direct inference ensures that 
rational degrees of belief are swayed by past experience and the Maximum Entropy Princi-
ple moderates the extent to which they are swayed. The exact extent to which past experi-
ence is moderated depends on the size of the confidence interval, which in turn depends 
on the confidence level, which is a function of the agent’s utilities. We will assess whether 
this account survives Schurz’ criticisms in the next section. But if successful, it provides 
a probabilistic account of the logic of induction that appeals to direct inference and is 
immune to the problems of Sect. 3 and 4.

6 � Schurz’ Criticisms

Schurz (2019,  Sect.  4.5, 4.6) objects that this sort of account of induction requires a 
uniform prior probability distribution over the possible values of a frequency P∗

𝜌̂
(𝛼) . 

He argues that this is a problem because equiprobability is language dependent—i.e., 
different languages lead to different distributions—and because uniform distributions 

17  More precisely, � =
S2−E2

S1+S2−E1−E2

 , where S1 is the utility of establishing the interval estimate P∗
𝜌̂
(𝛼) ∈ I if 

the estimate is correct, S2 is the utility of not establishing it if it is incorrect, E1 is the utility of not establish-
ing it if correct and E2 is the utility of establishing it if incorrect. See Williamson (2021a) for further discus-
sion of this point.
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prohibit induction. We will consider these three concerns—equiprobability, language 
dependence and induction being prohibited—in turn. I will argue that the non-standard 
objective Bayesian account of Sect. 5 is immune to these objections.

First note that this account does not require that evidence be included in the domain 
of the probability function, because it does not require CBCP. (This was the second 
difference between the two versions of objective Bayesianism noted in Sect.  5.) The 
upshot is that the agent’s language need not express frequency statements of the form 
P∗
𝜌̂
(𝛼) = x , and objective Bayesianism does not require any prior probability distribution 

over the possible values of a frequency P∗
𝜌̂
(𝛼).

One might reply that, although this objective Bayesian approach does not actually 
require a uniform prior distribution over the frequencies, it is tantamount to one that 
requires such a distribution (see Maher 1996, §3). What this means is just that, if one 
were to try to emulate the non-standard objective Bayesian approach within the frame-
work of standard Bayesianism, one would need such a prior distribution. This would 
in turn raise concerns about language dependence: the worry that a uniform distribu-
tion on one language may yield different inferences to a uniform distribution on another 
language.

However, to take this to be a problem is to assume that standard Bayesianism should 
have priority over this non-standard rival approach. For only then would it make sense 
to use the former approach to emulate the non-standard objective Bayesian approach. 
This begs the question. As I have argued above, we need to part from standard Bayesi-
anism precisely in order to accommodate direct inference and induction.

Schurz provides the following example:

As an example, take a series of 100 coin tosses. It can be computed that with 
p = 95 percent the frequency of heads in 100 throws does not deviate by more 
than 8 percent from the true statistical probability of heads. Now assume we 
observe a number of 30 heads in 100 throws of the coin. According to William-
son’s argument we should now believe that the coin has a biased heads-probability 
of 30 ± 8 percent. That is only reasonable if our prior expectation concerning the 
coin’s true probability is uniform, which means that our prior expectation that the 
coin is approximately fair is very low. If we are confident that the coin is fair (i.e., 
our prior peaks about p =

1

2
 ), it seems more reasonable to believe that the given 

series was an unrepresentative accident. (Schurz 2019, 74)

It is certainly the case that, where there is evidence that the coin is fair, that evidence 
should influence an inference to frequency or chance. Even knowing that a coin is being 
tossed (as opposed to, say, merely knowing that an experiment is being conducted with 
at most two possible outcomes) provides some evidence against the probability of heads 
being close to 0 or 1. This evidence may be enough to resist the inference that the fre-
quency or chance is in the 95% confidence interval. What exactly one should infer here 
about the frequency or chance is an open question. This scenario is clearly more com-
plicated than the simple case in which there is no evidence that overrides the confidence 
interval estimate of the frequency or chance. But that does not undermine induction in 
the simple case, nor does it preclude induction in these more complex cases.

Thus Schurz’ conclusion is not warranted:

In conclusion, a justification of inductive posterior probabilities conditional on 
finite evidence solely by [direct inference], without assuming a particular prior 
distribution, is impossible. (Schurz 2019, 75)
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Without CBCP, there is no need for any prior distribution of the probability of heads. Even 
if there is some prior distribution, it is the total evidence that guides degrees of belief, by 
means of direct inference and the Maximum Entropy Principle, not the prior distribution.

Let us turn to the question of language dependence. It is true that, in the absence of 
evidence, the Maximum Entropy Principle selects the equivocator function, which is a uni-
form distribution, and that objective Bayesianism ties probability to an agent’s language. 
But this is not a pernicious kind of language dependence because two different languages 
will agree on inferences that can be expressed in both languages (Williamson 2017, Theo-
rem 5.9). Moreover, Bayesians should not be troubled by a link between probability and 
features of an agent such as her language. The whole idea of Bayesianism is to interpret 
probabilities as an agent’s rational degrees of belief and so relativity to features of an agent 
is inevitable. It is only the logical interpretation of probability that seeks to construe prob-
ability as an objective relation between propositions, determined solely by the propositions 
it relates. Admittedly, Jaynes gave great weight to probability distributions that are uniquely 
determined by the evidence and the problem formulation, in order to secure the objectivity 
of scientific inferences. But uniqueness is not essential to objective Bayesianism.

More serious is Schurz’ charge that uniform distributions prohibit induction. This is the 
worry, noted above, that the equivocator function fails to allow for learning from experi-
ence. It is a valid concern, but only under the presupposition of CBCP: if the prior prob-
ability function is the equivocator function, then conditionalising on a sample of a hundred 
ravens, all observed to be black, will not raise the probability of the next observed raven 
being black. This is not a valid concern for the version of objective Bayesianism advo-
cated here, which rejects CBCP. From the sample of ravens one will infer that the fre-
quency of ravens being black, or the chance of the next raven being black, is very close to 
1, and direct inference ensures that one ought to believe that the next raven is black to some 
degree close to 1. Induction is by no means prohibited.

In sum, once we release ourselves from two dogmas of objective Bayesianism, namely 
CBCP and uniqueness, both of which are features of Jaynes’ account, Schurz’ criti-
cisms lose their bite. The alternative version of objective Bayesianism can embrace both 
equiprobability and learning from experience, and is immune to Schurz’ criticisms.

7 � Conclusion

We saw in Sect. 2 that direct inference offers the most promising avenue for a probabilis-
tic account of induction. However, neither the Principle of the Narrowest Reference Class 
nor the Principal Principle can realise this promise when situated within either of the two 
dominant probabilistic approaches, namely standard Bayesianism and logical probability. 
A non-standard variant of objective Bayesianism—that of Williamson (2010; 2017) offers 
a way out, though: it provides a probabilistic account of inductive inference that does not 
suffer from these problems that beset the standard approaches. A direct inference princi-
ple—Frequency Calibration and/or Chance Calibration—enables the account to accommo-
date learning from experience, while the Maximum Entropy Principle obviates the need for 
CBCP.

To be sure, there remain gaps in the account that need to be filled. Most notably, Chance 
Calibration leaves open the question of how to infer chances from evidence. Similarly, Fre-
quency Calibration leaves open the analogous question, as well as that of how to determine 
whether E contains evidence that is more pertinent than the frequency and what to do when 
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it does. We have seen how statistical techniques such as confidence interval methods can 
help to address these questions and how they slot into the logic of induction provided by 
this version of objective Bayesianism.

While a case can be made that this version of objective Bayesianism provides an inroad 
into the problem of inductive logic that is immune to Schurz’ criticisms, this is not to say 
that it offers the only satisfactory probabilistic account of induction. There are other non-
standard probabilistic accounts, including the evidential probability account espoused by 
Kyburg and Teng (2001). Such accounts need not be rivals. In particular, evidential proba-
bility can be thought of as complementary to objective Bayesianism, because it can be con-
strued as a way of implementing the Principle of the Narrowest Reference Class in objec-
tive Bayesianism—i.e, a way of filling the gaps in Frequency Calibration that we noted 
above (Wheeler and Williamson 2011).

The question remains as to whether the approach presented here offers any progress 
with regard to the problem of inductive justification. While this is not the place for a 
detailed consideration of this question, a few brief remarks may be helpful. As Schurz 
observes, its use of direct inference places this approach as a development of that of Wil-
liams (1947) and Stove (1986). However, this approach is distinctive in its appeal to Bayes-
ianism: Williams and Stove advocated versions of logical probability (Peden 2021). In the 
approach presented here, inductive inference emerges as a consequence of the norms of 
objective Bayesianism, and it is justified to the extent that these norms are justified. Wil-
liamson (2010; 2017) argues along the following lines that these norms must be followed 
in order to avoid various kinds of loss. A standard Dutch book argument can be used to 
show that degrees of belief need to be probabilities in order to avoid sure loss (William-
son 2017,  §9.2). Moreover, direct inference is required in order to avoid long-run loss, 
or expected loss (Williamson 2010,  §3.3). Finally, degrees of belief need to conform to 
the Maximum Entropy Principle in order to avoid worst-case expected loss (Williamson 
2017, §9.3). Thus, if a detractor from induction accepts that frequencies or chances gov-
ern the gains and losses that arise from one’s beliefs and decisions, and that one should 
avoid avoidable loss in one’s dealings with the world—including avoidable sure loss, long-
run loss or expected loss, and worst-case expected loss—then this justification of objective 
Bayesianism may have some persuasive force.

This is perhaps a modest advance, as the detractor might resist an inference from a 
sample to a frequency or a chance in the absence of some justification that the sampling 
method is random. McGrew (2001) and Campbell and Franklin (2004) counter such scepti-
cism, however, on the grounds that most large samples are representative of the population 
from which they are sampled, and (by direct inference) this fact warrants a default belief 
that the sample in question is representative, in the absence of evidence otherwise. If suc-
cessful, this move shifts the burden of proof to the detractor.18
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