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ABSTRACT
Hedge funds implement elaborate investment strategies that include a variety of posi-
tions and assets. As a result, there is significant time variation in the set of risk factors
and their respective loadingswhich in turn introduces severemodel risk in any attempt
to model and forecast hedge fund returns. In this study, we investigate the statistical
and economic value of incorporating heteroscedasticity, non-normality, time-varying
parameters, model selection risk and parameter estimation risk jointly in hedge fund
return forecasting and fund of funds construction. Parameter estimation risk is dealt
with a time-varying parameter structure, while model selection uncertainty is miti-
gated by model averaging or model selection. We adopt a dynamic model averaging
approach along with the conventional Bayesian averaging technique. Our empirical
results suggest that accounting formodel risk can significantly improve the forecasting
accuracy of hedge fund returns and consequently the performance of funds of hedge
funds.
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1. Introduction

Hedge funds constitute lightly regulated vechicles that promise enchanced performance in all market condi-
tions.1 To do so, hedge funds employ various sophisticated investment strategies that lead to option-like payoffs
and infuse their return distribution with characteristics that differentiate them from traditional asset classes,
such as bonds and stocks. Therefore, identifying ways that improve hedge fund return predictability is crucial
for optimally defining an investment strategy in hedge funds. To this end, a long list of linear and non-linear risk
factors have been proposed, including the Fung and Hsieh asset-based factors, the three Fama-French factors
and Carhart’s momentum factor, amongst various macroeconomic and financial variables.1

Predicting hedge funds returns stumbles into obstacles associated with various aspects of model risk. First,
there is uncertainty regarding the appropriate set of predictors. This inability of identifying themost appropriate
set of factors, or else ‘model uncertainty’, is well established in the traditional asset pricing literature. However,
for the hedge funds asset class ‘model uncertainty’ is aggravated by the unique characteristics of their strate-
gies, which call for additional constraints in defining the appropriate set of factors. S. D. Vrontos, Vrontos, and
Giamouridis (2008) highlight the magnitude of model uncertainty finding that the posterior probabilities of the
ten most probable linear specifications sum to only 18%. Second, hedge fund managers dynamically rebalance
their portfolios, thus infusing each factor loadingwith time-variation, a feature commonly referred to as ‘param-
eter estimation risk’. Therefore, as stressed by Fung and Hsieh (2004), Fung et al. (2008), Eling and Faust (2010)
and Wegener, von Nitzsch, and Cengiz (2010), the parameter estimates and the set of relevant risk factors may
change over time. Third, empirical evidence suggests that, due to their characteristics, hedge fund returns exhibit
heteroscedasticity, non-normality and fat tails.
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To address various sources ofmodel risk, S.D.Vrontos, Vrontos, andGiamouridis (2008) show that a Bayesian
Model Averaging approach that accounts for heteroscedasticity improves the pricing of themanagers’ skills. Sim-
ilarly, Wegener, von Nitzsch, and Cengiz (2010) employ a specification that recursively excludes the extraneous
factors to account for model uncertainty and they use a rolling estimate scheme to account for time variation in
parameter estimates. Their results suggest that a non-parametric regression delivers significant gains in returns
predictability. From a different perspective, Slavutskaya (2013) employs a panel data approach to overcome the
effect of small samples in the estimation process. The author finds an improved out-of-sample accuracy of fac-
tor models. Focusing on aggregate data (hedge fund indices), Panopoulou and Vrontos (2015) build on the
results of Avramov, Barras, and Kosowski (2013) who find that combining information from single predic-
tor strategies leads to superior selection ability in the presence of inaccurate individual forecasts. Specifically,
Panopoulou and Vrontos (2015) account for various model risk sources by implementing a large number of
information and forecast combination strategies to unveil significant gains in forecasts accuracy and economic
value. Following the respective literature, our paper holds the middle ground between S. D. Vrontos, Vrontos,
and Giamouridis (2008) and Panopoulou and Vrontos (2015) as we combine time-varying coefficient models
with model averaging/selection schemes and heteroscedastic variance, to account simultaneously for various
sources of model risk.

To account for changes in hedge fund strategies, we adopt a time-varying parameter (TVP) model setting
with the parameter estimation error assessed by calibrating the posterior distributions of the parameters. Fur-
thermore, to combine or select the most relevant specifications from a set of popular predictors, we utilize
the Dynamic Model Averaging (DMA) and Dynamic Model Selection (DMS) methodologies introduced by
Koop and Korobilis (2012) in inflation forecasting.2 Contrary to the simple Bayesian Model Averaging (BMA)
methods, the DMA techniques dynamically update the model probability at the end of each period rather than
applying a constant model probability.3 In other words, instead of selecting the appropriate factors, weights
are assigned to filtered information (individual forecasts) that arise from the most probable specifications. This
approach is in line with the results of Wegener, von Nitzsch, and Cengiz (2010) and Panopoulou and Vron-
tos (2015), who suggest that reselecting the factors at regular time intervals and combining individual forecasts,
respectively, improves accuracy. Another benefit of this approach is that the information update process does
not rely on a Markov Chain Monte Carlo (MCMC) algorithm. Therefore, there is a significant decrease in com-
putational time. For all competing specifications, wemodel the heteroscedasticity of returns via an exponentially
weighted moving average (EWMA) approach, to avoid introducing additional estimation risk in our forecasts.
Finally, while we do not account directly for the non-normality and excessive kurtosis of returns, any resulting
impact on the estimation process is partially treated by the EWMA specification and the non-linear risk factors
advocated by Fung andHsieh (2004) and Agarwal and Naik (2004). To the best of our knowledge, this is the first
time that a study addresses all the above issues jointly.

To evaluate the accuracy of our point forecasts, we first forecast the returns of aggregate hedge fund indices
and compare the out-of-sample Mean Square Forecasting Error (MSFE) of each competing specification with
the MSFE of a simple benchmark autoregressive OLS-AR(1) model. Since gains in point forecast accuracy do
not always translate in additional economic value, we assume the position of a risk-averse investor and use
utility-based measures to evaluate the economic significance of the gains in forecasting accuracy. In this set-
up, the economic evaluation exercise is tantamount to evaluating the predictive density as a whole and not just
the point forecasts. Furthermore, we evaluate the performance of our proposed methodology on individual
funds by creating hypothetical funds of funds. Our fund selection approach is in line with Agarwal, Green, and
Ren (2018), as we focus on the return forecasts instead of chasing past performance in the form of alpha.

As our first contribution, we explorewhether our proposedmethodology improves the accuracy of point fore-
casts of hedge fund returns. Our findings suggest that, in terms of point forecast accuracy, simple TVP-AR(1)
specifications coupled with heteroscedastic variances can adequately provide significant forecasting improve-
ments. However, when we account for the size of the underlying funds, the BMA, BMS and DMA methods
exhibit superior forecasting performance. The negative size-return relationship is well documented in the hedge
fund literature. For example, Joenvaara, Kosowski, and Tolonen (2019), Yin and Zhang (2019) and Gao, Haight,
and Yin (2019) find that smaller funds yield larger returns. Our findings suggest that the BMA, BMS and DMA
models’ performance are superior to the TVP-AR(1), once the size-effect is accounted for. Our value weighted
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indices are more homogeneous compared to the equally weighted ones and driven by a few large size funds.
As such, they are more exposed to market factors captured by our predictor list rendering the BMA, BMS and
DMAmodels superior to the simple TVP-AR(1) that does not include any predictors.

Our second contribution builds on the results of the statistical evaluation and investigates whether the fore-
casting accuracy gains are translated to economic gains. Under the prism of a risk-averse investor, we find that
our proposedmethods deliver a significantly largerCertainty Equivalent Return (CER) than the benchmark.Our
economic evaluation results corroborate the statistical evidence and point towards the superior performance of
the TVP specifications coupled with persistent volatility specifications.

Finally, our third contribution emerges from our fund of funds portfolio performance results. Specifically,
we find that constructing portfolios based on methods that account for model risk is a superior approach rel-
ative to the benchmark. However, these specifications are sensitive to the investor’s strategy and the weighting
scheme adopted. When we focus on chasing returns, the TVP-AR(1) and DMA methods deliver the best per-
forming portfolios. When we select funds according to the accuracy of forecasts, model averaging/selection
methods under mean-variance and mean-CVaR optimization appear superior. Moreover, the crisis evaluation
sample highlights the importance of suchmethods as, depending on the weighting schemes, the TVP and DMA
methods select the best performing portfolios.

The rest of the paper is organized as follows: Section 2 describes the forecasting methodologies used in the
paper, Section 3 describes the data, and Section 4 presents the empirical results and the predictive ability of the
proposed methods. Section 5 presents the portfolio formation strategy and the related findings, while Section 6
concludes.

2. Return predictionmodels

2.1. Time-varying parametermodel

Under the Bayesian framework, the Kalman Filter provides a simple way to recursively forecast the unobservable
states (i.e. the coefficients of prediction factors in linear regression models), given new data observations. The
normal linear state-space model can be described schematically as a linear regression model with time-varying
parameters (Meinhold and Singpurwalla 1983; Koop and Korobilis 2012). Specifically, the normal linear state-
space model is defined as:

rt = Xt−1βt + εt

βt = βt−1 + ηt
(1)

where rt is the hedge fund return at time t, Xt−1 is the vector of predictors with the first column being 1, βt is
the vector of coefficients, εt is the regression residual of hedge fund returns (with εt ∼ N(0,Ht)), and ηt is the
residual of predictive coefficients (with ηt ∼ N(0,Qt)). The two error terms are assumed to be independent from
each other. Equivalently, the above state-spacemodel can be interpreted as a linear hedge fund returns predictive
model with time-varying risk exposuresβt . Contrary to the constant coefficientmodels, time-varying parameter
(TVP) models accommodate the variation of coefficients, by allowing them to vary as new observations are
added to the data.

The ordinary Kalman filter begins with the posterior result of parameters that satisfies the following:

βt−1 | rt−1 ∼ N(β̂t−1,�t−1|t−1) (2)

where rt−1 denotes the information set of hedge fund returns from time 0 to time t − 1. Then it proceeds to the
following predictive step

βt | rt−1 ∼ N(β̂t−1,�t|t−1)

�t|t−1 = �t−1|t−1 + Qt
(3)

To simplify the estimation of �t|t−1, Raftery, Karny, and Ettler (2010) adopt the following approximation

�t|t−1 = 1
λ

�t−1|t−1 (4)
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where λ acts as a forgetting factor and it is fixed to a number slightly below one (0 < λ � 1), so that the
coefficients change gradually. Following the model specification, observations that are locatedm periods in the
past would be weighted by λm. Raftery, Karny, and Ettler (2010) and Koop and Korobilis (2012) set the for-
getting factor to λ = 0.99 and λ = 0.95 for quarterly data. In the case of λ = 0.99, coefficients evolve relatively
slowly, while setting λ = 0.95 results in coefficients that are more unstable. For example, when λ = 0.99, the
data located at 5 years before time t will receive a weight equal to 80% of the weight assigned to the observation
at t−1. However, when λ = 0.95, the respective weight for the observations 5 years ago will be equal to approx-
imately 35% of the weight for the last period observation. To allow for a similar speed of parameter evolution
in our monthly dataset we set λ = 0.996 for a gradual change to coefficients and λ = 0.985 for a more abrupt
pattern. In essence, employing the forgetting factors is similar to applying a rolling window regression with a
window size of 1/(1 − λ), which would roughly correspond to rolling window estimations of 20 and 5 years,
respectively. The attractive feature of forgetting factors in this context is that they allow controlling the degree
of instability in the coefficients. This is important since it is unclear whether rapidly changing coefficients are
useful in forecasting as changing coefficients might inflate estimation errors.4

The important advantage of the simplification in Equation (4) is that it eliminates the need to estimate or
simulate Qt . When new data arrives, we proceed to the updating step of the Kalman filter

βt | rt ∼ N(β̂t|t ,�t|t)

where

β̂t|t = β̂t|t−1 + �t|t−1X′
t−1(Ht + Xt−1�t|t−1X′

t−1)
−1(rt − β̂t|t−1Xt−1)

�t|t = �t|t−1 − �t|t−1X′
t−1(Ht + Xt−1�t|t−1X′

t−1)
−1Xt−1�t|t−1

(5)

In such a set-up, the predictive distribution of returns is given by

rt | rt−1 ∼ N(β̂t−1Xt−1,Ht + Xt−1�t|t−1X′
t−1) (6)

Therefore, results are analytical, conditional onHt , and noMCMC algorithm is required to derive the posterior
distribution of parameters and the predictive distribution of hedge fund returns. Hence, there is a significant
reduction in computational time. Following Koop and Korobilis (2012), we adopt the Exponentially Weighted
Moving Average (EWMA) estimator of Ht :

Ĥt =
√√√√(1 − κ)

t∑
j=1

κ j−1(rj − θ̂jXj) (7)

The above specification suggests that the Ht forecast, given the information available up to time t − 1, has the
following analytical form:

Ĥt|t−1 = κĤt−1|t−2 + (1 − κ)(rt−1 − Xt−1β̂t−1) (8)

where κ ∈ [0, 1] is the decay factor of the EWMA estimator, which plays a similar role to the forgetting factor λ.
We adopt two different values for κ at 0.97 and 0.92, in order to allow for different speeds of decay. The chosen
values for the decay factor are guided by RISKMETRICS (1996) who provide an analysis for the specific values
and the properties of EWMA estimators in general. Riskmetrics recommend a value of 0.97 for monthly data
and 0.94 for daily data. For κ = 0.97, the estimation window roughly corresponds to 150 days (5 months) at a
1% tolerance level, while for the quick decay factor (κ = 0.92), the respective window is 56 days (2 months).
Volatility forecasts based on more historical observations (slow decay factor) are smoother than those that rely
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on fewer data points (fast decay factors). Given that hedge fund returns are quite volatile and exhibit a high
degree of heteroscedasticity Giamouridis and Vrontos (2007), we also consider the fast decay factor.

Given all the specifications, the system can be estimatedwith initial conditions for θ0 andH0.5 One important
drawback of the TVP model is that the set of predictors remains unchanged throughout time. As a hedge fund
manager dynamically adjusts the fund’s composition, allowing for time variation of coefficients on a constant
set of predictors covers mainly one part of model risk. Implicitly, TVPmodels can select themost relevant factor
by setting its coefficient’s value close or equal to zero. However, when the number of selected predictors is large,
the problem of in-sample over-fitting is likely to be substantial, which will negatively affect the out-of-sample
forecasting performance.

2.2. Model averaging/selection

To account for model uncertainty and time variation of the coefficients, we subject the K possible TVP spec-
ifications to model averaging and model selection techniques. This approach is an alternative to combining
information via a TVP kitchen sink specification as, instead of focusing on the variables’ raw informa-
tion, it combines the filtered information delivered by each individual forecast. To create forecasts based on
the full combination set of the proposed independent variables, we employ the Dynamic Model Averaging
(DMA) and Bayesian Model Averaging (BMA) techniques. Contrary to the conventional BMA, the DMA
technique allows the weights of each model to evolve dynamically and pays more attention to more recent
information.

Consider m potential predictors of hedge funds returns. The model averaging approach evaluates K = 2m
models and predicts the hedge funds returns as:6

E(rt | rt−1) =
K∑

k=1

πt|t−1,kr
(k)
t|t−1 (9)

where r(k)t|t−1 denotes the predictions made by each candidate model k and πt|t−1,k is the predictive prob-
ability of model k which also serves as the weight of the forecast made by model k in the prediction
result. Unlike the ordinal estimation of pit|t−1,k, which requires the estimation of a transition matrix P
with K × K dimensions, Raftery, Karny, and Ettler (2010) replace the model probability prediction equation
with

πt|t−1,k =
πα
t−1|t−1,k∑K

l=1 πα
t−1|t−1,l

(10)

where α ∈ [0, 1] is a forgetting factor similar to λ in Section 2.1. The approximation is used as it has been shown
to be suitable and not too restrictive in other academic areas (Smith and Miller 1986; Raftery 1995; Koop and
Korobilis 2012). We assign fixed values close to one, with α = 0.996, 0.985 to derive the forecasts of the DMA
approach. Furthermore, by setting λ = α = 1, we obtain the standard BMA approach. The updated equation of
model probability is given as:

πt|t,k = πt|t−1,kpk(rt | rt−1)∑K
l=1 πt|t−1,lpl(rt | rt−1)

(11)

where pk(rt | rt−1) is the predictive density of (6) evaluated conditional on rt .
The DMA system is estimated by considering an investor with no preference for specific sources of systemic

risk. Hence we select a non-informative prior over the models, i.e. π0,k = 1/K.
In addition to the averaging techniques, we employ the BayesianModel Selection (BMS) andDynamicModel

Selection (DMS) methods, which predict hedge fund returns by using the forecast of the model with the highest
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predictive density in each period:

E(rt | rt−1) = r(M)
t|t−1

where r(M)
t|t−1 denotes the predictions made by the qualified model. Model selection techniques are equivalent to

the approach ofWegener, vonNitzsch, andCengiz (2010), who recursively exclude the non-informative variables
to derive the most informative set of factors.7

2.3. List of predictionmodels

In our empirical analysis, we employ the OLS-AR(1) model as the benchmark model:

rt = β1 + β2rt−1 + εt (12)

The proposed competing models are classified into six categories: DMA, DMS, BMA, BMS, TVP-AR(1) and
TVP-ALL models, with different parameter values of α, λ and κ . We estimate 4 different models in each of
the DMA, DMS, TVP-AR(1) and TVP-ALL categories, by combining two different values for the time-varying
parameters α and λ two different values for the EWMA decay factor κ . Similarly, we estimate 3 different models
in each of the BMA and BMS categories, by setting three different values for κ . More specifically, we employ the
following models/specifications:

DMA: 4 DMA models. Dynamic model averaging over the full combination set of 15 predictors (Number of
candidate modelsK = 215 = 32,768) with time-varying parameter and heteroscedasticity settings equal to
α = λ = 0.996 0.985 and κ = 0.92, 0.97.

DMS: 4 DMS models. Dynamic model selection models over the full combination set of 15 predictors with
time-varying parameter and heteroscedasticity settings identical to the DMAmodels.

BMA: 2 BMA models. Bayesian model averaging over the full combination set of 15 predictors with constant
parameter settings and heteroscedasticity settings equal to (i.e. with forgetting factors) α = λ = 1 and κ =
0.92, 0.97.

BMS: 2 BMS models. Bayesian model selection over the full combination set of 15 predictors with constant
parameter and heteroscedasticity settings identical to the BMAmodels.

TVP-AR(1): 4 TVP-AR(1) models with time-varying parameter and heteroscedasticity settings equal to λ =
0.996 0.985 and κ = 0.92, 0.97.

TVP-ALL: 4 TVP-ALLmodels. Linear regressionmodels with 15 predictors andAR(1) termwith time-varying
parameter and heteroscedasticity settings equal to forgetting factors λ = 0.996 0.985, and κ = 0.92, 0.97.

3. Data

We obtain data on hedge funds from the BarclayHedge database, with the sample period running from January
1994 to December 2014. The BarclayHedge database reports, among other fields, the monthly returns of hedge
funds and a large set of fund-specific characteristics. The initial dataset consists of 6489 alive funds and 16,478
graveyard funds. Consistent with the previous literature, we apply several filters to the original dataset (Avramov
et al. 2011; O’Doherty, Savin, and Tiwari 2015; Joenvaara, Kosowski, and Tolonen 2021). First, we keep only
funds that are denominated in USD and have Assets Under Management (AUM) greater than $10m. Second,
we drop all funds that are closed to new investment and those with non-uniquely listed AUM. These filters result
in the final dataset comprising 926 alive funds and 1043 graveyard funds.

In order to mitigate the impact of backfill/selection bias, we exclude the first 12 months of returns data for
each fund. Selection bias stems from the fact that hedge funds enter the database voluntarily. Naturally, we would
expect that only funds with a good track record would choose to do so, as a means to attract outside investors
(Avramov et al. 2011). Moreover, since managers are allowed to backfill their fund’s past performance, they are
unlikely to report poor past performance (O’Doherty, Savin, and Tiwari 2015).
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We adopt a recursive forecasting scheme, with the in-sample period running until December 2001. This
leaves us with an out-of-sample period of 13 years (156 monthly observations). To ensure that sufficient data is
available for the estimation period, forecasting starts only when a fund accumulates at least 8 years (96 monthly
observations) of historical data. Therefore, after excluding the first 12 months of return data, each fund would
need to have at least seven years of data (84 monthly observations) in the estimation period.

We follow Joenvaara, Kosowski, and Tolonen (2021) and classify funds into 11 categories based on their
self-reported strategies. These categories are CTA, Emerging Markets, Event Driven, Fund of Funds, Global
Macro, Long Only, Long/Short, Market Neutral, Multi-Strategy, Relative Value, Sector. If we exclude Funds of
Funds, our final dataset consists of 1388 individual funds (661 alive and 727 graveyard funds). CTA hedge
funds engage in managed futures strategies. These funds are directional trend followers by nature and place
their bets on the momentum in asset prices. Event-Driven strategies seek investment opportunities based on
mispricings surrounding a wide variety of corporate events, such as mergers, acquisitions, bankruptcies, etc.
Both Global Macro and Emerging Markets strategies have a broad investment mandate concentrating on the
global macroeconomic environment and on emerging markets, respectively. Market Neutral and Long/Short
strategies belong to the family of equity hedge strategies. Hedge funds in the Market Neutral strategy take both
long and short positions in equity-related securities with the aim to eliminate a fund’s exposure to the system-
atic risk inherent in the overall market. Hedge funds in the Long/Short strategy establish both long and short
positions primarily in equity-related securities with the aim to profit from the stock-picking abilities of their
managers. On the other hand, Long Only funds take only long positions in undervalued securities reducing
downside risk by holding cash and fixed income securities. Sector hedge funds specialize in specific sectors
in the economy, mainly energy/basic materials and technology/healthcare. These funds typically hold more
than half of their portfolio exposure in a primary sector and attempt to generate profits by identifying pric-
ing opportunities that may not be easily understood by market generalists. Multi-strategy hedge funds engage
in a variety of investment strategies in order to deliver consistently positive returns regardless of the directional
movement in equity, interest rate or currency markets. The most diverse strategy is the Relative Value one,
which targets profit opportunities from risk-adjusted price differentials between financial instruments, such as
equity, debt, and derivative securities. Finally, funds of funds invest directly in hedge funds and add value to
investors by acting as intermediaries offering access and selection skills to unskilled investors with small net
value.

Table 1 Panel A reports the summary statistics of the sample data. The entire sample exhibits negative skew-
ness and excess kurtosis with an average monthly return of 0.72%. The most common trading strategies are
Fund of Funds (581 funds) and Equity Long/Short (444 funds). The Fund of Funds category also accounts for
the highest proportion of total asset undermanagement ($162.50 billion), followed byEquity Long/Short ($97.89
billion) andCTA ($95.98 billion). Funds in the EmergingMarket strategy group earn the highestmonthly return
(0.91%) and exhibit the highest standard deviation (5.89%), while FoFs earn the lowest monthly return (0.47%)
and exhibit the lowest standard deviation (2.02%). Similarly, funds in the Market Neutral strategy group also
exhibit a low standard deviation of monthly returns (2.03%). All strategies exhibit negative skewness over the
sample period, except for CTA, Global Macro and Market Neutral. Furthermore, the return distributions of all
strategies are fat tailed. Panels B and C of Table 1 suggest that alive and graveyard funds have broadly similar
profiles, with the possible exception of alive Global Macro funds offering the highest return and alive Market
Neutral funds exhibiting the lowest return volatility.

In order to forecast future fund returns, we use a set of factors that are consistent with the existing literature
(Amenc, El Bied, andMartellini 2003; Agarwal andNaik 2004; Fung andHsieh 2004;Wegener, vonNitzsch, and
Cengiz 2010; I. Vrontos 2012; Bali, Brown, andCaglayan 2012; Bali, Atilgan, andDemirtas 2013; Panopoulou and
Vrontos 2015). First, we adopt the Fung andHsieh (2004) asset-based factors, namely bond, currency, commod-
ity, short-term interest rate and stock index lookback straddles. These factors are five trend-following risk factors
which are returns on portfolios of lookback straddle options on bonds (BTF), currencies (CTF) commodities
(CMTF), short-term interest rates (STITF) and stock indices (SITF) constructed to replicate themaximumpossi-
ble return on trend-following strategies in their respective underlying assets. Following Fung and Hsieh, we also
consider the bond market factor (change in the 10-year bond yield), the return on the S&P 500 index (SP500)
and the change in equity implied volatility index (VIX). The next set of factors are related to style investing
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Table 1. Summary statistics of monthly hedge fund returns.

Category N AUM Mean Std.Dev Skewness Kurtosis

Panel A: All Funds
All 1969 731.02 0.72 3.50 −0.55 5.54
CTA 55 95.98 0.77 4.22 0.56 4.39
Emerging Market 164 54.04 0.91 5.89 −0.48 6.18
Event Driven 152 86.71 0.80 3.05 −0.59 5.25
Fund of Funds 581 162.50 0.47 2.02 −1.07 5.80
Global Macro 92 29.01 0.82 3.78 0.34 4.40
Equity Long Only 65 26.16 0.81 4.83 −0.14 2.43
Equity Long/Short 444 97.89 0.86 4.37 −0.03 3.11
Market Neutral 36 4.76 0.53 2.03 0.10 3.26
Multi-Strategy 93 95.29 0.75 2.76 −0.70 6.41
Relative Value 172 59.97 0.74 3.08 −1.45 13.90
Sector 115 18.71 0.86 5.09 −0.14 3.76

Panel B: Alive Funds
All 926 429.54 0.73 3.55 −0.51 5.38
CTA 27 91.79 0.81 4.16 0.54 5.16
Emerging Market 89 27.71 0.86 5.82 −0.35 4.78
Event Driven 66 23.93 0.75 2.96 −0.47 5.48
Fund of Funds 265 93.70 0.48 2.02 −1.05 6.14
Global Macro 42 18.81 0.92 3.99 0.35 4.29
Equity Long Only 34 10.12 0.83 5.03 −0.23 2.61
Equity Long/Short 211 54.12 0.87 4.39 −0.10 2.89
Market Neutral 18 3.32 0.62 1.82 0.04 3.21
Multi-Strategy 41 54.79 0.82 2.97 −0.49 5.63
Relative Value 71 40.04 0.81 3.01 −1.36 14.87
Sector 62 11.22 0.77 4.77 −0.26 3.30

Panel C: Graveyard Funds
All 1043 301.48 0.71 3.45 −0.58 5.68
CTA 28 4.20 0.72 4.28 0.59 3.66
Emerging Market 75 26.33 0.98 5.98 −0.63 7.84
Event Driven 86 62.78 0.83 3.12 −0.68 5.07
Fund of Funds 316 68.80 0.47 2.02 −1.08 5.52
Global Macro 50 10.20 0.73 3.61 0.33 4.49
Equity Long Only 31 16.04 0.79 4.61 −0.04 2.22
Equity Long/Short 233 43.77 0.86 4.36 0.04 3.31
Market Neutral 18 1.44 0.45 2.25 0.17 3.32
Multi-Strategy 52 40.50 0.70 2.60 −0.87 7.02
Relative Value 101 19.93 0.70 3.14 −1.51 13.21
Sector 53 7.49 0.96 5.46 0.01 4.29

Notes: The table reports the total number and the total asset under management (AUM in $bn.) of funds
under each category. The summary statistics are the averagemonthly return, standard deviation, skewness
and excess kurtosis. Sample period: Jan 1994–Dec 2014.

and to investment policies that incorporate size and value mispricings. Specifically, we employ the HML (High
minus Low) and SMB (Small minus Big) Fama–French factors along with the change in the risk free interest rate
(3-month T-bill). Accounting for the fact that hedge fund managers might employ trend-following and mean-
reversion investment strategies, we also include the Carhart momentum factor. Finally, we include in our set
of predictors the annual growth rate of industrial production and the monthly return of the MSCI world index
excluding the US.

4. Predictive ability

4.1. Statistical evaluation of forecasts

To assess the predictive ability of each model, we provide a snapshot of the statistical evaluation of self-
constructed hedge fund indices on the eleven different trading strategies, namely CTA, Emerging Market (EM),
Event Driven(ED), Fund of Funds (FoF), Global Macro (GM), Equity Long Only (LO), Equity Long/Short
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(LS), Market Neutral (MN), Multi-Strategy (MS), Relative Value (RV), and Sector. Furthermore, to account
for possible size effects onto the strategies’ return distribution, we perform our analysis for both equal-weighted
and value-weighted indices.8

To measure the forecasting accuracy of each method relative to the benchmark, we employ Theil’s U, given
by

Theil′s U = MSFEi
MSFEOLS−AR(1)

(13)

where MSFEi is the mean squared forecast error of competing model i over the out-of-sample period, and
MSFEOLS−AR(1) is the mean squared forecast error of the benchmark OLS-AR(1) model. A value of Theil’s U
that is less than 1 indicates superior forecasting accuracy for the competing model relative to the benchmark.
Statistical significance is assessed via the Clark and West (2007) test.

Table 2 reports the benchmark’s MSFE and the estimated Theil’s U of each competing model for each strat-
egy. For the equal weighted case (Table 2, Panel A), the benchmark’s forecasting accuracy differs significantly
across the strategies as the reported MSFE ranges from 0.390 for the MN strategy to 12.358 for the LO strategy.
Furthermore, we find the benchmark to perform equally well as all the competing methods for the EM strat-
egy, and to surpass the TVP-ALL specifications across all strategies. Turning to the competing methods, we find
specifications that improve the forecasting accuracy in almost all strategies. Specifically, we find the TVP-AR(1)
family to rank first in eight strategies and to also provide statistically significant results in two strategies, namely
FoF andMS. The most notable TVP-AR(1) improvements in MSFE are found in the CTA strategy group, where
the λ = 0.985, κ = 0.92/0.94/0.97 specifications show a statistically significant Theil’s U of 0.916, 0.915 and
0.912, respectively. Furthermore, we find that TVP-AR(1) delivers the best results for a slower coefficient decay
(λ = 0.996) and faster variance decay (κ = 0.92) for five strategies (ED, LO, LS, RV, Sector).

The TVP-AR(1) model does not include any explanatory variables that would potentially absorb the vari-
ance dynamics. If the related predictors are not included in the model, a huge portion of unexplained variability
is left at the residuals of the process that are modeled through the EWMA process. Since information avail-
able to market participants changes with time and is not incorporated in the model (via the mean), variance
changes are more abrupt and call for a faster decay factor. On the other hand, for the GM strategy the TVP-
AR(1) (λ = 0.996, κ = 0.97) specification performs better while for the CTA and MN groups the TVP-AR(1)
(λ = 0.985, κ = 0.97) performs better.

From the GM, CTA, andMN strategies’ cross-sectional statistics (Table 1), we notice a positive kurtosis while
the remaining strategies exhibit negative kurtosis. The positive kurtosis suggests that the variance dynamics
depend more on positive deviations from the mean which, in the absence of a leverage effect, do not demand a
high decay factor for the variance. Furthermore, CTA andMN comprise a rather small number of funds, which
could make them more prone to strategy similarities and/or idiosyncratic characteristics of individual hedge
funds return distributions. Hence, in the absence of additional explanatory factors, a low decay parameter (λ =
0.985) is required. Following the TVP-AR(1) family, the DMA (λ = 0.996, κ = 0.92) specification ranks first in
two strategies (FoF, MS) and also provides statistically significant results in CTA. Furthermore, the BMA, BMS
and DMSmethods report statistically significant results, but for the ED, GM, LO, LS, MN and Sector strategies,
there are no members of the averaging or selection families that significantly outperform the benchmark.

The value weighted results (Table 2, Panel B) confirm some of the patterns found in the equal weighted
case. However, they also highlight specific differences as the impact of the larger funds alters the dynamics of
the indices’ returns. The benchmark’s MSFE increases for the CTA, LO and MN strategies, and decreases for
the EM, ED, FoF, LS, MS and RV. Furthermore, we find the benchmark forecasts to perform equally well as the
remainingmethods for theCTA, LO andEM strategies, and the forecasting accuracy of theDMA/BMAmethods
to improve in the GM and MN strategy groups. These fluctuations in forecasting accuracy are attributed to the
size effects on the strategies that do not enjoy the ‘diversification effect’ of a large number of funds. The value-
weighted case indicates that large funds tend to add noise to the returns (CTA) or follow a more homogeneous
investment strategy which, when captured by various factors, improves the predictability of their returns (GM,
MN). The benchmark’s MSFE variation between the weighting schemes verifies this finding as we note a four
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Table 2. Statistical evaluation – Theil’s U.

Panel A: Equal weighted CTA EM ED FoF GM LO LS MN MS RV Sector

OLS-AR(1) 1.676 11.156 3.140 1.923 1.829 12.358 6.526 0.390 1.889 1.847 7.030
BMA (α = λ = 1, κ = 0.92) 0.960∗ 1.030 0.990 0.987∗ 1.003∗ 1.011 1.003 1.015∗ 0.976∗ 0.959∗ 1.021
BMA (α = λ = 1,κ = 0.97) 0.974∗ 1.056 1.011 0.990∗ 1.002∗ 1.036 1.021 1.052∗ 0.976∗ 1.045 1.044
BMS (α = λ = 1, κ = 0.92) 0.960∗ 1.021 1.001 0.989∗ 1.044 1.012 1.004 1.051 0.997∗ 0.972∗ 1.042
BMS (α = λ = 1, κ = 0.97) 0.975∗ 1.050 1.013 1.003∗ 1.003∗ 1.045 1.037 1.134 1.013 1.044 1.062
DMA (α = λ = 0.996, κ = 0.92) 0.942∗ 1.048 0.997 0.986∗ 1.008 1.030 1.013 1.011∗ 0.971∗ 0.990 1.027
DMA (α = λ = 0.996, κ = 0.97) 0.948∗ 1.077 1.017 0.996∗ 1.007 1.056 1.032 1.033∗ 0.975∗ 1.062 1.043
DMA (α = λ = 0.985, κ = 0.92) 0.950∗ 1.136 1.036 1.016∗ 1.047 1.085 1.046∗ 1.017∗ 0.990∗ 1.132 1.059∗
DMA (α = λ = 0.985, κ = 0.97) 0.933∗ 1.158 1.056 1.059∗ 1.036 1.107 1.057 1.011∗ 1.007∗ 1.240 1.057∗
DMS (α = λ = 0.996, κ = 0.92) 0.947∗ 1.024 1.038 1.019 1.024 1.065 1.034 1.074 1.018 1.064 1.051
DMS (α = λ = 0.996, κ = 0.97) 0.948∗ 1.085 1.018 1.090 1.006∗ 1.041 1.051 1.138 1.013 1.086 1.117
DMS (α = λ = 0.985,κ = 0.92) 0.945∗ 1.157 1.094 1.041∗ 1.088 1.100 1.044 1.110∗ 1.084 1.130 1.158
DMS (α = λ = 0.985, κ = 0.97) 0.944∗ 1.241 1.085 1.172∗ 1.076 1.135 1.084 1.049∗ 1.061∗ 1.237 1.112∗
TVP-ALL (λ = 0.996, κ = 0.92) 1.143∗ 1.349 1.206 1.158 1.133 1.166 1.153 1.293 1.061∗ 1.324 1.185
TVP-ALL (λ = 0.996, κ = 0.97) 1.128∗ 1.381 1.190 1.178 1.110 1.168 1.149 1.347 1.059∗ 1.332 1.200
TVP-ALL (λ = 0.985, κ = 0.92) 1.119∗ 1.556 1.293 1.328∗ 1.225 1.278 1.270 1.376∗ 1.146∗ 1.532 1.285∗
TVP-ALL (λ = 0.985, κ = 0.97) 1.073∗ 1.581 1.285 1.387∗ 1.198 1.269 1.253 1.381 1.156∗ 1.575 1.297
TVP-AR(1) (λ = 0.996, κ = 0.92) 0.942∗ 1.014 0.987∗ 0.994∗ 0.994 0.986∗ 0.988∗ 0.957∗ 0.990∗ 0.956∗ 0.977∗
TVP-AR(1) (λ = 0.996, κ = 0.97) 0.948∗ 1.005 0.991∗ 0.996 0.993∗ 0.991∗ 0.995 0.966∗ 0.993∗ 0.970 0.986
TVP-AR(1) (λ = 0.985, κ = 0.92) 0.916∗ 1.030 0.982 1.007 1.002 0.998 0.997 0.926∗ 0.997 0.961 0.984
TVP-AR(1) (λ = 0.985, κ = 0.97) 0.912∗ 1.024 0.988 1.011 0.995 1.003 1.002 0.915∗ 0.999 1.000 0.991
Panel B: Value weighted CTA EM ED FoF GM LO LS MN MS RV Sector
OLS-AR(1) 6.448 7.181 2.671 1.557 1.872 18.679 5.429 0.557 0.982 1.293 6.938
BMA (α = λ = 1, κ = 0.92) 1.071 1.028 0.970∗ 1.007 0.972∗ 1.036 0.996∗ 0.941∗ 0.966∗ 0.930∗ 1.017
BMA (α = λ = 1,κ = 0.97) 1.139 1.074 0.971∗ 0.998∗ 0.971∗ 1.043 1.008 1.006∗ 0.991∗ 1.014 1.029
BMS (α = λ = 1, κ = 0.92) 1.114 1.010 0.961∗ 1.010 0.951∗ 1.063 1.012 0.981∗ 0.963∗ 0.927∗ 1.025∗
BMS (α = λ = 1, κ = 0.97) 1.176 1.050 0.963∗ 0.988∗ 0.981∗ 1.025 1.018 1.052∗ 1.022 1.077 1.043
DMA (α = λ = 0.996, κ = 0.92) 1.116 1.045 0.978∗ 0.996∗ 0.983∗ 1.052 1.007 0.927∗ 0.964∗ 0.945 1.023
DMA (α = λ = 0.996, κ = 0.97) 1.151 1.086 0.979∗ 1.005∗ 0.977∗ 1.062 1.020 0.975∗ 1.002∗ 1.012 1.027
DMA (α = λ = 0.985, κ = 0.92) 1.260 1.131 1.042∗ 1.017∗ 1.043∗ 1.112 1.046 0.932∗ 1.017∗ 1.072 1.052∗
DMA (α = λ = 0.985, κ = 0.97) 1.253 1.183 1.030∗ 1.066∗ 1.007∗ 1.117 1.059 0.946∗ 1.084∗ 1.114 1.036∗
DMS (α = λ = 0.996, κ = 0.92) 1.168 1.009 1.002∗ 1.021 0.953∗ 1.099 1.014 0.976∗ 1.080 0.945∗ 1.086
DMS (α = λ = 0.996, κ = 0.97) 1.208 1.191 1.008∗ 1.014 0.973∗ 1.091 1.061 1.024∗ 1.105 0.999 1.093
DMS (α = λ = 0.985,κ = 0.92) 1.403 1.153 1.080∗ 1.083∗ 1.120∗ 1.137 1.069 1.007∗ 1.129 1.106 1.134∗
DMS (α = λ = 0.985, κ = 0.97) 1.344 1.279 1.080∗ 1.143∗ 1.015∗ 1.215 1.101 0.990∗ 1.242 1.262 1.136
TVP-ALL (λ = 0.996, κ = 0.92) 1.219 1.360 1.218 1.273 1.494∗ 1.226 1.134 1.226∗ 1.130∗ 1.378 1.258
TVP-ALL (λ = 0.996, κ = 0.97) 1.209 1.477 1.151∗ 1.303 1.543 1.215 1.135 1.315∗ 1.156∗ 1.396 1.253
TVP-ALL (λ = 0.985, κ = 0.92) 1.354 1.571 1.393 1.420∗ 1.514∗ 1.324 1.260 1.312∗ 1.294∗ 1.499 1.376
TVP-ALL (λ = 0.985, κ = 0.97) 1.340 1.720 1.293∗ 1.483∗ 1.496∗ 1.294 1.250 1.324∗ 1.367∗ 1.521 1.364
TVP-AR(1) (λ = 0.996, κ = 0.92) 0.998 1.015 0.996 0.998 0.953∗ 0.995 0.994 0.889∗ 0.962∗ 0.902∗ 0.988
TVP-AR(1) (λ = 0.996, κ = 0.97) 1.005 1.012 0.995 0.996 0.937∗ 0.997 0.995 0.935∗ 0.970∗ 0.950∗ 0.996
TVP-AR(1) (λ = 0.985, κ = 0.92) 1.028 1.038 1.006 1.012 0.965∗ 1.003 1.006 0.859∗ 0.964∗ 0.902∗ 0.996
TVP-AR(1) (λ = 0.985, κ = 0.97) 1.059 1.036 1.004 1.016 0.946∗ 1.008 1.006 0.883∗ 0.971∗ 0.951∗ 1.004

Notes: The table reports Theil’s U statistics of each model calculated based on the out-of-sample MSFEs of equal- and AUM-weighted hedge fund
strategy indices. Thefirst rowofPanelAandB reports theMSFEof thebenchmarkmodel. For the remaining rows, Theil’sU less than1 (inboldface)
indicates better performance of the underlying model compared to the benchmark model OLS-AR(1). ∗indicates statistical significance at the
5% significance level, based on the Clark and West (2007) test. Out-of-sample forecasting period: Jan 2002–Dec 2014.

times increase for the CTA, no significant increase for the GM and a less than two times increase for the MN
strategy.

For the competing methods, the TVP-AR(1) specifications remain the most successful ones as they provide
the largest statistically significant decrease in four strategies (GM, MN, MS, RV), with the variance persistence
parameter set to κ = 0.92 in all but the MN strategy. The BMS specifications follow, as they rank first in two
strategies (ED for κ = 0.92, FoF for κ = 0.97), and also deliver statistically significant results in four (GM, MN,
MS, RV), with the consensus on the κ parameter leaning towards 0.92. The BMA ranks first for the LS strat-
egy and also provides significant results in five strategies (ED, GM, MN, MS, RV) for κ = 0.92 in all but the
GM strategy. The DMA and DMS families’ members do not rank first but significantly outperform the bench-
mark in five (ED, FoF, GM, MN, MS) and three (GM, MN, RV) strategies, respectively. Finally, the TVP-ALL



THE EUROPEAN JOURNAL OF FINANCE 11

specifications are again found to be consistently outperformed by the benchmark, with Theil’s U exceeding 1 in
all groups.

Overall, our findings suggest that accounting for model risk leads to distinctive gains in terms of point
forecast accuracy. The group of TVP-AR(1) models perform best, followed by BMA models, BMS models
and, finally, DMAmodels. Therefore, time-variant AR(1) coefficient models coupled with heteroscedastic vari-
ances provide significant improvements in point forecasts accuracy. This finding is in line with Getmansky, Lo,
and Makarov (2004), who argue that illiquidity could be driving the short-term serial correlation in historical
hedge fund returns. Accounting for specification risk with (DMA/DMS) or without time-variant probabilities
(BMA/BMS) does provide significant gains, especially for the case where the underlying funds follow more
homogeneous strategies. Such a result is in line with S. D. Vrontos, Vrontos, and Giamouridis (2008), who find
that accounting for specification risk and heteroskedasticity improves the performance of the pricing models
significantly, compared to more traditional approaches where the relevant economic factor could be misspeci-
fied. Finally, the predictability of point forecast returns seems to benefit more from slow decaying coefficients
(α = λ = 0.996) and fast decaying variance (κ = 0.92).

4.2. Economic evaluation of forecasts

The statistical evaluation of the proposed methods reveals gains in terms of out-of-sample forecasting accu-
racy. However, as Leitch and Tanner (1991) suggest, there is a relatively weak relationship between MSFEs and
forecast profitability. To assess the economic value of our forecasts, we use profit-based and utility-based mea-
sures. Implicitly, such metrics evaluate each method’s predictive density performance, under the preferences of
a risk averse investor. Therefore, they provide a more direct measure of the forecasts’ added value compared to
conventional forecast error measures.

Following Campbell and Thompson (2008), Cenesizoglu and Timmermann (2012) and Neely et al. (2014),
among others, wemeasure the economic value of our hedge fund return forecasts via an asset allocation exercise.
Inmore detail, we compute the CER for amean-variance investor with a portfolio consisting of the risk-free asset
and one risky asset (i.e. the hedge fund indices). The optimal solution for the weight of wealth to be invested in
the risky asset (wt) in period t+ 1 is given by

wt =
(
1
γ

)(
r̂t+1

σ̂ 2
t+1

)
(14)

where γ is the relative risk aversion coefficient that reflects the investor’s risk appetite, r̂t+1 is the forecast of
the hedge fund return, and σ̂ 2

t+1 is the forecast of its variance. We assume a parameter of risk aversion of γ = 2
following the extant literature. Specifically, Goetzmann et al. (2007) suggest that the CRSP index is historically
optimal for risk aversion levels between 2 and 4, depending on the time period. In general, γ = 2 is typical for an
aggressive investor while γ = 10 for a conservative investor. Bali, Brown, and Caglayan (2019) set the parameter
of risk aversion at γ = 2, while Avramov, Barras, and Kosowski (2013) consider a slightly increased relative
risk aversion of γ = 3. Kandel and Stambaugh (1996), Stambaugh (1999), and Barberis (2000) emphasize the
importance of parameter uncertainty in determining the optimal portfolio weights, as historical variation rarely
captures the respective uncertainty. To this end, we follow Kandel and Stambaugh (1996) and adopt the variance
of themodel forecast given by its predictive density. For the benchmark case, we adopt the sample variance since
the predictive density of the forecast is not available in non-Bayesian estimation. The optimal weight is subject
to the constraints 0 � wt � 1.5 in order to eliminate short-selling and over-leveraging. Under this specification,
the portfolio return over the out-of-sample period t + 1 is given by

Rp,t+1 = wt · rt+1 + (1 − wt) · rf ,t+1 (15)

where rf ,t denotes the risk-free rate. Following the calculation of the portfolio returns for all the out-of-sample



12 C. ARGYROPOULOS ET AL.

periods, we proceed to calculate the CER of the portfolio as

CERp = μ̂p − 1
2
γ σ̂ 2

p (16)

where μ̂p and σ̂ 2
p are the mean and variance, respectively, of the portfolio returns over the out-of-sample

period.
Table 3 reports the economic evaluation results. For the case of equal weighted indices (Table 3, Panel A),

the vast majority of the methods outperform the benchmark. Specifically, the MN and CTA strategy groups
deliver the highest CER of 151–210 bps and 144–176 bps permonth, respectively, whereas LO delivers the lowest
maximum CER (around 130bps per month) among all groups. We find the majority of the competing mod-
els to significantly outperform the benchmark with, however, small differences between the methods’ results.

Table 3. Economic evaluation – CER.

Panel A: Equal weighted CTA EM ED FoF GM LO LS MN MS RV Sector

OLS-AR(1) 142.06 113.59 139.53 91.77 171.01 115.08 112.60 141.87 129.83 −0.3 88.76
BMA (α = λ = 1, κ = 0.92) 161.42 130.68 147.99 150.41 149.69 121.13 123.71 169.49 163.58 154.48 119.67
BMA (α = λ = 1,κ = 0.97) 175.94 135.04 150.92 145.60 168.31 125.18 134.43 200.36 157.82 143.14 130.26
BMS (α = λ = 1, κ = 0.92) 159.97 129.42 146.16 148.41 147.60 124.48 125.52 156.36 158.80 142.69 118.18
BMS (α = λ = 1, κ = 0.97) 175.66 132.30 144.92 145.73 162.45 127.87 132.65 185.19 136.96 115.39 131.18
DMA (α = λ = 0.996, κ = 0.92) 162.88 131.98 146.27 151.37 151.68 120.79 124.07 175.79 165.33 155.01 125.12
DMA (α = λ = 0.996, κ = 0.97) 176.70 134.72 152.39 144.60 167.16 125.32 134.43 200.50 158.82 149.14 133.77
DMA (α = λ = 0.985, κ = 0.92) 163.76 138.05 151.43 150.09 155.43 124.91 132.27 191.23 162.84 163.34 133.97
DMA (α = λ = 0.985, κ = 0.97) 173.17 134.89 157.87 145.85 163.50 129.93 140.41 198.07 156.16 156.69 139.60
DMS (α = λ = 0.996, κ = 0.92) 161.09 130.04 138.20 146.34 115.55 121.21 118.05 151.27 148.18 146.33 122.37
DMS (α = λ = 0.996, κ = 0.97) 176.37 134.03 142.66 139.01 162.77 129.74 130.20 182.05 131.14 123.04 130.95
DMS (α = λ = 0.985,κ = 0.92) 162.84 125.83 121.68 137.98 100.24 121.39 123.50 159.38 122.92 63.78 94.77
DMS (α = λ = 0.985, κ = 0.97) 173.39 119.55 144.97 127.05 134.88 126.93 131.20 192.93 126.81 89.42 123.17
TVP-ALL (λ = 0.996, κ = 0.92) 154.69 128.51 118.17 136.44 143.04 112.42 122.82 176.42 173.95 161.28 129.39
TVP-ALL (λ = 0.996, κ = 0.97) 155.05 123.85 136.19 130.46 152.82 118.16 133.84 168.62 177.17 179.56 132.78
TVP-ALL (λ = 0.985, κ = 0.92) 144.00 136.73 155.30 144.98 150.11 122.85 133.55 187.10 167.29 164.40 136.33
TVP-ALL (λ = 0.985, κ = 0.97) 148.53 132.76 161.85 142.03 154.43 127.38 139.30 177.33 169.89 175.28 137.99
TVP-AR(1) (λ = 0.996, κ = 0.92) 160.07 130.81 148.54 146.34 162.39 124.68 126.12 173.20 162.12 198.83 124.04
TVP-AR(1) (λ = 0.996, κ = 0.97) 176.62 139.77 159.55 144.06 176.45 130.21 134.95 210.38 152.99 171.22 133.60
TVP-AR(1) (λ = 0.985, κ = 0.92) 164.15 127.96 147.68 143.20 164.44 124.56 129.18 180.95 162.84 204.10 127.49
TVP-AR(1) (λ = 0.985, κ = 0.97) 177.47 137.37 159.69 139.45 175.22 130.76 137.15 208.34 153.82 179.57 133.91
Panel B: Value weighted CTA EM ED FoF GM LO LS MN MS RV Sector
OLS-AR(1) 35.63 92.90 175.59 94.15 161.44 121.74 144.55 204.98 77.47 −2.6 90.70
BMA (α = λ = 1, κ = 0.92) 130.08 164.01 169.47 169.24 171.22 114.95 156.06 224.44 193.74 209.68 149.30
BMA (α = λ = 1,κ = 0.97) 135.14 148.76 178.26 163.02 193.42 116.68 156.88 254.00 235.75 200.93 159.84
BMS (α = λ = 1, κ = 0.92) 124.87 168.21 165.67 169.23 172.96 115.77 157.79 232.76 191.10 223.52 150.50
BMS (α = λ = 1, κ = 0.97) 136.19 140.23 198.30 165.09 197.29 116.36 154.69 251.74 240.99 199.15 163.40
DMA (α = λ = 0.996, κ = 0.92) 139.38 166.94 165.33 172.19 176.20 118.78 153.15 230.31 212.59 216.25 155.97
DMA (α = λ = 0.996, κ = 0.97) 141.94 149.26 171.40 164.30 191.23 119.85 154.85 251.60 244.27 204.88 162.25
DMA (α = λ = 0.985, κ = 0.92) 136.87 172.15 170.02 171.25 186.52 124.91 153.09 241.21 238.53 204.91 167.81
DMA (α = λ = 0.985, κ = 0.97) 138.66 150.21 178.34 165.61 184.47 128.49 156.28 240.78 244.55 204.26 169.53
DMS (α = λ = 0.996, κ = 0.92) 132.18 166.19 158.07 161.91 172.78 113.56 155.27 225.95 162.45 224.74 130.78
DMS (α = λ = 0.996, κ = 0.97) 144.75 137.05 165.03 161.51 197.10 113.16 150.98 267.78 209.99 191.75 165.04
DMS (α = λ = 0.985,κ = 0.92) 136.63 164.16 167.83 152.97 153.70 122.08 133.99 208.17 141.62 178.64 140.96
DMS (α = λ = 0.985, κ = 0.97) 139.34 123.86 117.02 145.11 196.53 120.89 137.68 251.04 165.83 172.65 163.19
TVP-ALL (λ = 0.996, κ = 0.92) 137.17 152.34 149.86 138.85 164.74 121.98 147.60 225.35 234.63 196.83 156.54
TVP-ALL (λ = 0.996, κ = 0.97) 139.48 133.00 169.49 130.89 154.55 120.93 150.87 196.46 246.79 209.31 155.73
TVP-ALL (λ = 0.985, κ = 0.92) 136.62 155.74 182.06 155.37 160.87 128.40 152.74 221.83 232.49 172.37 157.70
TVP-ALL (λ = 0.985, κ = 0.97) 137.79 139.42 192.09 150.12 151.30 131.28 154.77 197.60 226.12 189.57 155.97
TVP-AR(1) (λ = 0.996, κ = 0.92) 101.57 163.61 177.91 165.21 172.78 125.17 158.58 229.15 197.35 226.64 151.24
TVP-AR(1) (λ = 0.996, κ = 0.97) 86.67 158.50 193.27 162.63 196.66 129.78 157.22 255.34 233.66 203.11 163.17
TVP-AR(1) (λ = 0.985, κ = 0.92) 104.29 160.33 176.14 160.02 174.65 124.28 155.69 228.90 215.76 236.38 154.48
TVP-AR(1) (λ = 0.985, κ = 0.97) 102.22 155.32 193.11 157.19 194.45 129.46 153.73 245.28 238.07 208.15 160.94

Notes: The table reports the CER of a portfolio consisting of a risk-free asset and one risky asset (i.e. the underlying hedge fund strategy index). CERs
of competingmodels are computed based on themodel forecast expected returns and variance. Boldface indicates superiority of the proposed
model over the benchmark OLS-AR(1) model. Out-of-sample forecasting period: Jan 2002–Dec 2014.
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The benchmark proves challenging to outperform in the GM strategy, where only the TVP-AR(1) specification
performs better. Overall, the TVP-AR(1) κ = 0.97 specifications deliver the largest CER in six strategies (CTA,
EM, GM, LO, MN, RV) while in ED the reported CER is similar to the best performing one. Furthermore, the
dominance of the TVP-AR(1) specification is undisputed only in theMN and RV strategies, where the next best
performing family’s CER is smaller by approximately nine bps per month (DMA, α = λ = 0.996, κ = 0.97)
and 24 bps per month (TVP-ALL, λ = 0.996, κ = 0.97 ), respectively. Furthermore, we note that the λ param-
eter does not seem to influence the TVP-AR(1) methods performance since the CERs are similar for the
λ = 0.996, κ = 0.97 and λ = 0.985, κ = 0.97 settings.

For the rest of the methods, there are members of the DMA, BMA and DMS families whose performance is
approximately as good as that of the TVP-AR(1) model. Following the TVP-AR(1) specifications, the DMA
methods deliver the largest CER in three strategies (FoF: α = λ = 0.996, κ = 0.92, LS: α = λ = 0.985, κ =
0.97, Sector α = λ = 0.985, κ = 0.97), and perform similarly to the best method in three strategies (CTA:
α = λ = 0.996, κ = 0.97, EM:α = λ = 0.985, κ = 0.92, LO:α = λ = 0.985, κ = 0.97 ). Interestingly, the TVP-
ALLmethods deliver the largest CER in one strategy (ED: λ = 0.985, κ = 0.97) and similar performance in two
(LS: λ = 0.985, κ = 0.97, Sector: λ = 0.985, κ = 0.97). Finally, as with the TVP-AR(1) methods, the perfor-
mance of the best methods depends more on the κ parameter while the α, λ parameters have a minor influence
on the CER.

For the value-weighted case (Table 3 Panel B), MN andMS strategies deliver the highest CER of 186–267 bps
and 140–252 bps per month, respectively. On the other hand, LO continues to deliver the lowest maximum
CER (around 131 bps per month) among all groups. Similar to the statistical evaluation results, the competing
models pick up their performance in the GM strategy group, while the ED strategy reports the weakest results.
The most significant improvement in terms of CER magnitude is yet again found in the RV strategy, followed
by the MS, FoF and Sector strategies. Furthermore, the set of best-performing methods is more heterogeneous
as it includes methods from all families. The BMS methods rank first in four strategies (EM: κ = 0.92, ED:
κ = 0.97, GM: κ = 0.97 and LS: κ = 0.94). The DMA methods rank first in three strategies (FoF: α = λ =
0.985, κ = 0.92, MS: α = λ = 0.996, κ = 0.97 and Sector: α = λ = 0.985, κ = 0.97), followed by DMS which
ranks first in two strategies (CTA: α = λ = 0.996, κ = 0.97, MN: α = λ = 0.996, κ = 0.97). The TVP-AR(1)
specifications produce by far the largest CER in RV (λ = 0.985, κ = 0.92) and similar CER in three strategies
(GM: λ = 0.996, κ = 0.97, LO: λ = 0.996, κ = 0.97, LS: λ = 0.996, κ = 0.92). Finally, TVP-ALL ranks first in
one strategy (MS: λ = 0.985, κ = 0.97).

To sum up, our findings verify the results of the statistical evaluation, as they highlight the gains achieved
by accounting for various sources of model risk. Similar to the statistical evaluation results, time variation in
the coefficients and heteroscedasticity provide a robust economic added value to our forecasts. Hoverer, when
we account for the size of the funds, we find that treating for model uncertainty does indeed improve the asset
allocation of a risk averse investor. With respect to the decay parameters settings, we find that the rate of decay
of the probability and coefficients add only small value to the forecasts results. On the other hand, the consensus
on the variance decay parameter points towards more persistent volatility.

5. Dynamic portfolio construction

5.1. Portfolio construction framework

In this section, we evaluate the performance of the competing methods in forecasting the returns of individual
funds via a fund selection and portfolio construction exercise.9 Common practice in fund selection is to price
the funds’ abnormal returns and select a portfolio of the best performing ones. This is line with Kosowski, Naik,
and Teo (2007) who find that hedge funds that deliver a significant alpha are not just lucky. In our study we
follow Panopoulou and Vrontos (2015) and use the out-of-sample predictive densities to select the funds of
our portfolio. Using directly the funds’ return forecasts, and not their α, is in line with Agarwal, Green, and
Ren (2018) who find that investors are either indifferent to the exposures to risk other than than that with
respect to the aggregate equity market or they chase them following good performance. Our approach suggests
that if the proposed methods deliver more accurate predictive densities, the forecasts will be more successful in
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identifying the funds that deliver what is expected from them. Hence, a portfolio of such funds should perform
better than the benchmark.

Specifically, using the forecasts for each fund over the out-of-sample period Jan 2002–Dec 2014, we select the
top-performing funds in two ways. First, we rank the funds according to their return forecasts. In this way we
evaluate the ability of the methods to deliver accurate point forecasts for the individual funds. In addition, we
follow Avramov, Barras, and Kosowski (2013) and rank the individual funds according to the t-statistics of the
forecasts. In this way, we take into account the respective predictive density via point and uncertainty forecasts.
These t-statistics are given by

t(r̂t+1) = r̂t+1

σ̂t+1
(17)

where r̂t+1 is the expected hedge fund return in the next period, and σ̂t+1 is the standard deviation of themodel’s
return forecast. In all competing models, σ̂t+1 is obtained from the predictive density of each forecast. For the
benchmark OLS-AR(1) model, σ̂t+1 is computed as

σ̂
OLS−AR(1)
t+1 =

√
z′t �t+1|t zt (18)

where zt is the observation of predictors (i.e. the constant and the lagged return) at time t, and �t+1|t is the
variance-covariance matrix of the estimated coefficients.

Once the individual funds are ranked, we select the top 30 ones and construct a hypothetical fund of funds by
assigning equal, mean-variance and mean-CVaR optimal weights.10 The mean-variance optimization problem
is defined as follows:

min Var(Rp)

s.t. wL � wi � wU , (i = 1, . . . , n);
n∑
i
wi = 1;

E(Rp) � RG

(19)

where E(Rp) is the expected return of the n-assets portfolio of hedge funds, and Var(Rp) is the variance of the
portfolio return. For the variancewe have thatVar(Rp) = w′Vwwherew is the vectorwhich contains the optimal
weights wi (i = 1, . . . , n) of each fund in the portfolio, andV is the n × nmatrix of sample variance-covariance
matrix of fund returns. To account for the non-normalities in the hedge funds returns, we also calculate the
mean-CVaR optimal weights. We set the target return equal to RG = 2% per month, with the upper and lower
bounds for wi set to [0, 0.1] in order to eliminate short-selling and facilitate diversification (Harris and Maz-
ibas 2013; Panopoulou and Vrontos 2015). Finally, we perform our analysis for both the full out-of-sample and
the crisis period. We assume a holding period of one year in order to simulate the liquidity constraints of the
fund of funds. At this point, we note that our goal is to evaluate the ability of the forecasting methods to pre-
dict the returns accurately. Hence, we do not consider additional investor constraints in the spirit of Joenvaara,
Kosowski, and Tolonen (2019). By doing so, we would have to constrain the investment set pool and therefore
invalidate the methods’ performance results.11

5.2. Portfolio performance evaluation criteria

Portfolio performance is evaluated by a set of performancemeasures. First, we consider themean realized portfo-
lio return (AR) over the out-of-sample period. Given the weights allocated in each fundwt = w1,t ,w2,t , . . . ,wn,t
across the n-assets portfolio and the realized returns of each fund rt+1 = r1,t+1, r2,t+1, . . . , rn,t+1, the realized
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portfolio return at time t+ 1 is computed as

Rp,t+1 = wt
′rt+1 (20)

We also consider the End of Period Value (EPV) measure, which refers to the terminal wealth assuming that we
invest 1 unit of wealth at the beginning of the out-of-sample period, and the Fung and Hsieh (2004) 7-factor
model α alongside its t-statistic.

Second, we consider various risk-adjusted performance measures, including the Sharpe Ratio (SR), the
Sortino ratio and the Upside Potential ratio. The Sharpe Ratio is given by

SRp = E(Rp) − E(rf )√
Var(Rp)

(21)

where E(Rp) denotes the mean realized portfolio return and Var(Rp) denotes the variance of portfolio returns
over the out-of-sample period, while E(rf ) is the expected risk-free rate of return over the period. To match the
monthly return data frequency, we adopt the 1-month T-bill rate as a proxy for the risk-free rate.

The Sortino and Satchell (2001) reward to lower partial moment ratio (Sortino ratio) is defined as the excess
portfolio return over a threshold value, divided by the standard deviation of negative excessive returns. We use
the risk-free rate of return as the threshold value.

Sortino(Rp) = E(Rp) − E(rf )√
E[(rf − Rp)2+]

(22)

Sortino, van der Meer, and Plantinga (1999) propose the Upside Potential ratio, which scales the positive excess
return of the portfolio (over a threshold return value) with the standard deviation of the negative excess return
of the portfolio

Upside(Rp) = E[(Rp − rf )+]√
E[(rf − Rp)2+]

(23)

We also evaluate portfolio performance with the Omega ratio, originally proposed by Keating and Shad-
wick (2002). The Omega ratio measures performance based on the relationship between positive and negative
excess returns, and it can be computed as

Omega(Rp) = E[(Rp − rf )+]
E[(rf − Rp)+]

(24)

Finally, we evaluate the tail risk of portfolio returns using the non-parametric historical simulation value-at-risk
VaR1%. To provide a more concise description of the methods’ average ability to select superior portfolios, we
average the measures mentioned above for each family of portfolios.

5.3. Top expected returns portfolio performance

Table 4 reports the performance of portfolios constructed on the basis of future expected returns. Overall, our
findings for the equal weighted portfolios (Panel A) suggest that the TVP-AR(1) ranks first in AR and EPV,
followed by the BMA and DMA portfolios. The benchmark OLS portfolio surpasses the BMS and TVP-ALL
portfolios in AR and only the TVP-ALL in terms of EPV. Overall, the difference in average return between the
best and worst performing portfolios is about 1.78% per year. A similar ranking is provided by the abnormal
returns where the difference between the best performing TVP-AR(1) from the worst performing TVP-ALL is
on average around 1.43% per year. Sharpe ratios are quite close for all models ranging from 0.640 (OLS) to 0.779
(TVP-AR(1)). Focusing on the tail of the return’s distribution, we find the benchmark to be the riskiest portfolio.
At the same time, the TVP-ALL is the least risky one, followed by the BMA and the DMA family. Summarizing
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Table 4. Out-of-sample performance of top expected return portfolios.

Panel A: Equal weighted AR EPV α tα SR Omega Sortino Upside VaR 1%

OLS AR(1) 0.999 3.998 0.743 1.997 0.640 1.662 0.281 0.706 13.918
BMA 1.031 4.311 0.793 2.451 0.771 1.827 0.350 0.773 11.183
BMS 0.991 4.062 0.743 2.278 0.728 1.761 0.324 0.751 12.046
DMA 1.011 4.204 0.791 2.481 0.769 1.805 0.344 0.771 11.353
DMS 1.009 4.206 0.774 2.397 0.755 1.785 0.340 0.774 12.108
TVP-ALL 0.940 3.875 0.722 2.417 0.762 1.805 0.348 0.781 10.908
TVP-AR(1) 1.088 4.621 0.841 2.477 0.779 1.858 0.365 0.791 12.438
Panel B: Mean-Variance AR EPV α tα SR Omega Sortino Upside VaR 1%
OLS AR(1) 0.881 3.517 0.659 2.488 0.785 1.885 0.337 0.718 8.335
BMA 0.895 3.801 0.744 4.400 1.275 2.576 0.630 1.029 5.755
BMS 0.821 3.385 0.661 3.599 1.044 2.221 0.467 0.852 6.140
DMA 0.920 3.862 0.783 4.171 1.161 2.426 0.533 0.905 6.783
DMS 0.829 3.397 0.674 3.390 0.956 2.105 0.417 0.799 7.948
TVP-ALL 0.826 3.405 0.684 4.385 1.263 2.647 0.643 1.032 5.096
TVP-AR(1) 0.983 4.220 0.802 3.673 1.073 2.306 0.504 0.891 7.607
Panel C: Mean-CVaR AR EPV α tα SR Omega Sortino Upside VaR 1%
OLS AR(1) 0.927 3.751 0.689 2.539 0.812 1.915 0.350 0.732 8.335
BMA 0.920 3.955 0.752 4.258 1.250 2.568 0.627 1.028 5.799
BMS 0.886 3.725 0.705 3.622 1.080 2.299 0.512 0.907 6.709
DMA 1.008 4.431 0.851 4.385 1.249 2.591 0.623 1.015 6.373
DMS 0.963 4.118 0.774 3.541 1.046 2.270 0.517 0.928 6.886
TVP-ALL 0.823 3.342 0.652 3.430 1.006 2.175 0.470 0.869 6.736
TVP-AR(1) 1.080 4.905 0.890 4.112 1.219 2.553 0.635 1.043 6.453

Notes: The table reports the out-of-sample performance of portfolios constructed based on the expected future return. Assetweights are allocated
by 1/N method for the equal weighted portfolios, by the mean-variance approach and the mean-CVaR approach, with a target of 2% monthly
return. The performancemeasures reported are the average of each portfolio’s individual measures within a specific family ofmethods: average
monthly return (AR), end of period value (EPV), annualized Sharpe ratio, Omega ratio, Sortino ratio, Upside Potential ratio, and 1% VaR. Out-of-
sample forecasting period: Jan 2009–Dec 2014.

the risk and return profiles mentioned above, we find the TVP-AR(1) portfolios to rank first on the basis of all
reported measures. The DMA and TVP-ALL portfolios following in the second the third position, respectively,
exhibiting similar performance.

For the mean-variance portfolios (Table 4 Panel B), our results suggest a less risky profile than the equal
weighted portfolios, accompanied by reduced returns.We still find the TVP-AR(1) portfolios to rank first in AR,
delivering on average 0.983% per month. Following the TVP-AR(1), we have the DMA portfolios offering on
average 6 bps less AR than the best-performing ones. The BMA family of portfolios offers about 8 bps less than
the best performing portfolios. However, the differences are small for the latter, especially between the TVP-
AR(1) and the DMA portfolios. Turning to SRs, we note that these are significantly higher than those of the
equal weighted portfolios, exceeding 1 with the exception of the benchmark OLS portfolio. The highest values
are attained by BMA (1.250), DMA (1.249) and TVP-AR(1) (1.219). In terms of risk, we find the benchmark
portfolio to be the riskiest while the TVP-ALL is the least risky one. The difference between the most and least
risky portfolios is about 3.24% in terms of VaR. Following the TVP-ALL portfolios, the BMA portfolios rank
the second least risky ones, being about 70 bps on average riskier at the 1% significance level. Turning to the
risk-adjusted performance, we find the benchmark portfolio to rank last in each reported measure. In contrast,
the BMA and TVP-ALL portfolios outperform the rest with almost equal performance.

For the mean-CVaR portfolios (Table 4 Panel C), we find AR levels to be comparable to the ones from the
equal weighted case but with a significantly lower risk profile. In terms of AR, EPV and alpha, the TVP-AR(1)
portfolios rank first, the DMA rank second, while the TVP-ALL portfolios rank last. Contrary to the previous
cases, the differences between the best and worst performing portfolios are almost 3.08% in AR and 2.86% in
abnormal returns per year. Furthermore, in terms of SR, the BMA, DMA, and TVP-AR(1) portfolios are the best
performing portfolios with values ranging from 1.219 to 1.250. Our VaR results suggest that the BMA portfolios
are the least risky ones, followed by the DMA and TVP-ALL portfolios. The combined effect of the risk-return
profile qualifies the BMA, DMA, and TVP-AR(1) portfolios as the best performing portfolios, on average, with
practically equal performance.
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5.4. T-stat portfolio performance

Table 5 reports the results of portfolios constructed based on the t-statistics of the models’ forecasts. We find a
significant reduction of the risk and the return levels compared to the top expected return portfolios. For the
equal weighted case (Table 5 Panel A), we find the TVP-ALL portfolios to outperform the rest of the portfolios in
all AR, EPV and alpha measures, while the benchmark portfolio ranks last. Interestingly, the benchmark ranks
first in t-stat, a results that points to least volatile returns. Focusing on the risk profile of the portfolios, we find
the TVP-AR(1) portfolios to be the least risky, followed by the BMA. On the other hand, DMS portfolios are
the riskiest while the TVP-ALL ones are the second riskiest family of portfolios. Such profiles lead to the TVP-
AR(1) portfolios to rank first according to the SR, with the benchmark portfolio ranking second. However, for
the Omega and Sortino ratio, we find the second place captured by the DMA portfolios, which then drop third
after TVP-AR(1) and TVP-ALL according to upside potential.

For the mean-variance portfolios (Table 5 Panel B), DMA and BMA portfolios rank first and second for AR,
EPV and alpha measures, respectively. Similar to the previous cases, the benchmark portfolio ranks last in the
returns’ performance measures. Interestingly, we find the TVP-ALL portfolios to be the least risky ones while
surpassing the DMS and the benchmark in AR. On the other hand, we find the benchmark portfolio to be
the riskiest one, followed by the DMS portfolios. The remaining portfolios are, on average, on the same levels
of risk. Turning to the risk-adjusted performance, we find that on the basis of SR, the BMA, BMS and TVP-
ALL portfolios provide a rather similar return-to-risk reward with improved performance relative to the equal
weighted and expected returns cases. Specifically, the respective SRs are all greater than 1.65. According to the
Omega ratio, BMA and BMS portfolios provide the superior profile, while the TVP-ALL performance slightly
declines. Finally, the downside risk-oriented Sortino ratio and Upside potential point towards the TVP-ALL
portfolios ranking first.

For the mean-CVaR portfolios (Table 5 Panel C), we find the DMA portfolios to rank first in all return per-
formance measures, followed by the BMA portfolios. On the other hand, the benchmark portfolio ranks last.

Table 5. Out-of-sample performance of top t-statistics portfolios.

Panel A: Equal weighted AR EPV α tα SR Omega Sortino Upside VaR 1%

OLS AR(1) 0.570 2.392 0.402 4.249 1.258 2.763 0.583 0.913 4.277
BMA 0.625 2.573 0.457 3.947 1.151 2.712 0.546 0.864 3.771
BMS 0.630 2.596 0.456 3.978 1.166 2.714 0.559 0.886 4.197
DMA 0.664 2.731 0.491 4.031 1.191 2.871 0.618 0.948 4.069
DMS 0.647 2.655 0.472 3.759 1.123 2.587 0.529 0.862 5.055
TVP-ALL 0.718 2.947 0.537 3.814 1.142 2.646 0.608 0.978 4.671
TVP-AR(1) 0.648 2.671 0.467 4.171 1.271 2.848 0.633 0.975 3.356
Panel B: Mean-Variance AR EPV α tα SR Omega Sortino Upside VaR 1%
OLS AR(1) 0.628 2.580 0.421 2.986 0.946 2.161 0.395 0.735 5.887
BMA 0.742 3.069 0.609 5.832 1.659 3.753 0.846 1.153 3.222
BMS 0.718 2.966 0.573 5.865 1.688 3.751 0.932 1.271 3.117
DMA 0.783 3.254 0.641 5.523 1.584 3.477 0.813 1.140 4.002
DMS 0.680 2.784 0.523 4.410 1.283 2.805 0.601 0.931 5.098
TVP-ALL 0.710 2.917 0.564 5.703 1.665 3.467 1.008 1.418 2.341
TVP-AR(1) 0.732 3.001 0.558 4.645 1.424 3.116 0.776 1.147 3.926
Panel C: Mean-CVaR AR EPV α tα SR Omega Sortino Upside VaR 1%
OLS AR(1) 0.627 2.577 0.419 2.967 0.942 2.160 0.395 0.735 5.887
BMA 0.791 3.293 0.650 5.425 1.539 3.451 0.751 1.057 3.335
BMS 0.732 3.015 0.582 5.044 1.433 3.140 0.698 1.024 3.444
DMA 0.866 3.678 0.715 5.523 1.574 3.499 0.844 1.182 4.017
DMS 0.773 3.189 0.600 4.349 1.271 2.856 0.636 0.978 5.141
TVP-ALL 0.684 2.761 0.512 3.532 1.026 2.288 0.491 0.870 5.395
TVP-AR(1) 0.766 3.163 0.581 4.542 1.397 3.044 0.799 1.190 3.825

Notes: The table reports the out-of-sample performance of portfolios constructed based on the forecasting accuracy (t-statistics) of the expected
return. Asset weights are allocated by 1/N method for the equal weighted portfolios, by the mean-variance approach and the mean-CVaR
approach, with a target of 2% monthly return. The performance measures reported are the average of each portfolio’s individual measures
within a specific family of methods: averagemonthly return (AR), end of period value (EPV), annualized Sharpe ratio, Omega ratio, Sortino ratio,
Upside Potential ratio, and 1% VaR. Out-of-sample forecasting period: Jan 2009–Dec 2014.
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Focusing on the risk profile of the portfolios, we find the range of the reported VaR to be similar to the previ-
ously mentioned mean-variance portfolios. DMA portfolios rank above the median of the reported VaR, with
the BMA ones ranking as the least risky portfolios. As expected, the benchmark is the riskiest one. The risk-
adjusted performancemeasures suggest that the DMA and the BMAportfolios offer the first and second-best SR
andOmega, respectively. In contrast, according to the upside potential, DMA and TVP-AR(1) portfolios rank in
the top with almost equal performance, while the BMA portfolios rank third, with slightly inferior performance.

5.5. 2007–2009 crisis

In order to assess the competing models’ performance in volatile market conditions, we re-evaluate our portfo-
lios during the global financial crisis period (Jan 2007–Dec 2009). Portfolios for this period are first constructed
at the end of 2006 and rebalanced at the end of each year. We report the results in Tables 6-7. For the equal
weighted portfolios (Table 6 Panel A), we find the TVP-AR(1) portfolios to rank first in AR, offering almost 36
bps over the worse performing benchmark portfolio. BMA portfolio ranks second, while the remaining families
of portfolios seem to provide similar results. Similar patterns are reported for the EPV and alphameasures, while
the TVP-AR(1) portfolios are the only ones providing positive but statistically insignificant abnormal returns. In
terms of risk, we find the TVP-ALL portfolios to be the least risky oneswhile the benchmark registers as the riski-
est one. Such profiles pave the way for the TVP-AR(1) portfolios to rank first in all risk-adjusted performance
measures while the benchmark portfolios rank last.

For the mean-variance portfolios (Table 6 Panel B), we find the TVP-AR(1) portfolios rank first once again,
with the BMA portfolio ranking second in both AR and EPV.We also find the families of TVP-AR(1) and BMA
portfolios to provide non-negative abnormal returns. The reported VaR suggests that both the TVP-ALL and
BMAhave, on average, a thinner left tail against the competing portfolios. As expected, the benchmark portfolio
ranks as the riskiest one, with the difference from the least risky portfolios exceeding 13% per year. Focusing on
the risk-adjusted performance, we cannot select a specific family of portfolios that dominates the rest according

Table 6. Crisis period – out-of-sample performance of top expected return portfolios.

Panel A: Equal weighted AR EPV α tα SR Omega Sortino Upside VaR 1%

OLS AR(1) 0.667 1.100 −0.327 −0.262 0.133 1.112 0.054 0.536 20.658
BMA 0.821 1.192 −0.142 −0.137 0.246 1.213 0.104 0.593 15.886
BMS 0.740 1.157 −0.190 −0.176 0.194 1.165 0.080 0.565 17.155
DMA 0.796 1.196 −0.131 −0.132 0.243 1.207 0.100 0.582 15.695
DMS 0.788 1.192 −0.138 −0.142 0.232 1.196 0.096 0.586 15.268
TVP-ALL 0.733 1.191 −0.159 −0.183 0.230 1.194 0.099 0.613 13.358
TVP-AR(1) 1.024 1.268 0.093 0.081 0.331 1.296 0.148 0.646 15.690
Panel B: Mean-Variance AR EPV α tα SR Omega Sortino Upside VaR 1%
OLS AR(1) 0.482 1.128 −0.268 −0.300 0.064 1.056 0.024 0.449 18.679
BMA 0.616 1.215 0.036 0.093 0.355 1.325 0.134 0.547 7.522
BMS 0.246 1.061 −0.340 −0.651 −0.155 0.885 −0.051 0.393 10.321
DMA 0.609 1.204 −0.071 −0.124 0.258 1.237 0.096 0.505 10.677
DMS 0.257 1.058 −0.365 −0.598 −0.124 0.906 −0.041 0.389 12.172
TVP-ALL 0.570 1.202 −0.039 −0.106 0.285 1.246 0.128 0.634 5.489
TVP-AR(1) 0.745 1.257 0.156 0.229 0.320 1.294 0.125 0.555 12.645
Panel C: Mean-CVaR AR EPV α tα SR Omega Sortino Upside VaR 1%
OLS AR(1) 0.493 1.131 −0.290 −0.324 0.071 1.064 0.026 0.439 19.207
BMA 0.738 1.261 0.122 0.291 0.515 1.522 0.204 0.602 8.631
BMS 0.555 1.182 −0.071 −0.142 0.201 1.185 0.074 0.488 10.156
DMA 0.861 1.305 0.163 0.322 0.551 1.551 0.226 0.641 9.468
DMS 0.684 1.221 −0.049 −0.093 0.262 1.247 0.115 0.569 10.223
TVP-ALL 0.376 1.103 −0.332 −0.624 −0.002 1.003 0.002 0.503 9.805
TVP-AR(1) 1.010 1.389 0.417 0.657 0.607 1.645 0.274 0.694 10.568

Notes: The table reports the out-of-sample performance of portfolios constructed based on the expected future return. Assetweights are allocated
by 1/N method for the equal weighted portfolios, by the mean-variance approach and the mean-CVaR approach, with a target of 2% monthly
return. The performancemeasures reported are the average of each portfolio’s individual measures within a specific family ofmethods: average
monthly return (AR), end of period value (EPV), annualized Sharpe ratio, Omega ratio, Sortino ratio, Upside Potential ratio, and 1% VaR. Out-of-
sample forecasting period: Jan 2007–Dec 2009.
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Table 7. Crisis Period -Out-of-sample performance of top t-statistics portfolios.

Panel A: Equal weighted AR EPV α tα SR Omega Sortino Upside VaR 1%

OLS AR(1) 0.542 1.189 0.030 0.078 0.258 1.228 0.105 0.565 5.449
BMA 0.619 1.200 0.047 0.052 0.282 1.287 0.128 0.571 7.955
BMS 0.595 1.192 0.014 0.009 0.265 1.254 0.116 0.573 7.071
DMA 0.751 1.255 0.133 0.192 0.419 1.500 0.219 0.664 6.841
DMS 0.581 1.186 −0.022 −0.054 0.239 1.234 0.104 0.556 7.503
TVP-ALL 0.861 1.297 0.242 0.448 0.558 1.645 0.302 0.773 5.800
TVP-AR(1) 0.653 1.238 0.108 0.236 0.396 1.436 0.190 0.626 6.313
Panel B: Mean-Variance AR EPV α tα SR Omega Sortino Upside VaR 1%
OLS AR(1) 0.462 1.144 −0.071 −0.131 0.086 1.071 0.033 0.494 8.210
BMA 0.632 1.234 0.130 0.426 0.512 1.596 0.214 0.573 6.226
BMS 0.671 1.253 0.194 0.713 0.671 1.730 0.287 0.687 4.726
DMA 0.562 1.206 0.047 0.175 0.358 1.468 0.160 0.555 5.517
DMS 0.337 1.114 −0.117 −0.250 −0.033 1.072 0.013 0.414 6.589
TVP-ALL 0.856 1.339 0.401 1.546 1.209 3.072 0.862 1.294 1.868
TVP-AR(1) 0.679 1.268 0.243 1.353 0.935 2.123 0.444 0.857 3.188
Panel C: Mean-CVaR AR EPV α tα SR Omega Sortino Upside VaR 1%
OLS AR(1) 0.474 1.149 −0.066 −0.121 0.100 1.083 0.038 0.501 8.210
BMA 0.789 1.286 0.242 0.565 0.610 1.644 0.244 0.629 8.153
BMS 0.679 1.245 0.140 0.341 0.453 1.438 0.182 0.592 7.219
DMA 0.880 1.326 0.314 0.693 0.700 1.788 0.322 0.748 6.266
DMS 0.729 1.259 0.172 0.348 0.424 1.473 0.192 0.626 6.814
TVP-ALL 0.502 1.155 −0.080 −0.114 0.159 1.193 0.090 0.553 7.984
TVP-AR(1) 0.782 1.310 0.312 1.000 0.809 1.994 0.469 0.947 3.411

Notes: The table reports the out-of-sample performance of portfolios constructed based on the forecasting accuracy (t-statistics) of the expected
return. Asset weights are allocated by 1/N method for the equal weighted portfolios, by the mean-variance approach and the mean-CVaR
approach, with a target of 2% monthly return. The performance measures reported are the average of each portfolio’s individual measures
within a specific family of methods: averagemonthly return (AR), end of period value (EPV), annualized Sharpe ratio, Omega ratio, Sortino ratio,
Upside Potential ratio, and 1% VaR. Out-of-sample forecasting period: Jan 2007–Dec 2009.

to all reported measures. For instance, the BMA portfolios rank first in SR and Sortino ratio, followed by the
TVP-AR(1) and the TVP-ALL. However, according to the Upside potential, TVP-ALL ranks first, followed by
the TVP-AR(1) and the BMA, with the difference in performance between the latter two families ofmodels quite
small. Finally, according to Omega, the BMA portfolios rank first, with the TVP-AR(1) portfolios second best
and the TVP-ALL ranking third.

For the mean-CVaR portfolios (Table 6 Panel C), the AR, EPV and alpha measures suggest that the TVP-
AR(1) portfolios rank first, with the DMA and BMA portfolios following and the benchmark ranking last. On
the other hand, the VaR results suggest that the BMA is the least risky portfolio, followed by the DMA and the
TVP-ALL. The benchmark portfolio ranks last, with the difference from the least risky portfolios being equal
to almost 11% per year. Finally, according to the risk-adjusted performance results, we find the TVP-AR(1)
portfolios to outperform the rest for all categories of measures. However, the performance differences from the
overall second best-performing family of DMA portfolios are relatively small.

The results for the equal weighted case of the portfolios created on the basis of their t-stat (Table 7 Panel
A) suggest that according to AR, the TVP-ALL portfolios rank first, followed by the DMA portfolios. The AR
differential between the best and worst performing (OLS) portfolios is around 3.8% per year. The respective
differential between the second-best performing family of portfolios and the benchmark is almost 2.5% per year.
Similar rankings are reported by the EPV and alpha measures. Interestingly, the benchmark portfolio delivers
the smallest 1% VaR followed by the TVP-ALL. The DMA portfolios surpass only the BMA, BMS and DMS
portfolios in terms of risk. Turning to the risk-adjusted performance, we find the benchmark portfolio ranking
last according to the SR and Omega measures. However, for the Sortino and the Upside potential, we find the
benchmark to perform better than the DMS portfolios, which now rank last. Overall, the TVP-ALL portfolios
dominate the portfolios as they rank first according to all risk-adjusted measures, followed closely by the DMA
portfolios.

For the mean-variance portfolios (Table 7 Panel B), we once again find the TVP-ALL portfolios to rank first
in terms of the AR, EPV and alpha while TVP-AR(1) and BMS portfolios follow with similar performance.
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However, for the latter two, the t-stat suggests that the TVP-AR(1) portfolios’ returns are significantly less volatile
than the BMS ones. This finding is also evident in the VaR results where the second least risky TVP-AR(1)
portfolios report a VaR estimate about 1.54% lower than the third least risky BMS portfolios. The TVP-ALL
portfolios are the least risky ones, while the benchmark portfolio reports the largest 1%VaR, about 6.34% higher
than the best performing one. As expected, the best risk-adjusted performance is dominated by the TVP-ALL
portfolios, which rank first according to all reported measures. However, contrary to the previously reported
results, the TVP-ALL portfolio performs significantly better than the competing portfolios. For instance, the
difference in the Sortino Ratio between the TVP-ALL and the TVP-AR(1) is 42 bps per unit of semi deviation.

Finally, for themean-CVaR portfolios (Table 7 Panel B), the DMA portfolios rank first in AR, EPV and alpha.
In contrast, the BMA and TVP-AR(1) portfolios follow in the rankings but with negligible differences in their
performance. Focusing on the reported VaR measure, we find the TVP-AR(1) portfolios to rank first as the
least risky portfolios, while the benchmark ranks last followed closely by the BMA portfolios. The TVP-AR(1)
portfolios dominate the risk-adjusted performance as they rank first in each reported measure. Contrary to the
mean-variance case, the difference from the second-best DMA portfolios is not as pronounced. For instance,
we find the difference in Sortino ratios to be around 15 bps per unit of semi deviation, while the respective
difference from the overall third best BMA portfolios is 22 bps per unit of semi deviation.

5.6. Portfolio composition

Figures 1 and 2 present the portfolio compositions of selectedmodels at four different rebalancing points, namely
in January 2002, January 2006, January 2009 and January 2013. Themodels we present are theOLS-AR(1), BMA,
DMA and TVP-AR(1). In portfolios formed based on expected returns, Equity Long/Short and CTA strategies
account for the highest proportion of selected funds, followed by Sector and Emerging Market strategies. There
is also an increasing trend of selecting CTA funds and a decreasing trend of selecting LS and Sector funds across
the sample period.

Regarding the portfolios formed based on the forecasts’ t-statistics, funds with MS, EM and RV strategies
are selected the most. Portfolios selected based on t-statistics are more diversified compared to the portfolios

Figure 1. Optimal portfolio composition (expected returns).
Note: The figure shows the composition of portfolios selected based on the forecasted expected value of fund returns in Jan 2002, Jan 2006, Jan 2009 and Jan 2013.
Selected models are OLS-AR(1) BMA, DMA and TVP-AR(1).
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Figure 2. Optimal portfolio composition (t-statistics).
Note: The figure shows the composition of portfolios selected based on t-statistics of expected returns in Jan 2002, Jan 2006, Jan 2009 and Jan 2013. Selected models
are OLS-AR(1), BMA, DMA and TVP-AR(1).

based on expected returns. Interestingly, the ED strategy received a zero weight in all four models, whereas the
Sector strategy received a zero weight in the OLS-AR(1) model, but non-zero weights in the other four models.
Portfolio composition of the BMA and DMA models seems to show a high degree of similarity when selected
based on t-statistics. Finally, the Equity Long/Short strategy attracted a very substantial amount of investment in
the crisis period (January 2009). Overall, taking into account model uncertainty in hedge fund return forecasts
and portfolio construction is found to lead to a greater degree of diversification when selecting among different
trading strategies, compared against the benchmark OLS-AR(1) model. This finding is indicative of the ability
of the competing methods to identify the best performing funds from each strategy.

6. Conclusion

In this paper, we jointly investigate the statistical and economic value of incorporating various sources of model
risk in forecasting hedge funds returns. Specifically, using an EWMA approach to account for returns’ het-
eroscedasticity, we address parameter uncertainty by applying a time-varying parameter structure while we
account for model uncertainty by dynamic model averaging/selection approaches. Our empirical results show
that treating for the various sources of model risk significantly improves the forecast accuracy and portfolio
performance for both aggregate and fund level returns.

The proposed methods lead to a statistically significant increase in forecast accuracy, as measured by the
MSFE, compared to the benchmark OLS-AR(1) model. Specifically, the simplest TVP-AR(1) specification pro-
duces the most robust results across the aggregate indices data. However, when we account for the size of
underlying funds, we find an increase in the accuracy of the DMA/BMA forecasts. These findings highlight the
heterogeneity of the hedge funds investment strategies, which shrinks when we take into account the funds’ size.
Concerning the decay parameters settings, our results suggest that accuracy benefits more from less persistent
volatility, while the coefficients and probability decay rates do not seem to affect the MSFE results significantly.

In the same vein, the economic evaluation results reveal substantial gains from the proposed methods. Fur-
thermore, under the prism of a risk-averse investor, the magnitude of gains is significantly larger than what the
statical evaluation suggests. These increased gains are due to the methods’ ability to model future uncertainty
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better than the historical variance of the benchmark. Overall, our findings suggest that TVP-AR(1) specifica-
tions provide the most significant gains, while the size effect highlights the need to consider model uncertainty
via BMS and DMA specifications. However, a more persistent variance setting is preferable.

Focusing on the individual funds’ forecasts, we find that the majority of the competing models select port-
folios that significantly outperform the benchmark in average returns and risk-adjusted performance for both
evaluation samples. These results provide further support for our approach since we demonstrate that proposed
methods provide economic gains by capturing more accurately the predictive density of hedge fund returns.

Notes

1. Key references of this strand of literature include Fung and Hsieh (2001, 2004), Agarwal and Naik (2004), Kosowski, Naik, and
Teo (2007), Bali, Gokcan, and Bing (2007), Fung et al. (2008), Jagannathan, Malakhov, and Nomikov (2010), Sadka (2010),
Avramov et al. (2011), Bali, Brown, and Caglayan (2011, 2012, 2014), Buraschi, Kosowski, and Sritrakul (2014) and Agarwal,
Arisoy, and Naik (2017).

2. The method has been applied recently in several financial research areas, including gold or copper prices forecasting (Aye
et al. 2015; Buncic and Moretto 2015; Baur, Beckmann, and Czudaj 2016); house prices forecasting (Bork and Moller 2015;
Risse and Kern 2016), bond portfolio strategies selection (Caldeira, Moura, and Santos 2016); stock return forecasting and
portfolio construction (Pettenuzzo and Ravazzolo 2016).

3. BMA and BMS specifications are a special case of the DMA and DMS methodologies.
4. Baur, Beckmann, and Czudaj (2016) employ three forgetting factors λ = 0.90, 0.95, 0.99 in forecasting monthly gold returns

and find that DMA or DMS with forgetting factors of at least 0.95 provide more accurate forecasts compared to less flexible
alternatives such as BMA or DMAwith a forgetting factor fixed to unity, i.e. no forgetting. However, the authors show that a fast
rate of forgetting produces instantaneous jumps of the estimated parameters and the posterior predictive model probabilities,
which inflates the forecast errors. To this end, they suggest comparing results emerging from the implementation of various
forgetting factors. Drachal (2016) focuses on monthly spot oil prices and estimates a total of 121 DMA models based on all
combinations of forgetting factors α, λ = 0.90, 0.91, . . . , 0.99, 1. The author finds that all DMA models with equal forgetting
factors except for the one with α = λ = 0.99 produce larger forecast errors than the naïve forecasting benchmark model. Wang
et al. (2016) consider time-varying parameter models to forecast the realized volatility of the S&P 500 index using the heteroge-
neous autoregressive models for realized volatility. In their experiment, they consider DMA with λ = 0.99 along with constant
coefficient models and find that time-varying parameter models have greater forecasting accuracy than models that use con-
stant coefficients. Finally, Catania, Grassi, and Ravazzolo (2019) focus on the predictability of cryptocurrency time series and
compare several alternative univariate and multivariate models for point and density forecasting using a forgetting factor of
0.99 in their baseline experiment.

5. Following Koop and Korobilis (2012), we set β0 ∼ N(0, var(r
t−1)

var(zt−1)
) and H0 = 1

4 var(r
t−1).

6. This case refers to linear combinations of predictors.
7. We also considered simple combination schemes, such as the mean, median, trimmed mean. Our results, available from the

authors upon request, point to superiority of our time-varying approaches.
8. Joenvaara, Kosowski, and Tolonen (2019), Yin and Zhang (2019), Gao, Haight, and Yin (2019) find that smaller funds yield

larger returns. Gao, Haight, and Yin (2019) attribute the recorded performance decline to the diseconomies of scale of large size
funds.

9. To address any selection/survival bias, we include in our investment opportunity set both alive and graveyard funds. Graveyard
data are sourced from the graveyard database of BarclayHedge.We apply identical data filters as stated in Section 3. All graveyard
return series are required to have at least five years of in-sample data prior to 2009, but less than six years of out-of-sample data,
depending onwhen the fund exited the database. This approach results in 395 graveyard funds, post-filtering. Finally, we exclude
Funds of Funds from the exercise.

10. The literature hints on the number of funds a FoF typically holds. Specifically, Brown, Gregoriou, and Pascalau (2012) study
diversification within FoFs and find that the diversification benefits are maximized when the FoF invests in at most 20 funds.
Moreover, they find that addingmore funds to the portfolio increases left tail risk and lowers returns. Lhabitant (2006) indicates
that the typical number is about 40, while Avramov, Barras, and Kosowski (2013) argue that there is a practical limit to the
number of individual funds held by funds of funds and limit the minimum and maximum number of funds in the portfolio to
25 and 75, respectively.

11. Joenvaara, Kosowski, and Tolonen (2019) suggest that realistic investor constraints, such as investors’ liquidity constraints,
can significantly reduce the recorded performance of hedge funds. While such constraints are essential from the perspective of
performance persistence, in our paper we focus on the informational advantage of the proposed specifications andwhether such
methods could extract performance increments compared to a naïve AR(1) benchmark. Applying the complete set of investor
constraints in the spirit of Joenvaara, Kosowski, and Tolonen (2019), in conjunction with our sample size and the data intensity
of the suggested specifications, could lead to small sample or selection biases, as the pool of funds in our databasewould decrease
significantly for the most realistic cases. Nevertheless, to emulate broadly such constraints, we impose a one-year rebalancing
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scheme for our theoretical fund of hedge funds portfolios. By doing so, we restrict our investor to be committed to her selection
of funds for the whole year, regardless of a fund offering smaller lock up and redemption periods. Hence, while our portfolios
may not be entirely realistic in terms of investors’ behavior and practices, they provide a consistent platform for evaluating the
proposed portfolios against a similarly defined AR(1) benchmark portfolio.
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