University of

'Sl Kent Academic Repository

Yoh, Natalie, Kingston, Tigga, McArthur, Ellen, Aylen, Oliver E, Huang, Joe Chun-Chia,
Jinggong, Emy Ritta, Khan, Faisal Ali Anwarali, Lee, Benjamin P.Y.-H., Mitchell,,
Simon L., Bicknell, Jake E. and and others (2022) A machine learning framework

to classify Southeast Asian echolocating bats. Ecological Indicators, 136 . ISSN
1470-160X.

Downloaded from
https://kar.kent.ac.uk/93211/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/j.ecolind.2022.108696

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) ‘Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).



https://kar.kent.ac.uk/93211/
https://doi.org/10.1016/j.ecolind.2022.108696
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Ecological Indicators 136 (2022) 108696

Contents lists available at ScienceDirect e

Ecological Indicators

o %

ELSEVIER journal homepage: www.elsevier.com/locate/ecolind

Check for

A machine learning framework to classify Southeast Asian | e
echolocating bats

Natalie Yoh ™, Tigga Kingston ™, Ellen McArthur‘, Oliver E. Aylen ¢, Joe Chun-Chia Huang’,

Emy Ritta Jinggong ¢, Faisal Ali Anwarali Khan“, Benjamin P.Y.H. Lee ¢, Simon L. Mitchell %,
Jake E. Bicknell , Matthew J. Struebig®

2 Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, United Kingdom
Y Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA

¢ Southeast Asian Bat Conservation Research Unit, Lubbock City, TX, USA

4 Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

€ University of Otago, Department of Zoology, Dunedin, Otago, New Zealand

f Taiwan Forestry Research Institute, Taipei, Taiwan

& Wildlife Management Division, National Parks Board, Singapore

ARTICLE INFO ABSTRACT

Keywords: Bats comprise a quarter of all mammal species, provide key ecosystem services and serve as effective bio-
Acoustic monitoring indicators. Automated methods for classifying echolocation calls of free-flying bats are useful for monitoring but
Chiroptera

are not widely used in the tropics. This is particularly problematic in Southeast Asia, which supports more than
388 bat species. Here, sparse reference call databases and significant overlap among species call characteristics
makes the development of automated processing methods complex. To address this, we outline a semi-automated
framework for classifying bat calls in Southeast Asia and demonstrate how this can reliably speed up manual data
processing. We implemented the framework to develop a classifier for the bats of Borneo and tested this at a
landscape in Sabah. Borneo has a relatively well-described bat fauna, including reference calls for 52% of all 81
known echolocating species on the island. We applied machine learning to classify calls into one of four call types
that serve as indicators of dominant ecological ensembles: frequency-modulated (FM; forest-specialists), constant
frequency (CF; forest-specialists and edge/gap foragers), quasi-constant frequency (QCF; edge/gap foragers), and
frequency-modulated quasi constant frequency (FMqCF; edge/gap and open-space foragers) calls. Where
possible, we further identified calls to species/sonotype. Each classification is provided with a confidence value
and a recommended threshold for manual verification. Of the 245,991 calls recorded in our test landscape, 85%
were correctly identified to call type and only 10% needed manual verification for three of the call types. The
classifier was most successful at classifying CF calls, reducing the volume of calls to be manually verified by over
95% for three common species. The most difficult bats to classify were those with FMqCF calls, with only a 52%
reduction in files. Our framework allows users to rapidly filter acoustic files for common species and isolate files
of interest, cutting the total volume of data to be processed by 86%. This provides an alternative method where
species-specific classifiers are not yet feasible and enables researchers to expand non-invasive monitoring of bat
species. Notably, this approach incorporates aerial insectivorous ensembles that are regularly absent from field
datasets despite being important components of the bat community, thus improving our capacity to monitor bats
remotely in tropical landscapes.

Echolocation
Southeast Asia
Machine learning
Supervised algorithm

1. Introduction resources, time, and survey bias (Gardner et al., 2008). Focusing survey
efforts on biological indicators is one way to ameliorate these challenges

Biodiversity monitoring is critical to informing conservation prac- so long as these species or groups reflect the needs of others in the
tice. Still, multi-taxon assessments are frequently constrained by system, particularly in the way they respond to environmental change
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and other conservation threats.

Bats can be effective bioindicators of ecosystem health (Jones et al.,
2009). There is a growing literature on responses of bat assemblages to
various anthropogenic pressures such as forest loss and fragmentation
(Gardner et al., 2008; Meyer et al., 2016; Park, 2015). The use of mul-
tiple sampling techniques provides the best way to monitor the whole
bat assemblage, including live-capture methods and acoustic monitoring
(Russo et al., 2018). However, in the tropics, monitoring has been
largely confined to live-capture methods (e.g., harp traps and mist-nets).
Whilst they can be highly effective at monitoring bat species in the forest
understory (Tanshi & Kingston, 2021), these methods can be labour
intensive, invasive, and are often logistically challenging (Fisher-Phelps
et al.,, 2017). Moreover, insectivorous bat species that forage in open
spaces above forests, or in forest gaps or edges, are difficult to catch
using these methods. Therefore, key components of bat assemblages that
could serve as potential indicator taxa are often absent from or under-
represented in field datasets when only one approach is used (Kingston,
2013, 2016).

Acoustic monitoring, whereby call signatures of biological sounds
are compared to reference libraries, offers an alternative to bat capture
techniques (Walters et al., 2013). PAM techniques can be used to
quantify a range of ecological metrics, including species diversity
(Lopez-Baucells et al., 2019), animal movement and activity (Furman-
kiewicz & Kucharska, 2009), population dynamics (particularly for roost
monitoring; Revilla-Martin et al., 2020), and responses to anthropogenic
change (Meyer et al., 2016; Yoh et al., 2020). It is used to monitor a
range of terrestrial species including birds, amphibians, insects, and
terrestrial mammals, but is most extensively applied to insectivorous bat
monitoring (Sugai et al., 2019).

Two major shortfalls of PAM are the time required to process the
large volume of acoustic data generated, as well as the availability of
reference libraries (Gibb et al., 2019). Individual echolocating bats
adjust their call structure in response to different habitats, foraging
space, and stages of prey pursuit (Kalko & Schnitzler, 1993). This
within-individual and within-species variability is coupled with
morphological, phylogenetic, and habitat constraints on adaptive call
structure, and thus many species calls overlap in structure (Pham et al.,
2021; Russo et al., 2018; Walters et al., 2013). There are likewise
technical challenges when using PAM for bats compared to other taxa.
Most terrestrial mammal species produce infrasonic vocalisations (< 20
kHz) whereas most bats produce ultrasonic calls (> 20 kHz) which can
be over 200 kHz (Fenton & Bell, 1981). As frequency increases, so too
does atmospheric attenuation, which can lead to incomplete sampling of
the call structure (loss of higher frequencies) and reduce detection dis-
tances. Both can lead to a sampling bias in favour of low-frequency
species (Lawrence & Simmons, 1982; Russo et al., 2018). Bat species
that do not rely on echolocation for foraging cannot be monitored using
acoustic surveys (Russo et al., 2018). In Borneo, this includes 18% of bat
fauna (family Pteropodidae; 18 species from 11 genera; Phillipps &
Phillipps, 2016). For these taxa, live-capture methods remain an
essential monitoring tool.

To help mitigate some of the challenges associated with monitoring
bats acoustically, there has been a rise in the development of automated
or semi-automated classifiers (Kwok, 2019; Tabak et al., 2019). Still,
between 1990 and 2018, just ca. 19% of studies based on PAM in
terrestrial environments processed their data using fully automated
classifiers, and a further 15% used a semi-automated classifier in com-
bination with manual identification (Sugai et al., 2019). Such classifiers,
built using supervised machine learning algorithms, can determine
classifications through pattern recognition of call characteristics, and
provide a quick and repeatable method of distinguishing between spe-
cies calls. Classifiers can therefore help reduce the processing burden of
high volumes of acoustic recordings (Valletta et al., 2017).

Global attempts to assess how bats are impacted by environmental
change using acoustic monitoring networks (e.g., iBats; Jones et al.
2013) remain constrained by the availability of reference calls needed to
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encapsulate call plasticity within and across species when training these
algorithms. As such, acoustic classifiers are largely concentrated in
Europe (e.g., Parsons & Jones, 2000), North America (e.g., Clement
et al.,, 2014), and Japan (e.g., Kobayashi et al., 2021), where bat as-
semblages comprise relatively few species that are intensively studied
compared to other regions of the world. This therefore hinders our
ability to monitor bats effectively in species rich areas, where the costs of
establishing local call reference libraries are prohibitively high (Ker-
shenbaum et al., 2016). Consequently, there remain important gaps in
our understanding of how large numbers of bat species respond to
environmental changes across the Central African and Asian tropics in
particular (Meyer et al., 2016).

Several developments in recent years show promise for automated
classification of tropical bat calls. Software such as Waveman (Chen
et al., 2020) demonstrates how machine learning can be a viable tech-
nique for differentiating calls. However, attempts to classify species
from Thailand and Vietnam highlight how limited training data can
restrict confidence in identification (Hughes et al., 2011; Pham et al.,
2021). This illustrates the importance of manual post-validation when
using automated classifiers, in order to minimise the risk of incorrect
identifications (Russo and Voigt, 2016). Recently, Lopez-Baucells et al.
(2019) proposed a semi-automated approach that combines automated
classification with targeted post-validation of files. This provides a low
risk, efficient method for automating the processing of bat calls in areas
with limited reference call libraries.

Southeast Asia is a global hotspot for bat diversity with at least 388
species (Simmons & Cirranello, 2021). However, this diversity is highly
threatened by rapid land-use changes, with at least 23% of Southeast
Asia’s bats predicted to be extirpated by 2100 (Lane et al., 2006). So far,
bat research has been dominated by live-capture studies, and PAM is
rarely applied. Bat research is also spatially biased (Fisher-Phelps et al.,
2017), and as a result, there remain major gaps in our understanding of
species responses to anthropogenic threats (Kingston, 2010; Pham et al.,
2021). This creates a circular problem whereby the lack of tools limits
research capacity, which further restricts the ability to improve tools.
Meanwhile, the International Union for the Conservation of Nature
(IUCN) reports that at least 97 of these insectivorous bat species are
declining (IUCN, 2021).

A way to fast-track the development of bat call classifiers for
Southeast Asia is to shift the emphasis from species-level identification
to identifying call type. Insectivorous bats can be divided into three
broad foraging ensembles defined by the acoustic and flight challenges
of foraging in different environments (Denzinger & Schnitzler, 2013;
Schnitzler & Kalko, 2001): forest interior, edge/gap, and open space.

Bats foraging in the forest interior must distinguish target echoes of
potential prey from those coming from surrounding vegetation. Bats in
the families Hipposideridae and Rhinolophidae have evolved a strategy
that enables them to detect insect wing movement against static vege-
tation. Sound energy is focused into a very narrow range of frequencies,
almost a single “note”. These are referred to as constant frequency or CF
calls (Denzinger & Schnitzler, 2013; Schnitzler & Kalko, 2001). As an
alternative strategy, other species foraging in the forest interior (mainly
within the families Vespertilionidae, Nycteridae, Megadermatidae) use
low-intensity calls that cover a wide range of frequencies in a short time
— these can be a single harmonic (frequency-modulated calls; FM) or
comprise multiple harmonics that sweep down (multi-harmonic FM
sweeps; Denzinger & Schnitzler, 2013; Schnitzler & Kalko, 2001).

Edge/gap foragers (including Emballonuridae and Vespertilionidae)
often represent the greatest number of calls recorded during acoustic
surveys and are adapted to foraging in areas near background vegeta-
tion, such as the forest edge where the background can be used for
orientation but can mask the presence of insects (Schnitzler et al., 2003).
The calls of these species are typically mid to high intensity dominated
by a narrow-band FM component followed by a short quasi-CF compo-
nent (FMqCF) and are often highly flexible, which allows these bats to
maximize their sensory input for a range of environmental conditions
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and to minimize masking effects. Whereas most species calls begin with
a narrow-band FM component followed by a quasi-CF component,
several Emballonurid species (e.g., Emballonura monticola) use calls
characterised by a downward sweeping FM or quasi-CF component
(QCF) to hawk insects in less cluttered spaces (Pottie et al., 2005).
Open-space foragers hawk airborne prey across large, open spaces,
such as above the forest canopy (Denzinger & Schnitzler, 2013). Their
prey is more widely dispersed than within the forest interior, and
consequently, they need an increased range of prey detection. Therefore,
they use narrowband, high intensity calls with a long call duration and
typically emit frequencies below 30 kHz (Denzinger & Schnitzler, 2013;
Jung et al., 2014). They also use FMqCF calls, consisting of a long quasi-
CF component (8-25 ms). In Southeast Asia, this includes species from
the families Molossidae and Emballonuridae. Although certain bats can
adapt their foraging strategy to different environments, there are limits
to this behavioural flexibility. Therefore, echolocating bats are assigned
to a foraging ensemble according to which habitat their echolocation
call design is best adapted to (Denzinger & Schnitzler, 2013; Siemers &
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Schnitzler, 2004).

Here we present a semi-automated method for identifying echolo-
cation calls of bats in Southeast Asia. We developed a rapid, autonomous
framework for assigning echolocation calls to species or into call types/
sonotypes representative of different ecological ensembles present in the
region (Fig. 1). These call types/sonotypes serve as indicators for lesser-
known or less conspicuous species. We apply the technique to Borneo’s
bat fauna which is relatively well described taxonomically (Simmons &
Cirranello, 2021). We emphasise how our framework can be applied
elsewhere in Southeast Asia with comparable bat assemblage composi-
tion as reference calls become available. By applying this framework to
acoustic datasets, more comprehensive information can be generated
regarding how tropical bats utilise landscapes and respond to environ-
mental change.

2. Materials & methods

Current reference databases are typically insufficient for training
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Fig. 1. The four call types used in the Borneo bat classifier. (A) Representation of bat ensembles in Borneo, their corresponding call types, and species/sonotypes
used to train the bat call classifier. (*Identified to species; ™Identified to call type ‘frequency modulated’; ™3F!1dentified to ‘frequency modulated quasi constant
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species-specific classifiers. Hierarchical classifiers help alleviate this
problem by classifying calls to ensemble/call type, predefined call
groups, or to species level when sufficient training material exists. Ul-
timately, such classification limits the volume of acoustic data that re-
quires manual identification by a user. Our Borneo Bat Classifier (BBC)
incorporates two hierarchical classification stages with three compo-
nents, each trained using bat calls from Borneo. First, calls are identified
to one of four broad call types. Second, depending on the call type
identified, a call may be further classified to species (if an identity can be
inferred from a call database or the literature) or sonotype (a taxonomic
unit described only by its acoustic parameters and lacking a referent
species identity in databases or the literature). A corresponding confi-
dence value is provided for each assignment. This tiered approach
maximises the classification accuracy for the data available, by priori-
tising specific call parameters within the machine learning algorithms
for distinguishing between species of the same call types. Each species/
sonotype is provided with a recommended confidence threshold beyond
which manual verification is required. This approach minimises the
manual workload while preserving the overall confidence in
identifications.

2.1. Input data

We collated reference calls from 687 captured bats of 42 species from
23 sites across the three countries of Borneo (see Supplementary Notes
for the complete methodology for collecting reference calls; Fig. 2). To
enhance the variability encapsulated within the training data, we also
included calls of free-flying bats recorded by static detectors (Song
Meter 2 BAT, Wildlife Acoustics) in a typical forest-farmland landscape
in Tawau district, Sabah (at the Stability of Altered Forest Ecosystems
Project, SAFE; www.safeproject.net), hereafter referred to as field re-
cordings. Unlike the reference calls, which are tied to identification of
captured bats, calls from field recordings are not linked to in-hand
identifications. Static detectors were set at 26 locations in the SAFE

Constant Frequency [CF]
Quasi Constant Frequency [QCF]

Frequency Modulating Quasi Constant Frequency [FMqCF]
Frequency Modulating [FM]
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landscape for 862 hours in multiple habitat types (Supplementary
Notes). Reference calls and field recordings were collected as WAV
sound files. The calls from Sarawak contributed to the Asian Bat Call
Database and are available from the Chirovox library (Gorfol et al.,
2022; McArthur & Khan, 2021).

2.1.1. File processing

All WAV files were split into sequences of five seconds with a mini-
mum of two recognisable echolocation calls per species/sonotype using
Kaleidoscope v.5.1.9 (Wildlife Acoustics Inc, USA). This was used to
define a bat pass as a measure of activity (Torrent et al., 2018). Files
were also filtered within a target frequency range between 8 and 250
kHz and call durations between 1 and 500 ms to reduce the amount of
non-bat ‘noise’ in samples. In each of the total 34,792 bat passes (each
five seconds long), there were > 2 calls from at least one species/
sonotype present.

Using Kaleidoscope Viewer (FFT size 256, window size 128, Ham-
ming window, and cache size 256 MB), call parameters within each
recording were compared to the relevant literature and against the
reference calls to determine the species identification (Table 1; Sup-
plementary Notes). The parameters included: the frequencies (in kHz) at
the start and end of the call, the maximum, minimum, and frequency of
maximum energy (peak freq.), call duration (ms; from start to end fre-
quencies), pulse interval (ms), duty cycle (%), and measures of call
shape based on slope of the call (see Supplementary Notes and Supple-
mentary Table 2). Many species in the region produce calls in which
parameters overlap (e.g., Hipposideros cineraceus and H. dyacorum).
Therefore, we grouped species into sonotypes or identified them only to
call type when there was a risk of misidentification (Table 1). For the call
characteristics for the FMqCF sonotypes see Supplementary Table 3.

Only WAV files with a single species present were used in the clas-
sifier design to ensure there was no misidentification between calls.
Adobe Audition (Adobe Systems) was used to scrub non-target bat
species from the reference call files that comprised calls from multiple

Fig. 2. Reference calls collected from 23 sites in
Borneo, aggregated to political administrative units.
In the Malaysian states, 17 species were recorded in
Sabah, 35 in Sarawak. Ten species were recorded in
the Indonesian provinces of West and Central Kali-
mantan, and 21 in the Nation of Brunei, Calls
collected from Tawau district Sabah are field data
(SAFE landscape). Forest cover shown in green is for
2015 from https://earthenginepartners.appspot.
com/science-2013-global-forest. White areas repre-
sent non-forest cover.
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Table 1
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The total number of bat passes (5-second-long sequences which include multiple calls) that were available for training and testing the Borneo Bat Classifier per call/
type/sonotype/species, along with the number of calls extracted. Values represent both reference calls and field recordings and where only one species was present in

the sequence.

Field Sabah Sarawak Brunei Kalimantan
ID category Code Files Pulses Files Pulses Files Pulses Files Pulses Files Pulses
Constant frequency [CF]
H. cineraceus/dyacorum H140 1 2 5 48 12 338 8 49 10 140
Hipposideros ater Hate 5 124 2 31
Hipposideros bicolor Hbic 2 35
Hipposideros cervinus Hcer 18 54 14 397 14 487 24 423
Hipposideros coxi Hcox 2 132
Hipposideros diadema Hdia 25 313 3 138 3 67
Hipposideros galeritus Hgal 78 218 2 146 8 217 6 139
Hipposideros larvatus Hlar 3 67
Hipposideros ridleyi Hrid 9 276 2 50 2 24
Rhinolophus acuminatus Racu 1 4 3 35 6 699
Rhinolophus affinis Raff 4 14 5 216
Rhinolophus borneensis Rbor 143 613 13 545 7 371 14 180
Rhinolophus creaghi Rere 6 113
Rhinolophus luctus Rluc 645 2 71
Rhinolophus philippinensis Rphi 10 390
Rhinolophus sedulus Rsed 2893 25,723 8 154 3 80 24 354 12 119
Rhinolophus trifoliatus Rtri 4312 32,576 47 3051 1 41 8 103 14 82
Frequency modulated constant frequency [FMCF]
FMCF sonotype 1 FMCF1 261 5520
FMCF sonotype 2 FMCF2 567 9779
FMCF sonotype 3 FMCF3 1368 14,948
FMCF sonotype 4 FMCF4 2082 24,116 2953 225
Glischropus tylopus 36 1
Myotis horsfieldii 4
Tylonycteris robustula 55
FMCF sonotype 5 FMCF5 3350 65,102 4869 1090 31 86
Miniopterus australis 1 1
Myotis muricola 7 2
Moyotis ridleyi 2 4 4
Tylonycteris pachypus 10
Low frequency sonotype LF 1215 6742 1293
Chaerephon plicatus 35
Saccolaimus saccolaimus 1
Arielulus cuprosus Acup 4 29 1 92
Quasi-constant frequency* [QCF] 5288 71,854 9
Emballonura alecto QCF 1
Emballonura monticola QCF 1
Frequency modulated [FM] * FM 1006 4898 174 420 127
Kerivoula hardwickii 5 18
Kerivoula intermedia 2 7
Kerivoula lenis 1
Kerivoula minuta 1 7
Kerivoula papillosa 4 5 21
Kerivoula pellucida 8
Murina peninsularis 1 1
Murina suilla 3 7
Megaderma spasma 2
Nycteris tragata 3
Phoniscus atrox 1 2
Phoniscus jagorii 2 2

species (e.g., where there was a flyby). Calls that were obscured or faint
(< 20 dB), feeding buzzes, and social calls were also excluded. Field
recordings were subset to those in which only one species was identified
in the manual identification process (28,831 of 34,792 files).

2.1.2. Call parameters

We used the threshold function in the R package “Bioacoustics”
(Marchal et al., 2020) to measure 26 call parameters (Supplementary
Table 2; settings: minimum duration 1.5 ms, maximum duration 80 ms,
FFT size = 512, FFT overlap = 0.875, extraction threshold (sensitivity of
which extraction is triggered) = 4 dB, signal to noise ratio threshold
(SNR; sensitivity threshold at which the extraction stops) = 4 dB, and
Hanning window). Threshold and SNR threshold parameters were cali-
brated to determine which provided the greatest proportion of calls
extracted with the smallest rates of noise/error introduced. All the

numerical call measurement values were subsequently centred and
scaled to normalise the data (James et al., 2013).

2.2. Call classification via machine learning

The BBC comprised two hierarchical stages including three compo-
nents, each based on a separate random forest model. In the first stage,
calls were classified into one of four broad call-types (‘frequency
modulated’, FM; ‘constant frequency’, CF; ‘frequency-modulated quasi
constant frequency’, FMqCF; and ‘quasi-constant frequency’, QCF;
Table 1). Calls identified as CF or FMqCF underwent an additional
classification stage. Those classified as CF were classified to species
using a second model. Similarly, calls classified as FMqCF were subse-
quently classified into sonotype/species using a third model. See Fig. 3
for full pipeline.
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Fig. 3. Pipeline for building the classifier framework to identify bat calls first to
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2.2.1. Subset for training and testing data

The first model (i.e., call type) was trained using 1000 random calls
per call type, as was the second model that identified calls to CF species
(1000 calls per species). The third model (i.e., FMqCF) was trained using
2000 calls per sonotype/species. We compared five training data sizes
(250-5000 calls) per model to determine the optimum size in terms of
accuracy (the percentage of overall correct classifications out of the total
number of classifications performed) and kappa (accuracy normalised
for random chance per classification class; Harrell, 2015). The remain-
ing calls not used for training were used for testing. Where a call type or
sonotype/species had insufficient calls to meet these training thresholds,
80% of the available data were used for training to set aside 20% for
testing.

2.2.2. Constructing the models

For the BBC, we used random forest supervised machine learning
algorithms as these performed the best amongst five other algorithms
tested (Supplementary Fig. 1). A random forest is an ensemble of an
arbitrary number of decision trees randomly built using bootstrapped
samples of a training dataset which is used to assign the classification of
highest likelihood (Breiman, 2001). Due to their repetitive structure,
these supervised machine learning algorithms are robust to outliers and
can incorporate mixed variable datasets (Olden et al., 2008). As a result,
they provide the highest certainty for the lowest resource requirements
and have previously been used to classify echolocation calls in multiple
species-rich regions, including Amazonia and Central America (Lopez-
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Baucells et al., 2019; Zamora-Gutierrez et al., 2016). Models were
constructed using the R package “caret” (Classification and Regression
Training; Kuhn et al. 2020).

To determine the optimum number of call parameters to be included
in each random forest, we tested for overfitting (the process by which
too many parameters included in a model reduces its performance) using
10-fold cross-validations for models containing between 1 and 26 call
parameters (James et al., 2013). We also calculated the error rate for the
models using between 1 and 500 decision trees to determine which
provided the least error for the lowest computational power. The opti-
mum number of parameters with the mean lowest error rate was 15.
However, there was no evidence of overfitting when using up to 26
parameters, and the error rate plateaued at approximately 100 decision
trees. We therefore used 26 parameters and decision trees across all
models for consistency.

2.2.3. k-means clustering

To check whether it was possible to discriminate individual species
within the FM call type we applied k-means clustering, an unsupervised
machine learning approach used to cluster observations without prior
information of species identity (Hartigan & Wong, 1979). However,
there was no distinction between the species assigned to each of these
clusters and therefore we did not classify FM calls beyond the call type.

2.3. Performance testing

2.3.1. Testing success rate on bootstrapped data

We evaluated classification accuracy and predictive power of the
models on the testing dataset using accuracy and kappa performance
metrics, with acceptable agreement determined as > 0.41 (McHugh,
2012). We chose recall (percentage of true positives, e.g., number of
correct classifications per class out of total classification per class) and
precision (probability given the class that the classification is correct) as
metrics to evaluate the classification success for each call type. Unlike
metrics such as specificity (percentage of true negatives) or negative
predicative value (probability, considering each class, that it is correctly
identified as not a given class), these metrics highlight the true positives
in the classification process and are therefore considered the most reli-
able and conservative performance metrics for multicategory acoustic
classifiers (Jennings et al., 2008).

We assessed the relative importance of call parameters using variable
importance scores (James et al., 2013) and the system runtime required
to train the models. This was measured on an Intel i5 2.50 GHz core
processor with 8 GB RAM. The “best” models were defined as those at
each stage with the greatest accuracy and predictive power for the
lowest computational expense.

2.3.2. Accuracy thresholds for manual verification

Each classification was assigned both an automatic identification
label and the corresponding accuracy of that identification as a per-
centage (Fig. 4). Following Lopez-Baucells et al. (2019), we estimated
the percentage of bat passes that would need to be manually verified
using the BBC depending on eight classification accuracy thresholds
between 60 and 95% in 5% steps. Files with < 60% accuracy were
discounted.

The optimal threshold was determined as where the F1-score (har-
monic mean of precision and recall) was > 0.9 (Kuhn et al., 2020). The
optimal threshold was accepted for identification to call type, for com-
mon species, and where there was adequate testing data in the classifier
(>250 calls). We advise manual verification of all rare species, where
the threshold was not met, or for species where test data was < 250 calls.



N. Yoh et al.

WAV Files

v

Extract call parameters
Bioacoustic Package

Stage 1 ¢

Call type
model

v

Confidence values

I

Ecological Indicators 136 (2022) 108696

Fig. 4. Diagram for the user application
of the classifier framework. WAV files
(pre-processed) are imported into R to
extract their call parameters, these are
then classified to call type. Depending
on the call type identified, this may be
the final assignment or it may be further
classified to species/sonotype. Each
assignment will have a corresponding
confidence value. These are compared
against confidence thresholds for each
call type/sonotype/species to determine
if the file requires manual verification.
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3. Results
3.1. Minimum training dataset size

We found > 85% accuracy in identifying calls to call type using 1000
calls per category (Fig. 5), with a kappa > 0.81 indicating almost perfect
agreement. Accuracy was still high (~80%) at smaller training data
sizes, however there was greater variability in performance with accu-
racy varying up to ~ 10% and kappa by ~ 15%. There was little
improvement by increasing 1000 calls to 2000 or 5000 calls compared to
the increase in computational power, (which ranged from ~ 3-fold to >
10-fold depending on the measure of power and training data size;
Supplementary Table 4). The second model, classifying calls to CF spe-
cies, showed a similar trend. Training data sizes > 1000 ensured accu-
racy and kappa > 0.9. For the third model that classified FMqCF calls to
sonotype/species, performance increased incrementally with increasing
training data input. To achieve a kappa that would be considered sub-
stantial agreement (0.61-0.8) the model required 2000 calls per sono-
type/species.

3.2. Call parameter importance

The random forest prioritized different parameters when classifying
to either call type or sonotype/species (Fig. 6). “Maximum frequency”
was the most important parameter for determining call type and

<" Threshold met s

differentiating between CF calls. The CF model also shared eight of the
ten most important parameters as used for classifying to call type,
though their importance between models varied. While “raw slope es-
timate” (slope) and “smoothed slope estimate after Kalman filtering”
(slope smoothed) were not in the top ten for the CF model, they regained
importance in the FMqCF model where they were the seventh and eighth
most important parameters respectively. The “characteristic frequency/
frequency at which the slope is the flattest” (char. freq.) was the
parameter of most importance for distinguishing between FMqCF calls
and second most important for determining call type.

3.3. Success in performing classifications

To call type, the classifier achieved > 90% balanced accuracy for all
call-types (Table 2). Using the bootstrapped data > 85% of the calls were
identified correctly to call type (Table 3). FM calls were correctly
identified in 88.5% of cases. Where they were misclassified, they were
most commonly reported as FMqCF type calls (7.9% cases) (Supple-
mentary Table 5). QCF calls were correctly identified in 91.38% of cases
but were misidentified predominantly as CF calls (4.05% cases).

Across both the second (CF classification) and third models (FMqCF
classification), all sonotypes/species achieved a balanced accuracy
outcome > 80%. A balanced accuracy > 90% was achieved for all spe-
cies included in the CF model, except for Hipposideros bicolor and Rhi-
nolophus creaghi, which had a balanced accuracy score of 80% and 86%
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Fig. 5. Comparison of each model performance using different training data sizes for each classification algorithm. (A) Classification to call type, (B) classification to

CF species, and (C) classification to FMqCF sonotype/species.

respectively (Table 2). FMqCF sonotypes showed the greatest rates of
misclassification. However, they were still correctly identified in
65.9-73.55% of cases (Supplementary Table 6).

Precision was generally lower for high-frequency calls (>120 kHz)
and/or where there was limited training data (e.g., Arielulus cuprosus).
There were several exceptions for CF species which show less variability
than FMqCF calls. Rhinolophus acuminatus was trained using 590 calls
and was correctly identified in 98.7% of cases. A further three CF species
achieved a balanced accuracy of 100% (all calls correctly identified).
However, all three had small test data sizes (26-78 calls) constituting
only a few individuals. Therefore, it is likely errors would occur if a
larger testing data with more individuals were available for these
species.

3.4. Manual verification

Manual verification was only needed for a minority of calls for the
main classifier: CF, FMqCF, and QCF call types all reached an F1 score >
0.9 at the 60% confidence threshold (Table 2; Supplementary Table 7),
and while this threshold was higher (80%) for FM calls the classifier still
reduced the number of calls for manually processing by almost half
(Table 2, Fig. 7). As FM is the least common call type present, this means
that < 1% of the total sum of calls identified to call type need manual
verification.

Six CF species also did not require any manual processing, having
reached the necessary Fl-score at the 60% confidence threshold. This
included the three most common CF species, Hipposideros cervinus, R.
sedulus and R. trifoliatus (Table 2). Of the remaining species, a further
four reduced processing demands by over 50%, Hipposideros ater
(15.4%), H. cineraceus/dyacorum (20%), R. luctus (30.8), and
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Fig. 6. The importance of each call parameter used in the final random forest classifier - the Borneo Bat Classifier. High values indicate greater parameter
importance. See supplementary table 2 for parameter acronyms. (A) Classification to call type, (B) classification to CF species, and (C) classification to FMqCF

sonotype/species.

Table 2

Performance (%) of random forest models in each stage of the Borneo Bat Classifier. The optimal confidence threshold was defined as an F1-score > 0.9 (NA = testing
data < 250 calls; NR = values did not reach > 0.9 Fl-score threshold). The percentage of each call type/sonotype/species that requires manual verification is given
according to this optimal threshold. Total % of calls to verify - all calls identified to call type/sonotype/species with given confidence 60-100%.

ID category Code Recall  Specificity = Precision  Balanced F1- Optimal confidence Total % of calls to
Accuracy Score threshold verify
Model 1: Classification to call type
Constant frequency CF 0.88 0.98 0.93 0.93 0.96 60 0
Frequency modulated quasi constant FMqCF 0.88 0.97 0.97 0.93 0.97 60 0
frequency
Quasi-constant frequency QCF 0.91 0.95 0.88 0.93 0.94 60 0
Frequency modulated FM 0.88 0.95 0.21 0.92 0.93 80 53
Model 2: Classification to CF species
H. cineraceus/dyacorum H140 0.97 1.00 0.58 0.98 0.97 75 20
Hipposideros ater Hate 0.92 1.00 0.61 0.96 0.95 65 16
Hipposideros bicolor Hbic 0.60 1.00 0.75 0.8 NA NA 100
Hipposideros cervinus Hcer 0.99 1.00 0.88 0.99 0.95 60 0
Hipposideros coxi Hcox 1.00 1.00 0.08 1.00 NA NA 100
Hipposideros diadema Hdia 0.97 0.99 0.19 0.98 NR NR 100
Hipposideros galeritus Hgal 0.94 1.00 0.57 0.97 0.98 60 0
Hipposideros larvatus Hlar 1.00 1.00 1.00 1.00 NA NA 100
Hipposideros ridleyi Hrid 0.84 1.00 0.76 0.92 0.94 60 0
Rhinolophus acuminatus Racu 0.99 1.00 0.38 0.99 0.92 60 0
Rhinolophus affinis Raff 0.89 1.00 0.94 0.94 NA NA 100
Rhinolophus borneensis Rbor 0.96 0.99 0.58 0.98 0.91 95 62
Rhinolophus creaghi Rere 0.71 1.00 0.36 0.86 NA NA 100
Rhinolophus luctus Rluc 0.99 0.99 0.39 0.99 0.94 80 31
Rhinolophus philippinensis Rphi 1.00 1.00 0.22 1.00 0.95 85 49
Rhinolophus sedulus Rsed 0.96 0.98 0.97 0.97 1.00 60 0
Rhinolophus trifoliatus Rtri 0.99 0.9 0.91 0.95 0.96 60 0
Model 3: Classification to FMqCF sonotype/species
FMqCF sonotype 1 FMqCF1 0.66 0.95 0.33 0.80 NR NR 100
FMQqCF sonotype 2 FMqCF2 0.69 0.96 0.57 0.83 0.90 75 54
FMqCF sonotype 3 FMqCF3  0.74 0.98 0.8 0.86 0.92 60 0
FMqCF sonotype 4 FMqCF4 0.69 0.95 0.76 0.82 NR NR 100
FMqCF sonotype 5 FMqCF5 0.94 0.95 0.96 0.95 0.98 60 0
Low frequency sonotype LF 0.93 0.98 0.65 0.95 0.92 95 52
Arielulus cuprosus Acup 0.83 1.00 0.19 0.92 NA NA 100

Rhinolophus philippinensis (48.7%). Six species required all calls to be
checked, either because of low sample sizes/rarity (n < 500; Hippo-
sideros larvatus, H. bicolor, H. coxi, R. creaghi, and R. affinis) or because
they did not achieve a satisfactory F1-score (e.g., Hipposideros diadema).
Overall, this reduced the number of CF pulses to manually verify to <
1% (536 out of 54,900 calls).

Two of the seven FMqCF sonotypes, FMqCF3 and FMqCF5, did not
require any manual processing. For two additional sonotypes, low fre-
quency and FMqCF2, the model reduced processing requirements by
almost half, with 51.5% and 53.5% of calls requiring manual

verification respectively. However, two sonotypes did not achieve an F1-
score > 0.9 and therefore FMqCF1 and FMqCF4 require all files to be
manually checked. We also advise this for A. cuprosus due to the small
training data size (n = 121). In total, this reduced the number of FMqCF
calls to manually verify down to 27.5% (30,259 out of 110,232). Across
all models, this means the BBC reduces the number of calls to check by
86.18% (34,006 out of 245,991).
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Table 3

Confusion matrix demonstrating the percentage of correct and incorrect bat
identifications made for bootstrapped test data for call type 1000 model. Grey =
correct species identification.

True Call Type Identification

Prediction

CF FMqCF QCF FM
CF 88.5 1.2 4.05 1.7
FMqCF 2.4 87.9 2.86 7.9
QCF 3.8 5 91.38 2
FM 5.3 5.9 1.7 88.5
N calls 62,170 125,398 69,854 3619

4. Discussion

We developed a hierarchical classification framework that can be
used to develop classifiers to greatly reduce the processing of bat
echolocation calls, particularly in localities where species-specific
training data may be limited. Our framework is intended to be appli-
cable to bat faunas across Southeast Asia and has demonstrated utility
with the bats of Borneo.

(A) Classification to call type
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Our approach substantially reduces human input and demonstrates
how information on different call types and species call characteristics
can lead to meaningful classifications of acoustic data that represent
different ecological ensembles and indicators for lesser-known species.
The ultimate aspiration for acoustic monitoring and automated classi-
fication is to differentiate among all species present. However, the ur-
gency for monitoring data, even if only a subset of the total community,
has never been higher. In many regions of Southeast Asia, heavy
deforestation is expected to result in over 40% of regional bat species to
be lost by the end of the century (Lane et al., 2006). The Borneo Bat
Classifier introduced here provides a means to document populations of
some individual taxa (e.g., CF-calling bats), while also resolving several
ensembles of bats from acoustic data.

A key benefit of the BBC is that it performs best for the most common
species and sonotypes. For example, over 99% of CF calls recorded in our
field dataset could be identified to species level. The FMqCF call type,
which represents the greatest volume of calls, also displays the greatest
call plasticity, resulting in both within-sequence variability and inter-
specific overlap in call parameters which makes differentiating between
species/sonotypes more challenging than CF calls. However, our
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Fig. 7. Percentage of echolocation calls requiring manual verification using the Borneo Bat Classifier, dependant on model and sonotype/species by confidence
threshold. For clarity, the model for constant frequency (CF) species has been divided across two panels (B and C). FMqCF - frequency modulated quasi constant

frequency. Shaded area — the overall proportion of files per model.
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approach reduces overall processing of this call type by 70% % (30,259
to check out of 110,232). By grouping calls in this way, future users can
rapidly and reliably discriminate between edge/gap, open-space bats,
and other groups without relying on species-specific identifications.
Therefore, this tool can vastly reduce the manual processing demands of
acoustic projects where this level of classification is appropriate. It is
important to state that this tool is not designed to replace species-
specific monitoring and should not be used on its own to inform
species-specific conservation efforts. It is designed to assess how the
insectivorous bat community more broadly varies between habitats,
management strategies, or over time. In this way it can help inform
monitoring efforts where species-specific monitoring is not possible or
can only be weakly undertaken.

Our results support previous recommendations against differenti-
ating broadband FM calls to species in Asian bat assemblages (Hughes
et al.,, 2011; Kingston et al., 1999). Even under controlled conditions,
calls can be difficult to discriminate between species due to overlap in
call variation (see Schmieder et al., 2012). Species utilising these FM
calls (e.g. Kerivoulinae, Murininae) are typically forest specialists that are
well sampled using live-capture methods, but are poor candidates for
acoustic monitoring due to the low-intensity and high frequencies of
their echolocation calls, making reliable field recordings very difficult to
obtain (Kingston, 2013; Russo et al., 2018). For example, although
Kerivoulinae and Murininae bats are relatively common in Southeast
Asian landscapes, including in our test landscape in Sabah (Struebig
et al., 2013) their FM calls only comprise a very small portion (4898
calls, 2%) of files generated by acoustic recorders simply because they
are too quiet and too high pitched to be reliably recorded. Therefore, we
do not recommend acoustic approaches be used to monitor these taxa.

An additional benefit of our approach is that we were able to create a
classifier without access to a complete reference call library of Borneo’s
echolocating bats. Species that were absent from our training data (e.g.,
the FM echolocator, Kerivoula whiteheadi; FMqCF echolocator, Mini-
opterus medius) will still be encapsulated in the broad call types. A key
outcome of using representative call types or sonotypes in this way is
that it allows classifiers to be developed in other regions in Southeast
Asia where bat call inventories are less complete. While this method-
ology shows promising results for Borneo, this approach needs further
development and testing to be applied to other regions in Southeast Asia.
Such classifiers should be straightforward to develop as echolocating
bats in this region share a common community structure, dominated by
the same families found in Borneo.

Currently, random forests provide our classifier with the best per-
forming algorithm, but this could change as the number of reference
calls increases in Southeast Asia. Deep neural networks are known to
provide the highest classification accuracies for the automated identi-
fication of bats in Europe (Parsons & Jones, 2000) but these methods are
computationally intensive; requiring extensive reference libraries that
are not currently available for most species in the tropics (Walters et al.,
2013). Kobayashi et al., (2021) required 54,525 calls to train a classifier
to recognise 30 species in Japan. The Hungarian Natural History
Museum and the Southeast Asian Bat Conservation and Research Unit
recently launched the Asian Bat Call Database, a repository dedicated to
making acoustic recordings of bats in Asia more accessible to acoustic
demonstrated the potential for neural networks to be used for identi-
fying Asian species and reference banks such as this would expand their
application in the future. Considering these future developments, our
framework can be easily updated to a neural network algorithm as such
call databases become widely available.

There remain important considerations when interpreting results
generated by this tool. The current classifier framework determines
sonotypes/species identification by individual calls (rather than from a
string of calls), therefore it cannot recognise call alternation (i.e. alter-
nating between two or more call structures, Pipistrellus stenopterus)
(Kingston et al., 2003). Rather, the classifier treats alternate calls as
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potentially belonging to different species, which can inflate the number
of calls for verification. Two alternator sonotypes, FMqCF1 and
FMqCF2, constitute approximately 10% of FMqCF calls. An option for
users who have limited time to manually process files would be to re-
group FMqCF1 and FMqCF5 post-classification. As the species from
each of these sonotypes are producing calls of a similar structure above
50 kHz, they are likely to all be utilising their environment in an
ecologically similar way, and both represent edge/gap foragers. How-
ever, FMqCF2, which produces calls of a similar frequency to FMqCF4,
are more likely to be open space hawkers (Kingston et al., 2003) and
therefore these two sonotypes should not be grouped.

There are also species not currently included in the training dataset.
While most of these species are represented within the current call types,
our classifier may omit a fifth call type typical of open-space foragers of
the family Emballonuridae. This includes calls from three species in
Borneo belonging to the genus Taphozous, all of which are open-space
hawking insectivores (Wei et al., 2008) and have calls characterised as
multi-harmonic, low frequency QCF. These calls share similar properties
with both the QCF call type and low frequency sonotype, therefore it
remains to be seen whether they would be classified into these cate-
gories or whether a new call type would be needed once reference calls
became available. Nevertheless, it is notable that in our sample land-
scape none of the calls were manually attributed to this group, sug-
gesting that they will be infrequently detected in typical forest-farmland
surveys.

Only three species utilising CF calls are yet to be included in our
classifier (Rhinolophus francisi, R. pusillus, and Hipposideros doriae). These
are either very rare or have a patchy distribution, and thus are rarely
captured. R. francisi was only described in 2015, and is reported from
five localities in Borneo (Soisook et al., 2015), producing overlapping
frequencies with the common species R. trifoliatus, Hipposideros doriae
and Coelops robinsoni, are also similarly rare and patchily distributed,
and produce very high frequency broadband calls with a very abbrevi-
ated, or absent, CF component (Kingston, 2016). On the other hand the
CF calls of R. pusillus and H. larvatus should be relatively simple to
discriminate by the classifier but so far there are no available recordings
for these species since they are highly localised to karst outcrops (Phil-
lipps & Phillipps, 2016). Another consideration is CF species are known
to express geographic variation in call frequency (Chen et al., 2009),
however we did not observe substantial variation in call frequencies
across the geographic range included in this study. Nonetheless,
increasing the extent of data used in this tool to date, would help its
efficacy in other localities. Where the framework is developed for other
regions, users should assess whether there is evidence of geographic
variation in species’ call parameters for that area.

5. Conclusion

Our acoustic classification framework and subsequent classifier for
Borneo greatly expands the capacity for monitoring bats in Southeast
Asia, reducing the need for manual processing of bat calls in Borneo by
seven-fold. Our framework incorporates aerial insectivorous ensembles
that are regularly absent from biodiversity studies despite being
important components of bat assemblages. It can be used to design
additional classifiers in Southeast Asia and the paleotropics more
broadly, where species-specific classifiers are not yet possible. There-
fore, improving the potential to use bat assemblages as bioindicators in
tropical environments.

6. Availability

The BBC classifier user script is available open access from the
GitHub repository github.com/TallyYoh/BorneoBatCalls (https://doi.
org/10.5281/zenodo.4725680) in the programming language R
version 3.6.3.
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