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Abstract

The statistical approach to cyber security has become an active and impor-

tant area of research due to the growth in number and threat of cyber attacks

perpetated nowadays. In this thesis, we centre our attention on the Bayesian

approach to cyber security, which provides several modelling advantages such as

the flexibility achieved through the probabilistic quantification of uncertainty. In

particular, we have found that Bayesian models have been mainly used to detect

volume-traffic anomalies, network anomalies and malicious software. To provide

a unifying view of these ideas, we first present a thorough review on Bayesian

methods applied to cyber security.

Bayesian models applied to detecting malware and classifying them into known

malicious classes is one of the cyber security areas discussed in our review. How-

ever, and contrary to detecting traffic and network anomalies, this area has not

been widely developed from a Bayesian perspective. That is why we have centred

our attention on developing novel supervised learning Bayesian nonparametric

models to detect and classify malware using binary features built directly from

the executables’ binary code. For these methods, important theoretical proper-

ties and simulation techniques are fully developed and for real malware data, we

have compared their performance against well-known machine learning models

which have been widely applied in this area.

With respect to our methodologies, we first present a new discrete nonpara-

metric prior specifically designed for binary data that builds on an elegant non-

parametric hierarchical structure, which allows us to study the importance of

each individual feature across the groups found in the data. Moreover, and due
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to the large, and possibly redundant, number of features, we have developed a

generalised version of the model that allows the introduction of a feature selection

step within the inferential learning. Finally, for a more complex modelling where

there is a need to introduce dependence across the features, we have extended the

capabilities of this new class of nonparametric priors by using it as the building

block of a latent feature model.
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Introduction

Nowadays, cyber security is an important concern for all individuals, organisa-

tions and governments globally. Cyber attacks have become more sophisticated,

more frequent and more dangerous than ever, and traditional anomaly detection

methods have been proved to be less effective when dealing with these new classes

of cyber attacks. In order to address this, both classical and Bayesian statistical

models offer a valid and innovative alternative to the traditional signature-based

methods, motivating the increasing interest in statistical research that it has

been observed in recent years. In particular, Bayesian methods yield interesting

insights and answers to the uncertainty around large and complex systems like

computer networks and hence, for cyber security data.

Statistical models applied to cyber security anomaly detection have been

mainly centred on three different types of cyber threats, which are: volume-

traffic anomalies, network anomalies and malicious software (malware). From

a Bayesian perspective, both parametric and nonparametric models have been

effectively designed and applied to detect such anomalies. However, and despite

the increase in cyber security research from a Bayesian point of view, there are

still some modelling challenges that need to be fully addressed and some areas

that have not been widely explored as others and that need to be more deeply

developed. One of such areas is the detection and classification of malware.
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A malware is any program designed to damage, disrupt or gain unauthorised

access to computer systems. Understandably, the accurate detection of malware

has become an important task in the field of cyber security. However, when

dealing with a malware it is also important to know its type and its family to

speed-up the analysis and hence, to have a deeper understanding of the threat

and the damage caused. In order to detect and correctly classify malware one

can either perform a static analysis or a dynamic one. From a statistical point

of view both approaches represent interesting lines of work that require different

assumptions and types of models due to the nature of the data considered.

To understand both the static and the dynamic approach and how they can

be used to detect and classify malware, it is important to remark that all benign

and malicious software, without regard of the type and family, are composed of a

list of instructions that are executed during runtime and hence, they can be used

to determine the true nature of a program. In the dynamic approach the idea is

to run the malware in a safe environment and analyse the sequence of instructions

(e.g. mov, jmp, push, call) as they occur. Whereas in the static approach, the

objective is to analyse the binary content of the malware, that is, the sequence of

bytes expressed in hexadecimal notation (e.g. 31 2e 20 ...) representing all the

instructions, strings, headers, and other relevant metadata, without the malware

been executed at all.

From a Bayesian perspective, it is compelling to notice that for the dynamic

approach there are already some methodologies that have been developed and ap-

plied; whereas, the static approach has been mainly addressed using data mining

and machine learning models. In this direction, one way to differentiate benign

from malicious executables is to leverage on their hexadecimal representation by

creating a set of binary features that completely characterise each executable.

These binary features are usually created by considering a contiguous sequence
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of n bytes that can represent one or more instructions, a string, a call or another

piece of information regarding the malware. Therefore, we believe this is an inter-

esting scenario that has not yet been considered from a Bayesian perspective, and

that is why in this thesis we centre our attention to developing novel supervised

learning Bayesian models for binary data that provide an effective probabilistic

approach to discrimination tasks.

The models developed and presented in this thesis are built under nonpara-

metric assumptions. It can be broadly argued that Bayesian nonparametrics

deals with the construction of probability measures on large parameter spaces,

yielding more flexible models than their parametric counterpart. For obvious rea-

sons, the mathematical and computational challenges required for nonparametric

models are more complex and more demanding. However, due to the continuous

advancements of computational software and the increasing research on efficient

simulation methods, Bayesian nonparametric models are no longer intractable

and have become widely popular in many research areas and computer science

and cyber security are not the exception.

With respect to cyber security research, Bayesian nonparametric methods

have been effectively used in detecting network anomalies and, when modelling

the set of instructions executed by the malicious software, for malware detec-

tion and classification. As we further explore in Chapter 1, these methodologies

have at their core one of the most important Bayesian nonparametric priors: the

Dirichlet process (Ferguson, 1973). One of the most appealing characteristics of

this stochastic process is its almost sure discreteness, which provides a natural

framework for clustering applications and density estimation. This is certainly

attractive and useful when trying to detect anomalies by comparing them to

clusters of normal behaviour.
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In this thesis, however, we centre our attention on developing Bayesian non-

parametric methods that have another vital nonparametric prior at their core: the

beta process (Hjort, 1990). This stochastic process was originally introduced for

modelling random hazard functions in the real line. However, more general spaces

have also been considered. In particular, when combined with the Bernoulli pro-

cess it provides a natural framework for modelling binary data like in document

classification (see e.g. Thibaux and Jordan, 2007). Hence, it also provides an

interesting approach to the static analysis of malware where for each executable

we have a set of binary variables that characterise them. Moreover, the beta

and Bernoulli processes can also be used for factorial models like in the Indian

Buffet Process (IBP) (see e.g. Griffiths and Ghahramani, 2005, 2011), where the

interest relies on characterising the data through a set of K latent binary traits.

It is interesting to notice, that this featural representation of the data can also

be thought as a clustering one with 2K possible configurations.

Although the core chapters of this thesis are centred on the malware detec-

tion and classification tasks through Bayesian nonparametric supervised learning

models, there is another important contribution of this work that we believe and

hope researchers would find useful for future statistical cyber security research.

This contribution takes the form of a review of Bayesian methods that have been

effectively applied to cyber security anomaly detection problems, and that we use

as the basis for Chapter 1. In this chapter, we also discuss some of the inherent

challenges that the statistical community faces when dealing with the detection

of cyber threats, including a quick discussion on alternative methods. Finally, we

would like to remark that this review has been accepted for publication at the

International Statistical Review.
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As for the novel Bayesian nonparametric models, in Chapter 2 we present the

first version of the model that we have named beta-CoRM. This nonparametric

model builds on the idea of vectors of dependent completely random measures as

defined in Kingman (1967), which allows the construction of a suitable Bayesian

hierarchical model for supervised learning. A similar Bayesian nonparametric ap-

proach is the hierarchical beta process (Thibaux and Jordan, 2007), where d beta

processes have the same directing beta process as their base measure, allowing the

sharing of information across groups. The beta-CoRM model, however, modifies

the jumps of the directing beta process at group level providing more flexibility

at the moment of detecting influential features. Results and a comparison against

machine learning supervised algorithms on malware detection and classification

data sets are also presented and discussed.

In Chapter 3 we present a generalisation of the beta-CoRM model which did

not only yield a better classification accuracy, but it also allowed us to introduce

a feature selection step within the inferential learning. This generalisation arose

from an elegant spike-and-slab interpretation given to the score parameter of

the original model. With this interpretation in mind, the basic idea is for each

feature to have a unique score parameter whose posterior values would allow us

to detect the features with the best discriminative power. The theory and results

of Chapters 2 and 3 are the basis of the paper submitted to Bayesian Analysis

which is currently undergoing a major revision.

The models developed and described in Chapters 2 and 3 are built on the

assumption that the binary features are conditionally independent. However, in

practice we would like to introduce some level of dependence that might allow

a more complete generative process. To this end, in Chapter 4, we introduce a

binary matrix factorisation procedure that uses the beta-CoRM as the prior on a

set of latent traits. The structure of this model allows us to introduce dependence
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not only across features belonging to the same observations, but also a level of

dependence between features within and across groups.

Lastly, in Chapter 5 and Chapter 6 we present respectively two future lines

of research and the final remarks. For the future work, we first centre our atten-

tion on the modelling of binary matrices using a Bayesian nonparametric logistic

regression model. To this end, the IBP is considered as the nonparametric prior

since it allows us to use a Polya-gamma augmentation scheme for the inferen-

tial procedure. Finally, the second line of research is to consider the matrix of

counts rather than just the binary features. Prior evidence on the data shows

that by doing so, the differences among the groups become clearer and hence, a

better classification could be achieved. For both approaches, interesting details

and theoretical results are presented and discussed.

6



Chapter 1

Bayesian models applied to cyber

security anomaly detection

problems

Cyber security can be broadly defined as the set of tasks and procedures required

to defend computers and individuals from malicious attacks. Its origin can be

traced back to 1971, a period where the Internet, as we know it today, was

not even born. Among the computer science community it is widely accepted

that it all started with Bob Thomas and his harmless experimental computer

program known as the Creeper. This program was designed to move through the

ARPANET1 leaving the following message: “I’m the creeper: catch me if you

can”. Inspired by Bob Thomas’ Creeper, Roy Tomlinson created an enhanced

version, allowing the Creeper to self-replicate; therefore, coding the first computer

worm. Later on, he would also design the Reaper which can be considered the

1The Advanced Research Projects Agency Network (ARPANET) was a packet switching
network developed in the late 1960s that is widely considered to be the predecessor of the
Internet (Oppliger, 2001).
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first antivirus program, since it was designed to move across the ARPANET and

delete the Creeper.

Despite a harmless origin, some years later the world would find out that

network breaches and malicious activity were more dangerous than expected and

cyber threats became a serious matter. Nowadays, cyber security is considered

a major concern that affects people, organisations and governments equally, due

not only to the growth of computer networks and Internet usage but also to the

fact that cyber attacks are more sophisticated and frequent than ever. These at-

tacks represent a complex new challenge that demands more innovative solutions,

hence, it requires a multi-disciplinary effort in order to be well-prepared and pro-

tected against such threats. Some of the disciplines involved in this task include

computer science, computer and network architecture and statistics (Adams and

Heard, 2014).

In this introductory chapter we are mainly interested in the Bayesian ap-

proaches to cyber security problems and we centre our attention on how the

discovery of cyber threats has been tackled as an anomaly detection problem. In

particular, we discuss three different classes of anomaly detection problems within

cyber security research and the representative types of data used in each one of

them. The first of these problems is about volume-traffic anomaly detection, the

second one about network anomaly detection and, finally, the third one is about

malware detection and classification.

We of course, acknowledge that methods other than the Bayesian ones are

suitable to deal with cyber threats (see e.g. Buczak and Guven, 2016; Chandola

et al., 2009; Gupta et al., 2014; Adams and Heard, 2014, for reviews on classi-

cal statistics, machine learning and data mining approaches). The intent of this

chapter is to present the reader with a Bayesian perspective, discussing the avail-
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able options, their advantages and limitations in order to have a comprehensive

understanding of the methodologies that the Bayesian framework provides. In

Section 1.1, we provide some of the reasons on why we believe Bayesian methods

are an interesting and appropriate approach to cyber security anomaly detection.

Traditionally, cyber security threat detection systems have been built around

signature-based methods; in this approach, large data sets of signatures of known

malicious threats are developed and the network is constantly monitored to find

appearances of such signatures. These systems have been proved effective for

known threats but can be slow or ineffective when dealing with new ones, with mu-

tations of known ones or with time-evolving threats. Dealing with these threats

is one of the reasons why we need to consider alternatives to signature-based

methods. In order to do so, statistics offers a wide range of options for cyber

security problems; these include both classical and Bayesian approaches that, in

general, can be built on either parametric or nonparametric assumptions. How-

ever, in essence, statistical anomaly detection methods usually build a model of

normal behaviour to be considered as a benchmark, so that departures from this

behaviour might be an indication that an anomaly has occurred.

Cyber security research from a mathematical and statistical point of view has

proved to be an interesting and complex challenge that has led to an increasing

interest in recent years. There are various reviews and reports (see e.g. Will-

inger and Paxson, 1998; Catlett, 2008; Meza et al., 2009; Dunlavy et al., 2009)

that outline some of the key areas, problems and challenges the mathematical

community faces. It was early remarked (Willinger and Paxson, 1998) how the

constant changes in time and sites made the Internet such a difficult object to

understand. Since then, all authors have agreed that, due to the continuously

exponential growth of the Internet and computer networks, there is a need for

statistical models able to scale well to high-volume data sets of real time het-
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eroscedastic and non-stationary data, which represents (among other things) a

significant computational challenge. Moreover, as pointed out by Catlett (2008),

the mathematical models used should be able to effectively distinguish between

harmless anomalies and malicious threats.

The need to design on-line detection methods able to handle high-volumes of

data is not the only challenge discussed in these reviews. For example, Catlett

(2008) also discussed the role mathematics play, by allowing us to understand

computer networks, the Internet and malware behaviour in providing predictive

awareness for secure systems. On a separate note, the author also remarked the

need to advance the state of the art in graph theory and large-scale simulation to

understand the spreading process of malicious code. Meza et al. (2009) further

emphasised the importance of having access to reliable data.

The lack of reliable data has been mainly due to privacy and confidentiality

reasons and has made researchers study the best way to anonymise or sanitise the

data. Some methods, as discussed in Bishop et al. (2006), include using synthetic

data, extracting the data from sources with no privacy constraints or a proper

sanitising process. For example, in user-systems any characteristic that can be

associated to an individual should be suitably changed (e.g. IP address or user

name). More complex anonymisation processes have also been developed; for

example, in Tang et al. (2010) the authors described a process based on subnet

clustering where three parts of a whole IP address are anonymised by different

methods. Fortunately, as we see in the following sections, there are some publicly

available data sets that can be used for research purposes.

All of the other challenges just described can be well-grouped into three gen-

eral cyber security research areas (Dunlavy et al., 2009). The first area deals

with the modelling of large-scale dynamic networks, like the modern Internet or
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any current computer network. Their mathematical representation (just as with

any other network) is through a graph theory formulation (Newman, 2010) and,

historically, the Erdös-Rényi formulation of random graphs provided a mathemat-

ical model that could handle small-scale networks like the infant Internet (Chen

et al., 2015). However, nowadays computer networks are examples of large-scale

dynamic networks, so they have a large amount of nodes and edges (represent-

ing the computers/users and the connections among them) that are constantly

evolving and changing over time and that are not completely random. Hence,

there is a need to develop more sophisticated network mathematical formulations

and new statistical techniques for comparing them. The reader could refer to

Olding and Wolfe (2014) for a review on classical graph theory methods applied

to modern network data.

Discovering cyber threats is the second cyber security research area. As al-

ready established, cyber attacks are more sophisticated and frequent than ever,

hence, the need for models capable of detecting malicious activity along with

their variations, complicated multi-stage attacks and, if possible, the source of

the cyber attack (Dunlavy et al., 2009). Moreover, the detection methods should

ideally be designed for on-line detection and able to handle time-evolving data as

well. This is the area we explore in more depth in this introductory chapter.

Finally, and due to the fact that almost all cyber attacks work by spread-

ing malicious code through a vast number of the computer network’s nodes, the

last of the mathematical challenges found in cyber security is related to network

dynamics and cyber attacks. This area is mainly dedicated to understanding

the spreading characteristics of the malicious code through a computer network,

before and after it has been detected and protections have been released. Par-

ticularly interesting problems consist in determining the potential limit of the

infection and the interplay of the malicious spreading and the protection pro-
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cesses. More details and challenges related to this area can be found in Dunlavy

et al. (2009).

The remainder of the chapter is organised as follows: in Section 1.1 we provide

a gentle discussion on why Bayesian statistics yield an interesting approach to

complex systems and data sets such as the ones found in cyber security. In Sec-

tions 1.2, 1.3 and 1.4 we describe and explore respectively, volume-traffic anomaly

detection, network anomaly detection and malware detection and classification.

In each of these sections we provide a gentle description of the kind of data used,

we present some of the Bayesian models used to address these problems and we

go through particularly interesting case studies found in the literature. In Sec-

tion 1.5 we provide an insight into alternative cyber threat anomaly detection

procedures. In Section 1.6 we describe some emerging challenges. Lastly, Section

1.7 presents final points of discussion.

1.1 Why focus on Bayesian models?

Statistical anomaly detection models have become increasingly popular in cyber

security research. From the classical statistics and the machine learning points

of view, it is possible to find in the literature comprehensive reviews for the

above problems (see e.g. Buczak and Guven, 2016; Chandola et al., 2009; Gupta

et al., 2014; Adams and Heard, 2014). That is why, we have then deemed as

appropriate to provide the reader with a review on the Bayesian perspective, and

in this section, we will highlight some of the reasons why a Bayesian approach

might be considered. In particular, we provide the reader with motivations why

Bayesian statistics yield interesting approaches to the modelling of large and com-

plex systems, such as computer networks. However, it is important to keep an
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open-minded approach in considering the methodologies discussed in this review,

as neither classical nor Bayesian statistics (or machine learning) provide obliq-

uitous solutions, and it is always fundamental to consider the problem at hand

and its context in order to identify the most suitable approach. For a general

introduction to Bayesian statistics and its governing ideas, the reader could refer

to Bernardo (2003) Goldstein (2013) and Gelman et al. (2013), to mention a few.

Centring on cyber security, we can find Bayesian models in machine learn-

ing that have been successfully developed and used to provide solutions to sev-

eral anomaly detection problems such as the latent Dirichlet allocation (Sec-

tion 1.3.1.2), Bayesian clustering (Section 1.3.2.1), Poisson factorisation (Section

1.3.2.3) and more general Bayesian nonparametric methods (Section 1.3.2.4).

These models are linked by an attempt to fit large latent variable models for

which Bayesian inference is particularly attractive, and also allows us to find

unobserved structure in the data.

A second important remark about Bayesian methods, is about their inher-

ent probabilistic representation of uncertainty. Having probabilistic statements

associated to unknown quantities, such as parameters or predicted values, leads

to an understanding of such statements that is clearer than other methods (e.g.,

classical statistics). The above fundamental property of Bayesian methods is es-

sentially appealing in an anomaly detection framework, because uncertainty can

be propagated to predictions making them, often, more stable.

Finally, Bayesian methods also allows us to combine different types of infor-

mation in a single inferential framework, and more general forms of Bayesian

reasoning. In this direction, Bayesian networks 1.3.1.1 deserve special mention,

since as explained in Chockalingam et al. (2017), using them would not only allow

us to combine different sources of knowledge, but also handle and overcome the
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scarcity of data related to cyber attacks, which sometimes represent a big issue

for their modelling.

1.2 Volume-traffic anomaly detection

To begin developing statistical methods for computer network data, it is useful

to have a high-level description of a computer network. The Open Systems In-

terconnect (OSI) is a widely-used conceptual set of rules for computer systems to

be able to communicate with one another. The correct and reliable transmission

of information is achieved through the joint work of seven sequentially connected

layers, each one with its own purpose. These layers are: the physical layer, the

data link layer, the network layer, the transport layer, the session layer, the pre-

sentation layer and the application layer. For a thorough understanding of these

layers and their role in the communication process the reader can refer to Hall

(2000) and Myhre (2001).

Since these layers work in conjunction with one another, malicious activity

could be targeted to any of the layers in order to destabilise the communication

process between computer systems. For the purposes of this section we restrict

our attention to the third layer of the OSI-model: the network layer. This layer is

in charge of structuring and managing a multi-edge network including addressing,

routing and traffic control (Hall, 2000). The data is transmitted by breaking it

down into pieces called packets that contain the user data (or payload) and the

control information which provides data for delivering the payload, e.g. source

and destination network addresses, error detection codes and segment informa-

tion.
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The packet rate, which is defined as the number of packets per time unit

moving across the network, is one of the most common volume-traffic character-

istics used for analysing a network’s traffic. Its constant surveillance is useful for

the detection of certain cyber threats that create changes in the network’s nor-

mal traffic behaviour, such as distributed denial of service (DDoS) attacks which

are intended to saturate the victim’s network with traffic. Volume-traffic data

sets can be obtained upon request from Los Angeles Network Data Exchange

and Repository (LANDER) project. Another free network flow data set is de-

scribed in Kent (2015b). The downloadable file “flows.txt.gz” presents network

flow events from 58 consecutive days within Los Alamos National Laboratory’s

corporate internal computer network; each event is characterised by 9 variables:

time (t), duration (dur.), source computer (src. comp.), source port (src. port),

destination computer (des. comp.), destination port (des. port), protocol (prot.),

packet count (packets) and byte count (bytes). The first three events included in

the file are reported, as an illustration, in Table 1.1.

t dur. src. comp. src. port des. comp. des. port prot. packets bytes

1 0 C1065 389 C3799 N10451 6 10 5323
1 0 C1423 N1136 C1707 N1 6 5 847
1 0 C1423 N1142 C1707 N1 6 5 847

Table 1.1: Extract from the network flow events (Los Alamos National Library).

In this data set we can identify two different kinds of variables. First, we

have access to volume-traffic characteristics such as the packet or byte count

which can be used for volume-traffic anomaly detection purposes. The second

set of variables characterise each event by providing the source and destination

computer, the ports and the protocol used which allow us to perform a more

refined analysis by developing multi-channel detectors by splitting the traffic into

separate bins represented by the source or destination. Furthermore, as we discuss

in Section 1.3, these variables will be useful for a different kind of network anomaly
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detection models.

1.2.1 Bayesian approaches to volume-traffic anomaly de-

tection

Volume-traffic anomaly detection is concerned with detecting cyber attacks that

produce changes in traffic measures, such as the packet rate. The main goal is to

detect as fast as possible changes in the normal behaviour. Once a change has

been detected, an alarm needs to be sent off so that the system can be checked

and then decide whether there has been an attack or not (false alarm). It is

important to remark that false alarms could yield important interruptions in the

computer network, so there is a need to find the true change by seeking a low

false positive rate as well. This yields a tradeoff between the detection delay and

the false alarm rate that needs to be considered for the detection procedure. The

methods used to analyse these kind of data are mainly based on the statistical

theory of change-point analysis.

1.2.1.1 Change-point analysis

The main objective of change-point analysis is the accurate detection of changes in

a process or system that occur at unknown moments in time. In a single change-

point setting it is assumed that there is a sequence of random variables {Xn}n≥1
with a common probability density function (pdf) f , known as the pre-change

density, that is, Xn ∼ f(Xn|X(n−1)), where X(n−1) = (X1, ..., Xn−1). Then, at an

unknown time ν, something unusual occurs and from the time ν+1 onwards Xn ∼

g(Xn|X(n−1)). In this setting ν is known as the change-point and the pdf g 6= f
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is called the post-change density. It is important to remark that theoretically,

the densities f and g might depend on n and ν as well, in fact, allowing these

densities to depend on n and ν might help us to more realistically explain time-

evolving data found while doing cyber security research. In practice, g might

only be known up to some unknown parameters θ, hence, in some applications

the problem can be reduced to detecting changes in mean, changes in variance or

changes in both.

In order to deal with change-point detection problems, one could either follow

a non-sequential approach, where the objective is to detect the changes in a

fixed set of observations, or a sequential approach, where the goal is to detect

changes as new data arrives. Since both of these approaches have been tackled

from a classical and a Bayesian perspective, the choice will certainly depend on

the type of problem at hand and the objective of the analysis. From a cyber

security point of view there is a need for constant surveillance of the computer

network, therefore it is important to have fast on-line detection procedures. That

is why in this chapter we only provide an insight into the sequential change-

point analysis theory (for a complete review the reader can refer to Polunchenko

and Tartakovsky (2011)) and how it has been applied to volume-traffic anomaly

detection problems.

1.2.1.2 Sequential change-point analysis

As established in the previous section, the objective of the sequential approach

to change-point analysis is to decide after each new observation if the common

pdf is still f or if it has changed. One of the main challenges of this approach, is

the fact that the detection should be done with as few observations as possible

while raising a low number of false alarms. In other words, a compromise must
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be reached between the losses associated to the detection delay and to the false

alarms. Therefore, as explained in Polunchenko et al. (2012), an ideal sequen-

tial procedure should minimise the average detection delay (ADD) subject to a

constraint on the false alarm rate (FAR). In the literature, several approaches to

analyse the tradeoff and hence, several detection procedures, have been consid-

ered. However, for the purposes of this chapter, we centre our attention on the

Bayesian formulation, where the change-point ν is a random variable.

From a statistical perspective, at each step there is a need to test the hypothe-

sis Hk : ν = k ≥ 0 vs H∞ : ν =∞. In the scenario where both f and g are known,

a detection statistic based on the likelihood ratio (LR), Λk
n = p(X(n)|Hk)

p(X(n)|H∞)
, is chosen

and supplied to an appropriate detection procedure defined as a stopping time T

with respect to the natural filtration Fn = σ(X(n)). For example, in the Bayesian

framework, the Shiryaev-Roberts (SR) procedure (Shiryaev, 1963; Roberts, 1966)

and several modifications of it, have been widely used and analysed. Now, in the

scenario where f and g are not known, the LR can not longer be used. In order

to address this, in Tartakovsky (2014) it is suggested replacing the LR for a score

sensitive function, yielding a suitable modification of the detection statistic. The

choice of the score function will depend on the type of change one is trying to

detect, for example, for a change in mean, in Tartakovsky et al. (2006a,b) the

authors used a linear memoryless score function.

Once a realisation of the detection procedure takes place at, say, time T , we

have a false alarm if T ≤ ν otherwise, the detection delay is given by the random

variable T − ν. For example, in the Bayesian framework, the SR procedure

is defined as the stopping time SA = inf{n ≥ 1 : Rn ≥ A} where A is the

detection threshold, and Rn is the SR statistic which can be recursively computed

as Rn = (1 +Rn−1)Λn with initial value R0 = 0. Other detection procedures are

defined similarly, and hence, the idea is to find the optimal stopping time Topt
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with an average run length to false alarm (ARL) above a desired level γ > 1 such

that the ADD is minimised.

Interesting optimality results have been obtained within the original formula-

tion, where the detection procedure is only applied once. However, for surveillance

applications, such as cyber security, where the detection procedure is repeatedly

applied, a renewal mechanism needs to be specified. For example, assuming

an homogeneous process, the monitoring starts from scratch after every alarm,

yielding a multi-cyclic model (Tartakovsky, 2014), where a sequence T1, T2, ... of

independent detection times are recorded. In this multi-cyclic setting, the objec-

tive is to find the optimum stopping time in the set ∆(γ) = {T : ARL(T ) ≥ γ}

such that the stationary ADD (SADD) is minimised, where the SADD can be

thought as the limiting case of the ADD and γ > 1. From a Bayesian perspective

it was proved in Pollak and Tartakovsky (2009) that the SR procedure is optimal

in this multi-cyclic with respect the SADD.

From a practical point of view, one way to find the threshold detection A and

hence, the optimal detection procedure is by considering the asymptotic case as

γ →∞. In this chapter we do not cover the mathematical reasoning behind this,

the reader could refer to Polunchenko et al. (2012) for its thorough understanding.

However, it is important to mention that under this asymptotic approach, for the

SR procedure one can use the approximation ARL(SA) = γ ≈ A/ζ to find A,

where ζ = 1
E0(Z1)

exp
[
−
∑∞

k=1
1
k
(P∞(Sk > 0) +P0(Sk ≤ 0))

]
, Zn = log(Λn) and

Sn =
∑n

i=1 Zi. Therefore, for a large and fixed value γ the detection threshold

is equal to A = γζ, where ζ can be computed directly or approximated using a

Monte Carlo scheme.

In network security, change-point detection theory provides a natural frame-

work for volume-traffic anomaly detection. Still, there are some important con-
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siderations we need to contemplate. In Tartakovsky (2014) it is argued that

the behaviour of both pre- and post-attack traffic is poorly understood, as re-

sult, neither the pre- nor post-change distributions are known and as already

explained the LR can not longer be used. Another important observation stated

in Tartakovsky et al. (2006a,b) is that, in certain conditions, splitting packets

in bins and considering multichannel detectors helps localise and detect attacks

more quickly. This multichannel setting can be thought as a generalisation of

the classical change-point detection problem, where an n-dimensional stochastic

process is observed simultaneously and at a random time only one of the entries

changes its behaviour. This setting might be useful when dealing for example

with certain Denial of Service (DoS) or DDoS attacks where it has been observed

that an increase number of packets of certain size occurs during the attack.

1.2.2 Case study: ICMP reflector attack

The Internet Control Message Protocol (ICMP) reflector attack was a distributed

denial of service (DDoS) attack that sent echo reply packets to a victim within

Los Nettos Internet Service Provider network that lasted 240 units of time. Due

to the nature of the attack, a change-point model is a sensible approach to analyse

it, and in this section we discuss how the multi-cyclic SR procedure based on the

N(µ, aµ)−to−N(θ, aθ) change-point model proposed in Polunchenko et al. (2012)

was used to detect it.

In this change-point model, it is assumed that the normal behaviour of the

system follows a N(µ, aµ) distribution and after the change-point, ν, the system

follows a N(θ, aθ) distribution. This is an assumption that as the authors men-

tioned, is interesting for a wide variety of applications including of course, cyber

security. In particular, for this ICMP attack, we centre our attention on the
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packet rate, which historically, has been modelled using a Poisson process (see

e.g. Cao et al., 2003; Karagiannis et al., 2004) with an arrival rate equal to the

average packet rate, which increases when an anomaly occurs. However, and de-

spite the discrete nature of the time series, the authors found in their exploratory

analysis that a Gaussian assumption was more realistic for these observations.

As a result, point estimates of the mean and variance for the normal traffic and

the traffic during the attack were obtained and are given by µ̂nor = 13329.764,

σ̂2
nor = 266972.736 and µ̂atk = 17723.833, σ̂2

atk = 407968.14 respectively. A repro-

duction of the real trace using these estimates is displayed in Figure 1.1.

Figure 1.1: Reproduction of the original trace.

Due to the abrupt change in the trace, any good change-point detection pro-

cedure should be able to detect it. However, it is clear that in practice, this ideal

situation will not always occur. Hence, and in order to test the model and its de-

tection performance on a more challenging and realistic set, the authors manually
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lowered the intensity of the attack by applying the transformation

X∗i =
√

13600 ∗ 20.028× Xi − 17723.833√
407968.14

+ 13600

on the recorded observations during the attack. By doing so, the authors changed

the real trace for it to behave as a N(µ, aµ)−to−N(θ, aθ) model with parameters

µ = 13329.764, θ = 13600 and a = 20.028. Figure 1.2 shows the simulated trace

after applying the same transformation.

Figure 1.2: Reproduction of the transformed trace. The red lines indicate the
beginning and the end of the attack.

In order to find the detection threshold for the SR procedure, γ is fixed to

be 1000 so that the asymptotic results described in Section 1.2.1.2 can be used,

yielding a value A = 731.3. Then the multi-cyclic procedure can be applied, so

that each time an alarm is raised the process starts afresh. The results of this

procedure are illustrated in Figure 1.3. It can be appreciated that the true attack
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is detected 22 seconds after it started and that the procedure raised two false

alarms. It is clear that this model works reasonably well since the attack was

detected (even though at first sight it was not visible) not long after the attack

started. However, it is important to notice that it also raised two false alarms

close to one another.

Figure 1.3: Multi-cyclic SR procedure on the diminished trace illustrated in Fig-
ure 1.2. The blue line represents the detection threshold A and the red line the
attack’s start time.

1.3 Network anomaly detection

Monitoring volume-traffic data is one important method of cyber security anomaly

detection. However, there are other variables we can consider for network anal-

ysis. For example, monitoring the features that characterise each packet such as
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its length, the version, the header length, the priority, or the characteristics of

the connections between computers such as the source and destination computer

or protocol can be used and need different anomaly detection methods. From a

statistical perspective there is an interest in characterising the normal pattern

connections within a computer network and this is usually done by creating clus-

ters of normal behaviour, so that any new activity that cannot be grouped into

these clusters will be flagged as an anomaly.

As we discuss in the following sections, the network anomaly detection mod-

els considered in this chapter have been mainly targeted to detect cyber security

attacks such as intrusion detection, misuse of credentials, rogue users, etc. This

research area has been tackled with a wide range of Bayesian models and for

a clearer understanding of the chapter, we split them into two subsections de-

pending on the kind of data used. That is, some of the methods have been used

on the connections occurring within a computer network that can be viewed as

a bipartite graph. The second approach is to model a sequence of multivariate

discrete variables that characterise these connections such as the ones found in

Table 1.1. However, it is important to keep in mind that the objective, no matter

the approach, is to provide a probabilistic characterisation of the connections in

a computer network.

1.3.1 Network Flows

Computer networks are complex systems that are able to provide a vast amount

of information. In particular for each connection occurring within the network

there is the possibility to record a multivariate sequence of events that char-

acterise each connection. For example, through some monitoring software such

as tcpdump or Wireshark, we can capture information regarding the IP source,
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the IP destination, the network protocol (e.g. TCP/IP, HTTPS), the length of

the packet, the flags, among other variables, that can help us in order to detect

anomalies. As an example, in Table 1.2 we display 3 TCP connections of a user

within a small computer network. Other data sets such the one described in

Section 1.2, (Table 1.1), also contain information about each connection such as

the protocol and the packet or byte count.

time (s) IP src IP destn IPv Flags seq ack win length
.000160 xxx.xxx.x.72 xxx.xxx.x.67 4 - - 1 2048 0
.052568 xxx.xxx.x.72 xx.xx.xxx.210 4 - - 35 4096 0

10.842233 xxx.xxx.x.72 xxx.xxx.xx.130 4 P 2945:3891 1 2048 946

Table 1.2: 3 TCP connections of a user with sanitised IP address within a small
network captured using tcpdump.

1.3.1.1 Bayesian networks

A Bayesian network (BN) is a directed acyclic graph in which the nodes are

the variables and the vertices represent the direct influences among the variables

and their parent nodes (Pearl, 1985). These influences are measured through

the conditional probabilities and hence the model is completely characterised by

them. For cyber security research purposes, BN’s have been mainly used for

intrusion detection. It is commonly argued that BN’s yield robust models able to

capture more realistic scenarios since they can directly model the combined effects

of the vulnerabilities, contrary to other models where individual vulnerabilities

are measured and then aggregated (Frigault and Wang, 2008). In Kruegel et al.

(2003) it was also discussed that using BN’s might reduce the number of false

positives that other anomaly detection models usually face.

One of the first approaches to intrusion detection through BN’s can be found

in Valdes and Skinner (2000), where the authors developed the eBayes TCP model
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in order to analyse temporally contiguous bursts of traffic at periodic intervals.

In this model, the root node is the (unobserved) session class and the child nodes

different (observed) variables, such as number of unique ports, service distribution

and event intensity. At each interval the idea is to know if an attack is taking

place and the session class is assumed to propagate as a discrete Markov chain

through the intervals. A similar approach for network packet traces can be found

in Jing and Shelton (2010), where a time continuous Markov chain is used instead.

Other approaches for intrusion detection can be found in Kruegel et al. (2003),

where BN’s are used to classify events as normal or anomalous, and in Pauwels

and Calders (2018), where the authors made an extension of dynamic Bayesian

networks in order to model and detect anomalies on log files within the context

of Business Processes, which are series of structured activities in order to perform

a task.

Finally, another interesting use that researchers have given to BN’s is the mod-

elling of attack graphs that represent how different network vulnerabilities could

be combined in order to breach the network’s security. This has been especially

useful in order to measure and assess the risk associated to these vulnerabilities

and therefore, for risk management (see e.g. Dantu and Loper, 2004; Frigault and

Wang, 2008; Poolsappasit et al., 2012).

1.3.1.2 Topic models

Topic models are probabilistic models that have their origins in latent semantic

indexing (LSI) modelling (Deerwester et al., 1990). LSI uses the singular value

decomposition of a term-document association matrix in order to create a space

where related terms and documents are placed near one another. Hofmann (2001),

using this idea, developed the probabilistic latent semantic analysis (PLSA) which
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can be considered the first topic model. His approach uses a generative latent

class model to perform a probabilistic mixture decomposition. Other models,

such as the latent Dirichlet allocation (LDA) model (Blei et al., 2003), have also

been introduced with the task of discovering the topics that occur in a set of

documents. However, they have been widely used in other fields where there is a

need of unsupervised clustering.

The topics produced by these models are clusters of similar words which allow

examining a set of documents. As discussed in Blei et al. (2003) two of the usual

assumptions made are that the words in a document are exchangeable (also known

as the “bag-of-words” assumption) and so are the documents. These assumptions

allows us to exploit de Finetti’s representation theorem for exchangeable random

variables2. In the LDA model, the basic idea is that every document in the

corpus can be represented as a random mixture over a known and fixed number k

of latent topics, which are characterised by a distribution over words. It is further

assumed that the word probabilities are characterised by an unknown but fixed

matrix β of dimensions k ×M that needs to be estimated, where M is the size

of the vocabulary. In practice M is usually large, thereby creating issues related

to sparsity and with the prediction of new documents. In order to address this,

Blei et al. (2003) also developed a fuller Bayesian approach, usually called the

smoothed LDA, by allowing β to be random and a Dirichlet prior distribution

assigned to each row βi.

The LDA model’s original setup includes a corpus X with N documents

w1,...,wN , each one having Pn words, w1,1, ..., wn,Pn . The length of each document

can be sampled from a Poisson distribution or from a more realistic document-

length distribution. For each of the words in the n-th document we first select a

2de Finetti’s representation theorem is due to Hewitt and Savage (1955) who generalised de
Finetti’s theorem for exchangeable 0-1 random variables (de Finetti, 1930)
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random topic zi from which a random word will be assigned. The mathematical

representation of the generative process is:

θn ∼ Dirichlet(α) n ∈ {1, ..., N}

zi ∼ Multinomial(θn) i ∈ {1, ..., Pn}

wi ∼ Multinomial(βzi).

In matters of anomaly detection, Cao et al. (2016) used the LDA model to

analyse features obtained from the packet headers captured using the tcpdump

software. In their approach, the documents are represented by the tcpdump

traffic obtained within a time slot and the words are the unique packet’s network

features. The LDA model is used on free attack traffic data in order to learn its

feature patterns and new traffic data is then compared against it. The authors

proposed using the likelihood of a new document as the detector of anomalous

activity. A similar procedure can be found in Cramer and Carin (2011), where

the LDA model and the dynamic LDA (dLDA) (Pruteanu-Malinici et al., 2010)

are considered to analyse Ethernet packets. In their approach the data is also

divided into fixed time intervals and the words are any event of interest observed

across 45 well-known ports used for network topic modelling. In their results the

dLDA proved to be a better choice for modelling this kind of data due to the

dLDA’s ability to analyse time-dependent documents by letting the weights over

the topics to change in time.

1.3.2 User-computer connections

Now we turn our attention to the Bayesian analysis of the connections and au-

thentications on a computer network. In research some of the most commonly
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used data sets for modelling computer network behaviour belong to LANL (see

e.g. Hagberg et al., 2014; Kent, 2015b; Turcotte et al., 2018). These data sets are

mainly comprised of network and computer events collected from LANL enter-

prise network. For example, the User-Authentication Associations in Time data

set (Hagberg et al., 2014) encompasses 9 months of successful event authenti-

cations for a total of 708,304,516 connections. As an illustration, the first four

events are shown in Table 1.3.

time user computer
1 U1 C1
1 U1 C2
2 U2 C3
3 U3 C4

Table 1.3: User-computer authentications associations in time.

This kind of data sets allow us to view the computer network as a bipartite

graph with users and computers as nodes and the connections as edges. This

approach is particularly important for network anomaly detection since we can

analyse and study the normal connection pattern of each individual, group them

and even learn their expected behaviour by studying their peers. The models

used for each of these tasks will be useful for detecting anomalies such as intrusion

detection, misuse of credentials or rogue users which can and will compromise the

network if they go undetected.

1.3.2.1 Bayesian clustering

Clustering comprises a set of unsupervised learning models that attempts to cre-

ate homogeneous groups from heterogenous observations. From a Bayesian per-

spective, and as explained in Lau and Green (2007), is that the set of clusters
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created work as a parameter of the model for the data. Therefore, the inference

on the partition is carried out through the posterior distribution that can be done

through MCMC procedures. The reader can refer to Lau and Green (2007) and

the references therein for an overview on Bayesian clustering procedures.

For cyber security research, in Metelli and Heard (2016), the authors used a

2-step procedure for inferring cluster configurations of users with similar connec-

tion patterns and at the same time modelling new connections across the network.

The first step uses a Bayesian agglomerative clustering algorithm with the choice

of the multiplicative change in the posterior probability as a similarity measure.

This algorithm yields an initial cluster configuration of users with similar con-

nection behaviours, which is then used in a Bayesian Cox proportional hazards

model (Cox, 1972) with time-dependent covariates for the identification of new

edges within the computer network. In this case, the chosen covariates for a

connection between the i-th user and the j-th computer are the overall unique

number of authentications over time for the computer and the restriction of these

authentications to the user’s cluster. This 2-step procedure requires a Markov

Chain Monte Carlo (MCMC) algorithm for the joint update of the initial clusters

and the coefficient parameters.

Working along this line, Metelli and Heard (2019) presented a Bayesian model

for new edge prediction and anomaly detection using a Bayesian Cox regression

model like the one previously introduced in Metelli and Heard (2016). However,

in the most recent approach the authors used a more robust set of covariates and

the initial cluster configuration was obtained through the spectral biclustering

algorithm (Dhillon, 2001). The covariates used can be grouped into two different

classes: the first group is comprised of the unique number of authentication over

time for each client (time-varying out-degree), the unique number of authenti-

cation over time to each computer (time-varying in-degree) and two indicator
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functions, respectively specifying if the last connection and the last two connec-

tions made by the client were new. The second set of covariates represent what

the authors described as the notion of attraction between clients and servers. For

their construction both hard-threshold and soft-threshold clustering models were

used in a latent feature space.

1.3.2.2 LDA

The LDA model as explained in Section 1.3.1.2 has also been shown to be a valid

and useful technique for network modelling using authentication records. The

reader can refer to Heard et al. (2016) for an example on how the LDA model can

be used to analyse computer network connection traffic data to determine the

number of users present. In their approach, each document is represented by the

day’s authentication records, different users are the topics and the destination

computers play the role of the words. In this scenario each of the entries of θn

indicates how active was the respective user in the n-th day. As discussed by

the authors this procedure could play an important role for detecting misuse of

credentials.

1.3.2.3 Poisson factorisation

Topic models are not the only probabilistic models used for cyber security research

that have been originally designed for other purposes. Poisson factorisation (PF)

models, which are widely used for recommender systems in machine learning (see

e.g. Gopalan et al., 2014), have also been used for network anomaly detection. PF

is a probabilistic model of users and items that was proposed as an alternative to

the classical probabilistic matrix factorisation (PMF) (Salakhutdinov and Mnih,
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2007).

The main assumption is that the data can be represented in a matrix, in the

recommender system the rows are the clients and the columns the number of

items. Each entry of this matrix is assumed to be the rating given by a certain

user to a particular item, and these are modelled using the dot-product of latent

factors for both the users and the items. PMF assumes that each entry is normally

distributed and Gaussian priors are assigned on the latent factors for both the

users and movies. This will theoretically imply that the ratings could become

negative which is something we would not desire to have. In order to address this

issue, PF assumes that both the users and the latent factors are non-negative,

and so a Poisson distribution for the entries and gamma distributions for the

latent factors are used instead. These assumptions make PF more applicable to

real data sets like The Netflix Prize data set (Bennett and Lanning, 2007), where

we have a set of users and the rankings for each movie in the catalogue.

With respect to cyber security research, Turcotte et al. (2016a) considered

PF models for peer-based user analysis which provides a better understanding

of the individuals by learning their peer’s behaviour. The basic idea is that

computer users with similar roles within an organisation will have similar patterns

of behaviour. This type of analysis can be particularly important for quickly

detecting rogue users. The behaviour of a new user can be compared to their peers

and anomalies detected. The data used is the recorded authentication events

(Table 1.3) as briefly explained in Section 1.2. The model is completely specified

by letting Yui be the number of times that user u authenticates on machine i and

where it is assumed that Yui ∼ Poisson(θuβi), where, θu for u = 1, . . . , U , and

βi, for i = 1, . . . , C, are k-dimensional vectors of positive values. The model is

interpreted as having k latent features characterising the users (such as job title,

department, etc.) with θu representing their scores for the u-th user and k latent
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features characterising each computer (such as the number of daily processes, the

type of computer, etc.), with βi representing their scores for the i-th computer.

A certain feature might have a high score for all machines within one de-

partment and low scores otherwise. If a user had a high-score on that feature

then they are likely to have many authentication events on machines in that de-

partment (perhaps, representing that they work in that department). If a user

had a low-score on that feature then they are likely to have a very low number

of authentication events. In general, the mean number of authentication events

for a user on a machine is the sum over products of many features which al-

lows similarities between users and computers to be learnt from the data. The

specification of the model is completed by assuming that θu,j
i.i.d.∼ gamma(a, ζu),

βu,j
i.i.d.∼ gamma(b, ηi), ζu ∼ gamma(a′, b′) and ηi ∼ gamma(c′, d′). The model is

fitted to a training sample and anomalies can be detected by comparing predic-

tions from this model to observed values from a testing sample.

1.3.2.4 Dirichlet process

So far, we have only described Bayesian models working under parametric as-

sumptions. Although these models have been proved effective in detecting net-

work anomalies, there is still a missing methodology that we need to consider:

the nonparametric realm. Bayesian nonparametric models have become increas-

ingly popular and appealing in research areas such as finance, biology and ma-

chine learning, among others, because they posses a flexibility that can hardly be

achieved by parametric models. This flexibility is explained through the fact that

these models, in contrast to parametric ones, assume that the parameter space

is an infinite-dimensional object, something particularly useful as more data be-

comes available. For cyber security research, where huge amounts of time evolving
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data are available almost instantly, Bayesian nonparametrics models should pro-

vide more suitable modelling techniques and interesting insights and solutions to

the problem at hand.

Historically, it is widely accepted that Bayesian nonparametrics had its be-

ginnings with the introduction of the Dirichlet Process (DP) by Ferguson (1973)

and since then, the DP has played a vital role in Bayesian nonparametrics and

its applications (see e.g. Hjort et al., 2010). The DP works as a prior on the

space of probability distributions and just as the Dirichlet distribution it has a

nice conjugacy property. More precisely, if {Xi}ni=1
i.i.d∼ P and P ∼ DP (α) then

P |X1, ..., Xn ∼ DP (α +
∑n

i=1 δXi). In this setting, α is a finite measure defined

on the same space as P and it is commonly expressed as α = θP0, where θ is the

total mass and P0 a probability measure. Using this structure we obtain a nice

expression for the predictive distribution

Xn+1|X1, ..., Xn ∼

δX
∗
j

with probability proportional to nj

P0 with probability proportional to θ,

where {X∗j }j is the set of distinct values observed in X1, ..., Xn and nj their

frequencies. Hence, we will be observing either a previously seen value or a com-

pletely new one, a characteristic which is really useful in clustering applications.

Exploiting the structure of the posterior and predictive distribution of the DP,

Heard and Rubin-Delanchy (2016) developed a Bayesian nonparametric approach

to intrusion detection by assuming a DP-based model for each message recipient

on a set of computers and the directed connections among them that represent

the node set V and the set of edges E respectively in a directed graph (V,E),

which can be thought as a set of objects connected together where the source

node and destination node can be identified for each connection (the direction
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matters). The first step of their anomaly detection procedure is to obtain the

predictive p-value for the event xn+1, defined as pn+1 =
∑

x∈V :θ∗x≤θ∗xn+1

θ∗x
θ∗

, where

θ∗x = θP0(x) +
∑n

i=1 δXi(x) and θ∗ = θ + n. These p-values quantify the level of

surprise of a new connection. Since the goal is to detect anomalies in each source

computer, the m p-values observed in the edge (x, y) are reduced to a single score

using Tippett’s method (Tippett, 1931). Then a single score for each node x is

obtained using Fisher’s method (Fisher, 1934). Finally, the computers are ranked

through these scores, and compromised ones should have higher ranks.

Working along this line, Sanna Passino and Heard (2019) examined a joint

model of a sequence of computer network links {(xi, yi)}ni=1, with xi and yi repre-

senting the source and destination computer respectively, based on the Pitman-

Yor process (PY) (Perman et al., 1992). The PY process, also known as the

two-parameter Poisson-Dirichlet process, requires two parameters which are usu-

ally denoted by σ ∈ [0, 1) (the discount parameter) and θ > −σ (the strength

parameter). An appealing characteristic of the PY process is the closed form of

the predictive distribution given by:

Xn+1|X1, ..., Xn ∼

δX
∗
j

with probability proportional to (nj − σ)

P0 with probability proportional to θ + kσ,

where k is the number of different observations and P0, nj and X∗j are defined just

as for the DP. We can immediately notice that if σ → 0 we recover the DP, thus,

the PY process can be thought as a generalisation of the DP. Another interesting

remark is that the probability of a new value depends on k, so the more unique

observations we have, the more likely it will be to obtain new samples from P0.

This is certainly useful for applications where power-law behaviour is observed,

something the DP can not achieve. Finally, as σ → 1, unique observations Xj’s

having small frequencies nj are unlikely to be sampled.
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In Sanna Passino and Heard (2019) the joint modelling of p(x, y) is achieved

through the decomposition p(x|y)p(y) by assuming the sequence of destination

nodes, {yi}, to be exchangeable with a hierarchical PY distribution and condi-

tioned on the destination node the sequence of source nodes connecting to that

destination, {xi|y}, are also exchangeable with a hierarchical PY distribution

with parameters depending on y. The mathematical representation of the model

is:

x|y ∼ Fx|yi

yi ∼ G

Fx|y ∼ PY(αy, θy, F0)

G ∼ PY(α, θ,G0)

As for the detection procedure, it follows the same reasoning as in Heard and

Rubin-Delanchy (2016), that is, for each source computer one needs to obtain the

predictive p-values and combine them into a single score. Besides the use of the

PY process rather than the DP, there are two other interesting results found in

this approach. The first one is that the authors did not restrict their attention to

the use of p-values and they further explored the use of mid p-values (the reader

can direct the attention to Lancaster (1952) and Rubin-Delanchy et al. (2019) for

an insight on mid p-values and why in some problems they might be preferred

over p-values). Finally, they also explored Pearson (Pearson, 1933) and Stouffer’s

(Stouffer, 1949) p-value combiners.
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1.3.3 Case study. LANL user-authentication data set

The user-authentication data set by Los Angeles National Laboratory

(Kent, 2015a) is a comprehensive summary of 58 days of traffic of the enterprise’s

network, which also contains a set of 48,079 red team compromise events result-

ing from a simulated intrusion attack. In total, there are four source computers

compromised (C17693, C18025, C19932, and C22409), and the task is to iden-

tify the unusual activity occurring and flag these computers. These connections

between source and destination nodes can be modelled as a bipartite graph and

hence, we could use the model proposed by Heard and Rubin-Delanchy (2016) or

Sanna Passino and Heard (2019) in order to identify the compromised computers.

As described in Section 1.3.2.4, these models allow us to quantify the surprise

of each new connection through the p-values or mid p-values, which are then

aggregated for each source computer to have a unique score. These scores are

then used to rank the computers and, in the case of the compromised ones, a

high anomaly score should be assigned. In Table 1.4 we present the results that

Heard and Rubin-Delanchy (2016) obtained with the DP p-values aggregated

using Fisher’s method (Fisher, 1934) and the best results of Sanna Passino and

Heard (2019) obtained with the PY mid p-values aggregated using Pearson’s

method (Pearson, 1933).

Src. Comp. Rank with DP p-values Rank with PY mid p-values
C17693 5 1
C18025 94 74
C19932 5347 2754
C22409 7172 6984

Table 1.4: Rank of the compromised source computers.
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1.4 Malware detection and classification

The malware detection and classification problem is the third group of cyber

threat investigation problems that we consider in this chapter. A malware is

defined as a software specifically designed to disrupt, damage or gain access to a

computer system. Nowadays there are many types of malware, such as spyware,

adware, ransomware, among others, including several variations of them. That

is why the fast detection of unknown malware is one of the biggest concerns of

cyber security. However, accurate detection is not the only task required when

dealing with malicious software. Malware have to be classified into families for a

better understanding of how they infect computers, their threat level and there-

fore, how to be protected against them. Correct classification of new malware

into known families may also speed-up the process of reverse-engineering to fix

computer systems that were infected. In order to have good explanatory and pre-

dictive models for the malware detection and classification problem, researchers

have mainly used the content of the malware in two ways, either by using the

hexadecimal representation of the binary code or the dynamic trace.

1.4.1 Hexadecimal representation and n-grams

In computer science the byte is the basic unit of information for storage and

processing and it is most commonly represented by a sequence of 8 binary digits

(bits). Every instruction given to a computer (malicious or not) can be broken

down into sequences of bytes, which form the instruction’s binary code. These

sequences can be expressed in a more compact way through their hexadecimal

representation, where each byte is written as a combination of two elements of the

set {0, 1, ..., 9, A,B, ..., F}. For malware detection and classification the hexadec-
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imal representation of the binary code is used in conjunction to what is known

in literature as n-grams.

An n-gram is usually defined as a contiguous sequence of n elements; these

elements, depending on the field, can be letters, numbers, words, etc. In com-

puter science and for malware detection and classification purposes, these ele-

ments are the hexadecimal representation of each byte. For example, consid-

ering n = 4, for the code extract given by 00 00 1C 40 2A 28, we take all the

possible sequences of 4 contiguous bytes to create the set of 4-grams, that is

{00001C40, 001C402A, 1C402A28}. The elements of the set of all the differ-

ent n-grams are assumed to completely characterise benign and malicious code

through their presence and absence. Hence, the set of n-grams needs to be mod-

elled for the prediction of new observations, contrary to the classical n-gram

analysis where these structures are used as a probabilistic model for the predic-

tion of the next item in a sequence. In practice, it has been observed that the

set of unique n-grams is huge even for small data sets (easily reaching the order

of millions), so it becomes computationally unfeasible to use all this information

and a feature selection procedure is required as a first step.

To the best of our knowledge, there is no Bayesian approach to malware

detection using the hexadecimal representation of the binary code. However,

we believe this line of work should be appealing to the Bayesian community as

well, due to assumptions made and the challenge it represents. First of all, the

data can be represented by a N ×M binary matrix where the rows are either

malicious and benign code. From a Bayesian perspective one could be interested

in modelling this binary matrix using a conjugate beta-Bernoulli hierarchical

model or by choosing more complex models like a logistic regression for malware

detection. It should also be clear that this is a high-dimensional problem in both

rows and columns, so Bayesian nonparametric models could be definitely helpful
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for analysing this sort of data. Moreover, the assumptions made can be easily

generalised for the classification into known families problem.

1.4.2 Dynamic traces as Markovian structures

The second approach to malware detection and classification relies on the dynamic

traces of the malware, which are basically the set of instructions executed in order

to infect the system. Following the ideas of Storlie et al. (2014), many authors

have assumed that these traces have a Markovian structure and in that way

the interest relies on modelling and analysing the probability transition matrix.

Since there are hundreds of commonly used instructions and thousands of them

overall, modelling the one-to-one transition is not feasible. However, there are

some instructions that perform the same or similar task so creating groups of

similar instructions is a reasonable first step. Storlie et al. (2014) developed four

different categorisations with 8, 56, 86 and 122 groups of similar instructions. In

practice the most widely used categorisation is the one with 8 classes, which

include among others: math, memory, stack, and other.

The mathematical framework is fully specified by letting c to be the number

of instruction categories previously chosen (e.g. 8), then a dynamic trace is

defined as a sequence {x1, ..., xn} with xi ∈ {1, ..., c} that are modelled as a

Markov chain (MC). Hence, we let Zi be the transition counts matrix for the

i-th program, Pi to be the probability transition matrix and Bi an indicator if

the program is malicious or not. Storlie et al. (2014) proposed that the entries

of the estimated Pi, denoted by P̂i, should be used as predictors to classify

a program as malicious or not through a logistic spline regression model. In

practice, the actual predictors used to model Bi are: logit(P̂i,1,1), logit(P̂i,1,2), ...,

logit(P̂i,c,c−1), logit(P̂i,c,c). Finally, a symmetric prior Dirichlet distribution with
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parameter ν is used as a prior for each row of Pi.

Working directly on this approach, Kao et al. (2015) proposed a flexible

Bayesian nonparametric approach to model the probability transition matrices

{Pi}i by using a mixture of Dirichlet processes (MDP) (Antoniak, 1974), that is,

Pi|Qi, σ
i.i.d.∼ MD(σQi)

Qi|G
i.i.d.∼ G

G ∼ DP (θ, P0),

where P0 follows a matrix Dirichlet (MD) distribution centered in some constant

matrix P̂ , σ > 0 controls the variance of Pi and the matrix Qi is the shape

parameter. This MD distribution implies that each row of Pi independently

follows a c-dimensional Dirichlet distribution with concentration parameter equal

to the corresponding row of σQi. The model is completely specified by letting

Bi be the indicator random variable of maliciousness just like before. A new

program i∗ is classified as malicious if P(Bi∗ = 1|Zi∗ ,Z ) exceeds a predefined

threshold, with Z being the collection of all observed counts matrices. Moreover,

if the program is malicious it can be further classified into a cluster with existing

programs that share common features.

A different approach for the modelling of dynamic traces was developed by

Bolton and Heard (2018). Their approach followed the same assumptions, i.e.

that dynamic traces, specified by the prior clustering of common instructions,

have a Markovian structure. However, they further assumed that this structure

changes over time with recurrent regimes of transition patterns. Hence, each

dynamic trace can be modelled as a MC with a time varying transition probability

matrix P(t). In order to detect the regime changes three change-point models

were described. The basic idea is that there are k ≥ 0 change-points that partition
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the dynamic trace and where within each segment the trace follows a homogeneous

MC. The methods vary in the way the probability transition matrices are defined

within each segment. The first one changes the whole matrix in each segment,

the second one only allows some of the rows to change and finally the regime

switching method allows the change in rows not only to be forward but also to

go back to a vector of probabilities that governed the Markov chain in earlier

segments. Finally, the authors proposed a classification procedure based on a

similarity measure of the vectors of change-points and their regimes, that obtains

the minimum value for the two samples of the proportions of instructions which

occur within regimes shared by both traces. A high level of similarity requires that

a large number of observations in both traces are drawn from common regimes.

1.4.3 Case study: Malware dynamic traces

In this section we discuss and present the methodology followed in Bolton and

Heard (2018) to classifying 141 malware provided by reverse engineers of Los

Alamos National Laboratory into families and subfamilies using their dynamic

traces. The first thing we would like to remark, is the fact that in order to

perform this kind of analysis, there is a need to safely execute the malware in

a controlled sandbox environment to prevent infecting the system and to record

the instructions as they are executed. This is certainly a complex task that is

time consuming; however, it also provides key information on how the malware

was created and their objective, which is really important because it allows to

create some sense of similarity among them and therefore, to discover the type

of malware we are dealing with.
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As explained in Section 1.4.2, in Bolton and Heard (2018) the authors as-

sumed that the traces had a time varying homogeneous Markovian structure.

And in order to perform the classification, three methodologies were considered.

For the first one and in order to compare their time evolving assumption, an

homogeneous MC was assumed and in order to assess the similarity among traces

a standard square exponential kernel was used on the empirical transition prob-

ability distributions. For this approach, a nearest neighbour algorithm was used

for the classification procedure.

The second methodology considered was the Bayesian approach developed by

the authors, where a reversible jump MCMC algorithm was used in order to ob-

tain a posterior estimate of the similarity measure of two traces defined as the

minimum of the proportion of shared instructions within regimes. With these

posterior estimates, both single link and nearest neighbour algorithms were con-

sidered for the classification. Finally, and in order to improve the accuracy, the

authors also developed a hybrid method combining the previous two approaches.

As a first step, the kernel methodology was used as a filter by selecting the

malware whose distance was less than 1.05 from the new malware. Then the

regime-switching model was applied to this reduced set and in order to perform

the classification, the authors proposed Fisher’s p-value combiner and hence, as-

signing the family which yielded the lowest value using Fisher’s method. The

reported accuracy performance for the three methods is illustrated in Table 1.5.

Methodology Kernel Regime-Switching Hybrid
Family 91.00 91.00 94.00

Subfamily 85.00 84.00 89.00

Table 1.5: Accuracy performance (in %) of the kernel, the regime-switching and
the hybrid approaches to dynamic malware classification.
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1.5 Alternative cyber threat anomaly detection

approaches

It is imperative to stress that the models and the kind of data described in the

previous sections are far from being exhaustive. They represent the ones that

we have found to be the most frequently used for the general class of cyber

threat anomaly detection problems presented here. However, there are other

kind of cyber security related problems that have been tackled from a Bayesian

perspective and that could be appealing for future research purposes.

For example, Turcotte et al. (2016b) used computer event logs to identify

misuse of credentials within a computer network. In their approach these logs

are treated as an aggregated multivariate data stream comprised of the client

computer x, the server computer y and the type of event e. These features

were modelled independently for each user credential and the probability of an

observed triplet (xt, yt, et) at time t is modelled using the conditional probabilities,

that is, P(xt, yt, et) = P(xt)P(yt|xt)P(et|xt, yt). For each of these components an

appropriate multinomial-Dirichlet based model was considered, and in order to

detect anomalies, the predictive distributions were used to obtain the p-value that

can be compared against a predefined threshold.

A second example for detecting compromised credentials can be found in

Price-Williams et al. (2018), where the authors proposed a users’ activity anomaly

detection approach by analysing the amount of user activity on a given day and

the times where these activities were realised. A seasonal behaviour model was

developed by first constructing a model to measure the user’s activity in a certain

period and then using the events registered, a change-point density estimation

model was used to estimate the times at which the events occurred. In this setting,
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users working at hours that differ from their normal schedule are considered to

be anomalous activities.

Other interesting approaches are aimed to obtain a better understanding of a

computer network’s behaviour. An example of this can be found in Price-Williams

et al. (2017), where the authors’ main goal is to detect automated events that can

be viewed as polling behaviour from an opening event originated by a user. It

was discussed that achieving this should yield an improvement in the statistical

model used and enhance its anomaly detection capabilities. In this approach a

change-point model was used in each edge of the computer network in order to

separate human behaviour from automated events. This methodology works as

an alternative to the one presented in Heard et al. (2014), where the discrete

Fourier transform was used.

Being able to detect automated events from human activity is not the only ap-

proach undertaken for a better understanding of a computer network. Nowadays,

there are computer networks that contain a vast number of nodes and thereby, a

large number of connections among them. In practice, temporal independence for

the nodes is usually assumed to have mathematical tractability; however, this is

a strong assumption and a deeper understanding of the dependance among these

nodes is required. A recent approach by Price-Williams et al. (2019) aimed to de-

tect and understand the interactions between computer nodes to detect correlated

traffic patterns to reduce false positives when performing anomaly detection. A

test based on higher criticism (Donoho and Jin, 2004) was used to detect this

dependence.
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1.6 New and emerging challenges

Some of the challenges the mathematical community face when dealing with

cyber security problems have already been described in the introduction of this

chapter. These include challenges related to the data itself, like the privacy

and ethical issues, and to the models and how there is a need to handle large

volumes of non-homogeneuous data. However, we would like to describe two

of the main challenges that still need to be fully considered in Bayesian cyber

security research.

1.6.1 Robustness

As already established, in cyber security an anomalous activity might be a sign

that an attack is occurring, so it is imperative to detect it as fast as possible while

keeping a low false positive rate. Clearly, the performance of most of the anomaly

detection models heavily rely on the data used in the training step. Ideally, this

data should be as reliable as possible and among other things, it should be noise-

free. However, in real case scenarios, and especially nowadays with larger and

more complex networks, delivering noise-free data might not be an easy task to

achieve. Therefore, designing robust models able to deal with noisy data and to

capture more complex (and realistic) scenarios is also a crucial task.

From a non-Bayesian perspective, there are already some robust

anomaly detection models that have been used in cyber security. For example,

Eleazar (2000) described a probabilistic approach to anomaly detection without

training on normal data in order to detect intrusions in UNIX system call traces;

Paffenroth et al. (2018) developed a robust principal component analysis (RPCA)
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assuming noisy and missing data on network packets; Hu et al. (2003) used robust

support vector machines (RSVM) to study intrusion detection over noisy data.

Finally, it is worth mentioning that deep learning models have also been used

in order to provide more robust models, like the deep autoencoders which are a

class of unsupervised neural networks (Berman et al., 2019).

From a Bayesian perspective, robust models applied to cyber security data are

still little explored. Some of the already known robust models include Bayesian

networks which are able to model more realistic scenarios by analysing the com-

bined effect of the vulnerabilities. For volume-type traffic data, there is also a

need of more robust models, since this type of data usually contains outliers, de-

riving from normal activities. In this direction, but not directly applied to cyber

data, Knoblauch et al. (2018) developed a robust Bayesian online change-point

detection algorithm that achieved promising results when dealing with outliers in

well-log data and analysing noisy measurements of nitrogen oxide levels.

1.6.2 Scalability

Bayesian models have become appealing due to their rich theoretical background

and ability to model complex data. Bayesian inference relies on the posterior

distribution of the parameters which, in most of the cases, will not be known

in a closed form. In order to obtain samples from the posterior, one could use

approximations to the unknown integral or to the posterior, with the intent of

minimising the discrepancy that forms the basis of variational Bayes (see e.g.

Blei et al., 2017, for a review on variational inference). In this direction, stochas-

tic gradient descent methods can be used to scale variational Bayes methods to

very large data sets. Alternatively, in some instances an MCMC scheme could

be designed to produce correlated samples from the posterior. Although theo-
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retically efficient, MCMC schemes often face several computational issues due to

a slow mixing and slow convergence, which usually get worse when dealing with

high-dimensional data. Possible solutions include, parallel MCMC, approximate

MCMC, C-Bayes and Hybrid algorithms. A thorough review on theoretical and

practical aspects of scalable Bayesian models can be found in Angelino et al.

(2016).

From a Bayesian perspective, some scalable approaches have been designed for

modelling and detecting anomalies in cyber security applications. Examples of

these include: Clausen et al. (2018), where a Markov-modulated Poisson process

embedded in a fast and scalable Bayesian framework was used in the modelling

for network flow data; Chen et al. (2018), where a novel class of Bayesian dynamic

models was introduced and applied to Internet traffic and, according to the au-

thors, the sequential analysis is fast, scalable and efficient; Muñoz González et al.

(2017) explored two methods for scalable inference on Bayesian attack graphs;

and other models like the one described in Heard and Rubin-Delanchy (2016) and

Sanna Passino and Heard (2019) are fully parallelisable and suitable for platforms

designed for Big Data analysis like Hadoop.

1.7 Concluding remarks

Cyber security research from a mathematical and statistical point of view is

challenging due to the inherent complexity of the problems and the nature of

the data. We believe that in order to be well-prepared against the current cyber

threats, Bayesian statistics offers a wide range of flexible models that might be

the key for a deeper understanding of the generative process at the basis of

malicious attacks and, at the same time, for us to have predictive models able to
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handle large volumes of time-evolving data. That is why in this chapter we have

presented the statistical approach to cyber security anomaly detection methods,

making particular emphasis on Bayesian models.

However, as remarked in Section 1.5, the methodologies described in this chap-

ter are far from being exhaustive. In a highly connected world with cyber threats

being more dangerous than ever there is a need for a thorough understanding on

the computer networks’ behaviour. That is why as the interest in cyber security

keeps increasing we are able to find (in a frequent basis) new models that work

directly along the line of some of the ones we have presented here. Moreover,

alternative approaches to the ones described in this chapter have been considered

and proved useful for both network modelling and anomaly detection.

We would also like to point out that, although there has been an actual

increase in cyber security research from a Bayesian point of view, to the best

of our knowledge, there are some areas that have not been as widely explored

as others. Most of the work we have encountered corresponds to either volume-

traffic or network anomaly detection. Malware related problems, like detection

and classification, are still open areas of research that need to be deeply developed.

As a final comment, we would like to remark that, although not mentioned

directly in each of the sections of this chapter, anomaly detection models for

cyber security research require the analysis of high-volumes of data. No matter

if it is for volume-traffic analysis, network modelling or malware detection and

classification, all of them require handling and learning from data sets that are

usually very large. This definitely plays a vital role in cyber security research,

since we have always to keep in mind that while developing statistical models

for this kind of problems, there is a need for algorithms able to scale well, and

(preferably) able to perform in a sequential procedure as new data is observed.
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Chapter 2

A Bayesian approach to malware

detection and classification

through n-gram profiles

Malware is a computational term that is commonly used to describe any software

specifically designed to disrupt, damage or gain access to a computer system.

Twenty years ago, it was remarked by McGraw and Morrisett (2000) that deal-

ing with malicious code was a rapidly increasing problem affecting individuals,

organisations and governments equally. Nowadays, in a highly connected world,

the fast and accurate detection of malware is one of the major concerns of cyber

security. Traditionally, the use of antivirus software has been essential in order

to detect malicious code and to keep the computer systems protected. Antivirus

software usually makes use of the blacklisting method, where a new program is

scanned in search of signatures of known malware and if found, the program is

disabled and a warning is flagged. This approach is effective for detecting known

threats; however, antivirus software have been proved to be less effective with
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new threats and with slight modifications made to the original code to avoid

recognition (McGraw and Morrisett, 2000). Hence, it is imperative to consider

and develop more flexible malware detection methods.

In recent years, machine learning and statistical approaches have been used

as an alternative to the blacklisting method and several approaches have been

proposed in order to detect malicious code. These detection procedures can work

by either directly analysing the executable content through n-gram profiles (see

e.g. Kolter and Maloof, 2004, 2006; Masud et al., 2007; Pektaş et al., 2011) or

dynamic traces (see e.g. Storlie et al., 2014; Bolton and Heard, 2018; Kao et al.,

2015), or by analysing the network traffic or the packet payload content (see e.g.

Ahmed and Lhee, 2011; Prasse et al., 2017; Vidal et al., 2017). Deciding which

methodology to use will certainly depend on the problem at hand. However, it

seems that a content-based analysis yields a more general detection procedure,

while a behavioural approach might be better for specific situations. For exam-

ple, Ahmed and Lhee (2011) proposed a model for detecting executable code by

analysing the packet payload; this is certainly useful for network servers that do

not expect that kind of code such as shopping stores or online streaming services.

To the best of our knowledge, malware detection through n-gram profile anal-

yses has been mainly done using discriminative binary classifiers, like support

vector machine, decision trees and boosted versions of them (see e.g. Kolter and

Maloof, 2006; Masud et al., 2007). These models have proved to be extremely

accurate while keeping a low false positive rate, especially when there is a large

amount of data available. Moreover, these classifiers usually outperform proba-

bilistic models like naive Bayes, that is why in practice the latter have not been

considered at all. However, probabilistic models are extremely useful because

they allow us to understand the generative process of the data (and with it the

opportunity to replicate it) and they can also be used for tasks such as clustering
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(unsupervised learning).

It is important to remark that malware detection is not the only task required

when dealing with malicious software. In order to understand their infectious pro-

cess, their potential threat level and therefore, how to be well-protected against

these malicious softwares, there is a need to correctly identify the family to which

they belong. The accurate classification may also speed-up the process of reverse-

engineering to fix computer systems that were infected as well as for developing

security patches to prevent more computers to become infected. This classifica-

tion task can also be done through an n-gram profile analysis since most of the

binary classifiers used for malware detection can be extended to a multi-class set-

ting. That is why we are mainly interested in directly analysing the executables’

content through n-gram profiles. In this approach it is assumed that the n-grams,

which in this case are contiguous sequence of n bytes, work as binary features

that completely characterise each class.

In this chapter we present a novel supervised learning model for binary ma-

trices. Our approach is based on the underlying theory of compound random

measures (CoRM’s) (Griffin and Leisen, 2017), which allows us to define a hi-

erarchy across groups controlled by a beta global distribution and a beta score

distribution at a group level. The beta-CoRM approach proposed here is a flex-

ible probabilistic model for which a slice sampling method for the posterior and

predictive inference is also derived. CoRM’s are particularly attractive since they

allow us to construct correlated measures that characterise and differentiate the

groups. This is especially useful in situations where it is desired to find from a set

of common features the ones that are most influential in each group. Moreover,

these features are conditionally independent and, under certain prior specifica-

tion, the inference can be performed independently on each feature and hence the

computations can be easily parallelised. For malware detection and classification
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purposes these characteristics are particularly attractive, since the main assump-

tion is that the n-grams are independent, completely characterise each group and

usually the set of n-grams is a high-dimensional object.

2.1 Related work

As detailed in the previous chapter, every instruction given to a computer can be

broken down into sequences of bytes, which form the instruction’s binary code.

These binary sequences can be expressed in a more condensed form using the

hexadecimal notation. That is, each byte is represented as the combination of

two elements of the set {0, 1, ..., 9, A,B, ..., F}. For malware detection purposes,

these sequences of bytes in hexadecimal notation are used to create a set of binary

features that are assumed to characterise both benign and malicious programs.

In order to create these features, one commonly used structure are the n-grams,

which may represent an instruction, a part of one or more instructions or even a

string data inside the code (Masud et al., 2007).

Using the hexadecimal representation of the binary code and n-grams is not

the only approach used in order to create the binary features. There is more infor-

mation from the executables that can be retrieved and used, for example, Schultz

et al. (2001) used three different feature extraction processes. As explained in

Kolter and Maloof (2004), the first method uses a list of Dynamically Linked

Libraries (DLLs), function calls from these DLLs and the number of different

system calls from within these DLLs. The second approach uses the UNIX string

command, which provided the printable strings in an object or binary file. And

the third method uses the hexadecimal representation of the executable content.

It was further discussed that we should question the stability of the DLL names,
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the function names and string features since they could be easily modified or

there could not be information of them at all.

As for the hexadecimal code, a thorough study of n-grams as features is due

to Kolter and Maloof (2004); since then it has been proved to be an effective

approach and, as explained in Raff et al. (2016), it is particularly attractive

since it can also be applied to other file formats like PDF’s. However, there is

an important consideration that needs to be discussed first. No matter which

size of n-grams is used, the feature space is generally very large, and even for

a small collection of benign and malicious executables the number of unique n-

grams can reach the order of hundreds of millions, making it computationally and

statistically unfeasible to consider them all. Therefore, a selection procedure is

required as a first step.

Kolter and Maloof (2004) proposed to use the M most important n-grams

in terms of the information gain (IG), which is a measure that has been used

in machine learning for variable selection in text categorisation. In Yang and

Pedersen (1997) a complete study on the IG and other common feature selection

approaches in text categorisation was developed. As for the IG, it was showed

that it favours common terms, it considers the feature absence in its calculation,

and most importantly, for scenarios with an extreme dimensionality reduction

(up to 98 % of the feature space) the classifiers performed the best with the

IG features. This makes the IG particularly attractive for malware detection

through n-gram profiles due to the presence of millions of them. The IG for the

j-th n-gram is calculated as

IG(j) =
∑

vj∈{0,1}

∑
Ci

P (vj, Ci) log

(
P (vj, Ci)

P (vj)P (Ci)

)
,

(2.1)
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where vj is the indicator of a program v having or not the j-th n-gram and Ci the

i-th class. The reader can appreciate that the IG as defined in (2.1) is actually

the Kullback-Leibler divergence between the joint distribution P (vj, C) and the

distribution assuming independence P (vj)P (C). For its computation, Kolter and

Maloof (2004) used the empirical distributions as an estimate for the required

probabilities, i.e., P (vj, Ci) is the proportion of the observations in class Ci that

contain (or not) the j-th feature, P (Ci) is the proportion of the data belonging

to class Ci and P (vj) is the proportion of the training data containing (or not)

the j-the feature.

In practice, this feature extraction and selection approach requires the prior

specification of the size of n-grams and the number of features, M , to be consid-

ered. In order to know the best possible combination Kolter and Maloof (2004)

performed pilot studies where they considered different values for n and M . These

combinations were tested in a subset of the data and compared through the per-

formance of the classifiers used for the detection phase which included naive

Bayes, decision trees, support vector machine and boosted versions of them. Fur-

thermore, in these pilot studies the authors also considered different lengths of

bytes and it was determined that the best results were obtained by using single

bytes and setting n = 4 and M = 500.

Since its introduction, most of the research on malware detection through

n-grams profiles has used this approach as the basis for the feature selection

process. For example, some authors like Masud et al. (2007) have proposed

hybrid detection models where both n-grams and DLL’s are used, while others

like Pektaş et al. (2011) have only used n-grams. As an example of the kind of

data considered, Figure 2.1 illustrates a set of benign and malicious executables

characterised by 503 binary n-grams. This data set can be found at the University

of California Irvine Machine Learning repository (Rumao, 2016).
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Figure 2.1: Malware detection data set with 72 benign and 301 malicious exe-
cutables (separated by the red line) each one with 503 binary n-gram features.

Although widely used, the approach described by Kolter and Maloof (2004)

might not be the best one overall and further improvements could be made. For

example, in the experiments performed by Raff et al. (2016), it was showed that

the number of unique n-grams can reach the order of billions, and hence, making it

computationally expensive to obtain the IG for all of them. It was also discussed

that determining the actual number of features used is also an expensive process

that is not well addressed in Kolter and Maloof (2004) since they only used a

subset of the data in order to fix its value.

In order to address these issues, Raff et al. (2016) proposed a three step feature

selection process. The first step was to consider only the n-grams that appear

in at least 1% of the observations. This step is justified by the fact that there

is a need to select features that appear frequently enough to observe them in
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new data. By doing so the authors achieved to reduce the number of n-grams

from 36 billions to 1.6 millions. The second step was to consider a measure like

the IG in order to further reduce the number of features since having millions

of them is still a computational burden. In their experiments they selected the

200 thousand most important ones. Finally, the third step was to use a learning

model able to do feature selection at the same time like the elastic-net regularised

logistic regression model that the authors used.

As for this chapter, its main contribution is a new Bayesian supervised learn-

ing model specifically designed for binary matrices. This probabilistic approach

can be used in data sets with two classes, like the malware detection data set

illustrated in Figure 2.1, or in a multi-class setting for malware classification into

known families, such as Trojan, backdoor, virus, etc., like the one released as part

of the Microsoft Malware Classification Challenge (Ronen et al., 2018) which is

thoroughly described in Section 2.4.2. For this multi-class data set, we further

explored a different feature selection process which only considers the 4-grams

that appear at least once in each class. This selection process drastically reduces

the feature space and the computational resources required and promising results

are obtained with the beta-CoRM and with other commonly used classifiers.

2.2 Discrete beta compound random measure

In this section, we present a novel Bayesian nonparametric approach to supervised

learning that builds on a special type of d-dimensional vectors of completely ran-

dom measures (CRM’s) (Kingman, 1967), known as compound random measures

(CoRM’s) (Griffin and Leisen, 2017). To have a complete theoretical understand-

ing of the methodology we present in this chapter, we first introduce some of the
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basic concepts governing the notion of completely random measures.

2.2.1 Preliminaries

Since their introduction in Kingman (1967), completely random measures have

become essential for most Bayesian nonparametric models. One of the key prop-

erties of these random measures is their almost sure discreteness, which means

that their realisations are discrete with probability 1. This characteristic allows

us to use CRM’s to model data generated by a discrete distribution or to use

them as the basic building block in mixture models. A useful representation of a

CRM is due to Kingman (1967) where it was showed that if X is a CRM then,

X =
∞∑
i=1

Jiδxi ,

(2.2)

where both the locations, xi’s, and the jumps, Ji’s, are random.

From a probabilistic point of view, CRM’s can also be considered as a par-

ticular instance of the well-known class of stochastic processes known as Lévy

processes. The reader can refer to Sato (2013) for a thorough and complete

theoretical description of Lévy processes. However, for the purposes of this pre-

liminary section, we are only interested in the fact that the distribution of any

Lévy process is fully characterised by its characteristic exponent through the

Lévy-Khintchine formula stated in Theorem 2.1.
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Theorem 2.1 (Lévy-Khintchine formula). If X is a Lévy process, then its char-

acteristic function, ϕX(u) is given by

ϕX(u) = iau+
1

2
σ2u2 +

∫
R

(
1− eiux + iux1|x|<1

)
ν(dx),

where ν is a measure such that
∫
R

min(1, x2)ν(dx) <∞.

In the literature ν is known as the Lévy measure and contains crucial in-

formation of the jumps of the underlying Lévy process, such as the number of

jumps, their locations, and their sizes. Moreover, (a, σ, ν) is the generating triplet

and it fully characterises the Lévy process. In particular, for completely random

measures we are going to be interested on Lévy processes with generating triplet

(0, 0, ν) and with ν(−∞, 0) = 0). This restriction on ν yields a Lévy process with

almost surely positive jumps and therefore, nondecreasing paths, also known as

a subordinator, which is a necessary constraint for building probability measures.

Therefore, if X is a CRM, and hence a Lévy process, then it is fully characterised

by the Lévy measure ν that as we have established, contains all the information

about the distribution of the jumps and their locations.

With this in mind we can turn our attention to compound random measures,

where the basic idea is that if we consider a CRM as in (2.2) then we can define

d correlated measures by perturbing the jumps, that is, if µj represents the j-th

random measure then,

µj =
∞∑
i=1

mjiJiδxi m1i, ...,mdi
iid∼ h,

where the mji’s are the perturbation coefficients that identify specific features

on the j-th random measure and h is the score distribution. Therefore, CoRM’s

are completely characterised through the distribution h and the directing Lévy
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measure ν of the CRM. However, as showed in Griffin and Leisen (2017) CoRM’s

can also be built by specifying the d marginal random measures and by h, a cer-

tainly useful property that yields a flexible modelling. For a complete theoretical

study on CoRM’s and some of their applications the reader can refer to Griffin

and Leisen (2017, 2018).

2.2.2 Construction

From the broad description given above, it can be easily argued that compound

random measures are particularly attractive for any kind of grouped data and

hence, for supervised learning. Since our interest relies on the probabilistic mod-

elling of grouped binary matrices (e.g., Figure 2.1), a natural approach would be

to consider a beta-Bernoulli model. In a Bayesian nonparametric framework this

can be achieved by choosing a beta process (BP) B, as the directing CRM on a

suitable space Ω. One of the main features of this stochastic process is that it

concentrates the jumps in (0, 1) and hence they can be used as the parameters

for Bernoulli random variables.

As a completely random measure, the beta process is completely characterised

by its Lévy measure

ν(dω, dp) = c(ω)p−1(1− p)c(ω)−1dpB0(dω),

where c(ω) is a concentration function and B0 is a finite fixed measure on Ω. In

practice, it is usual to consider c(ω) = c, so that c is a concentration parameter.

As for B0 this measure can be continuous, discrete or a mix of both types. In

the Bayesian nonparametric literature the most common choice for this base

measure is to be absolutely continuous. This choice is particularly useful for
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factorial models like the Indian buffet process (and related models) where the

interest relies on the inference of the possible infinite number of unknown latent

factors (see e.g.: Griffiths and Ghahramani (2005, 2011) and Thibaux and Jordan

(2007)).

For an n-gram profile analysis for malware detection a factorial model could

also be used; however, in this chapter we are interested in modelling the data

directly. In order to do so, a discrete base measure on the set of unique n-grams

might be a more appropriate choice. That is,

B0 =
∞∑
i=1

qiδωi ,

(2.3)

where the set of ωi’s just work as labels in order to distinguish the n-grams,

contrary to factorial models where each ωi usually represents a latent factor that

needs to be inferred. This is a particularly interesting approach since the beta

process will share the same atoms as B0 with corresponding jumps pi sampled

from a beta distribution (cqi, c(1− qi)) and hence, B has the following represen-

tation

B =
∞∑
i=1

piδωi .

(2.4)

The random measure B, as defined in (2.4) is going to be the directing CRM

used for the discrete beta-CoRM model we develop in this section. With this

choice, in the malware detection and classification context, the set of jumps pi

can be thought as the probability that an executable regardless of the class has

the corresponding n-gram. Then, the perturbed coefficients mjipi represent the
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probability of observing each n-gram for each of the d groups; therefore, we need

to ensure that they remain in the interval (0, 1), which can be done by selecting

a score distribution defined on this interval, e.g., a beta distribution.

Hence, for the j-th group we have a marginal process given by

Bj =
∞∑
i=1

mjipiδωi mji
ind∼ beta(a, 1).

(2.5)

The choice of a beta (a,1) distribution for the scores was first proposed in

Griffin and Leisen (2017) where a slightly different version of a beta-CoRM was

considered. In its original formulation, the marginal processes of the beta-CoRM

were fixed to be beta processes and using the beta (a,1) score distribution it was

proved that the directing process was the sum of the original beta process and a

compound Poisson process with beta-distributed jumps.

Finally, the generative process is fully described by assuming that each obser-

vation Xkj in group j follows a Bernoulli process with corresponding base measure

Bj, so that,

Xkj =
∞∑
i=1

xkjiδωi xkji ∼ Ber(mjipi).

(2.6)

We believe that this Bayesian nonparametric model is an interesting approach

to malware detection and classification through an n-gram analysis due to several

reasons. First of all, Bayesian nonparametric models have an inherent flexibility
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that allows us to control the actual number of features considered. For a beta

process with a continuous base measure this is controlled through the directing

Lévy measure since
∫
ν(dω, dp) = ∞, which means that there are an infinite

number of small jumps. For a discrete base measure this can be done by directly

specifying for which locations ωi their respective jumps qi’s are non-zero. More

specifically, a CoRM approach allows us to analyse each feature independently

through the perturbation coefficients which is useful in situations where we expect

to differentiate groups through differences encountered in some of the features.

2.2.3 Properties

Now that the model has been fully described it is important to analyse its prop-

erties in order to fully understand the generative process and the role of the

hyperparameters in the learning process. As a first step, we centre our attention

on the directing discrete beta process, for which we can obtain through an elegant

probabilistic argument, its expectation and its variance as first detailed in Hjort

(1990). Having access to these results is vital since they provide a clear insight

into the role of the jumps, qi’s, and the concentration parameter c.

Proposition 2.2. Let B be a beta process with discrete base measure as in (2.4)

and (2.3) respectively. Then

1. E(B) = B0 and

2. Var(B) =
1

c+ 1

∑∞
i=1 qi(1− qi).

Proof. Proving these properties only requires to remark that pi are beta dis-

tributed with parameters (cqi, c(1 − qi)). Therefore E(pi) = qi, and using the
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monotone convergence theorem, we get

E(B) = E

(
∞∑
i=1

piδωi

)
=
∞∑
i=1

E(pi)δωi =
∞∑
i=1

qiδωi = B0.

Following the same monotone convergence reasoning and using the fact that

E(p2i ) = qi(1−qi)
c+1

+ q2i it can be shown that

E(B2) = B2
0 +

1

c+ 1

∞∑
i=1

qi(1− qi).

From which the variance can be obtained directly.

This is a certainly useful result since it contains important information about

the parameters of the directing beta process and the role they have in the gen-

erative process. For instance, qi represents our prior knowledge on the global

probabilities, and the concentration parameter, c, controls the similarity between

the pi’s and the qi’s. As c→∞, Var(pi)→ 0 and hence, pi
a.s.→ qi, therefore, large

values of c should be used when there is a strong prior belief that the qi’s are

good estimates of the pi’s. On the other hand, for values of c close to 0 then pi

will be either close to 1 or 0 with probabilities qi and (1− qi) respectively.

As for the measures Bj’s, that characterise each group in this novel beta-

CoRM formulation, useful properties like their expectation and their variance

can also be derived following similar probabilistic arguments. Moreover, since the

shared jump pi introduces dependence between the jump heights in each measure,

the covariance and the correlation at each location ωi can also be derived. All

this information is grouped in Proposition 2.3.

Proposition 2.3. Let B a beta process defined as in Proposition 2.2 and Bj and

Bk denote the j-th and the k-th measure defined as in (2.5), then
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1. E(Bj|B) =
a

a+ 1
B and hence E(Bj) =

a

a+ 1
B0.

2. For i 6= l then Cov(Bj(dωi), Bj(dωl)) = 0.

3. For a fixed feature ωi

Var(Bj(dωi)) =

(
aqi
a+ 2

)(
(1− qi)(a+ 1)2 + qi(c+ 1)

(c+ 1)(a+ 1)2

)

and for j 6= k,

Cov(Bj(dωi), Bk(dωi)) =

(
a

a+ 1

)2
qi(1− qi)
c+ 1

and

Corr(Bj(dωi), Bk(dωi)) =
a(a+ 2)(1− qi)

(a+ 1)2(1− qi) + qi(c+ 1)
.

Proof. The first property is straightforward since it follows the same reasoning as

in Proposition 2.2, and the second property is a direct consequence of the scores

and jumps being mutually independent. Now, for the variance,

Var(Bj(dωi)) = E(B2
j (dωi))− E(Bjd(ωi))

2

= E(m2
jip

2
i )− E(mjipi)

2

=

(
a

(a+ 1)2(a+ 2)
+

a2

(a+ 1)2

)(
qi(1− qi)
c+ 1

+ q2i

)
−
(

a

a+ 1

)2

q2i

=

(
a

(a+ 1)2(a+ 2)
+

a2

(a+ 1)2

)(
qi(1− qi)
c+ 1

)
+

(
a

(a+ 1)2(a+ 2)

)
q2i

=

(
a

a+ 2

)(
qi(1− qi)
c+ 1

)
+

(
a

(a+ 1)2(a+ 2)

)
q2i

=

(
aqi
a+ 2

)(
(1− qi)(a+ 1)2 + qi(c+ 1)

(c+ 1)(a+ 1)2

)
.
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From the previous expressions it can be clearly appreciated that, for a fixed

feature, the variance is the same across families, that is

Var(Bj(dωi)) = Var(Bk(dωi)), which will be useful in order to obtain the cor-

relation of the jumps in different groups. But first, for the covariance between

Bj(dωi) and Bk(dωi) we have from the first property in this Proposition that

E(Bj(dωi)) =

(
a

a+ 1

)
B0(dωi) =

(
a

a+ 1

)
qi = E(Bk(dωi)),

and

E(Bj(dωi)Bk(dωi)) = E(mjimkip
2
i )

=

(
a

a+ 1

)2

E(p2i )

=

(
a

a+ 1

)2(
qi(1− qi)
c+ 1

+ q2i

)
,

therefore,

Cov(Bj(dωi), Bk(dωi)) = E(Bj(dωi)Bk(dωi))− E(Bj(dωi))E(Bk(dωi))

=

(
a

a+ 1

)2(
qi(1− qi)
c+ 1

+ q2i

)
−
(

a

a+ 1

)2

q2i

=

(
a

a+ 1

)2(
qi(1− qi)
c+ 1

)
.

Hence, the correlation is given by

Corr(Bj(dωi), Bk(dωi)) =
Cov(Bj(dωi), Bk(dωi))

Var(Bj(dωi))

=

(
a

a+ 1

)2(
qi(1− qi)
c+ 1

)(
a+ 2

aqi

)
×

(
(c+ 1)(a+ 1)2

(1− qi)(a+ 1)2 + qi(c+ 1)

)
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=
a(a+ 2)(1− qi)

(1− qi)(a+ 1)2 + qi(c+ 1)
.

From these properties we can immediately obtain the probability of an obser-

vation having the feature ωi, which does not depend on c and is given by,

P(xkji = 1|a, qi) = E(Bj(dωi)) =
a

a+ 1
qi.

It is also interesting to notice that the covariance is the difference between

the joint probability of two observations in different groups having the feature

ωi and the distribution assuming independence, that is, for the n-th and m-th

observation in the j-th and k-th group respectively,

Cov(Bj(dωi), Bk(dωi)) = P(xnji = 1, xmki = 1|a, c, qi)

− P(xnji = 1|a, qi)P(xmki = 1|a, qi)

=

(
a

a+ 1

)2(
qi(1− qi)
c+ 1

+ q2i

)
−
(

a

a+ 1

)2

q2i

=

(
a

a+ 1

)2(
cq2i + qi
c+ 1

)
−
(

a

a+ 1

)2

q2i .

The joint distribution can be further generalised in order to consider all groups

by simply obtaining the d-th moment of a beta distribution with parameters

(cqi, c(1− qi)), yielding

P

(
d∏
j=1

xkji = 1
∣∣∣a, c, qi) = E

(
d∏
j=1

Bj(dωi)

)

=

(
a

a+ 1

)d
E(pdi )
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=

(
a

a+ 1

)d d−1∏
j=0

cqi + j

c+ j
.

A final remark on the expression for the covariance between the jump heights

is the fact that a and c have an opposite effect on it. That is, for a fixed a, the

covariance decreases as c increases and, for a fixed c, the covariance decreases as

a decreases.

2.2.4 Posterior inference

Due to the discrete nature of the model, the joint posterior distribution of the

random measures Bj and the directing beta process B is the product of the

posterior distribution of the random variables associated to each atom, that is,

pi and the set of scores m1i, ...,mdi. Therefore, we can analyse the posterior

density on each atom. So, if we consider the atom ωi, the posterior density (up

to proportionality) of the associated random variables is given by

(
d∏
j=1

(pimji)
x·ji(1− pimji)

nj−x·ji

)(
pcqi−1i (1− pi)c(1−qi)−1

) d∏
j=1

ma−1
ji

=
(
pcqi+x··i−1i (1− pi)c(1−qi)−1

) d∏
j=1

m
x·ji+a−1
ji (1− pimji)

nj−x·ji ,

(2.7)

where x·ji =
∑nj

k=1 xkji and x··i =
∑d

j=1 x·ji.

From (2.7) there are two important remarks for the posterior inference that

need to be made. First, we can notice that the parameters in this model are non-

identifiable. This can be directly seen from the likelihood for a specific feature ωi
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that is given by

L ({mji}j, pi) =
d∏
j=1

(pimji)
x·ji(1− pimji)

nj−x·ji .

(2.8)

The non-identifiability is due to the presence of the product of the pi and the mji’s

in (2.8), since we can choose two different set of parameters that will yield the

same likelihood. That is why for this model the posterior inference heavily relies

on the choice of priors and hence, on the choice of c, a and the qi’s. However, it is

important to remark that, although the m′jis and the pi’s are useful for building

a structure for modelling the variability across groups and features, we are not

interested in their estimation since the classification task only relies on the joint

distribution of the X’s that is induced.

The second remark that needs to be made from the expression 2.7 is that

due to the presence of the d terms (1 − mjipi), the joint and the conditional

distributions do not have a known form. Therefore, a Gibbs sampling algorithm

cannot be applied directly to this distribution. One way to address this issue is

with the introduction of a set of latent variables {ykji} that allows us to define

an artificial measure Bkj as the base measure for the k-th observation in the j-th

group, that is:

Bkj =
∑
i

ykjipiδωi ykji = 1(ukji < mji) ∼ Bernoulli(mji)

Xkj =
∑
i

xkjiδωi xkji ∼ Ber(ykjipi).

(2.9)
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This approach is based on the idea of slice sampling (Damien et al., 1999),

where a set of latent variables that preserve the marginal distribution are intro-

duced. Slice sampling schemes have become widely used in Bayesian nonpara-

metric models since they yield efficient computational methods for the infinite

dimensional objects that are at their core. The reader can refer to Griffin and

Holmes (2010) and the references therein for an overview on the computational

issues found in some nonparametric models and the approaches used to address

them. As for the normalised completely random measures, the slice sampling

technique is useful in order to introduce a random truncation point and hence,

consider only a random finite number of jumps. In our case, the slice sampling

approach that we propose allows us to create these infinite activity measures Bkj,

that yield a suitable augmented likelihood from which we can recover the original

one by integrating out the latent variables as we demonstrate in Lemma 2.3.

Lemma 2.4. The discrete beta-CoRM defined by equations (2.4), (2.5) and (2.6)

is equivalent to the augmented model in 2.9.

Proof. Let us consider first the augmented model. In this case it is straightforward

to see that conditioned on ykji = 0 we have that xkji
a.s.
= 0 and conditioned on

ykji = 1 we have that xkji ∼ Ber(pi). With this in mind, the augmented likelihood

is

d∏
j=1

nj∏
k=1

(
δ
xkji
0

)(1−ykji) (pxkjii (1− pi)(1−xkji)
)ykji

,

and the posterior distribution is proportional with respect to the latent variables

to

d∏
j=1

nj∏
k=1

(
δ
xkji
0

)(1−ykji) (pxkjii (1− pi)(1−xkji)
)ykji

m
ykji
ji (1−mji)

(1−ykji).
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Integrating out the latent variables yields,

d∏
j=1

nj∏
k=1

δ
xkji
0 (1−mji) +mjip

xkji
i (1− pi)(1−xkji).

(2.10)

Therefore, we can appreciate that the marginal posterior is the product of the

mixture of a degenerate distribution and a Bernoulli distribution with correspond-

ing weights (1−mji) and mji. This expression at first sight does not resemble the

posterior distribution for the original beta-CoRM model. However, it is sufficient

to notice that from (2.10) we obtain that δ
xkji
0 (1−mji) + mjip

xkji
i (1− pi)(1−xkji)

is equal to

1−mji +mji(1− pi) = 1−mjipi if xkji = 0

mjipi if xkji = 1.

Hence, we recover the original posterior distribution.

Now that it has been shown that both approaches are equivalent we can obtain

the complete augmented posterior (up to proportionality),

P({ykji}j.k, {mji}j, pi|{xkji}j,k)

∝

(
d∏
j=1

nj∏
k=1

(
δ
xkji
0

)(1−ykji) pxkjiykjii (1− pi)(1−xkji)ykji
)

×

(
d∏
j=1

[
ma−1
ji

nj∏
k=1

m
ykji
ji (1−mji)

1−ykji

])(
pcqi−1i (1− pi)c(1−qi)−1

)
.

(2.11)
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From 2.11 we can immediately notice that for j ∈ {1, ..., d} and k ∈ {1, ..., nj}

the conditional posterior distributions are

pi|{xkji}, {ykji} ∼ beta

(∑
j,k

xkjiykji + cqi,
∑
j,k

(1− xkji)ykji + c(1− qi)

)

mji|{ykji} ∼ beta

(
a+

nj∑
k=1

ykji, 1 + nj −
nj∑
k=1

ykji

)

ykji|xkji,mji, pi ∼

δ1 if xkji = 1

Ber
(

(1−pi)mji
1−pimji

)
if xkji = 0

.

With these conditional distributions now a standard Gibbs sampling proce-

dure can be used in order to obtain samples from the joint posterior. Finally,

once a new observation, Y , is available the classification procedure consists on

computing the posterior probability of having such observation for each of the

possible groups and assigning the observation to the group that has the highest

probability. That is, for all j we need to obtain P(Xnj+1,j = Y |X), which is the

product of the posterior probability on each atom ωi. Therefore, we are interested

in obtaining

P(xnj+1,j,i = 1|X) =

∫
P(xnj+1,j,i = 1|{mji}j, pi)f({mji}j, pi|X)

=

∫
(mjipi)f({mji}j, pi|X)

= E{mji}j ,pi|X(mjipi)

≈ 1

T

T∑
t=1

m
(t)
ji p

(t)
i .

(2.12)
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And by the same reasoning P(xnj+1,j,i = 0|X) ≈ 1 − 1
T

∑T
t=1m

(t)
ji p

(t)
i . Where

m
(t)
ji and p

(t)
i are obtained through the Gibbs sampling procedure on the aug-

mented model.

2.3 Synthetic data

In this section we present and describe some illustrations and results of the pro-

posed model. In order to have a better understanding on its performance, we have

divided this section into two parts by considering two different kind of data sets.

First we consider a scenario where the data is composed of three non-overlapping

groups, which for the purposes of this thesis represent groups characterised by

disjoint sets of scores. Finally, for the second scenario we consider a more com-

plex setting where the data is comprised of five overlapping groups. There are

two main objectives of these experiments. The first one is to analyse the pos-

terior inference and the effect the hyperparameters have on it. The second one

is to analyse the predictive performance of the proposed models and compare it

against other commonly used supervised learning classifiers.

2.3.1 Three non-overlapping groups

In this scenario the data is comprised of 100 observations divided into three non-

overlapping groups with 33, 34 and 33 observations respectively. In order to have

the desired behaviour the global probabilities pi were sampled from a uniform

distribution on the interval (0.3, 1), and for each group the set of scores were

sampled from uniform distributions on the intervals (0.6, 1), (0.4, 0.6) and (0, 0.4)

respectively. Figure 2.2 is the graphical representation of the binary matrix, from
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which it is immediate to appreciate that there is a significant difference in the

amount of features present in each group (black dots).

Figure 2.2: Synthetic binary matrix comprised of 150 features (columns) and 100
observations (rows) divided into three well-defined groups separated by the hori-
zontal red lines. The dots representing the features present for each observation.

For the posterior inference, the full posterior conditional distributions ob-

tained in Section 2.2.3 are used for a Gibbs sampling procedure which consisted

of 55,000 iterations. The first 10,000 are used as the burning period and a thin-

ning of 15 is used in the remaining 45,000 ones, yielding an effective sample size of

3,000 iterations. As for the hyperparameters, the qi’s are fixed to be the maximum

across groups of the proportions of the observations having the corresponding fea-

ture ωi, that is, qi = maxj{
∑nj

k=1 δ
(xkji)
1 /nj}. Finally, the concentration parameter

c, and the parameter of the score distribution a are fixed to be equal to 1. Hence,

the scores mji’s have a prior uniform distribution and the pi’s will have more

flexibility in the sense that they will not be that similar to the qi’s.
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With these prior specifications we obtained the posterior estimates shown in

Figure 2.3, where the upper graph shows the estimates (red dots) of the global

probabilities (spikes) and where the first heat map is the graphical representation

of the real scores and the second heat map shows the posterior estimates. The

reader can appreciate that good estimates of the true jumps, pi’s, and scores,

mji’s, are produced with the prior choices made about the hyperparameters.

These results can be directly observed in Figure 2.3 by first noticing in the upper

graph that the posterior estimates p̂i’s, represented by the red dots, are quite

close to the spikes that represent the true values. Finally, it is also compelling

to notice that the estimates of the scores actually reflect the non-overlapping

structure created on the synthetic data.

Figure 2.3: Posterior inference results of the beta-CoRM models for the data
illustrated in Figure 2.2. Upper graph: real probabilities (spikes) and posterior
estimates (red dots). Middle graph: real scores. Bottom graph: posterior esti-
mates of the scores.
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Of course, it is important to remember that for the beta-CoRM model the

parameters are non-identifiable and hence, different sets of hyperparameters will

have an impact on the posterior inference and the classification performance. In

Figure 2.4 the reader can appreciate the effects of different choices of a and c,

while keeping the qi’s fixed to the maximum proportion across groups. From

this figure, interesting observations about the effect of c and a on the posterior

inference can be made that can work as a guideline for their prior specification.

(a) c = .01 and a = .01 (b) c = .01 and a = 10

(c) c = 10 and a = .01 (d) c = 10 and a = 10

Figure 2.4: Posterior inference results for the beta-CoRM model with different
choices of c and a for the data illustrated in Figure 2.2. For each subplot: Upper
graph: real probabilities (spikes) and posterior estimates (red dots). Middle
graph: real scores. Bottom graph: posterior estimates of the scores.
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As a first remark, it is interesting to observe the effect that different values of

c cause to the posterior estimates of the jumps of the directing beta process, p̂i’s.

From Figure 2.4a and Figure 2.4c, it can be clearly appreciated that for smaller

values of a the impact on the p̂i’s is more noticeable as c increases. Of course, it is

important to remember from Proposition 2.2. that V ar(B) = 1
c+1

∑∞
i=1 qi(1−qi),

hence as c → ∞ the variance decreases to zero. Therefore, for large values of c

and regardless of a the posterior estimates p̂i’s will be closer to the qi’s. This is

something that can be appreciated in Figure 2.5 where it can be seen that for

both small a (Figure 2.5a) and large a (Figure 2.5b), the red dots representing

the posterior estimates are quite close to the spikes which in this case represent

the qi’s.

(a) c = 100 and a = .01 (b) c = 100 and a = 10

Figure 2.5: Comparison between the posterior estimates of the jumps of the
directing beta process (red dots) and the qi’s (spikes) for a large value of c and
for a small and a large value of a.

Now we turn our attention to the score parameter. The reader can observe

that for small values of a (Figure 2.4a and Figure 2.4c) there is a clear difference

in the posterior scores, m̂ji’s, across groups that vanishes as a increases. It can

be clearly appreciated that this is an effect that occurs regardless of the value of

c and is due to the fact that the score distribution of the beta-CoRM model is
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beta(a,1). Hence, as a ↑ ∞ the scores mji ↑ 1 yielding indistinguishable groups

and therefore, making the beta-CoRM model not suitable for supervised learning.

That is why, it can be easily argued that smaller values of a should be preferred.

Otherwise, for large values of a, it would be like randomly assigning a group to

each new observation. To appreciate this effect more carefully, in Figure 2.6, we

illustrate the effect of a small and a large value of a for two different values of c

on the posterior predictive probabilities.

(a) c = .01 and a = .01 (b) c = .01 and a = 10

(c) c = 10 and a = .01 (d) c = 10 and a = 10

Figure 2.6: Comparison of the posterior predictive probabilities between the beta-
CoRM with a small a (left) and with a large a (right) for the data illustrated in
Figure 2.2.
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From Figure 2.6 the reader can appreciate how the plots on the left (Fig-

ure 2.6a and Figure 2.6c) that correspond to the posterior predictive probabilities

for small a are more distinguishable among groups. That is, for each feature ωi

we are able to clearly tell on which of the groups it is more likely to belong.

Whereas for large a this is not an easy task for most of the features since there

is not a clear difference among groups.

From a practical point of view, one way to find suitable values for c and a

would be to run the model for different pairs of values and perform the classifi-

cation in the training/validation set or the test set (if applicable), and select the

ones that have the best predictive performance with respect some classification

metric such as the accuracy, which represents the percentage of correctly classified

observations. For the data illustrated in Figure 2.2 we followed this procedure by

testing values of a and c on a grid of the interval [.01, 2], since we are especially

interested in small values for these parameters, and also on the extreme cases

considered throughout this section, that is, for large values of c and a. As an

example, in Table 2.1 we display the classification accuracy on the training and

the test set for the values of a and c that we have found to be more appealing for

the purposes of this thesis.

c a Accuracy on training data Accuracy on testing data
.01 .01 100 96
1 1 100 97
2 0.5 100 97

.01 10 92 90
10 .01 99 96
10 10 91 89

Table 2.1: Classification accuracy comparison (in %) of the beta-CoRM model
for different values of c and a for the binary matrix illustrated in Figure 2.2.
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From the results displayed in Table 2.1, it can be appreciated that the best

performance was achieved when both c and a were small. Also, it seems that

the size of a (being small) is more important compared to the size of c. In

fact, for c = 10 and a = 0.01, we still had a decent result whereas for a = 10

and both c = 10 and c = .01 we saw the worst performance. However, it is

compelling to notice that even for the worst case scenario the beta-CoRM model

outperforms the classification performance achieved if the maximum likelihood

estimators (MLE) for P(Xkji = 1), given by the cell probabilities x·ji/nj, were

used since this approach only achieves an accuracy of 82%.

In this section, we have described an intuitive way of finding optimal values

of a and c; however, we acknowledge that other approaches to finding these val-

ues exist. For instance, from a Bayesian perspective, a and c can be considered

random variables that need to be inferred. Naturally, this is an attractive ap-

proach that would allow us to consider different kinds of hyperpriors and with it,

provide a wider range of modelling possibilities such as feature selection as devel-

oped in Chapter 3. However, it is also important to remember that for complex

non-conjugate Bayesian models, adding hyperprios inevitably increases the com-

putational cost of the MCMC, something that needs to be carefully considered

depending on the problem at hand.

For the reminder of this chapter, however, we have decided to use a grid

search approach to find optimal values of a and c by leveraging on the classi-

fication performance of the beta-CoRM model. By keeping fixed a and c then

the posterior inference can be easily parallelised due to the discrete nature of

the model, yielding a fast supervised learning model. Under a static approach to

malware detection and classification, being able to provide fast and parallelisable

algorithms is certainly desirable not only on account of the large number of new

malicious software detected every day but also on account of the large number of
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binary features that can be extracted from the binary content of the malware.

2.3.2 Five overlapping groups

For this section we considered a more complex scenario with five groups with

overlapping score distributions, and tested the model’s performance in different

kinds of circumstances by having a balanced and imbalanced number of observa-

tions and by considering more observations than features and more features than

observations. The data was generated by sampling the global probabilities from

a uniform distribution on (3, 1) and for each of the five groups we sampled the

scores from uniform distributions on the intervals (0.7, 1), (0.5, 0.8), (0.4, 0.6),

(0.2, 0.5) and (0, 0.3), respectively. For both the balanced and imbalanced sce-

narios we tested scenarios with 150, 200 and 250 observations and 100, 200 and

300 features.

2.3.2.1 Balanced groups

In this scenario all the classes contain the same number of observations for both

the training and the test set. Just as for the 3 classes example presented in

Section 2.3.1, for the beta-CoRM model we first analysed the classification results

for different choices and combinations of the hyperparameters, a and c. In this

case, and just as expected from our previous analysis, the worst performance was

obtained for large values of a and c with the best results achieved overall for

values close to 1. In Table 2.2 the reader can appreciate some of the classification

accuracies for values of a ∈ (0, 1) and c ∈ (0, 2).
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Obs Feat c = 1.5, a = 0.5 c = 0.1, a = 0.1 c = .5, a = .25 c = 1, a = 1

150 100 82.67 83.33 84.00 81.33
150 200 90.67 89.33 90.00 92.67
150 300 96.00 95.33 96.00 97.33
200 100 80.50 78.50 79.50 81.00
200 200 93.00 93.00 93.00 92.50
200 300 97.50 97.00 97.50 97.50
250 100 82.40 80.80 81.20 82.40
250 200 93.67 93.60 93.60 94.40
250 300 96.00 95.20 95.60 96.00

Table 2.2: Classification accuracy comparison (in %) of the beta-CoRM model
for different values of c and a, and varying number of observations and features.

From Table 2.2 it can be seen that although the performance is similar for

the different values of a and c, the best results overall are obtained with c = 1

and a = 1. That is why these values have been chosen in order to compare the

beta-CoRM model against the MLE approach and to some well-known super-

vised learning models. For the latter it is important to remark that we have

chosen binary classifiers that can be easily extended to a multi-class setting and

that have already been used for detecting and classifying malware. That is why

the algorithms considered are: naive Bayes (see e.g. Mitchell, 1997); multino-

mial logistic regression (see e.g. Hosmer et al., 2013); and decision trees (see e.g.

Mitchell, 1997) with their adaptive (Freund and Schapire, 1996), gradient (Fried-

man, 2001) and extreme gradient (Chen and Guestrin, 2016) boosted versions,

and for their implementation we respectively used the R packages: e1071 (Meyer

et al., 2021), nnet (Venables and Ripley, 2002), tree (Ripley, 2021), adabag (Alfaro

et al., 2013), gbm (Greenwell et al., 2020) and xgboost (Chen et al., 2021).

The accuracy performance of the discrete beta-CoRM (b-CoRM) with pa-

rameters a = 1, c = 1, MLE ,naive Bayes (nB), multinomial logistic regression

(ML) and decision trees (dT) with their adaptive (AB), gradient (GB) and ex-

treme gradient (XGB) boosted versions can be seen and compared in Table 2.3
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where it can be immediately appreciated that the proposed model has the best

performance for all the considered scenarios.

Obs Feat b-CoRM MLE nB dT AB GB XGB ML
150 100 81.33 74.00 66.00 49.33 63.33 66.00 68.00 51.33
150 200 92.67 78.00 70.00 44.67 70.67 71.33 69.33 46.67
150 300 97.33 71.33 71.33 50.67 74.00 69.33 70.00 50.67
200 100 81.00 72.5 66.50 44.50 68.00 65.00 69.00 50.50
200 200 92.50 79.00 83.00 48.50 76.50 75.50 73.50 50.50
200 300 97.50 84.00 79.00 56.00 75.00 79.00 81.00 55.00
250 100 82.40 75.60 77.60 40.40 66.00 68.00 70.00 48.00
250 200 94.40 90.40 85.60 52.00 81.60 80.80 83.20 61.60
250 300 96.00 85.20 83.20 50.40 76.80 75.60 82.80 58.80

Table 2.3: Classification accuracy comparison (in %) of the beta-CoRM model
against other commonly used supervised learning algorithms for the balanced
group scenario with varying number of observations and features.

2.3.2.2 Imbalanced groups

For the imbalanced scenario the middle group had twenty observations for all the

cases contrary to the other groups that had more as we increased the number

of total observations. We started with 150 and increased to 200 and 250 total

observations, with respective partitions (30, 40, 20, 30, 30), (45, 50, 20, 45, 40) and

(55, 70, 20, 55, 50). In our analysis we first studied the classification performance

of the beta-CoRM for varying c and a. Just as for the balanced scenario, the

best overall results were achieved for values close to 1. In Table 2.4 the reader

can appreciate some of the classification accuracies for values of a ∈ (0, 1) and

c ∈ (0, 2).

83



Obs Feat c = 1.5, a = 0.5 c = 0.1, a = 0.1 c = .5, a = .25 c = 1, a = 1

150 100 85,33 82.00 83.33 86.00
150 200 92.67 92.67 92.67 93.33
150 300 94.00 93.33 94.00 94.00
200 100 91.00 89.00 90.00 90.50
200 200 94.50 94.00 94.50 95.50
200 300 97.00 97.00 97.50 97.50
250 100 88.80 87.20 87.20 89.20
250 200 93.20 93.20 93.60 92.80
250 300 96.40 95.20 95.60 97.20

Table 2.4: Classification accuracy comparison (in %) of the beta-CoRM model
for different values of c and a, and varying number of observations and features.

Finally the classification accuracy of all the classifiers, with the beta-CoRM

with hyperparameters a = 1, c = 1 can be seen and compared in Table 2.5. It can

be immediately appreciated that just as for the balanced scenario, the beta-CoRM

model had the best performance for all the scenarios considered.

Obs Feat b-CoRM MLE nB dT AB GB XGB ML
150 100 86.00 73.33 64.67 36.67 68.67 61.33 66.67 38.67
150 200 93.33 74.00 79.33 53.33 72.67 72.00 75.33 52.00
150 300 94.00 66.00 74.67 60.00 76.67 78.00 78.67 48.67
200 100 90.50 84.00 75.50 59.00 76.00 76.50 80.00 57.50
200 200 95.50 88.50 83.50 57.00 78.50 76.50 79.00 58.00
200 300 97.50 79.50 78.50 57.50 82.00 79.50 80.50 56.50
250 100 89.20 84.40 69.20 68.40 83.60 81.20 82.00 66.40
250 200 92.80 82.00 87.20 64.40 82.80 77.20 82.80 54.40
250 300 97.20 86.00 82.40 60.80 84.80 82.40 85.20 61.60

Table 2.5: Classification accuracy comparison (in %) of the beta-CoRM model
against other commonly used supervised learning algorithms for the imbalanced
group scenario with varying number of observations and features.
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2.4 Real-data applications

In this section we present results for both the malware detection and classifica-

tion into known families problems. It is important to remark that we used two

different data sets obtained from different sources. However, both the detection

and classification could be done on a suitable data set that contained both benign

and malicious executables for which we knew their corresponding family.

2.4.1 Malware detection

For the malware detection task we used the data set found in the University

of California Irvine Machine Learning repository by Rumao (2016) (Figure 2.1).

This data set is originally comprised of 72 benign and 301 malicious executable

programs and 531 features comprised of 503 different n-grams and 28 DDL fea-

tures. For our purposes we only considered the 503 n-grams which were obtained

according to the author, following the assumptions and procedures described by

Kolter and Maloof (2004), so we believe that n = 4 although it is not directly

specified.

For this data set we can appreciate a clear difference between the two classes,

just as for the first synthetic data considered. In order to perform a discrimi-

nation analysis we split the binary matrix into a training and a test set. This

procedure was done several times to analyse if there was a negative impact in the

performance when the number of observations in the training set decreased at

the point that there were more observations in the test set. First, we (randomly)

selected 90 percent of the data to be in the training set and continued to decrease

this percentage by 10 points each time until we reached the scenario where 30%
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of the data was used as the training set and the remaining 70% as the test set.

The performance of the beta-CoRM with parameters a = c = 1 and the rest of

classifiers can be compared in Table 2.6.

Ratio b-CoRM MLE nBayes Tree ABoost Gboost XGBoost
90-10 100 100 100 100 100 100 100
80-20 98.67 97.33 76.00 98.67 98.67 98.67 98.67
70-30 99.11 98.21 77.68 99.11 99.11 99.11 99.11
60-40 99.33 97.32 79.19 97.99 99.33 99.33 99.33
50-50 98.93 97.37 80.75 98.93 99.47 98.40 99.47
40-60 99.11 96.49 80.36 98.66 99.55 98.21 99.11
30-70 99.23 96.55 80.84 97.32 99.62 99.23 98.47

Table 2.6: Classification accuracy comparison (in %) of the beta-CoRM model
against commonly used supervised learning algorithms for the malware data set
illustrated in Figure 2.1, with a decreasing number of observations in the training
set.

Interesting conclusions can be obtained from these results. First of all, it is

clear how the beta-CoRM model has an impressive performance for this data set.

Moreover, we can also observe that it also outperforms the other probabilistic

classifier, naive Bayes, in all scenarios, which is due to the fact that as soon as we

reduced the number of observations in the training set, naive Bayes classified all

observations as malware yielding a poor accuracy. Finally, and contrary to the

synthetic data used in the previous section, there are no results for the logistic

model, since in all the scenarios considered the training data contained several

features with no variation which resulted in an error while fitting the generalised

linear model function in R.
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2.4.2 Malware classification

The data used for the classification task was released as part of the Microsoft

Malware Classification Challenge (Ronen et al., 2018) hosted at Kaggle in 2015.

The training data set is composed of almost 11,000 malware representing a mix of

nine different families. For each of these malicious executables the data provides

the label representing the true family, a file with the hexadecimal representation

of the binary code and a metadata manifest containing information extracted

from the binary. Table 2.7 provides the name of the families considered, the

number of total malware in each one of them as well as their type.

Family No. of train samples Type
Ramniit 1541 Worm
Lollipop 2478 Adware

Kelihos ver3 2942 Backdoor
Vundo 475 Trojan
Simda 42 Backdoor
Tracur 751 TrojanDownloader

Kelihos ver1 398 Backdoor
Obfuscator.ACY 1228 Obfuscated malware

Gatak 1013 Backdoor

Table 2.7: Summary of the Microsoft Malware Classification Challenge data set,
containing for each of the nine families the number of observations and their type.

Since one of the families only contains 42 observations we decided to work

with a random sample of 842 malware (100 observations per group plus the 42 of

family 5). These malware were further split into a training set comprised of 590

observations and a testing set of 292 elements. Following the procedure described

in Section 2.1, we obtained the unique 4-grams that appeared at least once in

each family, yielding a total of 826 unique features. The graphical representation

of the binary matrix can be seen in Figure 2.7. In this case, and contrary to the

malware detection application and synthetic data examples, we can observe that
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for some of the families there is not a well-defined structure, for example, from

top to bottom families one, six and nine. Finally, we can also appreciate that

there are families that have

Figure 2.7: Graphical representation of the data set comprised of 590 malware
(rows) of 9 families separated with the solid horizontal lines and 826 4-grams
(columns). The dots represent the features that appear in each executable.

As for the classification is concerned, we used the beta-CoRM model with

parameters a = c = 1, the MLE approach and the rest of supervised learning

algorithms considered so far. Table 2.8 shows the classification performance for

all the models.

b-CoRM MLE nBayes Tree ABoost GBoost XGBoost ML
80.95 79.76 77.38 80.15 94.05 91.67 91.27 84.92

Table 2.8: Classification accuracy comparison (in %) for the beta-CoRM model
against commonly used supervised learning algorithms for the malware data set
illustrated in Figure 2.7.
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In this case, and contrary to the malware detection task, the boosted algo-

rithms outperformed the beta-CoRM model proposed; nevertheless, promising

results were obtained and interesting conclusions can be made about the feature

extraction and selection process and the role of the hyperparameters for further

work and research.

2.5 Concluding remarks

In this chapter we have presented a novel Bayesian supervised learning model

for grouped binary matrices known as beta-CoRM and a slice sampling method

that allows an efficient sampling from the posterior distribution. This model is

built up on the underlying theory of compound random measures that belongs

to a wider class of Bayesian nonparameteric discrete priors. From the synthetic

examples and the real-data sets we were able to see that for binary matrices with

a well-defined group structure like the synthetic data and the malware detection

set, the beta-CoRM achieved a comparable performance with the other meth-

ods. However, for the classification task, where there was not a clear difference

among groups, the beta-CoRM model was outperformed and with the adaptive

algorithms achieving the best performance.

It is also worth mentioning some of the advantages of the whole methodology.

First, a drastic feature dimensionality reduction approach was used and out-

standing results were obtained in all scenarios and data sets considered. For the

beta-CoRM it is also important to point out that not allowing the concentration

and score parameters to be random allowed us to have a model easily parallelis-

able, and hence, the inference could be performed in each atom ωi separately,

which makes it suitable for data with a large number of features involved.
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Chapter 3

Beta compound random measure

with feature selection

The beta-CoRM model described in the previous chapter is a novel supervised

learning model for which promising results were obtained in synthetic and real

data. One key advantage of this model is the fact that we kept the hyperpa-

rameters not random and hence, a parallelisable inferential procedure could be

performed. However, as it is described in this chapter, a straightforward general-

isation can be derived by allowing the score parameter a to be random. By doing

so, we are not only providing a deeper understanding of the behaviour across

groups for each feature, but this also allows us to introduce a feature selection

process within the posterior learning. Something that will be particularly useful

for situations where the feature space is a high-dimensional object and there is a

need to learn which are the best discriminative features.
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As described in the previous chapter, the idea of a feature selection step within

the inferential process is something that had already been discussed for malware

detection and classification through an n-gram analysis (Raff et al., 2016). This is

something particularly crucial since even small data sets can yield a large amount

of binary n-grams and there is an obvious need of learning and hence, considering,

the features with the best predictive capabilities.

3.1 Generalised beta-CoRM

The generalised beta-CoRM approach arises naturally by noting that the density

of the beta(a,1) score distribution can be written as

axa−1 = xa0
axa−1

xa0
1(0,x0)(x) + (1− xa0)

axa−1

1− xa0
1(x0,1)(x)

= (1− w)f(x) + wg(x),

where f(x) and g(x) are truncated beta distributions on (0, x0) and (x0, 1) re-

spectively for small x0 and with w the probability of “including” a variable. This

representation mimics the form of a spike-and-slab prior (see e.g. Mitchell and

Beauchamp, 1988; Ishwaran and Rao, 2005) with g(x) the slab distribution with

cumulative distribution function (cdf) given by

G(x) =
xa − xa0
1− xa0

.

Since a = log(1 − w)/ log(x0) as w ↓ 0, a ↓ 0 and so we are interested in the

limit of the above cdf as a ↓ 0, which, using L’Hôpital’s rule, is

lim
a↓0

G(x) =
log(x0)− log(x)

log(x0)
,
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and the corresponding density g(x) is

g(x) =
1

log(1/x0)

1

x
, x > x0.

Therefore, we can understand the prior distribution as a spike-and-slab prior

where a controls the size of the spike and, if a is close to zero, the pdf of the

slab is approximately g(x). In the beta-CoRM, the beta(a, 1) random variables

moderate pi, and so, for small a, the prior expects some of the products mjipi to

be close to zero with w controlling the proportion close to “zero”.

With this interpretation in mind, the generalised beta-CoRM is fully described

by giving to each feature ωi an individual score distribution beta(ai,1), that is,

pi ∼ beta(cqi, c(1− qi)) i ∈ {1, ..., J}

mji ∼ beta(ai, 1) j ∈ {1, ..., d}

xkji ∼ Bernoulli(mjipi) k ∈ {1, ..., nj},

(3.1)

with all the ai’s having a common distribution. Following the spike-and-slab

interpretation of the score distribution then these score parameters can be used

for a feature selection procedure. For this, we can recall that ai moderates the

corresponding weight pi and for small ai the prior expects that for some of the

groups the probability of observing the associated feature ωi to be close to zero

and hence, indicating a feature worth retaining in order to discriminate new

observations. More intuitively, as ai gets smaller the spike gets bigger yielding

a larger number of mji’s to be close to zero with only a small number of scores

sampled from the slab distribution representing the groups for which the feature

ωi is important.
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3.2 Posterior inference

For this model, the slice sampling approach developed in Section 2.2.3 is still

valid, therefore, we only need to provide the details for the posterior inference on

the score parameters, ai’s. In order to do so, we first notice that

f({mji}j|ai) =
d∏
j=1

aim
ai−1
ji

w.r.t. ai∝ adi exp

(
ai

d∑
j=1

log(mji)

)
,

is the kernel of a gamma distribution with parameters

(d + 1,−
∑

j log(mji)). Therefore, a gamma prior could be used on each ai

to have a conjugate model, that is, if ai ∼ gamma(α, β) then the posterior is

gamma(α+ d+ 1, β−
∑

j log(mji)). Finally, and in order to have a full Bayesian

hierarchical model, we assign to the hyperparameters α and β a vague gamma

prior, that is, gamma (0.001, 0.001). Hence, the joint density of the M score

parameters is

f({ai}Mi=1|β, α) =
M∏
i=1

βαaα−1i

Γ(α)
exp (−aiβ) ,

(3.2)

Expression (3.2) is proportional with respect to β to

βαM exp

(
−β

M∑
i=1

ai

)
,

which is the kernel of a gamma distribution. Hence, the posterior is also a gamma

with updated parameters (αM + 0.001, 0.001 +
∑M

i=1 ai). As for α, the posterior
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distribution is (up to proportionality)

f(α|{ai}, β) ∝

(
1

Γ(α)M

M∏
i=1

(βai)
α

)
[α.001−1 exp(−.001α)]

=
α.001−1 exp(−.001α)

Γ(α)M

M∏
i=1

exp [α log(βai)]

=
α.001−1

Γ(α)M
exp

[
−α

(
.001−

M∑
i=1

log(βai)

)]
.

In order to update α, we use a Metropolis-Hastings step since the posterior is

not known. This can be done with the adaptive random walk Metropolis Hasting

(Atchadé and Rosenthal, 2005) on φ = logα. So, under this transformation, it is

straightforward to see that

f(φ|{ai}, β) ∝ exp(φ).001

Γ(exp(φ))M
exp

[
− exp(φ)

(
.001−

M∑
i=1

log(βai)

)]
.

Since φ ∈ R we use qσ(x, y) = N(x, σ2) as the proposal distribution and accept

the move with probability

γ(xn, yn+1) = min

{
1,
π(yn+1)

π(xn)

}
,

where π is our target distribution for which we do not need the normalising

constant due to the ratio π(y)/π(x). Following the steps and notation proposed

by Atchadé and Rosenthal (2005), we need to fix constants ε1 and A1, such that,

0 < ε1 < A1 in order to define the region Θ = {σ : ε1 ≤ σ ≤ A1} for which

we assume there is an optimum σopt such that the asymptotic acceptance rate is

τ(σopt) = τ̄ = .234. In order to guarantee that at each step σn ∈ Θ there is a
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need to define a control function p such that,

p(σ) =


σ if σ ∈ Θ

ε1 if σ < ε1

A1 if σ > A1.

With this in mind we can use the following adaptive random walk Metropolis-

Hastings algorithm

1. Start at some φ0 = logα0 and σ0 ∈ Θ.

2. At time n+ 1,

(a) propose Yn+1 ∼ N(Xn, σ
2
n) and sample U ∼ Unif(0, 1),

(b) if U ≤ γ(Xn, Yn+1) then Xn+1 = Yn+1. Otherwise, Xn+1 = Xn.

(c) σn+1 = p(σn + ψn(γ(Xn, Yn+1)− τ̄)) with ψn = σ0/n.

Once posterior estimates of the ai’s are obtained, a feature selection procedure

can be used. In order to know which features are the “best” ones, we can recall

from the spike-and-slab interpretation of the score distribution (Section 3.1) that

features with small score parameters ai’s should be preferred. From a practical

point of view a natural approach to find the optimum threshold Topt would be to

define a grid ∆ on the interval (min{âi},max{âi}) and then for every T ∈ ∆:

1. Select all the features ωi such that ai ≤ T .

2. Using the associated posterior probabilities of the chosen features, that is,

m̂jipi, proceed to the classification of the malware in the validation set.
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Once the accuracy for each T ∈ ∆ has been obtained we set the optimal value,

Topt, to the threshold T for which the best classification performance was observed.

In the examples considered in the following sections, this procedure is realised in

the test set since we have access to the real labels. Of course, it is important to

acknowledge the advantage of optimising over thresholds when the ground truth

is available. That is why in real life situations when the ground truth is not

known, finding the optimum threshold can be achieved using a cross-validation

procedure which might decrease the classification performance.

3.3 Synthetic data

The synthetic data sets used to test on a first instance the generalised beta-

CoRM model are the same data sets used on the previous chapter, that is, we

first consider a scenario with three non-overlapping groups and then we move to

a more complex scenario with both balanced and imbalanced data sets composed

of five overlapping groups (for a thorough description on how the data sets were

generated the reader should refer to Section 2.3).

Of course, we acknowledge that different data sets “better suited” to the

modelling characteristics of the generalised beta-CoRM model could have been

generated. However, for the purposes of these exploratory set of experiments

we believe that using the same synthetic data sets represents a more interesting

exercise in order to appreciate how the generalised beta-CoRM is able to improve

on the performance of the beta-CoRM model even on data sets where in principle,

we could expect most of the features to be equally important. In this direction,

and as we shall see in the following sections, it is certainly interesting to notice

that for all the scenarios considered the generalised beta-CoRM methodology is
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able to discover a set of features that should not be included in the classification

procedure to achieve the best predictive performance.

3.3.1 Three non-overlapping groups

For the generalised version of the beta-CoRM we fixed c = 1 and the qi’s to

the maximum proportion across groups of observations having the corresponding

feature, just as we did for the beta-CoRM. Now, for the Metropolis-Hasting step,

we started with initial values α = β = 1, which yield an initial prior mean of 1 for

the score parameters ai. We believe this is a reasonable choice since we have seen

how the “best” features tend to have a score parameter below 1 and on the other

hand, features with a smaller discriminative power have a score parameter above

1. For the adaptive step, we started with σ = 10 to allow the sampler to explore

a large region at the beginning and we fixed Θ = (0.0001, 1000) which should

give σ a reasonably large region to adapt to the changes of the MCMC, which we

run using the same burning period (10,000), total number of simulations (55,000)

and thinning (15) as for the beta-CoRM.

The reader can observe the thinned dynamics of the hyperparameters in Fig-

ure 3.1 and the posterior estimates of the score parameters âi in Figure 3.2.
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(a) Sample from the posterior of α. (b) Sample from the posterior of β.

Figure 3.1: Posterior samples of the hyperparameters α and β corresponding to
the distribution of the score parameters.

Figure 3.2: Posterior estimates of the respective score parameter ai for each
feature, along with the optimal threshold represented by the black horizontal
line.
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Just as expected, the reader can observe that there does not seem to be a big

difference among the posterior estimates of the score parameters. However, we

can still proceed to check if there is an optimum threshold that maximises the

classification accuracy. In order to do so, we notice that the min{âi} = 0.8702871

and max{âi} = 1.354212, hence, in the interval ∆ = (.87, 1.4) we create a grid

with step .001 and perform the classification procedure as described in Section 3.2.

That is, for each threshold T in the grid, we apply the classification procedure only

considering the features whose ai ≤ T . The results of this procedure are shown

in Figure 3.3, where the reader can appreciate that a maximum classification

accuracy of 97% is achieved when we consider Topt = 1.275738 for a total number

of 124 features used.

Figure 3.3: Accuracy performance for different threshold levels.

It is certainly compelling to notice that even though the data was generated

without any predominant features, with the generalised beta-CoRM we were still

able to find a subset of the features that were not worth retaining in order to

achieve the best classification performance.
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3.3.2 Five overlapping groups

Just as for the three non-overlapping groups, for the following sections we used

the same data sets as in the previous chapter, that is, the five balanced and

imbalanced overlapping groups. However, for these scenarios we only compare

the beta-CoRM against its generalised version, since it was already the best

classifier. It is important to mention that hereby, the generalised beta-CoRM

will have concentration parameter c = 1, the qi’s will be fixed the same as before

and the same initial values for the Metropolis-Hastings step will be used.

3.3.2.1 Balanced groups

For the balanced scenario we can clearly appreciate in Table 3.1 how the gener-

alised version of the beta-CoRM outperforms the beta-CoRM model in all scenar-

ios. Furthermore, for all the cases considered, with the generalised beta-CoRM

model we were able to find some features not worth retaining without regard of

the similar posterior estimates of the score parameters.

Observations Features beta-CoRM generalised beta-CoRM
150 100 80.67 84.67
150 200 92.67 92.67
150 300 97.33 98.00
200 100 81.00 81.00
200 200 92.50 93.00
200 300 97.50 98.00
250 100 82.40 83.20
250 200 94.40 94.80
250 300 96.00 96.40

Table 3.1: Classification accuracy comparison (in %) of the beta-CoRM model
against its generalised version for the balanced group scenario with varying num-
ber of observations and features.
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3.3.2.2 Imbalanced groups

For the imbalanced groups scenario, the generalised beta-CoRM achieved, as

expected, also a better accuracy in all cases compared to the beta-CoRM as seen

in Table 3.2. And just as the balanced group there was not a clear difference

among the posterior estimates of the ai’s; however, we were still able to find an

optimal subset of the features yielding the best performance of the model.

Observations Features beta-CoRM generalised beta-CoRM
150 100 86.00 88.67
150 200 93.33 94.00
150 300 94.00 95.33
200 100 90.50 91.00
200 200 95.50 95.50
200 300 97.50 98.00
250 100 89.20 90.40
250 200 92.80 92.80
250 300 97.20 97.20

Table 3.2: Classification accuracy comparison (in %) of the beta-CoRM against
its generalised version for the imbalanced group scenario with varying number of
observations and features.

3.4 Real-data applications

For this section the data sets used were the same as in Chapter 2. However, in

these cases and contrary to the synthetic data, we compared the performance of

the generalised beta-CoRM against all the classifiers. This is quite important,

since as seen in the previous chapter, the beta-CoRM model was outperformed

by some of them.

101



3.4.1 Malware detection

For the malware detection task, we proceeded as before. That is, we split the data

into training and test set several times. As seen in the previous chapter, the naive

Bayes classifier had trouble classifying the new observations as we reduced the

number of observations in the training set. That is why its classification accuracy

is not presented in Table 3.3, where we can clearly appreciate how the generalised

beta-CoRM (gen. b-CoRM) outperformed the beta-CoRM (b-CoRM) model, the

MLE approach ,the decision tree and its adaptive boosted (AB), gradient boosted

(GB) and extreme gradient boosted (XGB) versions.

Ratio b-CoRM gen. b-CoRM MLE Tree AB GB XGB
90-10 100 100 100 100 100 100 100
80-20 98.67 100 97.33 98.67 98.67 98.67 98.67
70-30 99.11 100 98.21 99.11 99.11 99.11 99.11
60-40 99.33 100 97.32 97.99 99.33 99.33 99.33
50-50 98.93 99.47 97.37 98.93 99.47 98.40 99.47
40-60 99.11 99.55 96.49 98.66 99.55 98.21 99.11
30-70 99.23 99.62 96.55 97.32 99.62 99.23 98.47

Table 3.3: Classification accuracy comparison (in %) of the beta-CoRM models
against commonly used supervised learning algorithms for the malware data set
illustrated in Figure 2.1, with a decreasing number of observations in the training
set.

For this data set and contrary to the synthetic data, interesting results about

the feature selection step can be obtained. For illustrative purposes, we focus our

attention on the posterior results of the last scenario. In Figure 3.4 the reader

can appreciate that there is an actual difference for the posterior estimates of the

ai’s, with most of them below the value .5 and some others above it. However, the

optimal threshold represented by the black line shows the few features required

to obtain a high classification accuracy.
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Figure 3.4: Posterior mean of the score parameters represented by the red dots
and the optimal threshold as the horizontal black line.

Moreover it can be seen that the best accuracy can be achieved with a low

threshold (Figure 3.5). In fact, the optimum threshold can be found at 0.3638

yielding only five total features used. Although it is also clear that after this

optimum value, the accuracy performance remains stable and there is not much

difference. Something that should not surprise us since there was a clear difference

among the malicious and the benign executables.
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Figure 3.5: Accuracy for different thresholds.

3.4.2 Malware classification

Now, we turn our attention to the most interesting scenario considered so far, the

malware classification task. In Chapter 2 it was seen that the beta-CoRM model

was clearly outperformed by the boosted algorithms and the multinomial logistic

regression model. This led us to think and propose a generalised version of the

model for which an actual increase in the classification performance has been seen

in the other scenarios considered so far. Hence, in this section we test the model

capabilities in this challenging data set and compare them again against the MLE

approach and the rest of the supervised learning classifiers, that is, beta-CoRM

(b-CoRM), naive Bayes (nBayes), multinomial logistic regression model (ML),

decision tree and its adaptive (AB), gradient (GB) and extreme gradient(XGB)

boosted version. In Table 3.4 we present the classification performance for all the
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models.

b-CoRM gb-CoRM MLE nBayes tree AB GB XGB ML
80.95 85.32 79.76 77.38 80.15 94.05 91.67 91.27 84.92

Table 3.4: Classification accuracy comparison (in %) for the generalised beta-
CoRM model against commonly used supervised learning algorithms for the mal-
ware data set illustrated in Figure 2.7.

From the results presented in Table 3.4 we can immediately appreciate that

the generalised beta-CoRM model performance is better than the original model,

something that we were definitely expecting. Moreover, we can also appreciate

how the generalised beta-CoRM is now only outperformed by the boosted algo-

rithms. These are compelling preliminary results; however, there is still more

information and a deeper analysis we can obtain from the feature selection step

and its impact on the data and the classification performance.

3.4.2.1 Feature selection analysis

The generalised beta-CoRM model was developed on the elegant spike-and-slab

interpretation of the score distribution and one of the most important contribu-

tions of this model is the possibility to introduce a feature selection step through

the posterior analysis of the score parameters. For the malware classification data

this posterior analysis represents an interesting opportunity to analyse the fea-

tures that were selected as the “best” ones. In Figure 3.6 we present the results

of this procedure by displaying the posterior mean of each score (red dots) and

the optimal threshold represented by the black horizontal line.
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Figure 3.6: Posterior mean of the score parameters represented by the red dots
and the optimal threshold as the horizontal black line.

At a first glance we can immediately appreciate that there are five features

that have an associated score parameter above 1.5, which is certainly interesting

since the rest of the features have an associated score parameter closer to one.

Doing a more refined analysis, we were able to find out that these relatively large

five posterior score parameters were associated to the most popular features in the

data set, representing the features appearing in a large number of observations,

as showed in Table 3.5.

Feature Popularity âi
1 96.27% 3.252165
17 84.75% 2.427305
25 77.29% 1.950262
9 77.12% 1.893666
15 73.05% 1.792781

Table 3.5: The five most popular features across the data with their respective
popularity and posterior score parameter.
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Due to their popularity across the observations in the data set it is clear that

their discriminative power will be certainly smaller compared to the “best” fea-

tures and hence, it is not surprising why we should not include them to classify

new malware. In a similar way, we can also analyse the least popular features,

representing rare features appearing in a small number of observations. In Ta-

ble 3.6 we present the five least popular features, with their level of popularity

and their associated score parameter.

Feature Popularity âi
172 4.40% 1.280181
633 4.40% 0.8957767
636 4.40% 0.8641384
642 4.40% 0.9728476
767 4.58% 0.8224271

Table 3.6: The five least popular features across the data with their respective
popularity and posterior score parameter.

From the results presented in Table 3.6, it is interesting to notice how these

rare features have a posterior score parameter close to one which might be an

indication that just as the most common features they should not be included

in the classification procedure to get the best performance. Now that we have

analysed both rare and common features we turn our attention to the features

marked as the “best” ones. As an example, the five “best” features along with

their popularity and their score parameter are displayed in Table 3.7.

Feature Popularity âi
681 16.95% 0.4223356
196 8.64% 0.4256526
727 11.53% 0.4313577
213 18.30% 0.4520498
533 9.66% 0.4571787

Table 3.7: The five “best” features across the data with their respective popularity
and posterior score parameter.
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Finally, and in order to have a thorough understanding of the effect of the

feature selection step on the classification performance of the generalised beta-

CoRM, we obtained the classification accuracy achieved for different thresholds

which can be seen in Figure 3.7. We can appreciate how the accuracy increases

dramatically as we start introducing the “best” features into the discrimination

procedure and how once the rest of the features are introduced the accuracy

decreases until it reaches a stable accuracy of 80.16%.

Figure 3.7: Accuracy for different thresholds.

It is also interesting to notice that the best accuracy performance was achieved

with a threshold of 0.605, which represented only 96 features used yielding a

reduction of almost 90% of the original 826 features considered at the beginning.

In this case, it is worth noticing that for this threshold, both the most popular

features and the least popular features were not selected. In this direction, it is

an interesting exercise to appreciate how does the binary matrix look when we

restrict our attention to only these 96 features (Figure 3.8).
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Figure 3.8: Graphical representation of the data set comprised of 590 malware
(rows) of nine families separated with the solid horizontal lines and the 96 features
selected through the generalised beta-CoRM. The dots represent the features that
appear in each executable.

It is quite compelling to see how by restricting the data set to these 96 fea-

tures we obtain groups with a clearer structure and hence, more distinguishable

among each other compared to the original data illustrated in Figure 2.7. This

is something that can also be noticed in the test set by restricting it to these 96

features as displayed in Figure 3.9.
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Figure 3.9: Graphical representation of the test set comprised of 252 malware
(rows) of nine families separated with the solid horizontal lines and the 96 features
selected through the generalised beta-CoRM. The dots represent the features that
appear in each executable.

Finally from the results of the posterior inference, it is also interesting to

direct our attention to the posterior estimate of the probabilities for each feature

to appear in each of the nine families, that is, m̂ijpi. In Figure 3.10, the reader

can find the graphical representation of these probabilities. It is attractive to see

how the model is able to detect the differences across groups by highlighting with

a deep blue their predominant features.
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Figure 3.10: Posterior probability of each of the 96 features appearing in each of
the 9 families of the malware classification data set.

3.4.2.2 Classification analysis

With the feature selection process and the analysis carried out so far, we be-

lieve it is also worth doing a more refined analysis of the classification under the

generalised beta-CoRM model. To do so, we can recall that until now we have

only used the accuracy to measure the models’ classification performance. This

is certainly a useful metric for the data sets considered so far because even for the

imbalanced scenarios the class proportions are not that distant from one another.

For instance, for the malware classification data set only one of the groups has

significantly less observations. Hence, through the use of the accuracy we were

able to centre directly our attention on the predictive performance of the model.
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Nevertheless, there are other considerations that can be taken into account to

measure the performance of a particular model. For example, in section 2.3.2.1 we

saw that naive Bayes started classifying all the executables as malicious, yielding a

large number of false positives. This is something that we have already discussed

is not desired in a cyber security context. To understand how the model is

performing on this area we can make use of the precision which is defined as the

ratio between true positives and the total predicted positives (see e.g. Olson and

Delen, 2008), that is,

Precision =
True Positives

True Positives + False Positives
.

On the other hand we can also question ourselves about the false negatives.

For the malware detection problem this is quite important since it would mean

that some malware were classified as benign executables putting in risk the whole

computer network. In this direction we can centre our attention on the recall

which is defined as the ratio between true positives and the total actual positives

(see e.g. Olson and Delen, 2008), that is,

Recall =
True Positives

True Positives + False Negatives
.

Finally, if the goal is to achieve a balance between the false positives and the

false negatives, one could use the F1 score which is defined as the harmonic mean

of the precision and recall (see e.g. Olson and Delen, 2008), that is,

F1 = 2

(
precision*recall

precision + recall

)
,

and that has been widely used to measure the performance of the models for

imbalanced data sets. From a modelling perspective, a good model should have
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a precision, a recall and an F1 score close to one. It is important to notice

that although these metrics have been defined in a binary setting they can be

easily extended to a multi-class framework since for each of the classes we can

obtain their individual precision and recall and hence, their F1 score. Then, these

individual metrics can be combined to get a global metric for the classification

model by averaging them together (see e.g. Yang and Liu, 1999; Grandini et al.,

2020)

Now, turning our attention back to the malware classification example, we first

recall that a classification accuracy of 84.92% was achieved, which represents that

214 out of 252 malware were correctly classified. For illustrative purposes, in Fig-

ure 3.11 we display only the correctly classified observations for each of the groups.

From this figure, we can appreciate that the model is able to capture the general

structure of the groups. This can be reasserted by putting together the correctly

classified observations along with the misclassified ones, this is something that

can be seen in Figure 3.12 where the misclassified malware is represented by the

blue dots.

113



Figure 3.11: Correctly classified malware.

Figure 3.12: Correctly classified (black) and misclassified (blue).
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As previously analysed, the model is able to capture the general structure

of each group; that is why for the next step of our analysis we centre our at-

tention on the confusion matrix (Table 3.8) which will provide us with a deeper

understanding of the misclassified elements of the generalised beta-CoRM.

Predicted families
1 2 3 4 5 6 7 8 9

T
ru

e
fa

m
il
ie

s

1 26 1 0 0 0 0 1 1 1
2 1 22 0 0 1 1 2 0 1
3 0 0 28 1 1 0 0 0 0
4 0 0 0 24 0 0 0 0 0
5 0 0 1 0 12 0 1 0 1
6 6 0 0 7 0 23 0 0 0
7 1 0 0 1 0 0 25 0 1
8 3 0 0 0 0 1 0 34 1
9 2 0 0 0 0 0 0 0 20

Table 3.8: Confusion matrix of the generalised beta-CoRM for the malware clas-
sification data set.

Interesting remarks can be made from the confusion matrix by recalling that

families 3, 5, 7 and 9 are all Backdoors and that families 4 and 6 are certainly re-

lated since they are respectively Trojan and TrojanDownloader. This is certainly

interesting because it can be noted that half of the misclassified observations in

families 3, 5, 7 and 9 went to one of these families and that more than half of the

misclassified observations in family 6 were classified as malware of the family 4.

Finally, other compelling conclusions can be obtained through the precision, the

recall and F1 score for each class which are displayed in Table 3.9.

Family 1 2 3 4 5 6 7 8 9
Precision 66.67 95.65 96.55 72.73 85.71 92.00 86.21 97.14 80.00

Recall 86.67 78.57 93.33 100 80.00 63.89 89.29 87.18 90.91
F1 75.36 86.27 94.92 84.21 82.76 75.41 87.72 91.89 85.11

Table 3.9: Precision, recall and F1 score (in %) of the generalised beta-CoRM for
each family of the malware classification data set.
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From the results displayed in Table 3.9, we can clearly appreciate how family

6 despite having a good precision is being punished by the large number of mis-

classified elements, yielding a low recall and hence the second lowest F1 score. On

the other hand, it can also be seen that family 4 despite having a perfect recall is

being punished by all the false positives, yielding a low precision. This issue can

also be appreciated in family 1 where due to the large number of false positives

the lowest precision is obtained which negatively impacts its F1 score which is in

fact, the lowest overall. It is clear that families 1 and 6 are the most problematic

and on the contrary, it can be easily argued that the best performance is achieved

for family 3 due to its high precision, recall and hence, F1 score.

Finally, using these results we can also provide overall metrics for the gener-

alised beta-CoRM which are displayed in Table 3.10 by averaging the individual

metrics. We can appreciate consistent results with a slightly higher F1 score com-

pared to the accuracy, something that it is always desired since the F1 score takes

into account false positives and false negatives as well.

Accuracy Precision Recall F1

84.92 84.85 85.85 85.54

Table 3.10: Global precision, recall and F1 score (in %) of the generalised beta-
CoRM for the malware classification data set.

3.5 Concluding remarks

In this chapter we described a generalisation of the the beta-CoRM model intro-

duced in the previous chapter, that allowed us to incorporate a feature selection

step in the learning process. This model yielded a better classification accuracy

and a deeper understanding of the importance of each of the features. This opens
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interesting directions of research. First of all, there are more malware that we

could use and from which more n-grams could be obtained. Now that the gen-

eralised model allows us to choose an optimum threshold, we could also extract

the features with the better discriminative power. With this in mind, a not so

restrictive first dimensionality reduction approach could be used on the feature

space, since we might be leaving out n-grams that could potentially improve the

classification accuracy. Moreover, further research about the optimum threshold

also needs to be done.
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Chapter 4

Beta compound random measure

binary matrix factorisation

The beta-CoRM models described in the previous chapters are without a doubt

an interesting approach to supervised learning for binary matrices. Although

these models were specifically designed to model the data directly, there are

other applications to the beta-CoRM as a prior that are worth considering and

developing. In this chapter, we explore a binary matrix factorisation procedure

with an underlying Bayesian nonparametric latent feature model that uses the

beta-CoRM as prior on the latent causes.

Latent variables have an important role in many statistical models. These

variables, often play the role of properties that have not been directly observed

or hidden causes that explain the observations. In a parametric setting, the num-

ber of latent variables is assumed to be finite, which implies there is a unique

representation that correctly characterises the data (Ghahramani et al., 2007).

This assumption, although computationally convenient, might not always be ad-
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equate, like in topic modelling, where new documents might not be well-modelled

using the k latent topics initially considered. To overcome this, Bayesian nonpara-

metric latent feature models work on the assumption that there is an unbounded

number of possible latent features and only a small number of them are “ac-

tive”. Examples of Bayesian nonparametric latent models include the mixture

of Dirichlet process (MDP) (see e.g. Antoniak, 1974; Escobar and West, 1995),

the hierarchical Dirichlet process (HDP) (Teh et al., 2006) and the Indian Buffet

Process (IBP) (Ghahramani and Griffiths, 2006; Ghahramani et al., 2007).

For the application to malware detection and classification presented through-

out this thesis, the infinite number of latent traits can represent pieces of code,

functions executed by the malware, or any other binary characteristic associated

to executable programmes. This particular characteristic of factorial models,

where different kinds of binary variables can be considered, has already been ex-

ploited in Thibaux and Jordan (2007), where the hierarchical beta process (HBP)

was defined and applied to document classification. In their approach, the pri-

mary binary features were the words present in each text and possible new binary

latent variables could also be considered like the indentation of the text.

For the approach that we will present in this chapter, we will assume that

each observation Xkj = {xkji}Mi=1 is generated by a finite number of latent traits,

Zkj = {zkjl}l, with each one of these traits having an associated probability, ali,

of generating the i-th binary feature. Then, as we will discuss in the following

section, the factorisation is done through an elegant link function that can be

interpreted as if there was a second layer of binary latent indicators modulating

the presence or absence of the n-grams.
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4.1 Beta-CoRM BMF generative model

In order to provide a constructive specification of the generative process of the

beta-CoRM BMF model, we recall that a beta process B is a stochastic process

defined on a suitable space Ω. In the original formulation, Ω was considered to

be the real line (Hjort, 1990); however, more general spaces can be considered.

For the purposes of this chapter, and for the beta-CoRM BMF construction we

consider the two-parameter beta process, BP (c, γ), where c is the concentration

parameter and γ = B0(Ω) is the total mass of the base measure B0. Another

interesting possibility, that we do not cover in this thesis, would be the use of

the three-parameter beta process (Broderick et al., 2012) which, contrary to the

original formulation, exhibits a power law behaviour through the new discount

parameter considered.

Contrary to Chapter 2 and 3, where the base measure was discrete, for the

beta-CoRM BMF we consider a continuous base measure B0. Hence, the Lévy

measure of B is

ν(dp, dω) = cp−1(1− p)c−1dpdB0(dω).

It is straightforward to see that B is an infinite activity Lévy process,

i.e.,
∫
ν(dp, dω) = ∞. Therefore, B contains an infinite number of small jumps,

which makes it suitable for sparse latent variable models like the IBP and the

beta-CoRM BMF. Using Kingman’s representation theorem for completely ran-

dom measures (Kingman, 1967), realisations of the beta process can be seen as

B =
∑
l

plδωl ,
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where the set of jumps {pl}l lie in the unit interval, yielding an infinite number

of coin-toss probabilities.

Following the generative process of the discrete beta-CoRM of the previous

chapters, B will be used as the directing Lévy process whose jumps are going to

be perturbed at group level by beta distributed scores m1l, ...,mdl ∼ beta(a, 1),

that is, for each group j ∈ {1, ..., d} we will have a base measure Bj such that,

Bj =
∑
l

mjlplδωl .

The perturbed weights are then used in conjunction with several realisations

of Bernoulli processes to create the binary matrix of latent traits Z. That is for

observation k in group j we define

Zkj =
∑
l

zkjlδωl zkjl ∼ Bernoulli(mjlpl).

Finally, the binary matrix factorisation model is fully specified by introducing

a set of beta-distributed loadings al1, .., ali, .., alM which as established before,

represent the probability of each latent trait generating the i-th binary feature

and with M being the total number of features in the data. With the latent

traits and their associated loadings, then xkji follows a Bernoulli distribution

with parameter given by

P(xkji = 1) = g(Zkj, a·i) = 1−
∏
l

(1− zkjlali).

(4.1)
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This particular choice of link function can be elegantly thought as if there were

a second layer of independent latent indicator variables vkjil ∼ Ber(zkjlali) and

with xkji = maxl{vkjil}. In this way, the corresponding feature would be present if

at least one of the indicator variables, {vkjil}l, was active. Interestingly, this max

representation is not unique, in fact we could also write xkji = 1−
∏

l(1− vkjil),

yielding the same probabilities and results, hence, it is just a matter of choosing

the one the researcher finds more useful. In our case, the max representation

is especially useful for deriving important theoretical properties of this model,

while for the posterior inference we (mostly) use the representation provided in

equation (4.1).

Finally, it is also important to remark that this generative process also allows

us to introduce dependence between features across observations through the set

of latent traits and their respective set of loadings. Furthermore, this dependence

will also exist within and across families, and will explicitly rely on the number

of shared latent traits.

4.2 Properties

In this section we provide and develop some theoretical properties mainly re-

lated to the new dependent structure of the beta-CoRM BMF. These results will

be particularly useful for the posterior inference, since they provide important

information on the hyperparameters, and as explained in the previous section,

for their derivation we use the max representation of the data since it certainly

simplifies and makes clearer some of the expressions.
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First of all, it is important to properly characterise the probability of an

observation having (or not) a feature. From the beta-CoRM BMF model, it is

easy to appreciate that xkji = 1 if and only if
∑

l vkjil ≥ 1 and xkji = 0 if and

only if vkjil = 0 ∀l. Since all the latent variables {vkjil}l are independent, then

P(xkji = 0) =
∏
l

P(vkjil = 0),

with

P(vkjil = 0) = P(vkjil = 0|zkjl = 0)P(zkjl = 0) + P(vkjil = 0|zkjl = 1)P(zkjl = 1)

= P(zkjl = 0) + (1− ali)P(zkjl = 1)

= (1−mjlpl) + (1− ali)mjlpl

= 1− alimjlpl.

Therefore,

P(xkji = 0) =
∏
l

(1− alimjlpl)

P(xkji = 1) = 1−
∏
l

(1− alimjlpl).

(4.2)

Equation (4.2) allows us to provide a full characterisation of (4.1) in terms

of the underlying probabilities by integrating out the latent traits. Since the

probability of an observation having a feature increases as there are more latent

traits present, then the weights of the beta process, the scores and the loadings

modulate the probability of success found in (4.1). This is particularly useful

to know the role of the hyperparameters of each component of the beta-CoRM
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BMF model. For this, we notice that the hierarchical model is fully specified by

considering

pl ∼ beta(cB0(dωl), c(1−B0(dωl)))

mjl ∼ beta(a, 1)

ali ∼ beta(α, β).

With these prior distributions we can easily integrate out the set of weights

{pl}, the scores {mjl}, and the loadings {ali} to express everything in terms of the

hyperparameters α, β, a. In order to simplify the notation we denote B0(dωl) =

b0,l, and hence,

P(xkji = 0|α, β, a, b0,l)

=

∫
P(xkji = 0|{ali}, {mjl}, pl)f({ali}, {mjl}, pl|α, β, a, b0,l)

=

∫ ∏
l

(1− alimjlpl)f({ali}, {mjl}, pl|α, β, a, b0,l)

=
∏
l

∫
(1− alimjlpl)

aα−1li (1− ali)β−1

B(α, β)
ama−1

jl

p
cb0,l−1
l (1− pl)c(1−b0,l)−1

B(cb0,l, c(1− b0,l))

=
∏
l

(
1−

∫
aαli(1− ali)β−1

B(α, β)
ama

jl

p
cb0,l
l (1− pl)c(1−b0,l)−1

B(cb0,l, c(1− b0,l))

)

=
∏
l

(
1− α

α + β

a

a+ 1
b0,l

)
,

and similarly,

P(xkji = 1|α, β, a, b0,l) = 1−
∏
l

(
1− α

α + β

a

a+ 1
b0,l

)
.
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From the Chapters 2 and 3, we have already realised that smaller values of

a should be preferred since larger values yield scores close to one and hence,

undistinguishable groups. In fact in the limit a→∞, then mjl → 1 and it would

be like having just N beta-Bernoulli processes. In this case, however, we can

analyse the effect of α and β. It is clear that larger values of β will make more

likely xkji to be zero and larger values of α will make the loadings close to one and

hence more likely xkji to have the feature. Related to this, it is also important

to remark that in the limit that E(ali) = 1, then vkjil = zkjl and if E(ali) moves

away from 1, it allows more discrepancy between vkjil and zkjl. In other words,

an observation might have the trait but not the associated feature.

The results obtained so far, will be useful for the following sections, where the

dependence structure is completely analysed. As established before, the main goal

of the beta-CoRM BMF model is to introduce dependence across features, some-

thing that was not present in the beta-CoRM models presented in the previous

chapters where there is zero correlation between the features. This dependency

is achieved through the shared latent traits, something that will also be present

across and within families.

4.2.1 Dependence across features for the same observa-

tion

In order to analyse the dependence structure we start with some notation, by

defining the set of active latent traits of observation k in group j as

Akj = {l : zkjl = 1}. As we will see below, this set and its cardinality play

an important role in the beta-CoRM BMF structure.
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To obtain the covariance, we proceed by first obtaining the joint probability

of the same observation having feature i and i′. This procedure is done by noting

that, conditioned on Akj, xkji and xkji′ are independent, hence,

P(xkji = 1, xkji′ = 1) =
∑
Akj

P(xkji = 1, xkji′ = 1|Akj)P(Akj)

=
∑
Akj

P(xkji = 1|Akj)P(xkji′ = 1|Akj)P(Akj).

Given the set of active latent traits, the conditional marginal probabilities can

be easily obtained from (4.1) and given by,

P(xkji = 1|Akj) = 1−
∏
l∈Akj

(1− ali).

By the same reasoning, we have that P(xkji = 1|Akj) = 1 −
∏

l∈Akj(1 − ali′),

and the joint probability can be finally expressed as

∑
Akj

1−
∏
l∈Akj

(1− ali)

1−
∏
l∈Akj

(1− ali′)

P(Akj)

=
∑
Akj

1−
∏
l∈Akj

(1− ali)

1−
∏
l∈Akj

(1− ali′)

 ∏
l∈Akj

mjlpl
∏
l∈Ackj

(1−mjlpl).

(4.3)

To have a well-defined expression for the joint probability it is just a matter of

defining the product over the empty set, Akj = ∅, to be equal to 1. By doing so,

the first term of (4.3) is zero which corresponds where there are no active traits.

Then, using equation (4.3) and the marginal probabilities given in equation (4.2),

we can express the covariance of xkji and xkji′ as
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E(xkjixkji′)− E(xkji)E(xkji′)

= P(xkji = 1, xkji′ = 1)− P(xkji = 1)P(xkji′ = 1)

=
∑
Akj

1−
∏
l∈Akj

(1− ali)

1−
∏
l∈Akj

(1− ali′)

 ∏
l∈Akj

mjlpl
∏
l∈Ackj

(1−mjlpl)

−

(
1−

∏
l

(1− alimjlpl)

)(
1−

∏
l

(1− ali′mjlpl)

)
.

(4.4)

It is interesting to notice that (4.4) can be simplified in the case when zkjl =

vkjil a.s. by letting ali → 1, yielding,

Cov(xkji, xkji′) =
∑
Akj

∏
l∈Akj

mjlpl
∏
l∈Ackj

(1−mjlpl)−

(
1−

∏
l

(1−mjlpl)

)2

and, on the other hand, it is clear that as ali → 0 the covariance tends to 0.

Further interesting insights about the hyperparameters of the loadings, α and

β, can be found by taking the expectation with respect to the set of loadings

a·i = {ali}l and a·i′ = {ali′}l of the joint conditional probability of xkji = 1 and

xkji′ = 1 given a fixed set of active latent traits Akj. By doing so, we are able to

characterise the joint probability as a function of α, β and |Akj|, that is,

Ea·i,a·i′ [E(xkjixkji′ |Akj)]

= Ea·i,a·i′

1−
∏
l∈Akj

(1− ali)

1−
∏
l∈Akj

(1− ali′)


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= Ea·i,a·i′

1−
∏
l∈Akj

(1− ali)−
∏
l∈Akj

(1− ali′) +
∏
l∈Akj

(1− ali)
∏
l∈Akj

(1− ali′)


= 1− 2

(
β

α + β

)|Akj |
+

(
β

α + β

)2|Akj |

=

(
1−

(
β

α + β

)|Akj |)2

.

(4.5)

From (4.5) there are two trivial cases that arise immediately. In the limit

α → 0 ali → 0 ∀l and xkji = 0 ∀i. On the contrary, in the limit β → 0, and

considering there is at least one latent trait active, xkji = 1 ∀i. Also, for β 6= 0,

if there are no latent traits active xkji = 0 ∀i and on the contrary, for a large

number of latent traits active this probability will be close to one since β
α+β
≤ 1.

This is something that we would have expected since it is the effect of zkjl = vkjil

as the loadings get closer to one.

4.2.2 Dependence between two observations in the same

group

For the dependence between two observations in the same group, there are two

scenarios that we could consider. First, the case for the same feature, that is xkji

and xk′ji, and secondly, the case with different features, that is, xkji and xk′ji′ .

However, for the second case, it is easy to see that the variables are conditionally

independent due to the sets of active traits Akj and Ak′j being conditionally

independent and to the independence of the corresponding set of loadings {ali}i
and {ali′}i′ .
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Now, for the first case, it is true that they are also conditionally independent

due to the conditional independence of the corresponding set of active traits.

However, in this case, due to the shared loadings {ali}i, there is an interesting

analysis that can be done, similar to the one carried out to obtain equation (4.5).

By doing so, there is the possibility of further analysing the effect of α and β and

the cardinalities of Akj and Ak′j in the beta-CoRM BMF model.

4.2.2.1 Dependence between xkji and xk′ji

Conditioning on Akj and Ak′j and obtaining an expression with respect to the

hyperparameters by taking the expectation with respect to the loadings, yields

that the joint marginal distribution can be expressed as

Ea·i [E(xkjixk′ji|Akj, Ak′j)]

= Ea·i

1−
∏
l∈Akj

(1− ali)

1−
∏
l∈Ak′j

(1− ali)


= Ea·i

1−
∏
l∈Akj

(1− ali)−
∏
l∈Ak′j

(1− ali) +
∏
l∈Akj

(1− ali)
∏
l∈Ak′j

(1− ali)


= 1−

(
β

α + β

)|Akj |
−
(

β

α + β

)|Ak′j |
+ Ea·i

 ∏
l∈Akj\Ak′j

(1− ali)
∏

l∈Ak′j\Akj

(1− ali)
∏

l∈Akj∩Ak′j

(1− ali)2


= 1−
(

β

α + β

)|Akj |
−
(

β

α + β

)|Ak′j |
+

(
β

α + β

)|Akj\Ak′j |( β

α + β

)|Ak′j\Akj |( β + 1

α + β + 1

)|Akj∩Ak′j |
(4.6)

129



By noticing that |Akj\Ak′j| = |Akj| − |Akj ∩ Ak′j| and similarly, that

|Ak′j\Akj| = |Ak′j| − |Akj ∩ Ak′j|, and by taking the expectation with respect

the loadings for xkji and xk′ji individually, we can obtain a simplified equation

for the covariance given by

(
β

α + β

)|Akj |+|Ak′j | [((α + β)2(β + 1)

(α + β + 1)β2

)|Akj∩Ak′j |
− 1

]
.

(4.7)

Clearly, if for each observation the features do not share any latent traits, that

is, Akj ∩ Ak′j = ∅ then the covariance is zero. On the other hand, if they share

all the latent traits, then the covariance becomes

(
β

α + β

)2|Akj |
[(

(α + β)2(β + 1)

(α + β + 1)β2

)|Akj |
− 1

]
=

(
β + 1

α + β + 1

)|Akj |
−
(

β

α + β

)2|Akj |

,

which works as an upper bound for (4.7). Finally, another trivial case occurs

when one of the sets is properly contained in the other, for example, if Ak′j ⊂ Akj

then the covariance becomes

(
β

α + β

)|Akj |+|Ak′j | [((α + β)2(β + 1)

(α + β + 1)β2

)|Ak′j |
− 1

]
.

4.2.3 Further properties

From all the expressions and results derived in the previous sections, it is clear

now the importance of the latent traits and the loadings for the dependence

structure. With respect the latent traits, it is particularly interesting to know
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the number of active traits and the number of shared traits within and across

families. In this direction it is worth recalling that

Zkj =
∑
l

zkjlδωl zkjl ∼ Bernoulli(mjlpl),

and since E(B(Ω)) = B0(Ω)

E(Zkj) = E[E(Zkj|Bj)] =
∑
l

E(mjlpl)δωl =
a

a+ 1
B0(Ω) =

a

a+ 1
γ.

Therefore, the expected number of active latent traits is equal to a
a+1

γ. For

a fixed mass parameter γ, the score parameter a controls the number of latent

traits present for each observation. That is, for small values of a we expect to

see fewer active latent traits and for large a we expect to observe a γ number of

active latent traits. Finally, for the behaviour on the shared latent traits, we have

already derived some useful properties like the probability of two observations in

different groups sharing the l-th latent trait,

P(zkjl = 1, zk′j′l = 1) =

(
a

a+ 1

)2(cb20,l + b0,l

c+ 1

)

and its covariance,

Cov(zkjl, zk′j′l) =

(
a

a+ 1

)2(
b0,l(1− b0,l)

c+ 1

)
.

Following the same reasoning, we can also obtain closed expressions for the

probability of two observations in the same group sharing the l-th latent trait as

P(zk′jl = 1, zkjl = 1) = E[E(zk′jlzkjl)|Bj(dωl)]

= E(m2
jlp

2
l )
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=

(
a

a+ 2

)(
cb20,l + b0,l

c+ 1

)

and its covariance

Cov(zk′jl, zkjl) = Var(Bj(dωl))

=

(
ab0
a+ 2

)(
(1− b0,l)(a+ 1)2 + b0,l(c+ 1)

(c+ 1)(a+ 1)2

)
.

Finally, the loadings allow us to control the level of dependence. In this

direction, the hyperparameters α and β have a key role since they control how

far or close will the loadings be from 1, depending on whether we expect the

observations within and across groups having a larger correlation or not.

4.3 Inference

In order to perform the posterior inference on the beta-CoRM BMF model, we

first notice that complete likelihood can be written as

f(X|Z, a) =
d∏
j=1

nj∏
k=1

M∏
i=1

[
1−

∏
l

(1− zkjlali)

]xkji [∏
l

(1− zkjlali)

]1−xkji
,

(4.8)

with corresponding priors on the latent traits and their loadings given by

f(Z|m,p) =
d∏
j=1

nj∏
k=1

∏
l

(mjlpl)
zkjl(1−mjlpl)

1−zkjl

f(a|α, β) =
∏
l

M∏
i=1

1

B(α, β)
aα−1li (1− ali)β−1.
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Then the full posterior distribution up to proportionality is given by

f(Z, a,m,p|X) ∝ f(X|Z, a)f(Z|m,p)f(m|a)f(p|c, γ)f(a|α, β)

=
∏
j,k,i

[
1−

∏
l

(1− zkjlali)

]xkji [∏
l

(1− zkjlali)

]1−xkji
×

∏
jkl

(mjlpl)
zkjl(1−mjlpl)

1−zkjl
∏
l,i

aα−1li (1− ali)β−1

× f(m|a)f(p|c, γ).

(4.9)

Just as for the beta-CoRM models discussed in Sections 2 and 3, we can

introduce the slice sampling technique in order to facilitate the posterior sampling

of the weights pl’s and the score parameters mjl’s. With this simulation technique,

we can augment the posterior distribution to

f(Z,Y, a,m,p|X) ∝ f(X|Z, a)f(Z|Y,p)f(Y|m)f(m|a)f(p|c, γ)f(a|α, β)

=
∏
j,k,i

[
1−

∏
l

(1− zkjlali)

]xkji [∏
l

(1− zkjlali)

]1−xkji
×

∏
jkl

(
δ
zkjl
0

)1−ykjl (pzkjll (1− pl)1−zkjl
)ykjl∏

jkl

m
ykjl
jl (1−mjl)

1−ykjl

×
∏
l,i

aα−1li (1− ali)β−1

× f(m|a)f(p|c, γ).

(4.10)

4.3.1 Posterior of the directing beta process

Now that the posterior distribution has been obtained, we can then proceed to the

marginal distributions which will be required for the Gibbs sampling algorithm.
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So, we first turn to the inference on the directing beta process.

The posterior inference on the classical beta-Bernoulli process and related

models like the IBP, heavily rely on the conjugacy property of the beta and the

Bernoulli process. A quick derivation of this property can be obtained from the

hierarchical representation of the beta-Bernoulli model given by,

Zi(dω)|B(dω)
iid∼ Bernoulli(B(dω))

B(dω) ∼ beta(cB0(dω), c(1−B0(dω))).

From which it can be derived that,

B(dω)|Z1,...,n ∼ beta
(
cB0(dω) +

n∑
i=1

Zi(dω),

c(1−B0(dω)) +
n∑
i=1

(1− Zi(dω))
)
,

and using this expression it can be easily derived that

B|Z1,...,n ∼ BP

(
c+ n,

c

c+ n
B0 +

1

c+ n

n∑
i=1

Zi

)
.

This structure has been particularly useful for the Bayesian nonparametric

models that use the IBP as a prior, where the beta process is integrated out and

a nice predictive distribution can be obtained,

Zn+1|Z1,...,n ∼ BeP

(
c

c+ n
B0 +

1

c+ n

n∑
i=1

Zi

)
.
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In Chapter 2 we saw that, contrary to the beta process, the beta-CoRM model

does not have a conjugacy property with respect to Bernoulli observations. Hence,

the posterior inference for the directing beta process cannot be done directly and

a slice sampling technique was developed that allowed us to perform a fast and

efficient posterior inference. In equation (4.9) the reader can appreciate the effect

of this procedure yielding a more tractable expression than the one found in the

original model and that provides a conjugate model between the directing beta

process and the Bernoulli latent traits, that is,

B(dω)|Z, Y ∼ beta
(
cB0(dω) +

∑
j,k

Zkj(dω)Ykj(dω),

c(1−B0(dω)) +
∑
j,k

(1− Zkj(dω))Ykj(dω)
)
.

(4.11)

This representation will be extremely useful no matter the approach consid-

ered for the posterior inference of the beta process. It is important to remark that,

just as for any Bayesian nonparametric prior, it is computationally unfeasible to

consider the infinite number of atoms that conform the beta process. In prac-

tice, several inferential techniques have been proposed to address this issue. One

of such approaches is to define a truncation of the completely random measure

which leads to a finite-dimensional posterior. For example, for stick-breaking pri-

ors, in Ishwaran and James (2001) it is argued that the number of atoms included

should be chosen in such a way that the finite model is nearly undistinguishable

from the infinite one, where the difference between them can be measured using

the L1 distance. Since defining this number might be troublesome for other non-

parametric priors, more general schemes where the truncation point is random

can also be considered, for a review on this the reader can refer to Griffin and

Holmes (2010) and the references therein.
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For the beta process and the IBP, which have stick-breaking representations,

the fixed and random truncation approaches for the inferential process have been

widely used in both MCMC and variational schemes (see e.g. Doshi et al., 2009;

Paisley et al., 2011, 2012; Teh et al., 2007). Another interesting inferential scheme

for this nonparametric prior is to split the full conditional into a finite (the ob-

served atoms) and an infinite part (the unobserved ones). In this case the in-

ference exploits the Lévy properties of this stochastic process, so that it can be

done separately by independently updating the weights of the observed atoms

and approximating the remaining space (see e.g. Paisley and Jordan, 2016).

4.3.1.1 Truncation method

For the purposes of this thesis we consider a truncation method on the directing

beta process. However, it is compelling to notice that the truncation is done

directly on the completely random measure rather than on the stick-breaking

construction. For this to be done we consider beta prior sieves which can be

defined as:

Definition 4.1 (Beta prior sieves). Let c be the concentration parameter and B0

be a diffuse and finite measure defined on Ω. For an integer R > B0(Ω) = γ,

we define a finite approximation to the beta process as B(R) =
∑R

l=1 plδωl, where

pl ∼ beta(cγ/R, c(1− γ/R)) and ωl ∼ B0/γ, with all the random variables drawn

independently.

By using beta prior sieves we are also able to exploit the simulation techniques

derived in Chapter 2 and 3, where a discrete base measure was considered. Hence,

considering the conjugacy property of the augmented model it can be seen that
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the posterior for the weights pl’s is given by:

pl|Y,Z ∼ beta

(∑
j,k

zkjlykjl +
cγ

R
,
∑
j,k

(1− zkjl)ykjl + c
(

1− γ

R

))

Finally, we could also give prior distributions to γ and c. Since both of them

are positive variables an adaptive random walk Metropolis-Hastings scheme could

be used on log(γ) and log(c) since clearly there is no conjugacy and the posterior

does not have a closed form due to the beta function involved. Gamma priors

with respective parameters ψγ, κγ and ψc, κc seems to be a sensible choice, with

all of the hyperparmeters having a gamma vague prior distribution.

4.3.2 Posterior of the scores

The prior distribution of the scores associated to pl is given by

P({mjl}|a) =
d∏
j=1

ama−1
jl

and the posterior distribution, just as for the discrete beta-CoRM model is (up

to proportionality):

P({mjl}|{ykjl}, a) ∝
d∏
j=1

ma−1
jl m

∑
k ykjl

jl (1−mjl)
nj−

∑
k ykjl

hence,

mjl|Y, a ∼ beta

(
a+

∑
k

ykjl, nj −
∑
k

ykjl + 1

)
.
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The structure of the prior distribution also allows us to provide a conjugate

model for the score parameter a by choosing a gamma prior (just as it was done

in Chapter 3 for each ai). By doing so, if we let M be the matrix of scores, then

a|M, ψa, κa ∼ gamma

(
Rd+ ψa, κa −

∑
l,j

log(mjl)

)
,

where ψa and κa can have assigned vague gamma priors. So that, κa has a conju-

gate posterior and ψa can be updated using the adaptive random walk Metropolis-

Hastings described in Chapter 3.

4.3.3 Posterior of Y

Now, the posterior inference on the auxiliary variables of the slice sampling model

can be done by noting that the prior for an observed atom ωl is given by:

P({ykjl}|{mjl}) =
d∏
j=1

nj∏
k=1

m
ykjl
jl (1−mjl)

1−ykjl

and the posterior is equal to

nj∏
j=1

nj∏
k=1

(δ
zkjl
0 )(1−ykjl)(p

zkjl
l (1− pl)(1−zkjl))ykjlm

ykjl
jl (1−mjl)

1−ykjl

(4.12)

In this case, we need to consider two cases, conditioned on zkjl = 1 we have

that ykjl = 1 a.s. and conditioned on zkjl = 0 from (4.11) we have that

P(ykjl = 1|{zkjl = 0},mjl, pl) ∝ (1− pl)mjl
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P(ykjl = 0|{zkjl = 0},mjl, pl) ∝ 1−mjl.

Therefore,

ykjl|zkjl,mjl, pl ∼

δ1 if zkjl = 1

Ber
(

(1−pl)mjl
1−plmjl

)
if zkjl = 0

4.3.4 Posterior of Z

The marginal posterior density is given by

f(Z|X,Y,p, a) ∝
∏
kji


[

1−
∏
l

(1− zkjlali)

]xkji [∏
l

(1− zkjlali)

]1−xkji
×

∏
kjl

(δ
zkjl
0 )(1−ykjl)(p

zkjl
l (1− pl)(1−zkjl))ykjl .

(4.13)

To update the latent traits, there are two cases two consider. First, if ykjl = 0

then zkjl = 0 a.s.. On the contrary if ykjl = 1 then zkjl = 1 with probability

proportional to

pl
∏
i


[

1− (1− ali)
∏
l′ 6=l

(1− zkjl′al′i)

]xkji [
(1− ali)

∏
l′ 6=l

(1− zkjl′al′i)

]1−xkji .
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Similarly, given that ykji = 1 then zkjl = 0 with probability proportional to

(1− pl)
∏
i


[

1−
∏
l′ 6=l

(1− zkjl′al′i)

]xkji [∏
l′ 6=l

(1− zkjl′al′i)

]1−xkji .

Under this inferential scheme it is possible that a slow mixing will be observed

in the MCMC. One way to address this might be by marginalising over Y in (4.10)

to update Z which yields that zkjl = 0 with probability proportional to

(1−mjlpl)
∏
i


[

1−
∏
l′ 6=l

(1− zkjl′al′i)

]xkji [∏
l′ 6=l

(1− zkjl′al′i)

]1−xkji
and zkjl = 1 with probability proportional to

plmjl

∏
i


[

1− (1− ali)
∏
l′ 6=l

(1− zkjl′al′i)

]xkji [
(1− ali)

∏
l′ 6=l

(1− zkjl′al′i)

]1−xkji .

4.3.5 Posterior of the loadings

Now that we have derived closed expressions for the rest of the variables involved

in the beta-CoRM BMF model, the only one remaining are the loadings. From

the full posterior distribution (4.9), we can see that the conditional posterior is

(up to proportionality) given by

f(a|Z,X) ∝
∏
jki


[

1−
∏
l

(1− zkjlali)

]xkji [∏
l

(1− zkjlali)

]1−xkji
×

∏
li

aα−1li (1− ali)β−1.
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Hence, for each ali we have the following expression

aα−1li (1− ali)β−1
∏
j,k


[

1−
∏
l

(1− zkjlali)

]xkji [∏
l

(1− zkjlali)

]1−xkji
∝ aα−1li (1− ali)β−1

∏
j,k

{[
1− (1− zkjlali)

∏
l′ 6=l

(1− zkjl′al′i)

]xkji
[(1− zkjlali)]1−xkji

}
.

(4.14)

The product in (4.13) can be further simplified by noting that we only need

to consider the product over the pairs (j, k) such that zkjl = 1, so that if denote

this set by Bl and similarly if we define Ci = {(j, k) : xkji = 1} then the posterior

can be written as

∝ aα−1li (1− ali)β−1
∏
j,k∈Bl

{[
1− (1− ali)

∏
l′ 6=l

(1− zkjl′al′i)

]xkji
[(1− ali)]1−xkji

}

= aα−1li (1− ali)β+|Bl|−Cl−1
∏
j,k∈Bl

[
1− (1− ali)

∏
l′ 6=l

(1− zkjl′al′i)

]xkji

= aα−1li (1− ali)β+|Bl|−Cl−1
∏

j,k∈Bl∩Ci

[
1− (1− ali)

∏
l′ 6=l

(1− zkjl′al′i)

]

∝ aα−1li (1− ali)β+|Bl|−Cl−1
∏

j,k∈Bl∩Ci

[
1 +

∏
l′ 6=l(1− zkjl′al′i)

1−
∏

l′ 6=l(1− zkjl′al′i)
ali

]
.

(4.15)

Equation (4.15) sort of resembles a hypergeometric-Gauss distribution. In

order to sample from this density we could use Metropolis-Hastings adaptive step.

However, there is another alternative worth exploring by recalling the existence

of the second layer of binary latent traits. These latent traits can be used in order
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to update the loadings by noting that

f(V|Z, a) =
d∏
j=1

nj∏
k=1

M∏
i=1

R∏
l=1

(zkjlali)
vkjil(1− zkjlali)1−vkjil

w.r.t ali∝
d∏
j=1

nj∏
k=1

(zkjlali)
vkjil(1− zkjlali)1−vkjil .

(4.16)

Hence, a close expression for the loadings can be obtained by using the set Bl

previously defined, and given by a beta distribution proportional to

f(ali|V,Z) ∝ a
α+

∑
(j,k)∈Bl

vkjil−1
li (1− ali)β+|Bl|−

∑
(j,k)∈Bl

vkjil−1,

with this approach gamma hyperpriors could be assigned to α and β and an

adaptive random walk Metropolis Hastings used to update them.

Lastly, we need to update as well the latent traits, vkjil’s. For this, we need

to recall that xkji = 0 if vkjil = 0 ∀l, hence, conditioned on xkji = 0 all the latent

traits will be zero. On the contrary, xkji = 1 ⇔
∑

l vkjil ≥ 1, hence, we can

update the variables by considering the following steps:

1. For l = 1,

P(vkji1 = 1) ∝ zkj1a1i

P(vkji1 = 0) ∝ (1− zkj1a1i)

(
1−

∏
l>1

(1− zkjlali)

)
.

2. For l = m < R, there are two cases to consider, if
∑m−1

l=1 vkjil > 0, then
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vkjim ∼ Bernoulli (zkjmalm). On the contrary,

P(vkjim = 1) ∝ zkjmami

P(vkjim = 0) ∝ (1− zkjmami)

(
1−

∏
l>m

(1− zkjlali)

)
.

3. Finally, for l = R, if
∑R−1

l=1 vkjil > 0 then vkjiR ∼ Bernoulli (zkjRaRi), and

on the contrary, vkjiR = 1 almost surely.

4.4 Predictive distribution

Just as for the beta-CoRM classification, for a new observation Y we obtain the

predictive distribution for each of the known families, and select the one with the

highest probability. In this case, we can use equation (4.2) to obtain the posterior

probabilities given by,

P(x(k+1)ji = 1|{xkji}) =

∫
P(x(k+1)ji = 1|a,m,p)f(a,m,p|{xkji})

=

∫ [
1−

∏
l

(1− alimjlpl)

]
f(a,m,p|{xkji})

= 1− Ea·i,mj·p·

[∏
l

(1− alimjlpl)

]
,

(4.17)

which can be approximated using a Monte Carlo estimator with T samples from

the posterior distribution by

P(x(k+1)ji = 1|{xkji}) ≈ 1− 1

T

T∑
t=1

[∏
l

(
1− a(t)li m

(t)
jl p

(t)
l

)]
,
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and,

P(x(k+1)ji = 0|{xkji}) ≈
1

T

T∑
t=1

[∏
l

(
1− a(t)li m

(t)
jl p

(t)
l

)]
.

4.5 Synthetic data

In this section we present and discuss some illustrations and results of the beta-

CoRM BMF model on a synthetic data set comprised of three groups with ten

observations each, which has been sampled from the generative process described

in Section 4.1 using as parameters (γ, c, R, a, α, β) = (2, 1, 5, 1, .1, .1). This partic-

ular choice of parameters will be discussed further. Meanwhile, in Figure 4.8a and

Figure 4.8b the latent traits and the loadings are displayed, while in Figure 4.2

the resulting binary matrix is illustrated.

(a) Latent traits. (b) Loadings.

Figure 4.1: The latent traits and the loadings generated by the beta-CoRM BMF
generative process with parameters (γ, c, R, a, α, β) = (2, 1, 5, 1, .1, .1).
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Figure 4.2: Synthetic data generated by the beta-CoRM BMF generative process
with parameters (γ, c, R, a, α, β) = (2, 1, 5, 1, .1, .1).

The particular choice of α = β = .1 allows us to have the loadings either close

to one or to zero, making some of the latent traits predominant which has a clear

impact on the data. For the posterior inference we consider for each parameter

a, α, β, γ, c a weekly informative prior given by a gamma (.001, .001) distribution.

This yields the following conditional densities

f(c|γ,p) ∝ c.001−1

B(c, γ)R
exp

[
−c

(
.001− γ

R

R∑
l=1

log(pl)−
(

1− γ

R

) R∑
l=1

log(1− pl)

)]

f(γ|c,p) ∝ γ.001−1

B(c, γ)R
exp

[
−γ

(
.001− c

R

R∑
l=1

log

(
pl

1− pl

))]

f(a|M) ∝ aRd+.001−1 exp

[
−a

(
.001−

∑
l,j

log(mjl)

)]

f(α|β,A) ∝ α.001−1

B(α, β)RM
exp

[
−α

(
.001−

∑
l,i

log(ali)

)]
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f(β|α,A) ∝ β.001−1

B(α, β)RM
exp

[
−β

(
.001−

∑
l,i

log(1− ali)

)]
.

From these conditional densities it is straightforward to see that the score

parameter a has a gamma posterior distribution, while the rest of the hyperpa-

rameters require an adaptive Metropolis-Hastings algorithm on their respective

log. To start the sampler we fix all the hyperparameters to 1 and then we ini-

tialise the matrix of latent traits to a random binary matrix. To discover the

true values and to help the mixing of the chain, we run 120,000 simulations from

which half of them correspond to the burning period. The remaining 60,000 are

then thinned using a lag of 15, yielding an effective sample size of 4000. The

thinned dynamics of the parameters and the initial and the last matrix of latent

traits are respectively displayed from Figure 4.3 to Figure 4.8.

Figure 4.3: Posterior samples of c. The horizontal red line represents the mean.
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Figure 4.4: Posterior samples of γ. The horizontal red line represents the mean.

Figure 4.5: Posterior samples of a. The horizontal red line represents the mean.
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Figure 4.6: Posterior samples of α. The horizontal red line represents the mean.

Figure 4.7: Posterior samples of β. The horizontal red line represents the mean.
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(a) Initial latent traits. (b) Posterior latent traits.

Figure 4.8: Evolution of the dynamics of the binary matrix of latent traits Z.

Interesting conclusions can be derived from this example. First, it is clear

that we are able to discover the true underlying latent traits. In this direction

it is compelling to notice that they do not appear in the original order; however,

due to the exchangeability framework this does not represent an issue. Secondly,

we can also appreciate that the model is able to recover close estimates of the real

values for most of the parameters, with the exception of a and c which still have

journeys far from their original values. Interestingly, these are two characteristics

that we have constantly observed in the multiple MCMC runs tried so far without

regard of the initial values and the total number of simulations.

A second attractive approach to the beta-CoRM BMF is by letting, just as for

the generalised beta-CoRM, each latent trait ωl to have a unique score parameter

al with common gamma(κ, ψ) prior distribution. It is straightforward to see that

each al has a posterior gamma distribution with parameters (d + .001, .001 −∑
j log(mjl)). And as previously mentioned, by giving gamma(.001,.001) priors

to κ and ψ we have a conjugate model on ψ, whereas for κ an adaptive Metropolis-

Hastings step could be used on its logarithmic transformation. This is something

that we explore on the following section on a real malware data set.
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4.6 Malware data set

In this section we present a preliminary analysis of the beta-CoRM BMF on a real

malware data set. Due to the computational cost of this model, we have decided

to start with a smaller subset compared to the beta-CoRM models described in

Chapter 3 and Chapter 4. In this case we are using a balanced data set composed

of 270 malware divided into the nine families considered previously and for which

335 unique 4-grams have been extracted. The graphical representation of the

data can be seen in Figure 4.9. We can again appreciate how some of the families

have a well-defined structure that allows us to differentiate them. However, it

is also true that there are other families that seem to have a strong overlapping

in their observations. Therefore, making this data set particularly interesting for

the beta-CoRM BMF model to try to discover some underlying structure.

Figure 4.9: Graphical representation of the malware data composed of 270 ob-
servations and 335 features divided evenly into nine families separated by the red
lines.
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Due to the significant increment on the number of observations and features,

we have found that the computational cost increases drastically. This is due to

the large number of parameters and auxiliary variables that need to be sampled at

each round. That is why we decided to use 5,000 iterations as our burning period

and 7,500 samples from the posterior with a thinning of 15, yielding an effective

sample size of 500 observations. At this point and now that we have introduced all

the models considered in this thesis, that is, beta-CoRM, generalised beta-CoRM

and the beta-CoRM BMF we believe it is an interesting exercise to demonstrate

the increase on the computational cost. In Table 4.1 we present the time required

for each of the three models to obtain a sample of the posterior inference using

the MCMC specifications just described for the small malware data set illustrated

in Figure 4.9.

beta-CoRM generalised beta-CoRM beta-CoRM BMF
Time 20 sec 40 sec 3600 sec

Table 4.1: Comparison of the time (in seconds) required for the beta-CoRM, gen-
eralised beta-CoRM and beta-CoRM BMF MCMC algorithms to obtain 12,500
rounds of simulations using the small malware data set (Figure 4.9).

It is clear from Table 4.1 the significant increase of the computation cost

required for the beta-CoRM BMF model to obtain a sample from the posterior

distribution. That is why until now we have only considered applying the beta-

CoRM BMF model to the small malware data set. However, a final interesting

comparison between the beta-CoRM and the generalised beta-CoRM can be made

since both of them were applied to the complete malware data set illustrated in

Figure 2.7. In this direction, the reader can appreciate in Table 4.2 the time

required for these two models to obtain a posterior sample by running the MCMC

algorithms for a total of 60,000 simulations.
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beta-CoRM generalised beta-CoRM
Time 400 sec 950 sec

Table 4.2: Comparison of the time (in seconds) required for the beta-CoRM
and the generalised beta-CoRM MCMC algorithms to obtain 60,000 rounds of
simulations using the complete malware data set (Figure 2.7).

Turning back our attention to the results of the beta-CoRM BMF, we refer the

reader to Figure 4.10 where the inferred latent traits and the estimated loadings

are displayed.

(a) Latent traits. (b) Loadings.

Figure 4.10: The inferred latent traits and loadings for the malware data set
described in Figure 4.9.

Interesting remarks can be made from Figure 4.10a. For example, we can

appreciate how only one latent trait is present in the third family, on the other

hand, the second family contains all but one of the latent traits. We can further

appreciate, how observations in dense families such as the first and the last one

also share most of the latent traits. Although, in the first family it is clear that

one of the latent traits is always present. Furthermore, in Figure 4.11 we display

the posterior estimates of the directing weights as well as the perturbations at a

group level.
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(a) Posterior estimates of the beta process’
jumps.

(b) Posterior estimates of the groups’ prob-
abilities.

Figure 4.11: The posterior estimates of the weights of the directing beta process
and the perturbed weights at a group level for the malware data set described in
Figure 4.9.

A final interesting remark is that the posterior estimates of the score parame-

ters âl for all the latent traits are quite similar to each other. Hence, and following

the ideas described in Chapter 4, we could argue that the five latent traits con-

sidered are equally important, and in order to appreciate a significant difference,

we should consider the presence of more latent traits. The posterior estimates of

the score parameters are displayed in Table 4.3.

â1 â2 â3 â4 â5
Posterior estimate .9308 .9254 .9233 .9363 .9281

Table 4.3: Posterior mean of the score parameters for the five latent traits con-
sidered in the beta-CoRM BMF model.

4.7 Concluding remarks

The beta-CoRM BMF is an interesting and novel approach to binary latent fac-

tor models. However, it is clear that there is still work to de carried out in this

direction before completely applying this methodology for classification purposes.
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From a theoretical point of view, there are several points we need to study more

carefully. For example, there is a need to deeply analyse the effect of the pa-

rameters and the latent traits in the covariance structure described in equation

(4.3). Also, there is a need to perform a truncation error analysis to throughly

understand the impact of the truncation process made on the the directing beta

process. This is something particularly interesting since it will allow us to deter-

mine the optimum number of latent traits to consider for the simulations and the

posterior inference. Of course, we acknowledge, as explained in Section 4.1, that

there exist alternatives to deal with the infinite representation of the beta process.

In particular, we found attractive the idea of splitting the full conditional into a

finite and an infinite part since it would allow us to consider a random number

of latent traits and hence, no truncation process would be required.

As for the computational part, we need to have a deeper look into the MCMC

procedure due to the heavy computational cost of the sampler. In this direction

it could be particularly interesting to use directly the posterior distribution of the

loadings described in equation (4.14), rather than using the second set of latent

traits {vkjil}. This is something that would dramatically reduce the number of

variables to sample at each round, and with it a faster mixing could probably

be achieved. Also there is a need to study other prior distributions for the mass

and the concentration parameter. In practice the gamma distribution has been

considered when the stick-breaking representation of the beta process is used

due to its conjugacy. However, in our modelling, this conjugacy is not present,

and hence, we could perhaps consider a different prior. In this direction another

possibility would be to find optimal values for c and γ using a similar procedure

as in Chapter 2 where optimal values of a and c were found by leveraging on the

classification performance of the model.
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Chapter 5

Future work

The Bayesian methods developed in this thesis are an attractive approach to dis-

crimination tasks. We have found them to be particularly useful for supervised

learning in situations where groups do not have a strong overlapping. However,

we have also identified future areas of research with respect the beta-CoRM mod-

els presented in Chapters 2, 3 and 4. That is why in this chapter we present the

future work we intend to realise to improving the beta-CoRM’s theory and ap-

plicability to other cyber security detection problems. In this chapter, we also

discuss a second Bayesian nonparametric factorial approach for the binary data

that uses the Indian buffet process (IBP) as a prior. Finally, we also explore a

second approach to malware detection that relies on the number of times a feature

appears and what we think would be two interesting approaches to modelling this

data.
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5.1 Beta-CoRM models

For the beta-CoRM models there are several lines of future work that we are

aiming to tackle in the forthcoming months. As we can recall from Chapters 2

and 3, the construction of the discrete beta-CoRM is based on the underlying

theory of compound random measures (Griffin and Leisen, 2017). This approach

is suitable for supervised learning and hence for discrimination tasks. However,

there are still some interesting challenges that we would like to discuss and keep

studying.

First of all, we are aiming to discuss more in depth the prior sensitive analysis.

This is an important theoretical aspect that could provide insightful information

on this stochastic process and hence on its modelling capabilities. This is par-

ticularly interesting due to the fact that we have used a discrete base measure;

however, as seen in Chapter 4, this can be easily extended to consider a continu-

ous measure instead. With this in mind, and using suitable inferential techniques,

we would allow the discovery of new unobserved features. For a static approach

to malware analysis, this would be particularly interesting due to the increasing

number of malware in the wild, especially of obfuscated malware where normal

code has been injected to avoid detection.

The second line of future research for the beta-CoRM model is to extend it to

other class of cyber attacks, especially for the ones that rely on binary features

like the n-grams. In this direction, it would be particularly attractive to use this

Bayesian approach to n-gram profiles to detect masquerade attacks. In this kind

of attacks, a person or computer uses a fake identity to gain unauthorised access

to sensitive information using legitimate usernames and credentials. In practice,

these attacks can be carried out through the means of a UNIX command line, then
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the idea is to detect anomalies by comparing the commands that are being used

to past normal behaviour. In order to detect intrusion detection at a command

line, one could rely on the frequency of the commands, the transitions among

them or through n-gram profiles like in Geng et al. (2011).

5.2 A Bayesian latent logistic model with binary

predictors

In statistics, logistic regression analysis is used to model the probability of an

event occurring that depends on a set of independent variables, also known as

predictors and henceforth denoted by Z = {zij}i,j. Depending on the application,

these predictors can be continuous, discrete or a mix of both. However, for

our purposes we centre our attention on pure binary predictors, which indicate

whether the i-th observation has the j-th characteristic. In medical studies, this is

particularly useful for modelling the probability of an individual having (or being

prone) to a disease depending on the gender, on underlying health conditions (e.g.,

heart disease, diabetes, etc.) among other binary characteristics. The dichotomic

nature of the response variable and the predictors makes the logistic approach

an ideal model for malware detection using n-grams. However, from Chapter 2

we can recall that the logistic regression model had some limitations with a real

malware detection data set due to some predictors having null variation.

Fortunately, for the detection and classification of malware, the logistic re-

gression can be used to model the probability of an observation having or not

an n-gram. This can be achieved by using as predictors, Z, a set of K latent

variables that can be either continuous or discrete. A particularly interesting

approach is to consider binary latent variables which can then be used to model
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the probability of a vector of responses {xi}Ni=1 through the equation

P(xi = 1|Z, w) =
exp(ziw

T )

1 + exp (ziwT )
,

(5.1)

where w = {wi}Ki=1 is a vector of parameters that characterises the latent factors.

In some applications the number of K latent features is fixed and finite; how-

ever, from a Bayesian nonparametric approach it is usually assumed that the

number of latent features is unbounded. This assumption yields a binary matrix

Z with N rows and an infinite number of columns. In order to define a prior for

this infinite-dimensional object, we will rely on the Indian buffet process since it

will allow us to develop a collapsed Gibbs sampling for the posterior inference

like in Ghahramani and Griffiths (2006).

5.2.1 The finite model

In order to define a Bayesian nonparametric approach that uses the IBP as a prior

on Z for a logistic regression model, we first define a finite version of it. Hence,

we assume that each object possesses the feature k with probability pk and that

it is independent from other features. This yields the following distribution on

binary matrices

f(Z|p) =
K∏
k=1

pmkk (1− pk)N−mk ,

(5.2)

where mk is the number of observations having the k-th feature, that is mk =∑N
i=1 zik. We further assume a beta prior on p, that in the first formulation of
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the IBP is defined to be

pk ∼ beta
( α
K
, 1
)
,

where α is the mass parameter of the underlying beta process. This beta prior

allows us to integrate out the vector of probabilities p in (5.2) so that

P(zik = 1|Z−(ik)) =
m−ik + α

K

N + α
K

,

(5.3)

where m−ik are the set of observations having the k-th feature, without taking

into account the i-th observation. In the infinite dimensional case this expression

can be further simplified to P(zik = 1|Z−(ik)) = m−ik
N

.

Bayesian inference on the logistic model can not be performed directly. How-

ever, a Polya-gamma augmentation technique can be used in order to have fast

inference (Polson et al., 2013). This method allows us to express the likelihood

of a single response (5.1) as

f(xi|Z, w, θi) = 2−1 exp

[(
xi −

1

2
ziw

T

)]
exp

[
−θi

(ziw
T )2

2

]
,

(5.4)

where θi is a Polya-gamma (1,0) random variable. Hence, the complete likelihood

is given by

f(X|Z, w, θ) =
N∏
i=1

2−1 exp

[(
xi −

1

2
ziw

T

)]
exp

[
−θi

(ziw
T )2

2

]
.

(5.5)
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Equation (5.5) allows us to choose a conjugate model for w by choosing a

multivariate Gaussian distribution with mean vector µ and covariance matrix Σ.

This will be particularly useful if the IBP is used as a prior in order to derive a

collapsed Gibbs sampling procedure.

The posterior distributions for θ and w can be derived using some of the key

properties of the Polya-gamma augmentation technique, yielding,

θi|w,Z,X ∼ PG(1, ziw
T )

w|θ,Z,X ∼ N(Σ1µ1,Σ1),

(5.6)

where Σ1 = (ZTΘZ + Σ−1)−1, µ1 = Σ1(Z
Tκ + Σ−1µ), Θ = diag(θ1, ..., θN) and

κ = {κi}i = {xi−1/2}i. As we discuss in the following subsection, for the infinite

dimensional case it will be useful for computational purposes to set µ = 0 and

Σ = σI.

In order to update Z we notice that due to the conjugacy we are able to

integrate out the parameters w and with this in mind we have the following

posterior probability (up to proportionality)

P(zik = 1|X,Z−(ik), θ) ∝
(
m−ik + α

K

N + α
K

)
P(X|Z, θ),

where

P(X|Z, θ) =

∫
P(X|Z, θ, w)f(w)dw

=

∫ ( N∏
i=1

2−1 exp

[(
xi −

1

2

)
ziw

T

]
exp

[
−θi

(ziw
T )2

2

])

× 1

(2π)K/2σK/2
exp

[
−1

2
(wT (σI)−1w

]
dw
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=

∫
exp

[
−θi

2

(
ziw

T −
(xi − 1

2
)

θi

)2
]

exp

[
−1

2
wT (σI)−1w

]
dw

×

∏N
i=1 exp

[
(xi− 1

2
)2

2θi

]
2N(2π)K/2σK/2

=

∫
exp

[
−1

2
[(y − Zw)TΘ−1(y − Zw) + wT (σI)−1w]

]
dw

×

∏N
i=1 exp

[
(xi− 1

2
)2

2θi

]
2N(2π)K/2σK/2

,

(5.7)

with y = {yi} = {(xi − 1
2
)θi}i. The term inside the exponential in (5.7) can be

further written as

(y − Zw)TΘ−1(y − Zw) + wT (σI)−1w

= wT (ZTΘ−1Z + (σI)−1)w − 2wT (ZΘ−1y) + yTΘ−1y

= wTΣ−11 w − 2µT1w + yTΘ−1y

= (w − Σ1µ1)
TΣ−11 (w − Σ1µ1)− µT1 Σ1µ1 + yTΘ−1y,

where Σ1 = (ZTΘ−1Z + (σI)−1)−1 and µ1 = ZTκ. Hence (5.7) can be finally

expressed as

P(X|Z, θ) =
|Σ1|1/2

∏N
i=1 exp

[
(xi− 1

2
)2

2θi

]
2NσK/2

exp

[
1

2
µT1 Σ1µ1 −

1

2
yTΘ−1y

]
×

∫
1

(2π)K/2|Σ1|1/2
exp

[
−1

2
(w − Σ1µ1)

TΣ−11 (w − Σ1µ1)

]
dw

=
|(ZTΘ−1Z + (σI)−1)|−1/2

2NσK/2

N∏
i=1

exp

[
(xi − 1

2
)2

2θi

]
exp

[
−1

2
yTΘ−1y

]
× exp

[
1

2
κTZ(ZTΘ−1Z + (σI)−1)−1ZTκ

]
.

(5.8)
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5.2.2 The infinite model

If we want to analyse what happens when K →∞ we need to show that (5.8) is

well defined. In expression (5.8) Z appears two times and we can analyse them

separately. In order to do so, we shall write K = [K+, K0] where K+ represents

the features for which mk > 0 and K0 the features for which mk = 0. This allows

us to write Z = [Z+,Z0] where Z0 has zeros in all the entries. Therefore,

|(ZTΘ−1Z + (σI)−1)|1/2

=

∣∣∣∣∣∣
 ZT

+

ZT
0

Θ−1
(

Z+ Z0

)
+

 σ−1IK+ 0

0 σ−1IK0

∣∣∣∣∣∣
1/2

=

∣∣∣∣∣∣
 ZT

+Θ−1Z+ + σ−1IK+ 0

0 σ−1IK0

∣∣∣∣∣∣
1/2

= |(ZT
+Θ−1Z+ + σ−1IK+)|1/2σ−K0/2.

(5.9)

The appearance of σ−K0/2 in (5.9) will not be a problem since this expres-

sion is multiplied by σK/2 = σK+/2σK0/2 and hence canceled out leaving only an

expression depending on the number of used features K+.

The second part in (5.8) that we need to analyse is Z(ZTΘ−1Z + σ−1I)−1ZT .

This expression can be easily simplified due to the large number of zeros present

as

Z(ZTΘ−1Z + σ−1I)−1ZT

=
(

Z+ Z0

) ZT
+Θ−1Z+ + σ−1IK+ 0

0 σ−1IK0

−1 ZT
+

Z0


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=
(

Z+ Z0

) (ZT
+Θ−1Z+ + σ−1IK+)−1 0

0 (σ−1IK0)
−1

 ZT
+

Z0


= Z+(ZT

+Θ−1Z+ + σ−1IK+)−1ZT
+.

(5.10)

Finally we can note that

N∏
i=1

exp

[
(xi − 1

2
)2

2θi

]
= exp

[
1

2
κTΘ−1κ

]

and

exp

[
−1

2
yTΘ−1y

]
= exp

[
−1

2
κTΘκ

]
.

(5.11)

Therefore, using (5.9), (5.10) and (5.11) we obtain that the P(X|Z, θ) is equal

to

1

2NσK+/2|(ZT
+Θ−1Z+ + σ−1IK+)|1/2

exp

[
1

2
κTΘ−1κ

]
exp

[
−1

2
κTΘκ

]
× exp

[
1

2
κTZ+(ZT

+Θ−1Z + σ−1IK+)−1ZT
+κ

]
=

exp
[
1
2
κT [Θ−1 −Θ + Z+(ZT

+Θ−1Z+ + σ−1IK+)−1ZT
+]κ
]

2NσK+/2|(ZT
+Θ−1Z+ + σ−1IK+)|1/2

,

(5.12)

and hence,
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P(zik = 1|X,Z−(ik), θ)

∝
(m−ik

N

) exp
[
1
2
κT [Θ−1 −Θ + Z+(ZT

+Θ−1Z+ + σ−1IK+)−1ZT
+]κ
]

2NσK+/2|(ZT
+Θ−1Z+ + σ−1IK+)|1/2

.

(5.13)

Finally, in the infinite dimensional case we also need to consider adding k

new features when updating the corresponding set of latent variables for each

observation. This is done with probability proportional to

P(k) ∝ Pois
(
k;
α

N

)
P(X|Znew, θ),

(5.14)

where Znew has k new columns in the i-th row all of them equal to 1. For these k

new features we also need to consider sampling values from the prior since they

will be required to update each θi. Hence, the following Gibbs sampling algorithm

can be used for the posterior inference.

1. Initialise θi, w and Z.

2. At step n,

(a) sample θ
(n)
i ∼ PG(1, z

(n−1)
i (w(n−1))T ),

(b) sample w(n) ∼ N(Σ1µ1,Σ1)

(c) update Z by sampling each entry using equation (5.13) and add new

features through (5.14).
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This procedure can be easily applied to other likelihoods, for example if we

consider Xi to be a vector of M independent binary responses, i.e.,

P(Xi|Z, w) =
M∏
j=1

(
exp(ziw

T )

1 + exp (ziwT )

)xij ( 1

1 + exp(ziwT )

)1−xij

=
exp(ziw

T )ni

(1 + exp(ziwT )M
,

then we can apply the Polya-gamma augmentation technique with Polya-gamma

random variables of parameters (M, 0) and with κi = ni −M/2. This likelihood

would be certainly useful for the malware analysis through n-grams since each

malware is completely characterised by the M binary features.

5.3 An n-grams counts approach to malware anal-

ysis

Throughout this thesis we have explored novel supervised Bayesian methodologies

for binary data with specific applications to malware detection and classification

through feature-engineered n-grams. With these probabilistic approaches, inter-

esting results have been obtained regarding not only the classification task but

also on the generative process of the data and the importance of the features

across and within families. Moreover, further research opportunities in this di-

rection have been gently described in the previous sections of this chapter. How-

ever, we would also like to describe another possibility on the analysis of malware,

where the interest relies not only on whether a feature is present or not, but on

the number of times it appears.
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One of the main motivations of this counting approach is to overcome the over-

lapping present for some families while considering binary factors (Figure 2.7).

In order to appreciate this more clearly, the reader can refer to Figure 5.1,

where the presence intensity of each feature across families is displayed, that

is, log10(Xij + 1). This transformation is required since it would be impossible to

appreciate the differences among families by directly plotting the counts due to

the presence of features with a large count value.

Figure 5.1: Intensity of each feature calculated as log10(Xij + 1) across each of
the nine families of malware separated by the red lines.

Looking at the intensities, it is clear that the overlapping among families

might be diminished and hence, there is a real possibility of designing a super-

vised learning model with improved classification accuracy. In order to model

the counts, there is a need to deal with the features that have a large count.

One straightforward possibility is to introduce a truncation process. This is cer-

tainly feasible since the number of features having a large count represent a small
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proportion of the data. For example, for the data illustrated in Figure 5.1 only

4.689% of the entries are greater than 10, hence, we could consider truncating

the data at this value. The results of this truncation process are displayed in

Figure 5.2.

Figure 5.2: Matrix of truncated counts (at 10) across each of the nine families of
malware separated by the red lines.

Looking at Figure 5.2, we can appreciate that overlapping seems to be dimin-

ished. Therefore, taking into account the number of times the feature appears

might be a sensible choice to differentiate among the different families of mal-

ware. In order to develop a probabilistic model for this counts data, a natural

first approach would be to consider a Poisson model with gamma parameters.

In order to assess this assumption we can first obtain the index of dispersion for

each feature across family as displayed in Figure 5.3.
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Figure 5.3: Index of dispersion for each feature across families.

If the Poisson distribution were to fit the data, the index should be close

to 1, something that is clearly not happening except for families 3 and 5. The

overdispersion found in the rest of the families can be easily explained by both the

large number of zeros and the truncation procedure applied to the data. Hence,

to properly model this data, one possibility would be to consider a mixture model

that would allows us to capture both the zero-inflated part and the heavy tail part,

as we further discuss in Section 5.3.1. Otherwise, we could follow a more direct

approach by considering a categorical distribution on the data, as we further

discuss in Section 5.3.2.
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5.3.1 A zero-inflated truncated Poisson model

In statistics, overdispersion is usually thought as the presence of higher variability

on the data than the one expected once a model has be assumed. In count

data, overdispersion is usually concerned when we observe a higher amount of

zeros compared to the non-zero ones. In order to model this kind of behaviour

a whole theory on zero-inflated discrete distributions has been developed, the

reader could refer to Lambert (1992), Ridout et al. (1998), Rodrigues (2003) and

Ghosh et al. (2006) for an account on both frequentist and Bayesian approaches

to zero-inflated distributions and their use in regression models. It is without a

doubt interesting to notice that these discrete distributions are usually written

as V (1−B) where B is a Bernoulli random variable and V is a counting random

variable such as Poisson, geometric or any other power series distribution.

These distributions have been certainly useful in order to model one-sided

overdispersion; however, in other applications such as the malware count data,

where a truncation process was performed, we would also need to consider overdis-

persion appearing in the tails of the distribution. To deal with this situation, we

could consider a truncated version of a zero-inflated distribution. For the pur-

poses of this section we restrict our attention to the Poisson assumption, and

discuss a general Bayesian framework for the inferential process.

Henceforward, whenever we mention a truncated Poisson distribution (TPD)

we are going to be referring to the upper tail truncation, that is, a discrete

probability distribution on {0, ..., n} where n is the level of the truncation, and
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with probability mass function given by

P(X = x) =


θxe−θ

x!
if x ∈ {0, ..., n− 1}

e−θ
∑∞

x=n
θx

x!
if x = n.

Using this truncation process on a zero-inflated distribution should allow us

to capture the behaviour observed in the malware count data set. In particular,

for a zero-inflated Poisson distribution we obtain the following probability mass

function

P(X = 0|θ) = p+ (1− p)e−θ

P(X = k|θ) =
(1− p)e−θθk

k!
k ∈ {1, 2, ..., n− 1}

P(X = n|θ) = (1− p)

(
e−θ

∞∑
l=n

θl

l!

)
,

where p is the probability of B = 0 and whenever p→ 0 we recover the truncated

Poisson distribution. Now, considering a vector X = {X1, ..., XN} of counts and

letting Ki =
∑n

i 1(Xi = i) be the number of observations equal to i the likelihood

can be written as:

(p+ (1− p)e−θ)K0

(
n−1∏
l=1

((1− p)e−θθl)Kl

)(
(1− p)e−θ

∞∑
l=n

θl

l!

)Kn

.

In order to deal with this likelihood the data augmentation technique de-

scribed in Rodrigues (2003) could be considered. In this approach, we let X to
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be a random variable with distribution given by

P(X = x|θ, n) =

δ
x
0 if θ = 0

TPD(x; θ, n) if θ > 0,

and in order to have a zero-inflated model we let a discrete mixing distribution on

θ so that P(θ = 0) = p and P(θ > 0) = 1− p which yields the following mixture

model

p(x|θ, n) = pδx0 + (1− p)TPD(x; θ, n).

Finally, we let Ki to be defined as previously and for each observation we

consider an indicator latent variable, Ii, telling us whether the respective ob-

servation comes from the degenerate distribution or from the truncated Poisson

distribution, i.e.,

Ii =

1 with probability q(θ, p) = p
p+(1−p)e−θ

0 with probability 1− q(θ, p).

Taking all of this into consideration and letting S =
∑
Ii ∼ bin(K0, q(θ, p)),

the augmented likelihood can be finally written (up to proportionality) as

pS(1− p)N−Se−θ(N−S)θ
∑n−1
i=1 iK

i

(
∞∑
l=n

θl

l!

)Kn

.

(5.15)
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From equation (5.15) we can directly observe that a beta prior on p could be

used in order to have a conjugate model. As for θ we could be inclined to use

a gamma prior; however, a Metropolis-Hastings step needs to be considered due

to the last term of the product involving the infinite sum. The Gibbs sampling

procedure would require updating S from the binomial distribution and then

update p and θ.

As for the malware counts data set with a truncation at 10 counts, we could

assume independence across features and use a truncated zero-inflated Poisson

distribution on each of them. Hence, and following the notation of the beta-CoRM

models, we could define the following hierarchical model

B0 =
∑
i

qiδωi

B =
∑
i

piδωi pi ∼ beta(cqi, c(1− qi))

Bj =
∑
i

mijpiδωi mij ∼ gamma(a, b)

Xkj =
∑
i

zikjδωi ,

with

P(Zikj = 0) = (1− pi) + pie
−mij

P(Zikj = n) =
pie
−mijmn

ij

n!
n ∈ {1, 2, ..., 9}

P(Zikj = 10) = pie
−mij

∞∑
l=10

ml
ij

l!
.
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5.3.2 Multivariate gamma-categorical model

For the multivariate gamma-categorical approach, we follow the same principles

of the beta-CoRM models by defining a global random measure that is modified

at a group level through a score distribution. In this case, however, the beta

process cannot longer be used and we centre our attention on gamma-distributed

random variables instead. In this approach we further assume that the counts

have been truncated at a predefined level N and the objective is to create a profile

for each family on the number of times a feature can appear. At this point we

assume that the features are independent and identically distributed and in order

to have sharing of information we define the following hierarchical model on each

of the M features

pi ∼ gamma(α, β) i ∈ {0, ..., N}

mji ∼ gamma(a, b) j ∈ {1, ..., d}

xkji ∼ categorical

(
{0, ..., 10},

{
pimji∑
s psmjs

}
i

)
k ∈ {1, ..., nj}.

In this case it is interesting to remark that a normalisation of the random

measure is required in order to obtain a probability measure. With this model

the complete likelihood is given by

P(X|m,p) =
d∏
j=1

N∏
i=0

(
pimji∑
s psmjs

)Nji
,

where Nji is the number of times that the i-th possible value appears in the

j-the group. In order to deal with the normalising constant we can condition

the likelihood to a set of latent variables tj that are gamma distributed with
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parameters (Nj·,
∑

s psmjs) in such way that

P(X|m,p, t) =
d∏
j=1

N∏
i=0

t
(Nji−1)
ji

Γ(Nji)
exp

(
−tji

N∑
s=0

psmjs

)
(pimji)

Nji

=
d∏
j=1

N∏
i=0

p
Nji
i m

Nji
ji

t
(Nji−1)
ji

Γ(Nji)

N∏
s=0

exp (−tjipsmjs) .

(5.16)

Using equation (5.16) we are now able to provide closed expressions for the

conditional posterior distributions, since we can identify gamma kernels for the

parameters and hence a conjugate model for the pi’s and the scores mji’s, that

is,

pi|t,m ∼ gamma

(
α +

d∑
j+1

Nji, β +
d∑
j=1

tjimji

)

mji|p, t ∼ gamma (a+Nji, b+ tjipi) .

Therefore, a straightforward Gibbs sampling procedure can be used for the

inferential procedure. As for the hyperparameters gamma priors could be assigned

to each one of them an an adaptive Metropolis-Hastings step could be used in

order to update them, just as we did for the beta-CoRM models.
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Chapter 6

Conclusions

In a highly connected world, cyber security has become an imperative concern for

everyone. Nowadays, no one is completely safe of cyber criminals and new mea-

sures need to be taken since traditional detection methods can be overwhelmed

due to the increasing number of unknown threats. That is why, statistical and

mathematical methods applied to cyber security have become widely popular

from a research point of view. In particular, we have observed that there is a

large number of approaches based on classical and machine learning methods,

and on recent years, there has been an increasing interest on Bayesian models.

However, this framework is still not as deeply explored as the other approaches

and it is clear that Bayesian statistics offers a wide range of models that are

attractive for cyber security research.

In this work we have identified three main cyber security areas, volume traffic

anomalies, network anomalies and malware detection and classification, where

Bayesian models, both parametric and nonparametric, have been successfully

used. In all three areas, we are (mainly) interested in modelling and statistically
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characterising the patterns of normal behaviour so that large departures can be

flagged as anomalies. These anomalies can occur at a traffic level for which a

change-point detection framework is ideal. They can also occur at the network

level where connections and authentication can be characterised as either a bi-

partite graph or through the so-called network flows. Finally, the third area

discussed was the detection and classification of malware. From a Bayesian per-

spective, most of the research has been focused on the first two areas. That is why,

we have centred our attention to the task of correctly detecting and classifying

malware.

Detecting and classifying malware is a crucial part of cyber security, especially

now more than ever, due to the increasing number of unknown threats or slight

modifications of known ones. To detect malware, there are two main approaches

that have been studied: a static analysis or a dynamic one. In the first one we are

interested in binary features extracted from the hexadecimal representation of the

binary code, whereas in the second one we are interested in the set of instructions.

Clearly both approaches have their advantages and disadvantages, however, both

of them are important for a thorough understanding of the malware’s character-

istics. From a Bayesian perspective we found that the static approach had not

been fully considered, and that is why we centred our attention on developing

Bayesian models for detecting and classifying malware.

As we have already established, the static approach considers binary features

built from the hexadecimal representation of the binary code, that completely

characterise each malware. Under this approach, several challenges in terms of

the dimensionality of the data arise, more specifically, even for small data sets,

the number of binary features can easily reach billions. Therefore, most method-

ologies require a feature selection process before and/or during the inferential

process. Once this process has taken place, the data can be represented as a
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labelled binary matrix suitable for a supervised learning model. In practice, deci-

sion tree and its boosted versions have been widely used due to its high accuracy.

However, discriminative models like these ones, do not provide a probabilistic

characterisation of the data, which is quite important for a thorough analysis.

In this thesis we have proposed a novel methodology for supervised learning

on binary data. Through an elegant approach based on compound random mea-

sure we have settled the foundations for a new class of bayesian nonparametric

models. The flexibility exhibited by these mathematical objects has allowed us

to provide an effective approach to discrimination and classification tasks. More-

over, a feature selection process has also been introduced as part of the inferential

process, and we have extended the methodology to a latent factor model. The

proposed beta-CoRM approach is certainly quite interesting and we believe it has

the potential to be used on a wide range of cyber security problems and even in

other areas like text classification.

Of course, there are still some theoretical and practical challenges that need

to be fully addressed. In particular, for the beta-CoRM BMF which we are keen

on keep studying the covariance structure, the impact of the parameters, and

other theoretical issues regarding the truncation process. From a computational

point of view, there is a need to keep developing efficient and faster inferential

methodologies. This is crucial due to the large number of observations and fea-

tures that can be used. In this direction there are a lot of options that could

be considered, such as, variational methods, collapsed or accelerated samplers

and embarrassingly parallel solutions. All of these are exciting ideas; however,

we need to keep in mind their limitations and their applicability to the proposed

models.
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At this point, we would also like to remark that the task of detecting and

classifying malware from a static perspective offers a wide range of modelling

possibilities. First of all, if we consider binary features, there are other Bayesian

approaches that could be used, for example, in a nonparametric setting the Indian

buffet process has been widely used for unsupervised learning. This is something

that we have started considering as we showed in our future lines of work. How-

ever, the binary approach is not the only one we could be interested in. The large

overlapping seen in these classes might be diminished by considering the num-

ber of times a feature appears (or a suitable transformation, like its logarithm).

This idea opens a whole new world of modelling possibilities and both theoretical

and computational challenges, and it is something that we have also started to

consider and that we believe to be a compelling approach as well.

Finally, and as our last remark, we would like to emphasise that to be well-

protected and prepared against cyber criminals, there is a need to keep developing

new anomaly detection methodologies. Throughout history, we have seen how cy-

ber attacks have been designed to avoid detection, for example, there are already

variations of malware able to detect if they are running in a sandbox environ-

ment, once they are aware of this they can shut down or start producing what we

could consider normal patterns of instructions. Cybercrime is a billionaire indus-

try that in many occasions seems to be ahead of us, that is why, cyber security

research is more important than ever.
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