University of

"1l Kent Academic Repository

Lorrentz, Pierre, Howells, Gareth and McDonald-Maier, Klaus D. (2008)

An FPGA Based Adaptive Weightless Neural Network Hardware. In: Keymeulen,
Didier and Arslan, Tughrul and Seuss, Martin and Stoica, Adrian and Erdogan,
Ahmet T. and Merodio, David, eds. 2008 NASA/ESA Conference on Adaptive
Hardware and Systems. IEEE, pp. 220-227. ISBN 978-0-7695-3166-3.

Downloaded from
https://kar.kent.ac.uk/14766/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/AHS.2008.19

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14766/
https://doi.org/10.1109/AHS.2008.19
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

An FPGA based adaptive weightless Neural Network Hardware

P. Lorrentz®, W. G. J. Howells",
a5 Department of Electronics,
University of Kent, Canterbury, Kent,
CT2 7NT, UK.
aTel: +44(0)7813089916

2 plorrentz@gmail.com
b W.G. J.Howells@kent.ac.uk

Abstract

This paper explores the significant practical
difficulties inherent in mapping large artificial
neural structures onto digital hardware. Specifically,
a class of weightless neural architecture called the
Enhanced Probabilistic Convergent Network is
examined due to the inherent simplicity of the control
algorithms associated with the architecture. The
advantages for such an approach follow from the
observation that, for many situations for which an
intelligent machine requires very fast, unmanned,
and uninterrupted responses, a PC-based system is
unsuitable especially in electronically harsh and
isolated conditions, The target architecture for the
design is an FPGA, the Virtex-1l pro which is
statically and dynamically reconfigurable, enhancing
its suitability for an adaptive weightless neural
networks. This hardware is tested on a benchmark of
unconstrained handwritten numbers from the
National Institute of Standards and Technology
(NIST), USA.

1. Introduction

Learning and reasoning [16], in a digital hardware,
may lead to adaptation and reconfiguration. Neural
networks have shown to be well suited to learn from
examples and adapt to non-linear environments, but
many variants are rather resource intensive and
therefore prohibitive in practical embedded
applications [2]. However, one class of neural
networks is more suited to implementation in
hardware - the so-called weightless neural networks
can be well matched to RAM (Random Access
Memory) because their learning and recognition
algorithms are mainly associated with reading from
and writing to memory.

The aims and objectives of this paper are to present
the architecture, and the implementation of an
adaptive RAM-based neural network, called
Enhanced Probabilistic Convergent Network (EPCN)
[10],ina

K.D.McDonald-M aier®
“Department of Computing and
Electronic Systems,
University of Essex, Wivenhoe Park,
Colchester, CO4 3SQ, UK.

¢ kdm@essex.ac.uk

reconfigurable FPGA. Hardware implementations of

EPCN is attractive for the following reasons:

1) Compact size and low power consumption
compared to a PC based implementation
(i.e. it becomes deployable in areas where a PC
may not).

2) The binary weights of RAM -based neural
networks are contained in RAM, and functions
are converted to simple logic gates (AND, NOT,
and OR). The logic combinations required to
operate the EPCN are of lesser computational
intensity than calculus operations.

3) Regular structure: Generally, RAM -based
Artificial Neural Network (ANN) are easier to
implement on hardware due to their regular
structure.

4) The use of reconfigurable IC like FPGA to
implement neural network allows fast
prototyping and lends itself to modifications at
low cost. This makes it a suitable testbed prior to
large-volume production.

5) A well designed VHDL based hardware will
allow a significant increase in processing
thouroughput compared to a software based
execution on a general processor.

When this project completes, it is envisaged that

Machine Intelligent Quotient (MIQ) may be a

measure of its performance. Chalfant [1] introduced

a MIQ and proposes the analysis of system

architecture and configuration as the criteria for its

measurement. Commuri [16] maintains that an
architecture of adaptation and learning at all levels of
hierarchy simplifies the measurement of MIQ.

Learning of a neural network by reconfiguration is

demonstrated in [9] using a Virtex-ll 6000 FPGA. In

[2], Simoes employs ALTERA MAX + PLUS Il in

the implementation of Goal Seeking neuron (GSN)

on Eraseable Programming Logic Device (EPLD).

The EPLD is used in classification of British mail

postal addresses. Spaanenburg [9] implements two

neural networks, one is a feed-forward network to
solve the problem of spatial and temporal computing.

The second is implementation of Cellular Neural

Networks (CNN) for image processing. The FPGA

used is Virtex-Il 6000 and the learning of these

networks were made to depend on reconfiguration

Pre-group
Merge
layer
for
pre-
group
Input pattérn

Main-group

output

|
-
i

I =251

Figure 1. EPCN architecture.

capability of this FPGA. Freeman [11], designed a
co-processor based on a binary neural unit known as
Correlation Matrix Memory (CMM) which is used
for approximate high-speed search and match
operations on large datasets. Botelho [17]
implements Goal Seeking Neuron (GSN), a RAM -
based neural network, on Khepera mobile robot for
control and navigation. The RAM -based neural
networks in [9],[17], designed on FPGA were
deployed in autonomous systems. Most of these
systems are application dedicated systems, often for
one purpose only. However, the principled EPCN
system is generic and highly scaleable. The EPCN
when implemented on FPGA could be employed
both for prediction and recognition It would thus
become suited to a multitude of applications. In this
paper however, the hardware is tested on a
benchmark of unconstrained handwritten integers
from National Institute of Standards and Technology
(NIST), USA.

The remainder of this paper is organized as follows.
Section 2 introduces the EPCN architecture. The
FPGA -based Hardware architecture of EPCN, and its
implementation are presented in section 3. The
functional testing, and results are presented in section
4. The paper concludes with an analysis of the state
of project in section 5, and areas of further research
and development are specified in section 6.

2. EPCN - The Enhanced Probabilistic
Convergent Network

Weighted Neural Network are those Neural
Networks whose performances depend on weights

and adjustment of the weights. Conversely, Neural
Networks whose performance and system parameters
are independent of weights (and their adjustments)
are called weightless Neural Networks or sometimes
RAM-based Neural Networks [5]. The Enhanced

T
i ‘

. Merge |

layer |

I

s s seass Feadhack —~~ "~ Y

Probabilistic Convergent Network (EPCN) belongs
to this latter category.

The architecture of EPCN consists primarily of
four component layers of neurons termed the pre-
group, a merge-layer for the pre-group, the main-
group, and merge-layer for the main-group, as shown
in Figure 1. It includes an optional feedback path
(represented by dashed arrows) from the merge
layer of the main group to the main-group. Each
group of the EPCN consist of a number of layers
with each member layer consisting of component
neurons which are themselves made up of storage
locations known as RAM -locations, as shown in
Figure 2.

A Neuwron
ALayer
0123k . >l - Classes
RAM-locations

Figure2. AnEPCN neuron.

Each storage location is divided into separate
values for each pattern class under consideration
for the neuron. The EPCN has a learning algorithm
for which the pre-group layers play a vital role. The
pre-group layers are subsequently merged to give a
merged layer for the pre-group, [15],[18]. The
merged pre-group layers’ outputs are passed to the
main-group layers, ending in a merged layer for the
main-group.

During learning and recognition, an integer number
called the division is required for adjustment
purposes. The term adjustment refers to multiplying
the integer value in a RAM -location by the division
and dividing by the number training patterns per
class. The adjustment is necessary for all classes to

be treated equivalently when the number of pattern of-the-art design is employed by Bin Azar [3] who

per class varies between classes. Both learning and utilizes a WISARD discriminator to design a
recognition algorithms are now presented weightless NN for robot navigation. [3] states that
WISARD discriminator does not exhibit
2.1 Training algorithm generalisation inherently. In his implementation,
memorization and generalisation abilities were
Within the EPCN architecture, learning is mainly the achieved by setting 120 neurons manually. The
process of presenting the individual training patterns CMM relies on bitwise OR of input space during
for connectivity formation and recording the address learning, and dot-product during recall phase. This
so formed. The layers within the pre-group of the find application in the design of C-NNAP [6].
network are all trained independently. For a given Following is a comparison between EPCN designed
fixed number of pattern classes, only the layers within in this paper and a typical state-of-the-art design [3].
the pre-group are trained. Learning proceeds as
follows for each sample pattern in the training set:- Table 1. Comparison of FPGA based, typical weightloss
(1) Prior to the commencement of training, all neuralnetwork, and EPCN
locations are initialised to zero. Truieal metehuers BeCH
(2) Each pattern sample is subsequently presented to Discriminator or No discriminator or
the network in turn. correlation matrix comrelated matrix
(3) For each neuron within a pre-group layer, an L e et
address is formed using the elements of the classifier —
Sample tl‘alnl ng pattem ;)elileesr:lf:";'ﬂi.;ﬁul Inherent generallsatlon
(4) Depending on the address so formed, the May requirc manual Docs not permit manual
respective RAM -location is incremented for the waning e 2] LOGL TN, =
K inary 17 or ~a") Vector outpul — scaled
given pattern class. output probability valuecs.
(5) Subsequent to the completion of training, an :3“:15;”"‘5 Integer ourput

adjustment phase occurs to normalise the natural
number in each RAM -location.

3. The FPGA-based hardware

2.2 Recognition algorithm .
architecture of EPCN

Analogously to the learning algorithm, the

recognition procedure consists of first presenting to In this section, the architecture of EPCN is proposed

the network the pattern to be classified. Recognition that forms a complex hierarchical systems. The
proceeds as follows:- design is sub-divided into pre-processing _mput dgta,

(1) As for the training process, an address is formed core. modules of EPCN, hashing function (unit),
for each neuron using the elements within the reconfiguration, and memory management.
pattern meant for recognition.

(2) The contents of the corresponding location so
addressed will be modified.

(3) An averaging process is employed on the main-
group layers which subsequently produce a
merge layer for the main group.

(4) After the merge, an adjustment is required,
thisemploys the number division.

3.1 Pre-processing

The EPCN’s pre-processing steps include the
reading in of the input data, or querying a terminal
from where the input is to come. The EPCN expects
the input values to be expressed in binary number. A
compression algorithm, the Lempel-Zif algorithm [7]
is included in the pre-processing steps. Most of the

(5) The output of the main-group is fed back common identical data points in the classes will be
iteratively. ~As the iteration proceeds, the removed by Lempel-Zif algorithm in order to permit
probability measures for the classes tend to real-time rescaling of input pattern as and when
stabilise. If the network reaches a repeating required. For examp|e’ the input, Figure S(a)’ is pre-
sequence of states rather than a single processed resulting in Figure 3(b) during input
converged state, iteration may be limited. processing.

2.3 Other similar weightless Neural networks

Almost all weightless NN are derived from either of

these units
. WISARD discriminator [4]
. Correlation matrix memory [6]

To date, these units are used in various com bination
to design weightless neural networks. A typical state-

0000000 00000000000000000C0000000
Qoo00I0ooo0o0C0000000000Coanooon
000D0DdCo0a0000000000000C00D0LO0
QU000 oo0oUo0o0o00UgoUCoa0o Lo
00200000 0000000000000000COD00 000
QoopoD0oQQI0000C0o000dL LCoDD0D0g
0oa0000000000000000001 1 1C0a0nmoon
0000000000000 00000001 1 100 d 00000
10 00 O 0 00 00 £ DOVENOD 000 1 L0 00 0 O
OoODOMOON00D0DDO00D00 110000000000
Q0000000000000 0000000000C0 000000
Ananandoa0annononnl 100000000000

RAgmeguwneg

nwn

(1Z; = QQ00DODCOCOCQQOOCDO00110000C00D0OD00
€13} = 002000CCO00000C0000110000C0000000
ile! = Q000000CO0000C0OLLLIL0000CO0D0000
{15} = 0OUODDDOUODOOOUDDOOL1DUO0UOUCOODOOOD
(18] = 0090ODCO00000111000000000 300000
{17} = 0O00D0ODCCOCQQO0C01110000000C00D0OD00
(18] = O020OMACANARA0NAOO000000C0 AN M0
(12 = J00D000C0000011000C00000C0000000
{20} = 000DDDCCOCOCOL1ID00D0000000CO0D0OD0O0
{21} = 0000000C0011000000000000CO%00000
{2Z; = 0UdDDDOUDLLlUCDODOUUUUOUCODODODODD
{23) = 0000000101110C0000000000C000000

00000001 L100000000000000C0 000000
QO00D1LL1l1l000000000000000o0o00 o0
000001110000000000000000Ca000000
QooDp11110000000000000000C0000000
Ql1111100000000000000000C0D00000
0l11111100000000000000000C0200000
001100000000000000000000C0000000
001110000000000000000000C0 300000

(@)

0)
L
2)
3
4
£
€]
L
=1

00000000000000010000
00000000000000011100
00000000000000011000
00000000000000111000
00000000000011100000
0000Q00000LL11100000
0000Q000L11111000000
000OD0OLL11010000000
00000001110000000000
00000011100000000000
00001110000000000000
00001110000000000000
00111110000000000000
00L11000000000000000
01110000000000000000

11 1 AMNNAAR RN NN

(Lo
(L1
(1z)
(13
(14}

38

(b)

Figure 3. The pre-processing; 3 (a) is
pre-processed resulting in 3(b).

LI T T I T T}

3.2 TheEPCN

The EPCN is here described using the hierarchical
system of design. The design is synthesised by
Xilinx ISE during which EPCN is analysed and
converted into digital circuit components. Figure 4
shows the main block modules constituting the
EPCN architecture. In Figure 4, the train-block and
the recognise-block are both connected to the input
pre-processing block via the control unit and the
hashing function that produces the addresses. The
control unit initiates pre-processing when data are
available at the input. After the completion of pre-
processing of the input training data, it initiates the
training processes (section 2.1). The train-block
signals a finish flag when training completes. On
reception of learn-flag-complete, the control unit
checks the recognition input for data. When data is
present, pre-processing is done for the pattern meant
for recognition. When the pre-processing-stop flag is
detected by the control unit, the recognition block

starts the recognition processes (section 2.2). The
output block is monitored by the control unit through
a feedback system. lteration of the recognition
processes stops when values in the output block are
stable, by querying the output block, or after a pre-
defined number of iteration steps.

The overriding majority of the EPCN block
architecture consist of memory. Its functional
behaviour is concentrated on data flow from and to
these memory locations. The memory location in
EPCN is described as single-port block RAM driven
by aregistered read address and a synchronous write
operation.

Input pre- Hashing Output
Hashing 4| processing
A

&
| I .
¢ 1
Recogni i
Tradn scognise :
Y Iy i
Conirol = :
» IR

Figure 4. The block-diagram of EPCN FPGA
architecture.

3.3 Hashing

A hashing function is often used to search and
retrieve information from memory. Such a hashing
function as used in [11] is based on bit-folding,
XOR, and pseudo-random number generator.

In this paper however the hashing function
implemented is based on XOR and Maximum -length
Shift-register code [7]. Maximum-length shift-
register codes generates a systematic code with
desired output length;

n=2"-1 - (1)
where m is the information bit derived from input
pattern. The code words are normally generated by
m-stage digital shift register with feedback. The
generation of the code words depend on parity
polynomials h(p) given by;
h(p) = p* + hip + ..+ hop® - (2)

The maximum-length shift-register codes (MLSR)
are dual of cyclic Hamming codes.

Bits in the pattern become the information bits. The
hashing is used for address (connectivity) formation.
Data will be written to or retrieved from the LUT-
RAM location whose address is so formed. Examples
to illustrate this are given below.

Example I: when m = 3; equation (1) becomes
n=2"-1=2°-1=7,

This means that 7 addresses are required. In equation
(2) the parity polynomial h(p) becomes;
h(p) = p’ + hep® + ...+ hop® ----moe (3);

In equation (3) it is seen that the coefficient of p”’ is
1. h, (i =0,1,2,...7) is such that hk_lpk'1 is an integer
between 7 and 0. This is a constraint to be satisfied.
Most of the values of h,,p“* will be zero. Looking
at Figure 5, it is seen that non of the values assigned
to “ttuple” is greater than 7.

tcol =

{00000C00000C000000C0000030001000 CO000I0CO00000000000000000001000
000000000000C000000C000000000100 QCODOOO0C000000000000000000000L0
000000000000CA000000000003000110 AC000A00000000000000000000000151
000000000000C0000000000000000111 OCOOOO00CCO00000000000000000001L
000000000000C0000000000000000001 OCO00000000000000000000000000000)
tclas =

{00000000000C000000C0000000000011 CO00000I000000000000000000000001
0000000000000 000000000000300L0C00 DLO000D0C00000000000000000000100
000000000000C000000C000000000010 ODO0OOO000000000000000000000100L
000000C00000C0000000000000000110 OCO00O00C0000000000000000000010L
000000000000C000000C000000000111 OCO00O00000000000000000000000000)
ttuple =

{00000C00000C000000C0000020000111 COQO000CO00000000000000000000LL1
000000000000C0000000000000000111 00000000000000000000000000000100

000000000000C0000000000000000010 0COO0000C00000000000000000000LL0
000000000000C00000000000000001C1 OCO00000C0000000000000000000D01L
000000200000C00000000000000000C1 OCO00000000000000000000000000000)
trow =

100000C00000C000000C0000000001000 COO0DD0CO00000000000000000001000
000000000000C00000000000000001C1 0CO00000000000000000000000000L1L
000000000000C0000000000000000011 OCOO000000000000000000000000000L
000000000000C00003000300000001C0 OCO00000C000000000000000000000L0
000000000000C000000000000I000110 OC00NAN0000000000000000000000000)

Figure 5. This are (an instance of) connectivity
derived from input pattern by hashing. Here
“ttuple” and “tclas” are for neuron location,
while “trow” and “tcols” are pre-group layer
addresses.

Example II: What if ten addresses are required none
of which should be greater than 10?.
Answer: Recall that 2* > 10 > 23, So that when m =
4; equation (1) becomes
n=2"-1=2%-1=15;

and in equation (2), the parity polynomial h(p) gives

h(p) = p*® + hygp™* + .ot hgp® -ooeee- (4);
In equation (4) it is seen that the coefficient of p*® is
1.h;, (i =0,12,..15) is such that hk_lpk'1 is an integer
between 15 and 0. Since no connectivity should be
greater than 10, h(p) equates to zero for those values
that are not required.
In practice however, zero is a valid address. To
distinguish between unwanted zeros and wanted
zeros as addresses, the register values in the location
whose values are not required are set to 2" . Then
these locations are not accessed.
The information bits in a pattern characterise that
pattern, and thus the connectivity is reproducible.

3.4 Reconfiguration

The network structure and size changes with
learning and classification. In practice the maximum
size and structure is limited dependant on the
hardware resources. The number of pre-group layers,
the number of main-group layers, and the division

(see section 2) could be referred to as system
parameters. Different EPCNs, characterized by
different system parameters, are obtainable from this
single implemented adaptive system. This is done by
specifying different system parameters during
reconfiguration. Preliminary experimentation has
revealed that the available resource of the specific
FPGA used supports to a maximum of:

* Tuple-size = 4;

* Pre-group layers = 5;

* Main-group layers = 5;

* Class=15;

* Number of neuron per layer 20-by-15;

The design is such that these values are not
exceeded. The control unit mediates between the pre-
processing unit and the hashing function (unit) to
ensure that the size of the pattern used within the
EPCN does not exceed the maximum neuron size
possible. The possibility of reducing every pattern
size below this value (20-by-15) always exists. This
solves the boundary problems. The pre-processing is
such that vital information is retained within the
pattern after pre-processing.

package mathneuro? is

constant tupleinteger:=3;
constant divisn: integer:=1000;

end mathneuroZ;

entity eponwvl is
Porc (...
noslay:in std legic_wector (2 dowmto 0);

1
end epconwl;
Figure 6. This shows system parameters that are
mainly responsible for reconfiguration

The number of pre-group layers is changeable
before a training session begins. The number of
neurons per layer is automatically determined from
input training patterns after pre-processing. The
number of main-group layers is changeable before a
recognition session begins. The number of neuron
per main-group layer is automatically determined
from the “recognition” pattern after pre -processing.

The number division (see section 2 for definition)
used during various adjustment (see section 2)
phases could vary from 1 to 2. The possibility of
the variability in system parameters are vital to static
and dynamic reconfiguration. Varying the number of
pre-group layer is done by specifying a value to the
variable “noslay” before training begins, see Figure
6. So also, varying the number of main-group layer
is done by specifying a value to the variable “noslay”
before recognition begins. Changing the value
assigned to division is done by prefixing “constant

divisn” (Figure 6)with a “generic” statement. This is
done before a training and a recognition session pair.

3.5 Memory management

As indicated previously, the memory location in
EPCN is described as single-port block RAM driven
by a registered read address and a synchronous write
operation. in Xilinx’s LUT-RAM.

The memory management is handled by the control
unit, see Figure 4. During a read operation from a
location, a write operation is disabled with respect to
that location. During a write operation to a location,
any read operation from that same location is
disabled.

As concerning the buses, a read/write enable/disable
operation depends on the addresses formed from the
pattern. The FPGA consists of configurable logic
blocks (CLBs). These CLBs are inter-connected by
buses. Activating a bus, and which bus is being
activated depends on if its address is formed.
Activating a bus is necessary prior to a read/write
operation, otherwise a read/write operation is not
possible on that bus. A read and write addresses,
with respect to one bus will not be formed at the
same time. It is either a read address or a write
address. It ensures that values are not written to and
read from the same bus at the same time. This is
commonly referred to as bus contention.

4. Results

The EPCN was designed and implemented using
Xilinx ISE 9.21i. The NIST data base® has been used
for testing the functionality of EPCN and has been
found suitable for use. Testing was done hy
instantiating the EPCN in a test-bench and
associating the NIST handwritten data set with its
input.

The prototyping boards is linked to the computer
via a USB programming cable. Auto-recognition of
the programming cable by Xilinx ISE enables the
download of the bit file generated from EPCN, and
configuration of the board by impact (component of
Xilinx ISE) using PROM file generated from EPCN.
To display the output of EPCN on board the FP GA,
RS232 cable is connected via the com port and
linked to the HyperTerminal at a baud rate of 2400 -
9600. Recognition results are displayed on the
HyperTerminal in a PC. Internal to the virtex-Il pro
FPGA is a 2MB SDRAM. External SDRAM at 2GB
is also attached. This makes possible an increased
number of LUTS generated and utilized during
learning and recognition of EPCN in FPGA.

! National Institute of Standards and Technology
(NIST) in Gaithersburg USA. NIST provide the
handwritten simple form (HFS) of numerals, which
were binarised and resize to 32-by-32.

An example of the FPGA resource utilisation of
EPCN is shown in Table 2. These are the resource
requirements for the following EPCN architecture:
Tuple-size = 3;

* Pre-group layers = 3;

* Main-group layers = 2;

* Class=10;

e Number of neuron per layer 20-by-15;

Table 2. An example of resource utilisation
showing the conversion of EPCN to gate-level
components.

Logic Utilisation Usd | Available | Used %
Total Nunber Sliee Regirters (SK) L2 nm %
Tt Nunber SR wed as Fip flops L1l 11| we
Nunberof 4ingutLUTs 13 nn 12%
Numberof ocowpied Slees M 136% 1%
Nurherof Sies containing ordy relsed beie | 2492 240 100% |
Nurher ofbondad 10Bs) 41 5%
Nunberof GCLKs : I 12%

From Table 2, it is seen that the resource utilisation
isrelatively low for the given example network.

Using the NIST handwritten integers, the EPCN is
trained on 0 to 9, and during recognition requested to
recognise “1”. Data for training are selected from the
training set while patterns for recognition were
selected from recognition set. Both training set and
recognition set form disjoint sets.

yep.desout = (0000000000T0CO00 00OOOL1NL000110L QO00OLLOLODDLLOL
2000001010010L10 0000001001011001 0000000003000000 000J000000000DCO
1000000001111010 0000011010100010 0000110161131100

J0000C00000C0000}
{0) = 000O00KDO0DOCO00

{1} = D00001L01000L100
{21 = 000001101000L101
{3) = 0000001010010110
{41 = 000000L0OID1LO0L
{5} = 000000D0O0DOCO0D
(€} = 000000DOOOCOCCOD
{71 = 00000000OL11LOL0
{€) = 000001101010C0L0
(%) = 000011010110L100

Figure 7. Wrong recognition: A recognition
result from EPCN when trained on “0” to “9”,
and shown “1” in recognition phase.

Result of type figure 7 shown above is obtained
when a pattern is shown to the network for
recognition. Figure 7 shows the result when one
input pattern is shown to the network for recognition.
In this figure, the numbers 1,2,3,...,9, on the left-
hand-side represents the classes while the binary
numbers to the right-hand-side represents the
probability (scaled by division) with which the

grp.desolt = {0000000000000000 0000011 010001101 0000011 010001101

0000001 010010110 0000001001011 001 0000000000000000 0000000000 000000

0000000001111010 0000011010100010 0OOOOO0101101 100}
(0) = 0000000000000000
(1) = 0000011010001101
(2) = 0000011010001101
(3)= 000000101001 0110
(4) = 000000100101 1001
(5) = 0000000000000000
() = 0000000000000000
(7)= 0000000001111010
(8)=0000001010100010
(9) = 0000000101101100

Figure 8. Ambiguous state: A recognition
result from EPCN when trained on “0” to “9”,
and shown “1” in recognition phase.

grp.desout = {0000000000000000 0000011010001101 0000001 010001101
0000001 010010110 0000001001011 001 0000000000000000 00000 00000000000
0000000001111010 0000C11010100010 000000001101 100}

() = 000000000000 0000
(1) = 0000011010001101
(2) = D00ODM 010001101
(3) = DO0OOM 01001 0110
(4) = D000ODM 01011001
(5) = D000O0OO0000000000
(6 = DO00OODOO0000 0000
(7) = 0000000001111010
(8) = D000OM 010100010
(@) = DO00OODO1 01101100

Figure 9. Correct recognition: A recognition
result from EPCN when trained on “0” to “9”,
and shown “1” in recognition phase.

pattern belong to that class. By varying the
configuration of EPCN and showing it the same
pattern for recognition, different other results are
obtainable as shown in Figures 8 and 9. Three
possibilities exist in recognition processes of EPCN.
They are correct classification (Figure 9), ambiguous
classification (Figure 8), and wrong classification
(Figure 7). The binary numbers in Figure 8 and 9
has same meaning as in Figure 7.

5. Analysis

From the design and the example resource
utilisation, Table 2, it could be inferred that static
and dynamic variation both of precision (word
length) and system parameters are possible. As these
are fully supported by available resources, up to a
certain maximum (see the sub-section 3.4).

Figures 7,8 and 9 are result types obtainable from
EPCN. Figure 7 is a case of wrong classification,
while Figure 8 is an abiguous state. Figure 9 shows
correct recognition. These results are obtained when

character “1*’ is shown to EPCN. The different
outputs, due to changes in system parameters, is
indicative of the possibility of changes in desicion
due to changesin environment.

A pattern of 15-by-20 in size infers 300 neurons per
layer. And there are many of such layer in any
instance. This demonstrates the possibility of
implementing an advanced and large weightless
neural network, the EPCN, wholly on FPGA, the
pre-processing steps inclusive.

6. Conclusion

The EPCN has been shown to be portably and
wholly implement-able on FPGA. Pre-processing
steps have been included in this design. The results
demonstrate the possibility of implementation of a
large, advanced, and adaptive weightless EPCN in a
re-configurable FPGA.

Areas for further research include introduction of
machine intelligent quotient (M1Q) as a means of
self-assessment, and dynamic parameter tuning of
the network.

References

[1] E.C. Chalfant, S. Lee: Measuring the Intelligence of
Robotic Systems: An Engineering Perspective, Proc. Int.
Symposium on Intelligent Systems, Gaithersburg MD,
October 1999.

[2] E.V. Simdes, L.F. Uebel, D.A.C. Barone:
Hardware Implementation of RAM Neural Networks,
Pattern Recognition Letters, no. 17, pp. 421 - 429, 1996.

[3] Hannan Bin Azhar,M.A., Dimond K.R, Design of
an FPGA based adaptive neural controller for intelligent
robot navigation Digital System design,2002, Proceedings.
Euromicro Synposium 2002.

4] Igor Aleksander, from Wizard to Magnus: A family
of weightless virtual neural machines. Dept. of Electrical
and Electronic Engineering, Imperial College of Science
Technology and M edicine, London, UK.

[5] J. Austin (Ed.) :RAM-based neural networks, World
Scientific, 1998.

[6] J.V. Kennedy, J.Austin, R.Pack, B.cass: C-NNAP:
A dedicated processor for Binary Neural Networks;
Advanced Computer Architecture Group, Dept. of
Computer Science, University of York, Heslington, York,
YO15DD, UK.

7 John G. Proakis: Digital Communication, 4™
Edition, M cGraw Hill Int. Edition, 2001.
[8] L. Shang, Z. Yi, L. Ji: Binary Image Thinning

Using Autowaves Generated by PCNN, Neural Processing
L etters, 25:49 - 62, 2007.

[9] L. Spaanenburg, R. Alberts, C.H. Slump,
B.J.VanderZwaag: Natural learning of neural networks by
reconfiguration, pp. 273-284 (2003), in: Rodriguez-
Vazquez, A., Abbott, D. and Carmona, R. (eds.), SPIE Int.
Symp. On Microtechnologies for the new Millennium, Vol.
5119 (M aspalomas, Gran Canaria, Spain), 2003

[10] M. Fayyazi, Z. Navabi: Using VHDL Neural
Network Models for Automatic Test Generation, 2"
Workshop on Libraries, Component Modeling and Quality
Assurance, Toledo, Spain, April 1997.

[11] M. Freeman, J. Austin: Designing a binary
neural network co-processor, Digital System Design, 2005.
Proceedings. 8th Euromicro Conference on Volume , Issue,
Page(s): 223 - 226, 30 Aug.-3 Sept. 2005

[12] M. Freeman, M. Weeks, J. Austin: AICP: Aura
Intelligence co-processor for Binary Neural Networks, IP-
SOC, Grenoble, France, 2004.

[13] P. Lorrentz, W. G. H. Howells, K. D. McDonald-
Maier: A novel weightless neural based M ulti-classifier for
large classification, Neural processing letters (submitted),
2007.

[14] P. Lorrentz, W. G. H. Howells, K. D. McDonald-
Maier: Design and analysis of a novel weightless neural
based Multi-classifier, World Congress on Engineering,
2007.

[15] P. Lorrentz, W.G.H. Howells, K.D. McDonald-
Maier: Enhanced Probabilistic Convergent Network, in:
Proceedings of the 6™ International Conference on Recent
Advances in Soft Computing (RASC 2006), , pp. 267 -
272, 2006.

[16] S. Commuri, Y. Li, D. Hougen, and R. Fierro:
Evaluating intelligence in unmanned ground vehicle teams,
Performance Metrics for Intelligent Systems Workshop
(PerM1S°04), NIST, Gaithersburg, MD, 2004.

[17] S.S.C.Botelho, E.V.SimGes, L.F.Uebel,
D.A.C.Barone: High Speed Neural Control for Robot
Navigation, |EEE International Conference on systems,
man, and cybernetics, pp.421-429, Beijing, China, October
1996.

[18] W. G. J. Howells, M. C. Fairhurst, Faud Rahman:
An exploration of a new paradigm for weightless RAM-
based neural networks, Electronic, Connection Science,
Voln. 12, No.1 pp.65-9 , 2000.

[19] Xilinx ~ University ~ Program Virtex-| Pro
Development System: Hardware Reference Manual,
UG069, March 2005.

