
Zhu, Xiaoyu, Hossain, Moinul, Li, Jian, Zhang, Biao and Xu, Chuanlong 
(2022) Weight Coefficient Calculation through Equivalent Ray Tracing Method 
for Light Field Particle Image Velocimetry.  Measurement, 193 . ISSN 0263-2241. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/93573/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1016/j.measurement.2022.110982

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/93573/
https://doi.org/10.1016/j.measurement.2022.110982
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Journal Pre-proofs

Weight Coefficient Calculation through Equivalent Ray Tracing Method for
Light Field Particle Image Velocimetry

Xiaoyu Zhu, Moinul Hossain discussion, Jian Li, Biao Zhang, Chuanlong Xu

PII: S0263-2241(22)00255-X
DOI: https://doi.org/10.1016/j.measurement.2022.110982
Reference: MEASUR 110982

To appear in: Measurement

Received Date: 15 December 2021
Revised Date: 16 February 2022
Accepted Date: 4 March 2022

Please cite this article as: X. Zhu, M. Hossain discussion, J. Li, B. Zhang, C. Xu, Weight Coefficient Calculation
through Equivalent Ray Tracing Method for Light Field Particle Image Velocimetry, Measurement (2022), doi:
https://doi.org/10.1016/j.measurement.2022.110982

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd.

https://doi.org/10.1016/j.measurement.2022.110982
https://doi.org/10.1016/j.measurement.2022.110982


1

Weight Coefficient Calculation through Equivalent Ray Tracing 

Method for Light Field Particle Image Velocimetry

Xiaoyu Zhu1, Md. Moinul Hossain2, Jian Li1,*, Biao Zhang1, Chuanlong Xu1,*

1 National Engineering Research Center of Turbo-Generator Vibration, School of Energy and 
Environment, Southeast University, Nanjing 210096, China
2 School of Engineering, University of Kent, Canterbury, Kent, CT2 7NT, UK
*Corresponding author: chuanlongxu@seu.edu.cn (C. Xu), eelijian@seu.edu.cn (J. Li)

Abstract: Light field particle image velocimetry (LF-PIV) can measure three-dimensional (3D) 
flow velocity from a single snapshot of a light field camera based on the 3D reconstruction of tracer 
particles of light field images. However, it requires light field intensity calibrations to calculate 
accurate weight coefficients. Conventionally, the weight coefficients are calculated through in-situ 
calibration approaches whereas the translation of the calibration board within the entire 
measurement area is required. Therefore, these approaches are inapplicable for internal industrial 
flows and space-constrained applications. This study presents an equivalent ray tracing method for 
the weight coefficients calculation. With a light field snapshot of a smart calibration board, a 
mapping relationship is established to relate the target points sampled in the flow field with their 
equivalent points in the air. The weight coefficients are then calculated through the ray tracing 
method by changing the starting points of ray tracing from the target points to their equivalent 
points. The calculated weight coefficients are employed to reconstruct the feature marks of the 
calibration board. Results show that the spatial locations of the marks can be reconstructed 
accurately with a mean lateral and depth error of 0.63% and 5.6%, respectively. Experiments were 
also carried out on a low-speed laminar flow. The result indicates that the equivalent ray tracing 
method provides a similar measurement accuracy with the in-situ calibration method. The overall 
error of 6.77% is achieved for the velocity measurement. It is demonstrated that the proposed 
method is capable of measuring the 3D flow velocity for internal industrial and space-constrained 
applications without translating the calibration board within the entire measurement area.

Keywords: Flow measurement, Light field PIV, Weight coefficient, Equivalent point, Ray tracing 
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1. Introduction
In nature, most of the industrial flows are three-dimensional (3D), complex and turbulent. They 

likely contain a large range of length scales and a large dynamic range. For an in-depth 
understanding of complex flow structures and hence the design of relevant facilities of the industrial 
flows, it is crucial to develop an advanced flow diagnostic technique that can measure the 
instantaneous 3D velocity field. The particle image velocimetry (PIV) and its development show a 
capability of measuring the 3D velocity field [1–5]. However, most of the volumetric PIV 
techniques such as the tomographic PIV [6] and synthetic aperture PIV [7] are based on multiple 
cameras and require multiple optical access to the measurement area, thus limiting the applicability 
of internal industrial flows. Therefore, it is necessary to explore a single-perspective-based flow 
measurement technique for space-constraint applications.

Recently, the 3D-PIV techniques have been developed based on a single light field (LF) camera 
[8–12]. With the integration of a high-resolution microlens array (MLA) in front of the photosensor, 
the 3D spatial information of the tracer particles can be captured from a single perspective [13,14]. 
To retrieve the particle distributions from the LF images for 3D particle motion analysis, the 
measurement area is discretized as a 3D array of cubic voxels and tomographic algorithms are then 
used to perform the volumetric reconstruction [15–17]. The weight coefficient, which characterizes 
the intensity contribution of each discrete voxel to the LF image, requires to be determined for the 
particle reconstruction. Theoretically, with the geometrical location of the measurement area and 
optical parameters of the LF camera, the weight coefficient can be calculated through a direct ray 
tracing method [18], i.e., tracing the light rays from the target voxel to the image sensor. However, 
in practical experiments, the ray tracing from the target voxels is hampered by the light ray 
deflections in the object space, which is caused by the refractive index changes [19,20]. Considering 
that the light ray from the tracer particles passes through the flow, optical window and air, 
refractions must exist at the interfaces. Unfortunately, in experiments, the exact distances from the 
interfaces to the principal plane of the camera lens can hardly be measured, hence unable to trace 
the light rays from the flow field. Several in-situ calibration methods have been developed to resolve 
this issue. For instance, Wieneke et al. [21] proposed a volumetric self-calibration (VSC) method to 
correct the mapping functions between the voxels and pixels. It employs triangulation to lock the 
3D positions of the particles and uses the residual triangulation error for corrections. The VSC 
method is further enhanced with the ghost particle suppression technique [22], which becomes the 
standard calibration procedure in stereo and tomographic PIV [23–26]. Besides, Hall et al. [27] 
developed a direct volumetric calibration (DLFC) approach to relate the world coordinates with the 
MLA coordinates through a polynomial mapping function without prior knowledge of the optical 
parameters. Recently, Shi et al. [28] proposed an enhanced volumetric calibration technique to relate 
the voxels with their affect pixels directly. This method exploits the unique point-like features of 
LF images to derive an object-image mapping function and the Monte Carlo method is combined to 
generate the weight coefficients.

These volumetric calibration approaches correct the ray tracing misalignments in the multi-
media photogrammetry effectively and thus generate accurate weight coefficients for the LF-PIV. 
However, under some special circumstances, limitations still exist. For example, a crucial step of 
these approaches is to image a calibration target at different depths of the measurement area, which 
is easy to implement in the laboratory but difficult in the industry internal flows where the motion 



3

of the calibration target is limited. Besides, the mapping function obtained from the calibration 
process is only applicable to a specific depth range that the calibration target has traversed, which 
is relatively limited. Employment of the calibration result to the voxels outside this depth range 
creates significant errors. To overcome these limitations, it is desirable to develop an appropriate 
and accessible method for weight coefficients calculation, especially for space-constraint 
applications.

The LF camera shows a capability to record the spatial and directional information of the light 
rays, however, it is difficult to identify the starting points of the rays. It means that if two light rays 
start from the different optical media and strike the same point on the main lens with the same angle 
of incidence, the LF camera cannot tell where the rays come from. From this perspective, if the 
starting points of the light ray can be moved from the measurement area to the air, the weight 
coefficients can then be calculated through the ray tracing technique without prior knowledge of the 
flow interface locations.

To facilitate an accurate flow measurement in space-constrained applications, an equivalent 
ray tracing method is proposed in this study for the weight coefficients calculation. The proposed 
approach can generate the weight coefficients for tracer particle reconstruction through a single 
snapshot of the calibration board instead of moving the calibration board within the entire 
measurement area. The methodology of weight coefficient calculation is described. The accuracy 
of the calculated weight coefficients is evaluated by reconstructing the calibration board immersed 
in the water using both synthetic and experimental data. Experiments on a low-speed laminar flow 
are also conducted to validate the feasibility of the proposed method.

2. Equivalent ray tracing method 
2.1 Ray tracing method

Compared with the conventional camera, the LF camera records complete 4D LF information 
(i.e., both the spatial and directional information of the light rays). This is due to the addition of a 
dense microlens array (MLA) in front of the photosensor. As shown in Fig. 1, the light rays emitting 
from the object point are firstly captured by the main lens and then focused on the MLA. The spatial 
information of the rays is hence registered on the microlens. Each microlens further redirects the 
incoming rays to different pixels on the photosensor based on their directions. The directional 
information of the rays can then be recorded by the individual pixel.

To retrieve the 3D spatial location of the object, the ray propagation process from the object 
space to the photosensor requires to be characterized. As demonstrated by Georgiev et al [29], the 
LF can be represented as a 4D plenoptic function L (x, y, θ, φ). As illustrated in Fig. 2, (x, y) and (θ, 
φ) define the intersection of the ray with a plane perpendicular to the optical axis and the propagation 
direction of the ray, respectively. Specifically, θ is the angle between the optical axis (z) and the 
projection of the ray on the x-z plane, and φ is the angle between the optical axis (z) and the 
projection of the ray on the y-z plane. The propagation trajectory of the light ray can be traced using 
the ray transfer matrix defined as
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where (x, y, θ, φ) and (x′, y′, θ′, φ′) are the 4D coordinates of the light ray starting from the object 
space and reaching the photosensor, respectively. so and si are the object and image distances, Fm 
and fm are the focal lengths of the main lens and microlens, sux and svy are the distances from the 
microlens center to the optical axis in the x and y directions. sμ is the distance from the MLA to the 
photosensor. Careful consideration should be taken to the object distance so as it is defined under a 
case that the light ray propagates along a straight path in the object space. Any ray deflections caused 
by the refractions requires additional modification of so, otherwise, misalignment of the ray tracing 
can be produced. 
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Fig. 1 Light ray propagations of the LF imaging in multiple optical media. p is the nominal focal point of the LF 

camera and m is p’s equivalent point in the air. p' and p'' are the depth defocus point and lateral off-axis point, 

respectively, and m' and m'' are their equivalent points.
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Fig. 2 Parameterization of the LF with a 4D plenoptic function L (x, y, θ, φ).
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2.2 Determination of equivalent point
In the LF-PIV, the refraction indices should be employed carefully in the ray tracing method. 

Because the refractive index in the object space may change during the experiments. For example, 
in the air, if the liquid flow field is captured by the LF camera, the difference of refractive index 
between the liquid and air causes ray refractions. The optical window made by glass or acrylic glass 
can also cause ray deflections, which significantly degrades the ray tracing accuracy. 

As illustrated in Fig. 1, point p is the nominal focal point of the LF camera, which is conjugated 
with the intersection of the MLA and the optical axis (z-axis). A light ray (blue solid line) emitting 
from p passes through the interfaces #1 and #2 with twice refractions, and finally intersects the main 
lens at point R. The position of R and the angle of incidence should be determined for further tracing 
the ray from the main lens to the photosensor. However, this demands the exact distances from the 
interfaces to the principal plane of the main lens, which is not feasible to measure in practical 
experiments. Fortunately, the LF camera cannot identify the propagation trajectories of the light 
rays in the object space. The rays start from different optical media and strike the same point of the 
main lens with a fixed angle of incidence will always light the same pixel on the photosensor. From 
this perspective, the ray trajectory from point p to R can be replaced by another ray starts from the 
air and propagates along the straight path. The starting point of the ray in the air (marked as m in 
Fig. 1) can be determined as the intersection of the ray extension (blue dot line) and the optical axis.

If the distance from interface #2 to the main lens is d1, the separation between two interfaces 
is d2, the distance from point m to interface #1 is d3, and the separation between m and p is d4, based 
on the triangular transformation, the relationships would be 

(2)   1 2 3 1 1 1 2 2 3 4 3tan = tan tan tand d d d d d d       

where α3 is the angle of incidence, and α2 and α1 are the angles of refraction. Eq. (2) can be simplified 
with the defined refractive indices of water nw, acrylic glass nag and air na, as

(3)    1 2 3 1 2 3 4+ + = + +a ag a wd d d d d n n d d n n

The Snell’s law,

(4)1 2 3sin sin sina ag wn n n   

and the paraxial approximation is applied in derivation of Eq. (3). 
(5)sin tan   

Equation (3) indicates that with the paraxial approximation, the distance from point m to the 
main lens (i.e., d1 + d2 + d3) is independent of the angle of incidence. It means that if there is another 
ray that starts from point p and strikes the main lens at point Q (purple solid line in Fig. 1), the 
extension of the ray from Q will also intersect the optical axis at point m. Thus, it can be inferred 
that points p and m are equivalent, and the starting point of the ray can be moved from p to m for 
tracing the ray to the same pixel. In this aspect, the interface locations are not necessary and the 
problem becomes the localization of the equivalent point m. Since p is the nominal focal point in 
the water, its equivalent point in the air should also be the nominal focal point, whose location can 
be determined based on the thin lens model, as

(6) 1 2 3 m+ + = 1d d d F M M
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where M denotes the magnification of the main lens. According to Eq. (6), with the known lens 
parameters, the ray transfer matrix [in Eq. (1)] can be used to trace the rays starting from m instead 
of p to the photosensor. 

In addition to the focal point p, for a defocus point (p') with known defocus distance (Δp') and 
an off-axis point (p'') with known off-axis distance (Δp''), their equivalent points (m' and m'') can 
be determined based on the geometrical optics. Specifically, the defocus distance of the point m' 
(Δm′ in Fig. 1) and off-axis distance of point m'' (Δm'' in Fig. 1) can be related to Δp' and Δp'', 
respectively, based on the triangular transformation, as 

(7)   1 2 3 1 1 1 2 2 3 4 3tan tan tan tand d d m d d d d p             

(8)   1 2 3 1 1 1 2 2 3 4 3tan tan tan tand d d m d d d d p              

By eliminating d4 through Eq. (2) and employing the Snell’s law and paraxial approximation, Eqs. 
(7) and (8) can be simplified as

(9) a wm n n p   

(10)m p   

Eq. (9) indicates that the ratio of Δm′ to Δp′ is only dependent on the refractive indices of the flow 
field medium and the air, and it will not be affected by the optical window. As the location of point 
m is known, the object distance of m' can further be calculated with the defocus distance obtained 
from Eq. (9). Eq. (10) indicates that lateral off-axis distances will always be the same in the flow 
field and the air. The starting point of ray tracing can therefore be changed from point p'' to m'' by 
setting the lateral location coordinate in Eq. (1) as x = Δp''. The object distance of point m'' is the 
same as point m. For a point with both lateral off-axis distance and depth defocus distance, its 
equivalent point can also be determined by Eqs. (6), (9) and (10). Therefore, the rays from the 
equivalent point can be traced to the photosensor through the ray transfer matrix [in Eq. (1)].

2.3 Weight coefficient calculation
To reconstruct the volume of tracer particles from a LF image, the measurement area can be 

discretized as a 3D array of cubic voxel elements in the x, y, and z-directions. The projection of light 
intensity distribution E (x, y, z) on an image pixel returns the pixel’s intensity I (x, y), which can be 
expressed as a linear equation

(11)   , , , ,i j j j j i i
j N

w E x y z I x y




where wi, j is the weight coefficient that describes the light intensity contribution of the jth voxel to 
the ith pixel, and N denotes the number of the voxels in the line-of-the-sight of the ith pixel. With the 
captured light field images and the calculated weight coefficients, the goal of the particle 
reconstruction is to inversely solve this linear equation and determine the intensity distribution E (x, 
y, z). As the number of particle projections is limited, there is an infinite number of solutions 
satisfying the Eq. (11). Therefore, additional conditions, e.g., entropy maximization, is considered 
to enforce uniqueness. In this study, the simultaneous algebraic iterative technique (SART) [30] 
based on the maximum entropy criterion is employed. In the SART, the iteration starts with a 
uniform initial guess and the voxel intensity is updated iteratively via the following expression
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where Ej
k denotes the voxel intensity in kth iteration, Ii denotes the pixel intensity, μ is the relaxation 

parameter. In this algorithm, the correct magnitude of voxel’s intensity in each iteration depends on 
the difference between the actual pixel intensity and the product of the weight coefficient with the 
current voxel intensity. Therefore, the accuracy of the calculated weight coefficients has a 
significant effect on the final reconstruction accuracy. 

To determine the light intensity contribution of the jth voxel to the ith pixel, the light beam 
emitting from the jth voxel can be discretized as the dense light rays with different propagation 
directions, and the weight coefficient wi, j can be calculated as

(13), ,=i j i j jw N N

where Nj denote the total number of the light rays that emit from the jth voxel and are detected by 
the main lens, Ni, j denotes the number of light rays that emit from the jth voxel and strike the ith 
pixel. Taking the red voxel in Fig. 3 as the jth voxel, considering that a total of 104 light rays emitting 
from this voxel can be detected by the main aperture. Through the refractions of the main lens and 
the MLA, these rays converge on the 55 pixels (colored ones). These 55 pixels are the affected 
pixels of the jth voxel [9]. Among them, the central pixel detects 1600 rays and thus the 
corresponding weight coefficient is 0.16. The sum of the weight coefficients of the affected pixels 
is equal to 1. In addition to the affected pixels, the other pixels on the photosensor are not lighted 
by the jth voxel, and thus the corresponding weight coefficients are all equal to 0.
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Fig. 3 An example of the weight coefficient calculation.

The number of rays that converge on each pixel can be counted by the equivalent ray tracing 
(ERT) method. Specifically, for a target voxel in the measurement area, several points within this 
voxel are sampled. Although these sampled points cannot be taken as the starting points of the ray 
tracing due to the unknown interface locations. Their equivalent points in the air can be determined 
by Eqs. (6), (9) and (10). It has been demonstrated (described in Section 2.2) that the starting points 
of the ray tracing can be moved from the target points to their equivalent points, and the ray tracing 
can be performed without the prior knowledge of the interface locations. With the densely sampled 
light rays from each equivalent point, the ray transfer matrix [Eq. (1)] is employed to trace the rays 
to the corresponding pixels. As a result, the number of rays that converge on each pixel (i.e., Ni, j) 
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and hence the weight coefficient can be calculated. In this study, to ensure the accuracy of the 
calculated weight coefficient, the measurement area is discretized as 0.1 mm0.1 mm0.1 mm 
cube voxels. The number of the points sampled in each voxel and the number of light rays sampled 
from each equivalent point are 500 and 104, respectively.

In the practical experiment, the location of the focal plane relative to the central depth of the 
measurement area must be determined to calculate the weight coefficients. This can be achieved by 
imaging a calibration target with feature marks (detailed in Section 4). As the measurement area is 
discretized into the voxels with uniform size, the determination of the focal plane can help to infer 
the defocus distances of the sampled point sources in each voxel, which are essential for the 
localization of the equivalent points by Eqs. (9) and (10). Fig. 4 illustrates the workflow of the ERT 
method for the weight coefficients calculation.

Determine the 
defocus distances of 

the point sources 

Sample point 
sources within 

each target voxel 

Find 
equivalent 

points  

Sample light 
rays and perform 

ray tracing  

Count the number 
of rays converge 

on each pixel  

Fig. 4 Workflow of weight coefficient calculation through the equivalent ray tracing method.

3. Numerical simulation
3.1 Simulation setup

To verify the accuracy of the calculated weight coefficients, numerical simulations were 
carried out. As illustrated in Fig. 1, five discrete voxels p1 to p5 located in the measurement area are 
chosen to calculate their weight coefficients. The defocus distances of the voxel centers are given 
in Table 1. The refractive indices of air, acrylic glass and water are used as 1, 1.49 and 1.33, 
respectively. The distance from interface #2 to the main lens (d1 in Fig. 1) is set as 98 mm, and the 
thickness of the acrylic glass (d2) is set as 2 mm. The optical parameters of the LF camera are 
summarized in Table 2. 

To calculate the weight coefficients of the voxels p1 to p5 by the ERT method, 500 point sources 
are randomly sampled at each target voxel. The equivalent points of these sampling points are then 
determined and 104 rays with different directions are traced from each equivalent point to the 
photosensor to compute the weight coefficient. On the other hand, as the distances from the 
interfaces to the main lens are given (i.e, d1 and d2), the weight coefficients can be calculated by 
directly tracing the rays starting from the target voxels (i.e., p1 to p5). By considering the refractions, 
the ray transfer matrix in the object space is modified as
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In Eq. (14), d is the depth distance that the ray passes through the water, and can be calculated as
(15)3 4 =   +  d d d z 

where d3 and d4 can be obtained from Eqs. (6) and (3), respectively, and Δz is the depth defocus 
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distance of the sampling point. By combining the modified ray transfer matrix [Eqs. (1) and (14)], 
densely sampled rays can be directly traced from the voxels p1 to p5 to the photosensor. The 
generated weight coefficients are then considered as the ground truth to evaluate the result of the 
ERT method.

Table 1: Defocus distances of centers of the target voxels p1 to p5 (mm)

p1 p2 p3 p4 p5

Lateral (x) 1 1.5 2 2.5 3
Lateral (y) 0 0 0 0 0
Depth (z) 4 2 0 -2 -4

Table 2: Optical parameters of the LF camera 

Symbol Parameter Value Unit

M Magnification ratio -1 -

Fm Main lens focal length 100 mm

fm MLA focal length 0.8 mm

(f/#)m Main lens f-number 4 -

(f/#)mla MLA f-number 8 -

pm Main lens aperture 25 mm

pl Microlens pitch 0.1 mm

px Pixel pitch 5.5 μm

si Main lens to MLA distance 200 mm

sμ MLA to photosensor distance 0.8 mm

Npx Camera resolution: x 2352 -

Npy Camera resolution: y 1768 -

Nmx MLA resolution: x 252 -

Nmy MLA resolution: y 252 -

3.2 Accuracy of the weight coefficient calculation
Fig. 5 shows a comparison of the weight coefficients calculated by the direct ray tracing (DRT) 

and ERT methods. A similar structure can be seen for both methods. As the depth defocus distance 
increases, the weight coefficient produces a larger point-like pattern on the image. These point-like 
features contain the depth information of the voxels that are used to reconstruct the tracer particle 
locations in the LF-PIV by the SART algorithm. 

The weight coefficients calculated by the DRT and ERT methods are further quantified by the 
structural similarity index (SSIM) [31] and the root-mean-square error (RMSE). The SSIM index 
quantifies the similarity of two images and expressed as 

(16)    
  

1 2 1 12 2
1 2 2 2 2 2

1 2 1 1 2 2

2 2
SSIM ,

c c
w w

c c
  

   
 


   

where w1 and w2 denote the reference image and reconstructed image, respectively. μ1, μ2, σ1, σ2 and 
σ12 are the local means, standard deviations and cross-covariance for the reference image and 
reconstructed image. c1 and c2 are the regularization constants. The SSIM index is from 0 to 1, and 
a large value corresponds to a high similarity. The RMSE value is the standard deviation of the 
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residuals (in this work is the difference between the pixel gray value of two images). A small RMSE 
indicates that the difference between the two images is insignificant. As shown in Fig. 6, the SSIM 
value is approximately 1 and the RMSE is smaller than 2.5, indicating that the weight coefficients 
calculated by the ERT match well with the ground truth. The ERT method can hence be used to 
generate the weight coefficients in the case that the flow interface locations are not given.

(a) DRT result

(b) ERT result

Fig. 5 Comparison of weight coefficients calculated by the DRT and ERT methods.
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Fig. 6 SSIM index and RMSE of weight coefficients obtained by DRT and ERT methods.

3.3 Reconstruction of calibration board
The accuracy of the weight coefficients calculation is further verified by reconstructing a 

bespoke calibration board which is immersed in the water. The size of the calibration board is 8 mm 
8 mm and it contains a 77 dot pattern with a grid spacing of 1 mm. The diameter of each dot is 
0.2 mm. As illustrated in Fig. 7, the x and y axes are perpendicular to the optical axis and correspond 
to the in-plane direction of the calibration board, while the z-axis is parallel to the optical axis and 
corresponds to the depth direction. The calibration board is translated along the depth direction in 
front and back of the focal plane (-8 mm < z < 8 mm, focal plane z = 0 mm) with a step-interval of 
1 mm. The images of the calibration board at different depths are generated by the LF camera 
described in Section 3.1.

To reconstruct the calibration board at different depths, an 8 mm8 mm24 mm 
reconstructed volume is discretized into 8080240 voxels. The center of the reconstructed 
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volume is aligned with the nominal focal point in the water. In addition to the ERT method, the 
weight coefficients are also calculated by the volumetric calibration (DLFC) method presented by 
Hall et al. [27]. In the DLFC, a polynomial function that relates the ray’s starting point location to 
the MLA location is established to calculate the weight coefficients. The weight coefficients 
calculated by the ERT and DLFC methods are considered in the SART algorithm to reconstruct the 
dot marks on the calibration board. To ensure the convergence of SART, 200 iterations are 
performed with a relaxation parameter of 1 [32].

Cage-typed light 
field camera

Translation Stage

 Water 
Acrylic 
glass

Focal planeDot calibration 
board

1 
m

m

1 mm

ϕ = 0.2 mm

Oz

xy

Air

Fig. 7 Schematic of the translation of the dot calibration board along the depth direction in the water tank.

  
(a) x-y plot                                  (b) 3D display

Fig. 8 Reconstructed dot structure of calibration board at z = 0 mm by ERT-SART. 

Fig. 8 (a) illustrates the reconstructed calibration board at z = 0 mm by the ERT-SART method, 
where 77 dot array has been reconstructed accurately with a uniform lateral spacing of 
approximately 1 mm in the x and y-directions. Fig. 8 (b) shows the 3D presentation of the 
reconstructed dots. Noticeable elongation effects can be seen along the depth direction (z-axis). 
Such effects have also been observed in the tracer particle reconstruction of the LF-PIV [33,34] due 
to the limited viewing angle of the main lens (i.e., the angle between the outer edge of the main 
aperture and the optical axis [6]). 

The mean and standard deviation of the reconstruction elongation length (ez and σ) at different 
depths are calculated by Eqs. (17) and (18), respectively,

(17) 
  1

n

z z i
i

e e n


 

(18)  2

  1

n

z zi
i

e e n


 
where n denotes the total number of dots on the calibration board, (ez)i denotes the elongation length 
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of the ith dot. The statistical result is compared with the DLFC-SART method, as illustrated in Fig. 
9. It can be seen that the variations ofez and σ obtained by DLFC-SART and ERT-SART are very 
similar. The depth elongation varies from 3.1 mm to 3.9 mm in the depth range of -8 mm < z < 8 
mm and the standard deviation is smaller than 0.15 mm in this depth range. The mean elongation 
length at the focal plane (z = 0 mm) is shorter, but the corresponding standard deviation is larger 
than the other depths.
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(a) Mean elongationez                            (b) Standard deviation σ
Fig. 9 Mean and standard deviation of reconstruction elongations under different depths obtained by DLFC-SART 

and ERT-SART methods.

Fig. 10 Reconstructed dot centers at different depths obtained by the ERT-SART method.

To evaluate the accuracy of the reconstruction locations, the elongated dots are further 
extracted mainly for the center through the Gaussian peak fittings. Fig. 10 shows the extracted 
elongated dots from the ERT-SART reconstruction results, where the color map indicates the depth. 
It can be seen that the dots are reconstructed accurately under the different depths. The lateral and 
depth separations between the dots are also quantitatively evaluated. In the lateral direction, the x 
spacing of the 77 dot array in the same depth are averaged (sx) and compared with the exact grid 
spacing (xg = 1 mm). The lateral reconstruction error (δx) can hence be determined as

(19)100%x x g gs x x   
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In the depth direction, the separations of 77 dots at adjacent depths are averaged (sz) and 
compared with the translation step-interval (zs = 1 mm). The depth reconstruction error (δz) is 
calculated as

(20)100%z z s ss z z   
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Fig. 11 Variation of the reconstruction location error under different depths.

Figure 11 shows the error of location reconstruction obtained by the ERT-SART and DLFC-
SART methods under different depths. It can be found that the lateral spacing is almost constant 
(i.e. ~1 mm) under different depths with a mean relative error of 0.09%, demonstrating a high 
reconstruction accuracy in the lateral direction. In contrast, the reconstruction accuracy degrades in 
the depth direction (z-axis). The depth spacing is from 0.92 mm to 1.08 mm with a mean relative 
error of 2.63%. This is mainly due to the lower resolution of the LF camera along the optical axis. 
To improve the depth resolution of the LF camera, enlarging the main aperture by adopting a lens 
with a large focal length and small f-number is an effective approach. Besides, adding a second LF 
camera to capture the object from another perspective can also mitigate the reconstruction 
elongation effect and reduce the reconstruction errors. Nevertheless, the result shown in Fig. 11 
indicates that the ERT-SART method provides a similar reconstruction accuracy with the DLFC-
SART method, demonstrating its feasibility for reconstructing the tracer particle using the LF-PIV 
technique.

4. Experimental results and discussions
4.1 Evaluation of reconstruction performance 

Further to evaluate the reconstruction performance, reconstruction of a real calibration board 
immersed in the water is performed along with the lens distortions and noises. An 8 mm  8 mm 
black calibration board with white dots painted is prepared. The pattern and grid spacing of the dot 
array are kept the same as the numerical calibration board. A high-resolution translation stage (Zolix 
APFP, resolution of 10 μm) is employed to translate the calibration board in the water, with similar 
depth ranges and step-intervals of the numerical test. To capture the images of the calibration board, 
a cage-typed LF camera (schematically shown in Fig. 7) is fabricated based on the optical 
parameters summarized in Table 2. The cage-typed LF camera consists of two head-to-head lenses 
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as a relay system and projects the image of the MLA to the photosensor at the ratio of 1:1. A detailed 
description of the camera can be found elsewhere in [17]. To compare the reconstruction results, 
the weight coefficients calculated by the DLFC and ERT methods are employed in the SART. An 
8 mm8 mm24 mm volume with the voxel size of 0.1 mm0.1 mm0.1 mm is created. The 
center of the volume is aligned with the nominal focal point. 
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(a) Mean elongationez                            (b) Standard deviation σ
Fig. 12 Reconstructed elongations of the dots under different depths obtained by the ERT-SART and DLFC-

SART. 

Table 3: Average reconstruction elongation and location error in the range of -8 mm < z< 8 mm

DLFC-SART ERT-SART

Numerical Experimental Numerical Experimental

Elongation lengthez (mm) 3.59 3.61 3.54 3.65

Standard deviation σ (mm) 0.07 0.25 0.08 0.27

Lateral location error δx (%) 0.03 0.11 0.09 0.63

Depth location error δz (%) 2.60 4.95 2.63 5.60

Figure 12 (a) illustrates the mean elongation lengths (ez) of the reconstructed dots under 
different depths, and Fig. 12 (b) illustrates the corresponding standard deviation (σ). It can be 
observed thatez ranges from 3.1 mm to 4 mm, and σ is smaller than 0.4 mm.ez and σ within the 
depth range of -8 mm < z < 8 mm is averaged and summarized in Table 3. It can been found that 
the elongation length is similar to the numerical result. The average elongation is around 3.6 mm. 
Besides, the standard deviation σ in the experiment is about 3.5 times larger than the numerical 
result, indicating that the elongation length at different depths is less uniform.

The reconstruction error of the dot locations under different depths (-8 mm < z < 8 mm) are 
illustrated in Fig. 13, and the averaged results in the entire depth range are listed in Table 3. It can 
be seen that both the lateral and depth location errors are larger than the numerical results (Table 3). 
This is mainly due to the lens distortions and assembly tolerances of the LF camera, which affect 
the ray tracing accuracy of the ERT method. Besides, it can be seen from Fig. 13 that the maximum 
errors of location reconstruction are found around the focal plane. It indicates that the depth 
resolution of the LF camera varies with the positions in the object space and it is significantly lower 
around the focal plane. This leads to the lower reconstruction accuracy.
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Fig. 13 Experimental reconstruction location errors obtained by ERT-SART and DLFC-SART methods under 

different depths. 

4.2 Experiments on a low-speed laminar flow
The uncertainty of velocity measurement of the ERT method is evaluated through experiments 

on a low-speed laminar flow. Fig. 14 shows the experimental setup of the laminar flow. The 
horizontal flow channel is made of 5 mm acrylic glass with a cross-section of 10×10 mm2 
(equivalent diameter D = 10 mm). The flow is generated by a metering pump and the flux is 
controlled via a PID regulator connected with an electric valve and an electromagnetic flowmeter. 
The flux is maintained at 40 L/h, yielding a constant mean velocity ( ) of 0.1082 m/s corresponding v
to the Reynolds number ReD of 1100. The measurement area is set with spans of D × 1.3 D × D 
along the x, y and z-directions. A Nd:YAG double-pulsed laser (Beamtech, 200 mJ, 532 nm) with a 
beam expander is used to illuminate the measurement area. For PIV measurements, polyamide tracer 
particles with a mean diameter of 50 μm are homogenously seeded in the water, resulting in a 
particle concentration of 0.002 particles per pixel. The motion of the tracer particles is captured by 
the cage-typed LF camera with the optical settings listed in Table 2. The interval between two 
successive frames of the camera is set to 1.8 ms, yielding a maximum particle displacement of 0.4 
mm corresponding to 4 voxels.
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controller
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Fig. 14 Experimental setup of the low-speed laminar flow.
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For the particle reconstructions, the measurement area is discretized as the 0.1 mm0.1 
mm0.1 mm voxels and their weight coefficients are calculated by the ERT and DLFC methods, 
respectively. For the DLFC method, the customized smart calibration board is inserted into the flow 
from the top of the channel, and the volumetric calibration is carried out for the weight coefficient 
calculation. The top cover is restored after the calibration to ensure the channel is sealed. In contrast, 
the calibration of the ERT method is much simpler. The LF camera is initially focused on a smart 
calibration board stuck on the front wall of the channel, and then moved towards the channel with 
a distance (dm) of

(21)0.5m b w ag wd t t n D n  

where tw and tb denote the thickness of the channel wall and calibration board, respectively. In this 
way, the focal plane of the LF camera can be aligned with the central depth plane of the channel via 
a single snapshot of the calibration board instead of repeatedly moving it within the measurement 
area. With the particle volumes reconstructed by SART, the 3D cross-correlation analysis [35] is 
subsequently performed to yield the velocity field. In this study, using the interrogation volume size 
of 161616 voxels with an overlap of 50%, the cross-correlation analysis returns 121612 
velocity vectors. The spatial resolution of each vector is 1.6 mm1.6 mm1.6 mm.

(a) 3D velocity distribution 

   
(b) 2D velocity distribution at y-z slices             (c) 2D velocity distribution at x-y slices

Reconstructed velocity distribution by the ERT-SART
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(d) 3D velocity distribution

    
(e) 2D velocity distribution at y-z slices                (f) 2D velocity distribution at x-y slices 

Reconstructed velocity distribution by the DLFC-SART

Fig. 15 Instantaneous laminar flow field reconstructed by ERT-SART and DLFC-SART methods. Note that y-z 

slices are taken at x = 0.24D, 0.48D and 0.72D, respectively. x-y slices are taken at z = 0.3D, 0.54D and 0.78D, 

respectively. The contour shows the magnitude of the reconstructed velocity. The size factors of the x, y and z-axis 

are set to 1:2:1, 1:2:2, 2:2:1 in the 3D plot, x-y slices plot and y-z slices plot for a better demonstration.

Figure 15 illustrates an example of the 3D instantaneous velocity field reconstructed by the 
ERT-SART and DLFC-SART methods. It can be observed that the main flow along the y-direction 
has been successfully reconstructed with the large velocity vectors distributed in the center of the 
channel. The 2D slices (Figs. 15 (b), (c), (e), (f)) indicate that the velocity magnitude gradually 
decreases from the center to the wall in both x and z-directions. The overall velocity distribution is 
followed the Newtonian fluid flow characteristics in a horizontal channel. The velocity is reduced 
around the channel wall due to the viscosity of the fluid. The mean velocity reconstructed by DLFC-
SART and ERT-SART methods is 0.1150 m/s and 0.1009 m/s, respectively, with a relative error of 
6.25% and 6.77%.

To investigate further, a comparative study of the measured velocity with the theoretical 
calculations is carried out. The theoretical velocity distribution is acquired by computational fluid 
dynamics (CFD) simulations, where the channel dimensions and Reynolds number are set as the 
experiment. As the low-speed laminar flow is steady in the fully developed region, the CFD 
simulation can provide results very close to the ground truth and hence be considered as the 
theoretical. Fig. 16 illustrates the velocity distributions along x-axis at z/D = 0.3, 0.54, 0.78 and 
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along z-axis at x/D = 0.24, 0.48, 0.72, which are extracted from the 3D velocity data. The velocity 
distributions measured by ERT-SART and DLFC-SART methods are consistent with the theoretical 
calculation and show an approximately parabolic profile along the x-axis, as illustrated in Fig. 16 
(a). The x-y slice closer to the central depth of the channel (z/D = 0.54) has a larger peak velocity. 
A similar result is also demonstrated on the y-z slices (Fig. 16 (b)) and indicates that both the DLFC 
and ERT methods are capable of revealing the characteristics of the flow field. However, some 
discrepancies can be seen between the theoretical and experimental results. For instance, the central 
high-speed zone is expanded and the velocity gradient gets insignificant (red boxes in Fig. 16 (b)). 
This is due to the noise contribution of the particle depth elongations to the cross-correlation analysis, 
which decreases the accuracy of the particle motion estimation. Furthermore, it can be seen from 
Fig. 16 (a) that the velocity magnitude measured by DLFC and ERT methods at x/D > 0.8 is smaller 
than the theoretical result. This is caused by the motionless bubbles attached to the channel wall in 
the experiments (illustrated in Fig. 17), which prevents the reconstruction of the tracer particles in 
that region. 
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Fig. 16 Velocity distribution at different x-y and y-z slices. (a) x-y slices at z/D = 0.3, 0.54, 0.78. (b) y-z slices at 

x/D = 0.24, 0.48, 0.72. 

Fig. 17 Experimental light field images of the laminar flow with bubbles attached on the channel wall.

The errors of mean velocity measurement at different x-y and y-z slices are quantitatively 
evaluated and summarized in Table 4. It can be seen that the velocity error on the y-z slices is more 
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significant than that on the x-y slices. This can be interpreted that the particle elongation effect is 
only demonstrated along the z-direction and significantly decreases the measurement accuracy. 
Therefore, in the LF-PIV, the measurement uncertainty in the depth direction is much higher than 
that in the lateral direction. Fig. 18 illustrates the cumulative distribution function (CDF) of the 
velocity measurement error in the whole measurement area. The result indicates that the two 
methods provide similar measurement accuracy, i.e., more than 75% of measured velocity vectors 
have a relative error of less than 25%. The feasibility of the proposed ERT method in calculating 
the weight coefficients of LF-PIV is therefore validated.

Table 4: Mean velocity errors at different x-y and y-z slices 

x-y slices y-z slices
z/D = 0.3 z/D = 0.54 z/D = 0.78 x/D = 0.24 x/D = 0.48 x/D = 0.72

DLFC-

SART

4.35% 4.46% 0.13% 7.28% 2.06% 12.01%
ERT-SART 3.51% 1.42% 0.73% 10.43% 4.00% 12.37%

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Relative error (%)

 ERT-SART
 DLFC-SART

75%

Fig. 18 Cumulative distribution function (CDF) of the velocity measurement errors obtained by ERT-SART and 

DLFC-SART methods.

5. Conclusions
In this study, an equivalent ray tracing (ERT) method is proposed to calculate the weight 

coefficients of the light field PIV for accurate particle reconstruction and hence 3D flow 
measurement. The weight coefficients are calculated through the ray tracing method. The starting 
points of ray tracing are moved from the sampling points in the target voxels to their equivalent 
points in the air. To evaluate the feasibility of the proposed method, the calculated weight 
coefficients were used to reconstruct the spatial locations of the calibration board immersed in the 
water. Experiments on a low-speed laminar flow were also carried out and the calculated weight 
coefficients were considered to reconstruct 3D flow velocity. The measurement accuracy was 
quantitatively evaluated. The concluding remarks achieved from this study are summarized as 
follows:
 It has been demonstrated that the ERT method can calculate the weight coefficients accurately 

without prior knowledge of the distances from the flow interfaces to the camera. In practice, 
they are difficult to measure. 
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 The ERT method provides a similar accuracy with the in-situ calibration approaches for the 
3D target reconstruction and laminar flow measurement. It is suggested that the spatial 
locations of the calibration board marks can be reconstructed with a mean lateral and depth 
error of 0.63% and 5.6%, respectively. The overall error of 6.77% is achieved for the velocity 
measurement.

 Compared with the existing in-situ calibration approaches, the ERT method only requires a 
single snapshot of the calibration target instead of a series of recordings in the measurement 
area. With the advantage of simplicity, the ERT method can be used in the LF-PIV for 3D flow 
measurements in space-constraint applications.
In future, efforts will be made to generalize this method for more challenging conditions such 

as turbulent flows with curved or arbitrarily shaped windows.
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 A novel ray-tracing method (ERT) is proposed for calculating weight coefficients of light field 
PIV.

 The basic principle, derivation and implementation of the ERT method are described.
 Numerical reconstruction and experimental measurements on a laminar flow are conducted to 

evaluate the proposed method.
 The performance of the ERT method is compared with the in-situ calibration method.
 The potential applications of the ERT method as well as the challenging problems are outlined.
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