
Marr, Stefan, Nicolay, Jens, Van Cutsem, Tom and D'Hondt, Theo (2012)
Modularity and Conventions for Maintainable Concurrent Language Implementations:
A Review of Our Experiences and Practices. In: Proceedings of the 2nd
Workshop on Modularity In Systems Software (MISS'2012).

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/63840/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/2162024.2162031

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/63840/
https://doi.org/10.1145/2162024.2162031
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Modularity and Conventions for
Maintainable Concurrent Language Implementations

A Review of Our Experiences and Practices

Stefan Marr Jens Nicolay Tom Van Cutsem Theo D’Hondt
Software Languages Lab, Vrije Universiteit Brussel, Belgium
{stefan.marr, jens.nicolay, tvcutsem, tjdhondt}@vub.ac.be

Abstract
In this paper, we review what we have learned from imple-
menting languages for parallel and concurrent programming,
and investigate the role of modularity. To identify the ap-
proaches used to facilitate correctness and maintainability,
we ask the following questions: What guides modulariza-
tion? Are informal approaches used to facilitate correctness?
Are concurrency concerns modularized? And, where is lan-
guage support lacking most?

Our subjects are AmbientTalk, SLIP, and the RoarVM.
All three evolved over the years, enabling us to look back
at specific experiments to understand the impact of concur-
rency on modularity.

We conclude from our review that concurrency concerns
are one of the strongest drivers for the definition of mod-
ule boundaries. It helps when languages offer sophisticated
modularization constructs. However, with respect to con-
currency, other language features like single-assignment are
of greater importance. Furthermore, tooling that enables re-
modularization taking concurrency invariants into account
would be of great value.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—interpreters; D.1.3 [Program-
ming Techniques]: Concurrent Programing; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features

General Terms Design, Languages, Reliability

Keywords Modularization, Case Study, Experience Re-
port, Concurrency, Virtual Machines

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
MISS’12, March 27, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1217-2/12/03. . . $10.00

1. Context and Contributions
This paper reviews our experiences with the implementation
of interpreter-based concurrent and parallel languages to as-
sess the role of modularity and its relation to concurrency
aspects. We developed or maintained AmbientTalk, SLIP,
and the RoarVM during the last decade and did a number
of experiments related to this topic during that time. These
language implementations serve to validate our research and
constitute a foundation for our teaching activities. This spe-
cific setting had an important impact on the implementa-
tion of these systems. To facilitate experiments and teaching,
their core must remain maintainable.

Another aspect of this setting is the focus on interpreters
instead of classic compilers or performance oriented just-in-
time compiling approaches. The most important benefit of
the former is their malleability. Therefore, interpreters are
accessible for students and require relatively low engineer-
ing effort for experiments. On the downside, their perfor-
mance usually remains suboptimal. However, for the sake of
discussing modularity, these language implementations have
sufficient complexity.

The goal of this paper is to review our approaches to
modularity when it comes to issues of concurrency and par-
allelism. To that end, we analyze how we use language
mechanisms and conventions to tackle problems like lock-
ing, shared state, safe messaging, and global synchroniza-
tion. First, we detail the questions we try to answer for each
subject of our case study. This is followed by an overview of
the subjects, i. e., our language implementations. Finally, we
discuss the results and our conclusions.

2. Case Study Design
For the review of our language implementations, we will do
a general review of the applied practices, as well as a review
of specific experiments which will give us a more detailed
insight into the modularity of changes.

General Review We focus in our reviews on informal im-
plementation aspects like coding conventions and the impact

of parallelism and concurrency on modularization decisions.
To guide the reviews we use the following questions:

• Are modularization decisions guided by a specific rule or
principle that takes concurrency aspects into account?

• Are informal approaches used to handle concurrency as-
pects like data-races, deadlocks, or performance issues?

• Do concurrency aspects span multiple subsystems or are
they localized to specific ones?

• Are the available modularization constructs sufficient to
suitably and consistently handle concurrency aspects?

Experiment Review For more insights into how concur-
rency aspects and parallel execution influence the modular-
ization, we review the implementation impact of a number of
experiments. In addition to the general ones, these reviews
are guided by the following questions:

• Do the changes exhibit cross-cutting characteristics, i. e.,
how modular is the introduced functionality?

• Have key subsystems been remodularized to accommo-
date for new functionality and its invariants?

• Could advanced mechanisms for modularity have helped
to achieve better maintainability especially with regard to
concurrency-related invariants?

3. Case Study Subjects
AmbientTalk [4] is a distributed object-oriented language
that can be regarded as a scripting language for mobile
phones, designed to build applications for mobile networks.
AmbientTalk uses actor-based message-passing concurrency
and distribution. The AmbientTalk VM is written in Java and
targets Android-based smartphones.

One aspect of the AmbientTalk VM is that it internally
uses event loop concurrency. Event loops are similar to ac-
tors but do allow shared mutable state in general. They are
used for instance for VM-level services that need to run in
their own thread of control, such as service discovery or net-
work communication services. The main means of commu-
nication is similar to that of actors based on message passing.

RoarVM Ungar and Adams [9] built the RoarVM, a Small-
talk for the Tilera TILE64 manycore system, providing
application-level parallelism on a shared-memory heap. To
achieve acceptable performance, the heap is divided into
read/write and read-mostly memory, which enables more
efficient use of the hardware cache coherency. Experimenta-
tion with the non-uniform memory access properties is facil-
itated with primitives for explicit object movement between
cores. It is used to explore a new style of non-deterministic
programming that harnesses emerging behavior [8].

In this paper, we examine the following experiments:
Threads vs. Processes Porting the RoarVM to classic multi-
core systems led us to use threads instead of processes. The
main reasons are the missing library support and the absence
of sufficient debugging tools for process-based applications.

Work-Stealing Scheduling The RoarVM uses a single sched-
uler for compatibility with standard Smalltalks. On many-
core architectures, this design becomes a bottleneck and was
replaced by a work-stealing scheduler with a more scalable
design [1].

SLIP is a platform for the instruction and exploration of lan-
guage implementations. The main focus is not on the lan-
guage itself, which is a minimal but complete version of
LISP with a distinct Scheme flavor. Instead, SLIP is a se-
quence of interpreters, starting with a 100 line fully metacir-
cular version. This version is rewritten in continuation pass-
ing style and translated into C as a straightforward AST
interpreter. Fourteen successive versions introduce features
such as trampolines, lexical addressing, and garbage collec-
tion, ending up with a fully optimized version that executes
a simple benchmark on par with the PLT Scheme interpreter.
Multi-Threading Support Version 14 introduces threads. We
discuss here the approach to modularity and its implication
on the overall architecture of the implementation.

4. Case Study Reviews
In this section, we discuss the results for each language
implementation.

4.1 AmbientTalk
The guiding principle to structure concurrency in the Am-
bientTalk VM is the same as the one used in the Ambi-
entTalk language itself: avoid shared mutable state and de-
couple modules by relying on asynchronous communication.

4.1.1 Event Loop Concurrency Design
Traditionally, multi-threaded applications are partitioned
into multiple threads, which execute an arbitrary piece of
code concurrently and which synchronize and communicate
implicitly by means of shared data. Multi-threading is hard
to program and debug because threads may interact non-
deterministically, requiring the programmer to think about
all possible operation interleavings on the shared data.

Concurrency based on event loops operates by a differ-
ent principle. Here, each thread executes what is known as
an event loop, a perpetual loop that takes incoming events
from an event queue and processes them one by one. Event
loops communicate using asynchronous message passing:
one event loop puts a message in the event queue of the re-
cipient, which will process it at a later point in time.

In itself, event loops do not protect a program from race
conditions: multiple event loops may still operate on the
same piece of mutable data. To banish data races, each piece
of data is assigned an owning event loop, and only the owner
may operate on its data synchronously. Other event loops
may only modify the data indirectly (and asynchronously)
by asking the owner to perform the modification instead.

Concurrency in the AmbientTalk VM is built around an
event loop concurrency framework. There are different kinds

of event loops in the AmbientTalk VM: some represent Am-
bientTalk actors, others represent VM-level services, mostly
to process incoming and outgoing network traffic.

4.1.2 Implementation
Event loop concurrency requires that the entire codebase
follows a strict set of rules in order for its properties to hold.
Since these rules have a crosscutting impact, we will go into
more detail on how they affect the code.

All event loops inherit from a common superclass to both
classify instances of particular classes as event loops, and
to reuse their implementation (including thread and message
queue handling, and default message processing behavior).

To further identify event loops, we require that all classes
inheriting from the common base class are prefixed with EL.
This naming scheme, while merely a convention, makes it
clearer in the code when one is dealing with active objects.

Methods in event loop classes whose invocation triggers
an event that is sent to an event loop, are prefixed with
event for asynchronous and sync event for synchronous
event notifications. Again, it is merely a naming convention.

Since the parameters passed to an event or sync event
method become shared by both the sender and receiver event
loop, care must be taken that both event loops properly syn-
chronize access to this shared state. In staying true to the “no
shared state” philosophy of the actor model, we require that
these parameters are read-only for the sender. That is: either
the passed data is immutable, or it is mutable, but the sender
promises to no longer update the data once sent, granting
the receiver exclusive ownership of the data. In Java, there
is no language mechanism that could enforce this constraint.
In this case, the programmer must manually inspect all rele-
vant method signatures and see if the parameter-passed types
adhere to this restriction.

Since every event loop runs in its own Java thread, mu-
table state that is “global” within a single event loop is im-
plemented with thread-local variables. Every event loop op-
erates on its own set of values. From a modularity point of
view, the use of thread-local variables avoids parameterizing
all event loop dependent code with their values.

4.1.3 Conclusion
Given the nature of the AmbientTalk VM as a runtime for a
concurrent programming language, concurrency is not local-
ized to a specific subsystem. On the other hand, by represent-
ing all concurrent activities as event loops and virtually all
concurrent communication via explicit (asynchronous) mes-
sage passing, concurrency becomes manageable even though
it is pervasive throughout the implementation. Since Java has
no language features to identify event loops or asynchronous
message passing, we resorted to naming conventions instead.
The biggest challenge was to partition the shared-memory
Java heap such that event loops always have exclusive write
access to all data they have access to. We had to resort to
manual inspection of the types of all relevant method signa-

tures to enforce this invariant. More elaborate type systems
such as ownership types [3] could alleviate this concern.

4.2 RoarVM
In the RoarVM implementation, Ungar and Adams applied
principles very similar to the event loop model used in the
AmbientTalk VM. Every interpreter instance, i. e., every
bytecode interpretation loop, runs in its own operating sys-
tem process, making memory private to the interpreter in-
stance by default. Communication between interpreter in-
stances is done with a mix of explicitly requested shared
memory and message passing.

4.2.1 On-demand Shared Memory and
Asynchronous Message Passing
The main entities, which also correspond to implementation
modules, are the interpreter instances. Beside executing the
classic bytecode interpreter for Smalltalk, they also act as
event loops to enable communication with other interpreter
instances when it comes to ensuring global invariants per-
taining to garbage collection or scheduling policies.

Modules can adapt their communication strategy based
on performance requirements. However, message passing
is the only directly available communication mechanism.
Some modules use it to introduce shared state, e. g., for
global configuration flags. If a communication requires any
form of response, message passing is used consistently
throughout the VM.

Interpreter instances being event-loops with private-by-
default memory make their communication explicit. This en-
ables us to determine easily which parts of the memory are
shared and where potential data races can occur. While the
modules use the global message passing mechanism, their
particular communication protocol remain encapsulate in-
side a module. Thus, the modules can rely on their own com-
munication strategies without interfering with each other.

4.2.2 Global Synchronization and Object Movement
Taking only the VM-related state into account is insufficient.
Garbage collection (GC) and the support of explicit object
movement require special care of all obtained direct memory
addresses that could be invalidated while they are used.

A first precaution is the use of stop-the-world for all GC
and object movement related operations. The synchroniza-
tion is done with so-called safepoints. Safepoints are known
states of the interpreter in which enough of the invariants are
known to safely join a global request for synchronization.
These safepoints are requested explicitly in the code for all
operations that can lead to a call to the GC, inter-core allo-
cation, or explicit object movement.

Accepting safepoints however, is done implicitly. Every
message send waiting for an acknowledgment can poten-
tially receive a safepoint message. Since arbitrary global
safepoints are prone to deadlocks and not all code can han-
dle the subsequent object movement, we have a mechanism

that tracks for each interpreter instance whether it is able
to accept a safepoint. This safepoint ability is an inherently
cross-cutting concern, tied to the implementation specifics
of every piece of code that can result in a message send. The
safepoint ability implies that the C++-stack does not hold
any references to objects in the heap, which could poten-
tially move and thus would result in invalid references.

We either make sure that pointers are refetched/remapped
after a potential GC, or if possible, disallow safepoints in
a dynamic scope. This choice is a strict case-by-case deci-
sion, since it is a complex tradeoff between performance and
deadlock safety. Refetching pointers results in higher mem-
ory overhead, but disabling safepoints can result in dead-
locks and increased message response times.

Automating these decisions might be possible either with
a sophisticated type-system, or as part of the infrastructure of
a just-in-time compiler, or by changing the implementation
language to a garbage-collected one to avoid the problem.
Modularizing these decisions however, is not necessarily de-
sirable since the decisions are inherently tied to the specific
context in which they are applied.

4.2.3 Experiment: Threads vs. Processes
We ported the RoarVM from the TILE64 to commodity
multicore systems running Linux and Mac OS X. Since
both operating systems lack library and debugger support for
process-based applications, we used threads instead.

The challenge therefore was to switch from a private-
by-default memory model to a public-by-default one. This
meant we needed to identify all state that previously used
C++ language constructs like statics or globals and turn it
into thread-local state.

Our inspection showed that only particular globals, espe-
cially the references to interpreter instance and memory sys-
tem, were use throughout the whole system. Other globals
were used only inside a particular modules, i. e., they were
properly encapsulated. Furthermore, many globals in the
RoarVM turned out to be written only once during initializa-
tion. Here, single-assignment variables with more flexibility
than C++’s const would be valuable.

While the refactoring brought changes to most parts of
the system, they were not necessarily related to modularity.
The lexical visibility of globals is easily restricted so that
they become private to a module. However, the execution
semantics of threads, which is inherently orthogonal to mod-
ules, asks for additional language semantics like efficient
thread-local state and single-assignment variables. Problem-
atic language constructs are all kind of global state, espe-
cially static variables in C functions. They enable modular,
and concise state, but have no place in multi-threaded code
because of the data races they typically provoke.

4.2.4 Experiment: Work-Stealing Scheduler
Breaking the bottleneck of a single central scheduler is a
change that also has cross-cutting impact on the code. The

scheduling data structure needs to allow multiple instances,
one for every core, and the scheduling strategy needs to
change to be able to utilize the new capabilities, while main-
taining the relevant semantics of the previous scheduling im-
plementation. This results in changes to all parts of the sys-
tem that interact with the scheduling.

In our experiment, we decided to remodularize part of
the system to introduce an explicit scheduling module that
maintains the most important invariants. The critical parts to
get right here are the locking strategy and the work-stealing.
Both parts require care to avoid deadlocks and situations
like executing the same Smalltalk process multiple times.
A naming convention that indicates whether a particular
method acquires a lock, helped to avoid obvious deadlocks.

Better tool support would have been beneficial for the
refactoring. From a language perspective however, C++’s
abstractions were powerful enough. The new module often
relies on existing modules for the actual implementation,
while it itself concentrates on the concurrency aspects. The
naming conventions would ideally be checked for consis-
tency either by tooling or a language mechanism.

4.3 SLIP
The main drivers behind the modularization of SLIP’s imple-
mentation are purpose and dominating invariants. In all suc-
cessive versions of the SLIP interpreters, the memory mod-
ule is the most prevailing one, since it underlies all aspects of
the interpreter. Another important module is the thread mod-
ule (not to be confused with multi-threading), which man-
ages continuations in terms of a thread of frames forming an
explicit stack.

Since memory management is the most cross-cutting as-
pect in SLIP, it was treated with special care. Together with
the garbage collector, conventions were introduced to mark
all functions that perform activities related to memory man-
agement. This naming convention makes it explicit where
on-stack pointers to heap objects have to be refetched after
a potential GC. While the RoarVM applied an approach that
made distinctions for different cases, SLIP implementations
apply a consistent refetch-always policy.

These are the most obvious cross-cutting concerns in
SLIP, and our conclusion is similar to the one for RoarVM:
the VM implementation could benefit from either being im-
plemented in a garbage-collected language, removing the
need for such conventions, or in a language that enforces the
conventions of such suffixes and pointer refetching policy.

4.3.1 Experiment: Multi-Threading
SLIP version 14 adds support for the concurrency constructs
spawn and sync. The special form spawn starts a process,
i. e., a POSIX thread. Its companion procedure sync blocks
on a process until that process has completed and returns
its result. To this end, the concurrency module and the
context module were added. The addition of the concur-
rency module, encapsulating implementation details of the

operating system’s threading library, did not impact the de-
sign of the existing implementation.

However, the context module is based on a redesign and
remodularization of the system. The context module defines
the execution context for each process, including the cur-
rent expression or value, environment, frame, and the thread
of frames. The context becomes the central element of ex-
ecution and is required everywhere in the system. All calls to
the thread module, environment module and memory man-
ager module are first channeled through the context module.
The context module ensures the relevant invariants—most
notably the safepoint management—and will then dispatch
the actual work to a more specific module.

We conclude that the complete remodularized with re-
gard to the new dominating invariants resulted in a system
with high consistency and maintainability. However, invest-
ing such an effort is not always possible, and it is also not
clear how to trade off the different invariants to determine
the dominating one in the general case. While language sup-
port can help, refactoring tools would be more beneficial.

5. Related Work
A similar study was done by Haupt et al. [5] regarding the
general approach for modularization of virtual machines.
They find that there is no single strategy to decompose multi-
ple VMs. However, they find that VM services are frequently
the main entities constituting modules. The study does not
regard aspects of concurrency and therefore it remains un-
clear whether concurrency was guiding modularization.

Cantrill and Bonwick [2] discuss concurrency as a gen-
eral concern of system software. They give advice on how
to build complex systems. The two most important points of
advice are (i) do synchronization on shared state into a single
module, and (ii) avoid mutable shared state where possible.
This coincides with our experience as well.

6. Conclusions
Our case study lead us to the conclusion that concurrency is
one of the main drivers for modularization. Techniques like
communicating event loops encourage designs with clear
communication interfaces that avoid shared mutable state
where possible. If shared state cannot be avoided, it should
be internal to a module. Such a design simplifies reasoning
about correctness and freedom of data races significantly.

We identified a couple of techniques that support such de-
signs. The use of operating system processes makes shared
memory explicit, raising awareness for sharing and potential
data races. A notion of ownership would refine this further
when mutation is restricted to owners, and ownership could
be transferred. Support for immutability, single assignment,
and asynchronous message passing are valuable language
constructs, too. None of these techniques is directly related
to modularization concepts; however, from our perspective
these concepts would be the necessary foundation to enable

better modularization of complex systems. They enable de-
velopers to contain mutation, and thus concurrency issues,
inside of module boundaries.

Concurrency invariants are one of the strongest drivers
behind modularization decisions. Often, they are the hard-
est part to get right and this inherent complexity can justify
remodularization of a system to ensure correctness. This re-
quires a language with expressive modularization constructs.
However, it is even more essential to have good tools to sup-
port refactoring and remodularization when necessary.

The cross-cutting aspects we found most important are
related to global invariants like synchronization and garbage
collection. None of these seem to be amenable to modular-
ization. We found them to be extremely tied to the code.
They would require one-to-one mapping of aspects onto join
points, which would reduce maintainability and increase the
chance of subtle bugs. Instead, for these kind of problems,
we expect better results from approaches that enable us to
verify the consistency of applied conventions. Possible ap-
proaches could be smart annotations [6] or PyPy’s applica-
tion of a transformation pipeline [7].

Acknowledgments
Stefan Marr is supported by doctoral scholarships granted
by IWT-Vlaanderen, Belgium. Jens Nicolay is funded by the
COGNAC project sponsored by FWO Vlaanderen. Tom Van
Cutsem is a post-doctoral fellow of FWO Vlaanderen.

References
[1] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,

K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. SIGPLAN Not., 30(8):207–216, 1995.

[2] B. Cantrill and J. Bonwick. Real-world concurrency. Commun.
ACM, 51(11):34–39, 2008.

[3] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for
flexible alias protection. In Proc. of OOPSLA’98, 1998.

[4] T. V. Cutsem, S. Mostinckx, E. G. Boix, J. Dedecker, and W. D.
Meuter. Ambienttalk: Object-oriented event-driven program-
ming in mobile ad hoc networks. XXVI International Confer-
ence of the Chilean Society of Computer Science (SCCC’07),
pages 3–12, 2007.

[5] M. Haupt, B. Adams, S. Timbermont, C. Gibbs, Y. Coady, and
R. Hirschfeld. Disentangling virtual machine architecture. IET
Software, Special Issue on Domain-Specific Aspect Languages,
3(3):201–218, June 2009.

[6] A. Kellens, C. Noguera, K. De Schutter, C. De Roover, and
T. D’Hondt. Co-evolving annotations and source code through
smart annotations. In Proc. of CSMR’10. IEEE CS, 2010.

[7] A. Rigo and S. Pedroni. Pypy’s approach to virtual machine
construction. In Proc. of OOPSLA’06, pages 944–953, 2006.

[8] D. Ungar and S. S. Adams. Harnessing emergence for many-
core programming: Early experience integrating ensembles, ad-
verbs, and object-based inheritance. In Proc. of SPLASH’10,
pages 19–26. ACM, 2010.

[9] D. Ungar and S. S. Adams. Hosting an object heap on manycore
hardware: An exploration. In Proc. of DLS’09. ACM, 2009.

