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ABSTRACT

During the past decade, software developers widely adopted JVM and CLI
as multi-language virtual machines (VMs). At the same time, the multicore
revolution burdened developers with increasing complexity. Language im-
plementers devised a wide range of concurrent and parallel programming
concepts to address this complexity but struggle to build these concepts on
top of common multi-language VMs. Missing support in these VMs leads
to tradeoffs between implementation simplicity, correctly implemented lan-
guage semantics, and performance guarantees.

Departing from the traditional distinction between concurrency and paral-
lelism, this dissertation finds that parallel programming concepts benefit from
performance-related VM support, while concurrent programming concepts
benefit from VM support that guarantees correct semantics in the presence of
reflection, mutable state, and interaction with other languages and libraries.

Focusing on these concurrent programming concepts, this dissertation finds
that a VM needs to provide mechanisms for managed state, managed execution,
ownership, and controlled enforcement. Based on these requirements, this disser-
tation proposes an ownership-based metaobject protocol (OMOP) to build novel
multi-language VMs with proper concurrent programming support.

This dissertation demonstrates the OMOP’s benefits by building concur-
rent programming concepts such as agents, software transactional memory,
actors, active objects, and communicating sequential processes on top of the
OMOP. The performance evaluation shows that OMOP-based implementa-
tions of concurrent programming concepts can reach performance on par
with that of their conventionally implemented counterparts if the OMOP is
supported by the VM.

To conclude, the OMOP proposed in this dissertation provides a unifying
and minimal substrate to support concurrent programming on top of multi-
language VMs. The OMOP enables language implementers to correctly im-
plement language semantics, while simultaneously enabling VMs to provide
efficient implementations.
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SAMENVATTING

Over de laatste jaaren hebben softwareontikkelaars de JVM en CLI beginnen
gebruiken als multi-language virtual machines (VM). Gelyktydig werd door
de multicore revolutie de taak van de softwareontwikkelaar vermoeilijkt. Pro-
grammeertaalontwerpers ontwikkelden een grote variéteit aan concurrente
en parallelle programmeerconcepten, maar het implementeren van deze con-
cepten bovenop de multi-language VM’s blijft een penibel probleem. Gebrek-
kige ondersteuning hiervoor in de VM’s leidt tot afwegingen in de program-
meertaalimplementaties tussen simpliciteit, correctheid en performantie.

Vertrekkende van de traditionele verdeling tussen concurrent en parallel
programmeren vindt deze verhandeling dat parallelle programmeerconcepten
voordeel halen uit performantie-gerelateerde VM ondersteuning, gelykaardig
halen concurrente programmeerconcepten voordeel halen uit correctheids-
garanties van semantiek onder reflectie, mutable state en interactie met an-
dere programmeertalen en libraries.

Door het toe te spitsen op deze concurrente programmeerconcepten vindt
deze verhandeling dat een VM mechanismen moet aanbieden voor managed
state, managed execution, ownership en controlled enforcement. Daarop gebaseerd
stelt deze verhandeling een ownership-based metaobject protocol (OMOP) voor
om vernieuwende multi-language VM'’s te bouwen met fatsoenlijke onderste-
uning voor concurrente programmeerconcepten.

We demonstreeren de voordelen van de OMOP door er concurrente pro-
grammeerconcepten bovenop te bouwen, zoals agents, software transactional
memory, actors, active object en communicating sequential processes. De per-
formantieévaluatie toont aan dat implementaties bovenop de OMOP van deze
concurrente programmeerconcepten de performantie kan evenaren van con-
ventionele implementaties, zolang de OMOP ondersteund is door de VM.

In conclusie, de OMOP biedt een verenigd substraat aan om concurrent pro-
grammeren te ondersteunen bovenop multi-language VM’s. De OMOP laat
programmeertaalontwikkelaars toe om op een correcte manier de semantiek
van een taal te implementeren, maar het laat ook deze VM’s toe om hiervoor
een efficiénte implementatie te voorzien.
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INTRODUCTION

During recent years, multicore processors have become available in a majority
of commodity hardware systems such as smartphones, laptops, and worksta-
tions. However, threads, locks, message passing, and other concurrent and
parallel programming techniques continue to remain the tools of specialists
for system programming or high-performance computing, because they are
considered to be too complex and too hard to manage for application de-
velopers. However, these techniques become increasingly important for the
development of mobile and desktop applications, since it becomes manda-
tory to exploit parallelism at the application level in order to achieve desired
performance levels on modern hardware.

At the same time, managed languages, i.e., high-level programming lan-
guages on top of virtual machines (VMs), have become ubiquitous. The range
of devices that utilize such general-purpose platforms grew steadily over the
last decade, enabling the same application to run on wristwatches, phones,
tablet devices, laptops, workstations, servers, and clusters. In addition, im-
provements in runtime technologies such as just-in-time compilation and au-
tomatic memory management widened the range of possible applications on
top of these VMs. Eventually, this led to ecosystems emerging around multi-
language VMs such as the Java Virtual Machine (JVM) and the Common Lan-
guage Infrastructure (CLI). Supported by growing ecosystems, these VMs be-
came the target platform of choice in many application domains.

However, research has not reconciled these two trends have so far. While,
the complexity of concurrent and parallel programming inspired a wide range



1. Introduction

of solutions for different application domains, none of the VMs provide suf-
ficient support for these techniques, and thus, application developers cannot
benefit from these solutions. Furthermore, current research [Catanzaro et al.,
2010; Chafi et al., 2010] indicates that there is no one-size-fits-all solution to
handle the complexity of concurrent and parallel programming, and there-
fore, application developers are best served with access to the whole field of
solutions.

Domain-specific languages are one promising way to alleviate the complex-
ity of concurrent and parallel programming. While the academic community
continuously proposes abstractions that facilitate certain use cases, reduce the
accidental complexity, and potentially provide improved performance, lan-
guage implementers struggle to build these abstractions on top of today’s
VMs, because the rudimentary mechanisms such multi-language VMs pro-
vide are insufficient and require the language implementers to trade off im-
plementation simplicity, correctly implemented language semantics, and per-
formance.

The goal of this dissertation is to improve the support VMs provide for con-
current and parallel programming in order to enable language implementers
to build a wide range of language abstractions on top of multi-language VMs.

1.1. Research Context

The research presented in this dissertation touches upon the domains of con-
current and parallel programming as well as on virtual machine construction. The
main concerns of these domains are the following;:

Concurrent and Parallel Programming Today, an overwhelmingly large body
of literature describes a wide range of different concepts to manage
concurrency, coordinate parallel activities, protect shared resources, de-
scribe data dependencies for efficient computation, etc. Already with
the first computers, i. e., the Zuse Z3 [Rojas, 1997] and the ENIAC [Mitch
and Atsushi, 1996], researchers have experimented with such concepts
for concurrent and parallel programming, but never came close to a
one-size-fits-all solution.

Virtual Machine Construction Software developers widely adopted high-level
language VMs such as the JVM and the CLI as multi-language run-
times, because the research on just-in-time compilation [Aycock, 2003]



1.2. Problem Statement

and garbage collection [Jones et al., 2011] led to highly efficient VM im-
plementations that can support a wide variety of use cases. The diversity
in supported use case as well as availability turned these VMs into rel-
evant targets for language implementation. With the INVOKEDYNAMIC
bytecode [Rose, 2009; Thalinger and Rose, 2010], the JVM improved its
support for dynamic languages even further. Moreover, other language
paradigms may benefit from improved support.

1.2. Problem Statement

While many domains, e.g., web applications or single-use scripts, are sen-
sitive to programmer productivity, the field of concurrent and parallel pro-
gramming frequently requires a tradeoff in favor of performance. In practice,
the need for parallel execution only arises when certain performance prop-
erties like minimal latency, responsiveness, or high throughput are required
and these requirements cannot be fulfilled with sequential implementations.
Sequential performance improvements eventually level off because of phys-
ical and engineering limitations, known as the power wall, memory wall, and
instruction-level parallelism wall [ Asanovic et al., 2006]. Additionally, the rise of
devices that are sensitive to energy efficiency further increases the need for
parallelization. Compared to today’s personal computers, the restricted en-
ergy budget of mobile and autonomous devices effectively reduces available
sequential processing power. Thus, it becomes more common for application
developers to consider performance, further increasing the necessity to utilize
parallel and concurrent programming techniques.

When exploiting parallel hardware, the diversity of concurrent and par-
allel programming concepts and the absence of a one-size-fits-all solution
suggest using problem-specific abstractions to enable application developers
to address the inherent complexity. However, today’s VMs support only a
small and often low-level set of such concepts. While the rise of dynamic lan-
guages led, for example, to explicit support of customizable method lookup
strategies in the JVM through the INVOKEDYNAMIC bytecode, VMs do not
provide similar mechanisms to enable library and language implementers to
build custom abstractions for concurrent and parallel programming. On the
contrary, platforms such as the JVM and CLI, which feature shared memory
semantics and thread-based concurrency models, make it hard to faithfully
implement abstractions like the actor model [Karmani et al., 2009]. On such
platforms, implementation simplicity or correct language semantics are often
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traded in for better performance, which hinders the development of domain-
specific abstractions.

An additional problem arises from the fact that the field of concurrent and
parallel programming is largely uncharted, i.e., there is no widely accepted
taxonomy that covers the wide range of different concepts. While a number
of surveys provide an overview of programming concepts and language con-
structs [Briot et al., 1998; De Bosschere, 1997, Gupta et al., 2001; Skillicorn
and Talia, 1998], they are far from complete and do not cover more recent
work in the field. Thus, it is not even clear which concepts a VM should sup-
port in order to be a viable platform for a wide range of different problems
from the field of concurrent and parallel applications. Supporting all possible
concepts directly would not be possible, because of the resulting complex fea-
ture interactions within VMs. Since there is no one-size-fits-all solution either,
one problem this dissertation needs to solve is to identify which of all these
concepts a virtual machine should support in order to enable library and lan-
guage implementers to provide domain-specific solutions for a relevant range
of concurrent and parallel programming.

To conclude, VMs such as the JVM and the CLI lack sufficient support for
parallel and concurrent programming. The goal of this dissertation is to iden-
tify a unifying substrate for concurrent and parallel programming that allows
efficient implementation in a VM and provides the necessary abstractions to
enable language and library implementers to implement custom abstractions.
In summary, the two problems that need to be addressed are:

Insufficient Support for Concurrent and Parallel Programming in VMs To-
day’s VMs do not provide sufficient support for concurrent and parallel
programming in order to enable library and language implementers to
build domain-specific abstractions.

Set of Required Concepts Unknown Since supporting all possible concepts
is prohibitively complex, a VM needs to make abstractions of concrete
programming concepts or support a subset of them. However, the subset
of concurrent and parallel programming concepts that would enable
domain-specific solutions is currently unknown.
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1.3. Research Goals
The thesis of this dissertation is:

There exists a relevant and significant subset of concurrent and parallel
programming concepts that can be realized on top of a unifying substrate.
This substrate enables the flexible definition of language semantics that
build on the identified set of concepts, and this substrate lends itself to an
efficient implementation.

This dissertation pursues the following research goals in support of this
thesis:

Identify a Set of Requirements First, this dissertation has to examine how
concurrency and parallelism are supported in VMs today, how the un-
derlying concepts for concurrent and parallel programming relate to
each other, and which problems occur when building higher-level ab-
stractions on top of today’s VMs. The resulting understanding of the
state of the art and common problems enable the establishment of a set
of requirements that guide the implementation of such concepts on top
of a VM.

Define a Unifying Substrate Based on the set of requirements identified in
the first step, this dissertation has to defines an abstraction that can
serve as a unifying substrate for the implementation of a significant sub-
set of concurrent and parallel programming concepts. This abstraction
has to enable library and language implementers to customize seman-
tics and guarantees for the programming concepts they want to provide,
while preserving acceptable performance. Since complexity is an inher-
ent issue for VM implementations, the abstraction has to demonstrate
unifying characteristics. Thus, it has to generalize over a set of program-
ming concepts to achieve abstraction, while avoiding adding indepen-
dent, i.e., separate, support for each of the programming concepts to
the VM.

Demonstrate Applicability This dissertation has to demonstrate the applica-
bility of the proposed unifying substrate as an extension to high-level
language VMs in order to show its benefits for building multi-language
runtimes. The evaluation is based on the implementation of common
abstractions for concurrent programming on top of the proposed sub-
strate. The goal is to show the substrate’s potential compared to classic
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ad hoc implementations. Therefore, this dissertation need to show that
the substrate fulfills the posed requirements, that it enables enforcement
of the desired language semantics, and that it gives rise to an efficient
implementation.

Note that the investigation of security aspects, reliability, distribution, and
fault-tolerance is outside of the scope of this dissertation. This dissertation
primarily focuses on improving support for concurrent and parallel program-
ming for multi-language runtimes in the form of high-level language virtual
machines.

1.4. Dissertation Outline
This dissertation is structured as follows:

Chapter 2: Context and Motivation

This chapter outlines the rationale for the assumptions stated above. It
argues that VMs are target platforms for a wide range of applications,
and thus, require better support for concurrent and parallel program-
ming abstractions as a responds to the multicore revolution. Further-
more, it defines concurrent and parallel programming, and introduces
common concepts for it as background for this dissertation. The chap-
ter concludes with a vision for constructing applications in the presence
of appropriate abstractions for concurrent and parallel programming to
motivate the goal of this dissertation.

Chapter 3: Which Concepts for Concurrent and Parallel Programming

does a VM need to Support?
This chapter establishes the requirements for VM support for a wide
range of different abstractions for concurrent and parallel programming.
First, it surveys contemporary VMs, assessing the state of the art by
identifying which concepts the VMs support and how they realize these
concepts. Second, the chapter surveys the field of concurrent and paral-
lel programming in order to identify its basic concepts, concluding that
parallel programming concepts benefit from VM support for a wide
range of different optimizations, while concurrent programming con-
cepts benefit from extended support for their semantics. This leads to
the observation that both sets of programming concepts have distinct
requirements. This dissertation focuses on VM support for concurrent
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programming concepts. The third part of the chapter identifies common
problems in implementing concurrent programming concepts on top
of today’s VMs. Based on survey results and identified problems, this
chapter concludes with requirements for comprehensive VM support
for concurrent programming.

Chapter 4: Experimentation Platform

This chapter discusses the motivation and choices for the platforms used
for experiments and evaluation. First, it introduces SOM (Simple Object
Machine), a minimal Smalltalk dialect, which is used throughout this
dissertation for code examples and the discussion of the OMOP’s se-
mantics. This section includes an introduction to general Smalltalk syn-
tax and its semantics. Second, it motivates the choice of Smalltalk as
platform for this research. Finally, it discusses RoarVM as a choice for
the VM implementation experiments and detailed its implementation.

Chapter 5: An Ownership-based MOP to Express Concurrency Ab-

stractions
This chapter introduce this dissertation’s main contribution, an own-
ership-based metaobject protocol (OMOP). The OMOP is a unifying
substrate for the implementation of concurrent programming concepts.
First, the chapter discusses the foundational notions of open implemen-
tations and metaobject protocols. Second, it presents the OMOP itself.
Third, it discusses examples of how to apply the OMOP to enforce im-
mutability and how to implement Clojure agents with it. Finally, the
chapter defines the OMOP’s semantics based on SOM’s bytecode inter-
preter and discusses the OMOP in the context of related work.

Chapter 6: Evaluation — The OMOP as Unifying Substrate

In order to evaluate the OMOP, this chapter discusses how it fulfills the
identified requirements. First, the chapter discusses the evaluation crite-
ria. Second, it examines the case studies implementing Clojure agents,
software transactional memory (STM), and AmbientTalk actors. Third,
the chapter discusses concepts identified in Chapter 3 and argues that
the OMOP supports all of the concepts that require VM support for
guaranteeing correct semantics. Fourth, the chapter shows that the us-
ing OMOP does not have a negative impact on the implementation size
of agents, actors, and STM, by comparing their OMOP-based implemen-
tations against their ad hoc implementations. Finally, the limitations of
the OMOP are discussed.
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Chapter 7: Implementation Approaches

This chapter details OMOP implementation strategies. First, it discusses
the OMOP implementation based on program transformation with ab-
stract syntax trees. Secondly, it describes the implementation in the
RoarVM bytecode interpreter and the chosen optimizations.

Chapter 8: Evaluation — Performance

This chapter evaluates the performance of the OMOP implementations.
Furthermore, it compares the performance of an STM and an actor im-
plementation based on the OMOP with the performance of their corre-
sponding ad hog, i.e., conventional, implementations. To that end, the
chapter first details the methodology used for the performance evalu-
ation. Second, it assesses the performance of the VMs used for the ex-
periments. Third, it compares the performance of the ad hoc with the
OMOP-based implementations. Fourth, it evaluates the performance of
different aspects of the OMOP implementation, such as inherent over-
head and the impact of the optimizations. Finally, it compares the abso-
lute performance of the two OMOP implementations.

Chapter 9: Conclusion and Future Work

1.5.

The last chapter revisits the dissertation’s problem and thesis statement
to argue that the OMOP is an appropriate unifying substrate for im-
plementing a wide range of concepts for concurrent and parallel pro-
gramming on top of a VM. It summarizes the OMOP as well as this
dissertation’s research contributions. Finally, it discusses the OMOP’s
current limitations and outlines future work. For example, it speculates
how the OMOP could be supported on VMs with statically typed lan-
guages, and how just-in-time compilation could improve performance.

Supporting Publications and Technical
Contributions

A number of publications, exploratory activities, and technical contributions
directly support this dissertation. This section discusses them briefly to high-
light their relevance to this work.

Main Idea The main idea, i.e., the design of an ownership-base MOP and
initial experiments were presented at TOOLS’12 [Marr and D’Hondt, 2012].
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Chapter 5 and part of the evaluation in Chapter 6 and Chapter 8 are based on
the material presented in:

¢ Stefan Marr and Theo D'Hondt. Identifying a unifying mechanism for
the implementation of concurrency abstractions on multi-language vir-
tual machines. In Objects, Models, Components, Patterns, 5oth International
Conference, TOOLS 2012, volume 7304 of Lecture Notes in Computer Sci-
ence, pages 171-186, Berlin / Heidelberg, May 2012. Springer. ISBN
978-3-642-30560-3. doi: 10.1007/978-3-642-30561-0_13.

This publication builds on gradual development based on an initial idea of
abstracting from concrete concurrency models, presented at the PLACES o9
workshop [Marr et al., 2010a]. The evolving ideas were also presented at sev-
eral other occasions: as posters [Marr and D’Hondt, 2010], which once re-
sulted in a Best Poster Award [Marr and D’'Hondt, 2009], or as a contribution
to the SPLASH"10 Doctoral Symposium [Marr, 2010].

Surveys Chapter 3 relies on three surveys conducted during the prepara-
tion of this dissertation. The main part of Sec. 3.2 was also part of Marr and
D’Hondt [2012]. The other two surveys have been presented at the VMIL 09
and VMIL 11 workshops:

¢ Stefan Marr, Michael Haupt, and Theo D’"Hondt. Intermediate language
design of high-level language virtual machines: Towards comprehensive
concurrency support. In Proc. VMIL 09 Workshop, pages 3:1-3:2. ACM,
October 2009. ISBN 978-1-60558-874-2. doi: 10.1145/1711506.1711509.
(extended abstract)

¢ Stefan Marr, Mattias De Wael, Michael Haupt, and Theo D'Hondt. Which
problems does a multi-language virtual machine need to solve in the
multicore/manycore era? In Proceedings of the 5th Workshop on Virtual
Machines and Intermediate Languages, VMIL "11, pages 341—348. ACM, Oc-
tober 2011a. ISBN 978-1-4503-1183-0. doi: 10.1145/2095050.2095104.

Exploring Programming Models While the surveys provided a good over-
view of the field, the practical insights gathered during exploring and exper-
imenting with the different technologies provided valuable additional expe-
rience that enabled a proper classification of the obtained knowledge. Exper-
iments were conducted with barrier-like synchronization [Marr et al., 2010b],
resulting in a Best Student Paper Award, different notions of Actor languages
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and systems [De Koster et al., 2012; Renaux et al., 2012; Schippers et al., 2009]
were explored, experience was gathered by teaching Erlang and Clojure [Van
Cutsem et al., 2010], as well as with the general exploration of concurrent
language implementations [Marr et al., 2012].

10

Stefan Marr, Stijn Verhaegen, Bruno De Fraine, Theo D'Hondt, and Wolf-
gang De Meuter. Insertion tree phasers: Efficient and scalable barrier
synchronization for fine-grained parallelism. In Proceedings of the 12th
IEEE International Conference on High Performance Computing and Com-
munications, pages 130-137. IEEE Computer Society, September 2010b.
ISBN 978-0-7695-4214-0. doi: 10.1109/HPCC.2010.30. Best Student Pa-
per Award.

Joeri De Koster, Stefan Marr, and Theo D'"Hondt. Synchronization views
for event-loop actors. In Proceedings of the 17th ACM SIGPLAN symposium
on Principles and Practice of Parallel Programming, PPoPP "12, pages 317-
318, New York, NY, USA, February 2012. ACM. doi: 10.1145/2145816.
2145873. (Poster)

Hans Schippers, Tom Van Cutsem, Stefan Marr, Michael Haupt, and
Robert Hirschfeld. Towards an actor-based concurrent machine model.
In Proceedings of the Fourth Workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages, Programs and Systems, pages 4—
9, New York, NY, USA, July 2009. ACM. ISBN 978-1-60558-541-3. doi:
10.1145/1565824.1565825

Thierry Renaux, Lode Hoste, Stefan Marr, and Wolfgang De Meuter.
Parallel gesture recognition with soft real-time guarantees. In Proceed-
ings of the 2nd edition on Programming Systems, Languages and Applications
based on Actors, Agents, and Decentralized Control Abstractions, SPLASH
12 Workshops, pages 35—46, October 2012. ISBN 978-1-4503-1630-9. doi:
10.1145/2414639.2414646

Tom Van Cutsem, Stefan Marr, and Wolfgang De Meuter. A language-
oriented approach to teaching concurrency. Presentation at the work-
shop on curricula for concurrency and parallelism, SPLASH 10, Reno,
Nevada, USA, 2010. URL http://soft.vub.ac.be/Publications/2010/
vub-tr-soft-10-12.pdf.

Stefan Marr, Jens Nicolay, Tom Van Cutsem, and Theo D’'Hondt. Modu-
larity and conventions for maintainable concurrent language implemen-
tations: A review of our experiences and practices. In Proceedings of
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the 2nd Workshop on Modularity In Systems Software (MISS’2012), MISS’12.
ACM, March 2012. doi: 10.1145/2162024.2162031.

Technical Contributions The work of this dissertation has only been made
possible by starting from existing research artifacts. These research artifacts
enabled this dissertation’s experiments and provide the foundation for the
implemented prototypes. The main artifact used for the experiments is the
RoarVM, designed and implemented by Ungar and Adams [2009]. It was
later documented in a so-far unpublished report [Marr et al., 2011b]. The fol-
lowing list briefly discusses these key research artifacts and their relation to
this dissertation. The source code and an overview of all artifacts is available
online."

RoarVM The RoarVM is a Smalltalk interpreter compatible with Squeak and
Pharo Smalltalk. It was designed to experiment with manycore archi-
tectures such as the Tilera TILE64 and runs on up to 59cores on these
machines. This dissertation relies on the RoarVM as an experimentation
platform to study the OMOP’s performance in a VM with a bytecode
interpreter.

URL: https://github.com/smarr/RoarVM

AST-OMOP This dissertation’s first implementation of the OMOP is based
on AST transformation of Smalltalk code and can be used with standard
Smalltalk VMs. Thus, it enables experimentation with the OMOP’s basic
mechanisms without requiring VM changes.

URL: http://ss3.gemstone.com/ss/0mni.html

RoarVM+OMOP Using the RoarVM as a foundation, the RoarVM+OMOP
adds support for the complete ownership-based metaobject protocol in
the interpreter. The current implementation changes the bytecode to
support the OMOP’s semantics (cf. Chapter 7).

URL: https://github.com/smarr/0mniVM

SOM+OMOP Building on SOM (Simple Object Machine), which was used
for previous research projects [Haupt et al., 2010, 2011a,b], SOM+OMOP
is a simple Smalltalk interpreter implementing and documenting the
OMOP’s semantics as part of this dissertation.

URL: http://ss3.gemstone.com/ss/0mni.html

Thttp://wuw.stefan-marr.de/research/omop/
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ReBench This dissertation’s performance evaluation requires rigorous prepa-
ration and a proper experimental setup to yield reliable results. ReBench
is a benchmarking tool that documents the experiments and facilitates
their reproduction. It uses configuration files for all benchmarks, docu-
menting the benchmark and VM parameters used for the experiments,
and thus providing the necessary traceability of results and a convenient
benchmark execution.

URL: https://github.com/smarr/ReBench
SMark The benchmarks used for the performance evaluation have been im-
plemented based on SMark, which is a framework inspired by the idea

of unit-testing that allows the definition of benchmarks in the style of
SUnit.

URL: http://www.squeaksource.com/SMark.html

12
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CONTEXT AND MOTIVATION

This chapter introduces the context for this dissertation. It motivates the need
for multi-language virtual machines (VMs) and argues that their rudimen-
tary support for parallel and concurrent programming needs to be extended
to maintain the versatility of these VMs in the multicore era. Furthermore, it
defines concurrent programming and parallel programming deviating from exist-
ing literature to overcome the shortcomings of the existing definitions. The
newly proposed definitions enable a classification of programming concepts
based on intent and purpose to facilitate the discussion in the later chapters.
Based on that, this chapter gives a brief overview of concurrent and parallel
programming concepts as a foundation for the remainder of this dissertation.
Finally, the chapter concludes by combining the different elements to envision
how applications are built when developers are able to utilize appropriate ab-
stractions to tackle the challenges of concurrency and parallelism.

13
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2.1. Multi-Language Virtual Machines: Foundation for
Software Ecosystems

High-level language VMs are used as general purpose platforms with large
software ecosystems. The role of high-level language VMs has been shift-
ing over the past decades. Starting out as interpreted VMs for languages
that offer high productivity, they became VMs that use highly efficient just-
in-time compilation technology [Aycock, 2003] and well tuned garbage col-
lectors [Craig, 2006; Smith and Nair, 2005]. The resulting performance im-
provements opened the door for a wide range of application domains. Con-
sequently, VMs are now the platform for many applications that earlier on
would have been implemented in native languages such as C or C++ and
targeted a particular operating system. With the increased adoption of VMs
came additional support from a wide range of parties. Software and tool ven-
dors, as well as the various open source communities started to build large
software ecosystems [Gregor, 2009] around VMs. Reasons for this adoption
are availability of libraries, code reuse, portability, and the desire to integrate
different systems on the same platform. Studies such as the one of Ruiz et al.
[2012] show that code reuse in such diverse ecosystems is not merely a theo-
retical opportunity, but realized in practice. In addition to code reuse, tooling
is an important motivation. For instance, the availability of IDEs, performance
analysis tools, testing frameworks, and continuous integration techniques are
important factors. Eclipse’ and Netbeans® as IDEs, and tools like VisualVM3
enable developers to use multiple languages, while relying on the same com-
mon tools.

Language implementers target VMs to provide appropriate abstractions for
specific problem domains. While the adoption of VMs like JVM and CLI
grew over the years, the desire to use different kinds of languages interop-
erating with the existing ecosystem, grew as well. Both, JVM and CLI, were
originally tailored towards either one specific language, i. e., Java for the JVM,
or a set of closely related languages, i.e., VB.NET and C# for the CLIL The
resulting VMs were however efficient enough to attract a vast number of lan-

Thttp://www.eclipse.org/
2http://www.netbeans.org/
3http://visualvm. java.net/
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guage designers and implementers, who built hundreds of languages on top
of them.#>

Often the motivation for such language implementations is to fill a partic-
ular niche in which the language-specific properties promise higher produc-
tivity, even when the performance might be sacrificed. Another motivation
might be adoption. While a new language with its own runtime typically
lacks tooling and libraries for productive use, targeting an existing platform
such as the JVM and CLI can ease the integration with existing systems, and
thus, facilitate adoption. To give a single example, Clojure6 integrates well
with the ecosystem of the JVM, which enabled adoption and brought concur-
rent programming concepts such as agents, atoms, and software transactional
memory to a wider audience.

Support for dynamic languages was extended to strengthen VMs as gen-
eral purpose platforms. Over the years, the JVM and CLI grew into fully
adopted general purpose platforms and with their success grew the adoption
of new JVM and CLI languages. This motivated efforts to reduce the perfor-
mance cost of dynamic languages. The various method dispatch semantics of
dynamic languages were one of the largest performance concerns. To improve
the situation, the JVM specification was extended by infrastructure around
the new INVOKEDYNAMIC bytecode [Rose, 2009; Thalinger and Rose, 2010],
which gives language designers a framework to specify method dispatch se-
mantics and enables the just-in-time compiler to optimize the dispatch for
performance. With the Dynamic Language Runtime for the CLI, Microsoft went
a different route and provides a common dynamic type system and infrastruc-
ture for runtime code generation. However, both approaches have in common
that they extend the reach of the underlying platform to new languages, and
thus application domains.

Multi-language VMs are targets for library and language implementers.
With the additional infrastructure for dynamic languages in place, the JVM
and the CLI became multi-language VMs. While the notion has been used

4A list of languages targeting the .NET Framework, Brian Ritchie, access date: 28 September 2012
http://www.dotnetpowered.com/languages.aspx

5Programming languages for the Java Virtual Machine JVM and Javascript, Robert Tolksdorf, access
date: 28 September 2012 http://www.is-research.de/info/vmlanguages/

®http://clojure.org
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in literature [Folliot et al., 1998; Harris, 1999] and industry,” the exact mean-
ing remains undefined. This dissertation assumes a multi-language VM to
be a high-level language runtime that supports language and library imple-
menters actively in their efforts to implement a wide range of programming
abstractions for it.

With the advent of multicore hardware, mechanisms for concurrency and
parallelism became important concerns for general-purpose platforms. How-
ever, the JVM and CLI provide only minimal support. Most importantly, they
lack features that enable language designers to build efficient abstractions for
concurrent and parallel programming. An equivalent to invokedynamic for
concurrency becomes highly desirable to enable these VMs to remain general
purpose platforms and multi-language VMs, facilitating applications that need
to utilize concurrency and parallelism for various purposes.

Complex feature-interaction in VMs requires a minimal set of unifying
abstractions. The complexity of VMs is not only a challenge for their imple-
mentation [Haupt et al., 2009], but also presents difficulties for their evolution
and extension. The dependencies between the wide range of supported mech-
anisms lead to situations where it is unclear whether a desired feature can be
supported without breaking the existing features.

One prominent example in the context of the JVM is support for tail call
elimination, which is particularly desirable for functional languages [Schinz
and Odersky, 2001]. First, it was assumed that it cannot be supported be-
cause of Java’s use of stack inspection for its security features [Fournet and
Gordon, 2003]. Later, theoretical [Clements and Felleisen, 2004] and practi-
cal [Schwaighofer, 2009] solutions were found. However, the solutions have
tradeoffs and tail call elimination is still not included in the JVM specification
because of the complex interplay of VM features.

In conclusion, multi-language VMs need to offer a limited number of ab-
stractions that have unifying characteristics. That is to say, the offered abstrac-
tions need to enable a wide range of language features. From our perspective,
it would be infeasible to add every possible language feature directly to a
VM. The complexity of their interactions would be unmanageable. Thus, the
abstractions offered by a VM need to provide a unifying substrate that facili-
tates the implementation of concrete language features on top of the VM.

7The Da Vinci Machine Project: a multi-language renaissance for the Java Virtual Machine architec-
ture, Oracle Corp., access date: 28 September 2012
http://openjdk.java.net/projects/mlvm/
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2.2. The Multicore Revolution

Performance improvements for sequential processors are tailing off. Be-
fore 2005, processor designers could use more transistors and higher clock
frequencies to continuously increase the performance of new processor gen-
erations. Moore’s Law, which states that with improved manufacturing tech-
niques and the resulting miniaturization the number of transistors doubles
approximately every two years without extra cost, enabled them to increase
the amount of logic that processors could contain. They used the additional
logic to improve techniques such as out-of-order execution, branch predic-
tion, memory caching schemes, and cache hierarchies. Unfortunately, these
techniques are optimizations for specific usage patterns and eventually, their
returns diminish [Hennessy and Patterson, 2007; Michaud et al., 2001].% With
the shrinking transistor sizes, it was possible to steadily increase the clock
frequency as well.

Higher clock speeds become impractical. Around 2005, processor design-
ers reached a point were it was no longer feasible to keep increasing the clock
speed with the same pace as in previous decades. An increase in clock speed
corresponds directly to higher energy consumption and more heat dissipa-
tion [Hennessy and Patterson, 2007, p. 18]. However, handling the lost heat
beyond a certain limit requires cooling techniques that are impractical for
commodity devices. For mobile devices, the necessary increase in power con-
sumption and the resulting heat make clock speed increases beyond a certain
limit prohibitive. Processor designers worked around the issue by applying
various engineering techniques to handle the heat. This led to processors that
can over-clock themselves when the thermal budget permits it. However, none
of these techniques could deliver the performance improvements software de-
velopers have gotten accustomed to over the decades.

Increasing transistor budgets led to multicore processors. Still, the tran-
sistor budget for processors keeps increasing. In an attempt to satisfy the
software industry’s need for constant performance improvement, processor
designers started to explore the design space of parallel processors. The in-
creasing transistor budget can be spent on a wide range of different features
of a modern processor [Hill and Marty, 2008]. Duplicating functional units,

8Welcome to the Jungle, Herb Sutter, access date: 27 June 2012
http://herbsutter.com/welcome-to-the-jungle/
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e.g., arithmetic units enables higher degrees of instruction-level parallelism.
In combination with duplicated register files, techniques such as simultane-
ous multithreading can hide memory latency and utilize the available func-
tional units more efficiently. Duplicating whole cores enables more heteroge-
neous parallel workloads. However, workloads such as data-intensive graphic
operations are better served by large data-parallel units. These can come in
the form of vector processing units embedded into a traditional processor, or
modern GPU computing processors that consist of vast numbers of very sim-
ple but highly parallel processing elements. Depending on target applications,
processor vendors mix and match these design options to offer more compu-
tational power to their customers [Hennessy and Patterson, 2007]. However,
exploiting available hardware parallelism remains a task for software devel-
opers.

To conclude, multicore processors will play a major role for the foreseeable
future and software developers will need to use the offered parallelism to
fulfill the performance requirements for their software.

2.3. Concurrent vs. Parallel Programming: Definitions

The goal of this section is to clarify the notions of concurrency and parallelism
in order to accurately categorize the programming concepts of this field later
in this dissertation. To this end, this dissertation introduces the additional
notions of concurrent programming and parallel programming, which provide
stronger distinguishing properties and facilitate the discussions in Chapter 3.

2.3.1. Concurrency and Parallelism

Distinction often avoided Defining the two terms concurrency and paral-
lelism is often avoided in literature. Subramaniam [2011, p. xiv] even claims
“there’s no clear distinction between these two terms in industry|...]”. Others such
as Axford [1990, p. 4,6] and Lea [1999, p. 19] mention the terms, but do not
make a clear distinction between them. However, they indicate the difference
between systems with physical parallelism and systems with merely time
shared execution.

Distinction by execution model from historical perspective Lin and Sny-

der [2008, p. 21] explain the situation within its historic context. The term con-
currency was used in the operating system and database communities, which
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were mostly concerned with small-scale systems that used time shared exe-
cution. Following their argumentation, the term parallelism on the other hand
comes from the supercomputing community, which was mostly concerned
with large-scale systems and physically parallel execution of programs. How-
ever, for the purpose of their book, they conclude the discussion by saying:
“we will use the terms [concurrent and parallel] interchangeably to refer to logical
concurrency”.

Definitions of Sottile et al. Overall, the field distinguishes the two terms
based on the underlying execution model. A set of concrete definitions is
given by Sottile et al. [2010, p. 23-24]. They write: “We define a concurrent
program as one in which multiple streams of instructions are active at the same
time.” Later, they go on and write: “Our definition of a parallel program is an
instance of a concurrent program that executes in the presence of multiple hardware
units that will gquarantee that two or more instruction streams will make progress
in a single unit of time.” While these definitions are seldom spelled out pre-
cisely in literature, the definitions of Sottile et al. seem to reflect the common
consensus of what concurrency and parallelism mean. Therefore, parallel pro-
grams are considered to be a subset of concurrent programs. For instance,
Sun Microsystems, Inc. [2008] uses very similar definitions.

Not all parallel programs are concurrent programs. The major issue of
characterizing parallel programs as a subset of concurrent programs is the
implication that all parallel programs are concurrent programs as well. Thus,
all parallel programs can be mapped on a sequential execution. However,
there are useful algorithms such as the elimination stack proposed by Shavit
and Touitou [1995b] that are not strictly linearizable [Herlihy and Wing, 1990].
Which means, parallel programs can have executions that cannot be replicated
by any concurrent program, i. e., they cannot be mapped on a sequential exe-
cution without losing semantics.

Current definitions do not add value to explain programming concepts. In
addition to the conceptual problem of characterizing parallel programs as a
subset of concurrent programs, the notion of a subset relation does not add
explanatory value in practice, either.

For example, Cilk’s fork/join with a work-stealing scheduler implementa-
tion [Blumofe et al., 1995] is designed for parallel programming. The idea of
fork/join is to recursively divide a task to enable parallel execution of sub-
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tasks with automatic and efficient load-balancing. When the execution model
provides only time shared execution, the overhead of fork/join is in most
implementations prohibitive [Kumar et al., 2012], especially when compared
to a sequential recursive implementation. Furthermore, the problem of load-
balancing that is solved by work-stealing does not exist in the first place. To
conclude, parallel programming needs to solve problems that do not exist for
concurrent programs, and parallel programs require solutions that are not
necessarily applicable to concurrent programs.

Conversely, low-level atomic operations such as compare-and-swap have been
conceived in the context of few-core systems. One important use case was to
ensure that an operation is atomic with respect to interrupts on the same core.
One artifact of the design for time shared systems is that Intel’s compare-and-
swap operation in the IA-32 instruction set (CMPXCHG) requires an additional
LOCK prefix to be atomic in multicore environments [Intel Corporation, 2012].
Similarly to the argumentation that parallel programming concepts do not
necessarily apply to time shared systems, the usefulness of low-level atomic
operations originating in concurrent systems is limited. Using them naively
restricts their scalability and their usefulness diminishes with rising degree of
parallelism [Shavit, 2011; Ungar, 2011]. They are designed to solve a particular
set of problems in concurrent programs but are not necessarily applicable to
the problems in parallel programs.

Concluding from these examples, it would be beneficial to treat concurrent
programming and parallel programming separately to properly reflect the char-
acteristics and applicability of the corresponding programming concepts.

2.3.2. Concurrent Programming and Parallel Programming

This section defines the notions of concurrent programming and parallel program-
ming to create two disjoint sets of programming concepts. Instead of focusing
on the execution model as earlier definitions do, the proposed definitions
concentrate on the aspect of programming, i.e., the process of formalizing
an algorithm using a number of programming concepts with a specific intent
and goal. The distinction between the execution model and the act of pro-
gramming is made explicitly to avoid confusion with the common usage of
the terms concurrency and parallelism.

One inherent assumption for these definitions is that they relate the notions
of concurrent and parallel programming with each other on a fixed level of
abstraction. Without assuming a fixed level of abstraction, it becomes easily
confusing because higher-level programming abstractions are typically built
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on top of lower-level abstractions, which can fall into a different category. For
instance, as discussed after these definitions, parallel programming abstrac-
tions are often implemented in terms of concurrent programming abstrac-
tions. Thus, these definitions have to be interpreted on a fixed and common
abstraction level.

Definition 1. Parallel programming is the art of devising a strategy to coordi-
nate collaborating activities to contribute to the computation of an overall result by
employing multiple computational resources.

Definition 2. Concurrent programming is the art of devising a strategy to coor-
dinate independent activities at runtime to access shared resources while preserving
the resources” invariants.

This means that parallel programming is distinct from concurrent program-
ming because it provides techniques to employ multiple computational re-
sources, while concurrent programming provides techniques to preserve se-
mantics, i.e., the correctness of computations done by independent interact-
ing activities that use shared resources.

Furthermore, an important aspect of parallel programming is the decom-
position of a problem into cooperating activities that can execute in parallel
to produce an overall result. Therefore, the related concepts include mecha-
nisms to coordinate activities and communicate between them. This coordina-
tion can be done by statically planing out interactions for instance to reduce
communication, however, it usually also needs to involve a strategy for the
communication at runtime, i. e., the dynamic coordination.

In contrast, concurrent programming concepts include techniques to pro-
tect resources, for instance by requiring the use of locks and monitors, or by
enforcing properties such as isolation at runtime, preventing undesirable ac-
cess to shared resources. The notion of protecting invariants, i. e., resources is
important because the interacting activities are independent. They only inter-
act based on conventions such as locking protocols or via constraint interfaces
such as messaging protocols to preserve the invariants of the share resources.

The nature of activities remains explicitly undefined. An activity can there-
fore be represented for instance by a light-weight task, a thread, or an operat-
ing system process, but it could as well be represented by the abstract notion
of an actor.

Note that these definitions do not preclude the combination of concurrent
and parallel programming. Neither do they preclude the fact that program-
ming concepts can build on each other, as discussed in the beginning of this
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section. For instance, the implementation of barriers that are used in parallel
programming rely on concurrent programming concepts [Marr et al., 2010b].
Thus, in many cases developers need to combine parallel and concurrent pro-
gramming techniques to account for their requirements.

It remains to be mentioned that similar definitions have been proposed
before. For instance, in the teaching material of Grossman [2012].9 The defi-
nitions given by this dissertation use a different wording to avoid the impli-
cation of performance and the concrete notions of threads, since concurrent
and parallel programming are more general.

Rationale These two definitions are partially based on the following obser-
vations: Classic parallel programming approaches such as single program mul-
tiple data (SPMD) techniques based on MPI [Message Passing Interface Forum,
2009] or shared memory approaches such as OpenMP [OpenMP Architecture
Review Board, 2011] are used to decompose problems to use multiple com-
putational resources such as processor cores. All activities in such programs
collaborate to calculate the overall result. They are coordinated by the use of
barriers and collective operations to make an abstraction of concrete data de-
pendencies requiring all activities to actively participate, which is trivial in a
single program model. However, even contemporary APGAS languages such
as X10 (cf. Sec. 2.4.4) provide barriers [Shirako et al., 2008], while advocating
for fork/join-like programming models that encourage a much higher degree
of dynamics than in the SPMD model.

In addition to the use of barriers, the fork/join-based programming model
in the style of Cilk [Blumofe et al., 1995] is strongly based on the notion of
collaborating activities. It uses the notion of recursive divide-and-conquer to
expose the parallelism in a problem. One important assumption that is inher-
ent to this model is that the recursive devision makes an abstraction of all data
dependencies. Thus, it is assumed that the resulting program is data-race-free
when it synchronizes correctly on completion of its sub-tasks. The fork/join
model itself does not provide any means to coordinate access to shared re-
sources other than by synchronizing on the completion of sub-tasks. Thus, all
activities have to collaborate and it is assumed that no independent activities
in the system interact in any way with the fork/join computation. Therefore,
correctness of the computation is ensured by construction and does not need
to be enforced at runtime.

9The key notions are also mentioned in Grossman and Anderson [2012].
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The observations for concurrent programming concepts are different. Con-
ventional approaches based on mutexes require sequential execution of activ-
ities that work on a shared resource in order to enforce correctness. Programs
using these concepts typically consist of multiple activities that have different
purposes but require a common resource. In such systems, interactions are
resource-centric, without a common purpose, and require that the invariants
for the shared resources hold. Reader/writer locks for instance exclude only
conflicting operations from using the same resource. Software transactional
memory (cf. Sec.2.4.3) goes further by removing the need for managing re-
sources manually. In contrast, event-loop concurrency models (cf. Sec. 2.4.4)
promote resources to active entities that are responsible for managing their
consistency and allow clients to interact via an asynchronous interface only.
Thus, the main commonality of these concepts is the protection of invariants
of shared resources to guarantee correctness, while permitting interaction of
independent activities at runtime.

The following section discusses these approaches in more detail.

2.3.3. Conclusion

To conclude, the definitions of concurrency and parallelism as found in the
literature can be inappropriate when it comes to categorizing concepts.

In contrast, the alternative definitions for concurrent programming and paral-
lel programming given here categorize concepts in two disjoint sets. Instead of
focusing on the execution model, these definitions focus on the aspect of pro-
gramming and relate to the intent and goal of a programming concept. There-
fore, concurrent programming concepts coordinate modifications of shared
resources, while parallel programming concepts coordinate parallel activities
to compute a common result.

2.4. Common Approaches to Concurrent and Parallel
Programming

This section gives an overview of common concepts in the field of concurrent

and parallel programming to provide a foundation for our later discussions.

Note that this section introduces Clojure agents, which are used in later chap-
ters as running examples and therefore discussed here in more detail.
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Table 2.1.: Flynn’s taxonomy

DATA STREAM
Single | Multiple
INSTRUCTION | Single SISD SIMD
STREAM Multiple | MISD | MIMD

2.4.1. Taxonomies

To structure the discussion of the vast field of concurrent and parallel pro-
gramming, this section reviews two taxonomies proposed in the literature.
These two taxonomies unfortunately do not match the focus of this disserta-
tion. Therefore, a partial taxonomy is introduced to structure the discussion
here and in later chapters of this dissertation.

Flynn’s Taxonomy

Flynn’s taxonomy can be used as a coarse categorization of programming
concepts [Flynn, 1966]. Originally, the proposed taxonomy is meant to catego-
rize computer organizations, but it is abstract enough to be used in a more
general context. Flynn based it on the notions of instruction streams and data
streams, where a set of instructions forms a program to consume data in a
given order. Using these notions, Flynn identifies four possible categories (cf.
Tab. 2.1): single instruction stream - single data stream (SISD), single instruction
stream - multiple data streams (SIMD), multiple instruction streams - single data
stream (MISD), and multiple instruction streams - multiples data streams (MIMD).
For the purpose of this dissertation, SISD represents classic single threaded
programs. SIMD corresponds to single threaded programs that use vector
instructions to operate on multiple data items at the same time. MISD can
be understood as a multi-threaded program that runs on a single core with
time shared execution without exhibiting real parallelism. Thus, each thread
of such a program corresponds to a distinct instruction stream (MI), but the
observable sequence of memory accesses is a single data stream coming from
a single data store. MIMD corresponds then to applications with multiple
threads executing in parallel, each having its distinct stream of memory ac-
cess, i.e., separate data streams and data stores. Since the concurrent and
parallel programming concepts relevant for this dissertation are variations of
multiple instruction streams (MI), Flynn’s taxonomy is too coarse-grained to
structure the discussion.
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Almasi and Gottlieb’s Taxonomy

Almasi and Gottlieb [1994] use a different taxonomy to classify “most parallel
architectures”. Their taxonomy (cf. Tab.2.2) is based on two dimensions data
and control, much like Flynn’s. However, the interpretation of these dimen-
sions is very different. The data mechanism divides the parallel architectures
into being based on shared or private memory. The control mechanism on the
other hand, classifies based on the way control flow is expressed. Their classifi-
cation starts with control driven as the category with the most explicit control,
and ends with data driven for mechanism that depend the least on explicit
control flow.

Table 2.2.: Classification of computational models, with examples. [Almasi and Got-
tlieb, 1994, p. 25]

DATA MECHANISM
CONTROL MECHANISM | Shared Memory Private Memory (message passing)
Control driven von Neumann Communicating processes
Pattern driven Logic Actors
Demand driven Graph reduction String reduction
Data driven Dataflow with I-structure | Dataflow

While this taxonomy covers a wide range of concurrent and parallel pro-
gramming concepts, it does so on a very abstract level. Especially its emphasis
on the control mechanism is of lesser relevance for this dissertation. Since this
research targets contemporary multi-language VMs, all computational mod-
els have to be mapped to a control-driven representation.

A Partial Taxonomy of Contemporary Approaches

Neither Flynn’s nor Almasi and Gottlieb’s taxonomy reflect common concur-
rent and parallel programming concepts in a way that facilitates their discus-
sion in the context of this dissertation. Therefore, this dissertation uses a par-
tial taxonomy on its own. The following section discusses this taxonomy and
its four categories Threads and Locks, Communicating Threads, Communicating
Isolates, and Data Parallelism. The categorization focuses on how concurrent
and parallel activities interact and coordinate each other, since these aspects
are the main mechanisms exposed to the programmer, and one point which
makes the various concepts distinguishable, even with the necessarily brief
discussions of the concepts in this dissertation.
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The remainder of this section gives a brief overview over the four categories
and then discuss them and the corresponding concepts in more detail.

Threads and Locks
The main abstraction for computation in this case is threads of execution
that use mechanisms like locks, semaphores, and condition variables
as their means to coordinate program execution in a shared memory
environment.

Communicating Threads

The main abstraction for computation in this case is threads of execution
in a shared memory environment. The concepts in this category use
higher-level means than basic locks and condition variables for coor-
dination and communication. Message sending and channel-based ab-
stractions are examples for such higher-level abstractions. Threads that
coordinate with barriers, clocks, or phasers, fall into this category as
well. Programming models can be based on active objects or for instance
variants of communicating sequential processes without the isolation prop-
erty.

Communicating Isolates

Communicating isolates are similar to communicating threads, but with
a strict enforcement of memory isolation between threads of execution.
Thus, the main distinguishing feature is the absence of an inherent
notion of shared memory between different threads of execution. The
means of communication in this category vary substantially. They range
from message or channel-based communication to restricted on-demand
shared-memory data structures. Programming models in this category
are for instance actors and communicating event-loops, which require iso-
lation as one of their main characteristics.

Data Parallelism
This category combines abstractions for data parallel loops, fork/join,
map/reduce, and data-flow. The common key idea is the focus on ab-
stractions for parallel programming instead of concurrent programming.

2.4.2. Threads and Locks

This category is currently believed to represent the mainstream of concur-
rent and parallel programming concepts applied in practice. Languages such
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as Java [Gosling et al., 2012], C[ISO, 2011], C++[ISO, 2012], C#[ECMA Inter-
national, 2006], and Smalltalk [Goldberg and Robson, 1983] come with the
notion of threads and mechanisms that enable the protection of shared re-
sources. Threads are often directly based on the abstraction provided by the
underlying operating system, however, for instance Smalltalk implementa-
tions instead tend to use green threads that are managed by the Smalltalk
implementation.

In addition to threads, the mentioned languages often provide support for
monitors, mutexes, locks, condition variables, and atomic operations. These
mechanisms facilitate the coordination of threads at the level of resources,
and are considered as low-level abstractions requiring careful engineering to
prevent data races and deadlocks.

Systems software had to deal with concurrency for decades, and since these
parts of the software stack are performance sensitive, the available abstrac-
tions have been threads and locking mechanisms. While experts are able to
build stable systems on top of these low-level abstractions, the engineering ef-
fort is high [Cantrill and Bonwick, 2008]. Consequently, the proposed higher-
level abstractions are discussed in the following sections.

2.4.3. Communicating Threads

Message or channel-based communication, as well as high-level synchroniza-
tion mechanisms such as barriers [Gupta and Hill, 1989], clocks [Charles et al.,
2005], and phasers [Shirako et al., 2008] fall into this category. A few selected
abstractions are detailed below.

Active Objects The active objects pattern[Lavender and Schmidt, 1996] is
one such abstraction for object-oriented languages. It distinguishes active and
passive objects. Active objects are objects with an associated execution thread.
Methods on these objects are not executed directly, but asynchronously by
reifying the invocation and deferring its execution using a queue. The execu-
tion thread will process one such invocation at a time. Passive objects do not
have their own thread of execution, but are used by the active objects. The
active object pattern does not introduce any restrictions on how passive ob-
jects are to be used, but it is implied that an active object takes responsibility
for its own subgraph of the overall object graph. In the case where such a
design is not feasible, synchronization still needs to be done explicitly using
lower-level mechanisms.
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Clojure Agents The Clojure programming language offers a variation in-
spired by the active objects pattern called agents.’® An agent represents a
resource with a single atomically mutable state cell. However, the state is
modified only by the agent itself. The agent receives update functions asyn-
chronously. An update function takes the old state and produces a new state.
The execution is done in a dedicated thread, so that at most one update func-
tion can be active for a given agent at any time. Other threads will always
read a consistent state of the agent at any time, since the state of the agent is
a single cell and read atomically.

Specific to agents is the integration with the Clojure language and the
encouraged usage patterns. Clojure aims to be “predominantly a functional
programming language”™ that relies on immutable, persistent data structures.
Therefore, it encourages the use of immutable data structures as the state
of the agent. With these properties in mind, agents provide a more restrictive
model than common active objects, and if these properties would be enforced,
it could be classified as a mechanism for communicating isolates. However, Clo-
jure does not enforce the use of immutable data structures as state of the
agent, but allows for instance the use of unsafe Java objects.

The described set of intentions and the missing guarantees qualify agents
as an example for later chapters. Thus, it is described here in more detail.

(def cnt (agent 0))
(println @cnt) ; prints O

(send cnt + 1)
(println Q@cnt) ; might print O or 1, because of data race

(let [next-id (promise)]
(send cnt (fn [old-state]
(let [result (+ old-state 1)]

(deliver next-id result) ; return resulting id to sender
result)))
@next-id) ; reliably read of the update function’s result

Listing 2.1: Clojure Agent example

Lst. 2.1 gives a simple example of how to implement a counter agent in Clo-
jure, and how to interact with it. First, line 1 defines a simple counter agent
named cnt with an initial value of 0. Printing the value by accessing it directly

http://clojure.org/agents
"*Clojure, Rich Hickey, access date: 20 July 2012 http://clojure.org/
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with the @-reader macro would result in the expected 0. At line 4, the update
function + is sent to the agent. The + takes the old state and the given 1 as
arguments and returns the updated result 1. However, since update functions
are executed asynchronously, the counter might not have been updated when
it is printed. Thus, the output might be 1 or 0. To use the counter for instance
to create unique identifiers, this is a serious drawback, especially when the
counter is highly contended. To work around this problem, a promise can com-
municate the resulting identifier ensuring synchronization. Line 8 shows how
a corresponding update function can be implemented. The next-id promise
will be used in the anonymous update function to deliver the next identifier
to the sender of the update function. After delivering the result to the waiting
client thread, the update function returns, and the state of the agent will be
set to its return value. When reading next-id, the reader will block on the
promise until it has been delivered.

Software Transactional Memory For a long time, various locking strategies
have been used in low-level software to address the tradeoff between main-
tainability and performance. A fine-granular locking scheme enables higher
degrees of parallelism and can reduce contention on locks, but it comes with
the risks of programming errors that can lead to deadlocks and data corrup-
tion. Coarse-grained locking on the other hand is more maintainable, but may
come with a performance penalty, because of the reduced parallelism.

To avoid these problems Shavit and Touitou [1995a] proposed software trans-
actional memory (STM), taking concepts from the world of database systems
with transactions and apply them to a programming language level. The main
idea is to avoid the need for having to deal with explicit locks, and the com-
plexity of consistent locking schemes. Thus, locking is done implicitly by the
runtime system when necessary. Critical code sections are not protected by
locks, but are protected by a transaction. The end of a critical section cor-
responds to aborting or committing the transaction. The STM system will
track all memory accesses during the execution of the transaction and en-
sure that the transaction does not lead to data races. For the implementation
of STM, a wide range of different approaches have been proposed [Herzeel
et al., 2010]. Theoretically, these can provide the desired engineering benefits,
however, STM systems proposed so-far still have a significant performance
penalty [Cascaval et al., 2008]. The performance overhead forces developers
to optimize the use and thus, has a negative impact on the theoretically ex-
pected engineering benefit.
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To achieve the desired modularity with STMs, nesting of transactions is
a solution that comes with additional complexity and performance trade-
offs[Moravan et al., 2006]. Similarly, transactional memory systems have a
number of known problems with pathological situations such as starvation
of transactions and convoying of conflicting transactions [Bobba et al., 2007].
These can lead to performance problems and require additional effort to de-
bug. These problems lead to STM being one option for handling concurrent
programming, but prevent it from being a general solution.

PGAS (Partitioned Global Address Space) programming languages like Co-
Array Fortran [Numrich and Reid, 1998] and Unified Parallel C [UPC Consor-
tium, 2005] have been proposed to increase the programmer productivity in
the field of high-performance computing applications, running on supercomput-
ers and large clusters. Thus, they are meant for large scale distributed mem-
ory clusters, but are also used in smaller systems with strong non-uniform
memory access (NUMA) [Herlihy and Shavit, 2008] characteristics.

They are commonly designed for Single Program Multiple Data (SPMD) sce-
narios providing the illusion of shared memory, while indicating to the de-
veloper the additional cost of this abstraction by differentiating between local
and remote memory. The dominating synchronization mechanisms for these
kind of languages are barrier-like constructs and data-oriented parallel reduce
operators.

Note that PGAS and with it some of the SPMD approaches are categorized
as communicating threads instead of data parallel. The main reason for this de-
cision is that common realizations of these approaches are highly imperative
and control-flow focused, while data parallel programming models tend to
deemphasize the control-flow aspect.

2.4.4. Communicating Isolates

The main difference with communicating threads is the strict isolation of
threads of execution. Thus, the basic model does not provide shared memory
between isolates, which requires them to make any form of communication
explicit. Especially in the context of concurrent applications, this approach
is considered to be less error-prone and more high-level than communicating
threads. In the field of high-performance computing (HPC) however, the use
of explicit communication in the form of MPI[Message Passing Interface Fo-
rum, 2009] is considered more low-level than the model offered by PGAS
languages. One possible explanation is that concurrent applications are often
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task-oriented, while HPC applications are mostly data-oriented, which leads
to different tradeoffs in the design and implementation of algorithms.

Actors The actor model is a formalism to describe computational systems.
Hewitt et al. [1973] distilled it from the many ideas of that time in the field
of artificial intelligence to provide a “coherent manageable formalism”. This for-
malism is based on a single kind of object, an actor. These actors are compu-
tational units that respond to messages by sending messages to other actors,
create new actors, or designate how to handle the next message they receive.
Communication is done via addresses of other actors. An actor has to be in-
troduced explicitly to another actor or it has to create the actor to know its
address. Later, Hewitt [2012] clarified that the actor model assumes that mes-
sages are processed concurrently, and more importantly, that actors do not
require any notion of threads, mailboxes, message queues, or even operating
system processes.

The benefit of the actor model is that it provides a concise formalism to
describe systems. By using the simplest possible notion of the actor model
in the way Hewitt [2012] proposes, the actor model achieves desirable theo-
retical properties such as locality, safety of communication, and unbounded
nondeterminism.

However, the minimalism of the model comes with a significant engineer-
ing tradeoff. Similarly to the discussion of the right object granularity for
code reuse, which component-based software engineering tries to address,
the granularity of actors becomes important when actors are used to build
software systems. The idea of event-loop concurrency tries to address these
granularity issues.

Event-Loop Concurrency E and AmbientTalk propose the idea of actors in-
tegrated with object-oriented programming languages [Miller et al., 2005; Van
Cutsem et al., 2007]. E uses the term vat to denote a container of objects, which
in AmbientTalk corresponds to an actor, that holds an object graph. Inside a
vat, objects can refer to each other with near references. References between
different vats are only possible via far references. While near references allow
synchronous access to objects, far references only allow asynchronous inter-
action. The semantics of far references is that of asynchronous message sends.
Every vat executes an infinite loop that processes incoming messages. Based
on these ideas, Van Cutsem describes the three main properties of the event-
loop concurrency model as follows: Serial execution is guaranteed inside a vat.
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Each vat processes a maximum of one event at a time. Non-blocking communi-
cation is ensured by construction. All operations that have blocking semantics
are realized by deferring the continuation after that operation asynchronously,
freeing the event-loop to enable it to process another event, and rescheduling
the continuation once the blocking condition is resolved. Exclusive state access
is guaranteed by vat semantics to ensure freedom from low-level data races
and provide strong encapsulation of actors.

Event-loop concurrency is often seen as an extension of the actor model
proposed by Hewitt et al. Vats, or event-loop actors, provide a higher level
of abstraction and extend the notion of actors from elementary particles to
coarser-grained components.

Communicating Sequential Processes Hoare [1978] proposed the idea of
Communicating Sequential Processes (CSP) as a fundamental method for struc-
turing programs. The idea is that input and output are basic programming
primitives that can be used to compose parallel processes. Later the idea was
developed further into a process algebra [Hoare, 1985], which is also the foun-
dation for the occam programming language [May, 1983]. The main concepts
of the algebra and occam are blocking communication via channels and paral-
lel execution of isolated processes. They support the notion of instruction se-
quences, non-deterministic writing and reading on channels, conditions, and
loops. This provides an algebra and programming model that is amenable to
program analysis and verification.

The idea of channel-based communication has been used and varied in a
number of other languages and settings such as JCSP [Welch et al., 2007], the
Go programming language," occam-7t [Welch and Barnes, 2005], and the Dis
VM [Lucent Technologies Inc and Vita Nuova Limited, 2003] for the Limbo
programming language. Notable is here that the strong isolation of processes
is often not guaranteed by the programming languages or libraries that pro-
vide support for CSP. Thus, depending on the actual implementation, many
incarnations of CSP would need to be categorized as communicating threads
instead.

MPI (Message Passing Interface [Message Passing Interface Forum, 2009]) is
a widely used middleware for HPC applications. Programs are typically writ-
ten in an SPMD style using MPI to communicate between the isolated, and
often distributed parts of the application. MPI offers send and receive oper-

2http://golang.org/
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ations, but also includes collective operations such as scatter and gather. In
general, these operations have rendezvous semantics. Thus, every sending op-
eration requires a matching receive operation and vice versa. MPI-2 [Message
Passing Interface Forum, 2009] added operations for one-sided communica-
tion to introduce a restricted notion of shared memory in addition to the main
message passing, for situations where rendezvous semantics are not flexible
enough.

While MPI is widely used, and still considered the standard in HPC ap-
plications when it comes to performance, it is also criticized for not being
designed with productivity in mind [Lusk and Yelick, 2007]. Its low-level API
does not fit well with common HPC applications. In addition to offering com-
parably low-level APIs and data types, there is a potential misfit between
message-passing-based programming and data-centric applications.

APGAS (Asynchronous PGAS) languages were conceived with the same
goals as PGAS languages to solve the problems MPI has with regard to pro-
grammer productivity. The distinguishing feature of APGAS languages com-
pared to PGAS languages is the notion that all operations on remote memory
need to be realized via an asynchronous task that executes on the remote
memory. Thus, APGAS language try to make the cost of such remote mem-
ory accesses more explicit than in PGAS languages. This programming model
is supposed to guide developers to utilize data locality efficiently and to struc-
ture data and communication to reduce costly operations.

Languages such as Xio[Charles et al., 2005] and Habanero [Cavé et al.,
2010] realize that idea by making locality explicit as part of the type system.
X10’s specification [Saraswat et al., 2012] goes so far as to define remote ac-
cesses as having a by-value semantics for the whole lexical scope. This results
in a programming model very similar to message-passing. X10 combines this
with a fork/join-like task-based parallelism model, which makes is a hybrid
language in terms of our categorization. X10 differentiates between different
places as its notion of locality. Across places, it enforces isolation, but inside a
single place it provides a programming model that corresponds to our defini-
tion of communicating threads.

2.4.5. Data Parallelism

Approaches for data parallelism provide abstractions to handle data depen-
dencies. In general, the tendency in these approaches is to move from control

33



2. Context and Motivation

driven to data driven computation. However, control driven programming,
i.e., imperative programming remains important.

Fork/Join utilizes the inherent parallelism in data-oriented problems by us-
ing recursion to divide the computation into steps that can be processed in
parallel. It thereby makes an abstraction of the concrete data dependencies by
using recursive problem decomposition and relying on explicit synchroniza-
tion points when the result of a subproblem is required. While it is itself a
control-driven approach, relying on control-flow-based primitives, it is typi-
cally used for data-parallel problems. However, it leaves it to the programmer
to align the program with its data-dependencies.

Cilk [Blumofe et al., 1995] introduced fork/join as a novel combination of
the classic recursive divide-and-conquer style of programming with an ef-
ficient scheduling technique for parallel execution. Nowadays, it is widely
known as fork/join and available, e.g., for Java[Lea, 2000] and C/C++ with
libraries such as Intel’s Threading Building Blocks™3. Primitives of this par-
allel programming model are the spawn, i.e., fork operation, which will
result in a possibly parallel executing sub-computation, and the sync, i.e.,
join-operation, which will block until the corresponding sub-computation is
finished. Fork/join is a model for parallel programming in shared memory
environments. It enables developers to apply divide-and-conquer in a par-
allel setting, however, it does not provide mechanisms to handle for instance
concurrency on global variables. Such mechanisms have been proposed [Frigo
et al., 2009], but the original minimal model focuses on the aspect of parallel
execution.

With work-stealing, Cilk also pioneered an efficient scheduling technique
that makes parallel divide-and-conquer algorithms practical for situations in
which a static schedule leads to significant load imbalances and thus subopti-
mal performance.

MapReduce Functional programming languages have introduced the no-
tion of mapping a function on a sequence of values to produce a result se-
quence, which then can be reduced to some result value with another func-
tion. Based on this simple notion, distributed processing of data has become
popular [Limmel, 2008]. For companies like Google, Microsoft, or Yahoo, pro-
cessing of large amounts of data became a performance challenge that re-
quired the use of large clusters and resilient programming models. The model

Bhttp://threadingbuildingblocks.org/
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proposed by Dean and Ghemawat [2004] includes mechanisms to provide
fault tolerance and scalability to utilize large clusters. It also extends the basic
map/reduce idea with notions of combiner functions and they describe how
to support side-effects for map and reduce operators. The side-effects are
however restricted to being idempotent and atomic to ensure deterministic
results in the case of failure and recomputation. Side-effects on the input data
themselves are however not supported. Instead, the input data are considered
to be immutable for the overall process.

Compared to fork/join, MapReduce exposes the developer much less to
the aspect of control flow. Instead, it requires only input data and a set of op-
erators that are applied in a predefined order, without making any promises
about the order in which the input data are processed.

Data-flow Programming languages attempt to move entirely to data-de-
pendency based program representation. Languages such as Lucid [Ashcroft
and Wadge, 1977] do not regard the sequential notation as imperative to
the order of program execution. Instead, programs are evaluated in a lazy,
demand-driven manner.

Other languages such as Streamlt [Thies et al., 2002] make data dependen-
cies even more explicit by reifying the notion of data streams to which a set
of kernel functions is applied. These programming languages enable the ex-
plicit encoding of data dependencies, which can then be used by optimizing
compilers to generate highly efficient code that exploits the available data
parallelism in the application.

2.4.6. Summary

This section introduced a partial taxonomy to categorize concurrent and paral-
lel programming concepts, because Flynn’s and Almasi and Gottlieb [1994]’s
taxonomies do not reflect the common approaches to concurrent and paral-
lel programming in a way that facilitates their discussion in the context of
this dissertation. Therefore, this dissertation proposes to categorize concur-
rent and parallel programming concepts into communicating threads, commu-
nicating isolates, and data parallelism. For each of these categories, this section
discussed a number of common approaches.

Clojure agents are highlighted and discussed in more detail, because Chap-
ter 5 and Chapter 6 rely on them as a running example.
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2.5. Building Applications: The Right Tool for the Job

Researchers often make the case that the implementation of parallel and con-
current systems is a complex undertaking that requires the right tools for the
job, perhaps more so than for other problems software engineering encoun-
tered so far [Cantrill and Bonwick, 2008; Lee, 2006; Sutter, 2005]. Instead of
searching for a non-existing silver bullet approach, this dissertation argues,
like other research [Catanzaro et al., 2010; Chafi et al., 2010], that language
designers need to be supported in building domain-specific concurrency ab-
stractions.

Typical desktop applications such as the e-mail application sketched in
Fig. 2.1 combine several components that interact and have different potential
to utilize computational resources. The user interface component is tradition-
ally implemented with an event-loop to react to user input. In a concurrent
setting, it is also desirable to enforce encapsulation as in an actor model, since
encapsulation simplifies reasoning about the interaction with other compo-
nents. Thus, a programming model based on event-loop concurrency might
be the first choice.

@ail £ad
[WI [(Newh |Search |

Inbox From Subject Date

Unread

Flagged : .

Spam Ann B Meeting 1:45pm

George FWD: Results 11:20am

F James Dinner plans? 8:42am
L Amber RE: Workshop Yesterday
From: George
Subject: FWD: Results

To: me

Latest results attached.
--George

Figure 2.1.: Mockup of an E-Mail Application

Another part of the application is data storage for emails and address book
information. This part traditionally interacts with a database. The natural way
to implement this component is to use an STM system that extends the trans-
action semantics of the database into the application. This allows for unified
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reasoning when for instance a new mail is received from the network compo-
nent and needs to be stored in the database.

A third part is a search engine that allows the user to find emails and
address book entries. Such an engine can typically exploit data-parallel pro-
gramming concepts like map/reduce or parallel collection operations with
PLINQ™ for performance.

However, supporting the various parallel and concurrent programming
concepts on top of the same platform comes with the challenge to identify
basic commonalities that allow to make abstractions of the particularities of
specific constructs and languages. Today’s VMs such as JVM and CLI pro-
vide direct support for threads and locks only. While some concepts such as
fork/join [Lea, 2000], concurrent collections [Budimlic et al., 2009], or PLINQ
can be implemented as libraries without losing any semantics or performance,
concepts such as the actor model are typically implemented with weaker se-
mantics than originally proposed, losing for instance the engineering benefits
of encapsulation [Karmani et al., 2009].

While it is desirable to support different kinds of models, it is not clear
how a single language can support them directly. In his PLDI'12 keynote,
Doug Lea™ emphasized the point that “effective parallel programming is too
diverse to be constrained by language-based policies”. While he combines the no-
tions of concurrent and parallel programming (cf. Sec. 2.3), others have raised
similar opinions before. The problems that need to be tackled by concurrent
and parallel programming techniques are too diverse to be tackled appropri-
ately by a fixed set of abstractions [Catanzaro et al., 2010; Chafi et al., 2010].
Instead, domain-specific abstractions are necessary to be able to achieve an
appropriate level of abstraction and achieve the desired performance.

The goal of this dissertation is to identify a way to realize this vision and
enable library and language implementers to provide domain-specific abstrac-
tions for concurrent and parallel programming.

2.6. Summary

This chapter gave an overview over the context and motivation behind the
research in this dissertation.

14http://msdn.microsoft.com/en-us/library/dd460688.aspx
5 Parallelism From The Middle Out, Doug Lea, access date: 16 July 2012
http://pldil2.cs.purdue.edu/sites/default/files/slides_pldil2-dlea.pdf
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First, it discussed the notion of multi-language VMs as general purpose
platforms, which are used for a wide range of applications. Language im-
plementers need to be supported in implementing abstractions for concur-
rent and parallel programming to enable VMs to remain general purpose
platforms. Furthermore, VMs need unifying abstractions for that support, be-
cause supporting a wide range of independent features in a VM is infeasible.

Second, this chapter briefly revisited the background behind the multicore
revolution, which increases the need to support concurrent and parallel pro-
gramming in VMs. Multicore processors will play a major role for the fore-
seeable future and therefore, software developers will need to utilize them to
satisfy their application’s performance requirements.

Third, this chapter proposed the notions of concurrent programming and par-
allel programming to enable the categorization of the corresponding program-
ming concepts based on their intent, realizing two distinct sets of concepts.
Concurrent programming concepts are meant to coordinate modification of
shared resources, while parallel programming concepts are meant to coordi-
nate parallel activities to compute a common result.

Fourth, a partial taxonomy is proposed to categorize concurrent and par-
allel programming concepts into threads and locks, communicating threads, com-
municating isolates, and data parallelism. This chapter discusses a number of
concepts based on this categorization and details Clojure agents, because they
are used in the remainder of this dissertation as a running example.

Finally, the chapter concludes with a vision on how to build applications in
the multicore era. Applications need to be able to exploit concurrency and par-
allelism, and software developers want to utilize appropriate programming
abstractions for the different parts of an application to achieve their goals.
With this vision in mind, the next chapter discusses the question of which
concurrent and parallel programming concepts multi-language VMs needs to
support.
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WHICH CONCEPTS FOR CONCURRENT AND PARALLEL
PROGRAMMING DOES A VM NEED TO SUPPORT?

The goal of this chapter is to identify requirements for a unifying substrate
that supports parallel and concurrent programming. First, a survey of the
state of the art in VM support finds that support for parallel programming
is relegated to libraries, while concurrent programming is only supported se-
lectively. Thus, VM support is currently insufficient for supporting the notion
of a multi-language runtime for concurrent and parallel programming. Sec-
ond, a survey of the field of concurrent and parallel programming identifies
concepts that significantly benefit from VM support either for performance
improvement or to guarantee correct semantics. Based on these concepts, this
chapter derives general requirements for VMs, which cover two independent
areas of research. This dissertation focuses on the research to enforce lan-
guage semantics, and thus correctness, leaving the research on performance
improvement for future work. With this focus in mind, this chapter discusses
common problems of language implementers that need to be solved to im-
prove support for concurrent programming on multi-language VMs. Finally,
the survey results and discussed problems are used to extract concrete require-
ments for the design of a unifying abstraction for concurrent programming.
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3.1. VM Support for Concurrent and Parallel
Programming

The goal of this section is to investigate the state of the art in VM support
for concurrent and parallel programming, in order to determine the require-
ments for multi-language VMs. To this end, the survey identifies for thirteen
VMswhich concepts they support and how the VMs expose them. First, this
section details the survey design, i.e., the questions to be answered for each
VM, the VMs to be discussed, and the survey approach to be taken. Then
it categorizes the VMs based on the taxonomy used in Sec.2.4.1 and reports
on the support they provide. Finally, it discusses the threats to validity and
presents the conclusions.

The main conclusion is that currently most VMs support only one or two
categories of concurrent programming concepts as part of the VM. Moreover,
the analyzed VMs support parallel programming in libraries only. Thus, the
vision of multi-language VMs that offer support for a wide range of different
approaches to concurrent and parallel programming is as yet not supported.

3.1.1. Survey Design

The survey is designed to answer the following question: How do today’s VMs
support parallel and concurrent programming?

Following the goal of this dissertation, this survey focuses on VMs that are
used as multi-language VMs, i. e., VMs that have been designed as platforms
for multiple languages or are contemporary targets for multiple language
implementations. To complement these VMs, the survey includes a number
of high-level language VMs that provide support for concurrent and parallel
programming concepts or are known for contributions to VM implementation
techniques.

3.1.1.1. Survey Questions

To focus and standardize the survey, the following concrete questions are
answered for each survey subject, i.e., VM:

Which concepts are supported by the language runtime system, i.e., VM?

How are the supported concepts exposed by the VM?
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The first question refers to the general set of concepts for concurrent and
parallel programming that is supported by a subject, i. e., the VM under inves-
tigation. Note, the question refers explicitly to language runtime systems instead
of VMs. Thus, the analysis includes concepts provided by the corresponding
standard library as well. Hence, a wider range of concepts is covered and it
becomes possible to determine how the concepts that are directly provided
by the VM are used.

To answer the second question, each concept is assigned to one of the fol-
lowing four categories:

Implicit Semantics Concepts like the memory models guaranteed by the JVM
and the CLI, or the global interpreter lock semantics used by Python, are
realized by the combined underlying infrastructure instead of a single
mechanism. Thus, overall semantics of the system implicitly supports
the concept by coordinating a wide range of mechanisms.

Instruction Set Architecture (ISA) Concepts that are either supported by a
specific set of opcodes, or concepts which are realized by the structures
which the VM operates on are classified as being part of the instruc-
tion set architecture (ISA). Examples are opcodes to acquire and release
locks, as well as flags in a method header that require the VM to acquire
an object’s lock before executing that method.

Primitive Concepts that require direct access to VM internals but do not fit
into the ISA are typically realized by so-called primitives. They are rou-
tines provided as part of the runtime, implemented in the implementa-
tion language of the VM. Common examples are thread-related opera-
tions.

Library Other concepts can be delivered as an integral part of the language
runtime system, but are implemented entirely in terms of other abstrac-
tions provided by the VM, i.e., without requiring new primitives for
their implementation.

Appendix A documents the outline of the questionnaire for this survey in
Lst. A.1. The appendix also includes an example of a completed questionnaire
in Lst. A.2.

3.1.1.2. Survey Subjects

Based on the goal of this dissertation, which is improvementing concurrent
and parallel programming support for multi-language VMs, the focus of this
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survey is the set of VMs that are used as runtime platforms for a wide range of
languages for a single system. Thus, distributed VMs such as the PVM [Geist
et al., 1994] are not considered because they solve a distinct set of problems
such as physical distribution and fault tolerance, which are outside of the
scope of this dissertation.

This survey considers the Java Virtual Machine (JVM)|[Lindholm et al.,
2012], the Common Language Infrastructure (CLI) [ECMA International, 2010],
and the Parrot VM to be multi-language VMs. The JVM is with the addition
of the INVOKEDYNAMIC bytecode [Rose, 2009; Thalinger and Rose, 2010] ex-
plicitly designed to host a wider range of languages. The CLI and Parrot VM*
have been explicitly designed as execution platforms for multiple languages
from the beginning. Because of its close relation to the JVM (cf. Sec. 3.1.2.1),
the survey includes the Dalvik VM as a multi-language VM, as well.

While JavaScript and its VMs have not been designed as multi-language
platforms, wide availability led to their adoption as a platform for language
implementation.” Therefore, this survey includes JavaScript as well. The dis-
cussion is based on JavaScript’s standardized form ECMAScript [ECMA In-
ternational, 2011] and the upcoming HTML5 standard to cover WebWorkers3
as a mechanism for concurrent programming,.

To complement these multi-language VMs, this survey includes additional
VMs that either support relevant concurrent and parallel programming con-
cepts, or have contributed to VM implementation techniques. The selected
VMs are: DisVM [Lucent Technologies Inc and Vita Nuova Limited, 2003], Er-
lang [Armstrong, 2007], Glasgow Haskell Compiler (GHC), Mozart/Oz, Perl,*
Python,’ Ruby,6 Self [Chambers et al., 1989], and Squeak [Ingalls et al., 1997].
An overview over the subjects, including the relevant version information is
given in Tab. 3.1.

3.1.1.3. Survey Execution

For each subject of the survey, the analysis uses the VM specification if it is
available and if it provides sufficient information for the assessment. Other-
wise, it examines the source code of the implementation and the language

*Parrot — speaks your language, Parrot Foundation, access date: 4 December 2012
http://www.parrot.org/

2alt]S, David Griffiths, access date: 4 December 2012 http://altjs.org/

Shttp://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html

4http://perldoc.perl.org/perl.html

Shttp://docs.python.org/release/3.2.3/

Shttp://www.ruby-1lang.org/en/documentation/
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VM SpEc. Src. VERSION

CLI X 5th edition
Dalvik X Android 4.0
DisVM X 4th edition
ECMAScript+HTML5 X X ECMAScripts.1, HTML5
Erlang X Erlang/OTP R15Bo1
GHC X GHC 7.5.20120411
JVvM X X Java SE 7 Edition
Mozart X 1.4.0.20080704
Perl X 5.14.2
Python X 3.2.3

Ruby X 1.9.3

Self X 4.4

Squeak X X 4.3

Table 3.1.: VM survey subjects, their version, and the availability of specification and
source code.

documentation. For example, the CLI’s specification describes the relevant
parts of the standard library and is therefore deemed to be sufficient. For
the JVM however, the analysis includes one of the actual implementations
(HotSpot and OpenJDK?) and its accompanying documentation since the stan-
dard library is not covered by the specification. In the case of ECMAScript and
HTMLs5, the specification is complemented with an analysis of the implemen-
tations based on V8% and SpiderMonkey?

For languages without specification such as PHP, Python, or Ruby, the anal-
ysis includes only the implementation that is widely regarded to be the offi-
cial, i. e., standard implementation, as well as the available documentation.

To answer the survey questions, the analysis assesses whether a concept is
realized with the help of VM support or purely as a library. For VMs where
only the specification was examined, the assessment was deduced from this
information. For VMs where the implementation was inspected, the decision
was simpler. A concept is considered to be realized as a library if its imple-
mentation is written completely in the language provided by the VM. None
of the VM’s primitives, i. e., mechanisms directly provided by the VM are an
essential part of the concept’s implementation. This criterion was unambigu-
ous in this survey because none of the inspected implementations relied on a

7http:/ /openjdk.java.net/
8https://github.com/v8/v8/archive/3.9.24.zip
Shttp://ftp.mozilla.org/pub/mozilla.org/firefox/releases/12.0b5/

43


https://github.com/v8/v8/archive/3.9.24.zip
http://ftp.mozilla.org/pub/mozilla.org/firefox/releases/12.0b5/

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

meta-circular implementation, which makes primitives and their use directly
identifiable in the code.

3.1.2. Results

Structure of the Discussion This section first discusses the VMs supporting
Threads & Locks (T&L), then the ones with support for Communicating Threads
(ComT), and finally the ones supporting Communication Isolates (Coml) (cf.
Sec. 2.4.1). In the case a VM supports more than a single category, the discus-
sions for the different categories build on each other. The category of Data
Parallelism (DPar) is not discussed because all VMs examined in this survey
relegate support for parallel programming to libraries. These libraries build
on lower-level mechanisms, which are concurrent programming concepts on
their own and are used for other purposes as well.

The remainder of this section discusses the survey questions and highlights
the concepts supported by the different VMs. A full overview of the survey is
given in Appendix A, Tab. A.2.

General Remarks Tab. 3.2 provides an overview of the categorization of the
various VMs. Furthermore, while three of the VMs can be categorized as
belonging to two categories, most of the VMs focus on supporting a single
category of concurrency-related mechanisms.

VM T&L CoMmT Coml DPar
CLI X X Lib
Dalvik X Lib
DisVM X
ECMAScript+HTML5 X

Erlang X

GHC X Lib
JVM Lib
Mozart
Perl X
Python
Ruby
Self
Squeak

X X

X X X X

Table 3.2.: Categories of approaches supported by VMs: Threads & Locks (T&L),
Communicating Threads (ComT), Communicating Isolates (Coml), and Data
Parallelism (DPar)
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The Parrot VM is excluded from the remainder of the discussion, because
the mismatch between implementation and documentation is too significant.
While it is a interesting and relevant subject, a correct assessment of its feature
set and capabilities was not possible (cf. Sec. 3.1.2.5).

3.1.2.1. Threads and Locks (T&L)

The group of VMs supporting concurrency abstractions based on Threads and
Locks is the largest. Tab.3.2 shows that eight of the selected VMs provide
mechanisms for these abstractions. However, they expose them in different
ways, e. g., as part of the ISA or as primitives.

Common Language Infrastructure (CLI) The Common Language Infras-
tructure is the standard describing Microsoft’s foundation for the .NET Frame-
work, and was developed as a reaction to the success of Java. Furthermore, it
was designed as a common platform for the various languages supported
by Microsoft. Initially, this included C#, Visual Basic, J#, and Managed C++.
While JVM and CLI have many commonalities [Gough, 2001], the designers
of the CLI benefited from the experiences gathered with the JVM.

The analysis of the Common Language Infrastructure (CLI) is solely based
on its standardized ECMA-335 specification [ECMA International, 2010]. Since
the specification includes a discussion of the relevant details, concrete imple-
mentations such as Microsoft’s NET or Mono were not considered.

The CLI specifies shared memory with threads as the standard abstraction
used by applications. It further specifies that the exact semantics of threads,
i.e., whether they are cooperative or pre-emptive, is implementation specific.
To facilitate shared memory programming, the CLI specifies a memory model.
The memory model includes ordering rules for read and write operations to
have reliable semantics for effects that need to be observable between threads.
The CLI further includes the notions of volatile variables as part of the in-
struction set. The ISA provides the instruction prefix ‘volatile.’ to indicate
that the subsequent operation has to be performed with cross-thread visibility
constraints in mind, as specified by the memory model. The memory model
further guarantees that certain reads and writes are atomic operations. For
this survey, the memory model and the related mechanisms are considered to
be realized by the implicit semantics implemented in the VM and its just-in-
time (JIT) compiler.

The foundation for locks and monitor primitives exposed in the standard
libraries is laid in the specification as well. Building on that, the object model
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defines that each object is implicitly associated with a lock to enable synchro-
nized methods. The metadata associated with every method, which is part of
the ISA, has therefore to contain the ImplFlags.Synchronized flag, according
to the specification. Other atomic and synchronization operations are defined
in terms of primitives for instance for compare-and-swap, atomic update op-
erations, and explicit memory barriers, i. e., fences.

Beyond these mechanisms, the specification also discusses the functions
Parallel.For, Parallel.ForEach, and Parallel.While. They are part of the
standard library to provide parallel looping constructs. With the notion of
AppDomains it also includes a mechanism to facilitate communicating isolates,
which is discussed in Sec. 3.1.2.3.

Java Virtual Machine (JVM) The analysis of the Java Virtual Machine (JVM)
relies on the specification [Lindholm et al., 2012] and considers the Open]DKy
for details about the standard library.

The JVM provides a programming model that is solely based on shared
memory. It relies on the memory model defined by the Java Language Spec-
ification [Gosling et al., 2012] to establish the semantics of operations on this
shared memory and the visibility of changes to the memory between oper-
ations and threads. The semantics are defined in terms of happens-before re-
lationships between operations. For example, synchronization operations as
well as reading and writing of volatile fields have specific semantics, which
constrain optimizations of compilers and processors to guarantee that the
observable ordering of operations is deterministic. Similar to the CLI, these
semantics are realized in terms of the implicit semantics implemented in the
VM and its JIT compiler.

In addition to the memory model, locking-based abstractions are a key con-
currency feature, because every object is implicitly associated with a lock to
enable synchronized methods and can also be used as a condition variable.
Methods can carry the ACC_SYNCHRONIZED flag, and the two bytecode instruc-
tions monitorenter and monitorexit expose the object’s lock on the ISA level
to enable the implementation of synchronized blocks. A note in the specifica-
tion also hints at Object.wait and Object.notify being realized as primi-
tives. In contrast to the CLI, the JVM does not have the notion of volatile
variables, because it does not have closures. Instead, it provides only volatile
object fields, which are realized in the ISA by a the ACC_VOLATILE flag in the
object field’s metadata.
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The JVM does not provide any high-level mechanisms for communication
between threads. While the standard library provides futures, a set of con-
current objects/data structures, barriers, and the necessary abstractions for
fork/join programming, these libraries completely rely on the abstractions
provided by the VM in terms of volatile fields, locks, and atomic operations.

Dalvik VM Google develops the Dalvik VM for its Android platform. While
there is no specification available, Google stated its goal to build a VM that
implements the semantics of the Java Language Specification (JLS) [Gosling
et al., 2012].

An inspection of the source code reveals that Dalvik provides monitorenter
and monitorexit instructions to interact with an object’s lock, which are sim-
ilar to the instructions in the JVM. Furthermore, Google intends to provide
a Java-compatible standard library as well. With these similarities in mind,
Dalvik is classified for the purpose of this discussion as a JVM derivative. It
differs in certain points from the JVM, e.g., using a register-based bytecode
format and a different encoding for class files, but does not deviate from the
JVM/JLS when it comes to concurrency and parallelism-related aspects.

Mozart The Mozart VM is an implementation of the Oz language. The multi-
paradigm approach of Oz also has an impact on the VM and the concepts it
exposes. The Oz language provides a variety of different abstractions for con-
current and distributed programming. This includes a shared memory model
extended by different adaptable replication semantics and remote references
for distributed use. The Mozart VM combines the notions of green threads,
locks, and data-flow variables. It exposes Ports as a channel-based abstraction,
and additionally reifies data-flow variables to be used as futures/promises.
Similarly to the CLI and JVM, lock support is provided at the instruction set
level with a parameterized LOCKTHREAD instruction that represents operations
on reentrant locks. In addition to this VM support, the standard library and
documentation discuss concepts built on top of these abstractions, e. g., mon-
itors and active objects.
Sec.3.1.2.2 discusses the abstractions related to Communicating Threads.

Python Traditionally, Python offers a thread-based shared memory program-
ming model. In contrast to the CLI and JVM, its memory model is defined by
global interpreter lock-semantics. The global interpreter lock (GIL) prevents par-
allel execution of Python code, however, it for instance enables the use of I/O
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or computational intensive operations provided by the underlying system or
primitives. Thereby, it enables a certain degree of parallel execution and la-
tency hiding. C modules for Python are able to use PyEval_AcquireLock()
and PyEval_ReleaseLock() to release the lock before starting I/O or compu-
tational intensive operations that do not require interpreter intervention and
thereby enable other threads to use it.

The threading module provides threads, locks, recursive locks, barriers,
semaphores, and condition variables. However, only thread operations, locks,
and recursive locks are implemented as primitives. Barriers, semaphores, and
condition variables are built completely on top of them.

Similarly to Mozart, Python’s support for Communicating Isolates is dis-
cussed separately in Sec. 3.1.2.3.

Ruby Similarly to Python, Ruby’s standard implementation is based on a
GIL, called global VM lock (gvl). C modules that want to execute in parallel
can do so by using the high-level rb_thread_blocking_region(..) function,
by which they promise to take care of threading issues by themselves, and
the VM will release the gvl during execution. However, this is of course not
offered at the language level.

To the user, Ruby offers primitives for Threads and Mutexes combined with
the shared memory model as part of VM support. The standard library builds
on this basic support by offering for instance condition variables.

Self and Squeak Squeak is based on the ideas of Smalltalk-8o [Goldberg and
Robson, 1983] and follows its specification closely (cf. sections 4.3 and 4.4).
Self [Chambers et al., 1989] belongs to the Smalltalk family of languages as
well, but has significant differences in terms of its object model. Furthermore,
it pioneered important language implementation techniques such as dynamic
optimization. Both Squeak and Self closely follow the standard Smalltalk
model when it comes to concurrent and parallel programming. They offer
the notion of green threads in combination with semaphores.

Squeak implements these concepts based on primitives. It provides for in-
stance yield, resume, and suspend primitives to influence the scheduling of
green threads (instances of the Process class). Furthermore, it provides the
signal and wait primitives to interact with the semaphore implementation
of the VM. Based on these, the libraries provide mutexes, monitors, and con-
current data structures such as queues.
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In Self, the functionality is implemented completely in libraries. The VM
provides only preemptive green threads and the so-called TWAINS_prim prim-
itive. This provides sufficient VM support to build scheduling, semaphores,
and other abstractions on top.

3.1.2.2. Communicating Threads (ComT)

Similarly to Threads and Locks, the Communicating Threads-based models offer
shared memory and come with the notion of threads as a means of execu-
tion. However, they offer approaches to communicate between threads that
are distinct from approaches that rely on locks for correctness. For instance,
channel-based communication has software engineering tradeoffs different
from the use of locks.

Dis VM The Dis VM [Lucent Technologies Inc and Vita Nuova Limited,
2003] is part of the Inferno OS and hosts the Limbo programming language.
Since the source code does not seem to be available, the analysis relies solely
on the specification and manuals.

Limbo, and consequently the Dis VM are strongly inspired by Hoare’s CSP
(cf. Sec. 2.4.4). However, Limbo and the Dis VM provide the notion of shared
mutable memory between threads and do not follow the notion of isolated
processes as proposed by CSP.

The instruction set of the Dis VM provides operations to mutate shared
memory, spawn threads, and use channel-based communication with send-
ing and receiving. Since the Dis VM uses a memory-to-memory instruction
set architecture, instead of relying on registers, most operations mutate heap
memory. While threads are available, there are no locking-like primitives or
instructions available. Instead the send, recv, and alt channel operations are
the only instructions in the specification that provide synchronization.

Nevertheless, the Limbo language manual demonstrates how monitors can
be built on top of channels.

Glasgow Haskell Compiler The Glasgow Haskell Compiler (GHC) was one
of the first language implementations to include a software transactional
memory (STM) system in its standard distribution. While Haskell is designed
as a side-effect free language with lazy execution semantics, its monadic-style
can be used in an imperative way, which makes it necessary to coordinate
side-effects when parallel execution is used. To that end, GHC introduced
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STM based on mutable TVars [Harris et al., 2005]. TVars, i. e., transaction vari-
ables, are shared memory locations that support atomic memory transactions.
It is implemented as part of the GHC runtime system, i.e., it is supported
directly by the VM. One of the provided STM-implementation strategies uses
fine-grained locking of TVars to minimize serialization of execution during
commits.

Independently from the STM system, GHC supports explicit spawning of
parallel executing sparks, which are lightweight threads. Haskell’s par eventu-
ally results in a call to the corresponding newSpark primitive in the runtime.

With the support for MVars, GHC enables additional communication pat-
terns, for instance channel-based communication, building on the ideas of M-
Structures [Barth et al., 1991; Peyton Jones et al., 1996]. MVars are synchroniza-
tion variables that can store values. Their basic operations are takeMVar and
putMVar. When an MVar is empty, a takeMVar will block. Similarly, putMVar
will block when it is full. MVars are implemented in the runtime (StgMVar).

The standard library provides a semaphore construct on top of MVars. Fur-
thermore, the library includes proper channels and various abstractions to
perform map/reduce and data parallel operations.

Mozart The data-flow variables of Oz, and their direct support in the Mozart
VM enable algorithm designs that are significantly different from algorithms
based on threads and locks. An 0zVariable represents these data-flow vari-
ables inside the VM and for instance keeps track of all threads that are
suspended on unresolved data dependencies. The directly exposed VM sup-
port for channels (0zPort) enriches the choice for programmers even further.
Therefore, we conclude that the Mozart VM provides abstractions for Commu-
nicating Threads in addition to the Threads and Locks-based ones.

3.1.2.3. Communicating Isolates (ComlI)

As defined in Sec. 2.4.1, the main concept introduced by communicating iso-
lates is the strong state encapsulation between concurrent entities. This breaks
with the typical shared memory model and enforces clear separation between
components. Communication has to be performed either via value-based mes-
saging or by using explicitly introduced and constrained shared memory data
structures.

Common Language Infrastructure In addition to Threads and Locks-based
abstractions, the CLI specifies so-called application domains that provide a no-
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tion of isolated execution of different applications in the same VM process.
This concept has to be supported by a VM implementation in order to provide
isolation properties similar to operating system processes. Different applica-
tion domains can only communicate using the remoting facilities.”® Remoting
is Microsoft’s and the CLI’s technique for inter-process communication and
distributed objects. The remoting facilities enable remote pointers and mar-
shaling protocols for remote communication in an object-oriented manner.
They are realized with System.MarshalByRefObject which is according to
the specification supposed to use a proxy object, which locally represents the
remote object of another application domain.

Because application domains are isolated from each other, the static state
of classes is not shared between them either. This isolation approach goes as
far as to require types to be distinct in different application domains.

ECMAScript+HTML5 JavaScript as well as the current version of the corre-
sponding ECMAScript standard [ECMA International, 2011] do not provide
any abstractions for concurrent or parallel programming. Since browsers use
event loops to react to user input, they process the corresponding JavaScript
code at a later point in time to guarantee sequential execution. Furthermore,
the execution model is nonpreemptive, and each turn of the browser’s event
loop executes completely and is not interrupted. In the absence of parallel
execution on shared memory, ECMAScript/JavaScript does not provide any
mechanisms for synchronization.

However, this survey includes the widely available Web Worker'* exten-
sion, which is proposed for standardization as part of HTML5. Web work-
ers introduce the notion of background processes that are completely isolated
from the main program. The specification names the communication interface
MessagePort and offers a postMessage method as well as an onmessage event
handler to enable communication between web workers. They communicate
solely via these channels with by-value semantics. The two JavaScript browser
runtimes SpiderMonkey and V8 support processes and channels directly.

Erlang Erlang is known for its support of actor-based concurrent program-
ming. It is implemented on top of the BEAM (Bogdan’s Erlang Abstract Ma-
chine [Armstrong, 2007]), which exposes the main abstractions required for an

10.NET Remoting Overview, Microsoft, access date: 15 Sep. 2012
http://msdn.microsoft.com/en-us/library/kwdt6w2k (v=vs.71).aspx
http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
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actor-based language directly to application programs. The main operations
are directly provided by the instruction set. The send instruction implements
asynchronous message sends to a specified actor, i.e., Erlang process. The
wait and wait_timeout instructions are used to wait for incoming messages
on the message queue. To facilitate Erlang’s pattern matching, messages are
only removed from the message queue when the explicit remove_message in-
struction is used. However, new Erlang processes are spawned by a primitive.

For use-cases like the Mnesia database,"* Erlang also provides a set of prim-
itives for mutable concurrent hash-tables (ets, Erlang term storage'?) that can
be shared between actors. While this introduces a restricted notion of shared
state, it is not part of the core primitives suggested for general use.

Perl The Perl™ VM offers support for so-called threads. However, this ter-
minology is not in line with the commonly accepted notion of threads. Perl’s
threads are more directly comparable to OS processes as they provide a non-
shared memory programming model by default. However, the VM provides
primitives in the threads: :shared module to enable the use of shared data
structures between these threads. Data structures can only be shared between
threads after they have been explicitly prepared for sharing with the share ()
primitive. To use this restricted form of shared memory, the VM provides
the Queue data structure for channel-like communication, as well as a lock
primitive, a Semaphore class, and primitives for condition variables.

Python As discussed in Sec.3.1.2.1, Python’s main programming model is
based on threads and locks with a VM implementation that is constrained
by global interpreter lock (GIL) semantics. Since the GIL hinders any form of
parallel execution of Python bytecodes, VM support for process-based paral-
lelism was added. The standard library provides the multiprocessing mod-
ule to offer an abstraction for parallel programming similar to Perl. Python’s
VM includes primitives for channels in the form of a message queue (Queue),
as well as primitives for semaphores on top of which for instance the Lock and
Condition classes are built. These can operate on shared memory that has to
be requested explicitly between communicating processes and is restricted
to certain data structures. Value and Array are the shareable data structure
primitives directly exposed by the library. Value is by default a synchronized

2http://wuw.erlang.org/doc/apps/mnesia/
Bhttp://wuw.erlang.org/doc/man/ets.html
14http://perldoc.perl.org/perl.html
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wrapper around an object, while Array wraps an array with implicit synchro-
nization.

3.1.2.4. Data Parallelism (DPar)

Surprisingly, none of the VMs examined in this survey expose direct sup-
port for data parallelism. Instead, they are typically accompanied by stan-
dard libraries that build support for parallel programming on top of lower-
level abstractions. Examples are the CLI with its library of parallel loop con-
structs, the JVM (incl. Dalvik) with its support for fork/join parallelism in
the java.util.concurrent library,'> and GHC with libraries for map/reduce
parallelism. These libraries are built on top of concepts already available, e. g.,
threads, atomic operations, and locks, and therefore the analyzed VMs do not
provide primitives that expose parallel programming concepts directly.

3.1.2.5. Threats to Validity

Completeness of Selected Subjects The main survey question was: how do
today’s VMs support parallel and concurrent programming approaches? The answer
to this question is based on a set of thirteen VMs. Thus, the number is limited
and the selected set may exclude VMs that provide other mechanisms and ex-
pose them in other ways to the application programmer. However, since the
survey covers contemporary multi-language VMs, and a number of additional
VMs respected for their support for parallel and concurrent programming,
it covers the VMs that are directly relevant for the goal of this dissertation.
Furthermore, the selected VMs reflect common practice in VM support for con-
current and parallel programming approaches, because the selection includes
the most widely used VMs, as well.

Correctness and Completeness of Results With respect to the concrete sur-
vey questions of which concepts are exposed and how they are exposed, a
number of threats to correctness and completeness of the results need to be
considered.

General Threats to Accuracy As shown in Tab. 3.1, the analysis did not in-
clude the implementations of the CLI and DisVM. Instead, the quality of their

Shttp://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-
summary.html
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specification is deemed sufficiently precise to answer the questions for which
and how concepts are exposed accurately.

Other aspects have a stronger impact on the confidence in the results. In
general, the survey is based on the specifications, language manuals, and
inspection of actual implementations. While it initially included the Parrot
VM as an interesting subject, it was omitted, since the mismatch between
documentation and implementation was major. It was not clear whether the
documentation was outdated or visionary, or whether the understanding of
the implementation was not sufficient, making a proper assessment impossi-
ble. This example raises the question of how valid the results are. Most imple-
mentations use customary names and make an effort to be comprehensible,
which results in a high confidence in the results. However, it is not possible
to eliminate the possibility that the analysis is to a lesser extent inaccurate or
incomplete.

Exposure Assessment The confidence in the assessment that a given con-
cept is supported directly by a VM is high, because the VM implementations
provide direct evidence that a concept is supported as primitive or as part
of the the instruction set. However, a concept may have been missed. Thus,
some concepts may in fact be supported by the VM directly. Completeness is
thus an issue for the question of whether concepts are directly supported by
a VM. This assessment could also not by verify trivially. However, this form
of completeness has only little impact on the overall results, since it includes
a larger number of different VMs.

Concept Completeness The confidence in the completeness of the overall
identified set of concepts that is exposed by a VM and its libraries is high,
because the typically sufficiently extensive and well structured language doc-
umentations enable a trivial verification for completeness.

Problematic are concepts that are solely available in the implementations
and remain undocumented. One example for such a case is the relatively
well know Unsafe class in Oracle’s JVM implementation.'” Other similarly
private APIs might have been missed. Arguably, such concepts are not meant
to be used by programmers targeting the VM, and therefore do not need to be
considered as concepts that are offered by the VM. Instead, these concepts are

http://www.parrot.org/
7http://hg.openjdk. java.net/jdk7/jdk7/jdk/log/tip/src/share/classes/sun/misc/U
nsafe. java
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considered internal basic building blocks outside of the scope of this survey,
and thus do not have an influence on our results.

3.1.3. Conclusion

Summary This survey investigated the state of the art in VM support for
concurrent and parallel programming. It examined thirteen VMs, including
contemporary multi-language VMs and a number of VMs selected for their
support for concurrent and parallel programming. The analysis identified for
each VM the concepts it exposes and whether it exposes them in terms of
implicit semantics, as part of the VM's instruction set architecture, in terms of
primitives, or merely as part of the standard libraries. The main insight is
that the analyzed VMs only support one or two categories of concepts. Fur-
thermore, they consistently relegate support for parallel programming to the
standard library without providing explicit support for optimization.

Concept Exposure In answering the question of how concepts are exposed,
the survey shows that very general concepts such as shared memory, mem-
ory models, and global interpreter lock semantics are realized by a combina-
tion of mechanisms in the VM, which were categorized as implicit semantics
(cf. Sec.3.1.1.1). Typically, they have an impact on most parts of a VM, be-
cause they require guarantees from a wide range of VM subsystems. More
restricted, and often performance sensitive concepts are exposed as part of
the overall instruction set architecture. Examples are monitors, synchronized
methods, volatile variables, and in some cases also high-level concepts like
channels, message sends, message receives, and threads or processes.

Primitives are used for a wide range of concepts. Design decisions differ
between VMs, thus some concepts are supported either in the instruction
set or as primitives, e. g., locks, channels, and threads, but also concepts like
atomic operations, and condition variables. Other high-level concurrency con-
cepts such as concurrent data structures are provided as libraries. With the
definitions of concurrent and parallel programming of Sec.2.3 in mind, the
conclusion is that none of the concepts that are provided with implicit seman-
tics, ISA support, or primitives is directly related to parallel programming.
Instead, all the identified parallel programming concepts have been realized
in the form of libraries.

Only limited support for concurrent and parallel programming. Since sup-
port for parallel programming is based on libraries, none of the VMs is cate-
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gorized as providing abstractions for Data Parallelism. However, roughly half
of the VMs provide abstractions around Threads and Locks. Three provide ab-
stractions for Communicating Threads, and five provide abstractions for Com-
municating Isolates. Only three of the VMs provide abstractions for two of
these categorizes. Therefore, most of the contemporary VMs concentrate on a
single model for concurrent programming.

To conclude, it is uncommon to support multiple concurrent or parallel
programming concepts. This is not surprising, since most VMs are built for a
single language. Furthermore, support for parallel programming is relegated
to libraries, and none of the examined VMs provides direct support for it.

Seeing the current state of the art and the design choice of supporting only
a small number of specific concepts in VMs, it remains open how multiple
concepts can be supported on a modern multi-language VM.

3.2. A Survey of Parallel and Concurrent Programming
Concepts

After investigating the state of the art in VM support for concurrent and par-
allel programming, it can be concluded that the vision of this dissertation
has not yet been realized. Thus, there is currently no unifying substrate that
enables language and library developers to implement concurrent and paral-
lel programming concepts on top of multi-language VMs. However, the field
of these programming concepts is wide and it is not yet clear what exactly
a VM needs to support. To discuss this question in its full generality, this
section reports on a survey that covers as many of the field’s programming
concepts as possible to reach a more complete understanding of which con-
cepts benefit from VM support. Specifically, this survey identifies concepts
that significantly benefit from VM support. To this end, the survey divides
the concepts of the field into the concepts that require VM support to guaran-
tee their semantics, and the concepts that can achieve significantly improved
performance using VM support.

The main result of this survey is a set of general requirements for the two
groups of concepts. The concepts that benefit from improved performance
require support for dynamic optimization and runtime monitoring that cap-
tures specific execution characteristics to enable adaptive optimization. The
concepts that require VM support to guarantee their semantics benefit most
from mechanisms to specify custom method execution and state access poli-
cies. Since the requirements for the two sets of concepts are independent

56



3.2. A Survey of Parallel and Concurrent Programming Concepts

of each other and require significantly different research, this dissertation
chooses to focus on guaranteeing the semantics, i. e., the correctness of imple-
mentations for concurrent programming concepts on top of multi-language
VMs.

3.2.1. Survey Design

The goal of this survey is to identify concepts that are relevant for a multi-
language VM in order to facilitate the implementation of concurrent and
parallel programming abstractions. To that end, this section first discusses
the selected questions that categorize the concepts. Then, it details the ap-
proach to identify parallel and concurrent programming concepts and finally,
it presents the findings and concludes with general requirements for the sup-
port of these concepts.

3.2.1.1. Survey Questions

When features are considered for inclusion in a VM, one of the main goals is
to avoid unnecessary complexity (cf. Sec. 2.1). From this it follows that a new
concurrent or parallel programming concept needs to be added to a VM only
if it cannot reasonably be implemented in terms of a library on top of the VM.
Thus, our first question is:

Lib Can this concept be implemented in terms of a library?

Interpreting the question very broadly, it considers whether some variation
of the concept can be implemented, i.e., a variation for instance with missing
semantic guarantees such as isolation. Thus, such a library implementation
can either suffer from losing semantic guarantees, or it has to accept perfor-
mance drawbacks. The following two questions account for this variation:

Sem Does this concept require runtime support to guarantee its semantics?

Perf Are there indications that runtime support would result in significant
performance improvements compared to a pure library solution?

The answers to SEM also consider interactions of different languages on top
of a VM as well as the influence of reflection. This is relevant since language
guarantees are often enforced by a compiler and do not carry over to the
level of the VM. One example is the semantics of single-assignment variables,
which is typically not transferred to the bytecode level of a VM.
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The answers to PERF consider intuitive optimizations that become pos-
sible with knowledge of full language semantics. For instance, knowledge
about immutability enables constant folding, and taking the semantics of crit-
ical sections into account enables optimizations like lock elision [Rajwar and
Goodman, 2001]. Furthermore, the answers rely on the literature of proposed
implementation strategies that require changes to a VM.

The last categorization criterion is whether the concept is already common
to VMs that are used as multi-language platforms and should be regarded as
prior art (PA). When it is already available to the major multi-language VMs
identified in Sec.3.1.1.2, i.e., the JVM or CLI, general VM support for the con-
cept is considered to be feasible and well understood, and therefore, does not
need to be included in further discussion. Only JVM and CLI are considered
here, because these two are specifically designed as multi-language VMs.

PA Is the concept already supported by a VM like the JVM or CLI?

3.2.1.2. Selecting Subjects and Identifying Concepts

The survey of Briot et al. [1998] of concurrent and distributed systems as well
as the survey of Skillicorn and Talia [1998] of parallel models and languages
are the main subjects to identify concurrent and parallel programming con-
cepts. They provide a broad foundation and an overview over a wide range of
concurrent and parallel programming concepts. Since concurrent and parallel
programming have been investigated for years in the field of logic program-
ming as well, two surveys for parallel logic programming [De Bosschere, 1997;
Gupta et al., 2001] complement the surveys from the imperative world. How-
ever, since all four surveys are dated and lack coverage of recent work, a
number of languages used in research or industry and selected research pa-
pers from recent years are included as subjects to cover current trends. The
full list of subjects is given in Tab. 3.3.

This survey identifies for each of these subject the basic concurrent and par-
allel programming concepts it introduces, i. e., the concepts that are presented
by the paper or provided by the language. For languages, this includes con-
cepts from the language-level as well as the implementation-level. Note that
the identified concepts abstract necessarily from specific details that vary be-
tween the different subjects. Thus, this analysis does not regard minor vari-
ations of a concept separately. However, this leaves room for different inter-
pretations of the survey questions. Furthermore, the analysis of subjects such
as C/C++ and Java considers only the core language and standard libraries.
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Table 3.3.: Survey Subjects: Languages and Papers

Active Objects [Lavender and Schmidt, 1996]
Ada

Aida[Lublinerman et al., 2011]

Alice

AmbientTalk [Van Cutsem et al., 2007]
Ateji PX

Axum

Briot et al. [1998]

C#

C/C++11[ISO, 2011, 2012]

Chapel

Charm++

Cilk [Blumofe et al., 1995]

Clojure

CoBoxes [Schifer and Poetzsch-Heffter, 2010]
Concurrent Haskell

Concurrent ML [Reppy et al., 2009]
Concurrent Objects [Herlihy, 1993]
Concurrent Pascal

Concurrent Smalltalk [Yokote, 1990]
Erlang [Armstrong, 2007]

Fortran 2008

Fortress

Go

Io

JCSP [Welch et al., 2007]

Java 7[Gosling et al., 2012]

Java Views [Demsky and Lam, 2010]

Join Java [Itzstein and Jasiunas, 2003]

Linda [Gelernter, 1985]

MPI [Message Passing Interface Forum, 2009]
MapReduce [Limmel, 2008]

MultiLisp [Halstead, Jr., 1985]

Occam-pi [Welch and Barnes, 2005]

OpenCL

OpenMP [OpenMP Architecture Review Board, 2011]
Orleans [Bykov et al., 2011]

Oz [Mehl, 1999]

Parallel Actor Monitors [Scholliers et al., 2010]
Parallel Prolog [De Bosschere, 1997; Gupta et al., 2001]
Reactive Objects [Nordlander et al., 2002]
SCOOP [Morandi et al., 2008]

STM [Shavit and Touitou, 1995a]

Skillicorn and Talia [1998]

Sly [Ungar and Adams, 2010]

Streamlt [Thies et al., 2002]

Swing

UPC [UPC Consortium, 2005]

X10[Charles et al., 2005]

XC

Thus, common libraries and extensions for these languages are considered as

separate subjects.

3.2.2. Results

The analysis of the subjects given in Tab. 3.3 resulted in 97 identified concepts.
Since most of them are accepted concepts in the literature and major ones
have been covered in Sec. 2.4, this section restricts their discussion to the re-
sults of the survey questions. As mentioned earlier, some concept variations
have been considered together as a single concept. For example, the distinct
concepts of monitors and semaphores, have been regarded as part of locks
in this survey. Similarly, the concept of parallel bulk operations also covers the
concept of parallel loops for the purpose of this discussion, because both are
similar enough and have closely related implementation strategies. With these
subsumptions, Tab. 3.4 needs to cover only the 66 major concepts and their re-
spective survey results. See Tab. 3.5 for the details about which concepts have
been considered together.
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Table 3.4.: Identified concepts classified. PA: prior art, L18: implemented as library,

SEM: support for semantics required, PERF: support for performance

60

Prior Art PA Lis SEM PERF Prior Art PA Lis SEM PERF
Asynchronous Operations X X X Join X

Atomic Primitives X X Locks X X X
Co-routines X X Memory Model X X X
Condition Variables X X X Method Invocation X X
Critical Sections X X X Race-And-Repair X X

Fences X X Thread Pools X X

Global Address Spaces X X X Thread-local Variables X X X
Global Interpreter Lock X X Threads X X

Green Threads X Volatiles X X
Immutability X X X Wrapper Objects X X X
Library Solutions PA Lis SEM PERF Library Solutions PA Lis SEM PERF
Agents X Guards X

Atoms X MVars X

Concurrent Objects X Message Queue X

Event-Loop X Parallel Bulk Operations X

Events X Reducers X

Far-References X Single Blocks X

Futures X State Reconciliation X

Potential Perf. Benefits PA Lis SEM PERF Potential Perf. Benefits PA Lis SEM PERF
APGAS X X Implicit Parallelism X X
Barriers X X Locality X
Clocks X X Mirrors X X
Data Movement X One-sided Communication X X
Data-Flow Graphs X X Ownership X
Data-Flow Variables X X PGAS X X
Fork/]Join X X Vector Operations X X
Semantics req. Support PA Lis SEM PERF Semantics req. Support PA Lis SEM PERF
Active Objects X X Message sends X X X
Actors X X X No-Intercession X X X
Asynchronous Invocation X X X Persistent Data Structures X X
Axum-Domains X X Replication X X

By-Value X X X Side-Effect Free X X
Channels X X X Speculative Execution X X
Data Streams X X X Transactions X X X
Isolation X X X Tuple Spaces X X
Map/Reduce X X Vats X X X
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Table 3.5.: Subsumed concepts: These concepts are regarded together.

MaiNn CONCEPT SuBsUMED CONCEPTS

Atomic Primitives atomic swap, compare-and-swap

By-Value isolates

Fences memory barriers

Futures ivars, promises

Global Address Spaces shared memory

Immutability single assignment variables

Isolation encapsulation, processes

Locks monitors, reader-writer-locks, semaphore, syn-
chronized methods

No-Intercession no-reflection

Parallel Bulk Operations  data parallelism, parallel blocks, parallel loops,
parallel prefix scans

Speculative Execution speculative parallelism
Transactions atomic operations
Volatiles volatile fields, volatile variables

As Tab. 3.4 shows, with 34 concepts about half of the concepts are already
available in JVM and CLI or can be implemented in terms of a library without
sacrificing semantics or performance. Therefore, this section discusses only
the remaining 32 concepts. It starts with detailing the assessment for the 14
concepts for which only potential performance benefits have been identified.

This discussion is completed by detailing the 18 concepts that require run-
time support to enforce their semantics properly. This analysis briefly de-
scribes what exactly the VM needs to enforce and if applicable, how VM
support could improve performance.

Improved Performance without Semantic Impact The concepts listed in
Tab. 3.4 under Potential Performance Benefits could benefit from VM support
in terms of performance. However, they do not require an enforcement of
semantic guarantees by the runtime.

APGAS, One-sided Communication, PGAS The PGAS (cf. Sec.2.4.3) and
APGAS (cf. Sec. 2.4.4) languages make the distinction between local and re-
mote operations or memory explicit. Thereby, they give the programmer a
better intuition on the cost of an operation. However, this leads to engineer-
ing tradeoffs between defining general algorithms and optimizing for the lo-
cal case [Barik et al., 2011].

Proposed compiler optimizations can be applied to reduce the need for
communication and improve performance [Barik et al., 2011; El-Ghazawi et al.,
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2006; Serres et al., 2011; Zhao and Wang, 2009]. However, such static compiler
optimizations cannot take dynamic properties into account. Thus, additional
runtime information could lead to further optimizations. Optimizations to
reduce and optimize communication adaptively require information on com-
munication patterns, for instance to batch and interleave them. Furthermore,
since such optimizations could likely benefit from language-specific details,
the VM would need to expose JIT compiler infrastructure to enable an inter-
action between language implementation and runtime.

Barriers, Clocks Barriers, X10’s clocks, and phasers [Shirako et al., 2008]
have traditionally been implemented as libraries, since they can be efficiently
realized based on atomic operations only. One example is our design of an
efficient and scalable phaser implementation [Marr et al., 2010b]. However,
since the use of barriers varies widely, static analysis can select more effi-
cient implementations based on the actual use in a program [Vasudevan et al.,
2009].

Additionally, runtime information could complement static analysis and
reduce the overall need for synchronization even further. Following the idea
of phasers, a conservative barrier could be weakened dynamically to avoid
over synchronization. Such an optimization would require information on
data access and access patterns in high-level data structures. Furthermore, it
would need to interact with the JIT compiler to adapt the generated code.

Data Movement, Locality Since multicore and manycore architectures have
increasingly Non-Uniform Memory Access (NUMA) characteristics, data local-
ity becomes a significant performance concern. While the mentioned PGAS
and APGAS programming models tackle that problem in an explicit manner
by exposing distribution on the language level like in X10 or Chapel, current
NUMA support in VMs is often restricted to allocating objects in memory that
is local to the core which performed the allocation. Here feedback-driven ap-
proaches to dynamic optimization could improve the locality by moving data
or computation based on actual usage patterns. Such optimizations could be
realized based on low-level hardware features taking the processor’s cache
architecture into account. Thus, they need precise information about con-
crete hardware properties, GC behavior, and heap layout. For instance, the
approach proposed by Zhou and Demsky [2012] monitors memory accesses
at the page level and changes caching policies and locality accordingly. Such
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an optimization would be at the VM level and does not require interaction
with the high-level language on top of the VM.

Data-Flow Graphs, Data-Flow Variables, Implicit Parallelism Optimiza-
tions for data parallel programs are often represented as data-flow graphs that
enable more powerful static analyses than control-flow graphs (cf. Sec. 2.4.5).
However, this representation is usually only an intermediate form that is used
to compile to traditional imperative native code representations. In that step,
parallelism is often coarsened up in terms of a sequential cut-off to reduce
its overhead and make it practical on today’s hardware architectures. These
coarsening techniques are relevant for programs in data-flow representation,
programs based on data-flow variables, or implicit parallelism. Furthermore,
they could also be beneficial to models like fork/join.

Such optimizations typically require detailed knowledge about the seman-
tics of the compiled language. Furthermore, they could benefit from profiling
information during runtime to assess the cost of operations more precisely.
Thus, they would benefit from access to the corresponding dynamic profiling
information and the JIT compiler infrastructure.

Fork/Join While fork/join could benefit from classic compiler optimizations
such as coarsening, Kumar et al. [2012] report that one of the most significant
costs is the reification of tasks. Thus, they propose to integrate the work-
stealing that is used for fork/join into the runtime and reify task objects only
lazily. With such an optimization, the sequential overhead of fork/join would
be significantly reduced. On the other hand, the runtime would need to pro-
vide facilities to inspect and modify the call stack during execution.

To support multiple different languages, with potentially different varia-
tions of fork/join, an extended VM interface to realize such optimizations to
tailor the implementation to the specific language semantics would be benefi-
cial.

Mirrors While mirrors [Bracha and Ungar, 2004] are not directly related
to concurrency and parallelism, languages like AmbientTalk integrate them
tightly with the concurrency model. Furthermore, their use can enable the
enforcement of certain language guarantees at a library level for systems
that use a capability-based security model. Problematic is the performance
overhead of reflective operations (cf. Sec.8.5.1). Approaches like INVOKEDY-
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NAMIC [Thalinger and Rose, 2010] or partial evaluation [Shali and Cook, 2011]
can reduce that overhead by enabling optimization of reflective calls.

Ownership The notion of object ownership is used in a number of concepts
such as Clojure agents, actors, and CSP to define policies that distinguish
between entities that access an object. The implementation of ownership in
a library would require an extension of every object to keep track of its
owner. Runtime support in the memory management system could optimize
the memory overhead by keeping track of the owner implicitly for instance
by splitting the heap in regions that can belong to different owners. Similar
optimizations have been proposed to keep track of meta data for garbage
collection, for instance whether objects contain pointers.[Jones et al., 2011]

Vector Operations VM support for vector operations enables efficient data-
parallel processing of homogenous data vectors. However, they are not yet
widely available in VM instruction sets, even though some argue that it would
provide performance benefits [Parri et al., 2011].

Conclusion From our perspective, the discussed concepts can benefit from
a wide range of different optimizations. The most notable commonality is
that they could benefit from VM infrastructure that provides feedback for
adaptive optimizations. This includes information on high-level communica-
tion behavior, order of data accesses to high-level data structures, information
about low-level data access frequencies, and access to execution profiling data.
Furthermore, it would be beneficial to have a VM interface to inspect and ma-
nipulate the runtime stack, control heap layout, and the location of objects.

Most of these optimizations would rely on a common access to the JIT
compiler and could benefit from solutions such as Graal [Wiirthinger, 2011].
However, it seems likely that they would also require a significant amount of
infrastructure to be added to a VM that is specific to a single programming
concept.

To conclude, these concepts can benefit from advanced infrastructure for
dynamic optimizations and the corresponding facilities for runtime feedback
and monitoring.

Enforcement of Semantics The following concepts require VM support for
enforcing correct semantics. Some of then could also show from improved
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performance when they are supported by the VM. These concepts are listed
in Tab. 3.4 under Semantics require Support.

Asynchronous Invocation, Active Objects Active objects and other concepts
that rely on asynchronous invocation are typically designed to disallow any syn-
chronous invocation in order to have control over the coordination between
concurrent activations. Some actor systems for object-oriented languages com-
bine the notion of method invocation and message sends while assuming
asynchronous semantics to avoid low-level deadlocks. While these semantics
can often be enforced by relying on proxies, proxies themselves introduce
for instance the identity problem. Furthermore, the desired semantics are in
general not protected against reflective operations.

Actors, Axum-Domains, Isolation, Vats The concepts of actors, vats, Axum’s
domains, and isolation (cf. Sec. 2.4.4) are in general based on proper state encap-
sulation. State encapsulation is often guaranteed by construction. Providing
state encapsulation on top of a system that only has the notion of shared
memory and protecting it against reflection and other languages cooperat-
ing on the same system becomes difficult. Approaches that wrap references
exchanged via interfaces are possible but have performance drawbacks. Fur-
thermore, they do not provide a general guarantee when reflective capabilities
are available. Sec. 3.3.2 discusses the related problems in more detail.

By-Value, Channels, Message Sends The notion of state encapsulation for
actors, CSP, and others also requires proper messaging semantics. Thus, mes-
sages send between different entities need to have value semantics to guar-
antee isolation between these entities. Independent of whether they commu-
nicate via channels or other forms of message sends, the by-value needs to be
enforced. For performance reasons, copying is to be avoided. However, this
requires different entities not to have pointers to the same mutable state at
the same time, or that they cannot observe and mutate state concurrently.
The mechanisms for reflective programming offered by VMs are often able to
subvert such guarantees.
Sec. 3.3.2 discusses the problems related to safe messaging in more detail.

Data Streams, Immutability, Map/Reduce, No-Intercession, Persistent Data
Structures, Replication, Side-effect Freedom, Tuple Spaces Notions such
as immutability or the guarantee of side-effect free computation are relevant for
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a wide range of concepts such as persistent data structures, tuple spaces, the
data used in data streams and for map/reduce. As an example, a concept that
provides the notion of consistent data replication needs to be able to track
all modifications in order to propagate them correctly. The main obstacles
to these guarantees are typically reflective capabilities of a VM that do not
provide any powerful means to disable intercession or to scope or restrict them
in some way (cf. Sec. 3.3.5).

Speculative Execution, Transactions Similarly to the required ability to re-
strict intercession is the need to integrate some of the programming concepts
deeply into the system. Transaction systems often rely on the ability to track
all loads and stores to memory locations, which is often problematic in the
presence of primitive operations. These have to be adapted to provide the
necessary support for such a software transactional memory system. Some
programming concepts for implicit parallelism require similar capabilities
to provide speculative execution [Hennessy and Patterson, 2007; Herzeel and
Costanza, 2010], enabling them to cancel the side-effects of branches that are
not taken. Here, a full integration with the underlying system can become
unavoidable to enforce the language semantics and causality even in the pres-
ence of speculative execution.

Conclusions Following from our discussion, the concepts that require en-
forcement of semantics vary in only a small number of points, but with these
variations they achieve different sets of language guarantees. One of the as-
pects is the semantics of executing code or invoking methods. A language
can for instance require asynchronous execution or consider other constraints
to allow execution. Another aspect is the accessibility and mutability of state.
The different concepts have a wide range of rules. For some concepts the
owner has the exclusive right to read or mutate state, and other concepts
require full tracking of all state accesses. In addition, all these basic aspects
need to be properly integrated with concepts such as reflection to achieve the
desired semantics.

To conclude, these concepts benefit from a VM interface that enables cus-
tomizable semantics for execution and state access as well as customizable
enforcement against reflection.
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3.2.3. Threats to Validity

For the validity of the conclusions drawn from this survey, two of its proper-
ties are of major interest: completeness and correctness. The completeness of this
study cannot be guaranteed since it did not cover all existing literature in the
field. Even if it would have covered all known literature, it would still suf-
fer from the completeness problem since an analysis requires manual work
in which certain concepts could be overlooked. However, since this study is
based on existing surveys and is complemented with programming languages
and a wide range of recent work, it covers a significant range of concepts and
includes all major trends.

The correctness of this survey might be reduced by the subsumption of con-
cepts, because relevant details may have been ignored that could have yielded
additional problems that need to be tackled by a VM. However, since the dis-
carded details are most likely specific to a single concept, they would not have
yielded problems that are as general as the ones already discussed in this sur-
vey. Another aspect of the correctness of the results is their consistency with
the discussion in Sec. 3.1. To prevent such consistency issues, the data for the
survey is recorded in a machine readable format. Appendix A.2 details the
used templates for the survey and gives the full list of concepts identified for
each subject. By using a machine readable notation, it was possible to check
the consistency between the two surveys automatically. For instance, the au-
tomation includes a cross-check of the assessment of the different surveys on
whether a concept is supported by a VM, and whether a library implementa-
tion is possible. Thus, consistency between concepts and their implementation
and implementability is given between the two surveys.

3.2.4. Summary

This survey discusses a wide range of concepts for concurrent and parallel
programming. For each concept, it answers the question of whether the con-
cept’s semantics benefit from an enforcement in the VM and whether its per-
formance could benefit significantly from VM support.

A flexible optimization infrastructure and monitoring facilities can be ben-
eficial for performance. The first conclusion is that the various concepts
would benefit from a wide range of different optimizations. They all could
benefit from access to the JIT compiler infrastructure to improve optimiza-
tion. However, to use it properly they would require additional mechanisms
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in the VM to gather a wide range of runtime information for adaptive opti-
mizations, e. g., high-level communication behavior and low-level data access
frequency information. Further extensions, for instance to inspect and manip-
ulate the runtime stack or the heap layout, would be useful as well. Thus a
VM needs to provide advanced infrastructure for dynamic optimization as
well as facilities for customizable runtime feedback and monitoring.

Policies for execution and state access require support from the VM to be
enforced and need to be integrated with reflection. The second conclusion
is that concepts that require VM support to guarantee their semantics show
a number of commonalities. These concepts vary in only a small number
of aspects, but with these variations they achieve different sets of language
guarantees. The first aspect is the semantics of executing code or invoking
methods, and the second aspect is the accessibility and mutability of state. An
additional common problem is that these basic aspects need to be properly
integrated with concepts such as reflection to achieve the desired semantics.

Improving performance and improving the support for language seman-
tics are two distinct research projects. To improve execution performance,
an investigation of dynamic compilation, adaptive optimization, and runtime
monitoring techniques is necessary. The main focus is on finding efficient tech-
niques to gather and utilize a wide range of different runtime information to
adapt execution dynamically. Such research is expected to yield improvement
for non-functional system requirements.

In contrast, improved support for language semantics requires an investi-
gation of correctness issues and techniques for changing language behavior.
While performance is an issue here as well, the focus is on providing more
flexibility to language developers to adapt execution semantics as necessary.
Thus, this research is expected to yield improvements for functional require-
ments. While performance is a relevant aspect for this research question as
well, it is not in the focus. To conclude, the two research questions are dis-
tinct. Therefore, from our perspective, they should be tackled by two distinct
research projects in order to provide the projects with a clear scope and re-
search goal.

This dissertation concentrates on improving support for language seman-
tics in VMs as the first step in order to achieve a full understanding of the
corresponding problems and to treat the question comprehensively. The main
reason is to concentrate on improving functional concerns first and therefore
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defer research on the non-functional concerns to future work. The improve-
ments in the area of language semantics promise to alleviate some of the diffi-
culties that come with concurrent and parallel programming today. Support-
ing language implementers by simplifying the implementation of language
guarantees can lead to languages that in turn support the application devel-
oper by providing desirable correctness and engineering properties, which is
the main vision behind this dissertation.

However, performance improvements are an important topic as well and
will be pursued as part of future work (cf. Sec.9.5.1).

3.2.4.1. General Requirements

Derived from the observations of this survey, the requirements for a multi-
language VM that supports a wide range of abstractions for concurrent and
parallel programming are:

Flexible Optimization Infrastructure Concepts such as barriers, data-flow exe-
cution, mirrors, and vector operations would benefit from access to the JIT
compiler infrastructure to optimize the generated code either based on
static analysis or based on runtime feedback.

Flexible Runtime Monitoring Facilities To facilitate adaptive optimization of
languages that use concepts such as PGAS, barriers, locality, data-flow
Graphs, a VM would need to provide an infrastructure that enables effi-
cient and flexible monitoring of a wide range of aspects. It would need
to record information on low-level data access, high-level data structure
usage, high-level communication patterns, and other information spe-
cific to a given concept.

Powerful VM Interface Related to the flexible optimization infrastructure is
the desire for a powerful VM interface that enables customization of var-
ious aspects. Examples could be customizability of heap arrangements
to support ownership or full support to intercept primitives for accurate
tracking of memory load and store operations, and influence data local-
ity. Another objective is complete access to the runtime stack to support
efficient work-stealing for fork/join.

Custom Execution and State Access Policies The wide range of variations
for method execution and state access policies suggests the need for vari-
able semantic guarantees. A language and library implementer needs
to be able to modify and adjust language semantics for a particular
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purpose, for instance in the case of of domain-specific languages. The
guarantees that at least need to be supported are asynchronous invocation,
isolation in terms of state encapsulation and safe messaging, scheduling
policies, and immutability. Thus, a VM needs to provide a mechanism for
custom semantics of code execution and state access.

Semantic Enforcement against Reflection As mentioned in the previous dis-
cussions, these guarantees need to be enforceable also in the presence
of reflection. Thus, a form of scoping or a way to differentiate language
guarantees is required (cf. Sec. 3.3.5).

3.2.4.2. Connection with Concurrent and Parallel Programming

This survey indicates a strong correlation between the concepts that require
semantic enforcement on the part of a VM and the category of concepts that fit
the definition of concurrent programming (cf. Sec. 2.3). The definition says that
concurrent programming is about devising a strategy to coordinate indepen-
dent activities at runtime that access a shared resource in order to preserve
the resource’s invariants. Based on this definition, asynchronous invocation,
active objects, actors, Axum-domains, isolation, vats, by-value, channels, mes-
sage sends, immutability, persistent data structures, tuple spaces, and trans-
actions can be categorized as being concepts that are inherently meant to
facilitate concurrent programming.

On the other hand, parallel programming is defined to be the art of de-
vising a strategy to coordinate collaborating activities in order to compute a
common result by employing multiple computational resources. With this def-
inition, PGAS, one-sided communication, barriers, data movement, data-flow
graphs, implicit parallelism, fork/join, and vector operations can be catego-
rized as concepts for parallel programming. None of these concepts is meant
to coordinate arbitrary activities as the concepts for concurrent programming
do. Instead, these concepts either make data dependencies explicit, or try to
make abstractions of them, while facilitating parallel execution.

This distinction seems to be a useful one, because it enables a categorization
of the wide field of concepts in two disjoint sets. While the implementation
of concepts for parallel programming might require concepts for concurrent
programming, on an abstract level they can be discussed as two independent
groups.

The main insight of this survey is that the two identified sets of concepts
require orthogonal support from a VM. Thus, this dissertation focuses on one
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of them. As argued above in Sec. 3.2.4, this dissertation focuses on concepts
that require support for an enforcement of their semantics on the part of the
VM. Based on the distinction provided by the two definitions, this dissertation
focuses on the set of concurrent programming concepts, i. e., the concepts that
are meant to support algorithms to yield consistent and correct results.

3.2.4.3. Conclusions

This survey discussed a wide range of concepts for concurrent and parallel
programming. It categorizes the concepts identified in literature and program-
ming languages based on answering the question of whether their semantics
benefit from an enforcement in the VM and the question of whether their
performance could significantly benefit from VM support.

Parallel programming concepts benefit most from flexible infrastructure for
performance optimizations, while concurrent programming concepts require
support from the VM in order to enforce their semantics.

The remainder of this dissertation focuses on concurrent programming con-
cepts, i.e., concepts that require support from the VM to guarantee correct
semantics, and proposes a unifying substrate for concurrent programming.

3.3. Common Problems for the Implementation of
Concurrency Abstractions

The previous section concluded that a wide range of concurrent program-
ming concepts require runtime support to enforce their semantics in an effi-
cient way. This section discusses the semantic issues of these concepts in more
detail. The analysis is based on the work of Karmani et al. [2009] who iden-
tified and discussed a number of problems in the context of actor-oriented
frameworks, as well as examples from our own experiences in implementing
concurrent languages [Marr et al., 2010a, 2011a,b, 2012] that are problematic
for multi-language VMs. The in-depth investigation of these problems pre-
pares, as the main result of this chapter, the formulation of requirements for
multi-language VMs.

3.3.1. Overview

Karmani et al. surveyed actor-oriented frameworks for the JVM to assess
which semantics these frameworks provide and what the performance cost
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of the different actor properties are. The analysis in this dissertation concen-
trates on the issues that are relevant for multi-language VMs and disregards
problems that are relevant for distributed systems only. The relevant actor
properties for this discussion are insufficient guarantees with regard to isola-
tion of state as well as with regard to scheduling guarantees. While Karmani
et al. concentrated on actor-oriented frameworks, the analysis in this section
shows that these actor properties are relevant for a wider range of concur-
rency abstractions.

In addition to these problems, the analysis in this section includes previ-
ously discussed issues related to immutability and reflection [Marr et al., 2011a].
Supporting reliable immutability and enabling reflection while maintaining
concurrency-related language guarantees lead to complex implementations of
concurrency abstractions. This section demonstrates with examples that lan-
guage implementers face a number of significant problems when they try to
realize such concepts on top of today’s VMs. Therefore, these problems need
to be considered in order to determine the requirements for multi-language
VMs with extended support for concurrent programming.

3.3.2. Isolation

Isolation, often also referred to as encapsulation, is a valuable property that en-
ables local reasoning about the effects of operations since it clearly separates
two entities from each other and enforces the use of explicit interfaces for
interaction. It is of high relevance, because many concurrent programming
concepts rely on strong isolation between entities in order to restrict the set
of directly mutable entities and thus, limit the number of potential data races
in a concurrent system. Karmani et al. make a distinction between state encap-
sulation and safe messaging to clarify the underlying problems.

State Encapsulation Integrating the actor model correctly with languages
that have mutable state, e. g., conventional object-oriented languages, is a chal-
lenge. Sharing mutable state between actors violates the actor model, because
communication and interaction are supposed to be based on message-based
communication only. Therefore, mutable state has to be owned by a single
actor and any form of access needs to be restricted to its owner.

Semantic Aspects See Lst.3.1 for the example Karmani et al. use to illus-
trate the problem. The depicted Scala code is supposed to implement a basic
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object semaphore {
class SemaphoreActor () extends Actor {
//
def enter () {
if (num < MAX) {
// critical section
num = num + 1; } } }
def main(args : Array[String]) : Unit = {
var gate = new SemaphoreActor ()
gate.start
gate ! enter // executes on gate’s thread
gate.enter // executes on the main thread
3

Listing 3.1: Example of incomplete State Encapsulation: This semaphore has a race
condition since Scala’s actors do not enforce encapsulation and the actor as well
as the main thread have access to the num field. [Karmani et al., 2009, Fig. 2]

semaphore. The SemaphoreActor has a counter num, which indicates the num-
ber of activities that entered the critical section.

However, Scala’s actor implementation does not guarantee encapsulation.
This makes the gate object simultaneously accessible in the main thread and
the thread of gate, i.e., the SemaphoreActor. Both threads can execute enter
at the same time, leading to a race condition on the num variable, undermining
one of the main benefits of the actor model. If encapsulation would be guar-
anteed, as it is for instance in Erlang, this example would work as intended,
because only the owning actor could access num and the data race would not
be possible.

While actors require state encapsulation to yield full engineering benefits,
implementing this guarantee comes either at the cost of a high implemen-
tation complexity or a significant performance impact. The main reason is
that VMs such as the JVM do not provide sufficient abstraction for the no-
tion of ownership and state encapsulation. AmbientTalk [Van Cutsem et al.,
2007], JCoBox [Schifer and Poetzsch-Heffter, 2010], and NAct™® enforce the
discussed encapsulation by construction. The compiler ensures that only so-
called far references can be obtained to objects such as the SemaphoreActor.
These far references enforce state encapsulation to guarantee isolation.

Kilim [Srinivasan and Mycroft, 2008] is an example for another approach to
the problem. Kilim employs compile-time checking based on annotations to

Bhttp://code.google.com/p/n-act/
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guarantee isolation. The compiler ensures that references are only passed on
in messages when they are no longer used within the sending actor.

Problematic with both types of approaches is that they rely on the com-
piler and statically determinable properties. Moreover, these properties nei-
ther carry over to other languages on the same VM, nor do they apply to the
standard libraries. Thus, they are only guaranteed for a specific language.

Interacting with legacy libraries, code written in other languages, or the
use of reflection typically break these guarantees. On a multi-language plat-
form, this situation cannot be avoided and seriously restricts the language
and library implementers flexibility.

Applicability beyond Actors Other concurrent programming concepts than
the actor model also rely on state encapsulation. It applies to all models that
provide communicating isolates (cf. Sec.2.4.4), i.e., non-shared-memory mod-
els most notably CSP and APGAS languages that require mutation to be per-
formed locally to a process or the state-owning place, i.e., region. Other con-
cepts such as Clojure agents (cf. Sec. 2.4.3), have different semantics, but also
restrict the capability of mutating state to its owner.

Safe Messaging Karmani et al. further discuss the issue of messaging. Non-
shared memory models require that message passing has by-value semantics.
Otherwise, shared mutable state is introduced by passing normal references.
An example would be similar to Lst. 3.1. By passing any mutable Java object
as argument to a message send in Scala, the object becomes shared between
the sender and the receiver actor and thereby introduces shared mutable state.
Scala does not enforce safe messaging, and thus, it does not handle the con-
tent of a message to ensure semantics. Instead, objects are simply passed by
reference.

Performance Aspects Traditional solutions enforce by-value semantics ei-
ther by copying the object graph of a message or by relying on a type or an-
notation system that enables static checks at compile-time as in Kilim. Copy-
ing the whole object graph referenced by a message often implies significant
overhead as measured by Karmani et al. They report that a microbenchmark
for passing on messages has a maximal runtime of ca. 190sec when naive
deep-copying is used. An optimization that does not copy immutable objects
reduces the runtime to 3osec. However, this is still significantly slower than
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when the benchmark uses pass-by-reference, which brings the runtime down
to ca. 17sec.

Approaches based on type systems or other forms of static verification en-
able the safe passing of references, and thus, bring significant performance
advantages. However, a type system comes with additional implementation
complexity, its guarantees do not reach beyond language boundaries, and are
typically voided by the use of reflection.

Again, these problems are universal and apply to communicating isolate con-
cepts, e.g., CSP [Hoare, 1978] and APGAS [Saraswat et al., 2010] concepts as
well (cf. Sec.2.4.4). For instance, JCSP [Welch et al., 2007] does not guaran-
tee safe messaging for reference types. The by-value semantics is only given
for primitive types, and channels that are based on network socket com-
munication. The main concerns are performance, similar to actor-oriented
frameworks on the JVM and frameworks like Retlang™ on top of the CLL
X1o[Charles et al., 2005] as one example for an APGAS language explicitly
specifies that deep copying is performed [Saraswat et al., 2012]. Similarly, the
application domains specified by the CLI rely on marshalling, i.e., either deep
copying or far references, to enforce safe messaging and state encapsulation.
Thus, the implementation of properties such as safe messaging can become a
performance issue when the VM does not provide mechanisms to support it,
which often leads to language and library implementers giving up on desir-
able semantic properties.

Conclusion Following this discussion, the implementation of isolation on
today’s multi-language VMs is challenging and thus, it often remains unen-
forced or only partially supported. Solutions for enforcing isolation imply
tradeoffs between performance and implementation complexity. Furthermore,
mechanisms to handle reflection and the interaction with other languages re-
main uncommon.

Note that the notion of ownership is central for the definition of isolation.
Furthermore, a mechanism for ownership transfer between entities can sim-
plify the implementation of safe messaging greatly.

3.3.3. Scheduling Guarantees

The second issue identified by Karmani et al. is that the overall progress guar-
antee of an actor systems assumes fair scheduling. In systems without fair
scheduling, actors can be starved of computation time and block the overall

Yhttp://code.google.com/p/retlang/
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object fairmess {
class FairActor () extends Actor {

//
def act() { loop {
react {
case (v : int) => { data = v }
case (wait) => {

// busy-waiting section
if (data > 0) println(data)

else self ! wait
}
case (start) => {
calc ! (add, 4, 5)
self ! wait
}
}F33

Listing 3.2: Example for missing Scheduling Guarantees: Without the guarantee of
fair scheduling, busy-waiting can starve other actors forever. [Karmani et al., 2009,

Fig. 3]

system from making progress. The example they give is shown in Lst. 3.2.
Here the actor busy-waits by sending itself a message to await the arrival of
the computation result. While the example is contrived, livelocks like this can
be effectively avoided by fair scheduling.

An ad hoc solution to these problems is the use of a lightweight task repre-
sentation for actors, which is used to schedule these tasks on top of the thread-
ing mechanism provided by the VM to guarantee the desired fairness prop-
erty. To this end, the Java standard library provides the ExecutorServices®
and the CLI offers a TaskScheduler.*

Ad hoc solutions to enforce scheduling policies have limitations and in-
troduce tradeoffs. Since these solutions build on top of the VM’s thread
abstraction, the provided guarantees are restricted. Computationally expen-
sive operations and blocking primitives can bind the underlying thread. This
restricts the ability of the scheduler to enforce the desired guarantees, be-
cause as Karmani et al. note, the actor or task scheduler is prevented from
running. It is possible to compensate to a certain degree for such effects by

2Ohttp://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorServic
e.html

2Thttp://msdn.microsoft.com/en-us/library/system.threading.tasks.taskscheduler
.aspx
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introducing additional preemptive OS threads that schedule actors, i.e., tasks.
Karmani et al. propose to use a monitoring thread. This thread will spawn
additional threads if it does not observe progress. However, there are limits
to the approach and it requires tradeoffs between application responsiveness,
overhead, and monitoring precision. Furthermore, it can add complexity to
the implementation since it prescribes how actors can be represented.

Applicability beyond Actors Again, the problem of scheduling guarantees
is not specific to actor-based concepts. Instead, it has to be carefully consid-
ered for any concurrent system that implies any notion of overall forward
progress. The absence of such required guarantees is for instance visible in
Clojure. Its agent construct makes a clear distinction between normal oper-
ations, and operations that result in long running computations or blocking
I/0. For the latter kind of operations, Clojure offers the (send-off) construct,
which will use a new thread to execute the operation to avoid starvation of
other agents.

Conclusion While ad hoc solutions used today have drawbacks, they pro-
vide the flexibility to implement custom policies that can be adapted precisely
to the characteristics of a specific concurrent programming concept. The main
problem with these approaches is the missing control over primitive execution
and computationally expensive operations, which can prevent these ad hoc
solutions from enforcing their policies.

3.3.4. Immutability

Immutability is a desirable guarantee to simplify reasoning over programs in
a concurrent setting, and it facilitates techniques such as replication, or con-
stant propagation. However, in today’s VMs, immutability is guaranteed with
limitations only. Often it is provided at the language-level only and not pre-
served at the VM level. For instance, the JVM and CLI allow a programmer to
change final or readonly object fields via reflection. Nonetheless, it is used
for optimizations, and the JVM specification includes a warning on the visi-
bility of such reflective changes, because JIT compilers for the JVM perform
constant propagation for such fields.

Weak immutability is a workaround for missing functionality. While im-
mutability by itself is desirable, notions of weak immutability have been used
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for other purposes than optimization and strong guarantees for program-
mers. One use case for such weak immutability is provided by VisualWorks
7 [Cincom Systems, Inc., 2002]. It allows marking objects as immutable and
raises an exception when mutation is attempted. The exception handler is
then free to mutate such an object. This behavior is used to map objects to
persistent data storage and enable efficient consistency management. In this
case the programmer does not consider the object to be immutable, instead
this technique is a workaround for the missing capability of tracking muta-
tion. However, the example also illustrates the relation between immutability
and reflection. In sequential programs, such workarounds do not necessar-
ily have a negative impact on the guarantees the programmer relies on. In a
concurrent setting however, such workarounds can easily lead to unintended
race conditions.

Benefits of Immutability For a concurrency-aware VM, immutability can be
used for performance optimization, either by avoiding copying of immutable
objects, or replicating them to improve locality of access. In either case, im-
mutability semantics have to be guaranteed to avoid semantic problems. Us-
ing it as sketched in the above example of VisualWorks is not an option.

When immutability for a particular language is guaranteed by its compiler
only, interactions across language boundaries become problematic, similarly
to the use of reflection. JCoBox and Kilim use the knowledge of immutability
to avoid copying objects in their implementation of safe messaging, but they
rely on the absence of reflection for their semantics. Clojure’s approach to the
problem is different. Its language model of mostly side-effect free concurrency
on immutable data structures creates engineering benefits when direct access
to the underlying Java ecosystem is avoided. However, it is not enforced. On
the contrary, Clojure’s close integration with Java is an important aspect for
its adoption.

Conclusion Immutability is a basic property that needs to be preserved, es-
pecially in concurrent systems. Using it for other purposes such as the track-
ing of mutation in VisualWorks 7 should be avoided and the necessary facil-
ities for such use cases should be provided directly. The main problem with
immutability in a concurrent context is its relation to reflection. While there
are use cases such as deserialization that can require the use of reflection and
setting of final fields, in the context of concurrency, immutability requires
strict guarantees.
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3.3.5. Reflection

Reflection, i.e., metaprogramming is used to circumvent the restrictions of
a particular language or to modify and extend its language semantics. When
reflection is used, language guarantees are no longer enforced and developers
have to take care not to violate inherent assumptions made by the rest of the
program. In sequential programs this is common practice and used widely
for a variety of use cases.

Bypassing Language Restrictions Many common use cases bypass restric-
tions imposed by language semantics. Examples are the modification of sup-
posedly immutable objects or bypassing restrictions to access protected fields.
These capabilities are often desirable to enable the implementation of frame-
works that work on any given object by dynamically reflecting over it. Widely
used examples are unit testing frameworks reflecting over classes to execute
tests, mockup generators to facilitate testing without the need to explicitly
define test classes, object-relational mappers (ORM) to bridge between appli-
cation and database for persistence, and other frameworks for general mar-
shalling and serialization.

Note that the characteristics of these use cases are very similar. The main re-
flective features used include inspecting objects, invoking methods, or chang-
ing fields reflectively. While language restrictions such as modifiers for private
and protected fields need to be circumvented, concurrency-related language
properties should not be circumvented in these use cases. Instead, in most
situations reflection should be able to respect these language guarantees.

Concurrency properties need to be maintained during reflection. Since the
described use cases are ubiquitous, it is impractical to ban the use of reflection
to guarantee the semantics of a particular concurrent programming concept.
Instead, a VM needs to provide a mechanism that makes it safe to use re-
flection for application purposes while maintaining the desired part of the
language guarantees, in this case the concurrency properties.

Imagine an application implemented in an actor language that uses a re-
flective object-relational mapping (ORM) system such as Hibernate [Bauer
and King, 2005], which by itself is not actor-aware. One actor tries to per-
sist an object owned by another actor. Hibernate would use reflection to
read the state. Since the Java reflection API** does not preserve concurrency-

2?http://docs.oracle.com/javase/6/docs/api/java/lang/reflect/package-summary.h
tml
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related properties, Hibernate can observe inconsistencies because of race con-
ditions caused by the other actor executing in parallel. In the case of Java,
the java.util.concurrent.atomic?®? package introduced an API for updat-
ing fields specifically to maintain concurrency properties such as those given
by volatile fields. However, this requires mixing different APIs and is only
restricted to field semantics.

Other language guarantees that need to be maintained are for instance con-
straints on method invocations. For instance, active objects require that their
methods are not executed directly but via an indirection that ensures that the
method is executed asynchronously by the active object’s thread. With Join
Java [Itzstein and Jasiunas, 2003], execution constraints can be more complex.
It allows the developer to define join patterns that need to be fulfilled before a
method is activated. Using reflection to circumvent these constraints can have
undesired effects. Thus, depending on the use case, even reflective invocation
should be able to preserve the constraints specified by such methods.

Another complication comes from the vision of a multi-language VM. In
this scenario it is insufficient to make reflection aware of a single set of de-
sired guarantees. Instead, additional flexibility is required. Language seman-
tics such as isolation for an actor language are to be implemented on top of
the VM, based on a unifying abstraction. A multi-language VM will need
to be able to distinguish between situations where an enforcement of guar-
antees is required and situations where enforcement is not desired. Kiczales
et al. [1997] and Tanter [2009] discuss how to scope reflection. Similarly, in
the context of multi-language VMs, it also needs to be possible to scope, i.e.,
restrict reflection to circumvent a small set of language guarantees only, while
maintaining others.

Reflection and Security The power of reflection is also an issue for security.
Therefore, the JVM and CLI provide infrastructure to manage reflection in
a way that allows them to restrict the reflective capabilities depending on a
security context. For the JVM the SecurityManager* is consulted for reflec-
tive operations to verify that the necessary permissions are given. The CLI
provides similar mechanisms with its System.Security facilities.*>

The SecurityManager provides the flexibility to customize the check that
is performed for reflective operations. However, the offered interface is very

23http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/atomic/package-
summary.html

24http://docs.oracle.com/javase/7/docs/api/java/lang/SecurityManager.html

2Shttp://msdn.microsoft.com/en-us/library/stfy7tfc.aspx
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minimal and does not provide the flexibility required for multi-language VMs.
For instance, the JVM relies on the problematic method setAccessible(bool),
which needs to be called to disable the security checks to circumvent language
restrictions. While setAccessible(bool) is covered by the SecurityManager
and its handler can be customized with another security strategy, the ob-
ject can be manipulated at will once obj.setAccessible(true) succeeded.?
Thus, enforcing complex policies is not possible with this approach. Another
weak point is that the security infrastructure only considers fields that are
protected by Java language semantics. Thus, public fields of an object are not
covered by the security manager, which therefore cannot be used to express
concurrency policies for all objects.

Conclusion Reflection in the form it is supported on today’s VMs is not
designed to enable the required fine-grained control. Common approaches
provide only limited security-related mechanisms to restrict the reflective ca-
pabilities. However, the provided abstractions are not expressive enough to
distinguish between different parts of a language. For instance, is not possible
to freely use reflection on objects inside of an actor to circumvent their private
tield restrictions, without risking to have concurrency issues with objects that
belong to another actor, because the reflection would also circumvent these
concurrency restrictions.

Thus, reflection needs to provide the ability to do metaprogramming with
the possibility to circumvent only certain language restrictions, while adher-
ing to other parts of the language, for instance concurrency-related semantics.

3.3.6. Summary

As argued in this section, the implementation of proper isolation, scheduling
guarantees, and immutability is problematic with today’s VMs. For the imple-
mentation of isolation, language designers have to make a tradeoff between
semantic guarantees, performance, and implementation complexity. To en-
sure progress in models such as actors or CSP, language designers have to
be able to rely on scheduling guarantees which are typically implemented on
top of the VM, and thus, handling of computationally expensive or blocking
operations undermines the required guarantees.

Immutability also requires proper enforcement to yield its full engineer-
ing benefit, especially in the setting of a multi-language VM for concurrent

2http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/reflect/Field. html#set
(java.lang.Object, java.lang.Object)

81


http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/reflect/Field.html#set(java.lang.Object, java.lang.Object)
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/reflect/Field.html#set(java.lang.Object, java.lang.Object)

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

programming. The main issue with immutability for the implementation of
languages on top of today’s VMs is its interaction with reflection, and the
missing enforcement of guarantees.

One issue with guaranteeing such semantics is the presence of reflection.
Today’s VMs support reflection in a way that circumvents all language guar-
antees, while it would be beneficial to restrict it to a certain subset of the lan-
guage guarantees that it bypasses. This way, for instance concurrency-related
guarantees could still be enforced. In the context of reflection, the results of
the survey in Sec. 3.2, i. e., the need for custom execution and state access policies
(cf. Sec.3.2.4.1) becomes relevant. Different execution policies and state access
policies can require for correctness that they are enforced for reflective opera-
tions as well. In this context, the notion of ownership becomes relevant again,
because reflection can be allowed with its full capability inside an entity such
as an actor, but might be restricted with respect to other entities.

The result of this discussion is given in Tab. 3.6. The table lists the identified
challenges language and library implementers are facing today when they
target multi-language VMs such as the JVM and CLL

3.4. Requirements for a Unifying Substrate for
Concurrent Programming

This section concludes the preceding discussions and derives requirements
for a unifying substrate for concurrent programming. This substrate is meant
to support the vision of a multi-language VM that enables language and li-
brary developers to provide problem-specific abstractions for the multicore
age.

Sec. 3.2 discussed a wide range of concepts from the field of concurrent
and parallel programming. This dissertation focuses on the concepts for con-
current programming in order to construct a unifying substrate for them.
Sec. 3.2.4.1 identified a general set of requirements. From this set, the need
for flexible optimization and monitoring facilities are outside the scope of
this dissertation. Instead, requirements for a powerful VM interface, custom se-
mantics for execution and state access, as well as enforcement of semantics against
reflection are in its focus.

Sec. 3.3 detailed common problems for the implementation of concepts for
concurrent programming. Isolation in the form of state encapsulation and safe
messaging requires support to ensure semantics and performance. Schedul-
ing guarantees typically lack enforceability, too. Immutability as a specific
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Table 3.6.: Common Challenges for the Implementation of Concurrent Programming
Concepts on top of Multi-language VMs.

Enforcement of

Isolation Guaranteeing isolation between entities requires state encapsula-
tion and safe message passing, to ensure that only the owner of
an object can access it. State encapsulation relies on restricting ac-
cess, while safe message passing relies on by-value semantics or the
transfer of ownership of objects between entities. The absence of
support for these notions leads to implementation challenges
and incomplete isolation, high implementation complexity, or
low performance.

Scheduling Policies ~ Guaranteeing scheduling policies such as fairness or dependency
ordering requires control over executed code. Primitives and
computationally expensive operations reduce the degree of con-
trol and reduce the guarantees that can be given. Ad hoc solu-
tions based on monitoring require tradeoffs between overhead
and precision.

Immutability Only guaranteed immutability provides semantic benefits in a
concurrent setting. The ability to reflectively change immutable
objects limits its guarantees and reduces its engineering benefit.
Using it as a workaround for missing functionality is therefore
counterproductive. Instead, reflection must be able to respect
such concurrency-related properties.

Execution Policies Guaranteeing a wide range of execution policies is challenging.
Policies such as for asynchronous invocation and guarded exe-
cution can be circumvented by reflection even if it is not desired.
Furthermore, their implementation can be challenging, because
they typically require the notion of ownership, which is not sup-
ported by today’s VMs.

State Access Policies Guaranteeing a wide range of state access policies is equally
challenging. On today’s VMs, they are hard to enforce, because
of the presence of primitives and reflection. The implementation
of such policies can be facilitate by enabling adaptation of prim-
itives, and by enabling a higher degree of flexibility for the use
of reflection with regard to its effect on semantic guarantees.
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concept relevant for concurrency abstractions is hardly enforceable on any
of the surveyed platforms today. The main reason for weak enforceability is
the ubiquitous availability and use of reflection. Since immutability and other
concurrency properties are essential for correctness of code, reflection needs
to be flexible and allow developers to circumvent only the necessary subset
of language guarantees for a given use case.

In conclusion, a unifying substrate needs to support some form of MAN-
AGED STATE and MANAGED EXECUTION. This is necessary to enable custom
semantics for execution and state access and a powerful VM interface. This disser-
tation refers to MANAGED STATE as the notion of reifying access to state, i.e.,
reading and writing of object fields or global variables. MANAGED EXECU-
TION is the notion of reifying execution of methods and primitives.

A mechanism satisfying these two notions is supposed to enable at least
the implementation of asynchronous invocation, isolation, scheduling policies, im-
mutability, ownership, and interception of primitives.

The discussion of for instance active objects, CSP, and actors, showed that
concurrency policies, i. e., for instance access restrictions can be based on the
notion of ownership of objects. To support such concurrency policies, a uni-
tying substrate needs to complement MANAGED STATE and MANAGED EXE-
CUTION with OWNERSHIP. A mechanism satisfying this requirement enables
the implementation of isolation and supports concepts such as Clojure actors
which allow reads from arbitrary entities but restrict write access to the own-
ing entity.

To enforce scheduling policies, this dissertation requires a VM to support
some form of preemptive scheduling that will enable a higher prior thread to
execute when necessary to ensure fairness. Blocking primitives remain prob-
lematic however, because they can block the scheduling logic from executing.
Thus, primitives have to be manageable as we required it for execution in
general. This aspect is covered by MANAGED EXECUTION.

The required enforcement of guarantees against reflection needs to be flex-
ible. As explained with the example of an ORM system, reflection needs to
be enabled to obey concurrency semantics (cf. Sec. 3.3.5), while the ORM still
needs to be able to circumvent access restrictions like private modifiers for
fields to fulfill its purpose. Thus, such an implementation needs to be able
to specify whether an operation is supposed to be executed with enforce-
ment enabled or disabled. To conclude, a VM needs to provide the notion of
CONTROLLED ENFORCEMENT. A mechanism that satisfies this notion has to
enable for instance reflection over private fields of an objects while its concur-
rency properties are maintained. In the context of an STM system, this would
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Table 3.7.: Requirements for a Unifying Substrate for Concurrent Programming

Requirement

MANAGED STATE Many concepts impose rules for when and how
state can be accessed and modified. Thus state ac-
cess and mutation must be manageable in a flexi-
ble manner.

Needs to facilitate: ~isolation, immutability, reified access to object

field and globals.
MANAGED Similarly, the activation of methods on an object
ExecuTtIiOoN needs to be adaptable. This includes the activation

of primitives to be able to handle their effects and
scheduling properties.

Needs to facilitate: asynchronous invocation, scheduling policies, in-
terception of primitives.

OWNERSHIP One recurring notion is that mutation and exe-
cution are regulated based on and relative to an
owning entity. Thus, ownership of objects needs
to be supported in a manner that enables adapt-
able state access and execution rules.

Needs to facilitate: ~definition of policies based on ownership.

CONTROLLED To be applied safely, reflection still needs to follow

ENFORCEMENT the concurrency-related language semantics for
many use cases. Thus, whether language guaran-
tees should be enforced needs to be controllable.

Needs to facilitate: Flexible switching between enforced and unen-
forced execution.
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mean that in certain situations reflective state changes need to be tracked in
the same way that normal state changes are tracked.
Tab. 3.7 summarizes these requirements briefly.

3.5. Conclusions

VMs support only concurrent programming concepts directly. Parallel pro-
gramming concepts are provided in libraries only. Sec. 3.1 investigated the
state of the art in VM support for concurrent and parallel programming. The
survey examined thirteen VMs, including the contemporary multi-language
VMs, and a number of VMs that are reputed for their support for concurrent
and parallel programming. The analysis identified for each VM the concepts
it exposes and whether it exposes them in terms of implicit semantics, as part
of the VM’s instruction set architecture, in terms of primitives, or merely as
part of standard libraries. The major insight is that the surveyed VMs sup-
port only one or two categories of concepts. Furthermore, they consistently
relegate support for parallel programming to their standard library without
providing explicit support for optimization.

Another observation is that common language guarantees such as isolation
for actors or the constraints around the STM system of Haskell are realized as
part of these VMs. Thus, the VM has full control over the exact set of provided
guarantees. however, providing support for all conceivable concepts is not
desirable for a multi-language VM. Problems with complexity and feature
interaction make it infeasible, as argued in Sec. 2.1.

Parallel programming concepts benefit from performance optimizations,
while concurrent programming concepts require semantic enforcement.
Sec. 3.2 discussed a wide range of concepts for concurrent and parallel pro-
gramming. Concepts are categorized by answering the question of whether
their semantics benefit from an enforcement in the VM and the question of
whether their performance could benefit significantly from VM support. The
result is that parallel programming concepts benefit most from performance
optimization, while concurrent programming concepts require support from
the VM to enforce their semantics.

The concepts that require support from the VM to guarantee their semantics
were chosen as the focus of this dissertation. Therefore, the remainder of this
dissertation investigates a unifying substrate for concurrent programming.
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Proper support for isolation, scheduling guarantees, immutability, and re-
flection are an issue with contemporary VMs. Sec. 3.3 analyses existing lit-
erature and additional examples that detail five common problems for the im-
plementation of concurrent programming concepts on top of multi-language
VMs. Proper implementation of isolation, scheduling guarantees, and immutabil-
ity on top of contemporary VMs is challenging since performance, imple-
mentation complexity, and an enforcement of desirable semantics have to be
traded off against each other. The way reflection is supported in today’s VMs
makes it hard to use in concurrent settings, because it circumvents all lan-
guage guarantees instead of circumventing only the required ones.
Note that later chapters use these problems as part of the evaluation.

Requirements Sec. 3.4 concludes the discussion with a set of concrete re-
quirements. These requirements are derived from the surveys and from the
discussion of common implementation problems. The requirements have been
chosen to facilitate the design of a framework in which a unifying substrate
for concurrent programming concepts can be defined. The basic requirements
for such a unifying substrate are support for the notions of MANAGED STATE,
MANAGED EXECUTION, OWNERSHIP, and CONTROLLED ENFORCEMENT.
These requirements guide the design of the proposed solution and are the
foundation for its evaluation in the remainder of this dissertation.






EXPERIMENTATION PLATFORM

The goal of this chapter is to introduce the chosen experimentation platform.
Furthermore, for each VM this chapter gives the rationale for its choice. First,
it sketches the requirements for a platform on which the research for this
dissertation can be performed. Based on these requirements, SOM (Simple
Object Machine), Squeak/Pharo Smalltalk, and the RoarVM are chosen. Sec-
ond, it introduces SOM and gives an overview of Smalltalk and the syntax
used in this dissertation. Third, the chapter briefly introduces Squeak, Pharo,
and the CogVM as the platform for the initial implementation of the evalu-
ation case studies. Finally, the RoarVM and a number of its implementation
details are described to aid in later chapters.



4. Experimentation Platform

4.1. Requirements for the Experimentation Platform

It is desirable to define a precise and minimal executable semantics to explain
and document the ownership-based metaobject protocol (OMOP), which is
the proposed solution of this dissertation (cf. Chapter 5). Furthermore, it is
desirable to choose a medium for the definition of this executable semantics
that is similar to the platforms used for the implementation and evaluation of
the OMOP, because the similarity facilitates their explanation as well.

To demonstrate that the OMOP satisfies the identified requirements, this
dissertation evaluates its applicability and assesses its performance. This eval-
uation needs to assess the impact of the OMOP by comparing implementa-
tions of concurrent programming abstractions with classic ad hoc implemen-
tations, including an assessment of the implementation size. Thus, it must
be possible to implement concurrent programming concepts based on com-
mon implementation strategies in addition to implementing them based on
the OMOP. For the assessment of the OMOP’s performance it is necessary to
evaluate an implementation based on direct VM support.

This dissertation uses three Smalltalk systems for these tasks: SOM (Simple
Object Machine), Squeak/Pharo Smalltalk, and the RoarVM. The remainder
of this chapter motivates their choice and gives a brief overview of them to lay
the foundation for the technical discussions in later chapters. The discussion
of SOM includes an introduction to the essential concepts of Smalltalk and
the syntax used throughout this dissertation. Note that these general ideas,
i.e., language and execution model, apply to the other Smalltalk dialects and
VMs discussed here as well.

4.2. SOM: Simple Object Machine

SOM" (Simple Object Machine) is a Smalltalk variant meant for teaching lan-
guage implementation and VM techniques. Therefore, it is kept as simple as
possible and its implementation focuses on accessibility and clarity of con-
cepts rather than execution performance. It has been implemented in Java
(SOM), C (CSOM), C++ (SOM++), and Smalltalk (AweSOM). Following the
Smalltalk tradition, SOM is an object-oriented language based on classes and
supports the Smalltalk-8o notion of closures called blocks.

T Qriginally developed at the University of Arhus, SOM is now maintained at the HPI:
http://hpi.uni-potsdam.de/hirschfeld/projects/som/. It was also the foundation for
Resilient Smalltalk and the OOVM [Andersen et al., 2005].
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4.2. SOM: Simple Object Machine

SOM'’s focus on clarity and a minimal set of concepts makes it a good can-
didate to express the execution semantics of the OMOP. Essential semantics
can be expressed while the accidental complexity that comes with the exten-
sive feature set of common mainstream languages is avoided. Compared to
basing the semantics on a calculus such as the impg-calculus of Abadi and
Cardelli [1996], SOM provides a platform that is closer to common language
implementations. It includes common language concepts and their essential
complexity. For instance, this directly allows a discussion of the special case
of VM primitives, which would not be the case with an application of the
impg-calculus, without adding specific extensions to it.

AweSOM? is chosen over the other available SOM implementations, be-
cause its Smalltalk implementation is the most concise in the SOM family and
enables the formulation of an executable semantics that is concise enough to
serve for illustration as part of this dissertation.

4.2.1. Language Overview and Smalltalk Specifics

This section gives a brief overview of SOM’s Smalltalk syntax and Smalltalk
concepts used in the source code examples of this dissertation.

SOM’s standard implementation relies on a textual syntax for class defini-
tions. Lst. 4.1 gives a minimal definition of the class Object. Note that Object
inherits from nil and thus, it is the root class of the class hierarchy. If neither a
superclass nor nil are given, a class will implicitly have Object as superclass.

Object = nil ( "defines the class Object, superclass is ‘nil’"
| class | "object fields: each object has a field ‘class’"
class = ( ~class ) "method to return field ‘class’"
= other = ( ~self == other )
== other = primitive "equality test implemented in the VM"
asString = ( ~’instance of ’ + (self class) )
value = ( ~self )
yourself = ( ~self )

ifNil: nilBlock ifNotNil: goBlock = (“goBlock value)

"Error recovering"
doesNotUnderstand: selector arguments: arguments = (
self error: ’Method not found: °’
+ class name + ’>>#’ + selector ) )

Listing 4.1: SOM Language Example: Object class extending nil

*https://github. com/smarr/SOM/#readme
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Classes and Methods Object fields are defined with a syntax similar to local
variables in methods of other Smalltalk versions. In this case, every object has
a class field, referring to the object’s class.

Note that SOM uses object-based encapsulation. Thus, only the object itself
has access to its fields. This is different from class-based encapsulation as
used for instance in Java [Gosling et al., 2012]. In languages with class-based
encapsulation, all objects of a class can access the private fields of other objects
of the same class.

Methods in Smalltalk have either no arguments, one argument when the
method selector is a special symbol, or they use so-called keyword messages,
which indicate the arguments with colons.

The first method in line 4 is a simple method without arguments. It is an
accessor to the class field and directly returns the value. Note the circumflex
("), which corresponds to the return keyword in other languages. Further
note that the body text of this dissertation refers to methods in source code
examples by their selector symbol, i.e., the method name with a preceding
hashmark (#). Thus, line 4 defines the method #class.

Line 5 defines a second method #=, which takes the argument other to
implement object equality by using the reference equality message #==. Ex-
amples for binary messages are #= and #==, which take an extra argument in
addition to the receiver. In this particular case #== refers to its argument as
other. Line 6 defines #==to be implemented via a VM primitive, which checks
the receiver and the argument for reference equality. The #ifNil:ifNotNil:
method defined in line 10 is a convenience method implementing a simple
control structure based on blocks. It is a keyword message with two parame-
ters, here called nilBlock and goBlock.

Blocks are anonymous functions, i. e., lambdas. Depending on the Smalltalk
implementation, they are either full closures or classic restricted blocks as in
Smalltalk-8o [Goldberg and Robson, 1983]. Classic blocks cannot be used once
they left the dynamic extend in which they have been created. Thus, they
cannot be returned from the method in which they were created.

SOM also supports class-side methods and static fields in terms of fields of
the class object. Since classes are objects, the same rules apply and they are
treated identically.

Handling of Globals References to classes are treated as lookups of global
variables. Such global variables can also refer to objects other than classes.
However, assignments to globals are ignored and not directly supported by
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SOMUniverse = ( "..."
bootstrapFrameWithArguments: args = (
(interpreter pushNewFrameWithMethod: self bootstrapMethod)
push: (self globalAt: #system);
push: args;
yourself "convenience method to return self" ) )

Listing 4.2: Cascaded Message Sends

the language. Instead, the binding of global variables can only be changed by
the explicit use of a VM primitive. Thus, supposedly constant globals such as
true, false, and class references cannot simply be assigned. While they might
appear to be keywords or special literals, similar to how they are treated in
languages such as C++ or Java, in SOM, they are treated like any other global
and will be looked up in the globals dictionary. Following the Smalltalk spirit
of everything is an object, true, false, and nil are objects as well. More pre-
cisely, they are the sole instances of their corresponding class. Consequently,
they can be adapted and customized when necessary.

Cascaded Message Sends Some code examples use Smalltalk’s cascaded mes-
sage sends for conciseness, which is a language feature that is uncommon in
other languages. The example in Lst. 4.2 defines a method that uses a complex
expression in line 3 that yields a frame object. This frame object still needs to
be populated with initial data, i.e., the method pushes a number of objects
onto the frame. For conciseness, instead of assigning the frame object to a
temporary variable, the method uses cascaded message sends. Thus, the re-
sulting frame object of the expression becomes the receiver of the first regular
message send in line 4, which pushes the #system global, and then indicated
by the semicolons, also becomes the receiver of the two following message
sends in lines 5 and 6. Note the last message #yourself in Lst. 4.2, it is a
convenience method defined in Object. It is often used in cascaded message
sends to return self. In this case it returns the frame object that was the result
of the initial expression on line 3.

Dynamic Array Creation Some of the code examples in this dissertation
use a notation for dynamically created arrays that is currently not part of the
SOM implementation. However, it is commonly used in Squeak and Pharo
Smalltalk to instantiate arrays in concise one-liners. The syntax uses curly
braces to delimit a list of Smalltalk statements. The result value of each of
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these statements is used as the value of the corresponding array index. As an
example, the following line of code will create an array with three elements,
the symbol #foo, the integer 42, and a new object:

anArray := {#foo. 21 * 2. Object new}

All statements are evaluated at runtime and can contain arbitrary code,
including assignments.

Non-local Returns Smalltalk offers the notion of non-local returns to facilitate
the implementation of custom control structures based on blocks. A non-local
return from a block will not just return from the block’s execution, as is done
for instance with JavaScript’s return statement inside a lambda, but it will
return from the enclosing method of the block. This dissertation uses it as
illustrated in Lst. 4.3 to avoid additional nesting of the else branch. Line 3
returns from #foo: when the argument aBool is true. Thus, the remainder of
the method will only be executed if the argument was false.

Example = (
foo: aBool = (
aBool ifTrue: [ = #bar ].
" else: multiple statements without need to nest them
~ #baz ) )

Listing 4.3: Non-local Returns in Smalltalk

4.2.2. Execution Model and Bytecode Set

Since SOM focuses on clarity of concepts, its implementation is kept as ac-
cessible and straightforward as possible. This means that the VM implemen-
tation does not apply common optimizations. For instance, the interpreter
loop in the AweSOM implementation uses a simple double dispatch for the
bytecodes, which are represented as objects.

The execution model of SOM is based on a simple stack machine, which
is a simplified variant of the one used in Smalltalk-8o. The execution stack
is built from linked frame objects, which are also called context objects. Each
frame object corresponds to a method or block activation. Lst. 4.4 illustrates
this with the basic definition of SOMFrame, including its instance variables. The
field previousFrame is used to refer to the frame one level lower in the execu-
tion stack. If a block is executed, the outer frame, i. e., the blockContextFrame
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needs to be set as well. This field refers to the frame that was active when
the block object was created, and thus, constitutes the lexical environment of
the block. Frames are the operand stacks for the execution of a method /block.
They are initialized on activation, holding the arguments of the method /block
at the bottom of the operand stack. #bootstrapFrameWithArguments: illus-
trates the calling convention with its creation of a bootstrap frame for the
interpretation. The first element is always the receiver, in this case the global
object for #system, and the following elements on the stack are the arguments
to the activated method. In this case it is a single argument args, the array of
arguments given to the initial program.

SOMObject = (
| hash class |
postAllocate = ()
n."u )

SOMFrame = SOMArray (
| previousFrame blockContextFrame
method
bytecodeIndex stackPointer localsOffset |

currentObject = ( ~ self at: 1 ) "the receiver object"

Il'.'ll)

SOMUniverse = (
| globals symbolTable interpreter |

bootstrapFrameWithArguments: args = (
(interpreter pushNewFrameWithMethod: self bootstrapMethod)
push: (self globalAt: #system);
push: args;
yourself ) )

Listing 4.4: SOM Implementation of stack frames and the initial bootstrap frame.

This section briefly goes over the implementation of essential bytecodes,
because the discussion of the executable semantics for the solution in Sec. 5.4
relies on the basics described here.

The SOMInterpreter sketched in Lst. 4.5 manages three relevant instance
variables. The frame instance variable refers to the currently active context
object, universe refers to the object holding references to global and sym-
bols table, and currentBytecode references the currently executing bytecode
for convenience. The currentObject always represents the receiver, i.e., self
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for the currently executing method and block. The POP_FIELD bytecode imple-
mented by #doPopField in line 6, modifies the current object at the field index
indicated by the bytecode. It stores the current top element of the stack into
that field, and pops the top off the stack. The reverse operation is realized in
line 11 by the PUSH_FIELD bytecode, which reads the field of an object and
pushes the result onto the operand stack. The implementations of the SEND
and SUPER_SEND bytecode given in lines 16 and 24 first determine the object
that receives the message send, based on the number of arguments on the
stack, and will then determine the class where the lookup starts to eventually
delegate to the #performSend:to:lookupCls: method.

How the invocation is implemented depends on whether the message leads
to an application of a SOM method representing bytecodes, or a primitive
that is implemented in the implementation language. The application of a
method, as shown in line 6 of Lst. 4.6, will result in the creation of a new
frame (cf. line 29) that will be initialized with the receiver and the arguments.
The invocation of a primitive on the other hand, is performed in AweSOM by
taking arguments from the operand stack, executing the primitive with these
arguments and pushing the result value back onto the stack. In other SOM
implementations, and in typical Smalltalk VMs like the CogVM or RoarVM,
primitives will obtain a reference to the context object, i.e., frame instead
and will manipulate it directly, because it gives primitives more freedom and
power in terms of what they can implement. AweSOM optimizes for the com-
mon case, reducing the burden on the primitive implementer.

The remaining bytecodes of SOM complement the ones already discussed.
Since their details are beyond the scope of this dissertation, this section only
gives a brief description of the operation each bytecode represents. Note how-
ever that bytecodes represent access to object fields and local variables with
indexes. This is a typical optimization known as lexical addressing [Abelson
et al., 1996].
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SOMInterpreter = (

| frame universe currentBytecode |

currentObject = (

(frame outerContext) currentObject )

doPopField = (

self

currentObject

fieldAtIndex: currentBytecode fieldIndex

put: frame pop )

doPushField = (
frame push:

(s

doSend
| re
rece

elf currentObject
fieldAtIndex: currentBytecode fieldIndex))

= (
ceiver |
iver := frame stackElementAtIndex:
currentBytecode selector numArgs + 1.

self performSend: currentBytecode selector

to: receiver
lookupCls: receiver class )

doSuperSend = (

| re
rece

"Det

ceiver superClass |
iver := frame stackElementAtIndex:

currentBytecode selector numArgs + 1.
ermine super in the context of the correct method."

superClass := frame outerContext method holder superClass.

self performSend: currentBytecode selector

to: receiver
lookupCls: superClass )

performSend: selector to: receiver lookupCls: cls = (

self send: selector toClass: cls )

send: selector toClass: cls = (
(cls lookupInvokable: selector)
ifNotNilDo: [:invokable | invokable invokeInFrame: frame]

ifNil: [self sendDoesNotUnderstand: selector] )

Il'.'ll)

Listing 4.5: Basics of the SOM Interpreter
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SOMInvokable = ( | signature holder numArgs | )

SOMMethod = SOMInvokable (
| numLocals bytecodes |

invokeInFrame: frame (
| newFrame |
newFrame := self universe

interpreter pushNewFrameWithMethod:

newFrame copyArgumentsFrom: frame.

newFrame ) )

SOMPrimitive = SO0MInvokable (
| realSignature |
invokeInFrame: frame (

self invokePrimitiveInPlace: frame )

invokePrimitiveInPlace: frame (
| theSelf arguments result |
"without self, self is first argument"
arguments := frame popN: numArgs - 1.
theSelf := frame pop.
frame push: (theSelf
performPrimitive: realSignature
withArguments: arguments) ) )

SOMInterpreter = ( "..."
pushNewFrameWithMethod: method = (

frame := SOMFrame new
method: method;
previousFrame: frame;

resetStackPointerAndBytecodeIndex;
yourself ) )

Listing 4.6: SOM Method and Primitive invocation.
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HALT return from the interpreter loop, without changing the interpreter’s
state.

DUP duplicates the element at the top of the operand stack.
POP removes the element from the top of the operand stack.

RETURN_LOCAL performs a return from the current method. The top of the
current frame’s operand stack is saved as return value, the current stack
frame is removed from the interpreter’s stack, and the return value is
then pushed onto the operand stack of the calling method.

RETURN_NON_LOCAL performs a return from a block activation. The top of the
current frame’s operand stack is saved as return value, then all stack
frames from the interpreter’s stack are removed until the end of the
context frame chain is reached, named the target frame; the target frame is
removed, too, and the return value is then pushed onto the top frame’s
operand stack.

PUSH_LOCAL and POP_LOCAL either push or pop the value of a local variable
onto or from the operand stack.

PUSH_ARGUMENT and POP_ARGUMENT either push or pop the value of a method
argument onto or from the operand stack.

PUSH_FIELD and POP_FIELD either push or pop the value of an object’s field
onto or from the operand stack.

PUSH_BLOCK pushes a new block object onto the operand stack. The block
object is initialized to point to the stack frame of the currently-executing
method, so that the block method can access its arguments and locals.

PUSH_CONSTANT pushes a constant value object onto the operand stack.

PUSH_GLOBAL pushes the value of an entry from the global symbol table onto
the operand stack.

SEND and SUPER_SEND send a message to the class or superclass of an object.
The name of the message specifies how many arguments are consumed
from the operand stack. For example, the #ifNil:ifNotNil: message
uses 3 elements: the receiver object and two explicit arguments. Each
send leads to the creation of a new frame, which takes the arguments
and is used for the execution of the corresponding method. Arguments
are popped from the operand stack of the original frame.
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4.3. Squeak and Pharo Smalltalk

Squeak and Pharo are open source Smalltalk implementations in the tradition
of Smalltalk-80 [Goldberg and Robson, 1983]. They provide an image-based
development environment that offers good support for the prototyping of
language and VM ideas. Both rely on the same VM for execution.

CogVM The CogVM3 is primarily a VM with a just-in-time (JIT) compiler.
It also includes a bytecode-based interpreter. Interpreter and JIT compiler are
based on a bytecode set that differs only marginally from Smalltalk-80. One
noticeable difference is the support for closures, which goes beyond Smalltalk-
8o in that closure activation is legal even after the closure escaped from the
dynamic extent in which it was created. Furthermore, the implementation ap-
plies a moderate number of optimizations for interpreters such as immediate
integers based on tagged pointers, context-to-stack mapping to optimize rep-
resentation of stack frames [Miranda, 1999], and threaded interpretation [Bell,
1973] to reduce the overhead of bytecode interpretation when the JIT is not
yet warmed up, i. e., before a method was compiled to native code.

Rationale The OMOP needs to be evaluated against the state of require-
ments and its applicability needs to be demonstrated. For this dissertation,
the use of Smalltalk is an advantage, since the available tools enable develop-
ers to implement experiments with a high level of productivity. Furthermore,
while the language and its tools are somewhat different from mainstream en-
vironments like Java, Python, etc., it provides a concurrency model based on
shared memory and threads, which reflects the most common approach to
concurrent and parallel programming. One difference with other languages
using threads is that Smalltalk’s threads, i.e., processes, are green threads
and scheduling is performed by the VM without relying on the operating sys-
tem. In addition to that, Smalltalk has a strong track record of being used
for research in concurrent programming models and VM implementation
techniques [Briot, 1988, 1989; Gao and Yuen, 1993; Pallas and Ungar, 1988;
Renggli and Nierstrasz, 2007, Thomas et al., 1988; Ungar and Adams, 2009;
Yokote, 1990]. The high productivity of the development tools and the ade-
quate performance of the underlying VM implementation make Squeak and
Pharo based on the CogVM good candidates for experimentation.

3Teleplace Cog VMs are now available, Eliot Miranda, 20 June 2010
http://ftp.squeak.org/Cog/README
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Used Software and Libraries Squeak and Pharo were used as development
platforms for specifying the operational semantics of the OMOP using Awe-
SOM and to develop the AST-transformation-based prototype (cf. Sec.7.1).
While Smalltalk typically uses a bytecode-based representation of the com-
piled code, transforming it is low-level and error-prone. To avoid the associ-
ated complexity, the first prototype implementation of the OMOP uses code
transformations based on the AST (abstract syntax tree) instead. The main
benefit is that the AST will be used to generate bytecode that corresponds to
the expectations of the whole Smalltalk toolchain. Using direct bytecode trans-
formation can result in perhaps more optimal bytecode, however, the used
tools, i. e., the debugger and decompiler, accept only a subset of the legal byte-
code sequences, rendering some correct bytecode sequences non-debuggable.
The AST transformations uses the Refactoring Engine,* which generates ASTs
from Smalltalk code and provides a transformation framework implementing
the classic visitor pattern. With these tools it became possible to implement
AST transformations and produce bytecode that was executable and debug-
gable.

4.4. RoarVM

The RoarVM is a Squeak and Pharo-compatible Smalltalk VM designed and
initially implemented by Ungar and Adams [2009]. It is a platform for exper-
imenting with parallel programming on the Tilera TILE64 manycore proces-
sor [Wentzlaff et al., 2007]. Building on top of the work of Ungar and Adams,
we ported it to commodity multicore systems. It enables the parallel execu-
tion of Smalltalk code in a shared memory environment. Thus, Smalltalk pro-
cesses, i.e., threads, of a given image can be scheduled and executed simulta-
neously depending on the available hardware parallelism.

Rationale for Choosing the RoarVM The RoarVM was chosen to experi-
ment with VM implementations for several reasons. On the one hand, the
complexity of the RoarVM is significantly lower than that of the CogVM, facil-
itating experiments with different implementation approaches. Furthermore,
the RoarVM has a parallel execution model, which preserves the opportunity
to investigate support for parallel programming as part of future work (cf.
Sec.9.5.1).

4Refactoring Engine, Don Roberts, John Brant, Lukas Renggli, access date: 17 July 2012
http://www.squeaksource.com/rb.html
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Another reason for its choice are the experiments that were performed in
addition to the work on this dissertation. Examples are the implementation
of a pauseless garbage collector [Click et al., 2005] to avoid stop-the-world
garbage collection pauses,® as well as a work-stealing scheduler to improve
the performance of fine-grained parallelism.® Especially relevant for the work
presented here was an experiment to use operating system processes instead
of threads as the underlying abstraction to use multiple cores (cf. Sec. 4.4.3).”

These extensions to the RoarVM promise to be a good foundation to exper-
iment with different optimizations (cf. Sec. 9.5.3).

4.4.1. Execution Model, Primitives, and Bytecodes

This section discusses technical details that are relevant for the implementa-
tion of the OMOP and its performance evaluation.

Execution Stack Representation Similarly to the execution model of SOM,
the RoarVM uses the classic Smalltalk-80 model of context objects that rep-
resent stack frames. Each frame, i.e., context object is a standard Smalltalk
object allocated on the heap and subject to garbage collection. They represent
the method activation, the operand stack, and temporary variables. A context
object also encapsulates the corresponding instruction and stack pointer. To
reduce the pressure on the garbage collector (GC), context objects are cached
and reused if possible, instead of leaving them for the GC.

While using objects to represent the execution state enables for instance
metaprogramming, it comes with a performance cost. To reduce that cost by
avoiding frequent indirections on the context objects, part of the execution
state such as instruction pointer and stack pointer are replicated in the inter-
preter object and maintained there. The context object is only updated with
the execution state when necessary. Thus, the execution state is written to the
actual context object before garbage collection starts, before scheduling oper-
ations, such as resuming a processes or yielding execution, might change the
currently active context, and before a message send activates the new context
for its execution.

Primitives and Quick Methods Primitives are used to implement function-
ality that cannot be implemented directly in Smalltalk or for functionality

5https://github.com/smarr/RoarVM/tree/features/parallel-garbage-collection
®https://github.com/smarr/RoarVM/tree/features/scheduler-per-interpreter
7https://github.com/smarr/RoarVM/tree/features/processes-on-x86
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that is performance critical and benefits from avoiding the interpretation over-
head.

The RoarVM and CogVM are derived from the same original code base and
share the implementation of primitives. While the implementations diverged
over time, the RoarVM supports the same primitives and collections of prim-
itives in the form of plugins to be compatible with the CogVM. Thus, on the
language level the provided mechanism are identical.

Smalltalk has access to primitives via an encoding in the method header of
a method object. If the primitive part of the method header is set to a value
different from zero, the VM is asked to execute the primitive referenced by
this method instead of executing the bytecodes encoded in the method. For
the execution of a primitive the current context object is used, instead of creat-
ing a new one, as is done for standard message sends. This gives the primitive
access to the current operand stack, the VM, and perhaps the underlying sys-
tem. A number of primitive identifiers is however reserved for so-called quick
methods. Quick methods do not encode bytecodes, but instead use the prim-
itive identifier to encode presumably common short methods. This includes
return of self, true, false, and nil. Furthermore, quick methods encode
accessors, i. e., methods that only return the object stored in a field.

Tab. 4.1 shows the encoding of the method header in the RoarVM. It uses
the same encoding as the CogVM for compatibility. To avoid issues with the
garbage collector, and because the method header is a normal field in the
method object, it is encoded using a SmallInt, which is indicated by the
least significant bit set to one. The header encodes the number of arguments
(#args) the method expects, the number of slots the context object should pro-
vide for temporary variables (#temporaries), whether a small or large context
object should be allocated for the operand stack (FS: frame size), and the num-
ber of literals encoded in the method. For historical reasons, the primitive is
encoded with 10 non-consecutive bits. Bit 29 was presumably added when
the need arose. The 3oth bit (F) is a flag bit that is reserved for custom use at
the language side, and bit 31 remains unused.

Table 4.1.: RoarVM Method Header

F | P. #args #temporaries | FS #literals Primitive 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 987654321 0
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Bytecodes The bytecode set used by the RoarVM is very similar to the
Smalltalk-8o bytecode set depicted in Tab. 4.2. It encodes common operations
with single bytes, directly encoding a small range of parameters. Supposedly,
this encoding was chosen to keep the code size of Smalltalk methods small
and enable efficient implementation based on C’s switch/case statement that
will be mapped on a dispatch table by most compilers. The RoarVM also still
uses switch/case instead of direct or indirect threading. While the RoarVM
supports the closure extension that was introduced by the CogVM, it is not
considered in this dissertation. Another difference in the used bytecode set is
the changed meaning of bytecode 132. It has been changed to the unequivocal
name: doubleExtendedDoAnythingBytecode. Three bits of the second byte are
used to encode the operation, and the remaining 5 bits encode an argument.
The third byte encodes a literal to be used.

The bytecodes for arithmetic and special methods are essentially shortcut
bytecodes that reduce the number of bytes needed to encode presumably
common message sends. Besides arithmetic operations such as add, subtract,
and multiply, this includes comparisons such as less than, greater or equal, and
equal. The special methods include for instance #at:, #at:put:, and class.
The implementation of these bytecodes will first set the corresponding sym-
bol for the message send, and then issue the actual message send. However,
if possible the addition is executed directly without doing an actual message
send, for instance if the receiver and the argument of the #+ message are
integers.

4.4.2. Memory Systems Design

The memory system of the RoarVM has been designed with simplicity in
mind, facilitating the experimentation on manycore platforms like the Tilera
TILE64 [Wentzlaff et al., 2007]. Therefore, the RoarVM uses a simple compact-
ing mark-and-sweep GC that relies on a stop-the-world mechanism for safe
memory reclamation. Beside the SmallInt immediate tagged integers, all ob-
jects are garbage collected.

One important artifact of Ungar and Adams’ research that became part of
the RoarVM is an additional memory word that is prepended to every object.
For their implementation of the Ly and Sly language prototypes [Ungar and
Adams, 2010], they changed the semantics of message dispatching. In Sly, an
object can be part of an ensemble, i. e., a collection. If a message is sent to such
an object, the message is reified and sent to the ensemble instead. This tech-
nique allows Ungar and Adams to unify to a certain degree the treatment of
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Table 4.2.: The Smalltalk-8o Bytecodes [Goldberg and Robson, 1983, p. 596]

RANGE Birs FuncTIiOoN

0-15 0000iiii  Push Receiver Variable #iiii
16-31 0001iiii  Push Temporary Location #iiii
32-63 001iiiii  Push Literal Constant #iiiii

64-95 010iiiii  Push Literal Variable #iiiii

96-103 01100iii  Pop and Store Receiver Variable #iii

104-111  01101iii  Pop and Store Temporary Location #iii

112-119 01110iii  Push (receiver, true, false, nil, -1, 0, 1, 2) [iii]
120-123 011110ii  Return (receiver, true, false, nil) [ii] From Message
124-125 01111101  Return Stack Top From (Message, Block) [i]

126-127 0111111i  unused

128 10000000  Push (Receiver Variable, Temporary Location,
jjkkkkkk Literal Constant, Literal Variable) [jj] #kkkkkk

129 10000001  Store (Receiver Variable, Temporary Location,
jjkkkkkk Illegal, Literal Variable) [jj] #kkkkkk

130 10000010  Pop and Store (Receiver Variable, Temporary Location,
jjkkkkkk Illegal, Literal Variable) [jj] #kkkkkk

131 10000011  Send Literal Selector #kkkkk
jjjkkkkk With jjj Arguments

132 10000100  Send Literal Selector #kkkkkkkk
33333333 With 3333jijj Arguments
kkkkkkkk

133 10000101  Send Literal Selector #kkkkk To Superclass
jjjkkkkk With jjj Arguments

134 10000110  Send Literal Selector #kkkkkkkk To Superclass
33333333 With 333jjjjj Arguments
kkkkkkkk

135 10000111  Pop Stack Top

136 10001000  Duplicate Stack Top

137 10001001  Push Active Context

138-143 unused

144-151  10010iii  Jump iii + 1 (i.e., 1 through 8)
152-159 10011iii  Pop and Jump On False iii +1 (i.e., 1 through 8)
160-167  10100iii Jump (iii-4)* 256 + 333333

33333333

168-171  101010ii  Pop and Jump On True ii * 256 + jjjjjjjj
33333333

172-175 101011ii  Pop and Jump On False ii * 256 + jjjjjjjj
33333333

176-191  1011iiii  Send Arithmetic Message #iiii

192-207 1100iiii  Send Special Message #iiii

208-223 1101iiii  Send Literal Selector #iiii With No Arguments
224-239 1110iiii  Send Literal Selector #iiii With 1 Argument
240-255 1111iiii  Send Literal Selector #iiii With 2 Arguments
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ensembles and their elements. The technique of prepending additional words
to objects is also useful for the experiments of this dissertation and will be
detailed in later chapters (cf. Sec.7.2.1).

Object Table for Manycore Architectures Since cache locality and the non-
uniform memory access properties of the TILE64 were one of the fields of
interest for Ungar and Adams, they decided to use an object table in the VM
to reduce the necessary effort for moving objects between different parts of
the heap.

As the number of cores grows, it becomes increasingly difficult for caches
to provide the illusion of a single coherent memory with uniformly short ac-
cess time. Consequently an application or VM seeking good performance on
a manycore system may be required to dynamically move objects between dif-
ferent parts of the heap for the sake of improved locality. The TILE64, Ungar
and Adams targeted, has only restricted support for cache coherency. Mem-
ory pages are homed to a certain core which means that only this core is able
to cache memory from that page in its local cache. This means that it is desir-
able to be able to move objects easily between memory pages to allow them
to be cached by a core that actually needs them.

When an object needs to be moved, a naive solution would require a full
scan of the heap to adjust all references to it as well. While the cost is of-
ten amortized by moving multiple objects, it remains significant. Other ap-
proaches employ a read-barrier, which however can itself add overhead and
complexity. An object table on the other hand allows an immediate update of
the object’s location. Using the infrastructure for flexible additional words for
each object, it is possible to include a backpointer in each object to identify
the object table entry directly and thus make lookups trivial. With this design,
moving an object reduces to adjusting a single reference, which can be found
via the backpointer starting from the object itself.

Drawback of Object Tables The use of an object table also has a number
of disadvantages. For the standard case of accessing an object, the address-
lookup in the table has a performance penalty. Furthermore, it also brings
additional complexity to the system, since the move operation of an object
needs to be atomic to prevent any other core to write to an object that is cur-
rently being moved. Moreover, storing the object table itself is an issue with
such restricted caching schemes. Object table entries need to be reclaimed af-
ter an object got garbage collected and the implied compaction of the table
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is a problematic operation, too. Another detail that needs to be considered is
the approximately 10% space penalty imposed by the extra header word we
use as a backpointer from the object to the object table entry. In addition to
assertion-checking for debugging, this backpointer is required for the sweep
phase of the garbage collector.

As discussed in Sec.8.1.3, the object table is disabled for the performance
evaluation in order to avoid the performance overhead.

4.4.3. Process-based Parallel VM

Ungar and Adams implemented the VM for the TILE64 and used libraries
that relied on operating system processes instead of threads to utilize the
64 processor cores. When we ported the RoarVM to commodity multicore
systems, we decided to use traditional threads instead of the process-based
variant. The main driver for this decision was the absence of sufficient de-
bugging tools and that the initially used libraries were only available for the
TILE64.

However, the thread-based implementation is significantly slower than the
process-based implementation. The performance cost for using thread-local
variables instead of static globals is significant. Therefore, the decision was
revisited and a version using processes instead of threads was also imple-
mented on classic Linux and Mac OS X systems.?

For this dissertation, the ability to use multiple operating system processes
is relevant in the context of future work (cf. Sec.9.5.3). It enables the VM to
use different memory protection settings as an implementation technique for
MANAGED STATE (cf. Sec. 3.4). A similar approach has been used for instance
by Hoffman et al. [2011].

4.4.4. Final Remarks

While the RoarVM is an interpreter and performance evaluation yields results
that are not generalizable to high-performance VMs with JIT compilers,® the
RoarVM as a research platform has a number of relevant features that facili-
tate experiments and opens opportunities for future research.

The support for arbitrary additional words in front of objects greatly sim-
plifies experiments that need to adapt the notion of objects and extend it with

8https://github.com/smarr/RoarVM/tree/features/processes-on-x86
9An addition of a JIT compiler to the RoarVM would be possible and it would improve the
generalizability of the results, but it is outside of the scope of this dissertation.
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custom features. The process-based parallel execution model can be the foun-
dation for optimizations that utilize techniques such as the operating systems
memory protection of memory pages.

Furthermore, the RoarVM compared to the CogVM is significantly less com-
plex, which reduce the implementation effort and enables a wider range of
experiments. Its support for parallel execution also preserves the opportunity
to experiment on multicore systems, while the CogVM would also restrict
future experiments to sequential execution.

4.5. Summary

This chapter presented SOM (Simple Object Machine), a Smalltalk that is in-
tended for teaching. Its minimalistic approach and concise implementation
allows the definition of an executable semantics of the OMOP in terms of a
bytecode interpreter that is similar to the actually used VMs.

Furthermore, this section presented Squeak and Pharo Smalltalk as a foun-
dation for the implementation of the evaluation case studies. Both Smalltalks
are mature platforms that have been used in other research projects before
and provide a stable foundation for the experiments in this dissertation.

Finally, this section discusses the RoarVM, which is used for experiments
with VM support. It describes the main implementation features, i.e., the
execution model, primitives, and the bytecode set as a foundation for the
explanation of the implementation in Chapter 7.
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AN OWNERSHIP-BASED MOP FOR EXPRESSING
CONCURRENCY ABSTRACTIONS

This chapter introduces the main contribution of this dissertation: the design
of an ownership-based metaobject protocol (OMOP), which is meant to facili-
tate the implementation of concurrent programming concepts. To this end, it
tirst introduces open implementations and metaobject protocols (MOP) [Kiczales
et al., 1991] to motivate the choice of using such a mechanism as the foun-
dation for the OMOP. Second, it details the design and properties of the
ownership-based MOP. Third, its demonstrates how to apply the OMOP to en-
force the notion of immutability and the semantics of Clojure agents. Fourth,
this chapter describes the OMOP’s semantics based on a bytecode-based in-
terpreter that implements the OMOP. And finally, it situates the OMOP into
the context of related work.
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5.1. Open Implementations and Metaobject Protocols

Considering the requirements identified in Sec.3.4 and that the contempo-
rary multi-language VMs are object-oriented programming environments (cf.
Sec. 3.1.1.2), reflective programming techniques provide the natural founda-
tion for a program to interface with a VM, i. e,, its runtime environment. Thus,
this section briefly reviews the notion of open implementations and metaobject
protocols, because they are commonly used to provide properties similar to the
ones required for a unifying substrate for concurrent programming concepts.

The notion of open implementations described by Kiczales [1996] provides
a general design strategy for increasing the control that client code has over
a software component it is using. The general motivation is that client code
often needs to adapt or work around the concrete software component it is
using, to change semantics or performance characteristics to the context it is
used in. Thus, open implementations are designed to facilitate the adaptation
of implementation strategies [Kiczales et al., 1997]. This notion can also be
used to enable adaptive language guarantees and semantics based on a meta
interface. Meta interfaces for this purpose are commonly known as metaobject
protocols:

Metaobject protocols are interfaces to the language that give users the
ability to incrementally modify the language’s behavior and implementa-
tion, as well as the ability to write programs within the language.
[Kiczales et al., 1991, p. 1]

Introduction Today, metaobject protocols (MOPs) can be found in a num-
ber of languages, for instance in the Common Lisp Object System (CLOS),
Smalltalk-8o [Goldberg and Robson, 1983], Groovy," and Perl’s Moose object
system.> While not all of them offer the full functionality of the MOP dis-
cussed by Kiczales et al. [1991], they provide capabilities to reflect on the
executing program and adapt the language’s behavior.

To start from the beginning, important foundations for MOPs are the no-
tions of reflection and reification [Friedman and Wand, 1984]. Reflection builds
on introspection and intercession. Introspection is the notion of having a pro-
gram querying itself for information. This information is then reified in terms
of program structures which can be processed. Based on these reified pro-
gram structures, intercession enables the program to interfere with its own

Thttp://groovy.codehaus.org/
*http://search.cpan.org/~flora/Class-MOP/
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execution. This means it can change state, adapt program structures, or trap
certain operations to refine their behavior. The reified program structures are
referred to as metaobjects. In order to explain MOPs, Kiczales et al. [1991]
state that in general, a protocol is formed by “a set of object types and operations
on them, which can support not just a single behavior, but a space or region of behav-
iors”. Therefore, they conclude that a MOP enables the encoding of individual
decisions about language behavior via the operations of metaobjects.

Categories of MOPs Tanter [2009, p. 12] distinguishes metaobject protocols
(MOPs) for object-oriented reflection by the correspondence of the meta rela-
tion to other aspects of the system. He identifies a number of common ideas:
metaclass-based models, metaobject-based models, group-based models, and
message-reification-based models.

Metaclass-based Metaclass-based models such as in CLOS, Perl’s Moose,
or Smalltalk enable for instance the customization of method dispatch or
object fields semantics. The metaclass of a class therefore describes the se-
mantics of this class, i.e., the metaclass’ instance. The meta relation in this
case is the instantiation relationship between a class and its metaclass. This
technique has been used, e. g., to implement persistent objects, which are au-
tomatically mapped to a database [Paepcke, 1993], or even to parallelize pro-
grams [Rodriguez Jr., 1991].

Metaobject-based Metaobject-based models decouple meta interfaces from
the class hierarchy. One example for a language using this model is the
prototype-based language 3-KRS [Maes, 1987]. Since 3-KRS does not have the
notion of classes, it is designed with a one-to-one relation between a base-level
object and a metaobject. However, the model can be applied to class-based lan-
guages, for instance as is the case in Albedo, a Smalltalk system [Ressia et al.,
2010]. The independence from the class hierarchy enables modifications that
are orthogonal to the class hierarchy and results in a model with greater flex-
ibility.

Instead of having a one-to-one mapping, other variations of the model are
possible as well. One common example is proxy-based MOPs, for instance
as the one proposed for the next version of ECMAScript[Van Cutsem and
Miller, 2010].3 Metaobjects are defined in the form of proxy objects that reify

3Direct Proxies, Tom Van Cutsem, access date: 4 July 2012
http://wiki.ecmascript.org/doku.php?id=harmony:direct_proxies
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the operations on the target object and thus, allow developers to adapt the
language’s behavior as necessary. It is different from 3-KRS in that a target
object can have multiple metaobjects associated with it. Furthermore, the se-
mantics defined by the proxy are only applied if a client interacts with the
target object through the proxy, which can be a significant drawback. On the
other hand, this design gives a large degree of flexibility, since every target
object can be adapted by arbitrarily many customizations as long as the client
uses the proxy instead of the target object.

Group-based Tanter further discusses the variation of group-based MOPs.
Instead of having a distinct metaobject for every base-level object, for instance
Mitchell et al. [1997] and Vallejos [2011] argue that it can be an advantage to
enable a metaobject to describe the semantics of a set of objects. Mitchell et al.
[1997] use meta-groups to control scheduling decisions for base and metaob-
jects. Describing these semantics based on groups of objects instead of sepa-
rate objects avoids the need for synchronization between multiple metaobjects,
when scheduling decisions have to be made.

Message-based The message-reification-based models Tanter discusses pro-
vide a meta interface to specify the semantics of message sends, for instance
by taking sender and receiver into account. For example, Ancona et al. [1998]
propose a model they call channel reification, which is based on message-
reification. However, since the model is based purely on communication and
does not reify, e. g., object field access, it is too restrictive for our purposes.

Conclusions Overall, metaobject protocols seem to be a good fit with the
requirements identified for a unifying substrate in multi-language VMs (cf.
Sec. 3.4). However, some of the approaches do not provide sufficient support
to satisfy all of the requirements.

The metaclass-based model is too restrictive, because it is not orthogonal to
application and library code. Sec. 2.5 describes the vision of using the appro-
priate concurrent programming concepts for different challenges in a Mail
application. It argues that event-loop-based actors are a good fit for imple-
menting the user interface, while an STM is a good fit to interact with the
database and to ensure data consistency. Considering that such an applica-
tion would rely on a number of third-party libraries for email protocols and
user interface components, these libraries need to be usable in the context
of event-loop actors as well as in the context of the STM. When using a
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metaclass-based model as foundation for the implementation of these con-
current programming concepts, the used library would only be usable for a
single concurrent programming concept, because it typically has one fixed
metaclass.

Message-reification-based models can be more powerful than metaclass-
based models, but are best applied to languages designed with an everything-
is-a-message-send approach. This is however an impractical constraint for multi-
language VMs.

Hence, a better foundation for a meta interface is a metaobject-based model
that fulfills all requirements identified in Sec. 3.4. For the problems considered
in this dissertation, a proxy approach adds undesired complexity. Specifically,
the constraint that every client needs to use the correct proxy imposes a high
burden on the correct construction of the system, since the actual object ref-
erence can easily leak. Furthermore, the added flexibility is not necessary to
satisfy the identified requirements, and the added overhead of an additional
proxy per object might provoke an undesirable performance impact.

To conclude, a metaobject-based approach that allows one metaobject to de-
scribe the semantics for a set of objects similar to the group-based approaches
provides an suitable foundation.

5.2. Design of the OMOP

Following the stated requirements (cf. Tab. 3.7) for the support of concurrent
programming concepts, a unifying substrate needs to support the interces-
sion of state access and execution, provide the notion of ownership at the
level of objects,* and enable control over when the desired guarantees are en-
forced. As argued in the previous section, metaobject-based models for MOPs
provide a promising foundation to design a minimal meta interface for the
purpose of this dissertation. Note that the goal of this chapter is to design
a unifying substrate for a multi-language VM. The main focus is to improve
support for language semantics of concurrent programming concepts. There-
fore, aspects such as security, reliability, distribution, and fault-tolerance are
outside the scope for the design of this substrate.

To satisfy the requirement of representing ownership at the granularity
of objects, the major element of the OMOP is the notion of a concurrency
domain. This domain enables the definition of language behavior similar to
metaobjects or metaclasses in other MOPs. The language behavior it defines

4Our notion of ownership does not refer to the concept of ownership types (cf. Sec. 5.6).
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is applied to all objects the domain owns. A domain is similar to a meta-group
in group-based MOPs (cf. Sec. 5.1) and the notion of object ownership realizes
the meta relation in this MOP. However, compared to group-based MOPs, the
OMOP requires every object to be owned by exactly one domain. Therefore the
MOP proposed here is called an ownership-based metaobject protocol (OMOP). A
visual representation of the OMOP is given in Fig. 5.1.

Domain

readField:of:(idx, obj) : Object 0.* I
0.* 1 |write:toField:of:(val, idx, obj) : Object | 1 &
- <> requestExecOf:on:with:lkup:(sel, obj, args, cls): Object <> - %
2 | requestThreadResume:(thread) :Thread | 2 g
3 initialDomainForNewObjects() : Domain % @
£ [ primCopy:(obj) - Object | = s

(o] He . i
prim*(... : Object [ Wethod | | o
readGlobal:(global) : Object 8
write:toGlobal:(val, global) : Object g
adopt:(obj) : Object T
evaluateEnforced:(block) : Object } 2
spawnHere:(block) : Thread B

Figure 5.1.: Ownership-based Metaobject Protocol. The domain is the metaobject
providing the intercession handlers that can be customized to adapt the lan-
guage’s behavior. Each object is owned by exactly one domain. Every thread ex-
ecutes in one domain. Execution is either enforced, i. e., operations on an object
trigger intercession handlers, or it is unenforced and intercession handlers are
not triggered. The handlers enable the customization of field reads and writes,
method invocation, thread resumption, and initial owner of an object. If the VM
offers primitives and globals, they are reified as well, but these handlers are VM-
specific. Methods can be marked as unenforced to execute them always without
triggering the intercession handlers.

Fig.5.2 depicts a simple object configuration during the execution of an
application that uses the OMOP. The example consists of two domains, rep-
resented by the dashed circles at the meta level, with interconnected object
graphs on the base level. Note that the pointers between domains do not
need special semantics. Instead, the concurrency properties of a base-level ob-
ject are defined by the domain object that owns the base-level object. Thus,
the owned-by relation is the meta relation of the OMOP.

The remainder of this section discusses in more detail the semantics asso-
ciated with the OMOP and establishes the connection of its elements to the
requirements.

Basic Interface The first compartment of the Domain class depicted in Fig. 5.1
contains the basic intercession handlers provided by the OMOP. This basic
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|one] Blo

|one] eseg

(O Object <— Object reference
> Domain object < -- Object owned-by

Figure 5.2.: Possible object configuration during runtime. Objects are owned by the
domain, i. e., their corresponding metaobject. The owned-by relation is depicted
with a dashed arrow. Object references remain unaffected.

part is universal, while the second compartment contains intercession han-
dlers that depend on the target VM and can require variations for proper VM
integration.

The basic intercession handlers constitute a meta interface to intercept read-
ing of object fields, writing of object fields, and invocation of methods on ob-
jects. Also part of this basic interface is the notion of a thread that is executing
in a domain. A thread indicates with an enforced state whether during its
execution the semantics of the domain are to be realized to satisfy the require-
ment for controllable enforceability and to avoid infinite meta-recursion. Thus,
in enforced execution mode, operations on an object are delegated to the in-
tercession handlers of the owning domain. The enforced execution mode con-
forms to the program execution at the base level. The unenforced execution
mode conforms to the execution at the meta level and does not trigger inter-
cession handlers.

Since the unit of execution, i.e., a thread, is typically subject to restrictions
of a concrete concurrent programming concept, the basic interface includes
an additional intercession handler to respond to threads trying to resume
execution inside a domain. Therefore, a domain can decide whether a thread
is allowed to resume execution or whether any other actions have to be taken.

To determine the initial owner of a newly created object, the OMOP pro-
vides the #initialDomainForNewObject intercession handler, which is trig-
gered on the domain the current thread is executing in when an object is
created.

VM-specific Interface Depending on the VM, a domain also needs to man-
age globally accessible resources that may lie beyond its scope but that can
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have an impact on the execution. This typically includes lexical globals and
primitive operations of a VM. The corresponding meta interface is sketched in
the second compartment of the Domain class. In addition to these operations,
the VM-specific part can also include an unenforced bit for each method. If
this unenforced bit is set, the corresponding method is always executed in
the unenforced execution mode. If the bit is not set, the method will execute
either enforced or unenforced depending on the current execution mode of
the thread. In general, the bit is used to mark operations that should execute
always at the meta level. This includes for instance the intercession handlers
of a domain themselves to guarantee that their execution is performed unen-
forced. Other examples are methods that implement general language behav-
ior, for instance in Sec. 5.3.2, it is used in the agent example to mark the #read
method unenforced to represent the notion that the agent’s state is readable
without any restrictions.

Helper Methods The third compartment of the Domain class in Fig. 5.1 con-
tains a set of helper methods. These methods sketch functionality that is
merely convenient to have, but is not a fundamental part of the OMOP. Thus,
the operations offered here are not strictly orthogonal to the other mecha-
nisms offered by the OMOP. For instance, in the theoretical model depicted
by Fig. 5.1, the owner of an object is represented directly by the owned by rela-
tion, and thus, can be modified directly. The helper methods offer the #adopt:
method which requests a domain to take over ownership for the given ob-
ject. This abstracts from the low-level details of how the owned by relation
is realized. For instance, it could be just another object field, or it could be
represented by arranging the objects of different domains in separate heaps.
The #evaluateEnforced: method also provides a high-level interface to the
execution mode by evaluating a block of code in the enforced execution mode.
This is convenient for the implementation of concurrency policies, as is the
spawning of new threads in a given domain via #spawnHere:.

Elements of the OMOP The remainder of this section gives a brief brief
summary of the elements of the OMOP and relates them to the requirements.

Domains own objects, and every object has one owner. They define the con-
currency semantics for owned objects by refining field read, field write,
method execution, and thread resumption. Newly created objects be-
long to the domain specified by #initialDomainForNewObjects. With
#adopt :, the owner of an object can be changed during execution. This

116



5.2. Design of the OMOP

set of mechanisms satisfies the OWNERSHIP requirement and provides
a way to adapt language behavior on an object level.

By requiring that all objects have an owner it becomes possible to adapt
language behavior in a uniform way for all objects in the system. For
instance, domain objects themselves are owned by a domain. In the nor-
mal case it is a standard domain that represents the language behavior
of the language implemented by the VM.

Thread is the unit of execution. The enforced bit indicates whether it exe-
cutes enforcing the semantics of domains, i. e., whether the intercession
handlers are triggered or not. Each thread is said to run in the context
of one specific domain. If a thread attempts to resume execution in a do-
main, the corresponding #requestThreadResume: intercession handler
can be used to implement custom policies, for instance to prevent exe-
cution of more than one thread at a time. #evaluateEnforced: enables
an existing thread to change the execution domain for the duration of
the execution of the block. During the evaluation, guarantees are en-
forced, i.e., the corresponding flag in the thread is set. #spawnHere:
creates a new thread in the given domain and starts its execution, iff
#requestThreadResume has not specified a contradicting policy. These
mechanisms are necessary to satisfy the MANAGED EXECUTION require-
ment.

Method representations can contain an additional bit to indicate that a par-
ticular method is always to be executed in the unenforced mode. This
gives more flexibility to CONTROL ENFORCEMENT. If the bit is set, the
thread executing the method will switch to execute in unenforced mode,
i.e., at the meta level. If the bit is not set, the thread will maintain the
current execution mode.

Read /Write operations of object fields are delegated to the #readField:of:
and #write:toField:of: intercession handlers of the owning domain.
The domain can then decide based on the given object and the field
index, as well as other execution state, what action needs to be taken.
This satisfies the MANAGED STATE requirement. Note, the intercession
handlers are only triggered while the thread executes in the enforced
execution mode.

Method Execution is represented by the #requestExecOf:on:with:1lkup: in-
tercession handler. It enables the domain to specify language behavior
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for all method invocations based on the given object, the method to
be executed, its arguments, and other execution state. This satisfies, to-
gether with the execution context of a thread, the MANAGED EXECU-
TION requirement.

External Resources i.e., globally shared variables and primitives need to be
handled by the domain if otherwise they break semantics. To that end,
the domain includes #readGlobal /#write:toGlobal:, which allows for
instance to give globals a value local to the domain. Furthermore, it in-
cludes #prim#* intercession handlers, such as #primCopy: to override the
semantics of VM primitives. This is necessary, because unintercepted
access to #primCopy: would enable copying of arbitrary objects without
regard for domain semantics. Thus, depending on a specific VM, this
extension to the basic meta interface is necessary to complete the sup-
port for MANAGED STATE and MANAGED EXECUTION. Furthermore,
depending on a specific VM, all the primitives offered by the VM need
to be supported by the domain. For the RoarVM, this extended meta in-
terface includes in addition to #primCopy: for instance #primNext: and
#primNext:put: to handle the support for stream data structures of the
VM properly.

5.3. The OMOP By Example

This section informally illustrates the semantics of the OMOP by demonstrat-
ing how it can be used to enforce immutability as well as how it can be used
to implement Clojure agents and enforce their intended semantics.

5.3.1. Enforcing Immutability

Immutability significantly simplifies reasoning over program behavior, not
only in concurrent systems, and thus, it is a useful subject to study as an
example. Using the OMOP, immutability can be realized by changing the
owner of an object to a domain that forbids any kind of mutation. A domain
such as the ImmutableDomain can be defined so that it throws an error on
every attempt to mutate state. The definition of such a domain is discussed
below.

Fig.5.3 provides a sequence diagram showing how immutability can be
enforced based on the OMOP. The example uses a simple mutable cell object
and shows how it becomes owned by a domain guaranteeing immutability.
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%‘: main() ImmutableDomain
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1
enforced set: #bar + reqExecOf: #set on: cell with: #bar>'—

set: #bar

write: #bar toField: 1 of: cell

>

ImmutabilityError

Figure 5.3.: Enforcing Immutability with the OMOP. This sequence diagram depicts
a typical interaction between the application and a domain. The main program
starts in unenforced execution mode and creates a cell object. Since it has not
specified any domain as yet, it executes in the context of the standard, i.e., un-
customized domain. During the creation of the cell object the current domain is
used to determine its initial owner. The main program continues to set an initial
value for the cell (#foo) and then requests the immutable domain to adopt the
cell object. This completes the initialization of the program and it enables the en-
forced execution mode. When the main program now attempts to execute the set-
ter method on the cell, the immutable domain will reify the execution. However,
immutability does not interfere with method execution and thus, the request is
granted and the setter is executed. Eventually, the setter will attempt to write the
object field of the cell, which the immutable domain specifies a custom policies
for. Thus, the write attempt results in an invocation of the #write:toField:of:
intercession handler, which signals a violation of immutability and does not per-
form the state change.
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The main() procedure of the program executes in the context of the current
domain, which can be assumed to be a default that does not enforce any
specific semantics. Furthermore, note that main() starts executing without
enforcement enabled.

The first action of the program is the creation of a new cell object. To de-
termine the initial owner of the new object, the VM queries the current do-
main via a call to #initialDomainForNewObject. Thus, the owner of a newly
created object is determined by the domain in which the current thread is ex-
ecuting. Afterwards, still in the unenforced execution mode, the cell is set to
the value #foo and then adopted by the immutable domain. After adopting
the cell object, the intercession handlers of the domain define the semantics
for all operations on the cell. They will be triggered during the enforced exe-
cution mode, which is enabled by requesting the domain to evaluate a block:
current evaluateEnforced: [cell set: #bar].

When the VM reaches the point of executing cell set: #bar during en-
forced execution, it will not apply the method directly, but it will request
the execution of the method by using the OMOP. The owner of the cell
is identified and the intercession handler #requestExec0Of:on:with: is trig-
gered on it. The intercession handler itself executes in unenforced mode to
avoid meta recursion. In this example, #requestExecOf :on:with: implements
standard semantics of method execution, since immutability does not require
any changes to it. Hence, the method #set: is executed with the enforce-
ment enabled. At some point, the implementation of #set: tries to perform
a write to the object field of the cell. Here, the VM triggers the OMOP’s
#write:toField:of: intercession handler of the owner of the cell, instead of
performing the write directly. Thereby, the immutable domain is able to sig-
nal a violation of the requested immutability by throwing the corresponding
exception.

To cover other reflective capabilities properly as well, an implementation
of the OMOP requires that for instance reflective writes to fields obey the
enforcement flag. For example, in case the setter would have used Java’s
reflect.Field.set () to write the value, the implementation of Field.set ()
would be required to determine the owner domain of the cell, and use the
MOP to request the actual memory write.

After demonstrating how a program would execute in the presence of
enforcement, Lst.5.1 sketches of how such an immutability enforcing do-
main can be implemented. Note that the example uses the SOM syntax (cf.
Sec. 4.2.1). The given ImmutableDomain overrides all intercession handlers that
are related to state mutation. These are the intercession handlers for han-
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dling writing to fields as well as all primitives of the VM that can cause
state changes. This example only shows the primitive for array access and
the primitive for reflective access to object fields. Note that the primitive
#priminstVarAt:put:on: corresponds to Java’'s reflect.Field.set ().

ImmutableDomain = Domain (
raiseImmutabilityError = (
ImmutabilityError signal: ’Modification of object denied.’ )
write: val toField: idx of: obj = unenforced (

self raiseImmutabilityError. )

primat: idx put: aVal on: anObj = unenforced (
self raiseImmutabilityError. )

priminstVarAt: idx put: aVal on: anObj = unenforced (
self raiseImmutabilityError. )

and all other mutating operations"

Listing 5.1: Definition of a Domain for Immutable Objects

While the OMOP provides the capabilities to ensure immutability with
such a domain definition, it is important to note that the semantics of im-
mutability are only ensured during enforced execution, i.e., at the base level.
As soon as execution moves to the unenforced mode, i.e., to the meta level,
immutability is no longer guaranteed. Thus, a language implementer has to
ensure that the language implementation, i. e., the meta-level code is correct.
Furthermore, properties such as immutability or isolation that are enforced
using the OMOP are not meant as a mechanism to enforce security policies
of some sort. At this time, security has not been a design concern for the
development of the OMOP.

5.3.2. Clojure Agents

Introduction Clojure agents, as introduced in Sec.2.4.3, are the second ex-
ample for demonstrating how the OMOP works. An agent represents a re-
source, i.e., a mutable cell, which can be read synchronously. However, state
updates are only performed asynchronously by a single thread. Lst. 5.2 shows
the implementation in SOM.
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Agent = (
| state mailbox immutDomain |

read = unenforced ( -~ state )

"update blocks are of the form:
[:0ldState | oldState produceNewState 1"
send: anUpdateBlock = unenforced (
mailbox nextPut: anUpdateBlock )

initialize = unenforced (
| domain |
mailbox = SharedQueue new.
immutDomain := ImmutableDomain new.
domain := AgentDomain new agent: self.

domain spawnHere: [
true whileTrue: [ self processUpdateBlock ]]. )

processUpdateBlock = (
| updateBlock newState |

updateBlock := mailbox waitForFirst.

newState := domain evaluateEnforced: [
updateBlock value: statel.

state := immutDomain adopt: newState.

mailbox removeFirst. ) )

Listing 5.2: Clojure agents implemented in SOM Smalltalk

For the purpose of this discussion, agents are represented by an object that
has the field state to represent the state of the agent and the field mailbox,
which holds incoming update requests. In addition to the object itself, an
agent has an associated Process, i.e., thread, which evaluates the incom-
ing update requests one by one. The mailbox is a SharedQueue object, i.e.,
a concurrent queue data structure. The queue implements #waitForFirst to
block the current thread until the queue has at least one element and then
return the element without removing it. This operation is complemented by
#removeFirst, which removes the first element of the queue.

The example uses these operations to implement the basic methods of the
agent. Thus, #read returns the current state and #send: enqueues an update
request for the agent’s state. The request is represented by anUpdateBlock,
which is a lambda, i.e., a block, with a single argument. The argument is the
old state, which is going to be replaced by the result the block returns.
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The process that has been spawned during the initialization of the agent ob-
ject tries indefinitely to process these update blocks in #processUpdateBlock.
It waits for the next update block, evaluates it with the current state as argu-
ment, and sets the result value as new state.

This implementation is simplified but represents the essence of Clojure
agents. The differences with the Clojure implementation sketched in Sec. 2.4.3
originate from language differences between SOM and Clojure. For instance,
SOM does not have the notion of private methods, which leaves the implemen-
tation methods #initialize and #processUpdateBlock exposed to arbitrary
use. Thus, these methods could be called from another thread and violate
the assumption that only one update function is executed at a time. The re-
maining differences originate from the use of the OMOP. Note that the #read,
#initialize, and #send: method are annotated with unenforced. They are
by themselves not subject to the OMOP’s enforcement, guaranteeing that it
does not come to meta recursion during their execution.

Providing extended Guarantees based on the OMOP While Clojure guides
developers to use agents in conjunction with immutable data structures, at the
same time it makes the pragmatic decision not to enforce any such guarantees
on top of the JVM. One reason for this is the anticipated performance impact.
Another issue is the integration with Java itself, which makes it impossible
to provide such guarantees consistently. This section uses this example to
demonstrate how the OMOP can be used to express and in return enforce
such guarantees concisely.

To this end, Lst. 5.3 defines the AgentDomain. The domain implements the
intercession handler #requestExec0f:on:with: to ensure that only a single
thread of execution modifies the agent and that the agent is not reinitialized.
In this simple example, this is done by using a list of selectors that are allowed
to be executed. In case any other selector is sent to an agent, an error is raised
to report the violation.>

As the ImmutableDomain in Sec.5.3.1 shows, adding the guarantee of im-
mutability is also possible in a concise manner. Using the ImmutableDomain
of Lst. 5.1 in this example, the agent ensures in #processUpdateBlock that the
state is an immutable object. This is done by requiring the immutable domain
to #adopt : the return value of an update block.®

50ur actual implementation of agents goes beyond what is presented here. For brevity, the
example leaves out operations such as #await and #send:with:.

6In the current implementation #adopt: performs a shallow adopt only and thus, only the
root object of the object graph is made immutable.
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AgentDomain = Domain (
| agent |
"Use #agent: to set the agent that is protected by this domain"
agent: anAgent = ( agent := self adopt: anAgent )
requestExecOf: selector on: obj with: args = unenforced (

"Semantics are only enforced on the agent itself,
not on other objects created in its scope."
obj = agent ifFalse: [~ obj perform: selector with: args].

"Only allow execution of white-listed selectors"
(#read = selector or: [#send: = selector]) ifTrue: [

agent perform: selector with: args ].

Error signal: ’Exec. of method ’> + selector + ’ is denied.’ ))

Listing 5.3: Domain definition for an Agent, enforcing the expected guarantees.

5.4. Semantics of the MOP

Sec. 4.2 introduced the SOM language and the interpreter’s execution model.
Building on that foundation, this section describes the semantics of the OMOP
by discussing its implementation in the SOM interpreter.

Derived from Fig. 5.1, Lst. 5.4 shows how the basic elements of the OMOP
map onto the SOM interpreter. Every SOMObject has a field to refer to the
owner domain. The domain field is initialized in the #postAllocate method
after allocation is completed. The initial value, i.e., the owner domain is de-
termined by the domain the thread is currently executing in. Since SOM is
implemented as a stack-based interpreter, the current domain is derived from
the current stack frame. The enforcement flag is realized as part of the inter-
preter’s stack frames as well. Thus, every frame maintains an enforced flag
and the current domain.

SOMInvokable, the superclass for methods and primitives, maintains the
attribute that indicates to the interpreter that execution has to continue un-
enforced. Methods are annotated with unenforced instead of enforced, be-
cause applications and libraries need to execute in the enforced mode most of
the time to benefit from the OMOP. Only the domain’s intercession handlers
and methods implementing language behavior require unenforced execution.
Thus, it is a pragmatic decision to annotate the smaller set of methods that
require unenforced execution.
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5.4. Semantics of the MOP

S0MObject = ( | "..." domain | "..."
postAllocate = (
domain := interpreter frame domain

initialDomainForNewObjects ) )

SOMFrame = SOMArray ( | "..." enforced | "..."
enforced = ( - enforced )
enforced: aBool = ( enforced := aBool ) )
SOMInvokable = SOMObject ( | "..." attribute | "..."
unenforced = ( ~ attribute == #unenforced ) )
SOMUniverse = ( | globals symbolTable interpreter | "..."
bootstrapFrameWithArguments: args = (

(interpreter pushNewFrameWithMethod: self bootstrapMethod)
push: (self globalAt: #system);
push: args;
enforced: false ) )

Listing 5.4: Structural Changes to support the OMOP in SOM

The execution of a program starts from a bootstrap frame created by the
#bootstrapFrameWithArguments: method in SOMUniverse. The initialization
of the bootstrap frame sets the execution mode to unenforced. This gives an
application the freedom to set up the runtime environment properly before
it continues with its normal execution in enforced mode. However, this also
implies that a language implementation on top of the OMOP needs to opt-in
to the enforced execution mode, which can make it prone to incorrect use by
a language implementer.

Lst. 5.5 shows the adapted implementation of the POP_FIELD bytecode. Dur-
ing unenforced execution, the value that was on the top of the stack is stored
directly into the receiver. When the OMOP’s semantics are enforced however,
it triggers the intercession handler by sending #write:toField:of: to the
receiver’s domain to reify the store operation. Note that the operations of
the OMOP are executed with enforcement disabled. As shown in previous
domain definitions such as Lst. 5.1 and Lst. 5.3, the OMOP operations are an-
notated with unenforced. The implementation of #pushNewFrameWithMethod
will make sure that in these cases the unenforced flag overrides normal prop-
agation of the enforcement flag of the frame.

Lst. 5.6 shows the corresponding read operation. It pushes the value of an
object field onto the operand stack. The main difference between POP_FIELD
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SOMInterpreter = (
| frame universe currentBytecode |

doPopField = (
| omopWriteField args oldFrame value |
value := frame pop.
frame enforced ifFalse: [
=~ self currentObject
fieldAtIndex: currentBytecode fieldIndex

put: value J].

omopWriteField := self currentObject domain class
lookupInvokable: #write:toField:of:.

oldFrame := frame.

oldFrame pushAll: { self currentObject domain.

value.

currentBytecode fieldIndex.

self currentObject .
frame := interpreter pushNewFrameWithMethod: omopWriteField.
frame copyArgumentsFrom: oldFrame )

pushNewFrameWithMethod: method = (

~ frame := SOMFrame new
method: method;
previousFrame: frame;

resetStackPointerAndBytecodeIndex;

domain: frame domain;

enforced: (frame enforced and: [method unenforced not]);
yourself )

Listing 5.5: Reifying mutation of object fields

and PUSH_FIELD bytecode is that the latter uses its own OMOP intercession
handler #readField:of:.

The bytecodes for sends and super sends themselves remain unchanged
(cf. Sec.4.2.2, Lst. 4.5). However, both bytecodes rely on adaptation of the ac-
tual send in the #performSend:to:lookupCls: method. Lst.5.7 shows that
#performSend:to:lookupCls: will send the message directly during unen-
forced execution, and it will rearrange the operand stack during enforced
execution to be able to trigger the #requestExecOf:with:on:lookup: inter-
cession handler on the receiver’s domain instead.

While handling message sends implicitly covers the methods that represent
the VM'’s primitives, they still need to be treated explicitly to redefine them
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SOMInterpreter = ( doPushField = (
| omopReadField args oldFrame |
frame unenforced ifTrue: [

frame push: (self currentObject fieldAtIndex:
currentBytecode fieldIndex) 1J].

omopReadField := self currentObject domain class
lookupInvokable: #readField:of:.

oldFrame := frame.

oldFrame pushAll: {self currentObject domain.
currentBytecode fieldIndex.
self currentObject 1.

frame := interpreter pushNewFrameWithMethod: omopReadField.

frame copyArgumentsFrom: oldFrame )

n s n )
Listing 5.6: Reifying reading of object fields

SOMInterpreter = (
performSend: selector to: receiver lookupCls: cls = (
| result args |
frame unenforced ifTrue: [

self send: selector toClass: cls 1].

"Redirect to domain"

args := frame popN: selector numArgs.
frame pop; "pops the old receiver"
pushAll: {receiver domain. selector. args. receiver.
result := self send: #requestExecOf:with:on:lookup:
toClass: receiver domain class.
result )
")

Listing 5.7: Perform reified message send

when necessary as part of the domain definitions. Hence, #invokeInFrame:

cls}.

is

changed in Lst. 5.8 to trigger the intercession handler that corresponds to the

primitive on the receiver’s domain.

Note that globals need not be treated separately in SOM. The bytecode
set does not include operations to change them, instead this functionality is
provided via a primitive, and is thus already covered. Other VMs, such as the

RoarVM require separate treatment of globals.
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SOMPrimitive = SOMInvokable (
invokeInFrame: frame = (
| receiver omopPrim oldFrame |
(self unenforced or: [frame unenforced]) ifTrue: [

self invokePrimitiveInPlace: frame ].

receiver := frame stackElementAtIndex: numArgs.
omopPrim := receiver domain class

lookupInvokable: #prim, signature, #on:.
frame stackElementAtIndex: numArgs

put: receiver domain;
push: receiver.
oldFrame := frame.
frame := interpreter pushNewFrameWithMethod: omopPrim.

frame copyArgumentsFrom: oldFrame )

u".n)

Listing 5.8: Reifying primitive invocations

5.5. Customizations and VM-specific Design Choices

This section discusses a number of design choices that need to be considered
when the OMOP is adapted for a concrete use case or a specific VM. Note
that the design presented in Sec.5.2 is a minimal representation of the key
elements of the OMOP. Therefore, different interpretations of the OMOP are
possible and can be desirable depending on the use case. This dissertation
concentrates on the key elements with their minimal representation to evalu-
ate the main idea and its applicability in the general case.

Representation of Ownership The proposed OMOP design uses a mini-
mal set of intercession handlers, i.e., #readField:of:, #write:toField:of:,
#requestExecOf :on:with:1lkup:, as well as primitive handlers #prim*. An al-
ternative design of the OMOP could for instance use the notion of ownership
and project it onto the intercession handlers as well. Currently, the notion of
ownership is only represented as a property of the object. By introducing it
into the intercession handlers, an interpreter can perform the most common
operations directly and potentially improve the performance for concurrency
abstractions that define different rules based on ownership.

For example, a common use case is to guarantee properties such as isola-
tion. To guarantee isolation, the OMOP needs to distinguish between an object
being accessed by a thread executing inside the same domain and by a thread
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executing in another domain. Consequently, an instantiation of the OMOP
taking this use case into account could provide special intercession handlers
for both cases. For reading fields, it could provide #readFieldFromWithin:of:
and #readFieldFromQutside:of:. Similarly, the other intercession handlers
could be provided in these two variants, as well. While the resulting OMOP
would no longer be minimal, an implementation of isolation on top of it
would not require testing for ownership but could rely on the VM, which
might provide better performance.

In future work (cf. Sec. 9.5.6), the different properties of supported concur-
rent programming concepts can be studied and formalized, which could yield
similar variation points and a declarative representation of possible language
policies. Such a representation would again allow a different representation
of key elements of the OMOP and allow more efficient implementation of
common use cases.

Opt-In for Enforced Execution Mode Another design decision made in the
presented OMOP is that execution starts out in unenforced mode. With the
semantics discussed in Sec.5.3.1 and Sec. 5.4 (cf. Lst.5.4), a language imple-
menter needs to opt-in explicitly to enforced execution. This design was cho-
sen to provide predictable behavior and the ability to set up all relevant li-
braries and system parts before enforced execution mode is activated. This
choice is partially motivated by the fact that the OMOP has been developed
for an existing system with existing infrastructure. Thus, starting in unen-
forced execution mode provides more flexibility. However, in a system that is
designed from the ground up as a multi-language VM with support for the
OMOP, it might be desirable to execute code in the enforced execution mode
from the beginning. The benefits of this choice would be that a language
implementer does not need to opt-in to enforced execution and thus, the stan-
dard case will ensure that language semantics are ensured at all times.

Handling of Primitives Primitives, i.e., built-in functionality provided by
the VM needs to be covered by the OMOP to guarantee that the semantics
of a concurrent programming concept can be enforced in their entirety. Thus,
if primitives are not covered correctly, they could be used, for instance to
circumvent the isolation required between processes in CSP.

The presented OMOP design includes every single primitive as a separate
intercession handler on the OMOP. This choice works well as part of the
presentation in this dissertation and for VMs that have only a small number
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of primitives that need to be covered. However, if the number of primitives
grows too large, this design can become cumbersome.

An alternative solution to list all primitives in the form of prim# is to use a
generic intercession handler similar to the one provided to handle all methods
in a uniform way. Such a handler needs to encode the primitive as a parameter,
for instance like #requestPrim: prim on: obj with: arguments.

Handling of Reified Execution State Since the presented implementations
are based on Smalltalk, they have direct access 