
Mathematical Programming (2021) 190:135–170
https://doi.org/10.1007/s10107-020-01527-9

FULL LENGTH PAPER

Series A

Finding and verifying the nucleolus of cooperative games

Márton Benedek1,2,3 · Jörg Fliege4 · Tri-Dung Nguyen5

Received: 19 December 2018 / Accepted: 14 May 2020 / Published online: 6 June 2020
© The Author(s) 2020

Abstract
The nucleolus offers a desirable payoff-sharing solution in cooperative games, thanks
to its attractive properties—it always exists and lies in the core (if the core is non-
empty), and it is unique. The nucleolus is considered as the most ‘stable’ solution in
the sense that it lexicographically minimizes the dissatisfactions among all coalitions.
Although computing the nucleolus is very challenging, the Kohlberg criterion offers a
powerful method for verifying whether a solution is the nucleolus in relatively small
games (i.e. with the number of players n ≤ 15). This approach, however, becomes
more challenging for larger games because of the need to form and check a criterion
involving possibly exponentially large collections of coalitions, with each collection
potentially of an exponentially large size. The aim of this work is twofold. First,
we develop an improved version of the Kohlberg criterion that involves checking
the ‘balancedness’ of at most (n − 1) sets of coalitions. Second, we exploit these
results and introduce a novel descent-based constructive algorithm tofind the nucleolus
efficiently.We demonstrate the performance of the new algorithms by comparing them
with existing methods over different types of games. Our contribution also includes
the first open-source code for computing the nucleolus for games of moderately large
sizes.

Mathematics Subject Classification 91A12 · 90C90

1 Introduction

Cooperative games model situations where players can form coalitions to jointly
achieve some objective. Assuming that it is more beneficial for the players to work
together, a natural question is how to divide the reward of the collaboration among

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10107-
020-01527-9) contains supplementary material, which is available to authorized users.

B Márton Benedek
benedek.marton@krtk.mta.hu

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-020-01527-9&domain=pdf
http://orcid.org/0000-0002-7492-1174
https://doi.org/10.1007/s10107-020-01527-9
https://doi.org/10.1007/s10107-020-01527-9

136 M. Benedek et al.

the players in such a way that ensures the stability of the grand coalition, i.e. avoid-
ing any subgroup of players to break away in order to form their own coalition and
increase their total payoff. Solution concepts in cooperative games provide the means
to achieve this.

In a cooperative game (with transferable utilities), each coalition of players is asso-
ciated with a value, a real number that represents what that coalition could achieve by
working together, independently of other players. We are looking for a stable alloca-
tion of the value associated with the grand coalition, that includes every player in the
game. A natural requirement from such an outcome is to allocate exactly the grand
coalition value, and to do that individually rationally, i.e. each player should receive
at least her stand-alone value. There are games where no such outcome exists, how-
ever, for our purposes in particular, we consider games where at least one individually
rational outcome exists.

Applying the same concept to all groups of players, coalitionally rational outcomes
form the core, guaranteeing to every coalition at least the amount that they could
achieve by breaking away from the grand coalition. In this sense, core outcomes
can be considered stable. However, it is possible that no payoff vector satisfies this
condition, and a core outcome might not exist. Furthermore, in the appealing case of
a non-empty core, one might find multiple core payoffs, offering possibly different
levels of stability.

There are other solution concepts which provide outcomes that are, in a certain
sense, as stable as possible. The first such solution concept is called the least core,
whichminimizes theworst level of dissatisfaction, i.e. the difference ofwhat a coalition
could achieve on their own and the amount allocated to the coalition, among all the
coalitions. Note that least core payoffs always exist, but such a payoff vector might
still not be unique.

Least core outcomes minimize the worst (largest) dissatisfaction level among all
coalitions over the set of efficient payoff vectors, that allocate exactly the grand coali-
tion value. Since there might be multiple of such outcomes, we might be interested in
minimizing the second (third, etc.) largest dissatisfaction level of the remaining coali-
tions among these outcomes. By lexicographically minimizing the non-increasingly
ordered dissatisfactions of all coalitions, we arrive at one of the most widely known
solution concepts in cooperative game theory, the nucleolus, which is the ‘most stable’
individually rational outcome. In this paper we are focusing on the computation and
the verification of the nucleolus.

The nucleolus was introduced in 1969 by Schmeidler [1] as a solution concept with
attractive properties: it always exists (in a game with individually rational outcomes),
it is unique, and it lies in the core, if the core is non-empty. Despite the desirable
properties that the nucleolus has, its computation is, however, very challenging because
the process involves the lexicographical minimization of 2n excess values, where n
denotes the number of players. While there is a few classes of games whose nucleoli
can be computed in polynomial time (e.g. [2–7]), it has been shown that finding the
nucleolus isNP-hard formany classes of games, such as the utility gameswith non-unit
capacities [6] and the weighted voting games [8].

While finding the nucleolus is very difficult, Kohlberg [9] provides a necessary
and sufficient condition for a given imputation to be the nucleolus, which we will

123

Finding and verifying the nucleolus of cooperative games 137

describe in the next section. This set of criteria is particularly useful for relatively
small games (e.g. less than 10 players). The verification of it, however, becomes time
consuming when the number of players exceeds 15, and becomes computationally
extremely demanding when the number of players exceeds 20, even if we have an
educated guess on the nucleolus based on the structure of a game. This is because the
criterion involves the formation of collections of (tight) coalitions from all 2n possible
coalitions and iteratively verifying if unions of these collections are ‘balanced’ in a
way to be described in details in Sect. 2.2. The first aim of our work is to resolve these
issues and propose a new improved set of criteria for verifying the nucleolus.

Kopelowitz [10] suggested using nested linear programming (LP) to compute a
closely related solution concept, the kernel of a game. This encouraged a number
of researchers to focus on the computation of the nucleolus using LPs, rather than
sharpening the Kohlberg criterion.1 For example, Kohlberg [12] presents a single LP
withO(2n !) constraints which later on is improved by Owen [13] toO(4n) constraints
(at the cost of having larger coefficients). Puerto and Perea [14] recently introduced a
different single-LP formulation with O(4n) constraints and O(4n) decision variables
and with coefficients in {−1, 0, 1}. The nucleolus can also be found by solving a
sequence of LPs. However, either the number of LPs involved is exponentially large
[15,16] or the sizes of the LPs are exponential [17–20]. Our second aim is to directly
solve the lexicographical minimization problem via introducing a new descent-based
approach.We compare our method with classical sequential LP methods (primal and
dual sequences as described in [17]), the prolonged simplex method of [18], and the
simplex implementation for finding the nucleolus from Derks and Kuipers [19].

The four key contributions of our work are:

• We present a new set of necessary and sufficient conditions for a solution to be the
nucleolus in Sect. 3.1. The number of collections of coalitions to be checked for
balancedness is at most (n − 1) (instead of exponentially large as in the original
Kohlberg criterion).

• We derive a new lexicographical descent algorithm for finding the nucleolus in
Sect. 4. The new algorithm is distinguished from existing methods in that we
directly solve the lexicographical minimization problem by iteratively finding
improving directions through the balancedness checking procedure within the
improved Kohlberg criterion.

• We demonstrate the performance of the proposed methods through numerical tests
on various types of games in Sect. 5.

• We develop the first open-source code for computing the nucleolus of moder-
ately large sizes in [21]. For completeness it also includes the implementation of
algorithms from [17–19].

In addition, we provide further contributions such as:

• The balancedness condition is essentially equivalent to solving a linear program
with strict inequalities—a somewhat undesirable situation in mathematical pro-
gramming. We provide an efficient tool for checking the balancedness condition
in Sect. 3.3, requiring solving less number of LPs.

1 The only result we are aware of is the nonlinear approximation described in [11].

123

138 M. Benedek et al.

• While checking theKohlberg criterion, wemight end up having to store collections
of exponentially large number of coalitions. We provide a method for reducing the
storage size of these collections to at most (n − 1) coalitions in Sect. 3.2.

2 Notations and preliminaries

2.1 Notations

Let n be the number of players and N = {1, 2, . . . , n} be the set of all the players. A
coalitionS is a subset of players; i.e.S ⊆ N . The characteristic function v : 2N �→ R

maps each coalition to a real number v(S) (such that v(∅) = 0). An outcome in a
game is a payoff vector (payoffs, for short) x = (x1, x2, . . . , xn) of real numbers, with
xi (i ∈ N) being the share of player i . We focus on profit games and assume that it
is more desirable to have higher shares. All our results can be extended to cost games
through transforming the characteristic function to the corresponding profit game.

Let us denote x(S) = ∑
i∈S xi . Given the total payoff v(N), efficient outcomes x,

also called preimputations, satisfy
∑

i∈N xi = v(N). Let us denote by PI the set of
these: PI = {x ∈ R

n : x(N) = v(N)}. The set of imputations, denoted by I, contain
efficient outcomes that satisfy individual rationality; that is, xi ≥ v({i}),∀i ∈ N .
The core of the game is the set of all efficient payoffs x such that no coalition has an
incentive to break away, i.e. x(S) ≥ v(S) for all S � N .

For each outcome x, the excess value of a coalition S is defined as d(S, x) :=
v(S) − x(S), which can be regarded as the level of dissatisfaction the players in
coalition S have with respect to the proposed payoff vector x. Then the least core is
defined as follows: the set of preimputations {x ∈ PI : d(x,S) ≤ ε∗ ∀S � N ,S �= ∅}
form the least core, where ε∗ is the smallest value such that the set is nonempty.

For any imputation x, let �(x) = (�1(x),�2(x), . . . ,�2n (x)) be the vector of
all the 2n excess values at x sorted in a non-increasing order; i.e. �i (x) ≥ �i+1(x)
for all 1 ≤ i < 2n . Let us denote �(x) <L �(y) if there exists r ≤ 2n such that
�i (x) = �i (y),∀1 ≤ i < r and �r (x) < �r (y). Then ν(N , v) ∈ I is the nucleolus
(ν for short) if �(ν) <L �(x), ∀x ∈ I, x �= ν.

If we only require x and ν to be preimputations, we arrive at the definition of the
prenucleolus, which can be seen as the most stable efficient outcome. In this paper
every result is focusing on the nucleolus, hence throughout the paper we consider
only games with non-empty imputation set. However, the aim is to develop algorithms
applicable to a general class of games, thus we make no further assumptions on the
characteristic function. Moreover, with suitable modifications, every result can be
applied to the prenucleolus, making them applicable to every cooperative game (with
transferable utilities).

For each collection Q ⊆ 2N , let us denote the size of Q by |Q|. We associate each
collection Q with a weight vector in R

|Q| with each element denoting the weight of
the corresponding coalition in Q. Throughout this paper, we use bold font for vectors
and italic font for scalars. Whenever it is clear from context, we are going to omit the
argument x from maximal dissatisfaction levels εk , tight sets T0 and Tk , collection of
tight sets Hk , and so on (the latter notions introduced in Sect. 2.2).

123

Finding and verifying the nucleolus of cooperative games 139

For S ⊆ N , let us denote by e(S) the characteristic vector of S in {0, 1}n whose
i th element is equal to one if and only if player i is in coalition S. With this, for all
x ∈ R

n , we have x(S) = ∑
i∈S xi = xT e(S). Furthermore we can consider (linear)

spans and the rank of collections: coalition S is in the linear span of collection Q if its
characteristic vector e(S) is in span({e(T) : T ∈ Q}) and rank(Q) := rank({e(T) :
T ∈ Q}). Next, we formally define the concept of balancedness.

Definition 1 A collection of coalitions Q ⊆ 2N is balanced if there exists a weight
vector ω ∈ R

|Q|
>0 such that e(N) = ∑

S∈Q ωSe(S). Given a collection T0 ⊆ 2N , a

collection Q ⊆ 2N is called T0-balanced if there exist weight vectors γ ∈ R
|T0|
≥0 and

ω ∈ R
|Q|
>0 such that e(N) = ∑

S∈T0 γSe(S) + ∑
S∈Q ωSe(S).

Remark 1 We make the following observations about balancedness:

(a) Balancedness implies T0-balancedness for any T0, while for T0 = ∅ the two
concepts are equivalent.

(b) All results in this paper are concerned with the nucleolus. These results and the
corresponding algorithms to be described can be adapted for the prenucleolus by
setting T0 = ∅.

2.2 Algorithmic view of the Kohlberg criterion

We first formalize the concept of balancedness and summarize the main results of
Kohlberg [9] from an algorithmic viewpoint. For any efficient payoff distribution
x ∈ PI, Kohlberg [9] first defines the following sets of coalitions: T0(x) = {{i}, i =
1, . . . , n : xi = v({i})}, H0(x) = {N } and Hk(x) = Hk−1(x)∪ Tk(x), k = 1, 2, . . . ,
where for each k ≥ 1,

Tk(x) = argmax
S /∈Hk−1(x)

{v(S) − x(S)} , εk(x) = max
S /∈Hk−1(x)

{v(S) − x(S)} .

Here, Tk(x) includes all coalitions that have the same excess value εk(x) and ε1(x) >

ε2(x) > · · · , while T0(x) contains the players for which x is on the boundary of
violating individual rationality. We call Tk(x) the set of ‘tight’ coalitions in the sense
that coalition S belongs to Tk(x) if and only if the constraint v(S) − x(S) = εk(x)
is active/tight. In the followings, the terms ‘collection of coalitions’ (collection for
short) and ‘subset of the power set 2N ’ are equivalent and are used interchangeably.

For any collection of coalitions Q, let us define

Y (Q) = {
y ∈ R

n : y(S) ≥ 0 ∀S ∈ Q, y(N) = 0
}
.

We have Y (Q) �= ∅ since 0 ∈ Y (Q). The first key result in Kohlberg [9] that will be
exploited in this work is the following lemma:

Lemma 1 (Kohlberg [9]) Given a collection T0 ⊆ 2N , a collection T ⊆ 2N is T0-
balanced if and only if y ∈ Y (T0 ∪ T) implies y(S) = 0,∀S ∈ T .

123

140 M. Benedek et al.

This result allows the author to define two sets of equivalent properties regarding a
sequence of collections (Q0, Q1, . . .):

Definition 2 (Q0, Q1, . . .) has Property I if for all k ≥ 1, the following claim holds:
y ∈ Y (∪k

j=0Q j) implies y(S) = 0, ∀S ∈ ∪k
j=1Q j .

Definition 3 (Q0, Q1, . . .) has Property II if for all k ≥ 1, ∪k
j=1Q j is Q0-balanced.

The main result of [9] can be summarized in the following theorem:

Theorem 1 (Kohlberg [9]) For games with a non-empty imputation set, the follow-
ings are equivalent: (a) x is the nucleolus; (b) (T0(x), T1(x), . . .) has Property I; (c)
(T0(x), T1(x), . . .) has Property II.

For the sake of completeness, in Online Appendix A of the e-companion [22] we
provide a proof of Theorem 1 slightly different than the one in [9]. To appreciate the
practicality of the Kohlberg criterion and for convenient development later, we present
the algorithmic view of the criterion in Algorithm 1.

Algorithm 1: (Original) Kohlberg algorithm for verifying if a payoff vector is the
nucleolus of a cooperative game.
Input: Game (N , v), imputation x ∈ I;
Output: Conclude if x is the nucleolus or not;
1. Initialization: Set H0 = {N }, T0 = {{i} : xi = v({i}), i = 1, . . . , n} and k = 1;

while Hk−1 �= 2N \{∅} do
2. Set Tk = argmax

S /∈Hk−1

{v(S) − x(S)};

if (∪k
j=1Tj) is T0-balanced then

3. Set Hk = Hk−1 ∪ Tk , k = k + 1 and continue
else

4. Stop the algorithm and conclude that x is not the nucleolus
end

end
5. Conclude that x is the nucleolus.

In this algorithm, we iteratively form the tight sets Tj (j = 0, 1, . . .) until either
all the coalitions are included, and we conclude that the input payoff vector is the
nucleolus (i.e. stopping at Step 5), or stop at a point where the union of the tight
coalitions is not T0-balanced (in Step 4), in which case we conclude that the payoff
vector is not the nucleolus.

3 An improved Kohlberg criterion

The Kohlberg criterion, as described in Sect. 2.2, offers a powerful tool to assess
whether a given payoff distribution is the nucleolus by providing necessary and suf-
ficient conditions. These conditions can be used in relatively small or well-structured
games, where a potential candidate for the nucleolus can be easily identified andwhere

123

Finding and verifying the nucleolus of cooperative games 141

checking the balancedness of the corresponding tight sets can be done easily (possibly
analytically). For larger games, it is inconvenient to apply the Kohlberg criterion as it
could involve forming and checking the balancedness of exponentially large number
of subsets of tight coalitions (this is the case when the while loop in Algorithm 1 takes
an exponentially large number of steps), each of which could be of exponentially large
size. This section aims to resolve these issues.

3.1 Bounding the number of iterations to (n− 1)

The key idea to check the Kohlberg criterion in a more efficient way is to note that,
once we have obtained and verified the T0-balancedness of ∪k

j=1Tj , we do not have

to be concerned about those coalitions that belong to span(∪k
j=1Tj). In brief, this is

because once a collection is T0-balanced, its span is also T0-balanced as formalized
in the following lemma:

Lemma 2 For any collection T0 ⊆ 2N , the following results hold:

(a) If a collection T is T0-balanced, then span(T) is also T0-balanced.2

(b) If collections U , V are T0-balanced then U ∪ V and span(U) ∪ span(V) are also
T0-balanced.

(c) If U is T0-balanced and U ⊆ V , then span(U) ∩ V is also T0-balanced.

We provide a proof of Lemma 2 in Online Appendix E of [22]. With these results,
we can provide an improved Kohlberg algorithm as shown in Algorithm 2.

Algorithm 2: Improved Kohlberg Algorithm for verifying if a payoff vector is
the nucleolus.
Input: Game (N , v), imputation x ∈ I;
Output: Conclude if x is the nucleolus or not;
1. Initialization: Set H0 = {N }, T0 = {{i} : xi = v({i}), i = 1, . . . , n} and k = 1;
while rank(Hk−1) < n do

2. Find Tk = argmax
S /∈span(Hk−1)

{v(S) − x(S)};

if (∪k
j=1Tj) is T0-balanced then

3. Set Hk = Hk−1 ∪ Tk , k = k + 1 and continue;
else

4. Stop the algorithm and conclude that x is not the nucleolus.
end

end
5. Conclude that x is the nucleolus.

The differences between Algorithm 2 and Algorithm 1 are: (a) the stopping condi-
tion of thewhile loop has been changed from Hk−1 �= 2N \{∅} to rank(Hk−1) < n, and
(b) the search space at Step 2 has been changed from S /∈ Hk−1 to S /∈ span(Hk−1).
As a result, we have the following desirable property:

2 Lemma 2.4 from [23].

123

142 M. Benedek et al.

Theorem 2 The while-loop in Algorithm 2 terminates after at most (n − 1) iterations
and it correctly decides whether a given imputation is the nucleolus.

Proof First, by the construction in Step 2 of the algorithm, Tk ∩ span(Hk−1) = ∅
and hence, by Step 3, we have that rank(Hk) = rank(Hk−1 ∪ Tk) keeps increasing.
Therefore,

n ≥ rank(Hk) = rank(Hk−1 ∪ Tk) ≥ rank(Hk−1) + 1 ≥ rank(H0) + k = k + 1,

and hence the algorithm (i.e. the while loop) terminates in at most (n − 1) itera-
tions. Here, we also note that the algorithm terminates at either Step 4 or Step 5 with
complementary conclusions.

Proving that the algorithm correctly decides whether an impuation is the nucleolus
is equivalent to showing that (a) if x is the nucleolus then the algorithm correctly
terminates at Step 5, and (b) if the algorithm terminates at Step 5, then the input
payoff vector must be the nucleolus.

Part (a): We first note that, although the sequences of Tk and Hk generated from
Algorithm 2 are generally different from those in Algorithm 1, these are the same in
the initialization and the first iteration; that is, T0, T1, H0, H1 are the same in both
algorithms. Therefore, if x is the nucleolus, then T1 must be T0-balanced as a direct
result from the Kohlberg criterion described in Theorem 1. Thus, the algorithm goes
through to Step 3 at k = 1. Suppose, for the purpose of deriving a contradiction, that
the algorithm goes through to Step 4 instead of Step 5, for some index k > 1; that is
(∪k

j=1Tj) is not T0-balanced. By Lemma 1, there exists y ∈ R
n such that

y(S) ≥ 0, ∀S ∈ ∪k
j=0Tj ; y(N) = 0; y(S ′) > 0, for some S ′ ∈ ∪k

j=1Tj .

(1)
Notice, however, that ∪k−1

j=1Tj is T0-balanced by the construction in Step 3 of the
previous iteration. Therefore, S ′ /∈ Hk−1 since otherwise Lemma 1 is violated. Thus,
S ′ ∈ Tk and hence (1) leads to

(x + y)(S) ≥ x(S), ∀S ∈ Tk; (x + y)(S ′) > x(S ′), for some S ′ ∈ Tk .

As a result

d(S, x + y) ≤ d(S, x), ∀S ∈ Tk; d(S ′, x + y) < d(S ′, x), for some S ′ ∈ Tk;

that is, for all coalitions in Tk , the corresponding excess values for (x + y) are not
greater than that of x with at least one strict inequality for some coalition S ′. Thus,

�Tk (x + y) <L �Tk (x), (2)

where for each collection of coalitions Q, �Q is the non-increasingly ordered excess
values with respect to only those coalitions in Q. Since Hk−1 is T0-balanced by the

123

Finding and verifying the nucleolus of cooperative games 143

construction in Step 3 of the previous iteration, span(Hk−1) is also T0-balanced by
Lemma 2. Thus, y(S) = 0, ∀S ∈ span(Hk−1) and

�span(Hk−1)(x + y) =L �span(Hk−1)(x). (3)

From (2) and (3) we have

�span(Hk−1)∪Tk (x + y) <L �span(Hk−1)∪Tk (x). (4)

Note that (4) also holds if we scale y by any positive factor δ, i.e.

�span(Hk−1)∪Tk (x + δy) <L �span(Hk−1)∪Tk (x). (5)

For all S /∈ (span(Hk−1)∪Tk)we have v(S)−x(S) < εk . Thus, there exists δ > 0
small enough such that x + δy is an imputation and that

v(S) − (x + δy)(S) < εk, ∀S /∈ (span(Hk−1) ∪ Tk). (6)

Results (5) and (6) imply that the |span(Hk−1) ∪ Tk | largest excess values at x are
lexicographically larger than those at (x + δy). As a result, �(x) is lexicographically
larger than �(x + δy) considering all coalitions, which means x is not the nucleolus,
i.e. we have arrived at a contradiction.

Part (b): If the algorithm bypassed Step 4 and went to Step 5, then (∪k
j=1Tj) is T0-

balanced for all k until rank(Hk−1) = n. Let z be the nucleolus; then by its definition,
its worst excess value should be no larger than the worst excess value of x, which is
equal to ε1. Thus, the excess value of z over any coalition, including those in T1, must
be at most ε1; i.e.

(z − x)(S) ≥ 0, ∀S ∈ T1.

Notice that (z − x)(N) = 0 and (z − x)(S) ≥ 0,∀S ∈ T0 by the construction
of T0 and because z ∈ I. Then since T1 is T0-balanced, we have by Lemma 1 that
(z − x)(S) = 0 for all S ∈ T1. Using a similar argument, given that x and z are
lexicographically equivalent on span(T1) and since z is the nucleolus, we also have
(z − x)(S) ≥ 0,∀S ∈ T2. Thus,

(z − x)(S) ≥ 0, ∀S ∈ T1 ∪ T2.

Again, given that (T1 ∪ T2) is T0-balanced, we have by Lemma 1 that (z− x)(S) = 0
for all S ∈ T1 ∪ T2. We can continue and use an induction argument to show that
(z− x)(S) = 0 for all S ∈ Hk−1, k ≥ 1. Given that rank(Hk−1) = n, we have x = z,
i.e. x is the nucleolus. ��
Remark 2 Step 2 in both Algorithms 1 and 2 still involves comparing vectors of expo-
nential lengths. The key finding in Theorem 2, however, is to show that Step 2 of
Algorithm 2 is not repeated more than (n − 1) times (instead of possibly exponen-
tial in the original Kohlberg criterion described in Algorithm 1). There are structured

123

144 M. Benedek et al.

games such as weighted voting games, network flow games and coalitional skill games
in which Step 2 can be executed efficiently. We refer the readers to [20] for details.

We demonstrate the effectiveness of Algorithm 2 in Sect. 5. Before that, let us
discuss how to resolve some other computationally demanding tasks of our algorithm.

3.2 Reducing the sizes of the tight sets

When checking the Kohlberg criterion we might end up having to store an expo-
nentially large number of coalitions. The computational requirements of checking
T0-balancedness depend entirely on the size of the tight sets we encounter. Therefore,
it is of particular interest to find compact representations of large tight sets.We provide
a method for reducing the size of Hk to at most (n − 1). This is achieved by replacing
tight sets with their compact representations.

Lemma 3 The following statements hold:

(a) The collection T is T0-balanced if and only if there exists γ ∈ R
|T0|
≥0 , ω ∈ R

|T |
>0, μ ∈

R such that ∑

S∈T0
γSe(S) +

∑

S∈T
ωSe(S) + μe(N) = e(N). (7)

(b) Suppose T contains a T0-balanced subcollection Q. Then T is T0-balanced if and
only if there exists γ ∈ R

|T0|
≥0 , ω ∈ R

|T \Q|
>0 , μ ∈ R

|Q| such that

∑

S∈T0
γSe(S) +

∑

S∈T \Q
ωSe(S) +

∑

S∈Q
μSe(S) = e(N). (8)

The proof of Lemma 3 is provided in Online Appendix G of [22].
Lemma 3b allows us to represent each Hk by a collection Rk of size rank(Hk) ≤ n

with the following updating procedure. We need to have span(Rk) = span(Hk−1∪Tk)
in order to guarantee at most (n − 1) iterations. Therefore starting from R0 = H0, we
get Rk by expanding Rk−1 from a T0-balanced Tk only with coalitions that increase
its rank. As a result, span(Rk) = span(Hk), while rank(Rk) = |Rk |. We denote such
a subset Rk = rep(Tk; Rk−1) and call Rk the representative of Hk .

As a result we can modify Algorithm 2 to be an Improved Kohlberg Algorithm
with compact representation (denoted by I K Acr in the numerical results of Sect.
5). In Step 3 we can set Rk = rep(Tk; Rk−1) instead of Hk = Hk−1 ∪ Tk without
changing balancedness whatsoever. This means we replace all tight sets Tk and store
only a representative Rk of their union for the subsequent steps. Accordingly, as Rk−1
is a collection of coalitions with full rank, the stopping criterion can be simplified
to checking the cardinality of the representative set Rk−1. The correctness of the
algorithm can be proven very similarly to Theorem 2 using Lemma 3b.

123

Finding and verifying the nucleolus of cooperative games 145

3.3 A fast algorithm for checking balancedness

According to the Kohlberg criterion, to check T0-balancedness of T we need to check
for the existence of γ ∈ R

|T0|
≥0 and ω ∈ R

|T |
>0 such that

e(N) =
∑

S∈T0
γSe(S) +

∑

S∈T
ωSe(S).

Solymosi and Sziklai [24, Lemma 3] provide an approach by solving |T | linear pro-
grams as follows. For each C ∈ T , let

q∗
C =

⎧
⎨

⎩
maxωC :

∑

S∈T0
γSe(S) +

∑

S∈T
ωSe(S) = e(N), (γ, !) ∈ R

|T0|+|T |
≥0

⎫
⎬

⎭
.

Then T is T0-balanced if and only if q∗
C > 0,∀C ∈ T . Notice, however, that the

collection T appearing in the Kohlberg criterion could be exponentially large, and
hence solving all the |T | linear programs is not practical for larger games. Solymosi
[17] (see Routine 3.2) presents a faster approach that involves at most rank(T) linear
programs.We improve upon these results by exploiting the knowledge of a T0-balanced
subcollection in T to reduce the upper bound of rank(T) in [17].

Exploiting Lemma 3, we can formulate an efficient algorithm that checks T0-
balancedness of a collection T ⊆ 2N with a known T0-balanced subcollection Q � T
(possibly Q = ∅) by finding the largest balanced subcollection within T , as described
in Algorithm 3.

Algorithm 3: Algorithm finding largest T0-balanced subcollection
Input: Collection T with T0-balanced subcollection Q � T ;
Output: U ⊆ T largest T0-balanced subcollection;
1. Initialization: Set U = span(Q) ∩ T ;
while rank(U) < rank(T) do

2. Find γ ∗ ∈ R
|T0|≥0 , ω∗ ∈ R

|T \U |
≥0 , μ∗ ∈ R

|U | that solve

argmax
γ,ω,μ

⎧
⎨

⎩

∑

S∈T \U
ωS :

∑

S∈T0
γSe(S) +

∑

S∈T \U
ωSe(S) +

∑

S∈U
μSe(S) = e(N)

⎫
⎬

⎭
(9)

if ω∗ = 0 or (9) is infeasible then
3. Stop the algorithm and output U � T .;

else
4. Set U = span(U ∪ {S : ω∗

S > 0}) ∩ T ;
end

end
5. Output U = T .

123

146 M. Benedek et al.

When we check the T0-balancedness of (∪k
j=1Tj), through (Rk−1 ∪ Tk) exploiting

Lemma 3 and using Algorithm 3, (Rk−1 ∪ Tk) and Rk−1 play the role of T and Q
respectively. In this case, when we initialize U as span(Q) ∩ T , the set U essentially
equals its representative set. However, this is not necessary the case any more when
we perform the update in Step 4 of Algorithm 3. Moreover, Algorithm 3 can be used
for general Q, not necessarily only those that are equal to their own representative set.
Both cases can be easily treated by replacing U with its representative set in the cor-
responding occurrences (Steps 1 and/or 4 of Algorithm 3), not effecting balancedness
and hence the outcome of the algorithm. In the following, we establish the improve-
ment in the number of iterations required by our balancedness-checking subroutine,
Algorithm 3.

Theorem 3 Collection T is T0-balanced if and only if Algorithm 3 terminates at Step
5 with U = T , and the algorithm terminates after at most (rank(T) − rank(Q))

iterations.

Proof The while loop terminates as rank(U) keeps increasing via the construction of
U in Steps 1 and 4; that is, the set U is enlarged by adding coalitions outside its span,
starting from rank(Q). Thus, the algorithm terminates at either Step 3 or 5 and we
need to prove that the corresponding conclusions from the outputU are correct. Also,
notice that since span(U) ∩ T = U , we have U � T if rank(U) < rank(T).3

If the algorithm terminates at Step 3, then ω∗ = 0 or (9) is infeasible and hence
T is not T0-balanced, as otherwise we should have found a feasible ω∗ �= 0. If the
algorithm terminates at Step 5 then, prior to that, we have rank(U) = rank(T) in order
for the while loop to terminate. The construction of U in Step 4 ensures that U is a
T0-balanced set by Lemmas 2b, c and 3b. Thus, T = span(U)∩T is also T0-balanced
by Lemma 2c. ��

3.4 Nucleolus-defining coalitions and characterization sets

We conclude the first part of this article on the improved Kohlberg criterion by linking
it with an important development in the nucleolus literature on the characterization set
introduced by Granot et al. [23] and the B-nucleolus by Reijnierse and Potters [25].

A cooperative game G(N , v) is represented by (2n − 1) coalitional values and
although the nucleolus is defined as a function of all these values, i.e. lexicographical
minimization of all the (2n − 2) excess values, Granot et al. [23] and Reijnierse and
Potters [25] show that the nucleolus can be determined by a subset of coalitions in
the sense that lexicographical minimization with those coalitions as admissible ones
will determine the nucleolus. Reijnierse and Potters [25] show that there exists a
characterization set in every game with a size of at most 2(n−1) coalitions. Although
the authors emphasize that identifying this characterization set (or the B-set) would
be as hard as finding the nucleolus itself, the result is still quite striking since this
essentially means that we can ignore (2n − 2(n − 1)) other coalitional values in
calculating the nucleolus. The authors also show that the characterization set or the B-

3 Therefore we could replace the stopping condition rank(U) = rank(T) with U = T or |U | = |T | as
well.

123

Finding and verifying the nucleolus of cooperative games 147

nucleolus can be identified efficiently in a number of games, including the assignment
games, the balanced matching games, standard tree games, etc. We first define the
characterization set.

Definition 4 For a collection of coalitions F ∈ 2N , the F-nucleolus of the game
G(N , v), denoted as ν(N ,F , v), consists of imputations that lexicographically min-
imizes the excess values of coalitions in F . A set F is called a characterization set (or
a B-set) if ν(N ,F , v) = ν(N , 2N , v) = ν(N , v).

We now investigate how the improved Kohlberg criterion is linked to the concepts
in [23,25]. We prove that the set of coalitions generated from the improved Kohlberg
criterion form ‘special’ characterization sets. We first identify the set of coalitions
which are critical in defining the nucleolus.

Definition 5 A coalition S is nucleolus-defining in game G(N , v) if a small pertur-
bation on its coalitional value can lead to a change in the nucleolus. Formally, for all
δ > 0, there exists |ε| < δ such that ν(N , ṽ) �= ν(N , v), where ṽ(S) = v(S) + ε

and ṽ(S ′) = v(S ′) for all N ⊃ S ′ �= S. All remaining coalitions are called non-
nucleolus-defining.

Theorem 4 The set of all nucleolus-defining coalitions is precisely ∪k
r=1Tr , where

Tr , r = 1, . . . , k are the collections of coalitions generated by the improved Kohlberg
Algorithm 2 on the nucleolus x.

Proof We prove two parts: (a) for all j ≤ k, each S ∈ Tj is a nucleolus-defining
coalition and (b) all the remaining ones are non-nucleolus-defining.

Let S0 ∈ Tj for some 1 ≤ j ≤ k. Suppose on contradiction that S0 is non-
nucleolus-defining, i.e. there exists ε > 0 and small enough such that if we change
v(S0) to v(S0) + ε the nucleolus of the new game is still x. By setting 0 < ε <

ε j−1 − ε j
4 we have ε j < v(S0) − x(S0) < ε j−1. Therefore the tight sets for x are

T1, . . . , Tj−1, {S0}, Tj\S0, Tj+1, . . . , Tk .Here, note that both∪ j−1
i=1 Ti and∪ j−1

i=1 Ti∪S0
are balanced due to x being the nucleolus (according to the Kohlberg criterion). By
Lemma 1, there exists α > 0 and β > 0 such that e(N) = ∑

S∈∪ j−1
i=1 Ti

αS e(S) =
βS0e(S0) + ∑

S∈∪ j−1
i=1 Ti

βS e(S). Thus,

βS0v(S0) =
∑

S∈∪ j−1
i=1 Ti

(αS − βS)e(S),

that is S0 ∈ span(∪ j−1
r=1Tr), contradicting the construction Tj ∩ span(∪ j−1

r=1Tr) = ∅
in Algorithm 2. Part (a) of the theorem is proven.

Now let S0 /∈ ∪k
j=1Tj . We note, however, that S0 ∈ span(∪k

j=1Tj) since

span(∪k
j=1Tj) has full rank. This means there exists a smallest index r ∈ {1, . . . , k}

such that S0 /∈ ∪r
j=1Tj while S0 ∈ span(∪r

j=1Tj). This construction leads to
v(S0) − x(S0) > εr > ε j ,∀ j < r . Let us set δ = v(S0) − x(S0) − εr . Then for

4 We require the second inequality only for j > 1.

123

148 M. Benedek et al.

any |ε| < δ, if we change v(S0) to v(S0) + ε the nucleolus of the new game is still
x because according to Algorithm 2, all the steps still lead to the same collection of
coalitions ∪k

j=1Tj . ��
While all characterization sets lead to the same unique nucleolus, it can be more

desirable if the subset of excess values generated from the restricted game can carry
more information about theworst excess values in the original game. For example, con-
sider a game with three players where v({1, 2, 3} = 9, v({1}) = v({2}) = v({3}) = 0
and v({1, 2}) = v({2, 3}) = v({3, 1}) = 5. It can be verified that both {{1}, {2}, {3}}
and {{1, 2}, {2, 3}, {3, 1}} form characterization sets. However, the former character-
ization set contains all non-nucleolus-defining coalitions while the latter contains all
nucleolus-defining ones. It can be seen that the excess values generated from the latter
provide more information on the most unhappy coalitions.

We define ameaningful characterization set as one that contains nucleolus-defining
coalitions only. Following the result from Theorem 4, the next corollary provides us
a method to construct these characterization sets.

Corollary 1 A meaningful characterization set can be constructed as ∪k
i=1Fi , where

for each i = 1, . . . , k, Fi is a ‘representation’ of Ti ; that is, Fi ⊂ Ti and rank(Fi) =
rank(Ti). The smallest size of meaningful characterization set is n + k − 1 which is
constructed from minimals Fi , i = 1, . . . , k, i.e. when rank(Fi) = |Fi | = rank(Ti).

Theorem 4 and Corollary 1 are related to the results in Granot et al. [23] and Rei-
jnierse and Potters [25], however, we show exactly how some characterization sets are
constructed. We skip the proof of Corollary 1 for brevity as it is quite straightforward
based on the result of Theorem 4 and it shares analogies with the proof on the size of
characterization sets in Reijnierse and Potters [25], which makes use of the nested LP
sequence.

4 Lexicographical descent algorithm for finding the nucleolus

Our improved Kohlberg criterion allows us to formulate a constructive algorithm that
not only verifies whether a given imputation is the nucleolus, but also gives means to
find it, in case the given candidate is not the desired payoff. This new algorithm fits
into a general iterative descent framework as follows:

• Starting from any imputation x ∈ I we perform a (local) optimality test.
• If x fails the test, we generate an improving direction y and step size α (here,
‘improving’ is w.r.t. the lexicographical ordering of the corresponding dissatisfac-
tions).

• Weupdate x = x+αy and repeat the procedure until no further improving direction
is found.

In this scheme, the optimality test is derived from the newKohlberg criterion developed
in Sect. 3, improving directions are generated using duality, while step sizes are found
exactly to guarantee necessary and sufficient change in the imputation and its tight
collection of coalitions.

123

Finding and verifying the nucleolus of cooperative games 149

Our new algorithm also fits somewhat into the simplex framework for linear pro-
gramming: improving directions are chosen using considerations similar to reduced
costs, and the step size provides the pivoting rule through a sort of minimal ratio
test. Indeed, we are moving on the facets of polytopes in Maschlers scheme, but not
necessarily from vertex to vertex, like most traditional simplex implementations do.

4.1 Finding improving directions

Algorithm 3 not only handles the tedious strict positivity constraints related to bal-
ancedness, it essentially finds the largest T0-balanced subcollection in T , starting from
a previously identified (possibly empty) balanced subcollection Q. Suppose that Algo-
rithm 2 with compact representation (Algorithm 1 of [22]) terminates in Step 4, which
happens precisely when Algorithm 3 exits with ω∗ = 0 or (9) is infeasible, while
rank(U) < rank(T). In the former case, we found the largest T0-balanced subcollec-
tion U in T , but since T \U �= ∅, T is not T0-balanced. In the latter case, there is no
T0-balanced subcollection in T (more precisely, the largest one is the empty set). In
both cases we know that precisely the collection T \U �= ∅ is responsible for the lack
of T0-balancedness.

Recall that in iteration k of Algorithm 2 (with compact representation), when we
check T0-balancedness withAlgorithm 3, input T is (Rk−1∪Tk)while the T0-balanced
subcollection Q is Rk−1, and we get the outputU . For sake of simplicity we use T as
(Rk−1 ∪ Tk) and U as the corresponding output from Algorithm 3.

If T is not T0-balanced, it is possible to generate an improving direction y, such
that moving from x to (x + αy) will fulfill all of the following three objectives:

(a) not changing the excess of coalitions in span(Rk−1),
(b) remaining in the imputation set and not increasing the excess of coalitions in U ,
(c) decreasing the excess of coalitions in T \U .

In other words, the change from x to (x+αy)will increase the satisfaction of the most
dissatisfied unbalanced coalitions, while maintaining the excess of the already settled
balanced coalitions. In this subsection we focus on how to generate an improving
direction while Sect. 4.2 is devoted to the calculation of the optimal step size.

When Algorithm 3 terminates with rank(U) < rank(T) the system

∑
S∈T0 γSe(S) + ∑

S∈T \U ωSe(S) + ∑
S∈U μSe(S) = e(N)

ωQ > 0
γS , ωP ≥ 0 ∀S ∈ T0,P ∈ T \U

μS ∈ R ∀S ∈ U
(10)

is infeasible for all Q ∈ T \U . Therefore, using Farkas’ lemma we get

{y ∈ R
n : y(Q) > 0, y(P) ≥ 0,∀P ∈ T0 ∪ (T \U), y(S) = 0,∀S ∈ U ∪ {N }} �= ∅.

Note that the preceding result holds for any Q ∈ T \U . While the corresponding y
might differ for different Q, we can take the average (or sum) of all these to arrive at

123

150 M. Benedek et al.

a common, normalized y in

{y ∈ R
n : y(Q) ≥ 1,∀Q ∈ T \U , y(P) ≥ 0,∀P ∈ T0, y(S) = 0,∀S ∈ U ∪ {N }}

(11)
Furthermore, Lemma 3b shows that whenever we iteratively check whether a col-

lection of coalitions ∪k
j=1Tj satisfies T0-balancedness for all k or not, it is sufficient

to require strict positivity from the weights of the current new set of coalitions Tk , if
we already found that the collection is T0-balanced up to level (k − 1). The lemma is
not only useful to make checking of balancedness easier, as shown in Sect. 3.3, it also
yields an improved system via (11). In iteration k, if T is not T0-balanced, then in (11)
we can require y(Q) = 0 from all coalitionsQ ∈ ∪k−1

j=1Tj ∪{N } and still get a feasible
system. Additionally, because for all S ∈ ∪k−1

j=1Tj ∪{N } there exists λ ∈ R
|Rk−1| such

that y(S) = ∑
Q∈Rk−1

λQy(Q), the set

{y ∈ R
n : y(Q) ≥ 1,∀Q ∈ Tk\U , y(P) ≥ 0,∀P ∈ T0, y(S) = 0,∀S ∈ Rk−1 ∪ (U ∩ Tk)}

(12)

is non-empty as well. We call vectors y in (12) improving directions. Since improving
directions are defined through a feasible set of constraints, there could be many dif-
ferent improving directions, and we have the freedom to choose an objective function
to optimize over that set. The following section determines the optimal step size, also
shedding light on the most suitable objective function to choose.

4.2 Step size

A feasible point y in (12) is an improving direction in the sense that moving along y
from our current point (which is not the nucleolus) improves the satisfaction of the
coalitions that are currently worst off and causing the lack of balancedness, while still
maintaining the satisfaction of previously checked balanced subcollections and ensur-
ing that we stay in the imputation set for small enough step size. When determining a
suitable step size α > 0 for a given improving direction y, we naturally want to choose
α large enough in order to avoid small steps that do not result in changes in T , since
T is not T0-balanced. Also, we want to increase α only until we experience a change
in T (or in T0) in the hope that the new collection is T0-balanced.

Suppose that, at iteration k, we are currently at imputation x. For all coalitions S,
the change of excess as we move in direction y with step size α is

d(S, x + αy) − d(S, x) = v(S) − (x(S) + αy(S)) − (v(S) − x(S)) = −αy(S).

Currently the largest dissatisfaction among coalitions not in span(Rk−1) is εk(x) =
d(S, x) for any S ∈ Tk(x). Thus, for sufficiently small α > 0 the new maximal
dissatisfaction is εk(x + αy) = d(S, x + αy) for some (possibly more than one)
S ∈ Tk(x). Fix one such coalition as S̃, then the change in the maximal dissatisfaction
is εk(x + αy) − εk(x) = −αy(S̃).

123

Finding and verifying the nucleolus of cooperative games 151

Weare essentially interested in the tightness of coalitionsmeasured as the difference
of their excess from the maximal dissatisfaction, that is how far they are from being
tight. Specifically, we are interested in the change of their tightness

(d(S, x + αy) − εk(x + αy))−(d(S, x) − εk(x)) = α(y(S̃)−y(S)) ≥ α(1−y(S)),

(13)
with the last inequality due to y(S̃) ≥ 1.

This brings us back to the practical question of how to choose improving directions
from the cone determined by (12). Since every feasible point of that set is an improving
direction we can use, we have the freedom to choose an objective function to optimize
over this set. In order to control minS∈Tk\U y(S) as well as to make the bound we used
in (13) sharp, we choose to minimize

∑
S∈Tk\U y(S).

Recall that when we check the T0-balancedness of∪k
j=1Tj in iteration k, we choose

y solving

min
y

∑
Q∈Tk\U y(Q)

s.t . y(Q) ≥ 1 ∀Q ∈ Tk\U
y(P) ≥ 0 ∀P ∈ T0
y(S) = 0 ∀S ∈ U\Tk

(I D(T0; Tk;U))

Thus, for every optimal solution y of I D(T0; Tk;U), we have y(S̃) = 1. As we
increase α from 0, we see that the tightness of coalition S decreases if y(S) > 1, the
tightness does not change if y(S) = 1, and it increases if y(S) < 1. By increasing
tightnesswemean that the difference εk(x+αy)−d(S, x+αy)decreases. Let us denote
the collection of coalitions with increasing tightness as J = {S /∈ span(Rk−1) ∪ Tk :
y(S) < 1}, the coalitions that are candidates to enter the tight set as we make a step.

We know that d(S, x) < εk(x) for all coalitions S /∈ span(Rk−1) ∪ Tk . Hence,
there exists α > 0 sufficiently small such that

d(S, x) − αy(S) = d(S, x + αy) ≤ εk(x + αy) = εk(x) − αy(S̃) ≤ εk(x) − α.

Rearranging these terms, we get d(S, x) + α(1 − y(S)) ≤ εk(x). Candidates of
coalitions satisfying the latter relationwith equality for large enoughα are in collection
J , thus we increase α until we reach equality for some coalition in J . However, we
also need to bound α such that we stay in the imputation set. Taking both constraints
into account, and introducing N0 = { j ∈ N \T0 : y j < 0}, the optimal step size is

α = min

({
εk(x) − d(S, x)

1 − y(S)
: S ∈ J

}

∪
{
x j − v({ j})

−y j
: j ∈ N0

})

, (14)

the smallest step size for which we experience either Tk(x) �= argmaxS /∈span(Rk−1){v(S) − (x + αy)(S)} or T0 �= {{i} : xi + αyi = v({i}), i ∈ N }.
Figure 1 captures how the tight set changes as wemove from x to (x+αy). At x, the

largest dissatisfaction outside of the already settled span(Rk−1) belongs to coalitions

123

152 M. Benedek et al.

εk(x+ αy)
εk(x) ε1

d(S,x)
. . .

S1
y(S1)

S2 Tk
y(S2)

...

Q1
y(Q1)

Q2J y(Q2)

Q3
y(Q3)

...

Fig. 1 Optimal step size

in Tk . Their dissatisfactions decrease with varying rates, depending on y, but with no
smaller than 1. The new largest dissatisfaction εk(x+ αy) is determined by coalitions
in argminS∈Tk\U {y(S)}.

In Fig. 1, the dissatisfaction of coalitions in J increases (relative to the moving
target of εk(x + αy)), again with varying speed depending on y. The coalition first
meeting argminS∈Tk\U {y(S)} enters the tight set.5

4.3 Lexicographical descent algorithm

Now that we have all necessary elements at our disposal, we formulate the new algo-
rithm for calculating the nucleolus of a cooperative game.

Algorithm 4: Algorithm computing the nucleolus of a cooperative game.
Input: Game (N , v) with I �= ∅;
Output: ν nucleolus of game (N , v);
1. Initialization: Set x ∈ I arbitrary, R0 = {N } and k = 1;
while |Rk−1| < n do

2. Find εk (x) = maxS /∈span(Rk−1)
d(S, x), Tk (x) = {S /∈ span(Rk−1) : d(S, x) = εk },

T0(x) = {{i} : xi = v({i}), i ∈ N }, and U ⊆ (Rk−1 ∪ Tk) generated by Algorithm 3;
if Tk\U �= ∅ then

3. Find y solving I D(T0; Tk ;U) and α using (14). Update x = x + αy and go to Step 2.;
else

4. Set Rk = rep(Tk ; Rk−1), and k = k + 1;
end

end
5. x = ν is the nucleolus.

5 If there are multiple, all of them enter the tight set.

123

Finding and verifying the nucleolus of cooperative games 153

Algorithm 4 starts with an arbitrarily chosen imputation. If, at the current point, the
tight set Tk fails to pass a balancedness requirement related to the Kohlberg criterion,
we generate an improving direction and a step size.

Beside the descent-based nature of the algorithm as presented in the preceeding
sections, Algorithm 4 also shares some similarities with the simplex method for lin-
ear programming, as finding an improving direction y and a suitable step size α in
Step 3 of the algorithm is similar to a pivot step in the simplex algorithm. Inside the
while loop the algorithm keeps ‘pivoting’ until T0-balancedness is achieved, while the
iterations of the loop correspond to solving LPs in the sequential LP formulation of
the nucleolus (cf. [17]). The overall algorithm can also be interpreted as an active-set
or column generation approach, because checking the balancedness of a collection
of (primal) tight coalitions is nothing else than solving relaxed dual programs in the
aforementioned LP sequence (cf. [19]).

Example 1 Consider the 3-player game v with coalition values v({1}) = 1, v({2}) = 2,
v({3}) = 5, v({1, 2}) = 6, v({1, 3}) = 7, v({2, 3}) = 8, and v(N) = 12. For
readability, during this example we use superscripts to distinguish between different
imputations, while subscripts of maximum dissatisfaction levels εk and tight sets Tk
are used to keep track of iterations. We are using Algorithm 4 to find the nucleolus ν

from a starting imputation x0 = [1, 4, 7].
First, we find that our distance to the boundary of the core is 1, hence ε1(x0) = 1.

Also, currently the largest infeasibility among core inequalities belongs to constraint
x1 + x2 ≥ 6. Therefore, T1(x0) = {{1, 2}}, while T0(x0) = {{1}} because x01 =
v({1}). It is easy to see that the current tight set T1(x0) is not T0(x0)-balanced. In
the algorithm we run into an infeasible system when checking the balancedness, so
we can find improving directions by solving I D(T1(x0); T0(x0); {N }), for example
y = [−1, 0, 1].

Notice that we measure the distance from the boundary with a special signed dis-
tance; in the interior of the core the distance from the boundary is understood to be
negative. Thus, we can move even further along the direction after reaching the core,
until we can not decrease the distance any more. This happens precisely when the
distances from both constraints (x3 ≥ 5) and (x1 + x2 ≥ 6) are −0.5, that is when
x1 = [2.5, 4, 5.5], ε1(x1) = −0.5, T1(x1) = {{1, 2}, {3}} and T0(x1) = ∅. This is
similar to a pivot step in a simplex-like algorithm, where coalition {3} enters the basis.
According to (14), the step size chosen in direction y is α = 1.5. After this step, we
find that T1(x1) is T0(x1)-balanced, therefore we expand R0 with an arbitrary element
of T1(x1) as rank(R0 ∪ T1(x1)) = 2. By doing so we lift those inequality constraints
that limit the decrease; that is, throughout the remaining execution of the algorithm
those constraints remain satisfied with equality at the current largest excess level of
ε1(x1) = −0.5.

The set of imputations having the coalitions in T1(x1) being tight at ε1 = −0.5
actually form the least core of the game. At the current point x1, among constraints
not in span(R1), we are closest to violating x1 + x3 ≥ 7 with ε2(x1) = −1. Also
we have that T0 remains empty at x1 and the tight set T2(x1) = {{1, 3}} is not T0-
balanced, so we find an improving direction parallel to the set of least core payoffs.
That is, the unique solution of I D(T2(x1); T0; R1) is y = [1,−1, 0], and we can take

123

154 M. Benedek et al.

a step size of α = 1/4 until coalition {2, 3} becomes tight as well. The resulting point
is x2 = [2.75, 3.75, 5.5]� with largest excess ε2(x2) = −1.25, T0 = ∅ and tight
set T2(x2) = {{1, 3}, {2, 3}}. Since T1(x2) ∪ T2(x2) is T0-balanced and rank(R1 ∪
T2(x2)) = n we found the nucleolus ν = x2.

In the followings we establish results regarding the convergence of Algorithm 4
and its connection to sequential LP methods. The results also justify why we call
Algorithm 4 a lexicographical descent method.

Lemma 4 Suppose that at iteration k, Algorithm 4 goes through to Step 3 and updates
x to (x + αy). Then we have �(x + αy) <L �(x). Furthermore,

(a) if U ∩ Tk = ∅, then εk(x + αy) < εk(x),
(b) if U ∩ Tk �= ∅, then εk(x + αy) = εk(x) = εk(ν) and Tk(x + αy) = Tk(ν).

Proof Let us start by noting that by the definition of y solving I D(T0; Tk;U) and α

in (14), the new point (x + αy) ∈ I if x ∈ I. Additionally x(S) = (x + αy)(S) for
all S ∈ span(Rk−1), also due to y solving I D(T0; Tk;U). As a result, both �(x) and
�(x+αy) contain (and start with) the same excess values for coalitions S with excess
d(S, ν) ≥ εk−1(ν). Therefore, in order to make the lexicographical comparison, it is
sufficient to focus on the truncated ordered excess vectors over the set 2N \span(Rk−1),
i.e. between �2N \span(Rk−1)(x) and �2N \span(Rk−1)(x + αy).

(a) The first component of both truncated ordered excess vectors is a value corre-
sponding to a tight coalition S ∈ Tk(x). Since y(S) ≥ 1 for all S ∈ Tk(x) and
α > 0, we have that εk(x + αy) < εk(x) (as Fig. 1 demonstrates) and therefore
�(x + αy) <L �(x) in this case.

(b) However, ifU ∩Tk �= ∅, then we have y(Q) = 0 for allQ ∈ U since y is a solution
of I D(T0; Tk;U), hence εk(x) = εk(x + αy) = d(Q, x) for Q ∈ U . Note that at
Step 3 of Algorithm 4, we have Tk\U �= ∅. Since y(S) ≥ 1 for all S ∈ Tk\U , we
also haveU ∩Tk(x) = Tk(x+αy) � Tk(x), as Fig. 2 demonstrates. Consequently,
�(x + αy) <L �(x) because of �2N \span(Rk−1)(x + αy) starts with less excess
values of εk(x) than �2N \span(Rk−1)(x); that is |Tk(x + αy)| < |Tk(x)|. On the
other hand, since Tk(x + αy) is T0-balanced, we have εk(x + αy) = εk(ν) and
Tk(x + αy) = Tk(ν).

��

Remark 3 We have the following observations by Lemma 4:

• Lemma 4 justifies naming Algorithm 4 lexicographical descent. Starting from an
arbitrary imputation, we follow a trajectory of imputations by generating improv-
ing directions and step sizes, with the corresponding ordered vector of excesses
keep strictly lexicographically decreasing in every step of the trajectory. The only
other ‘descent’ method [19] that we are aware of for general cooperative games
does not have this property.

• Due to the strict lexicographical descent, during Algorithm 4 we never circulate
in the imputation set x ∈ I.

123

Finding and verifying the nucleolus of cooperative games 155

εk+1(x+ αy)

εk(x) =
εk(x+ αy) ε1

d(S,x)
. . .

S1 U ∩ Tk...

S|U |+1
y(S|U|+1)

S|U |+2

Tk

y(S|U|+2)

...

Q1
y(Q1)

Q2J y(Q2)

Q3
y(Q3)

...

Fig. 2 Changes of tight coalitions at a pivot step when U �= ∅

• Furthermore, Algorithm 4 is connected to the classical sequential LP methods by
Lemma 4b: as soon as we have U ∩ Tk �= ∅, that is, we have found a balanced
(sub)collection in the new tight set, we have solved the k-th LP of the sequence
due to primal-dual feasibility. Notice, however, that even in that case we could
make a further step in the lexicographical descent, since the original tight set was
not balanced, allowing us to find the interior of the optimal facet of the LP.

Theorem 5 Algorithm 4 stops after a finite number of steps. Thewhile loop is executed
at most (n − 1) iterations before finding the nucleolus ν.

Proof We start by showing the iteration limit of the while loop. Note that rank(Rk)

increases in every iteration as ∅ �= Tk ⊆ 2N \span(Rk−1), and since rank(R0) = 1
the algorithm terminates in at most (n − 1) iterations for the while loop.

Thus, for finite convergence to ν, we only need to show that,within a single iteration,
a finite number of steps from x to (x + αy) is sufficient to reach a T0-balanced tight
set, which gets the algorithm out of the current iteration. For that purpose let us fix
that iteration to be k, and for notational ease, for the remainder of the proof we omit
the iteration subscripts k; i.e. T is used in place of Tk , and so on.

According to Lemma 4, as soon as U ∩ T �= ∅, we reached a T0-balanced tight set
U ∩ T itself. Therefore we suppose that U ∩ T = ∅.

Since T ⊆ 2N \span(R), the possible tight sets we can encounter is finite, among
which there exists T0-balanced as well, for instance T (ν). Thus, the only way not
to reach a T0-balanced tight set is to encounter an infinite series of tight sets T =
(T 1, T 2, . . . , Tm, T 1, Tm+1 . . .), amongwhich none is T0-balanced. Here, we use the
superscripts to denote the different steps that we encounter under the same iteration
k. Again because of the finitely many tight sets, we guaranteed to revisit at least one
tight set infinitely many times. W.l.o.g., let that one be T 1 and suppose that we first

123

156 M. Benedek et al.

revisit it after taking m steps. Let us denote the corresponding improving directions,
step sizes and maximal dissatisfactions we encounter at each tight set as (y1, y2, . . .),
(α1, α2, . . .) and (ε1, ε2, . . . , εm, εm+1, . . .), respectively.

Let us suppose that the starting tight set T 1 corresponds to the imputation x1 = x.
By Lemma 4 we have ε1 > εm > εm+1 and x + ∑m

j=1 α jyj ∈ I. Thus, we generate
improving direction y1 solving the LP

min
y

∑
Q∈T 1 y(Q)

s.t . y(Q) ≥ 1, ∀Q ∈ T 1,

y(P) ≥ 0, ∀P ∈ T0,
y(S) = 0, ∀S ∈ R.

(Ĩ D(T 1))

Note that, here we assume T 1 ∩ U = ∅ and hence we obtain a simpler version of
I D(T0; T 1;U).

Since
∑m

j=1 α jyj(S) = ε1 − εm+1 is constant through S ∈ T 1, β
∑m

j=1 α jyj is

feasible in Ĩ D(T 1) for large enough β > 0, thus we have
∑m

j=1 α jyj
ε1−εm+1

is optimal in

Ĩ D(T 1). As a result, y1(S) = 1 for all S ∈ T 1 as y1 is also an optimal solution of
Ĩ D(T 1). Consequently all coalitions remain tight, while some coalition must join,
based on the definition of the step size, hence T 1

� T 2.
Note that it is not always the case that T 1 is followed by the same T 2. However,

since T 2 is pooled from the finite power set, there must be at least one set T 2 such that
the subsequence (T 1, T 2) is repeated infinitely many times with T 1

� T 2. Using the
same line of arguments, we arrive at longer repeated subsequences T 1

� T 2 . . . � T j

for as large j as we wish. This is impossible because the size of T j is bounded. Thus,
the series of tight set T is finite under each iteration. As the number of iterations is
bounded by (n − 1), the algorithm converges in finitely many steps. ��
Remark 4 We have the following observations by Theorem 5:

• During Algorithm 4, not only in the imputations, but we never circulate in the tight
set space either.

• Note that requiring a finite number of steps is enough to achieve the result claimed
above. Numerical experiments indicate that Algorithm 4 executes a very small
number of steps, see Sects. 5.1 and 5.2.

Remark 5 The (n−1) linear programs inMaschlers scheme [26], the (n−1) iterations
in the improvedKohlberg criterion for verifying the nucleolus (Algorithm 2), the upper
bound of n iterations in the balancedness checking algorithm (Algorithm3), and finally
the (n − 1) iteration in our lexicographical descent algorithm as stated in Theorem 5
is due to the fact that all of these algorithms are designed to increase the rank of the
collection of tight coalitions considered. While eventually in an implementation of
Maschler’s scheme (e.g. [18]) the same collection of tight coalitions is found as in our
lexicographical descent method, the trajectory how the two different methods reaches
this point is different, as evidenced by the different number of iterations required (cf.
Sect. 5).

123

Finding and verifying the nucleolus of cooperative games 157

Finally we note that Algorithm 4 can be easily adapted to the case when we have
a characterization set F ⊆ 2N at our disposal, by simply changing the search space
in εk(x) and Tk(x) from S /∈ span(Rk−1) to S /∈ (

span(Rk−1) ∪ (
2N \F))

. The
computational bottleneck of Algorithm 4 is performing Step 2 and computing the
step size in Step 3. However, given a characterization set F of polynomial size as an
additional input, the algorithm runs in polynomial time. That characterization set is
available, if we restrict our attention, for example to the class of assignment games
[2], to balanced matching games [25], to standard tree games [27], among many other
classes [23].

5 Numerical results

In the following subsections we present numerical results assessing the performance
of the algorithms described above. Both the different versions of Kohlberg Algorithms
(Algorithms 1, 2 and 1 of [22]) and the constructive algorithm (Algorithm 4) have been
tested on 4 different types of games, the player set size ranging from 5 to 30. For games
with n ≤ 25, fifty instances were generated from each type, and we report averages
of computational time in seconds, number of iterations, pivot steps and subroutines
(wherever applicable), as well as number of coalitions saved from storage by compact
representation sets. Similarly, for games with n > 25, ten instances were generated
from each type. In each category the corresponding minimal values are highlighted
with bold (wherever applicable).

For the sake of completeness the Kohlberg algorithms are tested with 4 solution
points including the nucleolus, a random imputation, a point in the least core and in the
least-least core (an element of the least core with T0-balanced (T1 ∪ T2)). For brevity,
we only present here results for the solution being the nucleolus. Results for the other
three solutions are presented in Online Appendix H of [22]. The original and improved
Kohlberg algorithms 1 and 2 are denoted with Kohlberg and IKA respectively, while
Algorithm 1 of [22] that includes the compact representation is denoted with IKAcr.
The lexicographical descent Algorithm 4 (denoted BFN) is compared to 4 methods:
SP (SD) are the primal (dual) nested LP algorithms due to Solymosi [17],DK is Derks
and Kuipers [19]’s algorithm, while PRA denotes the prolonged simplex algorithm by
[18].

All algorithms were implemented in C++ and computations were carried out on
a desktop PC with Intel Core i5-2500 3.30 GHz CPU and 16 Gb RAM.6 All the
LPs involved are solved with CPLEX 12.7.1’s primal simplex method (with default
settings7). Time limitations were set with 12 hours for n ≤ 25, 15 hours for n ≤ 28,
and 18 hours for n > 28. All of the codes (along with the test instances) used to
produce these results are available for free access at the GitHub repository [21].

6 In this configuration, the time-efficient implementation of the algorithms run out of memory at n = 28
while processing initialization, therefore we used a memory-efficient implementation instead for n > 28.
7 In the case of SP and SD, the average number of pivots reflect the values of CPLEX parameter iterations
reported in the output. In order to obtain realistic pivot numbers, preprocessing was turned off (which did
not change the overall computation time significantly).

123

158 M. Benedek et al.

5.1 Type I and II games

Type I and II games both appear in [18,28]. The characteristic function for type I is
given by v({i}) = 0 for all i ∈ N , v(N) is a random integer between 100(n − 2) and
100n, while v(S) is a random integer between 1 and 100|S| for all other (non-empty)
coalitions S. Type II games are generated as v({i}) = 0 for all i ∈ N and v(S) is a
random integer between 1 and 50n for all other (non-empty) coalitions S.

In terms of the verifying Kohlberg algorithms we can start with the general obser-
vation that the classical Kohlberg algorithm is only usable up to a limited size. From
Tables 1, 2, 3 and 4 we find that games of size n = 15 provide already a challenge
that Algorithm 1 can not tackle, as it runs out of time.

For the remaining two algorithms IKA and IKAcr, the differences in performance
do not seem to be significant. The advantage of having a compact representation only
affects a small number of coalitions most of the time, with the notable exception of
one type I game with 30 players. This is a random game with quite substantially larger
tight set T1(x) than the other games considered. However, as both IKA and IKAcr
terminate after performing only 1 iteration, the advantage of a compact representation
is not realised during any subsequent iterations. On the contrary, the small additional
workload necessary for finding this compact representation appears to provide a slight
disadvantage in computation time.

Turning to constructive algorithms, we can start with a general observation similar
to the one made on verification algorithms. Considering the results presented in Tables
5 and 6, one finds that classical sequential LP formulations can not solve games with
n = 25 players or more; while SP runs out of memory, SD does not finish within
reasonable time restrictions. It is of little surprise, considering that these methods
handle exponential sized (either in rows or columns) LPs. As impressive the prolonged
simplex method by [18] is, it suffers more having exponential number of both rows
and columns, thus running out of memory already at 20 players. This is the case for
all types of games considered, as Tables 7 and 8 also confirm.

Regarding the number of iterations needed, we see from Tables 5 and 6 that type
I and II games barely distinguish between primal (BFN, SP) and dual methods (DK,
SD, PRA), the latter requiring at least as many iterations as the former, by nature.
Even though the main advantage of primal methods, i.e. having a smaller number
of iterations, is barely realised in these types of games, BFN still produces the best
computing times, outperformingDK for every size of games, while the latter becomes
unusable at n = 30. Furthermore, while BFN requires less pivots at the price of
invoking subroutine Algorithm 3, this seems to be rarely rewarded with fewer number
of iterations, at least for type I and II games.

5.2 Type III and IV games

Derks and Kuipers [19] were interested in games where the number of iterations
grows more or less linearly with the number of players, and so they introduced type
III games as v(S) = 0 for all |S| < n − 2, v(S) = 1 with probability 0.9 for
n − 2 ≤ |S| < n and v(N) = 1. According to Table 7 the authors were obviously

123

Finding and verifying the nucleolus of cooperative games 159

Ta
bl
e
1

O
ri
gi
na
la
nd

im
pr
ov
ed

K
oh

lb
er
g
al
go

ri
th
m
s
on

ty
pe

I
ga
m
es

an
d
nu

cl
eo
lu
s
so
lu
tio

n

n
T
im

e
It
er
at
io
ns

Su
br
ou

tin
es

R
ep
r.

K
oh
lb
er
g

IK
A

IK
A
cr

K
oh
lb
er
g

IK
A

IK
A
cr

K
oh
lb
er
g

IK
A

IK
A
cr

IK
A
cr

5
0.
01

4
0.
00

16
0.
00

14
25

.6
2.
6

2.
6

43
.3

3.
3

2.
6

2.
6

10
2.
5

0.
00

34
0.
00

42
96

4.
1

2.
3

2.
3

12
79

.8
3

2.
3

2.
4

15
O
oT

0.
06

8
0.
06

8
O
oT

1.
9

1.
9

O
oT

2.
5

1.
9

1.
9

20
–

3.
3

3.
2

–
1.
7

1.
7

–
1.
9

1.
7

1.
8

25
–

16
1

15
9

–
1.
9

1.
9

–
2.
4

1.
9

1.
9

26
–

25
7

25
0

–
1.
6

1.
6

–
1.
7

1.
6

1.
6

27
–

65
0

63
1

–
1.
9

1.
9

–
2.
4

1.
9

1.
9

28
–

28
27

25
91

–
1.
9

1.
9

–
2.
2

1.
9

1.
9

29
–

20
87

21
45

–
1.
7

1.
7

–
2

1.
7

1.
7

30
–

32
48

33
23

–
1.
4

1.
4

–
1.
7

1.
4

72
,8
42

.4

123

160 M. Benedek et al.

Ta
bl
e
2

O
ri
gi
na
la
nd

im
pr
ov
ed

K
oh
lb
er
g
al
go
ri
th
m
s
on

ty
pe

II
ga
m
es

an
d
nu
cl
eo
lu
s
so
lu
tio

n

n
T
im

e
It
er
at
io
ns

Su
br
ou

tin
es

R
ep
r.

K
oh
lb
er
g

IK
A

IK
A
cr

K
oh
lb
er
g

IK
A

IK
A
cr

K
oh
lb
er
g

IK
A

IK
A
cr

IK
A
cr

5
0.
01

4
0.
00

16
0.
00

16
26
.1

2.
8

2.
6

48
.3

3.
9

2.
6

1.
6

10
6.
9

0.
00

33
0.
00

36
95

1
2.
6

2.
5

20
23
.5

3.
6

2.
6

2.
1

15
O
oT

0.
11

0.
11

O
oT

2.
5

2.
5

O
oT

3.
6

2.
6

2.
3

20
–

5.
3

5.
2

–
2.
5

2.
5

–
3.
4

2.
5

2.
5

25
–

29
5

28
9

–
3.
6

3.
6

–
5.
8

3.
6

3.
6

26
–

57
6

55
8

–
3.
1

3.
1

–
3.
8

3.
1

3.
1

27
–

10
61

10
41

–
3

3
–

4.
2

3.
1

3.
1

28
–

56
72

52
71

–
4.
8

4.
8

–
7.
9

4.
8

4.
9

29
–

72
53

75
47

–
4.
4

4.
4

–
7.
3

4.
4

4.
4

30
–

12
,7
66

13
,3
25

–
3.
8

3.
8

–
5

3.
8

3.
9

123

Finding and verifying the nucleolus of cooperative games 161

Ta
bl
e
3

O
ri
gi
na
la
nd

Im
pr
ov
ed

K
oh
lb
er
g
al
go
ri
th
m
s
on

ty
pe

II
I
ga
m
es

an
d
nu
cl
eo
lu
s
so
lu
tio

n

n
T
im

e
It
er
at
io
ns

Su
br
ou

tin
es

R
ep
r.

K
oh
lb
er
g

IK
A

IK
A
cr

K
oh
lb
er
g

IK
A

IK
A
cr

K
oh
lb
er
g

IK
A

IK
A
cr

IK
A
cr

5
0.
00

21
0.
00

06
0.
00

11
5.
2

1
1

6.
1

2.
0

2.
0

5.
0

10
0.
43

0.
00

12
0.
00

28
10

.7
1

1
12

.7
2.
6

2.
9

30
.2

15
O
oT

0.
02

6
0.
02

6
O
oT

1
1

O
oT

2.
2

2.
5

80
.9

20
–

1.
00

1.
0

–
1

1
–

2
2.
7

15
2.
2

25
–

38
.7

39
.7

–
1

1
–

2.
1

2.
9

24
5.
2

26
–

81
.8

81
.6

–
1

1
–

2.
2

2.
6

27
0.
3

27
–

16
8

17
0

–
1

1
–

2.
3

2.
7

29
1.
5

28
–

10
92

10
76

–
1

1
–

2.
2

2.
6

31
5.
7

29
–

21
7

22
6

–
1

1
–

2.
2

2.
7

33
6.
0

30
–

44
7

44
9

–
1

1
–

2.
2

2.
8

35
8.
5

123

162 M. Benedek et al.

Ta
bl
e
4

O
ri
gi
na
la
nd

Im
pr
ov
ed

K
oh
lb
er
g
al
go
ri
th
m
s
on

ty
pe

IV
ga
m
es

an
d
nu
cl
eo
lu
s
so
lu
tio

n

n
T
im

e
It
er
at
io
ns

Su
br
ou

tin
es

R
ep
r.

K
oh
lb
er
g

IK
A

IK
A
cr

K
oh
lb
er
g

IK
A

IK
A
cr

K
oh
lb
er
g

IK
A

IK
A
cr

IK
A
cr

5
0.
01

0
0.
00

09
0.
00

09
14

.2
1.
6

1.
6

24
.5

2.
6

1.
8

2.
8

10
2.
2

0.
00

27
0.
00

28
28

5
2

2
60

8
3.
4

2.
4

3.
7

15
O
oT

0.
07

9
0.
07

9
O
oT

2
2

O
oT

3.
6

2.
8

9.
4

20
–

3.
7

3.
6

–
2.
1

2.
1

–
4.
3

4
18

.6

25
–

22
0

22
5

–
2.
9

2.
9

–
6.
1

3.
9

15
.6

26
–

59
0

57
3

–
3.
4

3.
4

–
6.
2

5
16
.1

27
–

13
05

12
69

–
3.
6

3.
6

–
7.
1

4.
7

18
.1

28
–

45
76

43
44

–
3.
7

3.
7

–
7.
4

5.
1

18
.2

29
–

54
64

56
58

–
3.
5

3.
5

–
7.
2

5.
4

25
.2

30
–

96
47

98
42

–
2.
8

2.
8

–
5.
9

4.
4

29
.1

123

Finding and verifying the nucleolus of cooperative games 163

successful in terms of generating games where their (dual) method struggles, whereas
for primalmethods these games can be considered as trivial. As a result, it is nowonder
that the computation times of DK are magnitudes higher compared to those of BFN.

In order to test the methods on games, which distinguish between the number of
iterations required by primal and dual methods more realistically, that is games that
are ‘somewhere between types I–II and III’, we introduce type IV games as v({i}) = 0
for all i ∈ N and v(S) is a random integer between 1 and n for all other (non-empty)
coalitions S.

Both IKA and IKAcr solve type III games extremely easily, making them hard
to compare with each other.8 Their performance for type IV games show a similar
behaviour as games of types I and II.

Tables 7 and 8 show that as soon as the required number of iterations at least moder-
ately distinguishes between primal and dual methods, the difference in computational
time between BFN and DK greatly increases.

5.3 Limitations of our algorithm

We now study the bottleneck of the lexicographical descent algorithm in attempt to
find games that our proposed method struggles with. The performance of Algorithm
3 as the balancedness subroutine of Algorithm 4 depends on the size of the tight set,
so we now look for games with extremely large tight sets. From a verification point of
view we expect that the compact representation of tight sets carries an improvement in
these games, therefore also providing significant distinguishment between Algorithms
2 and 1 of [22].

For our purposes we adopt the United Nations (UN) Security Council voting mech-
anism into weighted voting games with arbitrary size, where there are 5 big (veto)
players and the rest (originally 10) are small. Formal description and results for the
verification algorithms can be found in Online Appendix H.3 of [22].

Our attempts to find a game our method struggles with were somewhat successful,
meaning that while we have a sizeable advantage in computation time over other
algorithms for n ≤ 26, this advantage vanishes at n = 27, until eventually BFN runs
out of memory for n = 28. This is due to the fact that these games have extremely
large tight sets, which severely affects BFN through Algorithm 3 with a very large |T |
of exponential size, while by the nature of [19]’s method this does not affect DK.

It should be noted that finding the nucleolus of these games is trivial, i.e. one can
easily find analytically that the 5 veto players share the total payoff of 1 amongst
themselves in an egalitarian way, while all the small players get 0. Therefore anyone
interested in finding the nucleolus of such a game would never turn to any of the
aforementioned algorithms. Instead, since these games are of a very peculiar nature
from an algorithmic perspective, they carry a theoretical interest from a computational
point of view. For games with structures like this, we expect further improvement by

8 The non-monotonicity in computation time occurring between 28- and 29-player games are due to the
two types of implementations, a so-called time-efficient and memory-efficient version. The time-efficient
implementation is actually not efficient in terms of computational time, as it wastes time at initialization
compared to the memory-efficient version.

123

164 M. Benedek et al.

Ta
bl
e
5

C
om

pu
tin

g
th
e
nu

cl
eo
lu
s
of

ty
pe

I
ga
m
es

n
T
im

e
It
er
at
io
ns

Pi
vo
ts

Su
br
ou
t.

B
FN

D
K

SP
SD

PR
A

B
FN

D
K

SP
SD

PR
A

B
FN

D
K

SP
SD

PR
A

B
FN

SP

10
0.
01

1
0.
01

4
0.
00

9
0.
01

6
0.
11

2.
02

2.
04

2.
02

2.
06

2.
06

11
.8

14
.1

55
.6

63
.6

41
14

.3
3.
1

15
0.
1

0.
17

0.
42

0.
17

37
0

1.
5

1.
52

1.
5

1.
52

1.
52

19
.2

25
.9

93
.6

15
3

16
1

21
2

20
4.
4

7.
69

22
.1

8.
43

O
oM

1.
46

1.
46

1.
46

1.
46

O
oM

28
.9

40
.6

15
9

33
0

O
oM

31
.4

1.
9

25
22

7
42

5
O
oM

O
oT

–
1.
78

1.
8

O
oM

O
oT

–
42

.1
56

.5
O
oM

O
oT

–
47
.6

O
oM

26
46

3
95

8
–

–
–

1.
6

1.
6

–
–

–
40

.6
71

.8
–

–
–

43
.3

–

27
12

61
20

47
–

–
–

1.
9

1.
9

–
–

–
57

.1
70

.4
–

–
–

69
–

28
44

06
64

21
–

–
–

1.
9

1.
9

–
–

–
48

.5
82

.1
–

–
–

53
.7

–

29
12

,2
20

17
,7
96

–
–

–
1.
7

1.
7

–
–

–
58

.1
78

–
–

–
66
.4

–

30
19

,2
32

O
oT

–
–

–
1.
4

O
oT

–
–

–
44

.4
O
oT

–
–

–
47

.4
-

123

Finding and verifying the nucleolus of cooperative games 165

Ta
bl
e
6

C
om

pu
tin

g
th
e
nu
cl
eo
lu
s
of

ty
pe

II
ga
m
es

n
T
im

e
It
er
at
io
ns

Pi
vo
ts

Su
br
ou
t.

B
FN

D
K

SP
SD

PR
A

B
N
F

D
K

SP
SD

PR
A

B
FN

D
K

SP
SD

PR
A

B
FN

SP

10
0.
01

0.
01

3
0.
01

2
0.
00

7
0.
06

6
2.
5

2.
6

2.
5

2.
6

2.
72

11
14

.3
44

.2
50

.1
22

.7
13

.8
4

15
0.
13

0.
18

0.
62

0.
29

24
6

2.
5

2.
5

2.
5

2.
6

2.
72

21
.6

21
11

6
10

3
10

6
26

.4
4

20
5.
06

9.
05

38
15

O
oM

2.
5

2.
5

2.
5

2.
5

O
oM

34
.1

34
25

7
19

8
O
oM

42
.5

4

25
29

4
61

1
O
oM

O
oT

–
3.
6

3.
6

O
oM

O
oT

–
53

.2
69

O
oM

O
oT

–
69
.6

O
oM

26
52

4
11

55
–

–
–

3.
1

3.
1

–
–

–
42

.7
65

.6
–

–
–

49
–

27
11

67
23

22
–

–
–

3
3.
1

–
–

–
52

.3
69

.1
–

–
–

66
.3

–

28
52

22
78

46
–

–
–

4.
8

4.
8

–
–

–
58

.3
61

.7
–

–
–

77
.6

–

29
14

,6
24

21
,4
29

–
–

–
4.
4

4.
4

–
–

–
69

.7
78

.3
–

–
–

96
.7

–

30
29

,5
93

O
oT

–
–

–
3.
8

O
oT

–
–

–
68

.1
O
oT

–
–

–
90

.7
–

123

166 M. Benedek et al.

Ta
bl
e
7

C
om

pu
tin

g
th
e
nu
cl
eo
lu
s
of

ty
pe

II
I
ga
m
es

n
T
im

e
It
er
at
io
ns

Pi
vo
ts

Su
br
ou
t.

B
FN

D
K

SP
SD

PR
A

B
FN

D
K

SP
SD

PR
A

B
FN

D
K

SP
SD

PR
A

B
FN

SP

10
0.
00

1
0.
05

1
0.
00

3
0.
00

7
0.
09

9
1

5.
8

1
2.
9

5.
72

0
52
.1

15
.5

55
.7

28
.5

3.
1

2.
6

15
0.
00

7
0.
73

0.
18

0.
25

16
4

1
6.
7

1
2.
6

6.
22

0
11

0
23

.5
10

2
61

.4
3.
9

2.
4

20
0.
18

47
.6

8.
44

15
.2

O
oM

1
11

1
3

O
oM

0
23

4
33

.8
93

3
O
oM

3.
8

2.
8

25
6.
48

25
71

O
oM

O
oT

–
1

11
.6

O
oM

O
oT

–
0

34
8

O
oM

O
oT

–
4.
7

O
oM

26
13

.6
57

05
–

–
–

1
13

.5
–

–
–

0
38

5
–

–
–

5.
1

–

27
29

.1
12

,2
08

–
–

–
1

12
.6

–
–

–
0

40
8

–
–

–
5.
2

–

28
72

9
29

,8
67

–
–

–
1

14
.7

–
–

–
0

47
1

–
–

–
5.
4

–

29
12

0
O
oT

–
–

–
1

O
oT

–
–

–
0

O
oT

–
–

–
6

–

30
23

9
–

–
–

–
1

-
–

–
–

0
–

–
–

–
6

–

123

Finding and verifying the nucleolus of cooperative games 167

Ta
bl
e
8

C
om

pu
tin

g
th
e
nu
cl
eo
lu
s
of

ty
pe

IV
ga
m
es

n
T
im

e
It
er
at
io
ns

Pi
vo
ts

Su
br
ou
t.

B
FN

D
K

SP
SD

PR
A

B
FN

D
K

SP
SD

PR
A

B
FN

D
K

SP
SD

PR
A

B
FN

SP

10
0.
00

7
0.
01

4
0.
00

8
0.
00

7
0.
05

4
2

2.
5

2
2.
5

2.
62

6.
6

15
.1

33
.5

42
.4

18
.4

9.
3

3.
3

15
0.
05

0.
2

0.
36

0.
27

12
2

2
2.
9

2
2.
5

2.
72

8.
9

27
.4

71
.1

95
.7

10
6

12
.1

3.
6

20
2.
17

11
.4

20
.7

19
.1

O
oM

2.
1

4.
2

2.
1

3.
4

O
oM

10
.8

44
.4

13
0

22
3

O
oM

15
.2

4.
5

25
10

2
56

3
O
oM

O
oT

–
2.
9

4.
2

O
oM

O
oT

–
16

.8
69

.3
O
oM

O
oT

–
23

.1
O
oM

26
18

8
13

75
–

–
–

3.
4

5.
2

–
–

–
16

.4
70

.5
–

–
–

22
.6

–

27
48

6
30

24
–

–
–

3.
6

5.
4

–
–

–
19

.7
78

.3
–

–
–

31
–

28
31

28
96

48
–

–
–

3.
7

6
–

–
–

19
.3

10
6

–
–

–
26
.3

–

29
46

65
22

,7
60

–
–

–
3.
5

6.
1

–
–

–
21

.3
89

–
–

–
32
.1

–

30
85

50
O
oT

–
–

–
2.
8

O
oT

–
–

–
18

.9
O
oT

–
–

–
25

.4
–

123

168 M. Benedek et al.

exploiting the structure in a similarway to [20].However,within the scopeof this paper,
we want to provide a like-for-like comparison and hence leave further improvements
for future research.

5.4 Comparing Kohlberg algorithms on different solutions

Finally, we consider further numerical tests of the various Kohlberg algorithms (Algo-
rithms 1, 2 and 1 of [22]) that verify whether a particular solution of a game is
the nucleolus or not. We test these algorithms on four kinds of solutions: a random
imputation, an element each of the least core and the least-least core (i.e. T1∪T2 is T0-
balanced), and the nucleolus. Results for the latter were presented above in Sects. 5.1
and 5.2, while we cover the former three in Online Appendix H of [22].

Naturally, our expectations are that random imputations are probably in no relation
with the nucleolus, therefore should be rejected straight away, while as we ‘go deeper’
into the least core, more effort is needed to reject solutions that are not the nucleoli
themselves.

As a general observation, our first expectation is met, regardless of the type of the
game. Tables 1, 2, 7, 8 and 11 of [22] show that all of the algorithms reject random
solutions without any significant effort (and therefore we omit these cases from further
analysis). Our other expectations seem to bemet as well, as we clearly notice increases
in time, iterations and subroutine calls when moving towards more involved solutions.

Another observation is that the original Kohlberg algorithm is again not able to
solve instances with more than 10 players as soon as we consider a solution from the
least core, or more than 15 players and the least-least core in case of the UN Security
Council game cf. Tables 12–13 of [22]. Thus, as before, algorithms IKA and IKAcr
provide the only option for most games and the solutions to be verified. Hence, in our
further analysis we again restrict ourselves to comparing these two algorithms, with
the details provided in Online Appendix H of [22].

6 Conclusion

In this paper, we present both an Improved algorithmic approach for verifying whether
a payoff vector is the nucleolus and a novel constructive method for finding it. In the
first part, we develop an Improved Kohlberg criterion in which the number of iter-
ations is bounded by at most (n − 1) instead of possibly exponentially large in the
original Kohlberg criterion. This also comes with introducing representative sets for
more efficient storage of the coalitions and a faster algorithm for checking balanced-
ness. In the second part, we develop a novel descent-based algorithm for computing
the nucleolus that exploits the new and Improved Kohlberg criterion. We compare
the performance of our new algorithms with existing methods and demonstrate their
effectiveness through numerical testing with a number of games proposed in the lit-
erature. Finally, we provide our algorithms, as well as the relevant literature’s in an
online open-source code repository, which we believe is an important step forward,
that the cooperative game theory community can build upon.

123

Finding and verifying the nucleolus of cooperative games 169

Acknowledgements Open access funding provided by Centre for Economic and Regional Studies. The
authors would like to thank the Editor and the two anonymous reviewers for their valuable comments and
detailed suggestions on how to improve the manuscript. The first author acknowledges that the research
reported in this paper has been supported by the National Research, Development and Innovation Fund
(TUDFO/51757/2019-ITM, Thematic Excellence Program). The third author acknowledges the fund-
ing support from the Engineering and Physical Sciences Research Council (Grant Nos. EP/P021042/1,
EP/M50662X/1).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Schmeidler, D.: The nucleolus of a characteristic function game. SIAM J. Appl. Math. 17(6), 1163–
1170 (1969). https://doi.org/10.1137/0117107

2. Solymosi, T., Raghavan, T.E.S.: An algorithm for finding the nucleolus of assignment games. Int. J.
Game Theory 23(2), 119–143 (1994)

3. Hamers, H., Klijn, F., Solymosi, T., Tijs, S., Vermeulen, D.: On the nucleolus of neighbor games. Eur.
J. Oper. Res. 146(1), 1–18 (2003)

4. Solymosi, T., Raghavan, T., Tijs, S.: Computing the nucleolus of cyclic permutation games. Eur. J.
Oper. Res. 162(1), 270–280 (2005)

5. Potters, J., Reijnierse, H., Biswas, A.: The nucleolus of balanced simple flow networks. Games Econ.
Behav. 54(1), 205–225 (2006)

6. Deng, X., Fang, Q., Sun, X.: Finding nucleolus of flow game. J. Comb. Optim. 18(1), 64–86 (2009)
7. Kern, W., Paulusma, D.: On the core and f-nucleolus of flow games. Math. Oper. Res. 34(4), 981–991

(2009)
8. Elkind, E., Goldberg, L.A., Goldberg, P., Wooldridge, M.: Computational complexity of weighted

threshold games. In: Proceeding of the National Conference on Artificial Intelligence, vol. 22, p. 718
(2007)

9. Kohlberg, E.: On the nucleolus of a characteristic function game. SIAM J. Appl. Math. 1(20), 62–66
(1971)

10. Kopelowitz, A.: Computation of the kernels of simple games and the nucleolus of n-person games.
Technical report, DTIC Document (1967)

11. Kido, K.: A modified Kohlberg criterion and a nonlinear method to compute the nucleolus of a coop-
erative game. Taiwan. J. Math. 12, 1581–1590 (2008)

12. Kohlberg, E.: The nucleolus as a solution of a minimization problem. SIAM J. Appl. Math. 23(1),
34–39 (1972)

13. Owen, G.: A note on the nucleolus. Int. J. Game Theory 3(2), 101–103 (1974)
14. Puerto, J., Perea, F.: Finding the nucleolus of any n-person cooperative game by a single linear program.

Comput. Oper. Res. 40(10), 2308–2313 (2013)
15. Maschler, M., Peleg, B., Shapley, L.S.: Geometric properties of the kernel, nucleolus, and related

solution concepts. Math. Oper. Res. 4(4), 303–338 (1979)
16. Sankaran, J.K.: On finding the nucleolus of an n-person cooperative game. Int. J. Game Theory 19(4),

329–338 (1991)
17. Solymosi, T.: On computing the nucleolus of cooperative games. Ph.D. Thesis, University of Illinois

(1993). https://doi.org/10.13140/RG.2.2.28952.80642
18. Potters, J.A.M., Reijnierse, J.H., Ansing, M.: Computing the nucleolus by solving a prolonged simplex

algorithm. Math. Oper. Res. 21(3), 757–768 (1996)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/0117107
https://doi.org/10.13140/RG.2.2.28952.80642

170 M. Benedek et al.

19. Derks, J., Kuipers, J.: Implementing the simplexmethod for computing the prenucleolus of transferable
utility games (1997)

20. Nguyen, T., Thomas, L.: Finding the nucleoli of large cooperative games. Eur. J. Oper. Res. 3(248),
1078–1092 (2016)

21. Benedek, M.: Nucleolus. https://github.com/blrzsvrzs/nucleolus (2018)
22. Benedek, M., Fliege, J., Nguyen, T.D.: Finding and verifying the nucleolus of cooperative games.

Technical report (2019)
23. Granot, D., Granot, F., Zhu, W.R.: Characterization sets for the nucleolus. Int. J. Game Theory 27(3),

359–374 (1998)
24. Solymosi, T., Sziklai, B.: Characterization sets for the nucleolus in balanced games. Oper. Res. Lett.

44(4), 520–524 (2016)
25. Reijnierse, Hans, Potters, Jos: The b-nucleolus of tu-games. Games Econ. Behav. 24(1–2), 77–96

(1998)
26. Maschler, M., Potters, J.A.M., Tijs, S.H.: The general nucleolus and the reduced game property. Int.

J. Game Theory 21(1), 85–106 (1992)
27. Granot, D., Maschler, M., Owen, G., Zhu, W.R.: The kernel/nucleolus of a standard tree game. Int. J.

Game Theory 25(2), 219–244 (1996)
28. Reijnierse, J.H.: Games, graphs and algorithms. Ph.D. Thesis, Nijmegen (1995)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Márton Benedek1,2,3 · Jörg Fliege4 · Tri-Dung Nguyen5

Jörg Fliege
J.Fliege@soton.ac.uk

Tri-Dung Nguyen
T.D.Nguyen@soton.ac.uk

1 Institute of Economics, Centre for Economic and Regional Studies, Hungarian Academy of
Sciences, Tóth Kálmán u. 4., Budapest 1097, Hungary

2 Corvinus University of Budapest, Fővám tér 8., Budapest 1093, Hungary

3 Budapest University of Technology and Economics, Egry József u. 1., Budapest 1111, Hungary

4 Mathematical Sciences, University of Southampton, University Road, Southampton SO17 1BJ,
UK

5 Mathematical Sciences, Business School and CORMSIS, University of Southampton,
Southampton SO17 1BJ, UK

123

https://github.com/blrzsvrzs/nucleolus
http://orcid.org/0000-0002-7492-1174

	Finding and verifying the nucleolus of cooperative games
	Abstract
	1 Introduction
	2 Notations and preliminaries
	2.1 Notations
	2.2 Algorithmic view of the Kohlberg criterion

	3 An improved Kohlberg criterion
	3.1 Bounding the number of iterations to (n-1)
	3.2 Reducing the sizes of the tight sets
	3.3 A fast algorithm for checking balancedness
	3.4 Nucleolus-defining coalitions and characterization sets

	4 Lexicographical descent algorithm for finding the nucleolus
	4.1 Finding improving directions
	4.2 Step size
	4.3 Lexicographical descent algorithm

	5 Numerical results
	5.1 Type I and II games
	5.2 Type III and IV games
	5.3 Limitations of our algorithm
	5.4 Comparing Kohlberg algorithms on different solutions

	6 Conclusion
	Acknowledgements
	References

