University of

"1l Kent Academic Repository

De Koster, Joeri, Marr, Stefan and D'Hondt, Theo (2012) Synchronization
Views for Event-loop Actors. In: Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming.

Downloaded from
https://kar.kent.ac.uk/63841/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/2145816.2145873

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/63841/
https://doi.org/10.1145/2145816.2145873
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Synchronization Views for Event-loop Actors

Joeri De Koster

Vrije Universiteit Brussel
jdekoste@vub.ac.be

Abstract

The actor model has already proven itself as an interesting concur-
rency model that avoids issues such as deadlocks and race condi-
tions by construction, and thus facilitates concurrent programming.
The tradeoff is that it sacrifices expressiveness and efficiency es-
pecially with respect to data parallelism. However, many standard
solutions to computationally expensive problems employ data par-
allel algorithms for better performance on parallel systems.

We identified three problems that inhibit the use of data-parallel
algorithms within the actor model. Firstly, one of the main prop-
erties of the actor model, the fact that no data is shared, is one of
the most severe performance bottlenecks. Especially the fact that
shared state can not be read truly in parallel. Secondly, the actor
model on its own does not provide a mechanism to specify extra
synchronization conditions on batches of messages which leads
to event-level data-races. And lastly, programmers are forced to
write code in a continuation-passing style (CPS) to handle typical
request-response situations. However, CPS breaks the sequential
flow of the code and is often hard to understand, which increases
complexity and lowers maintainability.

We proposes synchronization views to solve these three is-
sues without compromising the semantic properties of the actor
model. Thus, the resulting concurrency model maintains deadlock-
freedom, avoids low-level race conditions, and keeps the semantics
of macro-step execution.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]; D.3.3 [Language Constructs and Features]: Concur-
rent programming structures

General Terms Design, Languages

Keywords Actor Model, Synchronization, Data Parallelism

1. Introduction

Because of the multicore evolution, parallel programming is no
longer only useful for high performance computing (HPC) appli-
cations but is also useful in the desktop and embedded world. In
contrast to HPC, where speedup is generally gained by splitting up
a single problem and processing the input data in parallel, we as-
sume that desktop applications are generally more task driven. That
means, desktop, or more general user-centric applications have in
general less parts that are data parallel but possible parallelism

Copyright © ACM, 2012. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The definitive
version was published in PPoPP’12, Poster, http://doi.acm.org/10.1145/TO APPEAR.
PPoPP’12, February 25-29, 2012, New Orleans, Louisiana, USA.

Copyright © 2012 ACM 978-1-4503-1160-1/12/02. .. $10.00

Stefan Marr

Vrije Universiteit Brussel
smarr@vub.ac.be

Theo D’Hondt

Vrije Universiteit Brussel
tjdhondt@vub.ac.be

comes from distinctly different activities that need to be done in
the problem domain.

Thus, the starting hypothesis of our research is that such ap-
plication benefit more from a language model that provides good
abstractions for expressing task driven parallelism in a safe way.
The actor model [1} [2]] is such a model. This model has mainly
been used in a distributed setting (Erlang [3], SALSA [4], Am-
bientTalk [S]) where the architectural benefits of its concurrency
model are more important than the speed gained by running multi-
ple actors in parallel.

However, user-centric applications often have to deal with cer-
tain subproblems that are inherently data parallel. Examples are
large data-intensive spread-sheets or search operations where the
use of data parallel approaches could reduce the latency towards the
user. Thus, task-driven parallelism should not be the only method
of parallelism provided by a programming language, otherwise the
application can not fully exploit the available parallelism of such
data driven problems.

The goal of this paper is to argue for a computational model
that combines a safe task-based parallelism model with the ability
to use a restricted number of data-driven optimizations.

From that perspective, the actor model is a good starting point. It
is free of low-level data races and in its original inception deadlock-
free by construction. Those two properties are delivered by the
actor model because it adheres to three fundamental rules:

e Actors do not share mutable state
e Actors communicate only asynchronously

e Actors are scheduled fairly, i. e., no actor is permanently starved

We however believe that it is the first two rules that place the
largest restriction on the expressiveness of the actor model. A
consequence of the first rule is that data-parallel algorithms that
read from and write to a shared resource are impossible to express
efficiently within an actor program. A consequence of the second
rule is that communication with a remote shared resourceﬂ requires
most of the time the use of some request-response idiom which
is expressed in most languages using continuation-passing style
(CPS) and results in less maintainable code (cf. Sec. [2).

Our solution is an extension of the actor model so that it, in
addition to expressing task parallelism, also becomes useful for ex-
pressing data parallelism within an application. This extension has
been crafted in such a way that the extended model keeps the same
guarantees, such as race condition-freedom, deadlock-freedom and
macro-step semantics, as the original model. We introduce syn-
chronization views as a way of synchronizing access to a remote
resource and demonstrate that this extension is useful when imple-
menting data-parallel algorithms.

I A resource is remote for an actor if that resource is located in the memory
space of another actor. Having different remote actors does not necessarily
imply distribution.

2. The problem: Accessing non-local shared state

The main problem of the actor model is that share state is tradi-
tionally represented by an additional independent actor which en-
capsulates that shared state or resource. However, this leads to the
following three problems:

No parallel reads. State which is conceptually shared can never
be read truly in parallel because all accesses to that state are
sequentialized by the event queue of the encapsulating actor.

No synchronization conditions. The traditional actor model does
not allow to specify extra synchronization conditions on differ-
ent events since the order in which events from different senders
are handled is nondeterministic. There are some solutions for
this problem but as explained later in this section they often
only solve part of the problem.

Continuation-passing style enforced. Using a distinct actor to
represent conceptually shared state implies that this resource
can not be accessed directly from any other actor since all com-
munication happens asynchronously within the actor model.
Thus, the programmer needs to explicitly handle a request-
response situation, which usually forces the programmer to
employ CPS.

3. Views as a synchronization mechanism

Most of the identified problems stem from the fact that an actor
cannot have synchronous access on the state or part of the state of
another remote actor. Our view abstraction solves that issue. Views
are a synchronization mechanism that allows one actor to have
synchronous access to multiple objects or parts of objects owned by
other remote actors. There are two kinds of views, a shared and an
exclusive view which mimic multiple reader, single writer access as
a synchronization strategy. We added three new primitives to access
shared state from within our language:

<far-reference>.whenExclusive (<closure>)

<far-reference>.whenShared(<closure>)

whenSharedAndExclusive (<far-reference>+,
<far-reference>+,
<closure>)

The only restriction imposed on the usage of these primitives
is that the far-reference they access has to be a reference to a
remote shallow object. This can be either an object with no scope
such as an isolate [S] or a shallow primitive datatype such as an
array. This restriction is imposed to guarantee race-condition free-
ness.

In the listing below, we give an example where sending an
increase message to the actor will schedule an event that in-
creases the counter in the cell when that cell becomes available
for exclusive access. We can access the cell synchronously from
within the closure we provided to the whenExclusive primitive.
The body of that closure is executed in a separate turn if and only if
the cell object becomes available for exclusive access. This means
that the get and set method of the cell are executed atomically,
which would not have been possible without using views or chang-
ing the implementation of the cell object. If we want to read the
same value multiple times or read different values synchronously,
we can do so for the duration of that turn. We no longer have to
employ CPS or futures to read and/or write values from and to a
shared resource.

Currently, only multiple reader, single writer access is provided
as a synchronization strategy. We also prioritize writers to prevent
their starvation. We chose this locking strategy to limit the expres-
siveness of our primitives in favor of more concise abstractions.

cell: isolate({

c: 0;
get ()@reader:
C;
set(n):
c :=n});

act: actor({
increase(cell):
cell.whenExclusive(
lambda(c) :
c.set(c.get() + 1));

View requests on a shared object are scheduled by a view-
scheduler. These view-schedulers exist on a per-object basis and
are created when the first view on that object is requested. This
prevents our abstraction to have any overhead on the system when
it is not used. Requested views are put in a queue and when the
resource associated with that view-scheduler becomes available the
next request is handled.

4. Conclusion

The engineering benefits of semantically coarse-grained synchro-
nization mechanisms in general [6] and the restrictions of the actor
model [7] have been recognized by others. In particular the notion
of view-like constructs has been proposed before.

The main contribution of our view-abstractions is to address
the inefficient and often confusing (CPS) access to shared state
in the actor paradigm by allowing controlled synchronous access
on shared state. The advantages of this system over the traditional
event-loop model are threefold. Firstly we avoid the continuation
passing style of programming when accessing shared state. Sec-
ondly we allow the programmer to introduce extra synchronization
constraints on groups of messages and lastly we are able to model
true parallel reads.

Acknowledgments

Joeri De Koster and Stefan Marr are supported by doctoral schol-
arships granted by the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen),
Belgium.

References

[1] G. Agha. Actors: a model of concurrent computation in distributed
systems. AITR-844, 1985.

[2] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formal-
ism for artificial intelligence. In Proceedings of the 3rd international joint
conference on Artificial intelligence, pages 235245. Morgan Kaufmann
Publishers Inc., 1973.

[3] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams. Concurrent
programming in erlang. 1996.

[4] C. Varela and G. Agha. Programming dynamically reconfigurable open
systems with salsa. ACM SIGPLAN Notices, 36(12):2034, 2001.

[5] T. Van Cutsem, S. Mostinckx, E. Boix, J. Dedecker, and W. De Meuter.
Ambienttalk: Object-oriented event-driven programming in mobile ad
hoc networks. In Chilean Society of Computer Science, 2007. SCCCO7.
XXVI International Conference of the, pages 312. Ieee, 2007.

[6] B. Demsky and P. Lam. Views: Object-inspired concurrency control.
In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1, pages 395404. ACM, 2010.

[7] R. Karmani, A. Shali, and G. Agha. Actor frameworks for the JVM
platform: A comparative analysis. In Proceedings of the 7th International

Conference on Principles and Practice of Programming in Java, pages
1120. ACM, 2009.

