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Abstract

Set systems can be visualized in various ways. An important distinction between techniques is whether the elements have a spatial
location that is to be used for the visuali: Jor iple, the el are cities on a map. Strictly adhering to such location
may severely limit the visualization and force overlay, intersections and other forms of clutter. On the other hand, completely

the spatial diy omits inf and may hide spatial patterns in the data. We study layouts for set systems (or
hypergraphs) in which spatial locations are dnp[ar ed omo concentric circles or a grid, to ob!am schematic set visualizations.
We investigate the tractability of the underlying alg bl dopting different criteria (e.g. crossings or
bends) for the layout structure, also known as the support of the Irypergraph I'urlhermore we describe a simulated-annealing
approach to heuristically optimize a combination of such criteria. Using this method in computational experiments, we explore

the trade-offs and dependencies between criteria for computing high-quality schematic set visualizations.
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1. Introduction

Various types of data or analysis results can be modelled through
a system of potentially overlapping sets over a collection of ele-
ments. To facilitate understanding of the structures in such set sys-
tems, various techniques to visualize sets have been developed and

luated by the visualization cc ity. Compl; this, the
graph-drawing community has investigated the underlying mathe-
matical structures for drawing a set system, which is also called a
hypergraph in this context: a generalization of a graph in which a
hyperedge (set) is a non-empty set of vertices (elements), rather than
a pair. In this paper, we shall adopt this terminology.

We may roughly categorize the techniques for drawing hyper-
graphs into two types: those that place every vertex at an asso-
ciated (geo)spatial location (e.g. [ARRCI1, CPC09, DvVKSW12,
MRS#13]; see Figure 1(left)) and those that draw hypergraphs with-
out (using) spatial information (e.g. [EHKP15, AAMH13, LGS*14,
SMDS14, MR 14, RD10]; see Figure 1(right)). Whereas the former

type allows to relate the set structures to the spatial dimension and
hence to find spatial patterns, the latter may place elements freely
and can leverage this freedom to greatly reduce the visual complex-
ity of the resulting drawing.

Our goal is to break this apparent dichotomy and explore the pos-
sibility of finding a hybrid between these two extremes. That is, we
want to find a schematic drawing of the hypergraph, in which ver-
tices do not need to be positioned precisely at their spatial location.
Instead, we allow for displacing the vertices to clarify set structure
and reduce visual complexity, while still having a drawing that is
spatially informative, albeit not fully accurate; see Figure 1(middle)
for an example. This follows the general principles of schematiza-
tion, which are often applied to visualize, for example, transit maps
(e.g. [Rob12]) or the results of geographic analysis (e.g. [Reil5]).

The driving principle is that full detail is not necessary to under-
stand the main or aggregate patterns in the data (e.g. distinguish-
ing patterns between Europe and South America, in a country-level
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2 Bekos et al. / Computing Schematic Layouts for Spatial Hypergraphs on Concentric Circles and Grids

Figure 1: Three set visualizations of the same dataset. (left) KelpFusion set vtsualtzanon [MRS*13 ] ona geographtcally accurale base map.

(right) An Euler diagram without spatial information. (middle) Result of our prototype i

dataset). It may even hinder a clear view of the data, as the spa-
tial dimension often suffers from an uneven distribution, for ex-
ample: the city center is more dense than the suburbs, the mu-
nicipalities are smaller in densely populated areas, the density of
countries in one continent is higher than in another. Deformation
helps to create space in otherwise cluttered areas to ensure good
legibility. See Figure 9 in Section 5.3 for example. With precisely
positioned elements, Europe is close to unreadable; yet, once it
is clear that the schematic displays a world map, one can iden-
tify general clusters of, e.g. Europe and South America. An ap-
propriately schematized background map may also reinforce this
perception.

Indeed, the mental map [Tve93]—a person’s rccollccuon of spa-
tial entities and their relations—is conj d to be sch
[Tve81] and a map that matches their mental map may facilitate
recognition despite the deformation. Though schematic set v1sual-
izations may push beyond a threshold for i diate rec
they should strive to maintain important spatial relations as to retain
the benefit of (geo)spatial embedding; the degree of deformation
that is applied must be balanced with the intended task of the re-
sulting visualization. Yet, interactions or multiple views can help to
arrive at the details, should this be desired. As such, schematic set vi-
sualizations can support general overview tasks in the Information-
Seeking Mantra [Shn96].

1.1. Contributions and organization

‘We briefly explore the design space for schematic spatial hyper-
graphs in Section 2; we introduce the necessary notation, terminol-
ogy and models that are used throughout the paper here as well.
Specifically, we focus on drawings that place vertices on grids, in-
cluding rectangular grids as well as concentric grids that are de-
fined by the intersection of concentric circles and rays starting at
their common center. The degree of schematization is controlled by
restricting the allowed placement of a vertex to a neighbourhood
surrounding its spatial location. To the best of our knowledge, spa-
tial schematic set visualizations are novel and the concentric style
specifically presents the opportunity to create iconic schematic de-
pictions of set data.

il ofa 8-

We then turn towards the computational problem underlying sim-
ple variants of our model in Section 3. Specifically, we consider
minimizing the common graph-drawing criteria of crossings, bends
and total length. We show that the first two are NP-hard. Though
minimizing total length is feasible for simple models, this crite-
rion in isolation does not help to achieve the goal of clarifying
structure.

In Section 4, we study the general problem of finding a good
drawing, combining various criteria. We describe an implementa-
tion based on simulated annealing. We use this prototype to show-
case the potential of schematic hypergraphs and present results of
computational experiments that investigate its performance in Sec-
tion 5. Finally, we conclude in Section 6 with a discussion of how
our results can be used to support visual analysis of set systems.

1.2. Related work

Set visualization is a diverse area of research; various set-
visualization methods can be seen in Alsallakh ef al. [AMA*16].
Of particular relevance here are methods that link the vertices of
cach set by overlaying a line or tree-like structure based on a sup-
port [ARRCI1, DvKSW12, MRS*13]. For an illustration see Fig-
ure 1(left): as is typical for these overlay methods, the vertices are
fixed and the set structures are routed around them. In terms of au-
tomated layout of these visualizations, most attention has been af-
forded to hypergraph supports [JP87] for both fixed and free ver-
tex locations: though some specific restricted problems are tractable
[BCPS12, HKvK*18, BVKM*11], many problems are NP-hard,
including general crossing minimization [BVKM*11], total edge
length minimization [ALT20] or their combination for just two hy-
peredges [CvGM*19]. In graph drawing, there is specifically also
consideration for drawing a hypergraph together with a regular
graph—so called clustered drawings [WNV20]. Wu et al. [WNV20]
allow vertex duplication for better structure, a technique also used
in (non-spatial) set visualization [RD10]. However, for the spatial
setting, requiring the vertices to be close to the original location
counteracts the usefulness of such duplication.

Schematic maps have been 1 in various applications by
abstracting spatial relations to a minimum functional level [Reil5],
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Bekos et al. / Computing Schematic Layouts for Spatial Hypergraphs on Concentric Circles and Grids 3

thereby clarifying and emphasizing structure in data while not
disregarding (geographic) space; see Wu et al. [WNT*20] for a
recent survey of the design, human and computational aspects.
The d layout of sck maps has ated on the
layout of metro maps, for instance, by multi-criteria optimiza-
tion [SRMW11], by linear programming [NW11] and force-based
methods [CR14]. There is work on drawing metro maps using
curves (e.g. [FHN*12, vDVGH*14]) following the argumentation
of Roberts to consider alternatives to the dominating octilinear de-
signs [Rob12]. Barth [Bar16] describes a concentric-circles style
layout algorithm for metro maps, where simulated annealing is used

o imize area. Subseq work further i the use of
this ‘ortho-radial’ style NRW19, NR20].
Another strand of h i i h ion of (geo-

graphic) outlines such as countries, e.g. [vG16, Meu14]. A grid map
[MSS21, Sli18] can be seen as an extreme form of schematization,
where every region (or element) is turned into a square in a grid; the-
oretical considerations for such systems in connecting cells can be
found [vGKvK*17], though the results have not (yet) been shown
to be efficacious to visualize sets. It has been shown that such grid
maps allow better perception of local details, though other tasks may
be supported less well [Sch21].

An alternative is to distort the base map (and the spatial hy-
pergraph) before computing a drawing for the hypergraph. Such
focus-context maps can be computed automatically [vDH14] and
have been used to support schematization [vDvGH*13]. However,
such techniques are driven by map structure, rather than hypergraph
structure, or focus on interactivity to steer the distortion [JMO03].
Given a fixed support, these techniques may be applicable directly—
however, distorting the space may imply that other supports are bet-
ter used. While this is possible with our method, this is not readily
supported by such focus-context techniques currently.

There is also a body of work on using a metro-map metaphor, such
as the MetroSets system [JWKN21], where elements are mapped
to stations and sets to metro lines. To emphasize, such work lever-
ages a metro-map apy to visualize spatial hypergraphs,
and thus allows free vertex placement; the main distinction to actual
metro-map algorithms is the choice in (often path-based) supports
for each set. However, this is done in a pipelined manner: first, a
support is computed, which is subsequently drawn using metro-map
drawing techniques. Regular metro-map approaches create for spa-
tially informative layouts but are restricted to the given metro lines
(the ‘support”). Hence, our work can also be interpreted as trying to
bridge these two settings, one in which the support remains flexi-
ble but the result must be spatially informative as well. Moreover,
such work predominantly targets octilinear designs as the ‘prototyp-
ical metro map’. In contrast, we focus on (not necessarily octilinear)
concentric-circles layouts.

In conclusion, to the best of our knowledge, there is no prior work
in computing schematic layouts for spatial hypergraphs. The one
exception here is our own preliminary work [BEM#19]. In that pa-
per, we sketch two results: the linear program for length minimiza-
tion (here, mentioned in Section 3) and an argument that an overly
simple case is in fact tractable: checking whether a given support
can be drawn without crossings when there are but two concentric
circles. In this work, we instead show that the general problem of

crossing minimization, even with some relaxation, is NP-complete
(Section 3).

The lack of prior work also implies that we cannot readily com-
pare our results to other techniques: our algorithm focuses on
achieving a good layout with limited movement of the hypergraph
vertices, while also allowing for a good support to show the hy-
peredges. This combination requires us to make at least some con-
cession on the ity of the optimized pared to
more involved techniques for fixed vertices such as [DVKSW12,
MRS*13]. Of course, once good locations have been decided, alter-
native rendering techniques or even fine-tuning the chosen support
for the now-fixed locations can in principle be done easily in a post-
processing step. We focus our work on the efficacy of the schemati-
zation step itself in providing a trade-off for visualizing the spatial
dimension and the structure of the hypergraph; as such, we do not
consider this post-processing in our work.

2. Problem Exploration and Definitions
2.1. Hypergraphs

A hypergraph H = (V, §) models a system of intersecting sets and is
defined by a set of vertices V and hyperedges S € (X | X € V, X #
#}. In a spatial hypergraph, each vertex v € V has a (geo)spatial
position in the plane. We identify v with this location. In this paper,
hypergraph always refers to a spatial hypergraph.

2.2. Supports

Contrasting the drawing of a regular graph, in which every edge is
visualized by some linear geometry connecting its endpoints, hyper-
graphs admit more flexibility. As hyperedges are unordered, there
are many ways to connect the vertices of the hyperedge. The sup-
port [JP87] describes the connectivity using a regular graph. Specif-
ically, a graph G = (V, E) is called a support of H = (V, S) if the
induced subgraph G[h] of each hyperedge h € S is connected. We
refer to a connected graph on the vertices of & € S as a support of
h. Taking the union over a support for each hyperedge gives a sup-
port G for H. Note, however, that the induced subgraph G[A] in this
union may include more edges than in the original support for hy-
peredge h: the support of other hyperedges may include edges that
were not part of this original support, but do connect vertices in
h. In other words, a support of & may be a connected subgraph of
G[h): there may be different ways in which to connect the vertices
of h, but the induced subgraph is unique. A drawing of a support can
be used to structure the visualization of a hypergraph: for example,
both [DVKSW12] and [MRS*13] implicitly compute a support us-
ing different criteria.

In our prototype, we allow slightly more general supports. Specif-
ically, we allow the addition of new vertices called anchor points by
the algorithm. The support is then a graph G = (V UA, E) on the
vertices V and anchor points A, in which G[h U A'] is connected for
every hyperedge h for some subset A" of A. That is, they may con-
nect through these anchor points. These anchor points may have a
degree greater than two, allowing them to act as Steiner points to
reduce the total length of the drawing. Furthermore, these anchor
points can also represent bends in the drawing.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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4 Bekos et al. / Computing Schematic Layouts for Spatial Hypergraphs on Concentric Circles and Grids

[

Figure 2: Various ways 1o route the edges of the same support: straight lines (left); smooth curves (middle); concentric (right).

2.3. Deformation models

To arrive at a ized drawing of a hypergraph, we allow the
drawing of its support to displace the vertex positions. To still main-
tain a spatially informative visualization, we do not want to displace
arbitrarily. Here, we focus on placing the vertices on a structured
pre-defined set of admissible positic to help the ic look
and feel, as well as to ensure a minimal distance between vertices.
We call an assignment from vertices to positions valid if no two ver-
tices are assigned the same position.

A simple structure would be a rectangular grid, with admissible
positions defined by X x ¥ where X and Y define allowed x- and y-
coordinates respectively. We specifically also consider a concentric-
circles layout. This is defined by a set C of circles with a common
center, and a set R of rays emanating from the common center. The
admissible positions are the intersections between the circles and the
rays. We define the rays based on the input positions or using evenly
spaced rays; the latter we refer to as a concentric grid. Grids provide
a simple control over distances between nodes and thus naturally
create space for drawing the support.

To control displacement, each vertex can be assigned a subset of
the admissible locations, such as those within a threshold distance
from its original position. We specifically also consider concentric-
grid layouts in which each vertex defines a ray in R and the vertex
must be 1 to one of the admissible p defined by its
ray (or a subset thereof). In this radial displacement model vertices
move only radially with respect to the center. The main idea is that
such a model may allow an observer to easily find vertices, assuming
their relation to the chosen common center is known. That is, the
more structure exists in the displacement, the easier it may be to
use the spatial dimension. In a grid layout, this would translate to
allowing vertices to move only vertically.

2.4. Drawing styles

The deformation model determines where we can place the vertices,
and the support prescribes which connections to draw. To fully de-
fine the schematic drawing of the spatial hypergraph, we need to de-

_The B A

cide on how to draw these connections. A simple technique would be
to use straight lines, or smooth curves by decomposing the support
of each hyperedge into a set of paths. For a grid layout, we can aim
to compute, for le, octilinear connections; for a concentric-
circles layout, we can utilize geometric form (e.g. concentric arcs
and spokes) also in the drawing of the connections (ortho-radial
drawing). See Figure 2 for some examples. We place the hyperedges
using the same edge of the support side-by-side, but these connec-
tions can be drawn according to various styles; see e.g. [DVKSW12]
for alternatives drawing styles. As our focus lies with determining
the structure of the drawing, we do not further investigate the effect
of drawing styles.

2.5. Quality criteria

Perhaps the main question is how to assess the quality of a schematic
drawing of a spatial hypergraph H. By using supports, this effec-
tively reduces to assessing the quality of the support drawing. As
such, we may identify many criteria that are readily inspired by the
graph-drawing literature; see e.g. [DETT98, KWO1].

P.1  Crossings: The number of intersections between the edges of
support G should be small.

Bends and anchor points: A drawing should have few bends
and anchor points, to make connections easy to follow.
Displacement: each vertex of H should be assigned to a po-
sition that is close to its spatial location. We measure the Eu-
clidean distance, but other distances can be idered, espe-
cially for a concentric-circles layout.

Vertex-edge resolution: The distance between a vertex and its
non-incident edges should be sufficiently large as to avoid the
impression that the vertex is actually incident to the edge.
Total edge length: Following Tufte’s rule of minimal ink
[TufO1], the support should be drawn with small total edge
length. As we measure this on the support of H, an edge is
counted only once, even if it occurs in the support of multiple
hyperedges. Consequently, we would like hyperedges to use
the same edges, if possible.

P

[N

P.

w

P

=

P.

n
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Bekos et al. / Computing Schematic Layouts for Spatial Hypergraphs on Concentric Circles and Grids 5

P.6  Detour: We want to prevent bends and anchor points from sig-
nificantly increasing the geometric path length between the
connected vertices.

Octilinearity: Ensuring that the edges are drawn using octilin-
ear segments gives a schematic appearance and visually con-
veys that the representation is not a spatially accurate one. Fur-
ther, it may improve the continuity of edges at a vertex.

P.

{

These criteria generally conflict, in the sense that improving one
may require deterioration of another. As such, a good schematic
drawing of a hypergraph must make a trade-off between these.

There are various other potential criteria to measure the quality of
the support. For example, KelpDiagrams [DvKSW12] aim to com-
pute a support for a hyperedge that has low dilation, whereas Kelp-
Fusion [MRS#*13] aims to capture the ‘shape’ of the locations and
allow for more hull-like i We leave the integrati
of such concerns for schematic hypergraphs to future work, as we
focus on using a tree support for each hyperedge.

In our above exposition, we effectively equate the ‘spatially infor-
mative’ nature of the sct ic drawing to displ. P.3. How-
ever, space is generally multi-faceted: beyond location, we can for

ple also consider ining di: or directions between
vertices, or neighbourhoods. In the context of grid maps, displace-
ment has been shown to be a good proxy for such other considera-
tions [EVKSS15, MDS*17, MSS21]. We assume a similar relation-
ship here, using displacement as a general proxy for other facets of
the spatial dimension as well, in order to simplify algorithmic con-
sideration.

3. Computational Complexity

Here we consider the complexity of computing a layout under the
radial displ model and diffe optimization criteria. Even
in this simplified form, the problems tends to be computationally
complex—the more general form of grids with admissible positions
nearby are not expected to make the problem considerably easier: in
the most general case, the grid and distances can likely be configured
such that the complexity results below are still applicable. Though
we primarily focus on concentric-circles layouts, the results equally
apply to rectangular cases, where vertices are allowed to move only
vertically. We refer to Appendix A for proofs.

3.1. Crossing minimization

We first consider the problem of minimizing P.1, the number of
crossings using a straight-line drawing of the edges of the support.
This problem bears resemblance to layered graph drawing, though
we can select edges for the support. However, when every hyper-
edge contains two elements, we have actually a regular graph. In
fact, crossing minimization in two-layered bipartite graphs is an NP-
hard problem that can be phrased in our model [EW94]. If we re-
quire validity, this correspondence is immediate, even for intervals
of admissible positions along the rays.

Even if we allow vertices to map to the same admissible position
but do not restrict admissible positions to intervals, this ICM (invalid
crossing minimization) problem is NP-complete.

Theorem 1. ICM is NP-complete.

3.2. Bend minimization

We now turn to bend minimization. Specifically, we consider an
edge-drawing style that follows the geometry defining the admis-
sible positions: every piece of a drawn edge is either a circular arc
on one of the defining circles, or a straight segment coinciding with
some ray emanating from the common center. We prove that bend
minimization in a concentric-circles layout under radial displace-
ment is NP-hard, even if each vertex has a consecutive interval of
admissible positions along its ray. We refer to this problem as CCCL
(consecutive concentric-circles layout).

We are given a hypergraph H = (V, §), a non-negative integer
b e N,andasetC = {cy, ¢, . .., ¢;} of concentric circles, numbered
by increasing radius such that ¢;,; contains ¢; foralli < r. Moreover,
each vertex v € V has an associated interval /(v) = [i, j], which de-
fines the admissible positions for v by the intersections of its ray
with the circles with indices in the given interval. We ask for a draw-
ing of H with at most b bends. The drawing y; of each hyperedge
h is a curve following the above style: each bend of y, must share
aray or a circle with the previous and next bend or vertex along yj.
Further, we disallow y; to pass through vertices that are not in A,
to ensure that the vertex-edge resolution is not zero. Note that we
choose paths as the support of the hyperedges. However, as we will
see, our reduction uses only hyperedges of two or three elements.
In this case, any support minimizing the number of bends must be
a path: thus our result generalized to arbitrary supports. The above
CCCL problem is computationally complex.

Theorem 2. CCCL is NP-complete.

3.3. Length minimization

‘We now consider minimizing the total edge length. For fixed posi-
tions, finding a support with small total length is NP-hard [ALT20,
CvGM#*19]. Allowing some flexibility in vertex placement only
generalizes this problem and thus is NP-hard as well. However,
we can solve this problem efficiently, if we assume that a support
G = (V, E) is given—designed or computed by an algorithm be-
forehand. Considering the concentric design, a support that is a
union of paths or cycles obtained by connecting each hyperedge
clockwise around the center may for example yield a reasonable
support. Using a (Euclidean) minimum spanning tree for each hy-
peredge yields an approximation of total edge length for fixed posi-
tions [ALT20].

We seek to decide an admissible position for each vertex such that
the total edge length is minimized. Considering the concentric de-
sign, we measure edge length not in Euclidean distance, but rather
using a Manhattan distance interpreted in radial coordinates: abso-
lute difference in radius plus the absolute difference in angle. Gen-
erally, this requires some meaningful conversion to combine angles
and radial distances. However, since we consider the radial displace-
ment model, the angular components are fixed and we can focus on
minimizing the difference in radius (of the assigned circles for the
endpoints of an edge). This choice ensures that we do not implicitly

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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6 Bekos et al. / Computing Schematic Layouts for Spatial Hypergraphs on Concentric Circles and Grids

favour placement on smaller circles over larger circles: placing ver-
tices closer towards the center may reduce distances but also coun-
teracts the schematic idea of spreading out the vertices for better
visibility (see also the discussion below). As such, it may be a more
effective measure of quality than Euclidean in this setting, though it
may result in very long edges in extreme cases.

A simple linear program suffices to solve this RDM (radial dif-
ference minimization) problem, as captured by the theorem below.

Theorem 3. RDM is solvable in polynomial time.

However, minimizing total edge length in isolation for a fixed
support does not readily give good results. First, we must assume
that vertices on the same ray have disjoint intervals, otherwise the
result may in fact be invalid. For points in general position, this does
not occur, but vertices may be placed close to each other. Further-
more, observe that the implied drawing using concentric arcs and ra-
dial lines does not ensure a minimal distance between vertices and
non-incident edges: the vertex-edge resolution may also be zero,
even if the drawing is valid. But primarily, this type of approach
would have a tendency to simply move vertices towards each other:
suppose all intervals overlap, then the optimal solution is to place all
vertices on the same circle, yielding zero radial difference. This re-
moves most spatial information and place vertices very close to each
other. If such strong reduction is desired, it may be more beneficial
to directly compute a Necklace map [SV10].

3.4. Other criteria

Optimizing displacement can be done efficiently, as it is a weighted
point-set matching problem, as also found in computing grid maps
[EVKSS15]. However, this does not consider the hypergraph nor its
support at all and as such is not i iately useful in sch i
ing hypergraphs. The other criteria—vertex-edge resolution, detour
and octilinearity—are of little relevance in isolation. For example,
a perfect drawing in terms of detour is easily possible by not using
any anchors or bends (and any assignment to admissible positions).
If we are to constrain other aspects, such as the number of cross-
ings, this effectively means that the computational complexity of
that criteria is immediately restrictive.

4. A Simulated-Annealing Approach

The previous section establishes that even focusing on a single qual-
ity criterion already tends to yield problems that are computationally
complex and the results may still not be quite satisfactory, since such
an approach does not make a trade-off between the various criteria.
Thus, we describe here a proof-of-concept implementation that au-
tomates the process of schematizing a hypergraph while allowing
for such trade-offs. Our prototype is open source, and can be found
online (https:/github.com/stenwessel/setschematics).

The core of our impl ion is a algo-
rithm, a common metaheuristic approach for optimization problems
which can escape local optima; note that this technique has also been
applied for drawing regular graphs, e.g. [DH96]. The main idea is
that the simulated-annealing algorithm iteratively tries a modifica-

tion to the current solution. If this improves the quality, then it is ac-
cepted; if it does not improve, then may still be accepted with some
random chance, which depends on the ‘temperature’ 7 and the qual-
ity of the new and old solution. A cooling schedule reduces the tem-
perature while the algorithm runs, thereby decreasing the chances of
moving to a worse solution. It has been shown that the simulated-
annealing algorithm has a th ical hastic co e toa
global optimum state, provided with an infinite cooling schedule of
infinitely small cooling steps [DCM19]. This is of course not feasi-
ble in practice, but indicates that performing more iterations tends
to lead to a better solution.

The problem that our simulated-annealing technique aims to
solve is to find a schematic drawing of a hypergraph H = (V, S) on
a concentric (or rectangular) grid, where each vertex (and anchor
point) is allowed to be assigned to any admissible position in the
grid. The only hard requirement is that the drawing is valid. Fur-
thermore, we assume a straight-line drawing of edges, but note that
we can introduce bends via anchor points. Below, we describe the

necessary components of our si impl ion

4.1. Representation

A solution to our problem consists of three components: (i) a set
A of anchor points; (ii) a mapping of vertices V and anchor points
A to admissible locations of the concentric grid; (ii) a support per
hyperedge h possibly including anchor points, this support is always
a tree. The union over all supports per hyperedge gives the general
support G = (VUA, E) for H.

Simulated annealing requires an initial solution; we compute this
as follows. We start with an empty set of anchor points and we greed-
ily map each vertex of H to the nearest admissible position that does
not have an assigned vertex yet. Then, we determine the support of
each hyperedge & by computing its Euclidean minimum spanning
tree on its vertices at their assigned positions.

4.2. Measuring quality

We measure the quality as a weighted sum of the quality criteria
P.1-P.7 (see Section 2). The weights of the criteria can be altered
to facilitate a trade-off; with our experiments in Section 5 we deter-
mine good default values. Hence, we obtain the following measures,
where d denotes the diagonal of the bounding box of the input lo-
cations:

P.1 The number of crossings divided by |E|.

P.2 The number of anchor points divided by [V|.

P.3  The total displ is the Eucli di between a ver-
tex’s spatial location and its assigned position, summed over all
vertices. This is divided by |V| - d.

P4 For a vertex u € V and an edge (v, w) € E that is not inci-
dent to u, we compute the shortest distance § between « and
the segment vw. The resolution penalty of this combination
is max{0, A — 8}, where A is a fixed threshold. We sum the
penalties over all combinations and divide it by |V| - |E| - d.

P.5 We divide the total edge length by |E| - d.
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Bekos et al. / Computing Schematic Layouts for Spatial Hypergraphs on Concentric Circles and Grids 7

P.6 We measure this as the total edge length of the support as
drawn, divided by the total edge length if we were to draw that
same support but with every bend and anchor point removed.
As anchor points may connect more than two vertices of H, we
use the length of the Euclidean minimum spanning tree as the
replacement length. We divide this measure by the number of
anchor points; if there are no anchor points, this measure is 0.
For each edge (u, v) € E, we compute

sin (4 arctan u) s

e — x|

P’

i)

which expresses how far (u,v) is from being octilin-
ear [SRMW11]. We sum all these values and divide it by |E|.

4.3. Modification

To modify a current solution to a new solution, we choose one of
the following actions, uniformly at random.

Change anchors. We choose with equal probability to add or re-
move an anchor point. If there are no anchor points to remove, this
operation always adds an anchor point. To add an anchor point,
we pick an edge with crossings (if one exists) with probability
0.5, as such edges are often useful to reroute; otherwise, we pick
an arbitrary edge (which may or may not have crossings). All hy-
peredges using this edge in their support will be rerouted via the
new anchor point. To determine the position of the anchor point,
we select one at random. All locations within an ellipse through
the endpoints that is twice as wide as the edge is long have a five
times higher chance of being selected than those outside of this
ellipse. This helps to steer selection to a lower detour without
eliminating possibilities. We remove only anchor points of de-
gree 2, by adding an edge connecting its two neighbours to all
supports using this anchor point.

Change positions. We select a vertex or anchor point uniformly
at random, such that it has at least one free neighbouring admis-
sible position in the grid. Of these free neighbouring positions,
one is selected at random.

Change support. For a random hyperedge h, we choose two ver-
tices in / that are not adjacent in its support. We add this edge to
its support and remove a random edge along the path between
these vertices in the old support. This ensures that the support
remains a tree. Note that this changes only the support for h.

By maintaining the number of crossings for each edge, we im-
plement the above operations in O(n + a + k + p) time, on a hyper-
graph with n vertices, a anchor points, k hyperedges and p positions
in the grid. The point of efficiency hence lies in ensuring that the
quality measures are updated efficiently. Our support as O(N) edges
at any time, where N = O(nk) is the sum over the cardinalities of
all hyperedges. Hence, puting the for P.4 takes O(nN)
time, using the trivial algorithm. Initializing the measure for P.1,
takes O(N log N + C) time where C = O(N?) is the actual number
of crossings. To update P.1, we compute the change of the number
of crossings for the O(n) edges that change with an operation of the
drawing (a vertex of degree O(n) is moved); this gives an update
time of O(nN). In practice, we expect much fewer edges to change
with a single operation. All other measures are easily updated in
time that is linear in the number of changing edges.

4.4. Cooling schedule

We use a linear cooling schedule derived from the iteration count.
The probability of accepting a new solution with quality ¢’ from a
current solution with quality ¢ is 1 if ¢’ < g (note that lower val-
ues for g are better) and exp(—(¢’ — q)/T') otherwise. This follows
standard practice for such probabilities.

5. Evaluation

To evaluate our si method, we ran quantitative ex-
periments to understand how the weights influence the results and
how the quality measures interact. At the end of this section, we also
discuss example schematic drawings qualitatively.

5.1. Data

We use the following datasets for this evaluation, which are also
available from the repository of our implementation.

Toronto (full). Ninety-four restaurants in Toronto where the 23
hyperedges represent some categories of food, price and rating.
Toronto (filtered). Seventy vertices and three hyperedges, fil-
tered from the full version.

Europe. Dataset of 25 countries of the European Union repre-
sented by their capitals with five hyperedges indicating the Euro-
zone, the EEC and three levels of economic welfare.

MLB Cities. Twenty-five US cities with one or more Major
League Baseball teams, with eight hyperedges indicating the
leagues and divisions.

World Cup. Twenty-nine countries that participated in three soc-
cer world-cup with six hyperedg ing the

hosting countries, top 16 per year, finalists and champions.

5.2. Quantitative evaluation

For each dataset except World Cup, we construct a 30-by-30 rect-
angular grid constructed from the bounding box of the input ver-
tices. We opt for the rectangular grid, as this makes the octilinearity
criterion more natural and matches more intuitively with the Eu-
clidean distance used in our implementation. Using this grid, we
ran the simulated-annealing algorithm for 100, 000 iterations, with
different weight settings. As randomization is involved, we repeat
each trial (dataset-weights combination) 10 times. Though compu-
tational efficiency is not our primary concern, we mention that for
these datasets, running 100, 000 iterations takes roughly 7-15 s on
a standard laptop with a 2.6 GHz Intel i7-9750H CPU.

5.2.1. Weights

To understand the influence of the weights for the various criteria,
we wish to vary these weights and investigate the resulting quality.
To do so, we first need reasonable weights as a baseline, since the
entire parameter space is too large to efficaciously explore experi-
mentally. Based on informal trials with visual inspection, we arrive
at the following rationale for the highest weights and set the default
weights as displayed in Table 1. We observe that, though crossings
are not the ultimate goal, clearly avoidable crossings are undesirable

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
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8 Bekos et al. / Computing Schematic Layouts for Spatial Hypergraphs on Concentric Circles and Grids

Table 1: Default weights of the quality measures.

Measure Weight Measure Weight
P.1: Crossings 100,000.00 P.5: Total length 123.25
P.2: Anchor points 2.50 P.6: Detour 10.00
P.3: Displacement 5312.00 P.7: Octilinearity 29.00
P.4: Resolution 0.85
Crossings
@ Toronto (ful) Toronto (fitered) Europe @ MisCities
500
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3
$ 300
&
100
o o
0 500,000 1,000,000 1,500,000 2,000,000
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Displacement
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Weight

Figure 3: Varying the weight of crossings or displacement, showing
the resulting value of the same (unweighted) criterion.

and we would like to encourage the use of anchor points to route
edges to avoid such if reasonably possible. As such, P.1 achieves
a very high weight. This is followed by a high weight for displace-
ment (P.3) to ensure that the drawing is indeed spatially informative.
We do not want needlessly long edges and thus the next weight is
total edge length.

To validate these weights, we ran the experimental setup, varying
each weight exponentially in an interval around the default value,
while keeping the other weights fixed. The results are displayed
in Figure 3, which plots the unweighted value of the quality mea-
sure as a function of the corresponding weight; see Figure B.1 in
Appendix B for the full figure. As to be expected, the criteria de-
crease (improve) as the weight becomes higher, suggesting that the
simulated-annealing approach can adequately deal with this crite-
ria. Furthermore, we observe that, for crossings, displacement and
detour, the values converge readily, and are effectively stable at the
chosen default weights. As increasing the weights further will have

© 2022 The Authors. Computer Graphics Forum published by
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Figure 4: Effect of displ weight on

little influence, this implies that our aim of prioritizing crossings
and placement has been achieved. The variation in the other weights
still communicates that these criteria are not ignored altogether, at
the expense of these high-weight criteria.

5.2.2. Quality criteria

We now consider potential dependencies between quality criteria
included in the objective function. For many quality-measure pairs,
changing the weight of one has little to no effect on the other. In a
few cases, however, we see that a dependency exists between quality
measures. Refer to Figure 4 where varying weights of one criterion
are plotted against the resulting value of the other measures; see
Figure B.2 in Appendix B for the full figure.

In the topmost charts, we see that a higher weight for vertex dis-
placement has an adverse effect on the crossings and octilinearity
As to be , this signals a trade-off between dis-
placement on the one hand and minimizing crossings and octilin-
earity on the other hand. The bottom chart shows a clear depen-
dency between total edge length and detour, suggesting that total
edge length readily improves detour. This also explains why detour
converges quickly in the results described earlier.

To further detect whether criteria are redundant, we set one or
more weights to zero, keeping the others at the default values. Fig-
ure 5 shows the impact on the original objective function (i.e. all
measures at their default weight). We see very little effect, except
for the two highest-weight criteria: crossings and displacement. By
disabling multiple criteria, we do see an effect, suggesting that these
measures do contribute to finding a good solution.

We also look at how setting a weight to zero affects that spe-
cific quality criteria. Figure 6 shows the results; Figure B.3 in Ap-
pendix B is the full figure. For all quality measures except for de-
tour and anchors, we see a clear improvement (decrease of the ob-
jective function) when the quality measure is enabled. For vertex-
edge resolution, this effect is rather small—we attribute this to the
small weight that this measure has in the default values. For detour,
however, the behaviour is erratic: some instances improve, others
deteriorate. For anchors, we even see that the measure increases
slightly for some instances. Both effects are likely caused by their
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Turning off quality measures in objective
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correlation with total edge length. As such, it may be beneficial to
remove these criteria from the objective function to obtain more re-
liable results. The influence of disabling both criteria on the over-
all objective (with all default weights) is in Figure 5: the results
slightly improve.

5.3. Qualitative evaluation

Figure 1(middle) shows our result on the Europe dataset. Given the
model we are using, this seems to be quite an effective solution:
the spatial structure is largely maintained, but the overall drawing

Figure 7: Result of the Europe datasel on a rectangular grid.

problem may hence be resolved by refining the grid, but also by ap-
plying other styles of drawing the edges. Figure 7 shows this dataset
in a rectangular grid; the stronger octilinearity may help in achiev-
ing a schematic look and feel, and we see a clear trade-off being
made to improve octilinearity in favour of the total edge length (e.g.
the vertical orange edge on the right), but not for crossings (con-
sider the more octilinear blue-orange connection between the left-
bottom and the righttop). Though this map looks more like a ‘stan-
dard’ schematic metro map, establishing whether this is truly ad-
vantageous for users in our setting is an open question.

Figure 8 shows the initial layout of our simulated-annealing
method as well as the eventual result for the MLB Cities dataset,
both on a circular and rectangular grid. We observe in both cases
that our approach quite readily improves the drawing, effectively
reducing crossings. We do observe that there are some alternative
choices to be made for the edges of the support. For example, in the
circular result, the two blue edges on the left connect to the leftmost
vertex, whereas we could improve the drawing possibly by connect-
ing them to the vertex immediately to its right. This reduces total
edge length slightly, though it may reduce octilinearity. However,
the importance of such measure depends on the visual style.

For our third example, we consider the World Cup dataset; see
Figure 9. This dataset is particularly challenging for spatially accu-
rate methods as shown by the KelpFusion visualization. The culprit
is the high number of countries in Europe—with a fairly small spa-
tial extent on a global scale. Here, schematization can be particularly
useful, and our result nicely pulls apart the counties in Europe and
provides a far more readable diagram, one that is still spatially infor-
mative. In the rectangular grid result, we do see another instance of
poor vertex resolution. This suggests that this may need to receive a
slightly higher way to be avoided, or that routing of edges may need
to be done in a final post-processing step.

Finally, we consider a large dataset to test the scalability of
our method. To this end, we use census data of the 388 Dutch

has fairly low visual complexity and a sch ic app e. We

in 2017 to define seven sets on population density,

do observe that the vertex resolution is quite poor—the grid is too
coarse to alleviate it without sacrificing other criteria too much. This

© 2022 The Authors. Computer Graphics Forum p
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water surface and dominant age groups. The result is shown in
Figure 10, computed using 50,000 iterations in about 45 s. The
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10 Bekos et al. / Computing Schematic Layouts for Spatial Hypergraphs on Concentric Circles and Grids

Figure 8: MLB Cities. (top) Initial layout and result on a concentric
grid. (bottom) Initial layout and result on a rectangular grid.

octilinear, schematic nature features quite strongly, and we can see
patterns here, such as the blue set (municipalities with a large per-
centage of water surface) following the coastline. As we focus on

puting the 1 ivity of the diagram, there is room
for improving this visualization, for example by using enclosed ar-

Figure 9: World Cup. (top) Result on a concentric grid. (middle)
Result on a rectangular grid. (bottom) KelpFusion visualization
[MRS*13] with the original locations.

eas for dense areas of a set (e.g. [MRS*13]) or possibly by option
to not draw all connections to reduce crossings (e.g. [GCH*21]).

6. Discussion and Future Work

We studied the problem of drawing spatial hypergraphs, while al-
lowing vertices to be displaced to clarify the set structure. The re-
sults of our evaluation shows that our simulated-annealing approach
can indeed handle this adequately, in spite of the theoretical com-
putational complexity of simplified versions of this problem. We
have focused on the structure that underlies a visualization of the
set system, but these can be readily used with rendering styles such
as that employed by KelpFusion (nesting edges) or by metro maps
(side-by-side rendering).

Complemented by adequate rendering and interaction, our algo-
rithm supports the analysis of set systems in such a way that the
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Figure 10: Result of a municipalities dataset on a rectangular grid.

spatial dimension does not cause unnecessary clutter, but is not fully
discarded either. Zooming into the graphic may also, for example,
refine the grid, thereby allowing a more accurate visualization. The
simulated-annealing algorithm could be refined to repeatedly mod-
ify the current visualization to allow for this type of interaction. This
would save on computation time as well as increase the stability be-
tween the visualizations at different zoom levels.

This leaves us with several avenues for interesting future work.

6.1. Design

We would like to emphasize that our work concentrates on the sup-
port, the structure underpinning various set-visualization methods.
The question is which kind of rendering styles are effective, espe-
cially for the concentric circles layout. We have only briefly shown
some options in Section 2, but not treated these further. A broader
consideration of the design space here is out of scope for this work,
but would be interesting and necessary to move to a fully fledged
set-visualization technique, based on schematic hypergraphs.

Moreover, we may want to visually communicate the deformation
of the spatial dimension. The primary question is how to do this most
effectively. We may again take inspiration from metro maps where
rivers or fare-zone boundaries give some spatial reference.

6.2. Evaluation

We focused on validating our simulated-annealing algorithm using
computational experiments. In future work, we would like to com-
plement this with a case study and human-participants study, that
delve into the questions of what kind of patterns schematic drawings
of hypergraphs help to uncover, to what degree the set structure is

actually clarified, and to what degree the spatial dimension can still
be used to assess spatial patterns. This, however, moves beyond the
scope of this paper where we study the underlying structure — such
studies would rely specifically also on answering the design ques-
tions above.

6.3. Computation

Alternative graph drawing methods could be applied to produce spa-
tial hypergraphs. Whilst our simulated ling works adequately
on many datasets, applying other techniques may prove a interesting
avenue of research. For example, spring embedder methods [Ead84]
or more general randomized algorithms based on the vertex move-
ment paradigm [RRRW18], could be adjusted to produce schematic
drawings of spatial hypergraphs.

Our method also assumes that the admissible positions are spec-
ified beforehand. For full ion, it would be useful to auto-
matically find an effective grid for a given hypergraph, by deciding
whether a concentric or rectangular grid is more suitable, and by
estimating the parameters of such a grid. It is reasonable to expect
that this choice depends on the (spatial) structure of the data: a dense
center with sparse periphery may naturally lean towards a concen-
tric grid, whereas a hypergraph with different dense areas may better
be schematized on a rectangular grid. We may even consider more
adaptive forms where grids are forced onto dense areas but not on
those areas that are sufficiently sparse as to allow an effective no-
deformation rendering.

Depending on the eventual design of how to render the actual
support, we also obtain different considerations for the computa-
tion. For example, how do we effectively include the bends that a
concentric-line routing style induces? If we go for a side-by-side
rendering of the hyperedges that use the same edge of the support,
how do we integrate choosing a good order with the computation of
the support and its drawing?

Finally, the interactivity alluded to above may warrant attention,
in determining how effective such refinements indeed are. That is,
how much computation time is necessary to update a drawing for
a finer grid? Transitioning between drawings of set visualizations
[MWTI19] may be useful to understand the layout changes; but
in this use case, the algorithm controls the resulting drawing and
thereby also the necessary changes—this control may alleviate the
need for transitions, or make them easier to compute. To understand
this control, we need to understand the stability of our method: does
the algorithm inherently maintain the main structures of the support,
or should this be controlled more explicitly? Finally, seeing only a
portion of the map may break some of the desired properties: for
example, are all nodes in the viewport in fact still connected through
the support, or does this rely on connections outside of the view-
port? Does this need to be addressed through the local structure or
would a design of the off-viewport information be more effective?
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Appendix A: Proofs

Theorem A.1. ICM is NP-complete.

Proof. Assume that G = (U UV, E) is bipartite graph with parti-
tions U = {uy, ..., u,} and V = {vy, ..., v,}. Assume w.l.o.g. that
m > n. We create m? circles centered at the origin, denoted by cj
in increasing radius. We position U and V such that each partition
defines precisely one ray. As G is bipartite, each edge has one end-
point on each ray. A vertex v; or «; can be placed only on one of the
mcircles ¢; with j mod m = i — 1. This implies that no two vertices
of one partition can be assigned to the same circle. We have enough
circles such that every permutation of the vertices on each of the rays
is realizable. Every bipartite two-layered layout of G corresponds to
a concentric-circles layout of G under the radial position model; see
also Figure A.1. Hence, minimizing crossings is NP-hard.

Since we can easily count in polynomial time the number of
crossings in a given assignment of vertices to admissible positions,
the problem is also in NP and therefore it is NP-complete. a

Figure A.1: A two-layered bipartite layout as an instance of our
concentric-circles layout for m = 4. The concentric circles hence
are shown as four groups of four circles each.

Theorem A.2. CCCL is NP-complete.

Proof. The problem is in NP, as for a given vertex-circle assign-
ment (which would be the certificate), we can minimize the number
of bends of every hyperedge independently of the others in polyno-
mial time.

The NP-hardness is shown via a reduction from Vertex
Cover [GJ79]. Let an instance of vertex cover be given by a graph
G = (V, E)and an integer k. For convenience we denote the vertices
of G by vy, vy, ... v, and its edges by e, e, ..., €,,. The reduction
generates an instance of CCCL given by a hypergraph H = (X, §),
aset C={cy,..., €341} of 3n+ 1 circles and a number b, which
upper bounds the bends. To distinguish the vertices from G and H,
we name the vertices of H with the letter x and an appropriate index.
To simplify the presentation we think of every circle as a horizontal
line in the projective plane. The angles a(-) in Z, are then specifying
the x-coordinates of the vertices.

Every vertex v; € V of G contributes three consecutive circles
C3i-2, €3i-1, €3 in set C of the CCCL-instance. Set C contains one

additional circle with index z = 3n + 1. For a better understanding,
we give a rough idea what the use of the circles are. The circles c3;
will be used to indicate that an edge is covered from the vertex cover
by the endpoint v; (when we place a vertex here). We call the cir-
cle ¢y the selector circle of v;. The circles ¢, have the purpose
to give room for routing the hyperedges. The circles c3;_, will be
used to add constraints to the drawing of the hyperedges by placing
vertices on them, which block certain paths. We use the short-hand
notation s(i) = 3i and b(i) = 3i — 2. The cycle ¢, will be the place
for a special vertex that is incident to many hyperedges.

Each edge e, = vjv; € E of G contributes three vertices x, Xp
and x;, in hypergraph H such that I(x,) = [s(), s(j)], l(xl,,) =s(j),
I(x;,) = x(i),a(x’,,) =3p-lLakx,)= 3panda(x;,) =3p+ 1. Ver-
tices x‘,, xp and xj, are joined with a hyperedge (xj,, Xp, X3}, called v-
selector, of multiplicity 5 in H. Note that for now, we allow some hy-
peredges with multiplicity, i.e. to appear multiple times. This makes
the reduction easier. We discuss in the end, how to avoid hyperedges
with multiplicity. It is not difficult to see that for any two edges e,
and ¢, of G with p < g, the corresponding triple of vertices x‘,,, xXp
and x;, due to edge e, are all to the left of the triple of vertices x;, X,
and x; due (o edge ;. ]

Observation A.1. A v-selector for ¢, = v;v; has at least two bends
if x, is placed on a circle other than ¢ or ¢(j). If it is placed either
ON ¢y Or 0N () then one bend suffices; see Figure A.2.

€6 = Cy(2)

7
Figure A.2: Handling of the edge e, = v\v, in the reduction.

Observation A.1 implies that, if x, is placed on a circle other than
the selector circles of the endpoints of ¢, then we get a ‘penalty” of
five additional bends (due to the multiplicity).

We continue the construction of hypergraph H by introducing
3n + 1 — k vertices, called selection vertices, which we denote by x
for 1 <i <3n+ 1 — k. Each of these vertices has a-value 3m + 3,
which guarantees that all selection vertices are placed to the right of
all previously introduced vertices. Foreach 1 <i < 3n+ 1 —k, we
set I(x}) = [1, 3n], while fori = 3n + 1 — k, weset I(x}) =3n+ 1.
In other words, each selection vertex can be placed on any circle of
C\ {c;}, except one that is inevitably placed on c;. The fact that all
selection vertices have the same a-value further implies that no two
selection vertices can be placed on the same circle; this in turn im-
plies that there exist exactly k circles in C \ {c.} that do not contain
a selection vertex.

The construction of hypergraph H continues by introducing a spe-
cial vertex x%, such that I(x*) = 3n + 1 and @ (x*) = 3m + 4, that is,
X% lies on ¢, and appears to the right of all previously introduced
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vertices. Further, for every edge e, € E of G, hypergraph H contains
a hyperedge {x,, x°}. We refer to these hyperedges as e-connectors.

We conclude the construction of hypergraph H by introducing a
set of n(m + 1) blocking vertices, which restrict the possible rout-
ings of the e-connectors. In particular, every vertex v; € V con-
tributes a blocking vertex x! in H, such that /(x?) = s(i) and a(x}) =
3m + 2, that is, x’" lies on ¢, and is restricted between the selec-
tion vertices and the remaining vertices of H. Further, every pair
consisting of a vertex v; € V and an edge ¢, € E of G also con-
tributes a blocking vertex x’;., in H, such that l(x;,.,) = b(i) and
af. I’,_,-) = a(x,), that is, x’,:', has the same « value as x, and lies on
cp(i). We are now ready to make a crucial observation regarding the
routing of the e-connectors in the presence of blocking vertices.

Observation A.2. Each e-connector {x,, x°} with e, = v;v; has at
least two bends if x, lies on a selector circle ¢3 due to the block-
ing vertices x{’. and x’/’ and the selection vertex on c;. If there is no
selection vertex on 3 then two bends suffice.

An example of the construction of the CCCL-instance can be seen
in Figure A.3. Since the size of C is O(n) while the size of H is
O(nm), the construction of the CCCL-instance can be done in time
polynomial with respect to the size of the Vertex Cover instance,
which is O(n + m). We now claim the following: vertex-cover in-
stance G has a solution with k vertices, if and only if there exists a
drawing of the constructed CCCL-instance H with b = 7m bends.

€1 =vvy € =uvivy €3 = vy e = vyvg

Figure A.3: Generated CCCL instance for a graph on four vertices
(a triangle vivyvs with edge vyvy). Vertices for edges are shown as
a red dot (+), alternative spots as a grey dot (), blocking vertices
as a cross (x) and selection vertices as a square (0J). The drawing
encodes the vertex cover {vy, v3}.

We first prove the ‘only if direction’. Assume that there exists
a vertex cover U with |U| = k. For each edge e, = vjv; of G, we
place vertex x, of H on the circle ¢ if v; € U, and on the circle
cy(j) otherwise. Furthermore, we distribute the selection vertices on
the circles of C, such that there is no selection vertex on the circle
csi, if vertex v; belongs to U. This ensures that we can route all
e-connectors with two bends by Observation A.2. By Observation
A.1, atotal of 5m + 2m = Tm bends suffices.

- The A

We are left with the ‘if” direction. Assume that there exists a draw-
ing with 7m bends. We now count the number of bends for each of
the six hyperedges that contain x, with ¢, = v;v;. By Observation
A.1, it follows that if x, is not placed on c ;) or ¢ then we get
at least 10 bends for the v-selectors of e,,. If x,, is placed on ¢(;) or
¢y(j), then we can have five bends instead. Assume that x, is placed
on ¢y;. If there is no selection vertex on the circle ¢3;1, then we
need two bends for the e-connector of x,. Otherwise we need at least
three bends. This shows that seven bends for these hyperedges are
possible only if there is no selection vertex either on ¢3;; or ¢3;1.
Since we assumed that the drawing has at most 7m bends in total,
we know that there is no selection vertex on either ¢3; 1 or ¢3;
for all edges v;v;. Since there are 3n + 1 — k such selection points,
we have found a set of k vertices that forms a vertex cover of the
graph G.

In the remainder of the proof, we discuss a few technical details
that have been currently left out. Since we have used the projective
plane in our construction, we have to rule out that a curve leaves
to the right and enters from the left. This can be easily achieved
by placing an additional blocking vertex b; on every circle ¢; such
that I(b;) = i and a(b;) = 3m + 5, i.e. b; is to the right of all ver-
tices in the construction (under the projective plane assumption).
We also have added the v-selectors with multiplicity. To avoid this,
we have to adapt the reduction and implement a different construc-
tion to have an equivalent of Observation A.1. In particular, we need
to guarantee that any routing of a v-selector other than ™/ _i-shapes,
leads to a negative CCCL-instance. Whenever a v-selector is drawn
as a zigzag path (which would allow to place x, on a circle that is not
a selector circle), an additional bend is needed. This could currently
be saved by drawing the e-connector with only one bend joining x,
straight from the right. To prevent such routing, foreach 1 <i < n,
we introduce a vertex x" with /(x]") = 3i — 1 and e(x]") = —2 (that
is, x" is placed on circle ¢3;_; and at the left of all vertices in the con-
struction) and a hyperedge {x, x/}; see Figure A.4. We can route
[xj"‘x{’) with one bend (and one bend is always needed), only if it
contains a large piece of ¢3;;. It is now impossible to place any x,
on a circle ¢3;; unless more bends are added. Thus, we cannot ‘re-
pair” any zigzag routing of the v-selectors anymore. Consequently,
if we require m + 2m + n total bends, every v-selector needs one
bend, every e-connector needs two bends and every of the n hyper-
edges that we added last needs one bend. This shows that the only
possible positive instances have to behave as it was required for the
case with multi-hyperedges.

Figure A4: The additional hyperedges necessary to avoid multi-
hyperedges in the reduction.

Theorem A.3. RDM is solvable in polynomial time.

Proof. Assume the circles in C are indexed, sorted by their radius
and that the difference in radius between consecutive circles is con-
stant. The input specifies a range [V, Umax] Of indices that each
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vertex v may be placed on. We use d, to capture the radial change
of edge e. Specifically, the following linear program (LP) describes
our problem:

minimize ), ;d.
Sl Upin < €y < Upy foreachv eV,
d,>c¢,—c¢, foreache = (u,v) € E,

d,>c,—c, for each e = (u,v) € E.

The LP requires that the ¢, variables are integer. However, we
prove that the relaxation has an optimal integer solution and thus
the problem can be solved efficiently. In particular, every solution
to the LP has a set of constraints that are not tight (one of the two
constraints for each edge e € E): removing these yields an LP with

© 2022 The Authors. Computer Graphics Forum published by

the same solution, for which the underlying matrix is totally uni-
modular. In fact, all vertices of the feasible region induced by the
original LP are integral and in bijection to the layer assignments. As
a consequence, the optimization problem can be solved by greedily
improving a layer assignment (analogous to the Simplex algorithm
[Dan90]). 0

Appendix B: Experimental results
This appendix shows, on the next few pages, extended figures of

those presented in the main text. That is, it shows all trial results for
all measures.
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