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Here we expound in detail our group-theoretical argu-
ments about the symmetry of the superconducting or-
der parameter. We also present the associated nodal
structure of the quasiparticle spectrum. The analysis
presented here applies to any superconductor with D4h

point group symmetry, broken time-reversal symmetry
and strong spin-orbit coupling. Besides Lu5Rh6Sn18, the
ruthenate superconductor Sr2RuO4 has been recently ar-
gued to fall within this category [1]. We note, however,
that our present analysis does allow for singlet-triplet
mixing as put forward in reference [1].

Barring an independent magnetic transition whose
critical temperature is fine-tuned to coincide with the su-
perconducting critical temperature, the sudden increase
in the muon spin relaxation at Tc suggests that the su-
perconducting state breaks time-reversal symmetry. As-
suming that the superconductivity is static and does not
break the translational symmetry of the lattice, it can
be characterised by a momentum-dependent pairing po-
tential ∆α,β(k). Here α, β =↑ or ↓ are the spin indices
of the two electrons in a Cooper pair and ~k is the mo-
mentum of one of the electrons with respect to the centre
of mass of the pair. Standard symmetry analysis [2, 3]

yields ∆α,β(k) =
∑D
n=1 ∆nΓnα,β(k) just below Tc, where

the functions Γnn=1,2,...,D form a basis set of one of the
irreducible representations of the point group of the crys-
tal, of dimension D. The form of the coefficients ∆n is
obtained by minimizing generic free energies of the ap-
propriate symmetry. The superconducting state breaks
time-reversal symmetry if D > 1 and two or more coeffi-
cients have different complex phases [2]. The quasiparti-
cle spectrum is then given by the diagonalisation of the
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Bogoliubov-de Gennes Hamiltonian

HBdG =


ε(k)− µ 0 ∆↑↑(k) ∆↑↓(k)

0 ε(k)− µ ∆↓↑(k) ∆↓↓(k)
∆∗↑↑(k) ∆∗↓↑(k) −ε(k) + µ 0

∆∗↑↓(k) ∆∗↓↓(k) 0 −ε(k) + µ

 ,

(1)
where ε(k) is the single-electron dispersion relation, mea-
sured from the chemical potential. Note that in non-
centrosymmetric systems (not considered here) the off-
diagonal elements in the single-electron dispersion rela-
tion would be essential.

For the space group I41/acd the relevant point group is
tetragonal D4h [4] which has been thoroughly examined
in the context of cuprate superconductivity [2, 3]. Let
us first consider the case of singlet pairing. Quite gen-
erally, ∆̂(k) = ∆0(k)iσ̂y (where σ̂y, is the second Pauli
matrices). Following Ref. [2], for the point group of in-
terest, there are 7 possible instabilities, only one of which
(corresponding to the 1Eg(c) irrep) breaks time-reversal
symmetry. The gap function in this case has the form [2]

∆0(k) = (X + iY )Z (2)

where X,Y, Z are three real functions of k that trans-
form as kx, ky and kz, respectively, under the point
group symmetry operations. Fig. 1 (a) depicts the size,
at the Fermi surface, of the corresponding gap in the
quasiparticle energy spectrum, ∝ ∆0(k), obtained by as-
suming an isotropic single-electron dispersion relation,
ε(k) = ~2|k|2/2m∗ (yielding a spherical Fermi surface)
and taking the simplest forms for the functions X,Y, Z,
namely kx, ky and kz, respectively. The gap is given as
follows

∆(k) ∝ |kz|
√
k2
x + k2

y (3)

and so the low energy excitations would be dominated by
a line node at the equator (kz = 0), leading to a specific
heat proportional to T 2 at low temperatures T � Tc
(the only exception being if the Fermi surface does not
traverse the kz = 0 plane, which is unlikely). In addition,
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FIG. 1: Four possible forms of the gap in the quasi-particle en-
ergy spectrum, plotted on a spherical Fermi surface. (a) Sin-
glet gap function [Eq. (2)] showing a line node on the equator
and two linear point nodes at the “North” (N) and “South”
(S) poles. (b-d) The same but for the triplet gap function
[Eq. (4)] with B � A, B ∼ A and B � A, respectively. In all
cases we assumed the functions X,Y, Z in Eqs. (2,4) to take
their simplest forms: kx, ky and kz, respectively.

there are point nodes at the “North” (N) and “South”
(S) poles of the Fermi surface.

In the case of triplet pairing, i.e. ∆̂(k) = i [d(k).σ̂] σ̂y,
the double group combining the point group of the crystal
with spin rotations has to be considered. Still following
[2], for D4h we find once more that only one of 7 possible
instabilities (corresponding to the Eu(c) irrep of the dou-
ble group) breaks time-reversal symmetry. The d-vector
in this case is given by [2]

d(k) = (AZ, iAZ,B(X + iY )) (4)

where the real coefficients A and B depend on details of
the band structure and effective electron-electron inter-
actions. This gap function corresponds to non-unitary
triplet pairing as d∗ × d 6= 0.

The gap for this triplet case, with the same simplifying
assumptions used above, is depicted in Fig. 1 (b-d). Its
formula is

∆(k) ∝
∣∣∣∣A|kz| −√A2k2

z +B2
(
k2
x + k2

y

)∣∣∣∣ (5)

Interestingly, the spectrum also features two point nodes
at X = Y = 0, but in this case the point nodes are
“shallow” using the terminology of [5]. Indeed this in-
stability is analogous to the E2u instability proposed for
UPt3 which also features a shallow node [6]. These nodes
become ordinary linear nodes when B � A, while they
expand to cover the whole Fermi surface in the oppo-
site limit, B � A (gapless superconductivity). Thus we
expect the power-law exponent n characterising the low-
temperature behaviour of the specific heat, C ∼ Tn, to
be 1, 2, and 3 for the cases represented in panels (b), (c)
and (d), respectively.

Non-unitary triplet pairing leads to the breaking of the
two-fold degeneracy between the spin-up and spin-down
parts of the quasi-particle spectrum. In this case we ex-
pect the superconducting instability to be accompanied
by a bulk magnetisation that grows linearly with Tc − T
for T . Tc and which acts as a sub-dominant order pa-
rameter [7, 8]. The linear increase of the muon spin re-
laxation rate λ that we observe experimentally (see Fig.
4 of the main text) also increases linearly below Tc, which
suggests that λ is simply proportional to this (very small
[8]) bulk magnetisation.

We emphasise that the power laws mentioned above
are only expected to be realised in the limit of very low
temperatures (T � Tc). Moreover, if the topology of
the Fermi surface departs significantly from a sphere the
spectrum may become fully-gapped i.e. C ∼ e−∆/T for
T � Tc. Specifically, the triplet pairing potential may
lead to a fully-gapped spectrum if the Fermi surface is
open at the top and the bottom, so that it never cuts
the N and S poles (e.g. a warped cylinder). In contrast
the singlet order parameter would lead to line nodes with
C ∼ T 2 at low temperatures always. Finally, we point
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out that a broader range of possibilities emerge if spin-
orbit coupling happens to be weak enough to be neglected
[2]. In that case two or more non TRS-breaking instabil-
ities may merge to give new TRS-breaking ones [9].
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