
Identifying A Unifying Mechanism for the
Implementation of Concurrency Abstractions on

Multi-Language Virtual Machines

Stefan Marr and Theo D’Hondt

Software Languages Lab, Vrije Universiteit Brussel
Pleinlaan 2, 1050 Elsene, Belgium

{stefan.marr, tjdhondt}@vub.ac.be

Abstract. Supporting all known abstractions for concurrent and paral-
lel programming in a virtual machines (VM) is a futile undertaking, but
it is required to give programmers appropriate tools and performance. In-
stead of supporting all abstractions directly, VMs need a unifying mech-
anism similar to INVOKEDYNAMIC for JVMs.
Our survey of parallel and concurrent programming concepts identifies
concurrency abstractions as the ones benefiting most from support in a
VM. Currently, their semantics is often weakened, reducing their engi-
neering benefits. They require a mechanism to define flexible language
guarantees.
Based on this survey, we define an ownership-based meta-object proto-
col as candidate for VM support. We demonstrate its expressiveness by
implementing actor semantics, software transactional memory, agents,
CSP, and active objects. While the performance of our prototype con-
firms the need for VM support, it also shows that the chosen mechanism
is appropriate to express a wide range of concurrency abstractions in a
unified way.

Keywords: Virtual Machines, Language Support, Abstraction, Paral-
lelism, Concurrency

1 The Right Tool for the Job

Implementing parallel and concurrent systems has been argued to be a complex
undertaking that requires the right tools for the job, perhaps more than other
problems software engineering encountered so far. Instead of searching for a
non-existing silver bullet approach, we argue that language designers need to be
supported in building domain-specific concurrency abstractions.

Let us consider the implementation of a typical desktop application. A mail
application combines several components that interact and have different poten-
tials to utilize computational resources. The user interface component is tradi-
tionally implemented with an event-loop to react to user input. In a concurrent
setting, it is also desirable to enforce encapsulation like in an actor model, since
encapsulation simplifies reasoning about the interaction with other components.

2

Another part of the application is the data storage for emails and address
book information. This part traditionally interacts with with a database. The
natural way to implement this component is to use a software transactional
memory (STM) system that extends the transaction semantics of the database
into the application. This allow a unified reasoning when for instance a new mail
is received from the network component and needs to be stored in the database.

A third part is a search engine that allows the user to find emails and address
book entries. Such an engine can typically exploit data-parallel approaches like
map/reduce or parallel collection operations for performance.

However, supporting the various different approaches to parallel and con-
current programming on top of the same platform comes with the challenge to
identify basic commonalities that allow to abstract from the particularities of
specific constructs and languages. Today’s high-level language virtual machines
(VMs) do not provide intrinsic support for more than one specific approach [17].
While some approaches like Fork/Join [14], Concurrent Collections [3] or PLINQ
can be implemented as libraries without losing any semantics or performance,
approaches like the actor model are typically implemented as an approximation
losing for instance the engineering benefits of encapsulation [11].

We approach this problem with a survey of the various concepts of par-
allel and concurrent programming to identify concepts that are relevant for a
multi-language virtual machine (short: VM). Based on this survey, we define
an ownership-based meta-object protocol and evaluate its suitability to imple-
mented the identified concepts. Furthermore, we briefly evaluate the performance
properties of our prototype and discuss related work which could be used to re-
alize an implementation with optimal performance characteristics.

2 A Survey of Parallel and Concurrent Programming
Concepts

The goal of this survey is to identify concepts that are relevant for a multi-
language VM. To that end, we first select questions that enable us to categorize
the concepts by relevance. Afterwards, we detail our approach to identify the
concepts and finally, we present the findings and discuss our conclusions.

2.1 Survey Questions

When concepts are considered for inclusion in a VM, one of the main goals is
to avoid unnecessary complexity. From that follows, that a new concept only
needs to be added to a VM if it cannot be implemented reasonably in terms of
a library on top of the VM. Thus, our first question is:

Lib Can this concept be implemented in terms of a library?

Interpreting the question very broadly, we consider whether some variation
of the concept can be implemented. Typically, such a library implementation
can either suffer from losing semantic guarantees, or it has to take performance

3

drawbacks into account. Common examples are implementations of the actor
model on top of the JVM or CLR [11].

To account for that variation, we need the following two questions:

Sem Does this concept require runtime support to guarantee its semantics?
Perf Would runtime support enable significant performance improvements com-

pared with a pure library solution?

To answer Sem, we also consider interactions of different languages on top of
a VM. This is relevant since common language guarantees are enforced by a com-
piler but do not carry over to the level of the VM. One example is the semantics
of single-assignment variables, which is typically not transferred to the bytecode
level of a VM. Similarly, we considered for Perf that knowledge about full lan-
guage semantics often enables better optimizations. For instance, the knowledge
about immutability enables constant folding, and taking the semantics of critical
sections into account enables optimizations like lock elision.

The last categorization criterion is whether the concept is prior art:

PA Is the concept already supported by a VM like the JVM or CLR?

2.2 Selecting Subjects and Identifying Concepts

To identify concepts, we rely foremost on the overview given by two surveys [2, 25]
as our main subjects. They give a broad foundation but are dated. To ensure that
the most common concepts are included, we survey also a number of languages
used in research or industry and select research papers from recent years to cover
current trends. The full list of subjects is given in Tab. 1.

Table 1. Survey Subjects: Languages and Papers

Active Objects [13] Charm++ Fortress Occam-pi Simple Java
Ada Cilk Go OpenCL Skillicorn&Talia [25]
Aida [15] Clojure Io OpenMP Sly
Alice CoBoxes [23] JCSP Orleans [4] StreamIT
AmbientTalk Concurrent Haskell Java Views [5] Oz Swing
Ateji PX Concurrent ML Join Java PAM [22] UPC
Axum Concurrent Objects Linda [7] Reactive Objects [20] X10
Briot et al. [2] Concurrent Pascal MPI SCOOP [19] XC
C# Erlang MapReduce [16] STM [24]
Chapel Fortran 2008 MultiLisp [9] Simple C/C++

Starting with the two surveys, we identify for each subject the basic con-
cepts and mechanisms introduced in the paper or provided by the language. For
languages, we regard the language-level as well as possible implementation-level
concepts. Note that the identified concepts necessarily abstract from specific
details that vary between the different subjects. Thus, we do not regard every

4

minor variation of a concept separately. However, this leaves room for different
interpretations of our survey questions. For subjects like C/C++ and Java, we
regard the simple core language and standard libraries. Interesting libraries or
extensions available for their eco systems are considered as separate subjects.

2.3 Results

The analysis of the subjects given in Tab. 1 resulted in 82 identified concepts.
Since most of them are accepted concepts in the literature, we will only discuss
the results with regard to our questions in this paper. As mentioned earlier, some
concept variations have been considered together as a single concept. For exam-
ple, the distinct concepts of monitors and semaphores, have been regarded as
part of locks in this survey. Similarly, parallel bulk operations is included and also
covers parallel loops because of their similarity and closely related implementa-
tion strategies. Thus, Tab. 2a and 2b include 60 concepts and their respective
survey results.

Table 2a. Survey Results: Prior Art and Library Solutions

Prior Art PA Lib Sem Perf PA Lib Sem Perf

Atomic Primitives X - - X Co-routines X - - X
Condition Variables X X - X Critical Sections X X - X
Global Address Spaces X X - X Green Threads X - - -
Immutability X - X X Join X - - -
Locks X X - X Memory Model X - X X
Method Invocation X - - X Race-And-Repair X X - -
Thread Pools X X - - Thread-local Variables X X - X
Threads X X - - Volatiles X - X -
Wrapper Objects X X - X

Library Solutions PA Lib Sem Perf PA Lib Sem Perf

APGAS - X - - Agents - X - -
Atoms - X - - Concurrent Objects - X - -
Event-Loop - X - - Events - X - -
Far-References - X - - Fork/Join - X - -
Futures - X - - Guards - X - -
Message Queue - X - - One-sided Communication - X - -
PGAS - X - - Parallel Bulk Operations - X - -
Reducers - X - - Single Blocks - X - -
State Reconciliation - X - -

As Tab. 2a shows, about half of the concepts are either already available in
JVM and CLR or can be implemented in terms of a library without sacrificing
semantics or performance aspects. We will discuss only the remaining 26.

With 18, the majority of the concepts requiring runtime support (Tab. 2b)
suffer from weaker semantics. Most of these concepts are usually realized either
with enforcement on a compiler level or require correct construction by the
programmer. However, a compiler cannot enforce guarantees on a VM if they

5

Table 2b. Survey Results: Runtime Support Required

Runtime Support Required PA Lib Sem Perf PA Lib Sem Perf

Active Objects - X X - Actors - X X X
Asynchronous Invocation - X X X Axum-Domains - X X -
Barriers - X - X By-Value - X X X
Channels - X X X Clocks - X - X
Data Movement - - - X Data Streams - X X X
Implicit Parallelism - X - X Isolation - X X X
Locality - - - X Map/Reduce - X X -
Message sends - X X X Mirrors - X - X
No-Intercession - X X X Ownership - - - X
Persistent Data Structures - X X - Replication - X X -
Side-Effect Free - - X X Speculative Execution - - X X
Transactions - X X X Tuple Spaces - X X -
Vats - X X X Vector Operations - X - X

are not present in the bytecode intermediate language. Thus, a Java program can
mutate a supposedly immutable object of another language. An example is the
semantics of final fields in Java, which can be changed via reflection, and thus,
are not truly constant. Persistent data structures and tuple spaces are examples
that rely on the notion of immutable values to provide a consistent framework
for reasoning. Similarly, E’s vats, AmbientTalk’s actors, and Axum’s domains
restrict mutation to an owner. While a reference can be obtained to an object
owned by another actor or vat, they can only be mutated within the owner’s
context. These concepts also share the property that method invocation on such
objects need to be done asynchronously in the context of the owning entity and
under the scheduling regime of the entity. This applies to active objects, too.

The other concepts, like barriers, clocks, data movement, locality, and vector
operations, will benefit from adaptive optimizations of a just-in-time compiler,
which is aware of their semantics, or require information of the underlying hard-
ware that is normally not exposed by the VM. Implicit parallelism and specula-
tive execution can be considered as adaptive optimizations, too. However, they
imply likely a significantly higher complexity.

2.4 Conclusions and Requirements

We conclude from our survey that approaching the semantics of concurrency
constructs is the most promising angle to take when improving support for par-
allel and concurrent languages. Performance is another important but to specific
problem. The concepts discussed here do not lend themselves towards more
generally applicable optimizations. Instead, such optimizations would likely be
specific to a single concept. Thus, from the set of concepts that will benefit from
semantic enforcement, we distill the following requirements for a VM:

Managed Mutation Many concept impose rules for when and how state can
be modified. Thus mutation must be manageable in a flexible manner.

Managed Execution Similarly, the activation of methods on an object is typ-
ically also regulated and needs to be adaptable.

6

Ownership One recurring notion is that mutation and execution are regulated
based and relative to an owning entity. Thus, ownership needs to be sup-
ported in a manner that enables adaptable mutation and execution rules.

Leveled Reflection Many use cases of reflective meta-programming still need
to follow the concurrency-related language semantics to be safe. Thus, there
is a need to distinguish between restricted language-level reflection, and un-
restricted meta-level reflection.

Enforceability These rules need to be enforceable across different concurrency
models. Thus, if a reference to an object belonging to an actor is obtained,
everything done with it must obey the rules of the actor language.

3 An Ownership-based MOP to Express Concurrency
Abstractions

Based on the described requirements we define a meta-object protocol (MOP) [12]
that is based on the notion of ownership. First, we describe its semantics, then
given an example how it can enforce immutability, and finally, we are going to
detail the implementation approach for our Smalltalk-based prototype.

3.1 Design of the MOP

Following the stated requirements, we base our approach on the notions of ob-
ject ownership, state access, and execution. The owner of an object, here called
domain, defines the semantics of operations on all objects it owns. The semantics
it defines regard reading of object fields, writing of object fields, and invocation
of methods on objects. A thread of execution is executing in a domain, but as
objects may change their owners, threads can change the domains they execute
in. In addition, the thread has a flag that defines whether it is executing on
the base level, where the domain semantics are enforced, or on the meta level
without enforcement. See Fig. 1 for an overview.

Depending on the VM, a domain also needs to regard globally accessible
resources that may lie beyond its scope but that can have impact on the exe-
cution. That typically includes lexical globals and primitive operations of a VM
that cannot be regarded otherwise. Thus, the following conceptual semantics are
associate with the MOP.

readField(obj, idx)
writeField(obj, idx, val)
reqExec(obj, method, args)
newThread(method)
execInContext(method)
readGlobal(glob)
writeGlobal(glob, val)
primitiveCopy(obj)
primitive*(...)

Domain

Object
10..*

owned by

1 0..*

runs in
execLevel : [base | meta]

Thread

Fig. 1. Ownership-based Meta-object Protocol Supported by the Domain Object

7

A Domain owns objects, and every object has an owner. It defines the concur-
rency semantics for owned objects. This satisfies the ownership requirement.
A Thread is the unit of execution. It executes either in the base level, enforc-
ing the semantics of domains (incl. reflective operations), or it executes on the
meta level without enforcement (execLevel). This satisfies the leveled reflec-
tion requirement. Furthermore, a thread runs in the context of a domain. The
newThread operation enables the domain to control the number of threads exe-
cuting at the same time. execInContext enables an existing thread to change the
execution domain for the duration of the execution of method. This is necessary
for the managed execution requirement.
All Read/Write operations of object fields are delegated to readField and
writeField of the owner. The domain can then decide based on the given object
and the slot index, as well as other execution state, what action needs to be taken.
This satisfies the managed mutation requirement.
Request Execution (reqExec) is used for all method invocations enabling the
domain to decide based on the given object, the method to be executed, its
arguments, and other execution state, how the invocation is to be handled. This
satisfies, together with the execution context of a thread, the managed execution
requirement.
External Resources, i. e., globally shared variables and primitives need to
be handled by the domain if they otherwise break semantics. To that end, the
domain includes readGlobal/writeGlobal which enables for instance to give
globals a semantic local to the domain. Furthermore, it includes primitive*

operations, as for instance primitiveCopy to override the semantics of VM
primitives. The direct use of primitiveCopy would allow to copy arbitrary ob-
jects without regarding domain semantics. This and all of the above allow us to
satisfy the enforceability requirement.

3.2 Example: Enforcing Immutability

Fig. 2 gives a sequence diagram of how immutability could be enforced based on
our approach. The JavaThread starts running in the meta level and then directly
starts to execute application code in the base level. At some point, it invokes
setFoo on an immutable object. In our model, this invocation goes first as a
request for execution to the domain owning the immutable object. The domain

JavaThread Immutable Obj Immutable Domain

base-level
imObj.setFoo(val)

imObj.setFoo(val) → reqExec(imObj, setFoo,val)

writeField(imObj, 1, val)

ImmutabilityViolationException(imObj, 1, val)

Fig. 2. Example of Immutability Enforcement based on the MOP

8

code executes itself on the meta level. Since immutability does not interfere with
method execution semantics, the request is granted, and setFoo is invoked on
the object. The invocation is executed in the base level to enforce the desired
semantics, which then results in a request to the domain to write a field in the
object. For this immutable object, the request is denied and instead an exception
is raised to notify the JavaThread which executes the code. The mutation would
also be denied if JavaThread would use reflection while executing in the base
level, since the reflective operations also pass by the domain.

Section 4.1 discusses a longer example, showing how to implement Clojure’s
agents based on the MOP.

3.3 Implementation Strategy

Our prototype is implemented in Smalltalk applying the implementation strategy
presented by Renggli and Nierstrasz for an STM [21]. Similar to their solution,
we enforce the use of our MOP by transforming Smalltalk bytecode. Thereby,
we abstract from a particular language that compiles to bytecode. Our trans-
formations change reads and writes of instance variables as well as globals to
the corresponding MOP operations discussed earlier. Message sends are adapted
similarly to request execution on the owning domain.

To keep meta and base level apart, selectors in base-level message sends are
prefixed. This prefixing also separates the actual compiled methods for meta
and base level. The unmodified version of the bytecode executes on the meta
level, while the transformed code executes on the base level. Instead of relying
on the conceptual execLevel flag in a thread, we explicitly enter and exit the
base level. Entry points are marked by sending #enter: to a block. The compiler
transforms all blocks that statically receive the enter message, i. e., lexically in
the form of [foo doSomething] enter: domain. To exit the base-level code,
certain methods are not transformed. To mark such exit points methods can be
annotated with <doNotTransform>. VM primitives are handled by annotating
their Smalltalk representation with <replacement: #selector>.

The owner of an object is expressed by a new slot for the domain in all classes
that support it. For some classes the VM make special assumptions and does not
allow adding slots. One example is the Array class. Here we provide an adapted
subclass with the slot and ensure it is used instead of Array.

4 Evaluation

To evaluate our approach, we present Clojure’s agents1 as a detailed example and
then discuss the expressiveness and performance of our approach. The expres-
siveness is assessed by demonstrating that a number of concurrency models can
be implemented straightforwardly. Furthermore, we comparing how our abstrac-
tion fairs compared to ad-hoc implementations. For the performance evaluation,

1 http://clojure.org/agents

9

we use an actor implementation as well as an STM system. Both have been im-
plemented in an ad-hoc version and in a version based on our MOP to compare
the performance of the two approaches. Note that Sec. 3.1 already evaluated how
the MOP satisfies the requirements derived from our survey.

4.1 By Example: Clojure’s Agents

Since the discussion was so-far theoretical, we will look into one concurrency
construct more closely. Clojure’s agents provide an abstraction for event-loop
concurrency. An agent represents a resource with a mutable state. However, the
state is modified only by the agent itself. The agent receives update functions
asynchronously. An update function takes the old state and produces a new
state. The execution is done in a dedicated thread, so that at most one update
function can be active for a given agent at any time. Furthermore, other threads
will always read a consistent state of the agent at any time. However, while
Clojure encourages the use of immutable data structures, it is not enforcing
it. Thus, in practice the assumed guarantees can be violated. See Lst. 1.1 for a
simplified implementation. The complete implementation is slightly longer and
takes 8 methods with a total of 31 lines of code (LOC) (cf. Tab. 3).

Object < #Agent instanceVariables: ’mailbox state ’.

Agent >> await [mailbox waitUntilEmpty]
Agent >> read [^ state]

Agent >> send: anUpdateBlock [mailbox nextPut: anUpdateBlock]

Agent >> send: anUpdateBlock with: args [
self send: [:old | anUpdateBlock value: old value: args]]

Agent >> initialize [
mailbox := SharedQueue new.
[true whileTrue: [self processIncomingMessages]] fork]

Agent >> processIncomingMessages [
| updateBlock |
updateBlock := mailbox waitForFirst.
state := updateBlock value: state.
mailbox removeFirst]

Listing 1.1. Agent implementation in Smalltalk

Like in Clojure, Lst. 1.1 does not guarantee any execution semantics. Since
Smalltalk does not have private methods, #processIncomingMessages could
even be called from another thread and violate the assumption that only one
update function is executed at a time.

To enforce the expected guarantee, we now define AgentDomain in Lst. 1.2.
Since Agent and AgentDomain implement the concurrency semantics, all meth-
ods need to be annotated with <doNotTransform>, including the ones in Lst. 1.1.
With this annotation, we make sure that our implementation code is executed
on the meta level. The domain then defines the #requestExecutionOf:on:...

methods to ensure that the main constraint of having a single thread of execution
for agent methods is obeyed.

10

Table 3. Agent Implementation Metrics

Class #M LOC #BC

Agent 8 31 77

With Guarantees

Agent 8 39 85
AgentDomain 4 34 132

With Immutability #M LOC #BC

Agent 8 41 100
AgentDomain 4 34 132
ImmutableDomain 6 17 25
#M: number of methods

#BC: number of bytecodes

Domain < #AgentDomain instanceVariables: ’agent ’

AgentDomain >> agent: anAgent [agent := anAgent]

AgentDomain >> requestExecutionOf: aSelector on: anObject [
<doNotTransform >
"Rules are only enforced on the agent itself"
anObject = agent ifFalse: [^anObject perform: aSelector].
(aSelector = #read or: ["White -listed methods"
aSelector = #await or: [
aSelector = #shutdown]]) ifTrue: [^agent perform: normSel].

Error signal: ’Access denied ’. "Everything else is an error "]

AgentDomain >> requestExecutionOf: aSel on: obj with: par1 [
<doNotTransform >
obj = agent ifFalse: [^obj perform: aSel with: par1.].
(aSel = #send:) ifTrue: [^agent send: par1].
Error signal: ’Access denied ’. "Else: an error"]

AgentDomain >> requestExecutionOf: aSel on: obj with: p1 with: p2 [
<doNotTransform >
obj = agent ifFalse: [^obj perform: aSel with: p1 with: p2].
(aSel = #send:with:) ifTrue: [^agent send: p1 with: p2].
Error signal: ’Access denied ’. "Else: an error"]

Listing 1.2. AgentDomain to enforce desired guarantees

As already demonstrated in Sec. 3.2, it becomes also simple to add the guar-
antee that an agent state only refers to immutable data structures. The im-
plementation of ImmutableDomain changes the semantics of all operations that
write to object fields. Thus, for instance writeField throws an error as in Fig. 2.
The agent itself will ask the ImmutableDomain to adopt the new state after an
update function is completed. This guarantees that the immutability cannot be
violated while executing code on the base/language level. Tab. 3 shows that the
necessary adaptations are minimal to provide this extra guarantee.

4.2 Subjects

LRSTM is the STM implementation by Renggli and Nierstrasz [21]. We reim-
plemented the compiler transformations to use the same Smalltalk and libraries
as for our MOP to allow a comparison of the systems. Since the MOP is imple-
mented using the ideas of the LRSTM implementation, the resulting systems are
very similar. The STM algorithm tracks read and write operations, by keeping
read- and write-logs. It uses the read-log to detect conflicts during the commit
phase and when no conflicts are detected, it will apply the writes atomically.

11

AmbientTalkST is a framework to build applications using actor semantics
similar to E [18] and AmbientTalk [28]. We call it a framework, since it requires
care to set up the actors correctly to enforce the desired semantics. We have not
implemented a full language with its own syntax, parser, and compiler, which
would take care of these details implicitly. However, the framework uses stratified
proxies [1, 27] to guarantee actor semantics. Since the proxies are stratified, the
guarantees are also given for reflective operations.

Actors refer to objects owned by other objects only via far-references which
in return enforce that all messages sent to them will be reified and put into
the inbox of an actor. The actor will process the messages one at a time. The
far-reference implementation makes sure that parameters and return values are
encapsulated in far-references as necessary to avoid introducing shared state.
This implementation approach is different from our MOP-based one, but reflects
more closely how AmbientTalk enforces its language guarantees.

Additional Concurrency Abstractions. To demonstrate the expressiveness
of our abstraction, we implemented also as already discussed Clojure’s agents.
Furthermore, we implemented the Active Object pattern [13] and CSP+π, a
minimal version of occam-π’s semantics.

4.3 Expressiveness

Appropriate abstractions allow a concise description of a problem. Thus, we
compare implementation metrics to assess the impact of using our abstraction
instead of ad-hoc approaches. The used metrics are number of classes, number of
methods, LOC, and number of bytecodes. Number of methods includes necessary
extensions and changed methods in system classes. LOC refers to the length of a
method including comments but excluding blank lines. Since LOC varies based
on coding conventions and comments, we also list the number of bytecodes of
all methods.

Table 4. Metrics for Ad-hoc and MOP-based Implementations

#Classes #Methods LOC #Bytecodes

Agents (ad-hoc, without enforcement) 1 8 31 77
Agents (MOP, with enforcement) 2 12 73 217
LRSTM (ad-hoc) 8 151 886 2411
LRSTM (MOP) 7 69 167 452
AmbientTalkST (ad-hoc) 6 37 163 390
AmbientTalkST (MOP) 2 26 115 213
Active Objects (MOP) 3 15 73 148
CSP+π (MOP) 5 16 39 61
MOP base system 5 170 1068 2767

AmbientTalkST (MOP∗) 2 38 213 638
MOP base system∗ 5 206 1163 3016
∗ including duplicated code for variadic argument emulation

12

As the results in Tab 4 show, the concurrency constructs and their guarantees
can be expressed concisely. As pointed out in Sec. 4.1, the 31 LOC of the ad-hoc
agent implementation do not include any enforcement, while the additional 42
LOC of the MOP-based one include the domain and its guarantee enforcement.
The more than 80% reduction of LOC for the MOP-based LRSTM comes mostly
from avoiding the need for a custom bytecode transformation, which is already
included in the MOP base system. The MOP-based AmbientTalkST implemen-
tation is with 115 LOC also slightly more concise than the ad-hoc version with
163 LOC. The MOP further enables the implementation of active objects in 73
LOC, and a minimal CSP in 39 LOC, both enforcing their full semantics.

Note that Smalltalk does not support variadic methods, which currently re-
sults in replicating code for the handler of method execution requests. We du-
plicate the code for 0 to n parameters manually, which could be avoided with
a template or macro mechanism. For completeness, we also give the numbers
including the duplicated code for variadic methods.

The MOP base system is with 170 methods and 1068 LOC still manageable.
This core provides the main mechanisms for the unified reusable abstraction of
our MOP and simplifies the implementation of concurrency constructs.

4.4 Performance

We assess the overhead of our prototype by comparing the performance of the
ad-hoc with the MOP-based implementations by using AmbientTalkST and
LRSTM. We concentrate on AmbientTalkST and LRSTM, because these two
provide in both implementations the same semantics, while the other concur-
rency constructs do not enforce their semantics in the ad-hoc implementation.
Furthermore, since our prototype is meant to demonstrate the expressiveness of
our MOP-based approach, we will concentrate on kernel benchmarks to get a
first impression of the performance impact. Thus, we use adapted versions of
four kernel benchmarks from the Computer Language Benchmarks Game2 for
general assessment. Additional microbenchmarks then allow to assess which part
of the MOP influences performance most.

Our methodology is derived from the advice of Georges et al. [8]. All bench-
marks are executed 100 times on the CogVM. We measure steady-state perfor-
mance to account for the just-in-time compiler. The used machine runs OS X
10.6 with Intel Xeon E5520 processors. The benchmarks use only a single core
to avoid noise in the measurements.

Fig. 3 depicts the results as a box plot. It shows the performance ratio of ad-
hoc/MOP-based. Ideally, the implementations would perform on-par, i. e., would
be at the dashed ideal line with a value of 1. However, the benchmarks show that
the ad-hoc implementation of AmbientTalkST outperforms MOP-based one for
all but one kernel benchmark. The microbenchmarks point out that the MOP
has an impact on all method invocations and array as well as instance variable

2 http://shootout.alioth.debian.org/

13

B
in

ar
y

Tr
ee

s
(A

T
)

Fa
nn

ku
ch

R
ed

ux
 (

AT
)

Fa
st

a
(A

T
)

N
B

od
y

(A
T

)

B
in

ar
y

Tr
ee

s
(L

R
)

Fa
nn

ku
ch

R
ed

ux
 (

LR
)

Fa
st

a
(L

R
)

N
B

od
y

(L
R

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Kernel Benchmarks

S
pe

ed
 R

at
io

: A
d−

ho
c/

M
O

P
−

ba
se

d

A
rr

ay
 A

cc
es

s
(A

T
)

In
st

an
ce

 V
ar

. (
AT

)

Lo
ca

l S
en

ds
 (

AT
)

R
em

ot
e

S
en

ds
 (

AT
)

R
em

ot
e

S
en

ds
 (

AT
)

w
ith

 1
0

ar
gu

m
en

ts

A
rr

ay
 A

cc
es

s
(L

R
)

In
st

an
ce

 V
ar

. (
LR

)

S
en

ds
 (

LR
)

S
en

ds
 (

LR
)

w
ith

 1
0

ar
gu

m
en

ts

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Microbenchmarks

S
pe

ed
 R

at
io

: A
d−

ho
c/

M
O

P
−

ba
se

d

Fig. 3. Boxplot of Speed Ratio Ad-hoc/MOP-based for AmbientTalkST (AT) and
LRSTM (LR): The ideal line (dashed) is at 1. While higher means better, everything
below indicates that the MOP-based implementations are slower than the ad-hoc ones.

accesses. The implementation of asynchronous (remote) message sends to other
actors is however more efficient. This explains also the behavior observed for the
FannkuchRedux kernel, which has almost no instance variable accesses, but a
high amount of inter-actor message sends. While the proxy-based solution of the
ad-hoc implementation has a higher overhead on remote sends to other actors,
it does not incur any cost for local sends and variable accesses.

The LRSTM kernel benchmarks show an overhead of 26–34% for the MOP-
based solution. Here the impact of the message sends overhead is smaller since
the performance impact of array and instance variable access is not as high as
for the AmbientTalkST implementation, since LRSTM already modifies them.

While our prototypical implementation is able to enforce the desired seman-
tics, it comes with a high performance cost. Therefore, we will discuss in the
next section how our approach could be implemented in a VM.

5 Discussion and Performance Perspectives

While performance is an issue, the current MOP also has limitations since it
only regards the owner of an object as the entity defining the semantics for
interaction. This approach does not offer any mechanism to control the inter-
action of different semantics. Thus, they need to be defined directly as part of
the concurrency model for all possible combination with other concurrency mod-
els. However, for instance the possible interaction between actor-like models and
STM systems cover a wide design space that needs to be carefully considered to
achieve appropriate semantics.

Other types of guarantees, for instance deadlock freedom, are also problem-
atic. Deadlock freedom is usually guaranteed by providing only non-blocking op-
erations in a language. Thus, it is not clear how such a guarantee could be given
in a system that provides arbitrary blocking mechanisms to other languages.

14

Our prototypical implementation does not yet rely on runtime support. How-
ever, we expect to be able to reduce the overhead to an acceptable level by ap-
plying the following techniques. Most promising seems to be the implementation
techniques used by Hoffman et al. [10]. They use the hardware memory pro-
tection support to enable the isolation of program components in an otherwise
shared memory model. It could be used to reduce the performance overhead for
a wide set of concurrency models, too. Especially actor-like and CSP-like models
could benefit from a protection model where local operations do not impose any
overhead. While memory protection is relevant for field accesses, the overhead
of customized semantics of method invocation mechanisms is also significant.
This could be solved with the INVOKEDYNAMIC infrastructure [26] included
in current JVMs. Furthermore, tracing compilers [6] are known to enable the
elimination of expensive guarding checks to ensure semantics effectively.

6 Related Work

Classic MOPs were an inspiration for our approach. However, the CLOS [12] and
also current Smalltalk MOPs [29] are based on the notion of classes or metaclasses
that define the semantics of their subclasses. In contrast to that, our model is
based on ownership. Thus, a domain defines the concurrency semantics for its
objects and is orthogonal to the classic classification-based schemes.

Our survey is based on two surveys [2, 25] and thus closely related to them.
However, we are not aware on any survey or approach that enables a runtime
system to directly support the semantics of multiple concurrency models.

As mentioned in Sec. 5 the work of Hoffmann et al.[10] is closely related in the
field of VMs. They enable the isolation of components enabling the enforcement
of memory access constraints inside an application. As argued, this is a promising
technique to approach the performance implications of our approach.

The prototype implementation of our approach is closely related, and inspired
by the work of Renggli and Nierstrasz [21]. While they use it to implement an
STM, we use the same ideas to enable our MOP which in return allows use to
enforce different language semantics. A similar transformation based approach
was also used to implement an STM for Java [30].

7 Conclusion

Our survey showed that most parallel constructs can be provided in terms of
libraries without sacrificing neither performance nor semantics. Concurrency
constructs however, often suffer from either the loss of semantic integrity or
a high performance penalty when implemented in terms of libraries. Based on
this survey we identified the requirements for the support of such concurrency
mechanisms in a multi-language virtual machine. A VM needs a mechanism to
managed mutation/execution with regard to ownership, as well as support for
leveled reflection to guarantee enforceability of language semantics.

15

Based on these requirements, we designed an ownership-based MOP and
demonstrated that it is a unifying mechanism to enforce the semantics for a
wide range of concurrency models in a concise manner. The main concepts of the
MOP are reification of field accesses, message sends, and object ownership. The
distinction between language-level and meta-level reflection enables us further
to guarantee concurrency semantics even when meta-programming is used.

The performance of our bytecode-transformation-based prototype shows that
the performance impact is significant and actual VM support is required to
achieve acceptable performance. However, it also shows the unifying potential of
the MOP. It enabled us to implement active objects, actors, agents, CSP, and
STM in less than 500 LOC in total. With the example of agents, we were also
able to demonstrate how a concurrency abstraction can be easily extended to
provide desirable engineering properties.

For our future work, we identified a number of promising techniques that can
be used to implement our MOP more efficiently as part of a VM.

Acknowledgments. Stefan Marr is supported by a doctoral scholarship of the
Institute for the Promotion of Innovation through Science and Technology in
Flanders (IWT-Vlaanderen), Belgium.

References

1. Bracha, G., Ungar, D.: Mirrors: design principles for meta-level facilities of object-
oriented programming languages. In: Proc. of OOPSLA’04. pp. 331–344. ACM
(2004)

2. Briot, J.P., Guerraoui, R., Lohr, K.P.: Concurrency and distribution in object-
oriented programming. ACM Computing Surveys 30(3), 291–329 (September 1998)

3. Budimlic, Z., Chandramowlishwaran, A., Knobe, K., Lowney, G., Sarkar, V., Treg-
giari, L.: Multi-core implementations of the concurrent collections programming
model. In: he 14th Workshop on Compilers for Parallel Computing (January 2009)

4. Bykov, S., Geller, A., Kliot, G., Larus, J.R., Pandya, R., Thelin, J.: Orleans: Cloud
computing for everyone. In: Proc of SOCC’11. pp. 16:1–16:14. ACM (2011)

5. Demsky, B., Lam, P.: Views: object-inspired concurrency control. In: Proc. of
ICSE’10 (2010)

6. Gal, A., Probst, C.W., Franz, M.: Hotpathvm: An effective jit compiler for resource-
constrained devices. In: Proc. of VEE’06. pp. 144–153. ACM (2006)

7. Gelernter, D.: Generative communication in linda. ACM TOPLAS 7, 80–112 (Jan-
uary 1985)

8. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous java performance
evaluation. SIGPLAN Not. 42(10), 57–76 (2007)

9. Halstead, Jr., R.H.: Multilisp: a language for concurrent symbolic computation.
ACM Trans. Program. Lang. Syst. 7, 501–538 (October 1985)

10. Hoffman, K.J., Metzger, H., Eugster, P.: Ribbons: A partially shared memory
programming model. SIGPLAN Not. 46, 289–306 (Oct 2011)

11. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the jvm platform: A
comparative analysis. In: Proc. of PPPJ’09. pp. 11–20. ACM (2009)

16

12. Kiczales, G., des Rivières, J., Bobrow, D.G.: The Art of the Metaobject Protocol.
MIT (1991)

13. Lavender, R.G., Schmidt, D.C.: Active object: An object behavioral pattern for
concurrent programming. In: Pattern Languages of Program Design 2, pp. 483–
499. Addison-Wesley Longman Publishing Co., Inc. (1996)

14. Lea, D.: A java fork/join framework. In: JAVA ’00: Proceedings of the ACM 2000
conference on Java Grande. pp. 36–43. ACM (2000)

15. Lublinerman, R., Zhao, J., Budimlić, Z., Chaudhuri, S., Sarkar, V.: Delegated
isolation. SIGPLAN Not. 46, 885–902 (Oct 2011)

16. Lämmel, R.: Google’s mapreduce programming model - revisited. SCP 70(1), 1 –
30 (2008)

17. Marr, S., Haupt, M., D’Hondt, T.: Intermediate language design of high-level lan-
guage virtual machines: Towards comprehensive concurrency support. In: Proc.
VMIL’09 Workshop. pp. 3:1–3:2. ACM (October 2009), (extended abstract)

18. Miller, M.S., Tribble, E.D., Shapiro, J.: Concurrency among strangers: Program-
ming in e as plan coordination. In: Nicola, R.D., Sangiorgi, D. (eds.) Symposium
on Trustworthy Global Computing. LNCS, vol. 3705, pp. 195–229. Springer (April
2005)

19. Morandi, B., Bauer, S.S., Meyer, B.: Scoop - a contract-based concurrent object-
oriented programming model. In: Müller, P. (ed.) Advanced Lectures on Soft-
ware Engineering, LASER Summer School 2007/2008. LNCS, vol. 6029, pp. 41–90.
Springer (2008)

20. Nordlander, J., Jones, M.P., Carlsson, M., Kieburtz, R.B., Black, A.P.: Reactive
objects. In: Symposium on Object-Oriented Real-Time Distributed Computing.
pp. 155–158 (2002)

21. Renggli, L., Nierstrasz, O.: Transactional memory for smalltalk. In: ICDL ’07:
Proceedings of the 2007 international conference on Dynamic languages. pp. 207–
221. ACM (2007)

22. Scholliers, C., Tanter, E., Meuter, W.D.: Parallel actor monitors. In: 14th Brazilian
Symposium on Programming Languages (2010)

23. Schäfer, J., Poetzsch-Heffter, A.: Jcobox: Generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) Proc. of ECOOP’10, LNCS, vol. 6183, pp. 275–
299. Springer (2010)

24. Shavit, N., Touitou, D.: Software transactional memory. In: Proc. of PODC’95.
ACM (1995)

25. Skillicorn, D.B., Talia, D.: Models and languages for parallel computation. ACM
CSUR 30, 123–169 (June 1998)

26. Thalinger, C., Rose, J.: Optimizing invokedynamic. In: Proc. of PPPJ’10. pp. 1–9.
ACM (2010)

27. Van Cutsem, T., Miller, M.S.: Proxies: Design principles for robust object-oriented
intercession apis. In: Proc. of DLS’10. pp. 59–72. ACM (October 2010)

28. Van Cutsem, T., Mostinckx, S., Gonzalez Boix, E., Dedecker, J., De Meuter, W.:
Ambienttalk: Object-oriented event-driven programming in mobile ad hoc net-
works. In: Proc. of SCCC’07. pp. 3–12. IEEE CS (2007)

29. Verwaest, T., Bruni, C., Lungu, M., Nierstrasz, O.: Flexible object layouts: En-
abling lightweight language extensions by intercepting slot access. In: Proc. of
OOPSLA’11. pp. 959–972 (2011)

30. Ziarek, L., Welc, A., Adl-Tabatabai, A.R., Menon, V., Shpeisman, T., Jagan-
nathan, S.: A uniform transactional execution environment for java. In: Proc. of
ECOOP’08. pp. 129–154 (2008)

