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ABSTRACT 

 

With the continuing drop in the price of memory, Video-on-Demand (VoD) solutions that 

have so far focused on maximising the throughput of disk units with a minimal use of 

physical memory may now employ significant amounts of cache memory.  The subject of 

this thesis is the study of a technique to best utilise a memory buffer within such a VoD 

solution.  In particular, knowledge of the streams active on the server is used to allocate 

cache memory. 

Stream optimised caching exploits reuse of data among streams that are temporally 

close to each other within the same clip; the data fetched on behalf of the leading stream 

may be cached and reused by the following streams.  Therefore, only the leading stream 

requires access to the physical disk and the potential level of service provision allowed by 

the server may be increased. 

The use of stream optimised caching may consequently be limited to environments 

where reuse of data is significant.  As such, the technique examined within this thesis 

focuses on a classroom environment where user progress is generally linear and all users 

progress at approximately the same rate – for such an environment, reuse of data is 

guaranteed. 

The analysis of stream optimised caching begins with a detailed theoretical discussion 

of the technique and suggests possible implementations.  Later chapters describe both the 

design and construction of a prototype server that employs the caching technique, and 

experiments that use of the prototype to assess the effectiveness of the technique for the 

chosen environment using ‘emulated’ users.  The conclusions of these experiments 

indicate that stream optimised caching may be applicable to larger scale VoD systems 

than small scale teaching environments.  Future development of stream optimised caching 

is considered. 
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1 

1. Background & Direction of Work 

With the increasing use of computers as a tool for teaching, inevitable progress has led to 

a demand for the use of video material as a means to enhance the learning process.  The 

size of video files has itself been an obstacle to this end, in terms of both storage 

requirement and display capabilities.  While the use of CD-ROMs is a solution for off-

the-shelf multimedia ‘learnware’, it is not a solution for locally produced material where 

there is a need for each teaching workstation to access the same material; to duplicate the 

material across all the workstations would require a large amount of disk on each, and 

would additionally consume large amounts of network bandwidth in preparing each 

workstation.  If there are several different courses running over the same term, the set-up 

time required before each class may itself prohibit such a solution, and giving each 

workstation a larger disk is not only expensive, but may give rise to multiple points of 

maintenance in the system.  While a broadcast solution is possible, it ties all of the users 

to the same rate of progress and is very restrictive to the learning process; each student 

should be allowed to progress at their own pace.  What is more appropriate here is a 

central video server that supplies the video in a real-time on-demand basis.  This 

eliminates the need for the workstations to store any part of the source media files, hence 

reducing their disk requirement, and possibly enabling the use of diskless workstations.  

More specifically, what is needed is a networked video file server allowing simultaneous 

access by a group of users in a classroom, yet giving the illusion that each individual has 

all of the video that they view on their own workstation. 

For each class, the users will progress through the learning material at around the 

same rate of advance.  Many of these users will therefore be using the same media clip at 

approximately the same instant in time, perhaps separated by a time difference varying 

from a few seconds up to a few minutes.  It is likely that the users will begin close 

together, with a number of user groups forming as the class progresses, each with similar 

learning ability.  Thus, given the potentially small temporal difference between the 

accesses of a number of users, a memory cache might be used to reduce access demands 

on the underlying storage medium.  That is, a small section of clip is loaded from storage 

into the cache for the first user to request it.  Other temporally close users’ requests are 

then served by the cached section of clip, and hence access is not needed to the storage 

device.  The cached data can then be discarded once all temporally close users have 

accessed it, making way for other data with predicted reuse.  The concept of stream 

optimised caching is derived from this potential reuse phenomenon. 

The accesses of a classroom of users to a centralised media server is clearly a case of 

Video-on-Demand; each user has independent and immediate control over the media they 

view.  However, the accesses of each user across the class will have a great deal of 
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similarity.  The users will look at the same set of clips, and these clips will usually be 

viewed in the same order.  To add to this, what one user views is likely to affect the 

behaviour of those around them, and vice versa.  In short, the users are highly predictable.  

Stream optimised caching exploits the predictability of users by maintaining a cache with 

the set of data that is most likely to be accessed by its users.  Thus, although a Video-on-

Demand solution designed for library archive clips or a video subscriber service might be 

used, it may be unnecessarily complicated for the task.  These two examples do not share 

the users’ near-synchronisation property of the classroom environment. Furthermore, such 

large scale Video-on-Demand solutions are very expensive. 

The subject of this thesis is the investigation of the feasibility of stream optimised 

caching in practice.  The aims of this work were to produce a low-cost Video-on-Demand 

solution tailored to the classroom environment.  In this environment, the learning task was 

considered to be generally textual in nature, being reinforced by audio and video material.  

The assumption is that such media are embedded within some other learning application, 

such as hypertext; the user does not view continuous media all of the time.  Thus, given 

that (at the time of development) a typical class size is of up to 32 client machines, which 

is the largest of the teaching rooms at Kent, a target of 20 simultaneous users of the media 

server was set.  To minimise system costs, the prototype server was to be built from off-

the-shelf components, and use standard low-cost disks.   

From these ideas, the “Server Enabling Retrieval of Video Information in a 

Classroom Environment1”, or “SERVICE” project was born.  The work carried out on 

this project forms the basis of that presented in these pages.  The SERVICE project 

therefore prescribed the components from which the prototype server would be built.  

Namely, it would be constructed from TRAnsputer Modules (TRAMs), and would use an 

ATM network adapter developed in-house at UKC [Tri95].  Transputers were chosen 

because of their known and predictable real-time behaviour, and the department’s in-

house development experience with the processor. 

1.1 Aims 

This thesis will: 

• Introduce the concept of stream optimised caching, explain how it works and how it 

might be implemented 

• Document the construction of a continuous media ATM network file server intended 

to be capable of supporting a classroom of 20 simultaneous users, each with 

reasonable quality of service and asynchronous independent control 

 
1 New Technologies Initiative (NTI) project number NTI-207, run under the Joint Information 

Systems Committee (JISC) 
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• Show the structure of the server's file format, which was designed not to be specific 

to any data type; it will support any kind of audio, video or other continuous media 

type.  Furthermore, the file format will be shown to have been effective in practice. 

• Detail the hardware comprising the video server, which is from low-cost off-the-shelf 

components – more specifically, TRAnsputer Modules (TRAMs). 

• Show the design options considered during development, and give the software 

solutions taken in construction of the server. In particular, it will show the design of: 

▪ the system as an NFS file server, with extensions to allow real-time continuous 

media streams 

▪ a flexible continuous media file system, which is capable of efficiently supporting 

simultaneous multi-user real-time reads and writes 

▪ ATM Adaptation Layer 5 (AAL5) on the ATM TRAM and other server TRAMs 

▪ Internet Protocol (IP) over AAL5 on the server to enable communication with 

other network end-systems 

▪ a custom VCR-style control protocol for the control of the streams 

▪ a cache management structure that enables the implementation of a stream 

optimised cache 

▪ a simple stream optimised caching algorithm 

 

• Show that the hardware components are capable of the demands that are made of 

them, and additionally that the server software components met these demands as the 

media server was constructed 

• Demonstrate a stable and reliable continuous media server appropriate for use within 

other projects.  This stability will be supported by actual usage examples 

• Demonstrate the effectiveness of stream optimised caching for the chosen 

environment, supported by performance analysis 

• Show that stream optimised caching can be a useful technique in Video-on-Demand 

systems in general 

1.2 Synopsis of Chapters 

Chapter 2 introduces the general field of Video-on-Demand.  It begins with a discussion 

of the nature of both disk devices and continuous media.  The fundamental problems 

involved with the provision of continuous media from a disk storage medium are then 

presented.  A range of solutions to Video-on-Demand is examined, with highlights of the 

many techniques.  The scale of solutions considered range from the small to the very 

large.  The chapter ends by considering work reported in the literature that is similar to 

stream optimised caching, and how it differs. 

The idea of stream optimised caching is presented in detail in Chapter 3, including 

both the theory and suggestions for implementation.  The terminology and abstractions of 
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both media streams and streams caching are described, and the main caching techniques 

compared in the context of an environment with reuse amongst the users. 

The design and implementation of the prototype server are given in Chapter 4.  It 

begins with an architecture for the prescribed components, and gives a simple feasibility 

calculation for this architecture.  Each subsequent section then discusses implementation 

options and choices, together with a brief post-implementation analysis to show that the 

initial calculation is satisfied. 

Chapter 5 describes the experimental process used to analyse server performance, and 

presents the results.  The results are discussed, and the effectiveness of stream optimised 

caching for the experiments is determined.  Practical results from a client project are also 

recorded, showing the actual performance of the server from a user’s viewpoint. 

Potential future extensions of the streams caching work are given in Chapter 6, which 

considers both options for the prototype server, and for stream optimised caching.  The 

inclusion of other continuous media provision techniques are considered for addition to 

streams caching, together with alternative technologies for the server hardware. 

The thesis is concluded in Chapter 7 with a discussion of the degree of success of 

both stream optimised caching and its prototype implementation.  The exploitation of 

temporal locality of access is also discussed in the context of the Video-on-Demand field 

in general 

1.3 Disclaimer 

All of the work presented in this manuscript is that of the author unless explicitly stated 

otherwise.  In particular, the idea of stream optimised caching was originally proposed by 

Peter Linington, together with the initial performance simulation used in Chapter 3.  

Linington was also the author of the user-behaviour script-generator used when gathering 

the main results of Chapter 5. 
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2. Introducing the State of the Art 

 “Education will come in packets, or personalised doses, 

so that we can get the right education, at the right time, 

in the right amount” 

– Prof. John M. McCann [McC95] 

 

With the recent arrival of powerful computers into the marketplace, there is now a 

proliferation of machines that are capable of high quality video with audio.  There has 

similarly been an increase in the performance of server class machines, which are now 

being considered as the source of various multimedia data for the many workstations 

within their domains, most notably video material.  Of course, it is not only the offices 

and teaching rooms that will be the clients of such data; a huge market has been identified 

in the home.  Indeed, the largest potential market to be exploited is that of entertainment, 

replacing the existing broadcast programmes with those giving freedom of control to the 

individual user.  According to McCann[McC95], the market for multimedia will be at 

least $55 billion per year by the end of the decade, and most of this market involves 

entertainment.  Not surprisingly then, many large companies are involved in the 

development of large scale ‘Video-on-Demand’ systems, so called because users can play 

movies at a time of their choosing, not a time chosen by the broadcaster.  McCann also 

suggests that the methods by which education is provided will evolve to take advantage of 

this new technology, such that the individual can acquire knowledge at the point in time 

that it is required.  That is, video will soon play an important role in education. 

At the time of writing, there has been no complete solution to the provision of Video-

on-Demand to the masses.  There have however, been many developments in building 

individual media servers to provide video or audio to a large number of users, of between 

five and a few thousand users.  Each of these systems is at most at a prototype stage, and 

field trials of the technology are still at an early stage.   

The remainder of this chapter begins with an outline of the properties of continuous 

media, such as video and audio, as compared to normal data traffic.  It then discusses the 

properties of the underlying hardware technology and the reasons why it is itself a 

problem in the provision of continuous media.  Following this introduction of the basic 

issues involved, the chapter examines the current efforts in providing a solution to video-

on-demand.  This coverage is by no means exhaustive – the field of Video-on-Demand is 

a rapidly expanding one that has the attention of many companies and institutions. 
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2.1 Properties of Data versus Continuous Media 

Media types such as video and audio are referred to as ‘continuous’ because of their 

temporal property that once they begin, they are played in sequence at a fixed rate, if they 

are to be usefully understood.  It is important that each part of the continuous media be 

presented to the user one unit after the next in a predetermined timely fashion.  Failure to 

do so results in gaps in the presentation which, if the gaps are even slight, produces clicks 

and pops in audio, and/or jitter in a video.  This contrasts with normal data files, such as 

text, where there is no temporal nature involved; normal data does not need to be 

presented to a user in discrete pieces with hard real-time constraints.  Thus, the first major 

property of continuous media is its real-time nature. 

The second difference from normal files, is the very size of continuous media files; 

they are very large.  To put this into perspective, first consider a few pure textual 

examples.  Firstly, the Bible contains less than 2Mbytes of data.  Secondly, the 

Encyclopædia Britannica, whose 32 volumes each contain almost 1.4 million words – 

approximately 9Mbytes per volume assuming an average word length of 7 characters, or 

300Mbytes for all 32 volumes.  High quality audio, on the other hand, is typically 

192kbps for MPEG audio, which for a mere five-minute clip produces a file of 7Mbytes.  

In further contrast, low/medium quality MPEG-1 compressed video is around 1.4Mbps 

(0.1 for audio), making a five minute clip a file of approximately 50Mbytes.  Thus, while 

audio files may be large compared to text, they are small relative to video data, which 

requires a significant amount of space for its storage.  It is easy to see that video data is 

substantially larger than pure textual data. 

For broadcast quality MPEG-2, the video stream is around 4 to 9Mbps; taking a 

4Mbps stream with a one-hour movie, that produces a file size of around 1.7Gb!  Table 

2.1 gives some further examples of the size of compressed video clips for various lengths 

of clip and some typical bit-rates.  This table is a simple multiplication table of file bit-

rate against length, but gives a better feel for the size of variously coded video streams. 

 

Table 2.1: Examples of Continuous Media File Sizes with varying length and bandwidth 

 Bandwidth of Clip 

 MPEG-1 MPEG-2 

Length 1.5Mbps 4Mbps 6.5Mbps 9Mbps 

5 minutes 50Mb 140Mb 230Mb 320Mb 

10 minutes 110Mb 290Mb 460Mb 640Mb 

30 minutes 320Mb 860Mb 1.4Gb 1.9Gb 

1 hour 640Mb 1.7Gb 2.8Gb 3.8Gb 

2 hours 1.3Gb 3.4Gb 5.6Gb 7.7Gb 
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In a network environment, once a connection has been established with a client, the 

connection must not be dropped or otherwise suffer from network congestion, such that 

the client’s display becomes jumpy with poor picture quality or disturbed audio.  That is, 

sufficient bandwidth must be reserved within the video server, the network connection, 

and the client’s end system such that quality of service is maintained during the lifetime 

of the connection.  Alternatively, if the connection cannot be or is not maintained, it must 

be renegotiated with the client system, as discussed for instance by Zhang [ZK97].  For 

example, the quality of the video is reduced such that it occupies less bandwidth; the user 

should not be aware of these negotiations however.  Congestion issues are not covered 

further here; emphasis is placed on the provision of Video-on-Demand within the server. 

Providing for one user is relatively easy, but providing for many is complicated by 

the underlying technology used to hold the media, namely disks.  Although tape systems 

may be used to store thousands of large high quality videos, they do not allow random 

access to the media in real-time.  Pure memory based storage systems would provide a 

solution to the multi-user issues, but are not cost effective – the price per MByte of disk is 

far cheaper than random access memory.  A solution allowing multiple users to share a 

single disk must therefore be dealt with since one user per disk is clearly not 

economically viable either. 

2.1.1 Compression and Continuous Media 

In order to reduce the storage and transmission requirements of media, compression can 

be employed.  For still images, the JPEG (Joint Picture Experts Group) [PM92] 

compression algorithm is often used, which exploits sensitivities of the human eye 

system.  Namely, the eye is more sensitive to low spatial frequencies, so JPEG will 

discard the higher frequencies from the coding in order to concentrate on coding the 

lower frequencies.  In addition, the eye is more sensitive to changes in light and darkness 

levels than to colour, so JPEG uses more effort in encoding light levels (luminance) than 

the colour (chrominance) components.  Clearly, once compression is applied, the resultant 

file size is dependent upon the image resolution, type of scene and the scene’s 

complexity.  The quality of the compressed image may be varied, such that more 

components that the eye is less sensitive to are discarded.  However, if compression is 

applied too harshly, compression ‘artefacts’ are visible in the result.  The most obvious 

JPEG artefact is scene ‘blocking’. 

To further complicate the problem of continuous media provision, media data flows 

can be categorised as either ‘Constant Bit Rate’ (CBR) or ‘Variable Bit Rate’ (VBR).  

CBR streams are typically uncompressed streams, for example CD audio data.  For video 

data however, the data needs to be compressed in order to achieve the necessary retrieval 

rate from the disk and reduce demands on the network; the compression effectively 

increases the perceived data transfer speed of the disk and the capacity of the network.  
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This assumes each client can decompress the data faster than it is transmitted, be it with 

its CPU or with hardware assists.  Each image in a video has varying complexity and if 

each is compressed with JPEG, for example, each frame has a different size, i.e. is VBR.  

For Motion JPEG, the size of each frame will be similar except, for example, over a scene 

change. 

2.1.2 MPEG Compression in Continuous Media 

For MPEG [Motion Picture Experts Group] compression, intra-frame coding is used 

using essentially the same algorithm as JPEG, that is, per picture compression.  These 

frames are referred to as I-Frames in MPEG terminology.  Being designed for moving 

pictures however, MPEG also exploits similarities between successive images.  These 

inter-frame coded images are called bi-directionally predicted and predicated frames, or 

B- and P-Frames.  B and P- frames contain only the differences, possibly motion 

compensated, from their reference frame(s).  A P-Frame always uses the previous I-

Frame as its reference frame.  B-Frames use the nearest adjacent P- or I-Frames, one in 

the future, one in the past, as the references frames.  An example MPEG group of pictures 

(GOP) is shown in figure 2.1.  The reference frames used for P and B-frames in the 

encoding are shown as dependencies. 

Since B- and P-Frames encode only frame differences, they are typically significantly 

smaller than I-Frames.  A consequent limitation arises, because B- and P-Frames can only 

be decoded if their reference I-Frames and intermediate P-Frames are first presented to 

the decoder.  In figure 2.1, the numbers in the frames refer to the order that the frames are 

viewed.  However, the frames are stored in the order of presentation to the decoder, 

namely [0, 3, 1, 2, 6, 4, 5, 7].  This is because both frames P3 and P6 need frame I0 to 

allow them to be decoded.  Similarly, B1 and B2 need both I0 and P3, whilst B4 and B5 

require P3 and P6 to be decoded.  Thus, attempting to provide fast reverse play and fast 

forward play is problematic because dependency frames must always be presented to the 

decoder beforehand.   

Figure 2.1: Example sequence of frames in an MPEG Group of Pictures (GOP), with 

dependencies shown.  Numbers refer to frame viewing order  
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The simplest solution to fast playback is to play only the I-Frames, which potentially 

results in fewer frames per second, and will likely require greater bandwidth than at 

normal playback speed.  The reason lies in that I-Frames are significantly larger than B- 

and P-Frames.  If, for example, the increase in the playback rate is the frequency of I-

Frames (8 in figure 2.1), then the actual frame rate remains that of normal playback 

speed (usually 25 or 30Hz).  Bandwidth demands are therefore much higher than at 

normal playback speed. 

For more detailed information on the MPEG standard, the reader is referred to 

Mitchell et al [MPF96], and Haskell et al [HPN96]. 

2.2 Properties of Disks 

A standard disk typically comprises one of more platters, with one or more adjacent 

read/write heads per surface of each platter.  The surfaces are divided up into concentric 

tracks, which each are divided into sectors.  The tracks from all the surfaces that are at the 

same radius (or adjacent radii if multiple heads per surface are used) from the disk spindle 

are referred to as a cylinder group.  This is illustrated in figure 2.2.  The heads within a 

disk are generally moved over the disk surfaces on an arm and are thus located within the 

same cylinder group; the heads cannot read from or write to more than one cylinder at a 

time.  In addition, the sectors within a track are numbered and are generally always read 

from the first sector requested within a track as the disk rotates.  Given this physical 

construction, it is easy to see where the timing delays occur. 

Figure 2.2: Construction of a disk device 

 

The disk spindle is rotating in a typical high-speed disk at 7200 rpm, [WDC97, 

QC98] for example, with today’s fastest disk having a rotational speed of 10000-rpm 
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[IBM97, FCP97, SC97].  This combined with the density of data on the disk surface 

determines the actual data transfer speed of the device, which for the example devices 

given here is between 8 and 16 Mbytes/s.  However, the data on a disk might be laid out 

across the disk, so two consecutive transfers may be on opposite sides of the disk.  In this 

case, after the first transfer is complete, the disk heads will move across the disk to the 

location of the next data to be read.  The time it takes to move the disk heads from after 

the end of one transfer to the cylinder group of the next is referred to as the ‘seek time’, 

which is typically around 8ms for today’s fastest devices.  Given that the time between 

two frames in video is 40ms for video at 25 fps, the disk seek time is significant.  To add 

to this, once the heads have reached the target transfer area, the disk must rotate until the 

sector to be read comes underneath the head such that it can be read.  This is called the 

disk ‘rotational latency’.  Clearly, this latency time is dependent upon the rotational 

velocity of the disk.  The average latency for the disks above is approximately 3ms, so the 

most serious delay when using disks is from seeking track to track. 

2.3 Properties of Networks 

In terms of continuous media, the demands on a network are that it has enough bandwidth 

to support the desired number of users in precisely the same way as a disk.  This 

similarity in terms of requirements is also shared in respect of a need for constant and 

very low latency in the transfer of data. 

The most common type of network is without doubt IEEE802.3 (Ethernet).  With a 

shared bandwidth of only 10Mbps it is of limited use in multi-user continuous media 

environments for two reasons.  Firstly, there is simply not enough bandwidth to support 

more than a few users.  Secondly, Ethernet is a shared bus media, which means 

contention on the bus, and consequently, highly variable transmission latencies to a 

network destination. 

Ethernet’s successor, IEEE802.12 (100Base VG AnyLAN), or 100Mbps Ethernet, 

addresses the first issue involved with continuous media over Ethernet. 100Base Ethernet 

uses a packet switched hub to connect the network nodes; 100Mbps Ethernet cannot use a 

shared bus architecture like its predecessor.  However, the bandwidth provided by the hub 

is still shared between the nodes; only one Ethernet packet may be switched through the 

hub at any time.  Consequently, the 100Mbps bandwidth is shared between all network 

nodes directly attached to the hub.  Like its predecessor, therefore, 100Base Ethernet is 

prone to variable network latency if the hub is congested.  In any case, 100Base Ethernet 

is appropriate only for Local Area Networks (LANs) and is inappropriate for large-scale 

commercial multi-user environments. 

In the larger scale, the telecommunications and cable networks will be the carriers of 

such data.  In recent years, there has been an enormous effort in the communications 

sector to standardise the ‘Broadband Integrated Services Digital Network’ (B-ISDN) 
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interface.  B-ISDN is intended as a standard worldwide replacement for the current 

multiplicity of existing public communications systems.  For B-ISDN, the data is 

transmitted using a specific implementation of cell switching techniques known as 

Asynchronous Transfer Mode (ATM) [Kya95].  For this reason, B-ISDN and ATM may 

be viewed as synonymous. 

ATM uses a fixed size 53-byte cell as the physical unit in contrast to Ethernet’s 

variable length packets of maximum 1518 bytes.  In further contrast to Ethernet, ATM’s 

specification does not include the physical media interface; a number of separate 

specifications enable ATM to be carried over a number of physical implementations 

including both electrical and optical interfaces.  The fixed size cell also has a number of 

advantages against packet switching techniques.   

Cell switches do not require as much memory for switching as packet switches; a 

packet or cell must be fully received before it may be forwarded. The cell itself therefore 

allows low and steady transmission latency through a switch.  An ATM switch may 

furthermore switch cells in parallel; the bandwidth on an ATM switch is not shared.  

Indeed, a 100Mbps ATM switch can theoretically supply 100Mbps to all directly attached 

network nodes; the switching performance of the switch itself is far in excess of the 

100Mbps, in this example, that it provides to its clients. 

In bandwidth terms, ATM specifies bandwidths from 1Mbps through 155Mbps, then 

622 and 2,488Mbps; these latter bandwidths are of course intended for use between 

network switches.  Each ATM cell has a 5-Byte header, which is altered by switches in 

order to create a connection-oriented path based on a small local identifier.  ATM 

networks may therefore be arbitrarily large.  Indeed, this was an important factor for its 

use within B-ISDN. 

Given ATM’s use within B-ISDN, giving it a global ‘into the home’ significance, and 

its ideal properties of high-bandwidth low-latency, it is a perfect candidate for a network 

medium with respect to continuous media.  For almost all the papers presented in this 

chapter, an ATM network was used, if not implied or assumed.  

 

Now that the physical constraints of the technology have been outlined, it is possible 

to discuss the properties of continuous media and the problems introduced through their 

storage on disk devices. 

2.4 Issues in Provision of Continuous Media 

Taking the example of a single user viewing a digital video, it is easy to see that the 

transfer rate of the disk is far greater than the individual consumption rate of a video – 

8Mbytes/s versus ½ Mbyte/s.  For this example disk then, it should be possible to support 

16 users given the maximum transfer rate of the disk.  However, if each of those users is 

viewing a different clip then each clip incurs a seek penalty for each disk access.  
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Unfortunately, the cumulative seek time across 16 users at 8ms, assuming each frame is 

accessed as needed, comes to 128ms, which is far beyond the 40ms inter-frame time of 

each stream.  In this simple calculation, assuming an average seek time between users of 

8ms, only five users can be supported before the cost of the disk seek becomes too great. 

2.4.1 Scalability of Disk Bandwidth 

Disregarding for now the issue of seeking, the relatively small number of users of a single 

disk needs improving far beyond the simplistic example of 16 users above.  To achieve 

this, several disks can be placed together in a number of configurations to exploit the 

aggregate transfer rates of several disks.  This was first outlined by Patterson et al 

[PGK88] – the so-called ‘Redundant Array of Inexpensive Disks’ (RAID).  In [PGK88], 

it is said that gains in disk technology with time as compared to CPU and memory 

technology are very modest.  Without the application of RAID, there will soon be a 

performance crisis caused, relative to CPU and memory speeds, by the very slow storage 

devices.  [PGK88] considers RAID levels 1 to 5; a detailed study of the 7 RAID levels (0 

to 6) can be found in [CLG94]. 

The essential principle in RAID is that the data is placed (or ‘striped’) across several 

disks in an array and retrieved in parallel, hence providing an increase in bandwidth that 

is directly proportional to the width of the array.  In addition, by distributing the data over 

a number of disks, hotspots on accesses are avoided that otherwise result in a few 

saturated disks whilst the others remain largely idle.   

Reliability in RAID systems is of great concern, since the failure rate of an array is 

multiplied by the number of disks in it; a 100-disk array is 100 times more likely to fail.  

Consequently, RAID systems employ techniques to add redundancy into the data without 

having any significant performance impact, thereby adding reliability to the array.  

RAID systems can be distinguished by two features: i) the granularity of data 

interleaving; and ii) the method and pattern in which redundant information is computed 

and distributed onto the disk array.  The data interleave can be either fine or coarse 

gained.  In fine grain, the data interleave is small enough such that all I/O requests will 

span all the disks.  This gives high I/O rates, but only one logical I/O may be in progress 

at one time.  In coarse grain, the data interleave unit is bigger, which results in small I/O 

accesses using only some of the disks, while large accesses use all the disks.  In 

redundancy terms, there are two possibilities, either concentrate the redundancy data onto 

one or a few disks, or distribute it over all disks in the array.  The latter option is better, 

since it avoids access hotspots and load balancing problems. 

A summary of the seven RAID levels is given in table 2.2.  As remarked in [CLG94], 

there has been much confusion over what a ‘RAID level’ means and of what each level 

consists.  In this discussion, only RAID types 3 and 5 are of particular interest, which are 
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byte striped and block striped, respectively.  The other types of RAID are more intended 

for storage reliability and crash recovery than for high performance. 

 

Table 2.2: Summary of the seven RAID levels (0 to 6) 

Level Name Description 

0 Non-redundant Has no redundancy data.  Data is striped over disks with 

arbitrary block size.  A single disk failure will result in 

data loss. 

1 Mirrored Each disk has a copy disk.  If one disk fails, the lost data 

can be recovered from the mirror disk.  Data is striped 

over disks with arbitrary block size. 

2 ECC Based on error correction in memory systems. Data is bit-

wise striped over disks.  Uses Hamming codes on multiple 

parity disks to enable recovery of data.   

3 Bit-Interleaved 

Parity 

Similar to Level-2, but since a failed disk controller can be 

identified (unlike memory controllers), a single parity disk 

is used.  The data is bit (or byte) striped over all disks in 

the array. 

4 Block-Interleaved 

Parity 

Similar to Level-3, but the unit of striping is an arbitrary 

sized block.  Thus, an access that is less than the striping 

unit size will access only a single disk.  As in Level-3, 

writes must update the data disk(s) and the parity disk.  

Since all writes must update the parity disk, this can 

become a bottleneck. 

5 Block-Interleaved 

Distributed Parity 

Similar to Level-4, but the bottleneck on the parity disk is 

removed by distributing the parity data uniformly over the 

disks in the array.  This has the additional advantage of 

distributing the actual data over all the disks, not n-1. 

6 P + Q Redundancy Similar to Level-5, but uses a stronger redundancy coding 

than parity; parity is capable of identifying only a single 

failure.  This level uses Reed-Solomon codes with a 

minimum of 2 redundancy disks “P + Q”. 

 

In [CLG94] it is said that levels 2 and 4 are viewed as inferior to the other levels and 

are thus discounted from any decision of which RAID level to use.  Further discounted is 

level 0, which uses no redundancy at all; level 0 cannot therefore be used in environments 

that require fault tolerance. 
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RAID level 3 can only allow one access at any instance because the data is bit-wise 

striped over all the disks in the array.  In contrast, several small reads may be performed 

in parallel within a level 5 system.  During reads, the parity disk is not involved unless a 

disk has failed, so read performance of level 3 is not optimal.   

RAID level 5 is the fastest of all RAID levels in respect of read performance because 

it distributes the data over all, not n-1 disks in the array.  In fact, RAID level 5 is the 

fastest solution for small and large reads and large writes.  Furthermore, levels 3 and 5 are 

equivalent if the stripe unit of level 5 is small enough such that all data accesses will 

always uses all the disks in the array, though 5 distributes the parity data.  Level 5’s 

weakness is small writes, since these require a read-modify-write cycle on the parity disk.  

However, for a continuous media server, small writes are not an issue. 

2.4.2 File System Interfaces 

Naturally, with the progression from normal file systems to supporting continuous media, 

the protocol mechanisms driving the data flow were first driven by standard I/O calls, 

namely open(), read(), write(), seek() and close().  This is however, not the nature of 

continuous media, which is governed by the logical time at which a ‘frame’ is due.  This 

is easier to see when considering how a standard video cassette recorder (VCR) is 

controlled – the basic operations are play, fast reverse play, fast forward play, pause, and 

stop.  An additional primitive comes out of the random access capability of Video-on-

Demand, that is, to reposition the media to a specified time on the timeline of the media.  

In this approach, there is no explicit read request for each frame to transfer.  Instead, 

consecutive frames are sent continuously according to a local clock at the data source. 

The problem with the former data I/O interface is that it requires read() control 

exchanges with the server for each frame of video transferred; in the latter case, the server 

continues sending successive frame data to the client after only a single ‘play’ exchange.  

The standard I/O mechanisms therefore suffer the disadvantage of additional latency in 

the receipt of the media data at the client end.  With the threat of increased delays in the 

data pipeline comes a need for more buffering to cope with the variable delay in receipt of 

data.  If the data transmission is driven by the server supplying the data, the latencies in 

the system are reduced to the time to cross the network and the delays within the two end 

systems.  Consequently, buffer requirements in the client to reduce jitter in the playback 

are reduced, which minimises ultimate cost. 

The price that must be paid by driving transmission from the server is that it must 

model each playback stream.  That is, it must maintain the current position in the media, 

work out when each frame is due, and respond to user requests.  Typically, this requires 

an index over each media file using as primary key the logical timestamp.  Thus, the 

server can determine which portion of the media is due at any given time within the 

model of the playing stream.  An index is required whether the stream is modelled at the 
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client or server in any case, since which data blocks belong to which frames still needs 

determining if VCR operations are desired.  A client fetching data with read() requests, 

however, will need to maintain its own stream model. 

The Video-on-Demand solutions to date have largely concentrated on minimising 

buffer usage within the server in order to keep the server cost down.  In these systems, a 

large cache is not seen to have any benefit given the large size of files and apparently 

random user access patterns; a very large cache would be needed to exploit any reuse 

using standard file systems caching techniques, which is prohibitively expensive because 

of the sheer amount of memory required. 

2.4.3 Video-on-Demand (VoD) .vs. Near Video-on-Demand (NVoD) 

The many solutions that have been attempted vary in their degree of flexibility in user 

control.  The reason is that there are fundamental problems inherent in the hardware 

technology used to provide the service, namely, with the disks.  The ideal in Video-on-

Demand is to give each user the impression that they are the only user of a server system, 

that is, that the system responds immediately to their requests, and that the quality of 

playback is always very good.  In practice, this is difficult to achieve and the user is 

instead constrained in some way.  For example, the user might have to wait a minute 

before their chosen movie begins to play, and furthermore, that ‘pause and resume’ 

functionality is similarly subject to such start-up delays.  Such service can therefore be 

referred to as ‘Near Video-on-Demand’.  Other systems are query based, such that a delay 

might be experienced before playback begins, and then the playback cannot be controlled 

once it is playing.  Such a system may be appropriate, for example, in the provision of 

stock market news reports requested by brokers. 

Fast forward and fast reverse playback causes additional disk seeking per unit time, 

because although all data is being read, not all of it is used because frames are being 

skipped in the playback.  The rate of seeking increases directly proportionally to the rate 

at which disk blocks are consumed.  Thus, for the increased bandwidth demands on the 

disks, effective utilisation of this bandwidth is reduced because more time is spent 

seeking.  In addition, from the network’s point of view, there is also a likely increased 

bandwidth requirement, especially if the stream is VBR.  Taking MPEG as an example, 

only the I-Frames and future adjacent P-Frames can be played back; they are typically far 

larger than the P- or B-Frames.  VCR operations are consequently problematic since a 

further increase in bandwidth may be required, which might exceed the maximum during 

normal playback.  If the bandwidth reserved for any one stream is breached, this can have 

a knock on effect on other streams resulting in playback jitter. 
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2.4.4 Programme Generation and Editing 

The discussion above has concentrated solely on the playback of multimedia material.  A 

related issue is the recording and editing of media, video in particular.  This issue is not 

covered in any depth here where the concentration is very much on providing 

entertainment or education, not on providing the facilities to produce the materials for 

broadcast.  The recording/editing issue has slightly different requirements to the playback 

of continuous media.  In particular, buffering is required to build up a quota of data in 

order to make disk writes efficient during recording.  The scheduling of these writes are 

not real-time critical however, unless buffer memory is at a premium.  Further, recording 

systems are not generally required to be multi-user; editing is usually performed on a 

single-user workstation and uploaded to a multi-user server once edited.  Additionally, 

editing requires jitter-free playback of material that may be scattered arbitrarily over one 

or more file systems. 

 

Now that a background to the difficulties involved in continuous media has been set 

out, the next sections cover the current efforts of the field in providing a video-on-demand 

file server.  The first section looks at the individual server, and the second is concerned 

with scaling up the solutions to provide Video-on-Demand to the masses.  This coverage 

is by no means exhaustive, as there are many reported solutions. An effort has been made 

however, to cover the full spectrum of the kinds of solutions attempted. 

2.4.5 Finding a Solution to Video-on-Demand 

As said above, the seek time and latency involved in making a disk access are significant 

factors in the provision of Video-on-Demand.  Disks give their best performance when 

transfer sizes are as large as possible – when transferring an entire cylinder say, before 

making any attempt to seek to another cylinder group.  In so doing, the time spent in 

useful transfer is maximised and the time spent seeking and doing no data transfer 

minimised.  This is indeed the solution taken by all systems, though there is a balance to 

be struck between the size of a transfer and the size of the buffers required.  The rate of 

data consumption of the clients is much lower than the rate of transfer of the disk, so 

reading a lot of data from the disk does not cause undue delays to client transmission.  

However, it then takes time for the memory buffer to be consumed and thereafter the next 

section of media read from the disk.  Across multiple users, the buffer requirement can be 

significant if the time between disk accesses for a single stream is a long period of time, 

for example, in the order of seconds.  Gemmel at al[GVK95], provide an excellent tutorial 

covering the problems relating to buffer management for multiple users, in addition to 

discussing the most common data layouts and scheduling strategies on disk and of 

editing, recording and interactive control of continuous media data. 
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2.4.5.1 Basic Techniques 

2.4.5.1.1 Buffering Techniques 

Double buffering is an often-used technique, where while one buffer contains data 

being transmitted to the network, a second is being filled from the disk.  This is shown in 

figure 2.3.  Once a stream’s transmit buffer becomes empty, the buffers are switched and 

the transmitter continues without any delay; the new disk buffer is then filled from the 

disk as the new transmit buffer is consumed.  This cycle repeats once the transmit buffer 

again becomes empty.  Clearly, the disk must always have placed enough data into the 

disk buffer before the transmitter empties its buffer, else jitter is seen in the resulting 

stream.  In figure 2.3, the disk fills an empty buffer before the owning stream consumes 

its play-out buffer.  For example, between times (a) and (b), the first stream switches its 

play-out buffer from 0 to 1.  An extension of the idea is to use a single buffer, which is 

cyclic; if the transmitter reaches the end of the buffer, then it wraps around and continues 

at the start.  In this case, the disk reader merely keeps ahead of the transmitter and ensures 

that the stream does not run dry. 

 

Figure 2.3: Example of double buffered play-out technique 

1 2 3 4

1 2 3 4

1 2 3 4

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

B
u

ff
er

 F
u

ll
n

es
s 

/ 
%

B
u

ff
er

 F
u

ll
n

es
s 

/ 
%

B
u

ff
er

 F
u

ll
n

es
s 

/ 
%

Stream Number

P
ro

g
ressio

n
 o

f T
im

e

(a)

(b)

(c)

Disk fills buffer



CHAPTER 2 

 

18 

The ideal in handling buffers for multiple users is to fetch only as much data as is 

needed for each stream, given the time to the stream next being serviced.  If too much 

data is fetched, there will still be a large amount of data available for a stream, perhaps to 

the point that no disk fetch is needed; the expense here is simply that buffer memory has 

been used up and that it ought to have been allocated elsewhere, or not been needed at all 

so reducing system cost.  The buffers of several users therefore need to be serviced by the 

disk in a cycle such that each receives a quota of disk time and all streams use the 

minimum amount of buffer space per scheduler cycle. 

2.4.5.1.2 Disk Scheduling Techniques 

The maximisation of the transfer size is not the only way of maximising effective disk 

transfer utilisation.  Where several disk requests are pending at any one moment, the 

order in which those requests are serviced can be varied such that the overall time spent 

seeking is minimised.  Steinmetz[Ste95] gives a very good survey which covers the main 

techniques used in disk scheduling, both within traditional file systems and within 

continuous media systems.  These are summarised here. 

Fig. 2.4: First Come First Served (FCFS) Fig. 2.5: Shortest Seek Time First (SSTF) 

 

The simplest way to honour a number of requests is in First Come First Served 

(FCFS) order as illustrated in figure 2.4[Ste95].  In all of these examples, the disk 

scheduler considers only the three most recent requests in the transfer queue with the 

given algorithm.  FCFS can unfortunately result in high seek overheads because the 

requests may be ordered in such a way that each alternate access is on the opposite side of 

the disk.  A way to minimise the seek overheads and maximise disk utilisation is to 

honour the request with the Shortest Seek Time First (SSTF) as shown in figure 

2.5[Ste95].  However, this can lead to the starvation of service for any requests that are on 

the inside or outside of the disk, since all those in the centre of the disk are serviced.  A 

further technique is therefore to sweep the disk head back and forth across the disk, 

servicing requests in the direction of travel until there are no more requests in that 

direction, such as illustrated in figure 2.6[Ste95].  At this point, the direction of travel is 
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reversed.  This Scan algorithm has a variant, C-Scan, which sweeps the head in only one 

direction during an I/O cycle, then seeks the head directly back to the sweep start point 

for the next cycle.  This is shown in figure 2.7[Ste95] 

The above SSTF, SCAN and C-SCAN techniques attempt to minimise seek 

overheads and therefore maximise disk utilisation.  The problem is that they do this 

without any real-time constraints on any of the I/O requests; the disk scheduling may be 

termed ‘best effort’.  For real-time materials, such as continuous media, the time in which 

each request is serviced is important.  For Scan based algorithms, a stream can starve if 

not enough data was read in the last cycle and the current cycle takes longer than the play-

out duration of the buffer.  Consequently, a common technique used in continuous media 

scheduling is Earliest Deadline First (EDF).  That is, the stream that will run out of 

playback buffer first is given disk I/O first.  As with FCFS however, this algorithm can 

lead to excessive seek overheads and resulting poor disk utilisation.  Scan-EDF tries to 

address this problem by using the Scan scheduler for requests with the same deadline, but 

its effectiveness depends upon the number of requests with identical deadlines.  

Quantisation of the requests’ deadlines is one method of ensuring that this occurs. 

Fig. 2.6: Sequential SCAN Fig. 2.7: Cyclic-SCAN (C-SCAN) 

 

Another common technique in disk scheduling for continuous media is Round-Robin 

(RR), where the streams are serviced in a fixed order within a cycle.  The cycle then 

continuously repeats, with each stream always being serviced at the same point in the 

cycle.  Whereas FCFS services each transfer request to completion, RR is fairer in that 

each participant within a scheduling cycle is given the same upper bound on time to 

complete a transfer.  Thus one of the participants does not hog the disk and starve the 

others of disk bandwidth.  As with FCFS, RR can lead to high seeking costs if the streams 

are not ordered in the cycle by their relative positions on the physical disk(s), that is, a 

Scan-RR.  Indeed, the Grouped Sweeping Scheduling (GSS) scheme uses the RR policy 

for its groups, where each group is a number of localised streams.  The groups are then 

serviced using a Scan policy. 
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In GSS, if all streams are placed into the same group, the technique degenerates into a 

Scan scheduler.  Similarly, if each stream is placed into its own group, GSS degenerates 

into a RR scheduler.  The technique is discussed and further optimised by [CKY93]. 

2.4.5.2 Buffering Strategies 

2.4.5.2.1 Supporting random-access in Retrieval of Continuous Media 

The work of Liu et al [LDS95] is concerned with providing video-editing facilities 

within a single workstation and does not qualify as ‘Video-on-Demand’.  However, the 

techniques used do apply to service provision within such servers, hence its inclusion 

here.  Namely, buffer arrangements for jitter-free playback are covered – two-buffer and 

k-buffer schemes.  The double buffering scheme has already been covered above, and is 

used in Lui’s paper only as a means to explain the k-buffer technique.  In both of these, 

the unit of transfer is a frame: “It is our belief that the frame-level model is more proper 

for a video medium than an audio medium, because usually a video frame cannot be 

displayed until all the data which composes one frame has been transferred completely”.  

This requirement is clearly important for a video editing application. 

The random access capability is constrained to the groups of pictures (GOPs) within a 

movie, where a GOP is a continuous sequence of frames bound to within a single 

cylinder.  The access within each block of frames is limited to sequential access.  This 

constrained random access is required in order to satisfy real-time constraints during the 

playback of the media, that is, to minimise disk seek overheads.  At the same time, since 

the GOPs within a cylinder may be placed in any order, the scheme gives disk placement 

flexibility during the editing process. 

The k-buffer approach is born out of a ‘transfer anomaly’ during playback.  Namely, 

when the disk is finished transferring data into the secondary buffer, the display will have 

consumed at least part of the primary buffer.  Thus, once the disk is finished with the 

secondary buffer, it could fill the section of the primary buffer that the display has 

consumed.  Unfortunately, in practice it is not possible to determine how much of that 

buffer the display has used.  Thus, the reserved buffer space can never be fully utilised.  

The k-buffer approach therefore uses a number of buffers such that those buffers the 

display has consumed may be filled with new data from the disks.  In so doing, the 

utilisation of buffers is increased and the slack time left at the end of each scheduler cycle 

is increased.  The more buffers that are used, the smaller the GOP size can be (the 

minimum group size is one frame in one group of frames) because the group of pictures is 

the unit of buffer transfer.  Buffer requirements are minimised by minimising the slack 

time, since that reduces the occupancy time of any data in the buffers.  An example of k-

buffer strategy is given in figure 2.8. 
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Decreasing the size of groups has the additional advantage of improving disk space 

utilisation since larger GOP sizes leave more unused sectors in each cylinder, i.e. those 

remaining that are smaller than the GOP size.  Furthermore, since the GOP is the unit of 

transfer, the GOPs within a cylinder may be retrieved out of order and avoid the 

additional re-sequencing latency that a single read buffer would require.  Such a re-

sequencing is required because the display buffer must be decoded sequentially. 

Figure 2.8: Compensation in the k-buffer compensation scheme with k=4 [LDS95] 

 

The k-buffer technique is intended primarily to allow jitter-free playback during data 

transmission to a display screen, though the space requirements of k-buffer are shown to 

be markedly lower than the simple double-buffer scheme.  The authors believe that the 

flexibility of placement gained from the k-buffer technique will enable editing support 

with jitter free playback. 
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reads consecutive blocks for each serviced stream, though the order in which streams are 

serviced may change from cycle to cycle. 

For the purpose of new session acceptance, a schedule of disk accesses is searched for 

that would allow the rate requirements of all active streams to be met – a workahead-

augmenting set (WAS).  However, the WAS is only feasible if the time it takes to execute 

does not violate the buffer guarantees of any playing stream, and that no buffers overflow.  

The operations within a WAS do not specify the execution order.  The operation sequence 

 considers all permutations of the streams in the WAS.  A single operation sequence in 

 is only feasible if the WAS is feasible.  An  sequence is safe if it does not cause any 

of the streams to starve in a scheduler cycle. 

An algorithm for deriving the minimal feasible WAS is given and proved in the 

paper.  The algorithm essentially enumerates all operation sequences  for a feasible 

WAS, which is safe relative to .  The disk scheduling policy defines a concept of slack 

time which is derived from the minimal feasible WAS.  The slack time can be used for 

non-real-time operations provided enough time is available, but is otherwise used among 

the stream clients to increase their workahead. 

In the paper’s conclusion, an area for improvement is the use of buffer space.  If two 

sessions are considered to have opposite phases in the scheduling cycle, then the sum of 

their buffer space usage at any instant will always be less than the sum of the maximums 

used by each.  Thus, the two can share buffer space, which might possibly improve 

performance and increase the number of sessions that can be accepted.  

2.4.5.2.3 Maximising Buffer and Disk Utilisation for News On-Demand 

Ng and Yang [NY94] develop the idea in [AOG92] above.  The phases of several 

streams are distributed across the cycle of the server such that the buffer consumption of 

all streams at any instance is only part of the sum of the buffers allocated to the streams.  

Consequently, as illustrated by figure 2.9, the total buffer space required is much less, 

possibly by up to 50%, and the streams are said to share buffers.  Another way to view 

this is that as every stream consumes its data, the used space is freed back to the free-pool 

for immediate reuse by the stream that next accesses the disk.  It is not necessary to 

allocate each stream an independent buffer because each buffer would then only be full 

for a fraction of its lifetime and therefore the buffer space under-utilised.   

The work assumes a query based ‘News-on-Demand’ system, where effort is given to 

maximising the number of queries through the system.  Queries are accepted if this can be 

done without adversely affecting existing streams.  Otherwise, they are placed into a 

queue of waiting queries.  For the active queries, the disk scheduler prefetches data for the 

streams.  However, it takes account of the fact that too much prefetching does not aid 

performance because the data within the buffer is not consumed over the single cycle, 

thus ineffectively occupying memory during the cycle.  An ‘Intelligent Prefetch’ (IP) 
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therefore considers the queries waiting in the queue and fetches data ahead of the 

activation of the query.  Therefore, once the query is admitted, it can begin play-out 

immediately and maximise system query throughput. 

Figure 2.9: Buffer sharing for three streams with identical consumption rates [NY94] 

2.4.5.2.4 Piggyback Merging Policies for Video-on-Demand 

Aggarwal et al [AWY96] have found that users do not perceive the difference 

between a movie played at normal speed, and the same played back 5% more quickly or 

slowly.  Consequently, for a number of users whom are viewing the same piece of 

material at around the same point, the users can be made to converge on the same point in 

the video.  The technique simply slows a leading stream and speeds up a trailing stream, 

as illustrated in figure 2.10.   

Once the two streams meet, they are merged into one – the so-called ‘piggyback’ 

event.  The paper discusses the most effective policy for the merging of streams in order 

to save bandwidth.  The findings of the report suggest that most gains are to be made in a 

‘window’ over the start of a movie.  This is because slowing a stream already well in 

progress for purposes of merging can only last until the end of the clip, so the efficiency 

gain here is far less compared to a merge early on in the material.  Its snapshot algorithm 

for determining which streams to merge is found to be the most efficient of the piggyback 

merging policies in this field of work.  The origin of the piggybacking concept can be 

found in [GLM95].  The paper ends with a question of whether MPEG based material 

could take advantage of the piggyback technique.  However, given that the major gains in 

the technique occur early on in material, a fast version of the start of each movie could be 

encoded at the cost of disk space.  The result would be a system more in the spirit of 

Video-on-Demand since the end users would not experience any latency in start-up as 

found in the similar batching (phase based) technique, and might be a good companion 

technique.  What should be done with the audio track whilst using the technique is not 

discussed; a user would very likely notice a change of around 5% as a change in pitch.  

Similarly, the omission of some samples to allow the audio to catch-up would be obvious 

as clicks in the audio playback. 
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Figure 2.10: Generalised simple merging policy (piggybacking) [AWY96] 

2.4.5.3 Contiguous File Systems 

2.4.5.3.1 The Tiger Shark File System 
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transfer size and speed) and minimises seek overheads.  A RAID-3 Byte striping is used 

for the data to achieve high transfer rates together with a cache for the file meta-data such 

that disk I/O is dedicated to data transfer.  [CHW95] makes the claim that such a caching 

strategy is vindicated because the very size of video files is guaranteed to flush any kind 

of data cache. 

2.4.5.3.3 A Storage Server for Continuous Media 

Lougher and Shepherd [LS93] use a similar technique to the Olivetti disk brick with 

their log based continuous media server, which again uses contiguous files on the disk.  

The log based file system is an ‘append-only’ system that writes blocks sequentially over 

the surface of a disk.  Deleted file space is reclaimed by a compaction process during 

system idle-time that maintains file contiguity.  The block size used for transfer is 

dependent upon the media and the point of access to the stream; the VBR nature of 

streams is taken into account such that the logical unit of transfer on disk is a unit of time 

rather than of physical size.  This arrangement leads to a simpler disk scheduler, which is 

round robin, and prevents any one stream from accumulating too much data in the 

memory buffers.  Unlike all of the above solutions however, the server drives the data 

transmission using a VCR style RPC for the client control.  The physical layout of the 

data over the RAID is that the logical blocks are then striped over the disks with 

dedicated directory, metadata and meta-index data files on a separate disk. 

2.4.5.3.4 The Stony Brook Video Server 

The work of Vernick et al [CVV97] is unusual in its use of 10Mbps Ethernet as the 

network medium.  Here, a Real-time Ethernet network protocol, RETHER, is described 

which allows bandwidth reservation and the use of an Ethernet network in a real-time 

environment.  The intended target is within cable TV networks where entertainment 

material is requested, and after a short delay of possibly minutes, the item begins 

playback.  Similarly with many other systems, a session is not started until the server has 

sufficient resources for it. 

One of the major design goals of the project was to use standard equipment in the 

construction of the server, hence presumably the use of Ethernet.  A related paper 

[VVC96], is a development of the work in [CVV97] and describes a higher performance 

server SBVS-2 (Stony Brook Video Server) that uses 100Mbps Ethernet.  Client control 

is VCR based with a meta-index on the video data to allow random access.  The 

scheduling strategy is cycle based, but the service order is governed by the use of a Scan 

scheduler in order to minimise seek overheads.  New stream admissions are allowed only 

if the new stream can slot into the scan schedule without violating service agreements.  

The file data itself is striped across a RAID-5 disk array such that each data unit on each 

disk does not cross any cylinder boundaries and therefore incur a seek penalty.  The units 
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of each video are laid out contiguously on the disk with the most frequently accessed 

videos on the outside cylinders where transfer rate is greatest. The buffer staging is a 

simple double-buffer technique in favour of easier implementation.   

Both papers describe client buffering techniques to reduce jitter in the playback, 

though this issue is not considered here where the concentration is more on providing the 

video server.  The article makes an interesting comment that “because it is easier to add 

memory incrementally to a system than to replace disks, extending buffer space is a more 

popular technique to enhance the performance of the disk subsystem”.  This comment is 

likely aimed at lengthening the cycle time of a video server to further reduce seek 

overheads; the aim is to reduce the seek costs.  However, if significant volumes of 

memory are to be used within video servers, it does raise the question of whether the 

fundamental buffering technique used within most systems is the most appropriate.  

Indeed, this is the question raised within this thesis.  [CVV96] also covers the issues of 

fast forward and rewind operation with MPEG based clips, including usage of dedicated 

fast-forward and reverse play files and lower quality images.  The dedicated files are 

derived from the original file by skipping frames and thus produce files that are played at 

normal speed (25 or 30 fps), but present a fast-review to the viewer.  Lower quality 

images are suggested, since otherwise the dedicated files are typically produced by 

skipping B and P frames, thus producing a high-bandwidth media file in comparison to 

the original file.  

2.4.5.4 Disk Scheduling Strategies 

2.4.5.4.1 A Variable bit-rate Continuous Media Server 

Neufeld et al [NMH95] attempt to deal with the problem of VBR streams, and 

variable rates across streams, even if each is CBR.  The disk scheduler also works in 

cycles, but each slot in the cycle is of fixed time length, of the order of half a second.  

Consequently, the size of the units on the disk varies for VBR material, which is similar 

to the work of Lougher and Shepherd[LS93]. The user control primitives are open, 

prepare and read, and the system does not support variable rate playback or repositioning.  

However, this inflexibility is important in the admissions control.  Each stream can be 

written down as the sequence of its unit sizes, and hence is described by a vector.  The 

maximum number of blocks that can be read within a scheduler cycle must be known; this 

requires a calibration step.  The maximum number of blocks that the server can read 

within the duration of a slot is measured by reading equally spaced blocks over the entire 

surface of the disk, so taking account of the maximum seek time. 

The admissions control algorithm tracks the costs of the current disk schedule by 

summing the vectors of all active streams into the future, up to the end of the stream to be 

admitted.  An example is given in figure 2.11.  When a new stream is requested, if any 
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element of the resultant vector is greater than the maximum found in the calibration, then 

the session is rejected. Thus, in figure 2.11, if the maximum vector was 10 units, the new 

stream would be rejected.  However, in some cycles the number of blocks to read in a 

cycle will be less than the maximum possible, giving an idle disk at the end of a cycle.  

The slack time can be used to read ahead and effectively reduce the future slot totals by 

the size of the read-ahead.   Consequently, a slot total of more than the maximum enabled 

by the disk can be allowed, since it merely empties or reduces the amount of pre-cached 

data.  The latter approach therefore enables the acceptance of requested sessions, such as 

that in the example, where the former more conservative method would have denied the 

session. 

Figure 2.11: Calculation of Disk Scheduler Vectors [NMH95] 

2.4.5.4.2 Batched-SCAN Disk Scheduling 

Another disk scheduling technique called BSCAN is developed by Kenchammana-

Hosekote and Srivastava [KS97].  In this scheme, the playback guarantees of the active 

streams are maintained whilst responding to VCR operations.  The user’s expected system 

response time to such operation requests is used in two techniques called active and 

passive accumulation.  These techniques use the slack time at the end of the scheduler 

cycle to gather data for a state transition such that once the transition occurs, the playback 

quality of all streams remains unaffected.  At the same time, the transition is attempted as 

quickly as possible.    

The BSCAN algorithm is an extension of SCAN, but the requests of a single stream 

are batched together into a single continuous stream of disk block sized requests.  For 

each BSCAN scheduler cycle, some or all of these unit requests are fulfilled.   

Passive accumulation is where the scheduler cycle length remains the same, and slack 

time is used to read extra data over all client streams.  In active accumulation, the cycle 

length is made larger such that more data per stream can be gathered.  Clearly, the latter 

approach cannot be taken immediately because it might starve those streams earlier in the 

cycle, causing them to jitter.  The ideal algorithm therefore begins passively, and switches 

to active accumulation once it is safe to do so, as illustrated in figure 2.12.  Here, after a 

VCR operation is made, the passive phase begins and increases the buffer use with each 
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scheduler round up to point x.  The switch to active accumulation lengthens the cycle, 

thus reducing the buffer content of the streams earlier in the cycle.  This can be seen as a 

knee in the buffer trace to point x+1.  As demonstrated however, the drop in buffer 

occupancy does not drop below the minimum required to allow continuous undisturbed 

play-out.  Consequently, the state change of the VCR-operation can be performed as 

quickly as possible, and does not adversely affect any playback guarantees. 

Figure 2.12: Passive and active accumulation of data during scheduling rounds to achieve 

seamless state change [KS97] 

2.4.5.5 Disk Layout Strategies 

2.4.5.5.1 A Mass Storage System for Video-on-Demand 

The paper by Hsieh et al [HLL96] is an examination of the performance of RAID-3 

arrays in a hierarchy to support more users than one RAID may achieve by itself.  

Clearly, a single RAID-3 would not provide for many users, and so multiple RAIDs are 

employed to achieve a higher performance and capacity. The performance of various 

different arrangements is experimentally examined in search of the best way to distribute 

data across the RAID devices.  The paper concludes that application level striping, which 

block stripes data similar to RAID-5 across the RAID-3 volumes in a volume set, is the 

most efficient method. 

The two arrangements are striping data across several RAIDs at the device level 

(logical volume striping) and striping data over several RAIDs and/or logical volumes 

(application volume striping).  For logical volume striping, the data stripes retrieved from 

the RAIDs need to be placed back into sequence before they are passed on from the 

device driver layer.  In the application volume striping case, since the data access is under 

application control, no reconstruction of data is required and data are accessed in a 

pipeline fashion, that is, in sequence and not in parallel as a RAID device. 
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The findings reported are that the application level striping achieved better results in 

allowing a greater number of clients because it had lower data reconstruction delays from 

multiple RAID arrays than those required by wide logical volume striping.  It concludes 

however, that the video data needs to be laid out on the disks properly such that the worst 

case seek times, which are the dominant factor of retrieval latency, are reduced. 

2.4.5.5.2 A Novel Video-on-Demand Architecture for VBR Data 

Lau and Lui [LL95] tackle the problem of VBR streams by using a database over the 

media files that maintains the timestamps, locations and sizes of all the frames.  The 

layout of the data on the file system is a round-robin scatter of equally sized fragments, in 

this case two cylinders, over several disks.  The unit of disk transfer is the fragment such 

that disk-seek and latency costs are minimised.  On the server, each fragment may contain 

one or more frames, but a frame cannot cross a fragment boundary.  The disk scheduler 

finds an optimum execution order for the streams for each disk in the parallel array; since 

the database records the number of frames in each fragment, the deadline for each stream 

can be calculated.  This is done in such a way as to minimise the buffer requirement of 

each stream and therefore to handle the buffer build up problem caused by VBR streams.  

Thus, in this scheme, the disks are used in parallel, but do not constitute a RAID since the 

scheduler addresses each disk separately.  Their scheduler in fact uses the EDF algorithm 

in scheduling the stream requests of each disk.   

2.4.5.5.3 A Server in Support of Movie on Demand 

An interesting disk layout structure is suggested in the work of Özden et al [OB94] 

where streams are phase constrained, and users are mapped to the nearest phase.  In this 

layout, each movie is divided into p portions of size n  block size d, as given in figure 

2.13.  The phase difference is therefore determined by the row size n  d.  Each row of 

the movie is n blocks, so the movie is a matrix of p  n.  The data is stored on disk in 

major column order from 1 to n, each unit being a contiguous sequence of p blocks.  (A 

drawback of the scheme taken is that it cuts the frames up across the columns – a better 

approach would be to use a frame as the dividing unit instead of the media block size d). 

The basic idea behind the approach is that an entire column of data can be read far 

more quickly than one block of data can be played back.  Therefore, the playback of a 

stream can be started at any phase that is a multiple of the phase difference.  Effectively, p 

copies of the movie can be simultaneously transmitted, each being skewed by the phase 

difference from the previous stream.  The buffering technique uses a circular buffer for a 

total of p buffers; one buffer for each of the concurrent phases.  Each buffer is in fact a 

double buffer – one buffer for the disk read and one buffer for the play-out of the 

previously read phase. 
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A problem with the scheme is that the head needs repositioning from column n back 

to column 1 at the end of the disk file.  A suggested solution to this is to use two disks 

with a submatrix across the two disks in major column layout, effectively striping the data 

over the two disks.  Thus, the penultimate column is read from one disk and the disk 

begins to seek back to column one.  The final column is then read by the second disk 

whilst the first disk completes its reposition.  This approach requires that the phase 

difference used in the movie is at least twice the duration of the disk repositioning time. 

Figure 2.13: A movie described as a matrix.  Viewing order is left to right, top to bottom; 

storage order is top to bottom, left to right [OB94] 

 

A problem with the submatrix solution above is that at any instance one of the disks is 

always idle.  Thus, a further suggestion is to use only one disk and to read m columns 

when column n – m is reached.  Therefore, the disk may reposition to column 1 whilst the 

last m columns are played out.  The cost in this option is from the extra cache memory 

required for reading the last m columns in a single scheduler cycle. 

Of course, for VCR operations, the user is confined to playback of one of the phases, 

which gives a very coarse granularity in terms of frame rate.  In this case, a dedicated fast 

forward version of the movie is suggested, which uses the same phase technique on the 

physical disk.  Other granularity issues are also addressed. 

2.4.5.5.4 Design and Analysis of a Video-on-Demand Server 

Srivastava et al [SKS97] also the use phase technique.  The paper initially describes 

the problem of arbitrary client control in that it can require a flow control feedback loop.  

This has a knock-on effect of the scheduling of the disk head in the server, therefore 

affecting other users.  Consequently, the layout of the data on disk has each movie 

interleaved with itself, in precisely the same manner as Özden[OB94].  An example is 

given in figure 2.14; in Özden’s terminology, figure 2.14 has p = 3 and n = 5, with one 

media unit being equivalent to one column.  Each media unit is therefore placed a 

predetermined distance after the previous unit, thus interleaving the media units on the 

single disk.  The users’ expected system response (visually), the response time (relatively 
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slow) and actual response time are used to advantage within the server.  For example, 

after a reposition, the exact location specified by the user is translated into the nearest 

active playback phase.  Furthermore, a slight delay might be added by the system to 

achieve a closer fit to the user’s request. 

Figure 2.14: Storage layout of a movie with 12 media units [SKS97] 

 

For fast review operation, frames from the adjacent phases are played back to the 

user, for example (1, 6, and 11); the potentially large gaps between phases are not seen as 

a problem to the end user.  For higher quality playback however, separately encoded fast 

forward and fast reverse play versions of each movie are suggested using the same 

interleave and phase technique.  In this approach, each user then belongs to a fast review 

phase, rather than skipping successively between normal play streams. 

2.4.5.5.5 Effective Utilisation of Disk Bandwidth for Interactive Video-on-Demand 

Cheng et al [WCL96] propose a solution for dealing with fast forward and reverse 

play through use of disk layout and access strategies that do not require extra bandwidth 

reservation over those of normal playback.  The disk architecture is of two levels: the first 

level consists of RAID-3 disk arrays; the second of M RAID-3s grouped to form a single 

structure, effectively creating a RAID-5 of RAID-3s.  This architecture was originally 

presented in [OWC95] and is shown in figure 2.15. 

Figure 2.15: Two-level general disk architecture [WCL96] 

 

The ‘fine-grain’ RAID-3s are divided up into R partitions of equal size called 
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distributed over the M arrays in a manner illustrated by figure 2.16.  When accessing the 

disks, the streams are divided into groups in the same way as phase based access.  Each 

group accesses a different RAID-3 in any scheduler cycle, so there are at most M groups.  

The streams of each group are therefore synchronised on accesses to the same blocks 

within a single region.  The disk heads sweep over the disk in both directions, region by 

region for each scheduler cycle, and thereafter the disk groups rotate among the m arrays. 

Figure 2.16: Example of region disk block layout and subsequent disk access order 

(M=2; R=2) [WCL96] 

 

The fast operations are achieved by ‘leaping’ some data blocks and displaying only 

some groups of pictures.  This is similar to the use of review functions on a CD player, 

where the audio is always played in the forward direction, but sections of the audio are 

skipped over in the appropriate direction.  Using MPEG as an example, the GOP size is a 

variable chosen at the point of encoding, and can be the unit of fast review.  However, 

provided the duration of the GOP is short, say less than half a second, this may be a better 

solution to the provision of the review capability; previous attempts to solve the fast 

playback problem were based on the analogue equivalent (that is, to increase the 

frequency of media units in the playback), which might not be appropriate for the digital 

medium.  This solution is better in that it does indeed not require extra disk bandwidth to 

perform, since all the data fetched are viewed resulting in perfect disk utilisation. The 

only cost of the scheme is that extra data buffering is required, though only during the 

review operations.  For example, in figure 2.16, if a double-speed fast forward stream is 

to play GOPs 0, 2, 4, 6, 8, 10, 12, 14 and 16, then those blocks may only be played once 

GOP 18 is about to be retrieved in the next service cycle.  This is because of the retrieval 

order of these blocks from the regions, for example, 0, 2, 10, 8, 4, 6, 14, and 12.  

Consequently, there is a delay of several GOP sized gaps in the start-up of the fast 
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operation since the fast playback buffers need to be filled.  The number of buffers 

required depends upon M, the number of RAID-3s, and number of partitions per node R.  

However, though such buffers are needed, the disk seek costs are the same as those of 

normal play. 

2.4.5.5.6 MARS – Massively-parallel And Real-time Storage 

Buddhikot et al [BP97] use an internal hierarchy of ATM Port Interconnect 

Controllers (APICs)  [DCP95] and each APIC system is used similarly to a disk within a 

RAID system.  That is, ‘chunks’ are distributed across the APIC nodes, and each chunk is 

stored within a RAID within one APIC.  This is similar to figure 2.15[WCL97], replacing 

the coarse grain array with APIC nodes. One of the APICs is used as a controller/manager 

and is not involved in client data transfer. The unit of chunk is a number of consecutive 

frames, so the chunks are of variable length.  If care is not taken therefore, one of the 

APICs can end up with all the largest chunks in a clip, and hence cause a load imbalance 

during normal playback.  For example, one chunk might be one MPEG GOP of 16 frames 

distributed over four APICs.  Hence, the first APIC always transmits the I-Frames. The 

storage policy of the file system within each APIC is up to the individual node.  The 

paper points out the problems caused by fast review access, in that it causes load 

imbalance across the APICs because some APICs can then be accessed more than others. 

Their solution is to use ‘safe skipping distances’ (number of jumps over APICs) during 

playback such that the load during review operations is evenly balanced. It also comments 

on the problem of poor disk utilisation during review operations because only a fraction 

of the data fetched from the disks is actually used in network transmission.  A sharing of 

data between clients is suggested in order to reduce these effects, but the paper points out 

that Video-on-Demand is typically done on a per stream basis in order to minimise the 

buffer requirements of the servers.  That is, no caching is performed with memory only 

being used to smooth the accesses of the disk for each stream client over time. 

2.4.5.5.7 Prime-Round-Robin (PRR) Disk Layout Strategy 

Kwon et al [KCL97] use a disk layout strategy which tries to prevent disk access 

overload hotspots from occurring during the playback of the media, in particular, during 

arbitrary rate playback.  The Prime Round-Robin (PRR) technique uses a prime number 

as the divisor when deriving which of the disks should be selected for placements and 

retrieval.  In this approach, the media are broken into segments, which are equivalent to 

one or more MPEG GOPs.  These segments are read in a pipeline for each stream, such 

that the data is de-clustered.  The client control is through VCR primitives with 

‘immediate’ system response to user requests.  By eliminating the hotspot areas on the 

disks, disruption to service caused by VCR operations to the disk schedule are greatly 

reduced.  The delay to the service on a VCR primitive is shown by simulation to be less 
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than the RR placement technique, and hence potentially enables the support of a larger 

number of users. 

2.4.5.6 Flow-Control in Video-on-Demand 

One example in the provision of VCR controlled MPEG is by Rowe et al in [RP94].  

In this paper, full variable rate playback, pause and resume, and arbitrary positioning 

control is allowed.  Each target movie uses a metadata file for a time index and a data 

header; this is generated when the media are placed onto the continuous media server.  

The index gives the server random access to the MPEG data, whilst the header allows the 

client to determine the dimensions and rate of the video.  Rowe’s player software uses a 

concept of multimedia ropes where segments of video and audio clips are triggered on a 

logical timeline, which in sequence constitute the rope.  The server system performs 

frame dependency checks such that only a valid sequence of MPEG frames is transmitted.  

The paper points out however, that such a solution can result in a much higher bandwidth, 

such as in reverse play because all dependency frames must be transmitted first.  The 

client systems communicate with the server to achieve a flow control mechanism so that 

if the clients’ buffer begins to overrun, the server can stop sending frames and hence save 

bandwidth.  Therefore, no frames are transmitted from the server that are not usefully 

decoded and displayed.  The results of the system are somewhat modest because the 

MPEG decoder is in software and its output is displayed on an 8-bit colour X-console.  

Nonetheless, the paper outlines a working system, which with improved decoder and 

display speeds, should easily handle real-time VCR controlled MPEG-1 material. 

2.4.6 The Greater Challenge – Towards a Scalable Solution 

All of the solutions presented in the previous section are single server solutions with finite 

limits that would easily be reached in a commercial environment.  The provision of 

Video-on-Demand to the masses requires solutions that can store thousands to tens of 

thousands of video and audio clips, and play them to hundreds of thousands of users.   All 

of the solutions to this involve a storage hierarchy, with very large tape archive systems at 

the bottom, which feed into many Video-on-Demand servers, which then supply the 

material to the users.  Such an architecture is given in figure 2.17.  Tape archive systems 

are extremely cheap per Mbyte of data stored compared to disks, but cannot support users 

directly.  The problem to be solved here is how, if at all, to replicate material across the 

tape servers and disk servers, and further, which material to store within the disk servers 

to offer the best level of service.  In addition, this must be done in such a way that service 

is not interrupted, that is, is tolerant to system and network failures and highly reliable.  

As with the single server solutions, the cost of the system as a whole needs to be kept to a 

minimum.  The above issues are covered by Stoller and DeTreville[SD95], Rowe et al 

[BR96],  and Shepherd et al. 
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2.4.6.1.1 Scalability Issues for a Networked Multimedia Storage Architecture 

Shepherd et al [LPS94, LSP94] also consider the use of network links which are too 

slow to be used for service provision to clients.  The inter-network bridge in figure 2.17 is 

an example of such a ‘slow’ link connecting to other high-speed data networks.  Here, 

bulk data transfers are used to ship data between network domains, that is, between high 

bandwidth network segments separated by slower speed network links.  Within domains, 

such replication may be in real-time to minimise traffic overheads; by not using a bulk 

file transfer, the replication has a minimal impact on network bandwidth and server 

loading within the high-speed domain. 

The domain formation is a dynamic process based on the capabilities of the network 

connections between systems.  Thus, a domain hierarchy is formed.  File priorities and 

file interests are then used to determine which files should be migrated across the network 

domains.  As a file gets further away from its source, its interest decays such that it is no 

longer propagated.  Shepherd reasons that the network striping of data to allow a greater 

number of users will also reach a bottleneck, just like RAID end-systems.  Therefore, 

alternative techniques must be found to find a scalable solution.  Redundancy replication 

and scalable compression techniques are suggested. 

 

Figure 2.17: Distributed Video-on-Demand System Architecture 

2.4.6.1.2 Indexes for User Access to Large Video Databases 

Rowe et al [RBE94] examine the issue of user query and access.  A movie database, 

such as those in figure 2.17, contains details of all the available media; the query interface 

obtains a key to the movie the user wishes to view.  This key is then supplied to an 

appropriate video file server for subsequent playback.  Where no video server has the 
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requested item, it is spooled off of a tape archive system into a video file server.  A 

transcode step is taken during such a transfer, accounting for varying internal data 

representations across different video file servers.  The paper details the design of the 

underlying database, including the types of data content and user query styles.  

Administrator ‘hints’ are also considered such that the system can load material into the 

file servers for expected or scheduled usage at a given time.   

2.4.6.1.3 Hierarchical Storage Management in a Distributed Video-on-Demand System 

Brubeck and Rowe [BR96] discuss the management of the storage hierarchy as 

outlined in the introduction to this section.  The video or tape server selected for client 

playback is done through use of server and network load, and service-wait times.  The 

actual video file servers used in the Berkeley system are developed by various companies, 

so the architecture is flexible in this respect.  Hence, the transcode step is included to take 

account of the varying storage and access methods used across the servers.   The 

mechanism that determines which movies should be loaded into the video server uses a 

priority system.  Each movie has a priority function, which varies with the time of day.  

The set of highest priority clips is maintained in the video servers.  Two algorithms are 

given, one for load balancing, the other with additional service-wait minimisation.  Rowe 

is careful to point out that encryption and conditional access mechanisms must be 

developed if Video-on-Demand using copyrighted material is to be successful. 

2.4.6.1.4 Storage Replication and Layout in Video-on-Demand Servers 

Stoller and DeTreville [SD95] provide an analysis of the general problem, 

particularly of balancing system cost against fault tolerance and reliability.  Their 

algorithm for content distribution over a storage hierarchy uses estimates of mean demand 

for each title.  They conclude that for an additional hardware cost of around 13%, server 

availability is improved by around 75 to 90%. 

 

All of the above systems are either prototypes that are still in development and are at 

present of modest size, or are purely theoretical.  With the deployment of digital 

television via cable TV networks and pilot ATM networks, sufficient communications 

infrastructure will soon exist to carry the data of Video-on-Demand into the home and 

office.  Powerful computers already exist in the home, soon to be followed by set-top 

boxes in the digital TV revolution.  Inevitably then, the means to receive Video-on-

Demand will soon come into being – the industry needs only to find the technology to 

exploit the multi-billion dollar market for interactive entertainment from the home.   

2.5 Another Piece in the Puzzle – Caching in Video-on-Demand 

The above solutions have largely concentrated on provision of commercial servers 

providing large sets of movies to a huge customer base, or else a very large set of smaller 
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clips to a smaller populace in the hundreds.  Ultimately, all users have been considered 

behaviourally independent with no significant temporal overlap over whatever media is 

being viewed.  With the recent massive drop in the price of computer memory, it perhaps 

becomes viable to employ a more significant amount of memory in order to improve the 

performance and service-level of Video-on-Demand systems.  This might be seen to be 

similar to the way that very fast (and relatively expensive) cache RAM is used between a 

CPU and its main memory in order to improve the overall throughput of the main 

memory.  Memory is already used between disk systems and network transmission in all 

cases.  Thus, if the memory within continuous media servers is made larger, there is a 

question of how best it might be put to use, and can the gain in performance outweigh the 

cost of the additional RAM?  This question has also been raised by Wen et al [WCL97] of 

the University of Hong Kong, whose work ran at the same time as that presented within 

this thesis. 

Wen et al [WCL97] address the problem of providing sufficient bandwidth to a large 

number of between 1500 to 5000 clients.  The underlying principle is that if two requests 

that access the same programme occur closely in time, the data of the first client is 

forwarded, or relayed, to the second.  Hence, no disk bandwidth is required by the second 

client. A memory cache is used to form relay chains, such as those in figure 2.18, where 

the leading stream within each chain relays its data to the following streams in the chain. 

In the example, the chains relay their data from the top to the bottom of the diagram.  As 

the relay uses cache memory, additional disk bandwidth is not required beyond the 

leading streams.  The memory usage is optimised by allocating it to the shortest relaying 

distances.  Client service requests are admitted if sufficient disk resources exist, otherwise 

they are placed into a queue.  Such queued requests are rejected if they are not serviced 

within a set timeout. 

In an evaluation of the relaying mechanism for a set of short programmes such as 

cartoons or music videos, the transmit-mechanism without the relay cache requires 

56Mbytes.  With an additional 230MByte relay, the number of requests serviced increases 

by an average of 80%, whilst the rejection rate drops from 60% to 13%. The effectiveness 

of the relaying mechanism is dependent upon the popularity distribution of the video 

clips; better results are achieved where the clips’ popularities follow a Poisson 

distribution with some clips being far more popular than others. These gains come at the 

cost of additional memory.  However, as Wen et al remark, the continuing drop in the 

price of memory favours implementation with a relaying type mechanism. 

In an extension of the original relay work, Wen et al [WCLW97] develop a 

generalised relay mechanism, which uses the expected popularity of clips to speculatively 

form relay chains.  A speculative relay chain is headed by an actual access instance and a 

chain formed from buffer space despite not having any following streams.  The most 
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popular clips are selected to form such speculative chains if memory resources permit.  

The idea is that since the clip is popular, a new access instance will immediately use such 

a speculative chain, in which case it is no longer speculative.  Their conclusions indicate 

that the use of popularity indicators on the source material gives a reasonable but 

significant improvement in the level of service provided and drop in the number of 

rejections over the original relay mechanism. 

Figure 2.18: Example of Relay Chain organisation with splitting and merging operations 

[WCL97] 

 

The technique used by Wen [WCL97] and that developed within this thesis has two 

good analogues: firstly, that of cache memory between a CPU and its main memory; and 

secondly, that of a cache in a multi-user mainframe’s file system to improve data 

throughput to its users.  With careful use of this cache memory, the overall data 

throughput achieved by the disks is potentially far beyond that which the disks could 

achieve alone.  The next chapter discusses the cache organisation in detail. 

2.6 Summary 

This chapter has given an outline of the properties of both continuous media and the 

storage hardware.   The problems involved in the provision of continuous media to a user 

have subsequently been introduced.  The chapter has covered a number of notable efforts 

to produce a solution, in both small and large scale, and finishes with an examination of 

similar work in the field to that in this thesis. 
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3. Stream Caching 

Given a requirement of 20 simultaneous users of a single networked video file server, 

there is an aggregate outgoing bandwidth of between 30Mbps (4MBytes/s) up to 

100Mbps (12.5MBytes/s), depending upon the material in question.  Assuming an 

average time between successive frames of 40 milliseconds (25 frames per second) for 

each individual user, and that the average maximum sustainable disk transfer rate is 

around 4 to 5 Mbytes/s with a seek time of 8 to 10 ms per access, it is not enough to allow 

direct access to the server's disks.  In terms of the disk seek latency alone, this would 

result in either missed frames or jerky motion, most likely both.  Furthermore, increasing 

the bandwidth of the streams much above the minimum requirement would exceed the 

maximum performance of such disks in any case. 

To enable the use of such disks within a video server requires a memory buffer that 

removes the effects of disk scheduling latencies from the users’ point of view.  Such a 

buffer would eliminate jitter and enable reuse of data among the active users such that the 

need to physically access the disk is minimised, thus lessening the disk bandwidth 

bottleneck.  To implement such a scheme efficiently however, does require a detailed and 

accurate knowledge of the activities of all the video streams, and further that this 

information be kept up to date.  In particular, a record of what each stream is doing, and 

what events may occur in the future is needed. 

In this chapter, the stream model used throughout the chapter is first described.  

Thereafter, caching systems in general are discussed.  The theory of “stream optimised 

caching” is then introduced for the first time in detail, together with a simulation of 

expected performance of several caching algorithms.  The remainder of the chapter 

suggests possible implementation strategies. 

3.1 Operational Model 

Continuous media, such as video, can be defined as a sequence of data frames with each 

frame occurring at a discrete logical point in time on the time scale of the media.  For 

example, videocassette recorders can use an arbitrary time counter scale much like an 

audio cassette deck, or may use a time relative scale based around hours, minutes and 

seconds.  Each frame can therefore be uniquely identified by the logical time at which the 

frame is due relative to the start of the media at 0 minutes, 0 seconds; this is known as the 

frame timestamp. Figure 3.1 illustrates the concept of a logical time scale, referred to as a 

timeline, of a five-minute media clip.  The current position in the media clip is shown as 

two minutes 15 seconds. 

Given the definition of the media timeline, each stream can be described by the 

following model, as used by the Palantir [Lin90] project: 
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Table 3.1: The Stream Model 

Direction Indicates the direction of play: forward or reverse 

Playrate The rate of playback relative to normal 

Paused Indicates whether the media is being played back or is paused 

Position The current position of the media on its logical time line in ms. 

TotalTime The total duration of the clip in milliseconds. 

 

Each model can be altered by operations that a user may require.  These operations 

are appropriate to the control of continuous media and may be summarised thus: 

Table 3.2: Stream Operators 

Connect Initiate a playback stream 

Speed Change the rate of playback 

Direction Change the direction of playback 

Pause/Unpause Pause or Continue playback of a stream 

Reposition Change position on timeline 

Quit Finish playback of a stream 

 

Figure 3.1: An example representation of time in continuous media 

3.2 Caching and Typical Approaches 

In order to improve the performance of disk file systems it is necessary to introduce a 

layer of data buffering such that repeated accesses to a file need not cause physical access 

to the storage medium.  In so doing, the response time of the file system is decreased and 

the access time and transfer rate requirements of the disk are reduced – this is particularly 

important in a multi-user environment where many users access the file system resource 

simultaneously. 

File systems typically assume that files are accessed in a sequential nature.  To 

improve the responsiveness of the file system therefore, look-ahead caching is performed 

such that the data is available in the data-cache ahead of when it is actually required; i.e. 

the data is pre-fetched.  At the same time, the accessed data is maintained in the cache 

once accessed, should the user require it again. 

Of course, resources are finite; only so much physical memory can be given to the 

operation of a cache.  If the cache is to be effective, it is necessary to determine which 

data should remain in the cache.  Thus, regardless of the algorithm used, all caches are 

organised such that those blocks of data with the shortest time to reuse have highest 
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priority.  The blocks with lowest priority, i.e. those with the longest time to reuse, are 

replaced first.  In practice, the precise time to reuse for each block cannot be known 

beforehand.  Hence, a predicted time to reuse must be used instead, for some suitable 

predictor; the predictor predicts the expected time before reuse, such that the cache may 

be organised on predicted least time to reuse.  If this predictor is sufficiently accurate, a 

high level of cache hit rate (i.e. reuse) is maintained; if the predictor is perfect, the cache 

will approach 100% efficiency. 

One of the most common cache control policies is Least Recently Used (LRU).  Here, 

each block of the cache is effectively given a last access timestamp and the cache contents 

are organised on this time of access.  Thus, when cache contents need to be discarded to 

make room for new data, the oldest data is removed first.  The prediction with LRU is that 

the least recently used data has not been accessed recently and presumably will not be 

accessed within the near future.  Consequently, only that data which has recently been 

accessed will remain within the cache. 

3.3 Temporal Locality of Access 

With continuous media, the access to the data tends to be sequential from start to finish 

with little variation.  Thus, a simple look ahead cache can eliminate the latency of disk 

access when a client requests an item of data; removing the disk latency results in a far 

shorter and steadier latency in transmission of data to the client, and consequently in very 

low or zero jitter playback.  In addition, the behaviour of such media streams is highly 

predictable; since the current location of a stream, its rate and direction of play, and the 

properties of the media concerned are known, these can be used to advantage.  For 

example, to prefetch in the direction corresponding to the direction of play and by an 

amount appropriate to the rate of advance.  Of greater importance however, is where 

several media streams are operating concurrently on the same source file; data can be re-

used across streams by consideration of their playback properties.  That is, where a stream 

is predicted to use the same section of data recently used by another stream, that data can 

be maintained in the cache until it is predicted not to be used by any of the streams.  How 

long and how much data can be maintained between streams is dependent upon the size of 

the cache.  It is possible to organise the cache in such a way as to exploit this predicted 

temporal locality of access. 

Clearly, this approach breaks down where no re-use occurs, and it is effective only 

where such re-use is possible, as for example, in a classroom environment where the users 

progress through some learning task at roughly the same rate; indeed, it was precisely for 

this environment that the concept of stream caching was intended.  In applications such as 

video libraries or video subscriber services where users access entirely different files, or 

reuse is limited to stream intervals of (say) twenty minutes or more, the technique is of 
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limited use; the size of cache required would need to be enormous to enable the 

exploitation of reuse and its cost would be prohibitive. 

3.4 Modelling Performance 

As a first step in the development of the basic technique, an experiment was carried out 

by Prof. Peter Linington to examine the effectiveness of stream caching by simulation. 

In [Lin95], a stream is classified by the identity of the clip being used, and the user's 

relative offset within that clip.  A sample of usage is generated by selecting, for each user, 

the clip being used, and the user's offset within it; each user plays in the forwards 

direction at normal play rate until the end of the clip is reached.  The simulation takes 

these active streams and calculates the set of intervals between accesses to each frame by 

the different users; each frame, once shown to one user, ages in the cache until reused, or 

discarded.  An estimate of expected system performance is generated by running a large 

number of trials of varying user usage patterns; from these, the mean and deviation of 

expected cache performance are calculated.  Several caching policies were applied to the 

distribution of accesses and the cache behaviour derived. 

3.4.1 Stream Optimisation 

For a number of streams, if the pattern of activity is known, it is immediately obvious 

from the stream positions when an access has no expected successor; either there is no 

stream approaching the frame, or the incoming stream is too far away in comparison to 

other intervals.  Such frames can be flushed from the cache immediately, reserving space 

for re-use.  The most advantageous use of cache space is for frames with the smallest time 

before re-use, and so cache space should be allocated to the k smallest inter-user spacings, 

such that k is the maximum value for which t  k, where t is the cache length. 

Figure 3.2: An example of stream optimised caching 

 

An example of stream optimised caching is given in figure 3.2.  Here, the intervals 

between streams 2, 3 and 4 can be satisfied by the cache, but the interval between streams 

1 and 2 is larger than the space remaining in the cache and cannot therefore be satisfied.  

Physical time is shown to be advancing from the top to the bottom of the diagram which 

has discrete stages (a), (b) and (c) displayed; each stream, and its cached interval (where 
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possible), can be seen to be advancing along the logical timeline as real time advances.  

At stable state, stream 3 reuses the data fetched for stream 2, and similarly, stream 4 

reuses stream 3's data; only streams 1 and 2 need to access the disk. 

3.4.2 Modulated Stream Optimisation 

The stream optimisation given above does not use any residual part of the cache which is 

smaller than the smallest unserviced interval; an attempt to do so would result in 

exhaustion before re-use.  However, use can be made of this space by alternating the 

behaviour between retaining and discarding frames over this interval, such that a static 

fraction of the modulated interval's data is maintained and is periodically available for re-

use by the adjacent advancing stream.  Consider the example in figure 3.3. 

Figure 3.3: An example of modulated stream caching 

 

At stage (a) there are two streams with an interval between them which is larger than 

the size of the cache; stream 1 is beginning to fill the interval between the two streams.  

At stage (b), both streams have advanced along the timeline and all of the data that stream 

1 has accessed remains in the cache.  Once the cache becomes full however, the data most 

recently used by stream 1 is discarded leaving the older data in the cache.  By stage (c), 

stream 2 is beginning to use the data left behind by stream 1, and stream 1 can again leave 

data in the cache as stream 2 uses and discards the old data.  A ‘gap’ in the cache interval 

is visible where stream 1 switches from retaining to discarding frames and back once 

stream 2 begins freeing up cache space.  Clearly, if data left in the cache by stream 1 were 

discarded by the age of the data, stream 2 would not benefit from the cache; the first 

stream's data tail would reach a maximum length, namely the size of the cache, and would 

never extend to reach stream 2. 

3.4.3 Results of Simulation Tests 

In the simulation, an initial assumption is made that the clips and offsets are selected at 

random from a uniform distribution. In practice, there will be a significant correlation 

between students, with most students starting the scheduled activity at the beginning of 

the class and progressing at near the expected rate.  However, the actual rate of progress 

is bound to vary, with late arrivals, backtracking and other variations.  Thus, the 
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assumption of a uniform distribution of requests may be pessimistic, but gives a safe basis 

for the predicted behaviour of different algorithms.  Figure 3.4 illustrates the performance 

of LRU, stream caching and modulated stream caching algorithms for a sample of 20 

users of three clips.  Linington further showed that the stream-based algorithms not only 

gave better efficiency than LRU, but also resulted in a more predictable performance, as 

shown in Figure 3.5. 

 

Figure 3.4: Comparison for Access to three Clips by 20 users 

 

Figure 3.5: Standard Deviation of Disk Reads Corresponding to Figure 3.4 

3.5 Requirements of Predicted Locality of Access 

In order to allow the cache to be organised by predicted temporal locality of access, it is 

necessary for the server to have a knowledge of the playback parameters of all the streams 

that it manages.  If the server maintains the playback model of each of its clients, then it 

must also be responsible for the timing of transmission of data frames.  To do otherwise 
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would be to duplicate the stream model on both server and client, which could potentially 

lead to differences in client and server models, and consequent sub-optimal organisation 

of the cache where the models became out-of-step.  A further consequence of the server 

maintaining the stream model is the style of control of the stream clients; a higher level of 

abstraction results, consisting of such basic primitives as ‘play’, ‘pause’, and playback 

rate and direction controls.  These primitives were given in table 3.2 as user stream 

operators; they now become system stream operators also. 

In fact, the above model and control requirements complement one another by 

reducing the latency of transmission when a frame is due.  If the client were maintaining 

its own stream model and issuing requests for frame transmission, each frame, or group of 

frames, would require a ‘request to send’ message (such as read(file, length); ).  

Such a message itself takes time to cross the network and be processed by both client and 

server protocol stacks, in addition to increasing the load on the network. By placing 

transmission-timing responsibilities with the server, this source of latency is eliminated.  

Furthermore, by placing the stream model and transmission responsibilities with the 

server, the clients' requirements are reduced and their implementations simplified. 

3.6 The Cache Architecture 

The stream controller needs to organise individual streams such that the data cache can be 

optimised for stream caching as discussed above.  The monitoring of all streams on an 

individual basis could be potentially expensive, especially where a large number of 

streams were active; such a solution would not scale well.  Similarly, the management of 

the data cache structures needs to be efficient with low maintenance overhead.  In theory, 

each cache block and each stream could be considered separately and all management 

structures updated for each access of every stream.  However, for multiple users the 

maintenance costs of such an approach would likely require immense processing power.  

Hence, cache maintenance costs are a consideration in the cache design.  

For the above reasons and further to simplify the controller, a set of streams with 

contiguous intervals is arranged into a stream group.  The stream groups are therefore 

either separated by intervals that are too large to service, or the groups belong to different 

media files. A modulated interval is marked separately since there can be at most one 

such interval, and its behaviour is different from the fully cached intervals as discussed in 

section 3.4.2. 

As the streams are arranged into logical groups, where each group consists of a 

number of playback streams whose intervals lie adjacent to each other on the media's 

time-line, this is reflected in the structure managing the streams.  At the top level, we deal 

with playback files, and at the very bottom, with individual streams.  Thus, each file 

consists of one or more stream groups, and each group of one or more streams.  This 

arrangement is illustrated in figure 3.6. 
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In order to simplify the operation of this structure, each group maintains the forward 

and reverse playing streams separately; calculating the edges of a section of file to be 

discarded is made quicker and easier if the forward and reverse streams are semi-sorted 

such that the head stream is first and the tail stream last in each list.  This allows the edge 

of the discard area to be determined by a simple comparison between the head and tail 

members of the opposing directional groups.  A single bi-directional list of streams would 

require a sort for the leading forward stream and tail reverse stream (if any), or the 

leading reverse and tail forward streams.  This structural split is therefore a simplification; 

either implementation would work. 

On group assessment, that is, the point in time at which the groups are formed from 

the streams, the previous state of the groups can be destroyed since they were only a 

prediction of cache usage, and we begin afresh.  Each file's streams are sorted on their 

model's current times into increasing temporal order and a list of intervals between 

adjacent streams generated; each interval records the two streams which form it, and the 

streams keep a record of the file to which they belong. The interval list is then sorted by 

increasing size such that cache space can be allocated to those gaps, smallest first.  

Clearly, any file that has only a single user has no intervals and will therefore have no 

entry in the interval list – a cache ‘singleton’. 

Figure 3.6: Stream Management Data Structure 

3.6.1 Physical and Logical Cache Allocation 

It is important to note that the formation of the stream groups allows only a logical 

allocation of cache space to those streams.  No physical allocation is made since only a 
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prediction of cache usage is being made not a determination of that usage.  The physical 

allocation is determined by the look-ahead and play-out buffer activities, which fill the 

group intervals over time.  No immediate attempt is made to fetch the data that forms the 

groups into the cache, that is, to make the logical allocation physical.  The pattern of 

usage can potentially change very rapidly, and consequently, filling the stream intervals 

may take far too long.  Consider the example in figure 3.7.  Here, the third stream is 

repositioned between discrete times (a) and (b).  At instance (a), the cache is at stable 

state, with the data fetched by streams 1 and 3 having filled the two group intervals.  

Thus, at time (a), the physical allocation of cache space reflects the logical group 

allocation.  However, after the reposition, stream 2 has yet to fill the interval to stream 3, 

so a physical gap in the logical allocation exists over this interval; the physical allocation 

for stream 3 will be that of its own look-ahead buffering activities. 

Figure 3.7: Illustration of physical cache versus logical cache content 

 

It is possible as an optimisation that the intervals could be filled when cache hit rate is 

near 100% and the disks are idling.  In this case, the play-out requirements of the streams 

are met directly from the cache-data.  Such an optimisation is only possible however, 

where there are stream groups with only a part of their data set in the cache, that is, that 

the physical and logical allocations do not agree.  This is a transient effect that can follow 

a group reassessment, since the newly formed groups may have changed significantly 

from their previous state and the physical contents of the cache will lie outside of the new 

logical groups as a result.  If no further reassessments occur, then the groups can reach a 

stable state where each contains its full data set in the cache; at stable state the logical and 

physical cache allocations will be identical.  Consequently, filling such groups while the 

disks are idle is obviated because all the groups are by definition full at stable state. 

3.6.2 Cache Prefetch 

Each stream has a prefetch region, which serves as a play-out buffer and can be said to be 

its length.  The length of each stream must be taken into account before allocating cache 
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space to the stream intervals because a stream must always be able to place data into the 

cache for transmission to its client, regardless of whether that data has any reuse.  

Additionally, care must be taken not to allocate more than one cache block to any block 

of media data, which would be possible where the prefetch areas of several streams 

overlap.  Hence, the prefetch lengths should be allocated once each file's streams have 

been sorted into order such that overlapping of allocations is avoided; the result is a set of 

partially contiguous but non-overlapping prefetch areas.  How much cache space is given 

to each stream's look-ahead buffering is dependent upon the properties of the individual 

stream.  For example, paused streams do not require a prefetch, and different streams 

consume varying amounts of cache per unit time and are further dependent upon the rate 

of playback. 

An example of prefetch allocation is given in figure 3.8.  In 3.8 (a), the three forward 

playing streams have been allocated prefetch from out of cache space before the intervals 

are formed.  In 3.8 (b) a group is formed from the intervals between streams 1 & 2, and 2 

& 3.  The prefetch of streams 2 and 3 can clearly be seen to overlap with the group’s 

intervals; cache space will have been allocated for both the group's intervals and for the 

prefetch.  In 3.8 (c), the overlap is detected and the prefetch effectively reduced to zero to 

prevent the double allocation. 

Consider the case where the amount of cache space remaining on consideration of the 

stream group in figure 3.8 (b) is slightly less than the size of the two intervals between 

streams 1 and 3.  In this case, only the smaller of the two intervals could be satisfied if 

prefetch were not taken into account at the point that each group was allocated.  It is 

therefore imperative that the group space requirement be reduced by any prefetch 

overlaps at the time that the group allocation is attempted.  If it were attempted as a post 

allocation adjustment, the group allocation could unnecessarily fail as demonstrated by 

the above example.  Note that the prefetch of leading stream 1 remains allocated after 

group formation since it lies beyond the edge of the stream group. 

Figure 3.8: An example of prefetch overlapping with a stream group 

 

Continuing the above discussion, the aim is to maintain a 1:1 mapping between file 

block and cache block during formation of the groups; each stream will have prefetch 

which can overlap with the intervals that make up the groups.  This is clearer on 
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consideration of a stream which lies in between two others, such as stream 2 in figure 3.8; 

its prefetch will overlap with one of the intervals on either side, dependent upon its 

direction of play.  Since the prefetch areas were generated not to be overlapping, each can 

at most span over a single interval.  Thus, a simple test of overlap between the interval 

and the adjacent streams' prefetch areas allows a reduction in the size of cache allocation 

that the interval requires by the size of any such overlap. 

It is then trivial to form the new stream groups by allocating the remaining space in 

the cache to each interval in turn, until either the interval list is exhausted, or there is 

insufficient space left to service the interval under consideration.  Note however, that if 

cache space is exhausted by the intervals, each stream individually still has sufficient 

buffer space for its operation because it was allocated a prefetch segment in the cache. 

3.6.3 Maintaining the Groups 

Each time the cache is physically exhausted by the continual prefetching of the streams or 

other file system activity, a reassessment of the groups is made.  The reassessment can 

determine which sections of the cache are not predicted to be used and can therefore be 

flushed to make way for new data.  Any data within a group will remain since it either is 

in use or may potentially be reused.  The act of reassessment however, can be put off for 

longer if those data at a tail end of a group and that are known to have no successor, are 

flushed after use, or otherwise marked for replacement.  The reassessment cannot be 

permanently avoided however, as demonstrated in the following example. 

In figure 3.9, the two streams 1 & 2 play at normal rate, whilst stream 3 plays at half 

speed.  Thus, at time (b) the size of the interval between 1 & 2 remains temporally the 

same, though that between 2 & 3 lengthens.  At stage (c), the space available in the cache 

is no longer sufficient to satisfy the both the interval between 1 & 2, and the ever growing 

interval between 2 & 3.  Hence, divergence of streams within the single group can cause 

increasing cache demands, which must result in the division of the group. 

Figure 3.9: Divergence of stream within a single stream group 

 

Since the streams within a single group can diverge because of play-rate differences, 

until collectively they are larger than the size of the cache, reassessment cannot be 

indefinitely postponed.  Similarly, normal non-stream data usage can increase and require 
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a larger segment of cache space.  This is why reassessment must be triggered when 

physical space is exhausted.  Furthermore, some user actions must also cause a 

reassessment, for example, repositioning or closing of a stream.  In this case, the logical 

allocations and group structures would not reflect the stream models accurately and 

would therefore give an inefficient use of cache space. 

Consider the example in figure 3.10.  Initially, there are two stream groups consisting 

of streams 1 & 2, and 3 & 4, respectively; the interval between streams 2 and 3 is larger 

than the remaining space left in the cache and hence the four streams cannot form a single 

group.  In the example, stream 3 is progressing at a rate greater than the other three 

streams.  At stage (b), the interval forming the lower group has extended, but is less than 

the interval between streams 2 and 3.  By stage (c), this is no longer the case and the 

reassessment consequently groups streams 1, 2 and 3, while stream 4 becomes a 

singleton.  For maximum caching efficiency, the cross-over from stage (b) to (c) should 

happen as soon as stream 3 is closer to stream 2 than 4.  If this cross-over is delayed then 

stream 2 will not switch to retaining frames until after this optimum cross-point; 

similarly, stream 3 will continue to retain frames after the cross-point and the cache 

would then no longer be operating over the shortest set of intervals. 

 

Figure 3.10: An example of group formation on continuous reassessment 

 

There is a further point to consider when switching a stream between two adjacent 

groups once the switching stream reaches the cross-point.  In the example above, stream 3 

will have filled the interval to stream 4 with data.  Once the cross-over in the groups is 

made, the data ahead of stream 4 ought not to be discarded until used by stream 4 if 

caching efficiency is to be optimal; otherwise, that same data is obtained from disk by the 

prefetch of stream 4 thus decreasing cache efficiency.  At the same time, stream 2 must 

leave data for use by stream 3 and will do so at the expense of the 3 to 4 stream interval if 

cache space does not suffice.  In fact, this behaviour is identical to modulating the 

smallest unserviced interval if the interval is the smallest unserviced interval in the set of 

all intervals.  Modulated intervals are discussed further in section 3.6.4. 

When performing an on-the-fly discard of frames that have no predicted successor, 

any re-use if the user intervenes is automatically lost.  For example, a single user of a clip 
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repositioning the video to review an earlier section; the required data will have been 

discarded because it was predicted to have no successor.  Provided then, that the cache 

has more free space than is being used, any discarding of data should not be performed. 

Once the cache is operating at capacity, discarding frames for which there is no 

predicted re-use becomes essential, but only viable if the CPU cost is sufficiently small; 

the simplest implementation would drive reassessment and cache discard purely by 

reacting to physical cache exhaustion and user events.  Similarly, using a system 

organisation where blocks are marked for re-allocation such that they are available for re-

use until actually replaced is only possible if it is not disruptive to cache operation.  The 

greater the accuracy of the groups in respect of being formed from the smallest set of 

intervals at any instance, the better the caching efficiency will be.  Furthermore, the 

efficiency is best if the physical contents of the cache exactly reflect the logical groups of 

which it is made at every instance.  Nevertheless, the practical realisation of a stream 

optimised cache has real-time calculation constraints, which unless met, render the cache 

useless in a real-time environment.   At the same time, minimising the need to both 

reassess the streams and maintain the cache contents leads to a less optimal stream cache; 

clearly, there is a balance to be struck. 

3.6.4 Modulated Stream Caching 

To achieve the modulated behaviour in the cache, the modulated interval must neither be 

converging nor diverging.  Converging intervals are caused by head-on groups which 

prefetch towards each other; diverging groups are those playing in opposite directions 

with an interval which increases with time and within which there will be no reuse.  

Figure 3.11 illustrates two streams that are diverging; stream 1 advances forward along its 

logical timeline and stream 2 plays in reverse towards the start of the media clip.  Note 

that each stream will never use the data left in the cache by the other; it is therefore 

worthless modulating the interval in this example.  Indeed, in this example the interval 

need not be cached at all. 

Figure 3.11: An example of a diverging stream interval 

 

Note that in the above definitions, a stream at ½-speed is not considered ‘diverging’ 

from its leading group since although the interval grows with time, re-use of this interval 
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is possible.  Similarly, a stream at double-speed is not ‘converging’ on its leading group if 

that group is moving in the same direction; re-use is again possible. 

On considering the movement of a group's data on the timeline of some arbitrary 

media, it can be seen to ‘drift’ either up or down the timeline, provided that the group is 

not converging on or diverging from the adjacent group.  In figure 3.12, two groups move 

along a timeline in the same direction.  Relative to the leading group 1, used data leaving 

the tail end of the group drifts down to the leading stream of the following group 2.  The 

‘drift’ here is relative, since the data are actually static in the cache.  The drift is clearer if 

the figure is reorganised such that the timelines are displayed relative to the current 

position of stream 2, as shown in figure 3.13. 

Figure 3.12: An example of modulated stream caching showing drifting data 

 

Figure 3.13: Modulated stream caching with a timeline relative to stream 2 

 

Thus, the direction of flow of the data between the leading and trailing group over the 

modulated interval may additionally be identified.  If the drift is ‘upwards’ then data is 

discarded at the lower end of the interval and retained at the higher end, as the following 

group will move backwards into it.  If the drift is ‘downwards’ then data is discarded at 

the higher end and retained the lower end, as the following group will play forwards into 

it.  In the example in figure 3.12, once group 2 reaches the drifting data and begins to free 

it from the cache, group 1 will again start leaving data in the cache until cache space is 
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exhausted once again; this was seen back in figure 3.3, and is not repeated here.  During a 

reassessment and flush, the modulated interval is always last to be considered since its 

discard is partial; the cache will try to leave as much data as the logical allocations allow. 

3.6.5 Sharing the Stream Cache with Non-Stream Data 

It is possible to accommodate non-streamed data into the cache by keeping a separate 

count of cache space occupied by that data, and being able to identify which files have 

streams and which have not.  When the cache contains streamed data, a limit should be 

placed upon how much space normal files may occupy, and for what period of time it 

may remain there if not used.  This way, normal files cannot consume cache space in 

preference to streamed files, and idle data from normal files cannot consume cache 

resources indefinitely.  Furthermore, when there are no streams active, the cache may be 

filled by normal file data.  Since the consumption of space by normal files is tracked, it 

can be deducted from the total cache space in calculating the total logical space available 

for allocation to stream groups.  During a cache reassessment, normal file data can be 

discarded if its usage timeout has expired and then on a basis of least-recently-used, for 

example, until the normal file usage falls within the maximum allowed by the cache. 

The upper limit of normal file usage and its residency timeout may be fixed values, 

but could be made dynamically depending upon the loading conditions of the server. If 

the caching of normal file data is not effective when normal file usage is heavy, then the 

efficiency of the streams will be affected because the bandwidth available from the disks 

will be reduced by normal file activities.  The reverse is also true in that a poorly 

managed stream cache will have a heavier demand of the disks and will interfere with the 

operation of the normal file cache. 

The practical realisation of such a mechanism could be made by separately 

monitoring disk activity and cache hit ratio for both streamed and normal file data-traffic.    

Both monitoring activities would need to be taken into account, since a poor hit ratio 

alone does not necessarily equate with heavy disk access.  However, disk activity and hit 

ratio together would be enough to recognise a poorly performing cache.  When the ratio 

of cache hit rate to disk activity of one of the usage types becomes suitably out-of-step 

with the other, the cache-space usage limit could be moved to favour the traffic type with 

worse ratio.  The dynamic adjustment of the cache usage boundary and the residency 

timeout remain a subject for future research. 

3.7 Summary 

In this chapter, the concept of stream optimised caching has been introduced, together 

with a basic outline of how it could be implemented and the basic issues involved.  

Simulation results were presented which suggest that much could be gained from a 

caching algorithm that takes account of the nature of stream traffic. 
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An argument was put forward that a media server employing such a caching 

algorithm would require detailed knowledge of the streams it managed, and that this 

complemented both the requirement of the streams’ models residing with the server, and 

the style of user control over those streams that must result. 

The chapter concluded with a suggestion for cache coexistence between normal file 

data using known file-caching techniques for that data, and stream optimised caching for 

streamed files. 
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4. Architecture and Implementation 

“For every problem there is one solution, which is 

simple, neat, and wrong”  

 – H. L. Mencken 

 

In order to examine the effectiveness of a stream-caching algorithm, it is first necessary to 

construct a continuous media server using that algorithm.  Although detailed simulations 

of stream caching algorithms are conceivable, they are never a substitute for observing 

the behaviour of a real-world system.  In this chapter, the prototype server architecture 

that was built for experimenting with caching algorithms is presented. 

The chapter begins with a presentation of the physical architectural components.  The 

performance of these components is examined and the theoretical performance of the 

server architecture derived.  The following sections then cover the individual parts of the 

server piece by piece, namely: the file system; the continuous media file format; the 

network interface, its driver and associated network protocol structures (from link layer to 

physical layer); and ultimately, the cache and streams management controllers, whose 

operations tie the previously covered items together to form the complete network server. 

Each section discusses, where appropriate, the underlying hardware construction and 

the issues involved in arriving at a solution.  Where several design options are described 

in a section, the section states the option that was taken.  The intention in all sections is to 

give the philosophy in the design and state the reasons why a particular implementation 

was taken.  Each section concludes with an analysis of that component to show that its 

performance is sufficient given the requirements of the server. 

4.1 A Base Architecture – Foundations 

To successfully transmit video data to a client with sufficient temporal accuracy requires 

a processor or operating system with known highly predictable timing characteristics.  In 

particular, it must respond to real-time events, most notably the transmission of a frame of 

video, within a sub-millisecond time frame.  One such processor is the INMOS 

Transputer; while traditional Unix implementations give a good base on which to build, 

their real-time response is far too coarse for the successful implementation of a multi-user 

video file server. 

The Transputer has been, up until very recently, unique in its employment of four 

high-speed serial links to allow the networking of multiple processors.  In terms of the 

video server, this allows a breaking up of process responsibility, a dedication of function 

and therefore the avoidance of overloading a single processor with all the many tasks 

required of the server. 
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The prototype architecture is arranged as illustrated by figure 4.1.  At the right of the 

diamond topology is a dedicated filesystem TRAnsputer Module (TRAM), and at the left, 

an ATM network interface TRAM.  The four TRAMs across the middle of the topology 

are responsible for the main data cache.  The Root TRAM is used for booting the server 

and for logging of system data and events as required by the server.  It also provides a 

console interface to the server.  

Figure 4.1: The Prototype Server Hardware Architecture 

4.1.1 Theoretical Requirements 

The primary objectives of the server are firstly to stream data from the disk subsystem 

into the cache, and secondly, to stream data from the cache to the ATM TRAM for 

transmission.  These two data paths are illustrated in figure 4.2 and are labelled as paths X 

and Y, respectively.  These paths are the result of the server being multiprocessor; the 

data transmission must be staged between the processors, and furthermore, the data must 

be prepared on the ATM TRAM for transmission to the network.  Figure 4.2 shows the 

ATM TRAM as receiving a block for transmission into a “Service Data Unit” (SDU) 

buffer, which is then segmented into ATM cells for subsequent transmission. 

The data cache affords a higher outgoing transmission rate to the network than the 

disks alone would allow.  Hence, in figure 4.2, the SCSI TRAM does not receive all data 

requests from the clients, since some of these will be satisfied by cache data.  For the 

purposes of the following feasibility study, a cache-hit ratio of 80% was assumed. 

Given the physical characteristics of the Transputer, the theoretical requirements of 

the architecture outlined above can be examined.   The following calculation was a ‘back 

of the envelope’ estimate performed prior to construction of the server; it is not intended 

as an accurate mathematical model of the prototype server. 
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ed =  disk event rate (Requests/s) 

H =  cache hit rate 

M =  cache miss rate  =  1 - H 

n =  number of video streams 

sv =  average size of video frame 

fr =  video frame rate (frames/s) 

ef =  cumulative frame request rate(frames/s) 

rhw =  hardware link transfer rate (bytes/s) 

thw =  time of transfer of frame across a hardware link 

nhw =  number of hardware links used for transfer 

ta =  time of memory allocation for frame 

Figure 4.2: Data flows within the server – Disk to Cache and Cache to Network 

 

Firstly, are the disks fast enough to support the required n users given the assumed hit 

ratio, and further, how fast do the disks need to be? 

 

The cumulative frame rate is the product of all video streams: 

rf fne =
 

 

The cache will catch a percentage of these requests, so the event rate seen by the disk is 

lower: 

Mee fd =  

)1.(. Hfne rd −=    (4.1) 

 

The actual disk transfer rate required, dr, may thus be calculated: 
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vrr sHfnd ).1.(. −=    (4.2) 

where  

mr dd   

 

For each block transferred into memory from the disk, the block will be transmitted out 

on one of the hardware links at the rate of rhw bytes per second (Path X in figure 4.2).  

However, in order for the block to be placed in main cache memory, it must first have 

been allocated a buffer.  The maximum rate of the disk and hardware link are fixed, 

giving an amount of time remaining per second from which buffers can be allocated.  

This allocation time will also include any necessary freeing of other buffers where there is 

not enough memory on the initial buffer request.  In the following, the effect of the 

double buffer in the SCSI TRAM is ignored, since the worst case is the transfer of single 

blocks of data scattered over the disks.  In this case, the double buffering is defeated 

because moving the disk head breaks the transfer pipeline.  Furthermore, consideration of 

the worst case gives a safe basis for prediction of system performance. 
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Each Transputer link is rated at 20Mbps.  For each byte of data transmitted over this link, 

there is 1 start bit and 2 stop bits, that is, an overhead of 3 bits for each 8 bits transmitted.  

Consequently, there is an effective throughput on each link of )281(820 ++  = 

14.55Mbps or 1.73MBytes/s.  
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It is assumed that an 80% hit ratio H on the cache can be achieved.  Thus: 

ms47.ta =  

 

This proves that the proposed architecture is feasible; it should be possible to build a 

memory allocator at least an order of magnitude faster than this.   

 

The above is, however, pessimistic: for any of the four cache TRAMs, we may assume 
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that a frame request can be made, the buffer allocation made for it, and the data then 

placed into the main cache buffer.  It will take far more time for the SCSI TRAM to fetch 

the data and transfer it to a buffer, than to make the allocation of that buffer.  Hence, for 

the cache TRAMs, only thw is effectively incurred where 

hw

v
hw

r

s
t =   

 

For a cache hit, data is output over the hardware link to the ATM TRAM; for a miss, the 

data must firstly be fetched from the SCSI TRAM.  Thus, a cache miss is at least twice 

the cost of a cache hit.  For a miss, the cache will be kept waiting while the frame is 

fetched from disk.  However, since the server is dealing with video streams, the frames 

can be obtained in advance of transmission through the ATM TRAM; to the ATM 

TRAM, the cache success (i.e. delivery of data) rate could potentially be 100 percent. 

Given the time taken by the cache in transmitting data to the ATM TRAM per 

second, sufficient idle time must exist to allow the server to perform allocations, disk 

fetches and other cache maintenance operations.  Thus, does the server have sufficient 

time outside of cache to ATM transmissions for other tasks? 
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If nc = 4, and ef = 250 (10 users at 25 fps): 
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In the above, we have  290 ms remaining per second.  This time is available for waiting 

on the SCSI TRAM or for any allocations that may be required.  Here too, the 

architecture looks feasible. 
 

For the ATM TRAM, the rate at which data can be transferred over the hardware links is 

limited (Path Y in figure 4.2).  Given this maximum link rate and the video bit-rate, how 

many users can be supported by the server?  If each hardware link can run at 1.73 Mb/s, 

then for all four links: 
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The maximum number of streams that can be handled can be calculated thus: 
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It is unlikely that the links will be kept fully busy; it is assumed that all four links can be 

kept partially busy and that they are serviced simultaneously – this may not be possible in 

practice.  Note that the following calculation assumes a video bandwidth of 2Mbps  250 

KBytes/s (MPEG streams used in practice are 1.5 Mbps; we consider a worse case here).  

If the four link engines are only 80 percent efficient: 
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Thus, the cache to ATM TRAM transfer paths are capable of the requirements that will be 

made of them.  From equation 4.2, it is possible to check that the disks are fast enough for 

the calculated maximum number of users: 

( ) vr rHnd .1. −=  

 ( ) 1024250.8.01.23 −=rd  

  Mbytes/s1.1 KBytes/s1150 ==rd  

 

Theoretically therefore, the architecture should be able to support the desired twenty 

simultaneous users. Furthermore, the above calculation suggests that the disk speed 

required by the server is within the performance envelope of any standard disk, provided 
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that the cache hit rate can be maintained.  With respect to the required cache hit rate, 

equation 4.2 can be arranged thus: 
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The above calculation takes the maximum disk rate as 2Mbytes/s.  Hence, the 

architecture requires a cache hit rate of 59% in order to succeed as a video server. 

4.1.2 Practical Realities – Building an Infrastructure 

In order to test the achievable rate of data transfer from the network and file system 

TRAMs to the data cache and vice versa, an initial infrastructure was created.  The test-

bed transferred blocks of ‘fake video’ data from the file system to the cache to the 

network adapter, and separately, back in the other direction.  Unless the theoretical 

requirements could be satisfied, there would have been little point in continuing with the 

construction of the video server using the given architecture. 

It was clear that in order to succeed with the Transputer based architecture, the links 

would need to be driven at near 100 per cent.  Furthermore, if the time between packets of 

data outbound on a link were to be minimised, the (n+1)th packet would need to be 

prepared and ready for transmission before the nth packet completed transmission; that is, 

double buffering would be necessary on any outbound data packets. 

With the Transputer link limited to a user bandwidth of approximately 15Mbps (1.73 

MBytes/s), it was clear that all four links would need to be engaged simultaneously when 

fetching data from the file system to the central data cache.  This realisation was crucial in 

the design of the layout of the contents of the data cache; each successive data block 

would need to be transferred to a different cache TRAM than the previous three blocks if 

all four links were to be utilised.  Consequently, the cache addressing is arranged such 

that the least significant two bits of a file's block offset (relative to that file's own start 

block), are the selector for which cache TRAM should contain that data. 

4.1.3 Basic Performance Requirements in the Server 

As the data transfer time was critical to the success of the base architecture, memory 

copying of file data between processes on a single TRAM needed to be avoided.  Thus, 

blocks of data are passed between processes by reference to their block offset within the 

block array from which they were allocated; this is effectively the block's address, 

although Occam explicitly forbids pointers – hence the alternative approach. 

To add to this complexity, each physical Transputer link allows the placement of only 

one Occam channel in each direction of flow.  Thus, a multiplexor/demultiplexor process 
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pair is needed at each end of each bi-directional link.  In addition, each outgoing 

compound data structure has an associated scheduling overhead for each protocol data 

unit within it.  For example, the protocol ‘BOOL ; INT ; [5]INT’ contains three protocol 

data units, namely, one boolean, one integer, and a fixed size integer array of five; this 

requires three CPU scheduler cycles to transmit or receive across a link.  A separate 

transfer for each protocol component is required because each part may have independent 

(that is, non-contiguous) memory addresses from the other parts; a ‘memcpy()’ operation 

is required for each part. 

The larger each transfer packet, the fewer packets per unit time; similarly, the fewer 

the number of protocol units per packet, the lower the CPU overheads per packet.  

Collectively, the lower the scheduling overhead, the greater the resulting bandwidth and 

CPU time available.  Consequently, multiple protocol data units are packed into a single 

outgoing buffer, including the multiplexor's identifying tag used by the demultiplexor to 

determine which process should be forwarded any received data packet.  Of course, the 

media data is the exception here – the multiplexor sends the tag separately from the data 

such that a large memory copy from the cache into the multiplexor is avoided. 

4.1.4 Analysis of the Base Architecture 

At this early stage in the server's development, only the infrastructure had been written.  

Consequently, the only data paths that it was possible to exercise were between the file 

system and the cache, the network TRAM and the cache, and vice versa in both these 

cases.  The purpose of this evaluation step was to check that the data paths were fast 

enough to satisfy the theoretical requirements. 

A double buffered transfer over any single unidirectional link was found to produce 

either 11Mbps (1.4MBytes/s) or 14Mbps (1.7MBytes/s).  The pattern of slower links was 

found to correspond exactly with those hardware links that had been connected up via a 

C004 link routing processor; the others were all direct link connections.  Having noted 

this pattern, it was decided that for a ‘release’ version of the server, all the links would 

need to be directly connected such that maximum performance were achieved.  For the 

purposes of experimentation however, it was felt that this was not necessary. 

When engaging all four hardware links in a sustained transfer of data blocks via the 

link multiplexor/demultiplexor process pair, a sustained transfer rate of over 40Mbps 

(4.8MBytes/s) was observed. These transfers used a block size of 4096 Bytes such that 

CPU scheduling overheads were minimised, this number being chosen on its convenience 

in respect of both file system logical block size and ATM network packet size. 

Given the theoretical requirement that all the links be near 100% utilised, and that the 

four links together could only be driven as fast as the slowest link, the infrastructure was 

seen to be more than satisfactory and development continued. 
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4.2 A File System For Continuous Media 

A file system for the storage and retrieval of multimedia data, in particular video files, 

was needed that gave optimal bandwidth as needed for multimedia applications, and that 

gave long-term reliability and crash resistance. 

The recovery operation of the file system needed to be quick as the initial project 

prototype that would be using it would likely crash frequently (it did).  It was important 

that the file system be recovered quickly after a crash if the project was not to be held up 

by frequent repairs. 

The underlying operational details of any file system are hidden from the user to 

whom each file appears as a stream of bytes and the physical disk devices appear as a 

single storage facility.  The file system therefore presents an interface to the user allowing 

byte level manipulation of an arbitrary collection of named files.   

Each file has attributes describing its symbolic filename, owner and permission 

information for security, plus timestamps and size information as per the Unix BSD4.3 

file system [MJL84].  

In order to work out how many files were likely to be stored, it was assumed that the 

smallest clips were likely to be in the order of 5 seconds.  It had been found previously 

that frame size averaged approximately 20KBytes per frame for MJPEG footage.  Hence, 

assuming an average frame rate of 23 (25 is desired, but we consider a worse case) then: 

 
Kbytes2300

Kbytes20fps23s5

=

=

s

s

t

t
 

 

Thus, over one of the 900 Megabyte devices used in the prototype server, there was a 

requirement of 400 large files, in contrast to the Unix assumption of thousands of mainly 

very small files. 

4.2.1 Block Allocation – The Principle of Locality 

The raw disk had been found capable of transfer rates in the region of 2.2 MBytes/s, but 

with the introduction of a file system, the effective transfer rate would inevitably be 

degraded.  The file system needed to layout its data in such a way that the resulting 

transfer rate was close to the raw rate of the device in question; the speed of data access 

was a priority in the design.  The approach taken was that of data locality, that is, storing 

related data within the same area of the disk.  In this way, the seek time incurred in 

reading these data is minimised.   

For all files, each has a header that describes the attributes of the file and the location 

of its data on the disk.  Thus, access to the file necessitates access to the header.  To 

maximise transfer rate, the seek-time between the acquisition of the header and the file 

data must be minimised; the file header must be located on the disk local to the file that it 
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describes.  The file header is called an f-node [Dun89], similar to the Unix i-node.  The 

contents of the nodes however, are not the same. 

The maximum transfer rate is achieved by accessing the disk sequentially.  The files 

should therefore be laid out sequentially on the disk.  A contiguous file system however is 

very inflexible, so each file is made up of several extents2.  The f-node therefore records 

the starting block number and length of each extent, the extents being sorted in the order 

of increasing logical file address.  To access a specific location in a file requires a search 

of the extent descriptors in the f-node.  This is a fast operation provided that the file is not 

made up of very large numbers of extents, ie. is highly fragmented.  It is the responsibility 

of the block allocation strategy to prevent such excessive fragmentation, so making the 

cost of traversal insignificant.  The benefit of the approach is that a large file may be 

described by a few extents, as opposed to a Unix like i-node which would have one entry 

for each block that the file occupied; for a large file this becomes significantly larger than 

the f-node equivalent, even when highly fragmented.  Twinning this strategy with a good 

allocation mechanism and a defragmentation utility should give better performance than 

the i-node alternative. 

Seek times can be lower if more file header areas, or bands (See figure 4.3), are 

available since the distance to the nearest f-node band will be lower on average.  The 

disadvantage of many node bands however, is more wasted disk space due to unused f-

nodes and smaller contiguous areas forcing large files to be made of up more extents.  

Node banding therefore gives much less benefit than in the Unix environment for which it 

was designed and instead becomes a source of fragmentation in data files; consequently, 

the approach was ruled out. 

Figure 4.3: Demonstration of node banding to achieve data locality 

 

When considering the disk as a whole, many files need to be described, all of which 

use the principle of locality.  Not all files can be located near the single central f-node 

band, so the files are spread over the disk into several regions.  The cost of fetching a file 

header therefore increases as the location of a file moves away from the single f-node 

 
2 An extent is a contiguous arbitrarily sized fragment of a file. 
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band.  Due to the size of the files concerned and the duration for which each is held open, 

the increase in access time should be insignificant relative to the amount of data accessed 

before the file is closed.  In fact, this cost is obviated by permanently caching the entire f-

node band. 

4.2.2 Variable Track Disk Format 

In large disks, the number of sectors per track decreases from the outer to the inner 

cylinders.  This has the effect that the raw transfer rate is higher on the outside cylinders 

and decreases toward the inside cylinders.  In order to reduce the average seek-distance 

(and hence seek time), the allocation of files in Unix BSD4.3 occurs from the central 

cylinder outwards, i.e. from half radius, in both directions.  Thus, the average seek 

distance is only ¼ (½ of half) of the disk radius.  Disk optimisation can place the most 

used files around the central cylinder such that disk layout mirrors the distribution of 

access – the disk seeks are therefore minimised. 

Unfortunately, the central cylinder does not have the greatest transfer rate, so the 

faster outside tracks tend to be largely unused.  Thus, the server's file system locates its f-

node band at and allocated around the first third of the disk (from the outer cylinder) in 

order to take advantage of the greater transfer rate.  Disk optimisation utilities could 

likewise use this strategy so that the most used files are located around the f-node band on 

the fastest area of the disk. 

4.2.3 Reliability and Crash Resilience 

In addition to ordering the writes to the disk to ensure that directory and f-node data 

cannot become inconsistent, the node band is used for all file and directory f-nodes.  This 

allows a fast recovery from failures since the location of the file and directory headers is 

known, and thus a lengthy scan across the entire disk is avoided.  A valid f-node block is 

identified via a unique signature, so the probability of attempting to recover invalid or 

corrupted files is minimised.   

The location and size of the node band are stored in the superblock of the device, so 

that on recovery, only the blocks indicated need be examined.  Should all superblock 

copies be destroyed however, then the entire disk would need to be scanned for the 

signatures and other signs of structure data.  This expensive procedure is eliminated by 

locating the band after a known interval from the first sector.  The interval is calculated as 

the total number of blocks on the device divided by three (rounded down). 

To prevent loss of data due to overwriting in an inconsistent filestore, a flag in the 

superblock indicates whether the file system was cleanly shutdown or not.  If the flag 

shows the filestore to be ‘dirty’ then the recovery procedures, a tailored version of ‘fsck’, 

are invoked automatically.  In practice, this proved to be a valuable debugging aid while 

perfecting the file system code. 
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4.2.4 F-Node Contents 

The contents of an f-node are shown in table 4.1 below.  The reference count refers to the 

number of directory entries that point to a file.  The mode field indicates if the f-node 

describes a directory or a file, its permissions, and further, whether or not the last index 

entry is a direct extent pointer, or an indirect pointer to another node. 

Each extent is described by the initial sector and the length of the extent.  If the 

logical block size is assumed to be at least 4KBytes, with a 2-byte length field, the 

maximum extent length is at least 216 - 1 = 65535 blocks = 262140KBytes or 256MBytes. 

A single 1-Gigabyte device has 218910 sectors of 4096 bytes each.  It is not enough 

to use 2-bytes as a sector number, and three byte fields are difficult to manipulate; the 

physical sector address range requires 4 bytes for a 1 Gigabyte device.  Thus, each extent 

requires 6 bytes.  In general, six extents should be enough to describe a file, giving an f-

node size of 6 × 6 + 26  64 bytes (word aligned).  Increasing the size of a logical block 

to 16K would mean that the necessary addressing range decreased from 0..218909 to 

0..54727 and further that only 2 bytes are required per block address, allowing 9 extent 

entries.  However, this approach limits the maximum device and volume set3 capacity 

supported to 1 Gigabyte.  In the general case however, 6 entries should be more than 

enough for the average sized file, especially as each file will ideally be stored as one, or at 

most two extents. 

Table 4.1: Contents of F-node 

Field Size/Bytes 

Generation 2 

Owner uid 2 

Owner gid 2 

Permissions 2 

File size 4 

Time created 4 

Time last accessed 4 

Time last modified 4 

Mode 1 

Reference count 1 

Total 26 

 

If the number of direct extents are insufficient to describe a file, then the last entry 

becomes a pointer to another f-node.  Thus, the new f-node contains 6 further extents, 

 
3 See section 4.2.9 for a discussion of Volume Sets. 
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with the mode byte indicating that the f-node is an indirect block and an f-node pointer to 

a further indirect block if required.  The f-node chaining can continue indefinitely such 

that highly fragmented files may be described, though this is clearly undesirable.  After an 

f-node becomes an indirect block, the majority of the fields in the f-node become 

redundant and are used instead as pointers to the parent f-node to assist the recovery 

operation in the event of a crash. 

The addressing of f-nodes is not done by either physical sector numbering or logical 

block numbering, since several f-nodes exist within one sector.  The f-nodes are 

addressed as an array and require only 16-bits giving a maximum of 65535 f-nodes in 

total.  Disregarding directories and indirect blocks, this gives over 65000 files addressable 

by the file system per device. 

Considering a 512 byte sector, each of the 8  62 byte f-nodes leaves 2 bytes unused.  

This area is used to store a unique f-node signature such that during recovery, valid f-

nodes can be identified immediately.  The signature occupies the first 2 bytes of each f-

node and thus increases the size of an f-node to 64 bytes; this results in no unused space 

within an f-node block. 

4.2.5 Directories 

The root directory is defined by the superblock.  The superblock points to an f-node 

which is itself marked as a directory f-node via the mode byte.  The operation of the 

extent entries is exactly as for data files, but the data contained are information on the file 

structure.  The directory entries are structured as a list of arbitrary length file names and f-

node pointer pairs; the indicated f-node contains the header information for the named 

file.    Each entry also contains a ‘space used’ field so that it is known how much space is 

unused between two adjacent entries, and new entries can be allocated based on this 

information.  Thus, in an empty directory, the size used field is the logical block size.  No 

directory entries may span over a logical block boundary. 

When the file system is first initialised, the first f-node entry is reserved for the root 

directory.  On recovery, the first f-node is therefore known to mark the root directory of 

the file system.  Similarly to f-node blocks, the first 4 bytes of a directory block contain a 

unique signature indicating the block to be a valid directory. 

4.2.6 Cache Management for Optimisation 

In order to access data within a file, the f-node of the file concerned needs to be fetched.  

This occurs for every data access, so there are two accesses to the disk for each data 

access.  In order to improve performance, the f-node access is eliminated simply by 

caching the f-nodes.  Thus, for all such files, there is only one access made by the disk 

device for each read request made. 



CHAPTER 4 

 

68 

A similar argument applies to directories; their f-nodes are cached with the data file f-

nodes.  In addition, an entire directory (consisting of one or more data blocks) is read with 

a single disk access, and is likewise cached so that frequent operations on such a directory 

are optimal.  If all f-nodes are already in the cache, then directory access is limited only 

by the time it takes to read the directory block(s) from disk.  Once the blocks are cached 

however, subsequent directory operations will hit the local metadata-cache and require no 

disk access. 

4.2.7 Free Block Mapping 

The allocation of disk blocks is controlled by two bitmaps located directly below the 

superblock in the lower track of the inner cylinder.  Since the bitmaps are rarely 

read/written, and are not critical to the integrity of the disk data, they are placed on the 

slowest area of the disk so that faster regions remain available to disk data where transfer 

rate is more valuable.   

The two maps are for f-nodes and data zones (logical blocks).  For the zone map, each 

zone on the disk is represented by a single bit, such that every eight zones require one 

byte of data.  For the f-node map, each f-node is also given one bit, so that each 64 f-

nodes require 8 bytes.  For a disk with 8 (4096 byte) f-node blocks this gives 8  8 = 64 

bytes.  In fact, the last block of the zone map has a large number of bytes unused.  Thus, 

the f-node map does not have a block reserved for it alone; the f-node map follows the 

zone map and thus shares its last block.  This has the advantage of probably saving one 

disk block access when flushing the maps.  In terms of disk space, this is an insignificant 

gain, though in terms of meta-data caching an extra block of f-nodes or a directory block 

is significant.  The cost of flushing the maps is also reduced. 

Since both maps are very small, they are made memory resident to achieve maximum 

performance.  Both maps are flushed to the disk during periods of relative inactivity, and 

at system shutdown.  In addition, they are also flushed after a time-out period during 

heavy disk access, such that the flush is not indefinitely postponed.  The current file-

system flush timeout period is set at thirty seconds. 

When the disk is first initialised, the free-maps will be largely zeros.  The zone map 

marks where the superblock(s), free-maps, and the f-node bands are located.  The f-node 

map marks the root directory.  Hereafter, the map is used as the basis for allocating f-

nodes or zones during write operations.  Should the file system become corrupted, then 

the free-maps are rebuilt from the f-node and superblock data; they are not used again 

until the file system has been recovered since illegal f-node or block reusage is inevitable 

– this is particularly so if the free-map has not been flushed to disk before a crash and 

after a long series of write operations. 
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4.2.8 The File System 

It is the responsibility of the superblock to describe to the file system manager how the 

disk is divided up.  Generally, it must locate its root directory f-node, specify the zone 

size for the device, point to the free-map, and so on.  The superblock is thus critical to the 

successful operation of the file system and is replicated on a second location on the disk.  

The primary copy is located on the first physical sector, which is on the upper surface and 

the outermost track.  This area is the fastest on the disk4; the superblock is placed here so 

that marking and unmarking of the ‘dirty’ bit can occur as quickly as possible prior to any 

data writes onto the disk.  The secondary block is located on the last sector of the disk, 

which is on the lower surface and innermost track.  Since it is rarely referenced besides 

start-up and shutdown, this leaves more valuable disk areas for data.  Thus, if the primary 

superblock becomes irretrievable, the secondary should remain available.  In addition, if 

other physical devices are available, the superblock of each can be replicated ahead of the 

free-maps of every other device.  Thus, if both primary and secondary superblocks are 

destroyed, one of the other devices should contain a valid copy.  A diagram of the server's 

file system is shown in figure 4.4. 

Figure 4.4: General Structure of the File System Volume 

 

On start-up, the superblock of each device is read into memory where it remains until 

shutdown when each is flushed back onto its respective disk.  Both the primary and 

secondary blocks are updated on shutdown, plus the copies of any other devices' 

superblocks.  After the initial superblock read, any write that occurs will set a flag in the 

superblock to indicate that the superblock was read in, but has not been shut down.  As 

this operation occurs prior to any writes, if a session occurs with no writes, the superblock 

will still indicate that the filestore contents are consistent and time is saved after a crash 

as no recovery operation need be invoked.  When the system is shut down, or the cache 

contents are flushed, this flag is again altered to indicate that the file system is in a 

consistent state.  Thus, if the file system should crash after any series of writes, the file 

system manager will find the ‘dirty’ flag on boot-up, will know that the file system is 

 
4 Although the time of one revolution of the disk is the same for any track on the disk, the outer 

tracks have more sectors than the inner tracks.  Hence, the quantity of data transferred per 

revolution is higher on the outer tracks; the data transfer rate is therefore greater. 
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possibly inconsistent, and may invoke appropriate measures.  The date and time of the 

last ‘file system check’ are recorded as part of the superblock. 

4.2.9 Volumes and Volume Sets 

From the users point of view the file system appears as a single logical device.  To 

achieve this illusion, each device has a unique volume label and serial number.  Within 

the superblock of the root device is a list of volume labels and serial numbers identifying 

which devices make up a particular volume set, plus a structure name, which identifies 

the set as a whole.  This is a principle used by the VMS Version 5.2 file system [McK90].  

The root device has the relative device ID of 0.  The remaining volumes in the set are 

identified by increasing ID in the order in which they are declared.  The resulting logical 

block numbers contained by the f-nodes therefore contain the device ID within the top 

byte of the 4 bytes.  Thus, each device is limited to 24-bit block descriptors – a range of 

0..16777215, which is not a problem (this is 8192 Gigabytes on a device with 512 byte 

sectors and blocks).  The superblocks of mounted devices indicate that they are part of a 

volume set, and specify the volume label and serial ID of the root device.  The f-node 

numbering of a volume set is linear, the address space of the (n+1)th device occurring 

after the nth. 

It is emphasised that a volume set is a tight coupling – once the devices are formed 

into a set, removal of any one of the devices will render the file system useless without a 

tool to make the remaining volumes in the set consistent.  By a similar token, corruption 

of one of the devices affects the whole set, and the in-built fsck utility will attempt to 

clean up the set as a unit. 

The allocation of blocks for files can thus occur across any of the volumes in the set.  

However, the allocation strategy tries to prevent files from spanning across multiple 

disks, the exception occurring when a device cannot hold a particularly large file.  This 

should improve reliability since if one disk is destroyed, not all files are affected; only 

those on the device concerned are lost.  A further barrier to disk striping is the way the 

files are stored in f-nodes, namely, by extents.  Striping would result in each file f-node 

containing many extents, each extent on a different device to the next.  This problem 

could be overcome by having a logical sector numbering scheme where each x sector 

group is placed on the next device to the previous group and so on.  Thus, a single large 

extent can exist over all volumes within the set.  This would however, further constrain 

the set in that the removal or destruction of any one device will ruin all files on the set. 

In using a fixed distance to the f-node band, the criticality of the superblock is 

reduced since it does not need to record the band's location.  The root directory can be 

located by indexing the first f-node of the f-node band, the device's format can be 

obtained by sending SCSI commands, and backups of other device superblocks identify 

themselves.  The file system is therefore not dependent on the availability of the 
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superblock and is more reliable as a result.  All of the above information is however, 

recorded in the superblock for completeness.  The only information that cannot be 

recovered directly is the number of blocks per data zone.  Without this, the f-node 

indexing information is useless because it indexes zones, not physical sectors.  In fact, all 

of the above locations need not be fixed; however, until the file system becomes stable 

beyond doubt, the default locations are being used to assist recovery. 

4.2.10 Analysis of File System Performance 

A discussion of the testing of the file system is deferred until the section on the 

implementation of NFS.  The sections between this and that of NFS cover the necessary 

components to complete the prototype as an NFS server. 

4.3 Implementing AAL5 on the UKC ATM Network TRAM 

Using the in-house ATM network TRAM designed by Tripp[Tri95] and the cell driver 

designed and build by Prof P. Linington, it was possible to build upon the cell I/O 

routines in order to create higher level protocols, and hence enable basic communication 

with other network entities.  In particular, the ATM Adaptation Layer (AAL), equivalent 

to layer two of the OSI protocol stack, was a prerequisite to the development of protocols 

such as IP and UDP.  The next section outlines the ATM hardware structure and 

requirements, briefly describes the structure of AAL and goes on to discuss its efficient 

implementation on the Transputer. 

4.3.1 Hardware and Hardware Driver Issues 

The ATM hardware board developed by Tripp[Tri95] comprises a T805 Transputer 

coupled with three Xilinx FPGAs5, which drive the underlying network adapter hardware.  

Each of the FPGA designs provides a set of memory mapped hardware registers that 

allow the T805 to operate the adapter hardware.  In addition, the Transputer memory 

space, which is located at address 0x8000000, is shadowed from the address 0xC000000.  

The shadow memory space allows the T805 to exchange data in the main program 

memory-space with data in the ATM hardware FIFOs. 

Each ATM cell consists of 53 bytes, of which 48 are the transport data and 5 bytes are 

network cell header.  The network header contains the VPI/VCI address pair, a cell loss 

priority bit, a payload type field, flow control information and a checksum.  In addition to 

the network header, there is also a set-up header, which contains behavioural directions 

and flags for the ATM hardware and a cell timestamp.   

4.3.1.1 Cell Transmission Modes 

In the transmission of cells onto the network, the Xilinx firmware supports three cell 

timing modes: immediate, absolute and relative cell timing.  The ATM hardware 

 
5 Field Programmable Gate Array 
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maintains a 16-bit clock using a tick rate of 80ns, giving a clock wrap time of 5.2 

milliseconds.  The firmware treats the ½ clock period before the current time as in the 

past and the ½ period after the current time as in the future.  Thus, a cell in absolute mode 

with a transmission timestamp in the past is transmitted immediately.  Furthermore, a 

series of absolute timestamps that are in the past will cause back-to-back cell transmission 

at maximum cell rate. 

In relative mode, a cell is timed relative to the previous cell submitted and the 

timestamp in this case is specified as zero-relative from the transmission time of the 

previous cell.  In firmware terms, the absolute timestamp of the previous transmission is 

recorded by the firmware and the relative transmit-timestamp calculated from this.  

Hence, relative timing builds on top of the absolute timing mode and each relatively 

timed cell uses absolute timing mode with a calculated absolute timestamp internally 

within the firmware. 

Care must be taken in both cell-timing modes that the absolute timestamp is presented 

to the hardware within ½ a clock period of the previously submitted cell, if that cell was 

transmitted.  If the timestamp, once submitted to the firmware, falls within this ½ clock 

period, there are two possibilities.  Firstly, if the timestamp indicates a time in the near 

future, the firmware waits for the necessary period.  Here, the cell is correctly timed 

relative to the previous cell (early submission).  Secondly, if submission to the firmware 

is late relative to the timestamp, it will appear to be due for transmission in the past, so 

causing an immediate cell transmission.  Alternatively, if the CPU timing is such that the 

absolute transmission timestamp falls further outside of the ‘past’ ½ clock period, then it 

instead appears to be due for transmission (relatively) far into the future.  In such a case, 

the ATM adapter stops transmitting for up to 2½ milliseconds. 

At the time of writing, immediate cell transmit mode is not implemented.  Its purpose 

was as the first cell in a block of relatively timed cells, such that a new transmission after 

more than half a clock period does not risk stalling the transmitter.  However, the absolute 

cell-timing mode must instead be used by using the ATM clock’s value for the first cell to 

be transmitted. 

4.3.1.2 Cell Structures 

The two byte transmit timestamp in the set-up header are coupled with a further two 

bytes, which are used to extend the received timestamp on cells.  A dummy-cell indicator 

flag in the set-up header indicates that the ATM hardware clock has wrapped.  Thus, the 

software driver is able to detect the wrap and track the upper word of the ATM clock, and 

furthermore, to generate the full 32-bit received timestamp of all cells. 

Together with the 4 byte timestamp, cell-timing mode byte, ‘wrap’ byte and network 

header, the ATM cell length in main memory is 53+6 = 59 bytes.  However, long-word 

alignment is maintained in both header and data sections in order to facilitate set-up and 
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access to the cell headers by the Transputer, thus rounding the cell length up to 64 bytes.  

Each cell therefore has a cell-header of 16 bytes, followed by 48 bytes of received, or to-

transmit data.  Consequently, the received or to-transmit data are segmented into sections 

of 48 bytes, each separated by 16 bytes.  This is illustrated as follows: 

 

16 48 bytes 16 48 bytes 16 48 bytes  

hdr data hdr data hdr data  

 

The transfer of data into or out of the hardware FIFOs is achieved by reading the 

shadow address corresponding to the header of the first cell to be transferred.  The 

number of cells to be transferred is specified in the length register of the Xilinx that owns 

the FIFO.  The hardware uses an access page size of 1024 bytes, so at most 16 cells may 

be transferred per access.  The software driver employs an ISR6 that services the 

Transputer event pin; the ATM hardware uses this pin to indicate state changes within the 

adapter.  In addition to the event pin, the ISR uses the hardware registers to determine the 

reason for the interrupt and the actions that it needs to perform. 

 

The software driver written by Linington is briefly described in the following 

sections.  The cell driver is responsible only for the driving of the raw ATM hardware 

from the Transputer’s main memory, and to build the 32-bit precision timestamp in 

received cells.  However, it is not responsible for the set-up header, network header (5 

byte cell header), or the contents of the data segment (48 bytes) in each cell. 

4.3.2 Implementation Issues 

The initial input and output mechanisms developed by Linington allowed ATM cell level 

transfers to occur; the construction and interpretation of the cells transferred are entirely 

the user's responsibility, most notably the cell header contents.  Figure 4.5 shows the 

basic design of the I/O system using Occam Model notation. 

Figure 4.5: ATM Cell I/O Process Diagram 
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The cell.io driver process is responsible for the transmission and receipt of ATM cells 

to or from the network.  For efficiency reasons, cell transfers are batched together so that 

the ATM hardware sends or receives multiple cells while the Transputer continues with 

other processing.  Memory space for cell I/O is obtained from the two cell.buffer routines 

which maintain a cyclic cell array with queuing behaviour.  The purpose of each call to 

the cell.buffer is twofold: i) to return processed cells, which will have been read from or 

written into (if any); and ii) to request a number of cells for reading from or writing into 

as appropriate.  As said above, the reader from or writer to the cell buffers is allowed to 

request more than one cell buffer for use such that generation or processing of cell traffic 

may occur faster due to the decreased cell.buffer process interaction and consequent 

reduction in CPU scheduling overheads required. 

As with the cache TRAMs, the multiplexor/demultiplexor processes pass I/O blocks 

by reference so that memory copying is avoided.  However, when placing data into or out 

of the cell buffers, segmentation or reassembly is required.  Consequently, at this point, a 

memory copy is unavoidable.  To this end, the Transputer instruction MOVE2D was 

employed to both segment and reassemble data.  The MOVE2D instruction is intended for 

windowed graphics applications to copy bitmap data from non-contiguous screen memory 

(the lines of data in a window bitmap) into another contiguous (or non-contiguous) area.  

For example, to copy a picture from a back-buffer into a visible screen window, or move 

the window on the screen.  Thus, in the segmentation of an SDU buffer, the SDU is 

equivalent to a bitmap back-buffer, and the cells lines of 64 picture elements across; the 

SDU data is copied into the rightmost 48 bytes of each line – equivalent to a window. 

4.3.3 AAL Type 5 Structure Overview 

The requirement was for a layer on top of the cell.io mechanism which allowed for 

variable sized data transfers to a given destination or from an arbitrary source, without the 

need to know the layout of the ATM cell header or be concerned with the Segmentation 

And Seassembly (SAR) of user data to and from ATM cells.  The ATM Adaptation Layer 

(AAL) provides precisely this service, though the server is concerned only with Type 5 

AAL.  The structure of AAL Type 5 is as shown in figure 4.6. 

As seen in figure 4.6, the AAL structure has AAL and ATM (cell level) Service 

Access Points (SAPs), and is subdivided into two main parts: the Convergence Sublayer 

(CS); and the Segmentation and Reassembly Sublayer (SAR).  The Convergence 

Sublayer is further subdivided into the Service Specific Convergence Sublayer and the 

Common Part Convergence Sublayer.  In the server's case, the SSCS is null and bridges 

the CPCS primitives directly onto the AAL primitives. 

The CPCS sender accepts a payload from AAL-UNITDATA and appends a trailer 

which includes a CRC for the AAL-SDU.  The SAR sender then has the responsibility of 
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segmenting the CPCS-PDU into ATM cells and sending them onto the network with the 

ATM-UNITDATA primitive. 

The SAR receiver receives an ATM-UNITDATA indication when a segment of data 

has arrived.  The SAR then signals the CPCS receiver with the cell data so that it can be 

appended onto the appropriate receive buffer or a new buffer allocated.  Once the last 

segment of a block of user data has been received, the CPCS performs a CRC check and, 

if successful, delivers the data to the upper layer with an AAL-UNITDATA indication.  

The reassembly process is thus co-operative between the SAR and CPCS.  For more 

detailed information on AAL, the reader is referred to [ITU93]. 

Figure 4.6: Structure Diagram of ATM Adaptation Layer 5[ITU93] 

4.3.4 Design Objectives 

The original objectives were to be able to build further protocols on top of the AAL5 

SAP; in particular, IP, UDP and NFS protocols needed to be implemented.  The ATM cell 

I/O system had been shown to be capable of its full 100 MBits/s transfer rate, which was 

far in excess of the bandwidth required for the intended application, and faster than the 

theoretical maximum rate of the 4 Transputer hardware links in any case.  However, with 

the performance of the network connection being critical to the application, the 

implementation needed to allow for IP control flows of around 10 Mbits/s, and AAL5 

video data flows across the Transputer hardware links at near full link bandwidth 

(approximately 50Mbits/s). 

Due to the size and volume of the information being transferred over the network, it 

was vital that Transputer memory copies be minimised in the transfer of user data 
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between the layers of AAL.  At a bare minimum however, memory copies had to occur 

between the SAR and CPCS layers due to the need to segment the CPCS-PDU into 48 

bytes per 64 byte ATM cell and vice versa on reassembly.  This process remains a notable 

critical section in the implementation of AAL. 

Since the AAL5 video data transfers needed to be optimal, the IP and NFS paths not 

having such strict real-time constraints, only partial adherence to the AAL 

recommendation was considered.  Namely, avoidance of generation and processing of 

AAL block CRCs are considered.  It was for this reason that the CPCS trailers were 

included in the Continuous Media File Format; to generate the CRC for each trailer in 

real-time for every block of every frame is simply not feasible – it would be far too slow.  

In fact, this results in conformance to the AAL5 specification. 

The complete functionality of AAL did not necessarily need to be implemented solely 

on the ATM TRAM; it was possible to use the four cache TRAMs for part of the data 

processing.  Using the four cache TRAMs had the advantage that the ATM TRAM could 

dedicate its CPU time to the transmission and receipt of ATM cells and little besides, so 

that the efficiency of the ATM TRAM was optimal.  In practice, this turned out to be 

essential, with much effort expended in optimising the AAL datapaths.  The reader will 

note in the following sections that a single TRAM AAL5 implementation is possible with 

the AAL design presented. 

4.3.5 Implementation Considerations 

The sender and receiver sides of AAL are differentiated as each has different 

responsibilities from its counterpart.  A simplified process diagram of AAL is given in 

figure 4.7; the actual implementation is given in more detail in the following sections. 

The SDU.Buffer process manages a pool of Service Data Unit (SDU) buffers that 

other processes may request or return.  On the receive side, the CPCS requests SDU 

buffers for reassembly of SAR-SDU's into a CPCS SDU, which once assembled, is 

passed up to the AAL receiver.  The write controller returns the SDU buffer once the data 

are transferred across one of the Transputer hardware links.  To transmit a data block, the 

read controller requests SDU buffers, fills them with data from over a link, and sends 

them on to the AAL sender and so on down the layers until SAR sender frees the SDU 

buffer once segmentation is complete.  This approach minimises memory copies between 

the sublayers to only hardware link I/O (if required) and the segmentation and reassembly 

of data to or from ATM cells. 

Since each cell.buffer may only have one reader and one writer, at most one SAR 

sender and receiver is allowed, though there is no restriction on the number of CPCS 

processes connected to SAR.  In fact, this is taken advantage of by placing CPCS stages 

on each cache processor, which places the transfer control stages in the middle of CPCS 

and above the AAL-SAP. 
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Figure 4.7: Process Diagram of AAL Implementation 

4.3.6 AAL Receiver 

The SAR receiver requests a number of cells from the incoming cell buffer and identifies 

contiguous sections of ATM cells belonging to the same transmission.  Any non-user 

cells should be directed to a management layer, but in its absence, are currently discarded. 

Once this has been done, a pointer to these cells is passed to the CPCS receiver so that 

reassembly into an SDU buffer can occur.  Since there may be several interleaved 

incoming transmissions, the CPCS is capable of reassembling into several SDU buffers, 

one for each incoming transmission.  Once the end of a CPCS-PDU is detected, the SDU 

buffer pointer is passed on to the AAL receiver.  The CRC check after reassembly may be 
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omitted for video data if the performance penalty is prohibitive, though video recording 

remains largely unimplemented at the time of writing. 

The CPCS-Receiver maintains a table of active streams, and requests a single SDU 

buffer in advance of a new stream arriving, such that the overhead of fetching a new SDU 

buffer for a new CPCS-PDU is avoided.  Any table entries that remain incomplete after a 

set interval of time are flushed from the table and their data discarded.  This prevents 

receipt of partial AAL5 packets from permanently consuming buffer resources. 

Figure 4.8: Process diagram of AAL Receiver Implementation for ATM TRAM 

 

Since the cost of inter-Transputer communication is relatively high, each processor 

involved in AAL is given its own protocol layers, rather than arbitrarily choosing one 

processor to deal with the higher layers.  If one processor were used for protocol 

processing, the recovered packets would then need transmitting to the target TRAM, 

which is expensive in link terms.  Duplicating the protocol layers across all subsidiary 

TRAMs has the disadvantage of increased code size on each.  However, it has the 

advantage that they all look and behave the same way, and further that all of the 

processors are used in the data processing, which produces a faster implementation.  Each 

subsidiary TRAM therefore acts independently of all others, and communicates with 

other Transputers only where a central repository of information need be consulted, for 
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example, the file system data cache management structures.  The above design is 

summarised in figures 4.8 and 4.9. 

For any incoming data, it cannot be predicted when data will arrive, nor how much 

there will be.  With any non-data packets, it is irrelevant which of the subsidiary TRAMs 

deals with the request; the CPCS.rec.primary (figure 4.8) may make an arbitrary 

decision.  However, when dealing with data blocks destined for the cache, it becomes 

important which TRAM is given the data.   In the case of the server's cache, a single 

cache block must be allocated to receive the data.  For example, consider a data packet 

that has already been received into an SDU buffer on a cache TRAM for which it was not 

intended.  Here, the packet needs either to be moved, or reallocated a cache slot on the 

TRAM concerned.  Consequently, the decision as to which TRAM should accept the data 

must be made before the hardware link transfer occurs. 

The CPCS primary receiver delegates the job of link transfer to a link transfer control 

process, which itself delegates the responsibility of communicating over the hardware 

link to a link server, such that neither process blocks.  This arrangement is shown in 

figure 4.10.  For normal non-data traffic, the link control and server processes make an 

arbitrary decision on destination.  In this case, the transfer occurs into an SDU buffer on 

the chosen target TRAM and is subsequently processed by the relevant protocol stack, 

namely IP.  For record data traffic however, more specifically video data, the link server 

must be given a cache address into which it can make the transfer.  This address can only 

be given to it via the link transfer controller, which must obtain the addresses from the 

cache manager. 

Figure 4.9: Process diagram of AAL Receiver Implementation for Cache TRAMs 

4.3.7 AAL Sender 

In the sender case, the CPCS process attaches an aligned trailer, which includes a CRC, 

and submits the generated PDU to SAR.  The CPCS is therefore placed on the cache 
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TRAMs, leaving only SAR-sender on the ATM TRAM together with a link read-transfer 

control process.  The transfer controller is attached to similar but independent link servers 

as the receiver's link write-transfer control process; this allows both unidirectional links to 

be engaged simultaneously.  A diagram of the read controller is omitted, since it is almost 

identical to that given in figure 4.10.  The sender's link transfer control process accepts 

the requests of multiple CPCS processes and those of the stream control processes.  

Hence, the ATM TRAM is responsible only for the receipt of full CPCS PDUs, their 

segmentation into ATM cells and their subsequent transmission.  The cache TRAMs are 

in charge of the creation of the higher protocol layers from and above CPCS. 

Figure 4.10: Hardware Link Transfer Engine of ATM TRAM AAL Implementation  

 

A modification of the above scheme was considered where the cache TRAMs 

performed the segmentation into cells prior to transmission to the ATM TRAM.  In this 

scenario, the ATM TRAM would then merely manage the sequencing of transmissions 

and should be capable of sending onto the network at the rate at which the Transputer 

links could provide that data.  However, the effective data efficiency would then be 75% 

since both the cell headers and the cell data would be transmitted over the links.  Given 

that the achieved aggregate link-bandwidth was around 40Mbps, such a scheme would at 

best achieve little over 30Mbps.  In addition, transmission latency due to the segmentation 

time required before each link transfer would also be incurred.  It was felt at the design 

stage that the performance of the server would be better whilst performing segmentation 

on the ATM TRAM. 
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4.3.7.1 SAR Sender 

The SAR sender process obtains ATM cell buffers from the cell.buffer process, and 

CPCS-PDUs from the CPCS, or more accurately, the AAL read controller process.  The 

PDUs are segmented into ATM cells and the appropriate headers generated for the cells.  

The SAR should theoretically be able to deal with up to n simultaneous streams, where 

the streams the SAR has obtained are cell interleaved for transmission.  In this 

implementation, the value of n is effectively set to 1.  The SAR-sender delays forwarding 

of transmit cells to cell.IO where more data is expected, for example, where a next block 

of frame is to follow; this reduces process talk with the cell.buffer thus decreasing CPU 

scheduling overheads and increasing over all data throughput. 

4.3.7.2 The Sender's Link Transfer Controller 

Requests to transmit include a cache address list or an SDU buffer address, and the 

destination via a VPI/VCI pair.  The requests are placed onto a transmit queue inside the 

link transfer control process.  The data blocks are obtained from the cache TRAMs using 

the same mechanism as the receiver, but this time reading from instead of writing into the 

cache or buffer space; these blocks are forwarded to the SAR process for segmentation.  

To implement the interleaved transmission mechanism required by SAR, the incoming 

requests are queued based on their time of submission; blocks are then sent from the first 

n frames on the queue.  This can be seen in figure 4.11 where the frames in transmission 

are those in the active queue. Transmission ordering is achieved by ensuring that all 

members of the active queue have unique VPI/VCI destination identifiers. 

Figure 4.11: Process Diagram for Frame Transmission on ATM TRAM  

 

The frame queue's block transmit requests feed into four link ‘block queues’, each 

corresponding to one of the cache TRAMs.  The frame transmit requests come directly 
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from the streams manager process, which is discussed in section 4.9.  Each of the block 

queues additionally takes input from the cache TRAMs directly for the input of AAL5 

packets generated by the IP processes.  The read control process can then take transmit 

jobs from the queues as the links become free from previous jobs.  Each link can have at 

most two jobs active at any instance (i.e. is double buffered) such that each link always 

has work to do as each block link transfer finishes.  As shown in figure 4.11, each 

hardware link has its own link server, multiplexor and demultiplexor process.  The link 

servers are essentially buffers to allow the main read controller to continue to allocate 

jobs across the four links without blocking on the multiplexor or demultiplexor.  In 

addition, the link server supplies the destination SDU buffer address to the demultiplexor 

before the remote cache TRAM transmits the block of data.  Thus, the data block can be 

received as soon as it appears on the hardware link without the additional temporal 

overhead of fetching the destination address.  A cache TRAM receiving a transfer job will 

simply transmit the indicated data block section onto the hardware link.  Once a block has 

been successfully received from a hardware link, the demultiplexor acknowledges an 

internal process of the read controller, which then causes several events: 

1) the block to be forwarded to the SAR-sender process;  

2) another transfer job to be allocated; and an acknowledgement forwarded to 

the frame queue such that the next block of that frame may be appended on 

the appropriate block queue. 

 

The read controller, in addition to allocating transfer jobs to the four hardware links, 

is responsible for obtaining SDU buffers into which to receive the data.  In order to 

maximise efficiency, eight SDU buffers are fetched once the last buffer is exhausted; this 

minimises communication with the SDU buffer controller, reducing processor scheduling 

overheads and increasing process efficiency.  In addition, to maximise the efficiency of 

usage of SDU buffers, up to two blocks of each frame are placed into a single SDU 

buffer, which again decreases process talk with the SDU process. 

4.3.7.3 Block and Cell Buffers 

Since the sender may block when the cell buffers become full, the majority of memory is 

given to the receiver's cell buffers, since a lack of buffer space would result in discarded 

cell data.  However, enough transmit cell space must exist to allow the effective double 

buffering of cell transmission and cell preparation by SAR-sender.  This is also true of the 

SDU buffers where the receiver should always have a buffer available for reassembling a 

new block, but the transmitter must have enough buffers for the double buffered receive 

of data from all four cache TRAMs.   

As the sender and receiver share the same SDU.Buffer process, it is important that 

the sender does not starve the receiver of reassembly buffers by filling them with blocks 
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to transmit.  Care is taken however, to prevent the receiver from consuming all buffers 

and consequently deadlocking the transmitter.  This is achieved by limiting the number of 

buffers that are used for both transmission and receipt of data.  A design alternative was 

to use separate transmit and receive buffer spaces.  However, this approach was rejected 

because it makes less efficient usage of physical memory space, which is at a premium on 

a 512KByte TRAM.  The limiting of buffer allocation is achieved by allowing only 

transmit side processes to allocate the last n buffers, which are reserved.  Hence, the 

receiving processes cannot fill all system buffers with incoming data and cause deadlock 

in the system by preventing transmissions. 

4.3.8 Analysis of AAL5 Performance 

Despite a great deal of effort to improve the performance of the AAL5 implementation, it 

remains a bottleneck in the server.  In particular, the need to segment and reassemble cells 

between the SDU buffers and cell buffers, and despite usage of the dedicated instruction 

MOVE2D, it is still a major consumer of CPU time. 

Nonetheless, the maximum sustainable throughput currently lies at 28Mbps7 for 

outgoing stream data.  This is achievable with ideal conditions where transmitted frames 

are both large and each frame is block aligned such as with CBR data.  This is because the 

overheads per byte of transmitted data in setting up the data transfers are then minimised.  

The typical maximum sustainable transfer rate, particularly with VBR data, is 

approximately 26Mbps. 

Removing the segmentation/reassembly instruction allows the link utilisation to 

improve markedly to well over 40Mbps from a theoretical maximum of 50Mbps, part of 

which will be consumed in setting up the block data transfers.  Regrettably however, the 

CPU is not fast enough on segmentation to maintain this level of throughput.  

Nevertheless, there is sufficient bandwidth available from the existing implementation to 

enable a small scale video file server, allowing for up to 18 of a desired 20 1.5Mbps 

streams, or more for lower bandwidth streams. 

4.4 A File Format for Continuous Media 

A format for the real-time data stored on the Video File Server’s filesystem needed to be 

specified such that appropriate mechanisms could be built which manipulated them.  

However, as outlined here, there were many ways to achieve the same end, each with its 

own advantages and disadvantages.   

As the server is based around an ATM network and a file system with a zone size of 4 

Kbytes, it is most sensible to enforce a maximum CPCS-PDU of that same size.  Thus, 

the unit of both transmission and storage is the PDU, greatly simplifying the management 

 
7 The first implementation had a maximum sustainable transmission rate of 17½Mbps 
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of the associated structures, not to mention having huge gains from not needing to 

generate the CPCS-PDU CRC's in real time on playback. 

It is assumed for any data recorded that the same data and timings are reproduced 

exactly on playback.  It is therefore necessary for the server to generate an index 

containing timing information together with length and offset information into the 

recorded data.  Such information, however, cannot be embedded in the data PDUs 

because firstly the CRC's would be invalidated, and secondly, examining the meta-data in 

support of random access would require reading of the data blocks, which is very slow. 

4.4.1 Visible Versus Hidden Format 

The following approaches were considered during the design phase of the file format:  

 

A. Hidden Index: One possibility was to modify the existing file system such that the 

metadata structures used by the file server for stream activities were hidden from 

the user.  While simplifying the appearance of files to the user however, such an 

approach precluded their implementation or manipulation by any system other than 

the file server.   

B. Index Attribute: A similar approach to A is to make the sequencing data a visible 

attribute of the video file as possible with NTFS [Cus94], in the same way that the 

filename and file length are attributes.  However, this had the disadvantage of 

requiring major modifications to the existing filesystem structures.  Furthermore, 

such files would be difficult to store on standard file systems, hence preventing 

general manipulation tools on some systems, i.e. those that cannot read or 

otherwise obtain the sequencing attribute. 

C. Appended Index: An existing solution by Henshaw[Hen95] places the sequencing 

information at the end of the main data file and stores a pointer to it in the file 

header.  While this solution is practical, it suffers during recording because the 

header and index cannot be written to the file until the recording is stopped. 

D. Visible Index File: A better solution than C is to keep the header and index 

independent of the recorded data, giving each the same name stem, but the index a 

different extension.  A convention was adopted that file header and sequencing 

data have the extension “.tim”.  The file data itself is not constrained to have any 

particular extension so that families of differing media may coexist in the same 

directory, for example, aeroplane.vid, aeroplane.vid.tim, aeroplane.audio, and 

aeroplane.audio.tim. 

 

In taking the above approach D, the format is fully visible to the user, but has the big 

advantage of being portable across any file system and hence enables manipulation by 

any workstation with the appropriate tools.  This was essential here, where the first 
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working prototype to be tested was a play only single stream server, which required the 

preparation of material for playback on a workstation.  Further, it is feasible that this 

format be used as a general ATM media format, not necessarily tied to the file server 

concerned within this thesis. 

4.4.2 Storage of Real-Time Data 

With respect to the media data, each unit of transmission is stored encapsulated within a 

CPCS-PDU.  This is done such that playback of the file does not require the generation of 

a CPCS-PDU CRC and hence reduces the CPU load and the transmission latency as a 

consequence.  The MTU (Maximum Transfer Unit) for media transmission was chosen to 

be the size giving the largest throughput into the client workstation and being efficiently 

stored in a disk zone, in this case 4096 bytes.  As all AAL5 transmissions are formed 

from 48 byte cells, this effectively gives an MTU of 4080 bytes and a payload size of 

4072 bytes.  Consequently, 16 bytes are unused in each 4096 byte zone giving a 0.4% 

space efficiency loss. 

The following table outlines the options that were considered for the storage of media 

within the file-system data zones: 

 

P. Zone Aligned Storage: As the file server's cache stores disk zones, each ‘start of 

frame’ must be zone aligned; the CPCS-PDU cannot lie over a zone boundary and 

one zone must belong to one frame.  In this approach, two frames never share a 

single file system zone. 

Q. Shared Zone Storage: For a typical frame of compressed video, the size8 of the 

frame is almost never a multiple of the PDU payload, so the last PDU is mostly 

partial, i.e. doesn't have a 4072 byte payload.  Consequently, an average of 50% of 

the final PDU of each frame is wasted in return for a transmission mechanism with 

very low latency.  It is possible however, to reorganise the file structure so that the 

first PDU of a frame need not be of the maximum payload size.  This would allow it 

to share a disk zone with the last PDU of the previous frame.  In this way, the space 

efficiency is increased, but one more PDU per frame may be transmitted thus 

increasing the latency of transmission per frame.  On the other hand, disk I/O 

requirements are potentially reduced, resulting in better cache performance because 

the file system must always transfer data in the unit of zones. 

 

The simpler approach P above was taken to trade off space efficiency for time 

efficiency in the first instance.  For the initial implementation, the simpler zone aligned 

approach allowed a working system in the shortest time.  Whatever choice made here, 

 
8 The length in bytes and the byte-offset of the PDU from the start of the file are 

stored in the .tim index. 
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there are impacts upon the structure of the index of the recorded data, as discussed in the 

following section. 

4.4.3 Generation of Index 

In storing the temporal information about data received, the two options for organising 

the index are either by PDU block or by frame.  During a recording session, it is difficult 

to arbitrarily identify frame boundaries without prior knowledge of the stream behaviour. 

For transmission, guarantees can be made about ordering of the data PDUs in either case, 

but there are other trade-offs, which are covered below. 

4.4.3.1 Index by Block (Option R.) 

This simplest approach assumes no association between data blocks.  The index is 

organised on block offset and stores in each entry the timestamp and total.PDU.length in 

bytes, as illustrated below. Each 32-bit field is little-Endian byte order such that the 

Transputer can access them as fast as possible.  In each 4K index block then, 4096  (2  

4) = 512 entries per index block.  If a typical frame size of 5  4Kbyte blocks at 25 frames 

per second is assumed, 5  25 = 125 index entries per second is required.  Essentially, this 

is ¼ index block per second of data – one index per 4 seconds of data. 

 

32-bits 32-bits 

Timestamp / s Total PDU Length / Bytes 

 

If the more compressed shared-zone format of data is used, then an extra offset field is 

needed for each index entry.  The offset allows the frame start position within a zone to 

be located; this latter arrangement is illustrated below.  In each 4K then, there are 4096  

(3  4) = 340 blocks per second.  Taking the same video example as before, the packed 

version is 33% worse off, but far larger savings are made within the main data file. 

 

32-bits 32-bits 32-bits 

Timestamp / s PDU Length / Bytes Frame start offset/ Blocks 

 

Although this scheme appears to assume no relation between adjacent blocks, there is 

a need to calculate a relationship when streams are modified in either position or play 

direction; play must be restarted at the start of a frame and replay the blocks of a single 

frame in the correct order regardless of the direction of play.  Doing this on playback is 

not ideal because the system response time is critical, which is a serious disadvantage to 

this scheme.  Frame boundary calculation is discussed below. 
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4.4.3.2 Index by Frame (Option S.) 

In observing the time distribution of blocks arriving it is possible to identify clusters of 

blocks which logically form single ‘frames’.  The exact characteristics of such 

distributions could be calculated either during the recording process, or as a post-process.  

To be able to form frames during the recording would require some knowledge of the 

behaviour of the media, i.e. some parameterisation by the user.  This is difficult to do 

because different media streams have wildly different properties; it can be difficult to 

predict what these parameters are precisely enough.  Relying on the position of partial 

PDU's as a way to find frame boundaries does not work for streams where they do not 

occur, e.g. audio streams, or when the final frame PDU is perfectly aligned.  

Nevertheless, the technique may be used as a hint coupled with timestamp based 

mechanisms. 

 

A better approach is to record using the block index option R and reduce it to a frame 

index once recording has stopped.  Thus, a global view of the data distribution on the time 

line is achieved, which may be reduced by intelligently calculating the frame boundaries 

based on timestamp distributions and the position of partial PDU's in the data stream.  

Using the block index during recording for later analysis, however, requires more 

memory than a pure frame index and the cache memory is consumed much faster.   

Nonetheless, it is feasible that a recording block index be flushed onto the disk and 

retrieved later for the post analysis, in which case memory consumption during recording 

is not a problem. 

The main advantage of organising the index block by frame is that on playback, no 

time need be spent working out where the start of a frame is and ensuring that all blocks 

of the frame are transmitted; the information is implicit in a frame index. 

For each entry in the index block, the required fields are timestamp, total.length and 

block.offset.  If using the packed version of the data format, three words are still required, 

since block.offset becomes byte.offset from which the block offset can be inferred.  In 

each 4K index block then, 4096  (3  4) = 340 entries per index block.  Consequently, 

340  25 = 13.6 seconds of video per index block are achieved.  This is a clear 

improvement over a block index, especially for files with large frames.  In the degenerate 

case where 1 frame = 1 block, frame indexing is 66% space efficient compared to non-

packed data with block index, or as efficient in the packed case. 

4.4.4 Manipulation of Index in Memory 

Because the stream manager process uses the same mechanisms to read the index blocks 

as it does the data blocks, the index is broken into a number of zone sized blocks.  Once 

these blocks are made memory resident by the cache manager, they need to be linked 
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together such that the index blocks may be ‘walked’.  There are two main approaches to 

do this, as outlined in the next sections. 

4.4.4.1 Index Block Chaining (Option Y.) 

Two words of each index block are reserved as pointers to the previous and next blocks in 

sequence such that a doubly linked-list of index blocks is formed in memory.  The stream 

controller need only store the index block offset of the first memory-resident block and a 

pointer to that block such that a contiguous extent of the index is formed in memory.  

Each index block therefore allows 511 blocks or 340 frame entries, and the above 

examples remain largely unaltered. 

While the approach is easy to implement, for very large files the index tends to 

become relatively large as demonstrated above, although that problem is alleviated where 

some of the index may be paged out.  Unfortunately, sudden changes in stream properties 

may trigger a need for the entire index block, which will adversely affect system 

performance, i.e. in the case where the media file is being accessed at both of its temporal 

extremes.  In the ideal case, the index should be permanently resident until there are no 

more clients of the media file concerned. 

A big advantage could be gained from having the stream server store the memory 

address of the last index block searched so that subsequent timestamp searches may occur 

from that index block.  However, there is no guarantee that the index block will be in the 

same place twice, i.e. where it was swapped out.  Such an approach therefore demands 

that the index be made fully resident and never paged out.  In some implementations, this 

may not be practical, forcing a fresh search of the index chain. 

4.4.4.2 Index Page Table (Option Z.) 

For media files with large indices, it is desirable that only those sections of the index that 

are being used are memory resident.  In this case, it is possible to indirect via a page table 

that has as each entry a pointer to a memory cache block, and the last timestamp of that 

index block.  This scheme allows searching of the complete index without needing to 

page parts of it in.  This approach is better than block chaining in the case where a 

stream's position is altered to a point where the required index block is not resident.  Here, 

the chaining method requires reading the entire index up to the point that is required.  In 

that case, the delay for a continuation of the stream will be less for the page table, but it is 

difficult to predict by how much in advance of construction.  The above hour clip 

example would suggest a possible delay of up to a half a second with a 2 Megabyte/s 

disk.  In any case, it is preferable to make resident the entire index, if possible, such that 

this problem is not an issue.  Indirection via a page table would also allow slightly faster 

search times on the index block for a timestamp because there is no chain to negotiate.  
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Although the same timestamp comparisons would be made, there is scope for a smarter 

search algorithm on the page table. 

The last word of each page table is reserved as a pointer to another table.  If each 

page table entry takes 2 32-bit words, and each block index contains 512 block entries, 

512  4092  (2  4) = 261632 block entries are achieved, which covers a 1 Gigabyte file.  

Similarly, for a frame based index we achieve 340  4092 / (2  4) = 173740 frames, or 

115 minutes of video at 25 frames per second. 

4.4.5 A Comparison of Indexing Methods 

From the above discussion, it seems clear that the frame-based index is better on the 

grounds that it has no overhead in forming frames on playback.  The block to frame 

reduction penalty is paid only on recording, and the resultant index blocks are much 

smaller by a factor dependent on the size of frame.  As the framing process has to occur 

regardless of the method adopted, this cannot be used as an argument for elimination.  

Thus, the server uses the frame-based index (option S) for playback files. 

In respect of packing the media data, it made sense to include the option in the file 

index such that this alteration became a trivial step later.  In the first instance, the block 

byte offsets could be set to zero.  Hence, option Q was taken in principle, with initial tests 

using zone aligned frames. 

Taking the example of a 1½ hour clip, the index required is 1.5  60  60  25  340 

= 400 frame index blocks, a meagre 1.6 Megabytes.  Considering that the requirements 

are for far smaller clips, paging of the index block to disk is not necessary and the index 

block can be maintained in memory while a media file is busy.  In this case, the only 

argument between choosing index chaining or a page table is the time to access.  Here, 

the page table wins because there is no chain to follow prior to searching on the 

timestamps; the search may start at the point in the table that was last referenced.  In 

addition, the exact index block required can be located through the page table without 

needing to read in any of the index blocks.  However, these gains would only be apparent 

for clips of significant size.  Hence, option Z was taken for the server file format. 

For the current requirements, the advantages of a page table will not be particularly 

significant, but it does allow for expansion later.  At the very least, it would not be worse 

than block chaining and previous experience would suggest planning for the future. 

4.4.6 ATM Media Header Content 

Enough information must be placed into the header to allow: 

i) Identification of the file type.  A signature is placed into the header such that an 

‘alien’ file cannot be mistaken for a media file.  The text string “ATMMedia” 

followed by the arbitrary hexadecimal number AE9422BF shall be used. 

ii) Version number of file format (1) and index type identification (block. vs. frame) 
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iii) Information about the data blocks.  Storage of the total number of blocks, total 

number of frames, and the total duration of the media. 

iv) Information on the data format.  It is a requirement that the compression format 

used on the data be independent of the ATMMedia format.  Therefore, an 

arbitrary piece of information is placed into the header that is meaningful only to 

the client application.  For example, a JPEG format identifier and the JPEG 

compression parameters. 

The above is summarised in figure 4.12. 
 

A total of 4KBytes is reserved for use by the header.  This is followed immediately 

by the index page table(s) and index blocks, respectively.  The number of index page 

table blocks present can be deduced from the Block.Size and Total.Frames or 

Total.Blocks. 

In previous calculations it was assumed that one video file would occupy one 

filesystem f-node.  After the design of the file format was completed, it transpired that 

each ATMM file would consume two f-nodes, so a recalculation of required f-nodes in 

the filesystem was performed to maintain the maximum required file capacity. 

Figure 4.12: Format of the file header. 

4.4.7 A File Format for Continuous Media – Summary 

To allow maximum versatility and future expansion, the Continuous Media File Format 

uses a frame based index with page tables.  The real-time recording of data should use a 

block based index which is reduced to a frame index as a post-process, though no stream 

recording has, at the time of writing, been implemented in the server.  The header and 
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index use the “.tim” convention with the main data taking the same name stem.  The main 

data may occur in either compressed or non-compressed versions with the frame index 

allowing either version via using the unit of Bytes for its data offset field.  The server can, 

in theory, record in either compressed or non-compressed formats where two consecutive 

PDU transmissions are no larger than a cache block.  Conversion between these two 

formats should be possible with an appropriate tool.  

For the purposes of future expansion, the server file format was modified such that 

the 5 least-significant bits of the frame transmission timestamp were reserved.  The 

purpose of the 5-bit field was as an inter-frame priority for use with, for example, MPEG 

clips.  A mechanism to clip to a 0-priority frame after a user-reposition, or during fast 

playback, has not been attempted with the prototype server. 

4.5 Management of the Data Cache 

The cache is divided into blocks of a fixed size, equal to the file system block size.  The 

cache addresses are arranged such that the two least significant bits of a 16-bit wide 

address are the cache offset number (0 to 3).  The remaining 14 bits form the block row 

index, logically shifted left by two.  Thus, the block ordering is from cache 0 through 

cache 3 at row address 0, then again at row address 1, and so on.  This addressing 

arrangement is illustrated by figure 4.13. 

Figure 4.13: Diagram of 16-bit Cache Address 

 

As the cache blocks are distributed across the four TRAMs, it is not possible to add 

information to each of them to enable their management; such a structure must be 

centralised for reasons of speed of access.  Additionally, to do so would break the 

contiguity of blocks within the cache TRAM; that would restrict implementation 

possibilities with respect to the maximum size of data transfers with SCSI and ATM 

devices.  Thus, the management structures are a separate entity.  

The primary index of the management structure is a quantized cache block address, in 

this case, the row address.  This minimises the total size of the management structure and 

improves search times when looking for file blocks; each row of the cache is given only 

one management structure element.  The size of the management structure for a 90Mbyte 

cache is approximately 112Kbytes, which would be 450Kbytes were row addressing not 

used.  However, this reduction gives a cache size gain of 1.3Mbytes since all four 

TRAMs must use identical cache memory sizes when striping data in transfers.  Thus, the 

primary index of the management structure is the 14 most significant bits of a cache 
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address.  The implications of this arrangement are that the file system must then retrieve a 

minimum of four blocks into the cache.  In fact, this is not a problem, since such a large 

transfer size (16Kbytes minimum) is required to maintain good file-system performance.  

The management structure is shown in figure 4.14; the contents of each element are 

shown in figure 4.15. 

Each file can be uniquely identified by a file handle, which can be used as a key when 

looking for blocks belonging to a particular file in the cache.  The structure elements 

allow the blocks of a single file to be chained together in sequence.  Similarly, the 

unallocated cache rows are chained into a single free-list.  The files active in the cache are 

stored in a most recently used order, such that eviction of files from cache space can be 

done on a least-recently-used basis.  The ‘down’ pointer of the management element is 

used only by the first block of each file, and is used to chain together the first block of all 

files. 

Figure 4.14: Diagram of the Cache Block Data Management Structure 

Figure 4.15: Cache Block Management Structure Element Contents 

4.6 Communications – TCP/IP and RPC 

Once the file-system, network interface, and cache management were all in place, 

Andrew Smith’s UDP/IP implementation, from another project run in the laboratory 

[LIP95], was modified and used to give UDP and ICMP (including ‘ping’) support to the 

server.  With this complete, an RPC [RPC88] implementation was built on top of Smith’s 
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UDP engine, and on that the Network File System (NFS) protocol [NFS89, NFS93].  The 

implementations of RPC (XDR [XDR87]) and NFS were based on specifications 

available on the Internet.  The completion of these steps enabled the connection of the 

prototype server with other network end-systems.  However, NFS support only provided 

file meta-data exchanges, and not file-data exchanges, which required further issues to be 

addressed.  These issues are covered in the next section. 

4.7 NFS I/O 

This section outlines the possible approaches that could have been taken in transferring 

user data from the inbound network packets onto the disks, and from the disks into 

outbound packets.  Based upon the arguments presented in the main text, it concludes 

with the most appropriate approach to the given problem. 

4.7.1 NFS I/O Implementation Issues 

The file system transfers data via the four Transputer hardware links to or from the 

connected cache TRAMs; these data are taken directly from or directly to the disk with no 

caching structures in between.  For each zone of the file system, there is a requirement of 

one address corresponding to a block on one of the cache TRAMs, where the block is the 

same size as the disk zone.   

When the file server receives an NFS WRITE call, the SDU buffer containing the 

CPCS-PDU is arbitrarily transferred to one of the cache TRAMs for IP processing.  It is 

at this point that the NFS call is identified and herein lies the problem: by the time the 

WRITE call is recognised, the data to be written is already on one of the cache TRAMs, 

and furthermore, the data to write is not in cache-block space.  A mechanism needed to be 

determined by which the IP data could be manipulated into an appropriate form for 

writing onto the disk. 

For an NFS READ call, the relevant disk blocks can be fetched into cache blocks, but 

these are distributed across several TRAMs, and it is possible that none of those TRAMs 

will correspond to that of the responding IP TRAM.  The question that needed to be 

answered was ‘how can data be gathered from one or more Transputer address spaces into 

a single outgoing IP packet?’ 

As can be seen, the READ and WRITE cases are subtly different from one another, 

and are thus dealt with separately. 

4.7.2 The NFS READ Call 

On the occurrence of a READ call, the file blocks required may or may not be resident in 

the cache.  In the latter case, the cache manager will fetch the required blocks before 

identifying them to the IP process dealing with the READ.  It is assumed that the READ 

will always go via the cache, rather than reading data directly from the file system and 
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thus defeating the purpose of the main cache.  In generating the response to the call, there 

are the following possible approaches: 

 

A. The required sections of the cache blocks are requested from the appropriate cache 

TRAMs and transmitted to the IP process for assembly into a single outgoing 

packet.  Therefore, the cost of transmitting data between the cache TRAMs will be 

incurred, which will occur ¾ of the time assuming a uniform distribution of data 

across the TRAMs.  Of these transfers, one to three TRAM hops to the destination 

will be needed, the worst case with the IP responder at the end of the cache chain.  It 

was anticipated that such an approach would be prohibitively slow and inappropriate 

to a real-time environment. 

B. Each segment of data to transmit is identified by the IP process, and a command 

transmitted for each segment to generate an IP packet for each part, i.e. IP 

fragmentation is used.  This has the advantage of avoiding inter-cache data transfers 

and will be faster than case A.  Furthermore, as IP fragments have a sequence 

number, the order of transmission becomes irrelevant and the time of response 

therefore potentially quicker.  The disadvantage of this scheme, however, is that a 

memory copy from the cache block into the SDU buffer that the returning IP packet 

is prepared in is still required.  A further development of the scheme is thus to lock 

down the cache block until transmission is completed, and therefore to transmit the 

data in-situ and avoid the memory copy.  This latter approach would complicate the 

CPCS-PDU generation as the CRC would need to be taken across two, not one data 

segment, and would require modification of the process handling I/O to the ATM 

TRAM for the same reason. 

C. 

 

Similar to option B, but partial CPCS-PDUs are transmitted to the ATM TRAM 

rather than IP fragments – the streaming mode AAL service.  As the CRC of each 

fragment is dependent upon all previous segments, a sequential processing of the 

data segments to transmit is enforced.  Consequently, despite its lighter weight as 

compared to B, it may be slower if parallel processing cannot be taken to advantage; 

ideally, a way to calculate a single block CRC from segments of the block 

concerned should be done in parallel9, and the part CRCs combined. 

A further limiting factor is the need to ensure sequential transmission of the 

parts as ordering now becomes important; there are no implicit sequence numbers.  

The inherent sequential ordering imposed by the CRC calculation goes some way to 

solving this, but it is possible that the ordering could be broken where some of the 

ATM TRAM hardware links were busy with non-related transfers.  However, the 

 
9 The author became aware of a technique to recombine partial CRCs calculated in parallel at the 

end of the SERVICE project.  However, no references to this work could be found. 
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default IP MTU for use over ATM is 9188 octets (8 Kbytes data payload).  If it is 

assumed therefore that a single IP packet is at most 8K, then this can be spread over 

at most three cache blocks/TRAMs and the problem is finite; the order of arrival 

should be as intended without any ordering function for even very high loading 

conditions.  The current implementation of the SDU buffer transmitter maintains 

four independent queues of requests and it services them as the links become free.  

Any raw AAL5, i.e. video data transmissions, will take precedence over the IP 

transmissions.  Thus, where one to three of the hardware links are saturated with 

AAL5 data, the remaining ‘free’ links will allow the SDU based transmissions to get 

ahead on the respective TRAM.  For this reason, ordering of SDU based 

transmissions cannot be guaranteed without modification of the transmission 

mechanisms.  For example, one modification would be to use a single SDU queue 

and service it sequentially.  Although this would solve the problem, the parallelism 

of the transmitter would be impeded and resultant throughput likely diminished. 

4.7.3 The NFS WRITE Call 

There are two approaches to copying the IP data payload onto the disk.  In the following, 

it is assumed that NFS writes may be of arbitrary byte size and write offset: 

 

A. The file system I/O mechanism could be modified such that a section of data within 

an SDU buffer can be transferred directly into the SCSI TRAM.  As the file system 

itself is block based, a READ must first be executed so that the data can be 

transferred in at the correct point of the block, and then written to the disk.  Such a 

read is not required where the write is both block-sized and block aligned.  

Consequently, each write operation always bypasses the main cache and is a 

read/modify/write where the data is not block-sized and aligned.  In addition, as the 

data to write is not distributed across the cache TRAMs, there is a lower maximum 

throughput in writing the data to the disks; the file system is capable of engaging all 

four TRAMs where the data to transfer is striped across them. 

B. To use the current file system I/O mechanisms, the IP data payload must be 

transferred inter-TRAM such that the data to write then exists at the correct point 

within the appropriate cache block.  It is clear then, that a penalty similar to READ 

case A is incurred.  However, by using cache blocks it is possible that the block of 

the file concerned is already in the cache, and there is no need to READ in the full 

block from the disk (read/modify/write).  Secondly, by using the cache it is possible 

to defer the time of a write and hence increase throughput by reducing the disk load.  

The initial disk READ is obviated where the payload occupies the entire (non-

resident) cache block.  A further advantage is that the I/O mechanism of the file 

system would not require any modification to make this approach work. 
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4.7.4 NFS I/O Implementation 

The efficiency of an NFS read was not a critical component of the server.  Further, 

considering the either non-existent or unpredictable nature of some IP fragmentation 

implementations, the case C READ with CPCS-PDU fragmentation was seen to be the 

most appropriate solution.  On the assumption that most random file accesses are for 

small amounts of data, then data fragmentation should not occur frequently, the worst 

case being two fragments where the requested data straddled a zone boundary.  In 

practice, NFS read requests are always block aligned, and hence this latter situation does 

not in fact occur; the server can nonetheless cope with it.  With respect to enforcing the 

ordering of transmission, a split transfer (that is, across two or more TRAMs) is marked 

as such, and the TRAM that will transmit the next segment of data is declared to the ATM 

TRAM.  In addition, to avoid confusing two or more such split IP transfers from a single 

IP TRAM, the partial block CRC is used as a transfer identifier.  The CRC is used to both 

identify and validate a transfer stream.  Namely, where a mismatch occurs between the 

last-CRC given to the ATM TRAM and the last-CRC offered by the next cache TRAM to 

transmit, the transmission is aborted. 

In the WRITE case, there is a potentially significant gain to be had in operating 

through the cache.  However, on the assumption that NFS writes are a rare occurrence, 

such a gain would be largely insignificant.  In any case, with the file server optimised for 

reading, the time taken for the write to occur is less important and the simpler solution to 

write-through the cache is the better one.  Given also that actual NFS implementations 

transfer in block sized units, the performance to the server’s writes should at least be 

reasonable.  Thus, option A was selected for server NFS writes. 

To improve the NFS throughput performance of the prototype, a work avoidance 

technique was applied as suggested by Juszczak [JUS89].  For example, if a client 

requests a block of data from a heavily loaded fileserver, the client may retry the 

operation because of the high server latency, perhaps several times.  The server therefore 

has the original request and one or more duplicates within its processing queues.  Thus, 

the server in fact replies more than once to the client for a single logical operation, which 

further slows the server and in turn causes more requests to be repeated.  The technique 

suggested by Juszczak produces an improvement in server bandwidth by recognising and 

eliminating duplicate client requests that have already been processed, and hence allows 

the server to allocate resources elsewhere. 

4.8 Analysis of IP and NFS Implementation 

Initial testing was based upon trying simple file operations to exercise individual NFS and 

file system primitives, which enabled the server to become operational.  To more 
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thoroughly test the correctness and efficiency of the server’s NFS implementation, the 

NFS benchmark [SCW88] was later employed with great success.  This allowed the 

validation of the file system under heavy loading conditions, with the benchmark 

checking that its operations were correctly carried out.  In particular, no abortion of split 

IP (i.e. fragmented CPCS-PDU) transfers occurred at any time. 

In table 4.1, the machine ‘cobra’ is a Hewlett Packard Apollo 725/50 running HP-UX 

version 9.  The machine ‘python’ is an HP Series 700, also running HP-UX 9.  Both of 

these machines have 64Mbytes of RAM.  Thus, these test machines are high power 

workstations and consequently give excellent NFS performance.  The machine named 

‘sequoia’ is a Sun IPX SPARC station with 16Mbytes RAM, running Solaris 2.5.1.  This 

latter machine differs in its NFS implementation in that it uses an 8Kbyte block size for 

data transfers.  This has a clear effect on the prototype server’s NFS performance.  The 

control data is taken from the original 1988 NFSstone documentation and is simply given 

for reference.   

The two prototype servers, vfs-atm and cimis-vfs, were configured in these tests to 

use the same hardware and cache size.  However, cimis-vfs uses a single 7200rpm disk 

compared to the development prototype’s two 2100rpm disks.  The benchmark results are 

therefore a clear indicator that a faster disk will significantly improve server performance. 

 

Table 4.1: NFS Benchmark Results for 45522 NFSstones 

Hosts Benchmark 

From To Time / s NFSstones / s 

Sun3/60 v3.4 control server -   85  

cobra vfs-atm 362 126  

cobra cimis-vfs 313 145  

python vfs-atm 351 130  

python cimis-vfs 309 148  

sequoia vfs-atm 205 223  

sequoia cimis-vfs 181 252  

cobra (Ethernet) python 168 271  

cobra (ATM) python 182 250  

 

The prototype server is at a disadvantage as compared to the workstations, since each 

network packet must be transferred internally across at least one Transputer link.  This 

adds in extra receive and transmit latency, which the workstations do not incur.  In 

addition, the Transputers are responsible for CRC generation in the AAL5 packets, both 

for incoming and outgoing packets.  This is a feature performed in the workstation’s 

much faster ATM hardware.  The processors on the workstations are also a good deal 
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faster than the Transputers of the prototype server, on the HP’s in particular.  Not 

surprisingly then, the workstations give better performance figures.  The 8Kbyte block-

size of ‘sequoia’ effectively reduces the effects of receive/transmit latency, since half the 

number of I/O exchanges occur compared to the HP-UX boxes.  In particular, the server’s 

disks can achieve better write performance with larger block size. Consequently, the more 

modest Solaris workstation produces better benchmark results. 

Notice that the figures for the Ethernet and ATM benchmarks between the HP-UX 

workstations are not significantly different.  This would suggest that the benchmark is not 

network-bandwidth limited.  Furthermore, the lower ATM performance between these 

machines would suggest an immature ATM driver.  Regardless, the implementation of the 

prototype is shown as correct, and its performance is very reasonable. 

4.8.1 Behaviour of the ATM hardware in the File-Server 

An analysis of the ATM and AAL implementations could only usefully be performed 

with a server under heavy loading conditions.  Thus, the NFS benchmarks also served as a 

good environment in which to examine the behaviour of the cells output by the ATM 

hardware.  This analysis revealed that the ATM adapter was occasionally outputting two 

back-to-back cells, which is caused by a relative cell mode transmission being made long 

after half the hardware clock period since the last transmitted cell.  This discovery further 

indicated that the ATM hardware could stall if the first cell to transmit, which 

underlyingly uses an absolute mode transmit timestamp, is delayed.  Such delays can 

occur because of heavy CPU loading; the hardware will not transmit the cell for up to a 

further half clock period.  Hence, the implementation of immediate-mode cell-

transmission in the ATM firmware should improve server performance for both NFS and 

streams clients.  

4.9 Implementing Stream optimised Caching 

The diagram in figure 4.16 illustrates the process diagram for what is essentially the heart 

of the prototype server.  The processes again use the Occam ‘circle’ notation, but in 4.16, 

some circles have attached rectangles; these represent data structures, which are referred 

to in the text below.  Where a single structure occurs across more than one process, the 

processes involved share the structures, and do not have separate copies. 

The use of a synchronisation mechanism occurs only once in figure 4.16, between the 

cache manager and the transmitter.  The sharing of data among processes is carefully 

managed such that expensive synchronisation mechanisms are not needed – it was the 

concern of the author that heavy use of mutual exclusion, for example, would quickly 

make the host Transputer CPU bound. 

The following sections concentrate on the different areas of figure 4.16, which 

together make up the cache manager and streams control suite.  The operations of the 
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cache and stream managers are closely linked, and are therefore discussed together.  

Similarly, because of the close relationship between the NFS daemon and the cache 

manager, a discussion of how these components fit together has been deliberately 

deferred to the next subsection. 

Figure 4.16: Cache and Streams Management Process Diagram 

 

The edges of the diagram in figure 4.16 show the connections to the ATM and SCSI 

TRAMs.  In addition, the IP process is shown as one process, though its responsibility is 

split over the four TRAMs in the backbone of the cache.  For the prototype, the cache 

manager TRAM does not receive incoming IP traffic directly; the CPU is therefore 

dedicated to maintaining good real-time response during the operations of client streams.  

Hence, the ukcStreams requests are forwarded to the manager TRAM via an IPC10 
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mechanism linking the four TRAMs.  NFS data requests are handled without forwarding 

the entire RPC packet to the manager TRAM, as explained in the following subsection. 

4.9.1 NFS and the Cache Manager 

Each of the other cache TRAMs has an IP process which deals with traffic from the 

network.  In general, the IP processes deal with NFS requests by talking directly with the 

file system on the SCSI TRAM.  For data reads however, the cache needs to be used.  In 

this case, the NFS daemon requests that the cache manager load data into the cache and 

return the address, or addresses, of that data.  Of course, the data may already be present 

in the cache, in which case no data need be transferred from the filesystem TRAM. 

The IPC mechanism connecting the processors on the cache backbone is used to 

make the data request to the cache manager.  In figure 4.16, the NFS proxy receives this 

request and forwards it to the cache manager.  Similarly, the list of addresses given by the 

cache manager is returned back through the IPC system to the calling NFS daemon.  Once 

the addresses of the data are returned, the return RPC packet can be constructed using the 

case C READ in section 4.8.2. 

Since the cache is allocated in 16Kbyte rows, data read from the file system is limited 

to multiples of the row size.  In fact, this is a standard performance technique in file 

systems; the prototype uses a 32Kbyte basic fetch size.  In addition, the cache manager 

will ensure that the next 16Kbytes of data after that requested by the caller is held in the 

cache, since normal file data are typically sequentially accessed. 

To further improve NFS performance, ‘cookies’ are used to reduce the time spent 

searching file chains.  Each file in the cache has its last accessed cache-row offset 

recorded.  Thus, for each access to a file, the cookie is used as the start point of the file 

chain search.  It is therefore important to maintain the file ownership of all lines in the 

cache management structures (figure 4.15), since the cookie might otherwise cause a 

search on the wrong file chain, or the free-list.  Since the majority of file access is 

sequential, the search of the file chain is either not needed (same cache row), or is of 

length one. 

Cache space is divided between NFS files and stream files by counting the number of 

stream users of each file in the file header chains; any files with zero counters are normal 

data files.  NFS is allowed to occupy at most n Mbytes of space if the server has stream 

clients; in the prototype’s case, 4Mbytes is the maximum space given to normal files if 

the server has stream clients. 

The inclusion of a stream counter within the head of each file in the file chain 

requires that streamed files never be flushed from the cache, since that would lose the 

client number state.  However, streams typically always have data in the cache, so the 

constraint is not a limiting one.  During group reassessment, the state counters make it 

easy for the manager to track resource allocation to normal and streamed data files. 
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The normal data files each have an expiry timer when streams are active.  If no file 

activity to the normal file is made within a set timeout period, then the file concerned is 

flushed from the cache, hence making way for stream data.  The prototype uses a timeout 

of five seconds. 

If the cache becomes full, the cache will flush NFS data from the cache on a least 

recently used basis until enough space is available.  A full cache will also trigger a 

reassessment of stream groups, which will also cause space to be freed in the cache. 

4.9.2 The Cache and Stream Managers 

The stream manager is responsible for maintaining the structures set out in Chapter 3, viz. 

figure 3.6.  Namely, it keeps track of which files have stream clients, and organises the 

streams into groups. However, the stream manager does not make any data transfer 

requests to the file system directly; any transfer requests are made to the cache manager. 

The details of how the streams are formed into groups was given back in Chapter 3, 

and is not repeated here.  The prototype implementation is specifically a pure streams 

algorithm, and does not make use of the residual space left after allocating the cache to 

the smallest set of intervals.  The discard of material from the end of each stream group is 

passive, that is, is not removed from the cache until the streams are reassessed.  

Reassessment occurs either when a client stream issues a reposition, a new stream arrives 

or another leaves, or the cache runs out of space. 

The streams manager is driven by the incoming ukcStreams protocol requests, which 

are forwarded from the IP processes on the other three TRAMs on the cache backbone.  

The stream manager is therefore the ‘ukcStreams daemon’, and is responsible for replying 

to the protocol requests.  Hence, the manager TRAM always responds directly onto the 

network to ukcStreams requests, and does not reply to the forwarding IP process. 

The IPC mechanisms are used by the stream manager when setting up a connection 

with a client.  The file that a client specifies has its metadata checksum checked against 

the main data file.  Since the first file block is located in the first cache TRAM, an IPC 

request is made to it.  Once the checksum reply is made, and the checksum is found 

correct, the connection procedure is completed. 

4.9.3 Organisation of the Streams 

For each CONNECT primitive received, the stream manager assigns a stream handler 

process to the maintenance of the client stream.  Each handler process maintains the 

logical clock of its stream, and is responsible for the transmission requests of the frames 

of that stream.  Thus, each handler has access to the meta data index of its charge.  The 

index is fetched by the manager as part of the client set-up call. 

Once the manager has assigned a handler to the operation of a client stream, it will 

alter or interrogate the stream as appropriate, according to the ukcStreams primitives that 
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arrive from the client.  The handler processes communicate with the manager process 

only through the ‘Alert’ queue, since to do otherwise would cause deadlock. 

The alert message is either a prefetch request, or a cancel notification.  Each stream 

makes a prefetch request when the previous prefetch’s data has been half consumed.  The 

prototype tries to fetch a second of data ahead, and therefore makes requests each half 

second, even if the playback rate is altered.  If the rate of play is altered, this affects the 

amount of data fetched from the disk.  The prototype imposes a minimum transfer size of 

32Kbytes and a maximum of 256Kbytes to keep performance high, while preventing one 

stream from consuming all of the disk bandwidth.  If the alert queue has a previous 

request from the same stream, the previous request is overwritten, since the server is 

presumably too busy and has not yet serviced the last prefetch request. 

The cancel notifications are caused by timeouts in the handlers.  If there is no client 

activity for a paused stream for a specified period, then the handler tells the manager to 

free up the stream.  The timeout period is specified as part of the CONNECT call. 

The stream manager services the prefetch requests in First Come First Served (FCFS) 

order.  At start-up therefore, all active streams will access the disk; the logical allocations 

of the stream manager made during assessment will slowly be turned into physical 

allocations.  Once stable state is reached, only the leading streams of each group will 

access the disk, with the prefetch requests of the others being absorbed by the cache. 

The stream handler processes request frame transmissions to the cache transmitter 

process.  The transmitter, on receiving a request, searches the cache for the blocks 

requested.  If the data are found, then the request is forwarded to the ATM TRAM for 

transmission to the client.  As the cache manager can be adding or destroying file chains 

in parallel with the searches of the transmitter, mutual exclusion (a ‘mutex’) is needed to 

protect the transmitter from having the cache structures pulled from under it. 

Similarly to the use of cookies with normal data files, the CPU time spent searching 

for file blocks to transmit is minimised by recording the cache location last accessed for 

each stream.  The search for a file block continues from the point indicated by the cookie, 

and search complexity is generally reduced to one frame. 

4.9.4 Flow Control and Deadlock Prevention 

Should the ATM TRAM become congested, and the transmit queues back up enough to 

fill, the ATM adapter will switch off the flow of transmission requests.  The variable 

‘transmit.on’ shared between the stream handlers and the transmitter, is checked by the 

handlers before any attempt to transmit is made.  This approach prevents the handlers 

from blocking on a request to the transmitter, because the transmitter is itself blocked on a 

request to the ATM TRAM.  The flow control is enabled once the ATM adapter is able to 

reduce its outgoing frame transmit queue to 25%.  The ATM TRAM will throw away 

requests that it cannot cope with, though this results in the transmitter process making 
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requests that are promptly discarded.  The flow control mechanism therefore switches off 

the requests at their source and saves link bandwidth and CPU time for both the manager 

and ATM TRAMs. 

4.9.5 ukcStreams Protocol – Extensions to Palantir 

During the development of the server, two other projects in the group made an attempt to 

play back synchronised audio and video.  The results were not perfect, with lip 

synchronisation in particular being poor.  Thus, the protocol designed for the prototype 

server included an ‘ASSOCIATE’ primitive, which slaves the clock of the client stream 

to that of another stream.  Since the server is responsible for the transmission of data from 

two or more streams from a single logical clock, the synchronisation between the two 

should be far better.  In addition, the slaving of the clock can be offset by a positive or 

negative amount, such that delays in processing different streams at the client can be 

accounted for.  Furthermore, the size of the offset can be altered ‘on the fly’.  At this time, 

the ability to associate streams has only been demonstrated between multiple video 

streams; it has yet to be used for the synchronisation of audio and video with lip-sync. 

4.10 Summary 

In this chapter, the components of the video server were presented together with an 

explanation of the alternative approaches considered and the reasons why particular 

implementation paths were taken.  On analysis, each of the system components was 

shown to satisfy the initial estimate of required performance, and was therefore sufficient 

to enable the successful construction of a networked video file server. 

A number of notable performance related lessons were learned whilst constructing the 

server.  These optimisations were necessary in order to achieve the required server 

performance.  However, a discussion of these techniques is deferred until the closing 

Chapter 7.   
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5. Analysing the Principle of Stream Caching 

The experiments given in this chapter were conducted on the prototype server described 

in the previous chapter.  The cache algorithm used throughout all of the experiments was 

a pure stream cache, that is, without a modulated interval; assuming that Linington's 

cache simulation is sufficiently accurate, then the performance of pure stream versus 

modulated stream caching should not be very different.  The simplest cache replacement 

strategy was used with the cache reassessment being set to occur on a user interaction, or 

when cache space became exhausted.  Although this is not the most efficient algorithm, it 

does give a safe basis for prediction of the efficiency of stream optimised caching. 

5.1 Method of Evaluation 

For a classroom of users viewing a set of clips, the behaviour of those users is dependent 

upon a multitude of factors; no two sessions would ever produce identical traffic profiles 

to the server.  Thus, to make such traffic reproducible for purposes of experimentation, 

the inputs would need to be recorded as a script of user requests for later playback.  

However, the server response would itself have an effect on the profile of such inputs.  

Hence, for the purposes of experimentation, the scripts played to the server ideally need 

to be independent of the server’s response to those inputs, such that that response might 

be analysed in isolation. 

A better approach than using real users is therefore to replay a script that, to the 

server, is indistinguishable from actual real-user input.  Such inputs can be generated 

based upon predicted rather than actual user behaviours, to produce ‘emulated’ 

behaviours.  Such generated behaviours have the advantage that they are quick to build 

and are easily modifiable.  These inputs are then a known quantity and do not require 

extensive analysis to determine their effects on the server, as would real-user inputs. 

To emulate a number of users a pattern generator can be used, which employs 

behavioural rules that predict that of real users.  For example, each user has a probability 

per second that they will review the material they just watched, and another probability 

that they might alternatively skip forward over a section.  Similarly, the user may choose 

to change the clip that they look at, which can again be governed by a probability.  The 

pauses between the use of different clips can also be emulated by choosing a probability 

of such an intermission for each clip, and a further probability for how long they are not 

viewing any continuous media.  Such a generator needs to output user ‘events’ at discrete 

logical times, namely the VCR primitives given in table 3.2.  For each event generated, 

the appropriate argument(s) must also be created, for example, the new logical position of 

a skip operation or the relative index of a new clip to be viewed. 
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As a pattern generator also creates the logical times of the actions that it generates as 

it executes, i.e. the generator does not execute in real-time, such user emulation scripts 

can be generated within seconds.   Thus, the expensive and repetitive step of recording 

user interaction data is avoided. Additionally, since the user behaviours are probability 

based, each run of the pattern generator will produce a different set of user actions.  

Further, the general behaviour of the output user-script can be quickly altered by 

adjusting the user behavioural descriptions that the pattern generator is using. For 

example, the frequency of backtracking can be reduced to very unlikely, since it is not 

expected, or made highly likely, for environments in which it would be expected.  Hence, 

consideration of many different types of user behaviours can quickly and easily be 

generated, as opposed to collecting real-user data for each of the different target 

environments. 

The user usage pattern generator, designed and written by Peter Linington as part of 

the SERVICE project, takes a description of each clip as given in Appendix A.1.  Each 

clip has a specified length, and three properties that are specific to the clip.  Each piece of 

footage will have an interest to the viewer, which if not very high, will result in a short 

viewing time before the user chooses another clip.  In the descriptor, this transition has 

both a probability per second, and an upper bound.  Similarly, depending upon the 

viewers interest in the clip, the user may pause, skip, continue or otherwise interact whilst 

watching the clip. 

The variable NCLIP determines the number of movie clips that the emulated users 

will be accessing during the experiment.  The experiments in this chapter used 10 clips, 

the parameterisations of which are also listed in Appendix A.1.  The clips used were of 

varying length and size, and were taken from a related project; the “Co-ordination and 

control Interfaces in Multimedia Information Systems” (CIMIS) project used MPEG 

compressed clips to provide an interactive tourist information system.  The clips used 

within these emulations are therefore ‘real’ data, not ‘almost MPEG’ mocked-up 1.5Mbps 

CBR data.  The total amount of data over these ten clips was 177Mbytes, which is twice 

the size of the largest cache size for the experiments in this chapter.  Thus, the prototype 

does need to access the disk; it cannot operate entirely from the cache.  More details on 

the CIMIS project and its impact upon SERVICE are given later in the chapter. 

An NCLIP by NCLIP matrix named UCLIPSEQ contains transition probabilities 

where each entry gives the likelihood of transition from clip i to clip j.  This arrangement 

allows a most probable route for each user, whilst including the possibility of a deviation 

in the user’s path.  The clip transition matrix is given in Appendix A.2. 

Each user is characterised such that each user has a clip interest tolerance – some 

users are more patient that others.  A delay before entry to the emulation simply accounts 

for the fact that users do not arrive to class at the same time, nor do they typically start at 
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precisely the same time.  The user parameters used for the experiments in this chapter are 

given in Appendix A.3.  Where less than 25 users were active during an experiment, only 

the first user descriptors listed in Appendix A.3 were used up to the number of users. 

The maximum number of users was chosen as 25 so as to intentionally overload the 

server and examine its behaviour under a breaking strain; the practical maximum 

originally aimed for was 20 users. 

Several different user interaction styles can be described by further a table of values.  

Hence, for a single set of users, a number of different user behaviours can co-exist.  For 

example, frequently backtracking users can be mixed with others that never backtrack, 

but tend to skip over small sections of every clip.  The table entry format is given in 

Appendix A.4.  These experiments use only one user style; the emulated users are 

organised such that they are more likely to skip through than pause in each clip, but if 

they pause, they will continue reasonably quickly.  The source clips range in length from 

40 seconds to 4 minutes, so the skip behaviour is set to an average of 15 seconds 

backwards.  The effect of the standard deviation is that the change of position will 

generally be between 45 seconds ahead, or 1 minute 15 seconds backwards.  All user 

timing-distributions are exponential in the generator. 

Although all NUSER users begin at the first clip, this clip can be set to length zero, in 

which case a distribution of starting point probabilities can be specified in the clip 

transition matrix.  In allowing each user to pick their start clip and jump between clips, 

this produces a worst case for reuse, since ordinarily if users were progressing through 

some learning task, their access to the media clips would tend to be far more linear and 

predictable.  Again, this would give a safe basis for the predicted performance of the 

caching algorithm being examined.  The experiments of this chapter, however, assume a 

more orderly starting distribution, as this is expected in the target classroom environment. 

The output of the usage emulator is a sequence of action records where each record 

consists of an event time in milliseconds, an operation identifier, the user's identity and an 

optional operation argument. For example, a SKIP action for user offset 0 at 1234 

milliseconds needs a clip position argument to skip to, say 120000 milliseconds.  A 

playback utility reads the action script and spawns NUSER client processes that convert 

the actions into the appropriate ukcStreams protocol requests and therefore emulate real 

users; the server itself does not know a real from an emulated user.  The action script is 

further augmented with monitoring actions, which the playback utility issues to the server 

as the time fields of the operations dictate; a separate RPC protocol (vfsBench) is used for 

monitoring operations and is given in Appendix B. 
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5.2 Capture of Data at the Server 

To collect data at the server, the server sources were modified to add in counting and 

summation of the most notable information.  This was done without requiring a major 

reworking of the server code. 

The vfsBench protocol needed to have near-zero impact upon the server’s 

performance, so the items collected on each ‘collect’ call were chosen in such a way as to 

cause minimal additional CPU load.  Since the data is collected from the manager TRAM, 

this processor was chosen as the only source of data; there is no instrumentation in any 

other server processor.  The server collects data about each stream process and each cache 

block, and maintains totals across all such streams and blocks.  The data on individual 

streams was originally designed to allow comparisons of behaviour between the streams 

of a single experiment, though it is not considered here for that purpose.   

5.2.1 Cache Block Data Records 

The server maintains the following data about cache blocks for return via vfsBench 

protocol : 

blocks.used Total number of blocks in cache that are either allocated but are 

so far unused, or allocated and used once only 

blocks.reused Total number of blocks allocated and used more than once, i.e. 

have been reused 

 

The use/reuse counters are achieved in the server by the addition of an element to the 

cache management structure (figure 4.15).  For each cache line entry, a one-byte state 

element is given to each cache block.  Thus, for the prototype with four blocks in each 

cache line, this gives an additional four bytes overhead to each cache line structure. 

The state entry is one of ALLOCD, USED or REUSED.  The state flags are modified by the 

cache routines for allocation, de-allocation and searching (for cache blocks to transmit).  

The totalling counters blocks.used and blocks.reused are increased and decreased 

based on the block states as these cache operations are called, thus distributing their 

computation evenly over time.  These values can be used to calculate the spatial 

efficiency of the cache content.  The block state elements further enable the measurement 

of temporal cache efficiency as outlined in the following section. 

5.2.2 Per Stream-Process Data Records 

The per stream process (not per active-stream) recorded information is as follows: 

 

fps.counter Number of entries in the fps.table (listed below) limited to the 

table size and reset by new connections and continuations. 

fps.index Next index to be used in fps.table 
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fps.table The indexed element records the processor timestamp of the next 

frame to be transmitted.  The actual frame rate can therefore be 

calculated by consideration of the last fps.counter elements. 

transmitted Total number of successful transmissions 

overdue Total transmit latency from frame transmit timer-interrupt event 

time to cache search success and subsequent transmission 

successes Total number of successful cache frame searches including those 

enabling reuse (all transmissions) 

reuse.hits Total number of successful cache frame searches on frames that 

had been used before, i.e. enabled reuse of data 

failures Total number of unsuccessful cache frame searches 

dropped Total number of frames dropped due to flow control actions 

between the cache TRAMs and the ATM board. 

 

In the calculation of the actual frame rate of each stream, paused streams are not 

considered, so that they are not confused with poor quality play.  Similarly, a resuming 

stream has its fps.counter reset to zero, so that the period of the pause is not taken into 

account when calculating the stream’s frame rate.  The frame rate calculation is: 

 

Each stream process firstly checks that the ATM adapter is not overloaded with 

traffic before it requests a frame transmission.  Thus, if the ATM TRAM has switched on 

the flow control mechanism, the frame is dropped before any request to transmit is made.  

Consequently, the transmitted count does not count those frames that were dropped 

because of flow control actions. 

When a stream handler process does request a frame to send, a separate transmission 

process then searches the cache to check that the data is available for transmission.  If all 

the data is present, then a search success is recorded for each attempted transmission.  If 

only some or none of the data is found, then a cache failure is recorded.  If a full cache 

success is made, then the frame transmission descriptor is forwarded to the ATM TRAM 

for processing.  Thus, for the prototype server, the number of cache successes and 

successful transmissions are in fact identical.  This would not be the case however, if 

transmissions could fail after a cache search success.  For the server, frame transmissions 

submitted to the ATM adapter always succeed. 

The searching of the cache in the transmission process is also responsible for the 

alteration of each block’s state from ALLOCD to USED, or USED to REUSED for each cache 

block pending transmission.  For a cache search success, it is then possible to additionally 

e]oldest.timfps.table[ - t.time]most.recenfps.table[

1 -r fps.counte
1000000 s
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increase the reuse.hits counter for the stream process if the first block in the frame 

indicates that it was already USED or REUSED.  The temporal cache reuse efficiency can 

thus be calculated based upon total successes, total reuse hits and total failures. 

Since each stream handler is requesting to the stream manager to fetch the data it will 

require, a cache failure will occur where the prefetch request could not be serviced before 

the stream reached the data it requested.  Hence, the cache success- and failure-counts 

include those streams that are relying on their prefetch area as a playout buffer.  That is, 

the definition of cache success here includes the first use of any cache block for each 

transmission attempted.  Therefore, the ‘cache success’ given here is not an indication of 

cache re-use; this measurement of a ‘hit’ is given by the term ‘reuse’.  

The overdue counter records the cumulative time taken to respond to each frame 

transmission, though only successful transmissions are counted.  The measurement begins 

within the stream handler process at the wake-up time that the frame was due.  It ends 

within the transmission process after the cache search success has been established and 

before the request is forwarded to the ATM TRAM.  Hence, the transmission response 

latency is measured only within the manager TRAM.  However, this latency will be 

affected by CPU loading, since higher CPU loads will delay outbound requests. 

Note that individual stream sessions cannot be told apart, since two sessions may use 

the same underlying stream process.  Indeed, in a single sample interval, many such 

successive stream sessions may be handled by the same stream handler process.  For this 

reason, no attempt has been made to analyse the difference of behaviour between the 

streams of each single experiment.  In any case, this would massively increase the size of 

the chapter, which concerns itself only with average performance across all streams and 

hence allows a comparison between different experimental runs. 

5.2.3 Global Stream Data Records 

For all streams on the server, the following totals are recorded: 

cache.success.count Number of cache frame successes/transmissions 

cache.reuse.count Number of successes that enabled reuse in the cache 

cache.failure.count Number of unsuccessful cache frame searches 

disk.accesses Number of accesses made to the file system 

disk.bytes Number of bytes transferred from the file system 

disk.time Amount of time spent in file system data reads 

 

The totals for both cache successes, reuse hits and failures are performed at the same 

point as for the individual stream-process data within the frame transmission process.  

Again, any frames dropped due to ATM flow control do not have any impact upon cache 

successes and failures, since no frame transmission request is attempted in this case. 
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The disk activity values are accumulated within the stream manager process, which 

fetches data on behalf of the stream handler processes.  The fetches are typically of a 

fixed prefetch size, but the cache manager can break these down and possibly eliminate 

them where the data already resides in the cache and does not need to be fetched from the 

file system.  Thus, a disk hit is counted only as one request to the cache manager, even if 

the cache contents caused several separate file system transfers to be made.  However, 

where no bytes were transferred, no hit on the file system is counted.  The total time taken 

by each transfer request to the cache manager is accumulated, even when there is no 

access to the file system.  In the latter case, only the overheads of checking that the cache 

already had the data are timed. 

The amount of data transferred from the file system is actually measured in units of 

blocks and multiplied by the logical file-system block size.  Therefore, the raw transfer 

rate of the file-system is being measured.  The effective transfer rate depends upon the 

storage efficiency of the clip concerned; there are always at least 16 Bytes unused at the 

end of each block for the server’s AAL5 encapsulated file format.  The actual storage 

efficiency of a clip is dependent upon the encoding of the media file. 

5.3 Results of Emulated Multiple Users 

All of the following results were taken during the busiest part of the generated emulation 

such that all the users in the emulation cause simultaneous loading on the server at some 

point in the trace.  Note that the time axis is taken relative to the start of the full emulation 

period, not the start of the monitor’s readings.  In the case of the experiments here, the 

start of the readings is after only 100 seconds of emulation, and therefore the traces begin 

near the start of each graph.  The reason for the early start was simply that the traces 

quickly ramp up to maximum user load.  A snapshot of server performance was taken 

using the vfsBench RPC protocol with a sample interval of 10 seconds over a period of 

2400 seconds (40 minutes) for all experiments. 

In the following sections, each starts with a definition of the item being analysed.  In 

most cases, this is the same as one of the totalling counters given in section 5.2.  

However, some of the graphs display data derived from the basic vfsBench data.  At the 

end of each subsection, the data are discussed in isolation with some referencing to 

previous subsections, where appropriate.  Section 5.4 discusses all of the results 

collectively and draws some conclusions. 

5.3.1 Number of Users Active 

The number of users active is the number of users that are actively playing at the sample 

instance, i.e. non-paused users.  Thus, each sample value does not account for the number 

of users in previous samples.   
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The graphs 5.1 to 5.4 trace the number of users connected to and using the server per 

unit time during the progression of the experiments.  Since the trace records the number 

of users actively playing back a file, and does not include those streams that have paused, 

the traces should record the number of users that are having an impact upon the 

performance of the video server; paused users do not use system resources.  These data 

sets are not of great interest in themselves, but do provide a basis for interpretation of the 

results which follow in later sections. 

Graph 5.1: Number of Users with time (10 users) Graph 5.2: Number of Users with time (15 users) 

Graph 5.3: Number of Users with time (20 users) Graph 5.4: Number of Users with time (25 users) 

 

As the emulations progress, the number of users active on the server can be seen to be 

continually changing as the emulated users are constantly altering their behaviour.  This 

includes both pause-resume operations and changing the viewed clip.  For all of the 

experimental data presented in this and following sections, the time axis records only the 

first 2500 seconds (42 minutes) of data.  It is this section of the emulation trace that is 

most interesting and contains the rapid build-up to peak usage and the slow decay in the 

number of active users.  Thus, the traces presented contain the busiest part of the 

emulations and record the server behaviour under the heaviest loading conditions for each 

emulation.  The drop off in the number of users with time is a result of the hastiest users 

in the emulation finishing more quickly than the more leisurely users. 
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On examination of the resultant traces in graphs 5.1 to 5.4, the number of users for 

each set of users (that is, 5 (graph omitted), 10, 15, 20 and 25 users) is very similar 

regardless of any variation in cache size.  This breaks down for larger user sets, viz. 20 

and 25, where the traces for the different cache sizes do slightly differ.  This is most likely 

due to greater loading of the server causing longer delays to the servicing of user requests.  

Consequently, since the experimental traces are sampled at 10 second intervals from a 

Unix host clock, the observing monitor process will catch these variations in control 

response.  For example, for a lightly loaded server, a continue request may be serviced 

before a sample point, whereas a busy system may take the sample before the continue 

request is serviced.  The result is a difference of one user in the sample.  The vfsBench 

protocol request is also subject to server delays and will therefore be temporally affected 

by heavy server load. 

Note that not all experimental data is presented in this chapter.  Where two or more 

graphs do not provide additional insight over one graph, the latter graphs are intentionally 

omitted.  In this subsection, the 5-user set traces are similar to the 10-user traces, but with 

half the vertical scale; the graph is omitted here for the sake of brevity. 

5.3.2 Number of User Groups Active 

A stream group is defined as a set of contiguous stream intervals.  Two stream groups will 

therefore either belong to different files, or will be separated by an uncached interval.  

Similarly with the sampling of the number of users, the number of groups recorded in 

each sample is precisely that number at the instance that the sample was taken, and does 

not consider the number of groups active prior to that sample. 

Stream optimised caching is based around the concept of grouping the set of streams 

with the shortest inter-user intervals.  A good indication of algorithmic success should 

therefore be given by tracking the number of groups for a set of users, that is, the group to 

user ratio.  Essentially, the fewer the number of groups, the more efficient the cache 

algorithm; efficiency is determined by group followers since these enable cache reuse.  Of 

course, the efficiency will be limited by the number of users involved; mathematically, 

high performance is only possible for a large number of users.  This is because reuse is 

more likely with a large set of users.  Algorithm efficiency is also determined by the 

number of target clips on the video server.  For example, a user population that is larger 

than the number of clips available will always lead to reuse.  However, the practical 

efficiency is determined more directly by the temporal locality of accesses among users.  

Therefore, the worst case behaviour will be that where each user accesses a different clip, 

since no temporal locality of access is then possible. 

With a few users, for example in graph 5.5, the size of the cache is less critical, with a 

small cache giving equal performance to a larger cache.  Here, the number of users most 

frequently mirrors the number of groups.  In this case, the extra memory used by the 
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cache is of no extra benefit.  This is due to the few users being unlikely to view the same 

material at around the same time, with typically the emulated users viewing different 

clips.  In those cases where two users do view the same clip, the interval is often too large 

to be cached.  An example of this can be seen at around 800 and 2000 seconds into the 5 

user set trace, where the larger cache size enables non-singular groups to form with large 

intervals.  The smaller cache sizes are unable to service such intervals as they exceed the 

total available cache. 

Graph 5.5: Number of Groups with Time (5 users) Graph 5.6: Number of Groups with Time (20 users) 

 

Increasing the size of the user set gives a clearer separation of the effect of cache size 

on the grouping algorithm efficiency, for example in graph 5.6.  For the 20 and 25-user 

sets, the large cache size enables a few large groups to form, whereas the smallest cache 

size is unable to employ cache space efficiently.  These results are clear evidence of the 

requirement of a large user set in order to achieve a high ratio of users to groups, and 

therefore algorithm efficiency. 

5.3.3 Cache Success to Failure Ratio 

The success to failure ratio is derived from the 20 most recent total successes (successful 

transmissions) and total failures samples (unsuccessful transmissions).  The samples that 

are 20 sample periods in the past for both cache successes and failures are subtracted from 

the most recent samples.  The success ratio is therefore taken from the successes and 

failures in the cache over the duration of the last 20 sample periods.  Hence, a recent 

success ratio is calculated, and not a ratio from the start of the experiment.  The latter 

would be more heavily biased by historical data the further into the resulting trace.  The 

success ratio formula may be summarised thus: 

 

Although the group to user ratio (sections 5.3.1 and 5.3.2) can give a good idea of 

cache algorithm efficiency, it goes not give a good guide to practical server performance.  
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In the ideal, the media server will always have available in the cache any frame that is 

requested for transmission.  That is, the ideal server has 100% cache success rate. 

Graph 5.7: Cache Success Ratio (10 users) Graph 5.8: Cache Success Ratio (15 users) 

 

Perhaps unsurprisingly, the five-user set trace produces a near 100% success rate, 

with only a minor degradation for smaller cache size.  The reason for the less than 1% 

cache failure can be explained by user reposition requests, which will cause cache failure 

until the file system can service the prefetch for the stream concerned.  Although the file 

system can fetch a large chunk of data for a stream client, this can take more time than a 

single inter-frame interval.  Consequently, frame requests are made before the file-system 

has completed the transfer of data into the cache; these give rise to failures. 

For a few users, once the streams diverge to the point that stream caching does not 

occur, the disk is able to satisfy the demand for data.  The more serious cache failures for 

any cache size and user set size are caused by the inability of the file system to satisfy 

those streams that cannot be satisfied from the cache.  

Graph 5.9: Cache Success Ratio (20 users) Graph 5.10: Cache Success Ratio (25 users) 

 

When increasing the number of users in the set from graph 5.7 to 5.10, the cache 

success rate is made worse by decreasing the size of the data cache.  Even so, for the 20-

user set of graph 5.9, a near perfect success rate is maintained for the largest cache size, 

bar some brief spikes at a few instances.  The reader will notice that for each user set trace 
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of the larger user sets, the different cache size traces are amplifications of one another, 

with the smaller sizes giving worse performance.  For the 25-user trace of graph 5.10, the 

largest cache size cannot provide perfect success rate, though not enough data has yet 

been presented to explain why the cache success rate falls.  However, the later sections on 

disk performance do provide an answer.  The reader will further note that the sections of 

cache failure correspond with a high number of groups for the given user set size and 

cache size – this is not obvious from the graphs given in this section. 

5.3.4 Actual Frame Rate 

The frame rates reported by the server for each stream consider only the most recently 

transmitted frames of each stream at the instance the sample was taken.  Thus, the average 

frame rate is the average of all such values, but does not consider the zero frame-rate 

streams, which are paused streams.  Consequently, the value gives an idea of the quality 

of output of all the streams.  In practice, if the average frame rate is not 25 in such a trace 

then a few of the streams might be dropping frames whilst the others are at 25 frames per 

second, for example.  A more accurate picture of the frame rate of each active stream 

would require examination of the individual stream process data of each experiment, 

which is not considered in these experiments. 

As stated in the cache success/failure ratio section, the users’ primary concern is with 

the quality of service.  It has already been seen that frames can be dropped, though this 

may be single frames dropped, or a burst of dropped frames.  Regardless, the effective 

frame rate produced by the server gives some indication of practical performance. 

Graph 5.11: Average Server Frame Rate (10 users) Graph 5.12: Average Server Frame Rate (15 users) 

 

It is of no surprise to find that the shape of the frame rate traces of graphs 5.11 to 5.14 

are almost identical to those of the success ratio in the previous section, despite the 

different unit of measurement.  As before then, the frame rate is degraded more by 

smaller cache sizes; the effect is amplified by the larger user sets.  For the largest set of 25 

users in graph 5.14, serious degradation of outgoing frame rate does not occur until all 25 

users are simultaneously active.  This however, is not surprising since their aggregate 
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bandwidth then exceeds the current capacity of the ATM TRAM.  The flow control 

mechanism between the cache backbone and the network interface switches off the 

transmit requests of the stream handler processes and therefore has a direct impact upon 

both the measured and perceived frame rate.  This degradation also occurs in the largest 

20-user trace to small degree for the same reasons. 
 

Graph 5.13: Average Server Frame Rate (20 users) Graph 5.14: Average Server Frame Rate (25 users) 

 

As mentioned in the previous section, a discussion of why the frame rate can drop is 

deferred until the disk performance is examined. 

5.3.5 Frames Dropped on Transmission 

If the network interface buffer pipeline becomes full, a flow control mechanism throttles 

back transmission requests from the main cache controller, such that the network interface 

can recover.  Only a subset of the 25 user set traces display any significant frame 

dropping behaviour, namely, for the two largest cache sizes.  The 20 user set trace in 

graph 5.15 shows a series of spikes for the largest cache size.  The smaller user sets below 

20 users do not show any frames dropped for these experiments, and thus their graphs are 

omitted here.  This behaviour is not surprising, given that the aggregate bandwidth of less 

than 20 streams cannot saturate the CPU-bound 28Mbps network-interface.  The reader 

will note that the ATM hardware is rated at 100Mbps, though data segmentation demands 

on the CPU limit the effective throughput for this device. 

For the 20 user set trace in graph 5.15, the ramp in the trace is concentrated from 

around 600 to 900 seconds into the largest cache experiment.  Notice that the cache 

success ratio and average frame rate are slightly affected at these points also.  For the 25-

user trace in graph 5.16, the server overload during the duration of maximum user activity 

can clearly be seen, between 250 and 1000 seconds.  This corresponds well with the cache 

success ratio and frame rate graphs over the same period.  Simply, these sections of the 

experiments are where the server has become limited at least by available network 

bandwidth.  This further suggests that the stream optimised cache is capable of greater 

outgoing aggregate transfer rates.  Notice that 20 1.4Mbps streams produces a total of 
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28Mbps, which exactly matches the observed maximum throughput of the ATM network 

interface under ideal conditions.  In addition, the 90Mbyte experiments output in excess 

of 700,000 frames, so these losses represent a total of around 0.1% and 1%, respectively. 

Graph 5.15: Frames Dropped with time (20 users) Graph 5.16: Frames Dropped with time (25 users) 

 

As noted above, the 20 and 25 user sets do not all produce dropped frames; the larger 

the cache size, the more frames are dropped.  The reason for this is that the smaller cache 

sizes are not efficient enough with their data cache, that is, there is a poor cache-success 

ratio and therefore a poor effective frame rate output.  Consequently, the smaller cache 

sizes do not produce enough outgoing aggregate bandwidth to saturate the network 

interface; the flow control mechanism will never be triggered. 

5.3.6 Temporal Cache Reuse Efficiency 

Temporal cache reuse efficiency is calculated based upon the number of cache successes, 

cache reuse-hits and cache failures in the duration of one sample period: 

 

Graph 5.17: Temporal Cache Reuse Efficiency  

(5 users) 

Graph 5.18: Temporal Cache Reuse Efficiency 

 (15 users) 

 

As with previous graphs, the different cache traces tend to be amplifications of each 

other, showing that a larger cache enables better use of the available space in stream 
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caching.  In increasing the number of users, the trace becomes more stable up to the 

optimal number of users. 

Graph 5.19: Temporal Cache Reuse Efficiency 

(20 users) 

Graph 5.20: Temporal Cache Reuse Efficiency  

(25 users) 

 

Generally, the efficiency of cache reuse is inversely proportional to the number of 

groups, as would be expected.  That is, formation of a few dense groups gives better 

reuse.  For the 5-user trace, the groups tend to be singletons such that reuse is not possible 

– thus, the graph tends to suggest poor, or at least widely varying performance.  

Performance is also generally lower at the tail of each experiment, where the few users 

remaining diverge, making reuse difficult.  In particular, the 25-user trace is poor at 

around 1750s.  Here, the users apparently form independent groups, so no reuse is 

possible; notice that success ratio and average frame-rate are both unaffected over this 

period.  In addition, the 20-user trace also shows a poor efficiency of around 40%, but 

does better than the 25-user case.  In the 25-user case, the users form singletons, whilst 

the file system is still able to cope with this number of simultaneous users.  For the 20-

user trace, the cache is most likely taking advantage of residual cache data. 

Residual data is that which is outside of any interval and is therefore predicted not to 

be reused.  If the cache is not running at capacity, then such non-interval data can remain 

in the cache until flushed (or recalled) at a later time, i.e. the data is residual. 

5.3.7 Temporal Cache Reuse Efficiency and Mean Group Size 

For each group, the leader fetches data from the disk, whilst all other members of the 

group reuse data that the leader has fetched.  Hence, for a single group j, reuse efficiency 

can be expressed thus: 

where uj is the number of users in group j and group.eff ranges from 0 to 1, i.e. 0 to 100%.  

Further, each user in each group j causes k events per second.  For G groups then: 
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Hence, the ideal implementation of stream caching will follow the above-derived rule. 

Therefore, the mean group size in graph 5.21 is transformed through taking the reciprocal, 

such that the y-axis of the graphs is (1  umean) and ranges from ‘perfect reuse’ (0) to ‘no 

reuse’ (1).  As with the graphs in the previous section, the points in the graphs consider 

only the sample period at the instance of the sample.  The value for umean is derived from 

the total number of users (not active users) and total groups at the sample instance.  In 

graph 5.21, all four cache size experiments for 20 users are plotted in the same trace, 

since this produces an efficiency plot ranging from 0 through 100% and also shows that 

the individual plots agree well with one another.  Only the 20-user experiment is given 

here, since the traces of all user populations give approximately the same shape. 

Graph 5.21 confirms the relationship efft = 1 –  (1  meanGroupSize) where 0  efft  < 

1, which is a straight line from 0% reuse for 1 user per group, to 100% reuse at  users (y 

= 0).  In fact, none of the experimental traces follow this ‘ideal’ profile, but take the same 

essential path as graph 5.21.  This suggests that, on average, below around 70% reuse, the 

cache is getting worse reuse than the ideal model.  However, it does better at over 70%.  

For example, with an average group size of 2 (y = 0.5), reuse should be 50%.  For the 

prototype, reuse ranges from 10 to 50%. 

Graph 5.21: Temporal Reuse against 1 / Mean Group Size (20 users contour plot) 

 

The above phenomenon can be explained through prefetch and use of residual cache 

data.  Prefetch for the MPEG clips used here is roughly constant, regardless of the cache 
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size.  Hence, for smaller cache sizes, relatively less cache space is available for interval 

caching, so reuse is less likely.  For large cache sizes, the relative portion of cache space 

used for prefetch is much less compared to that available for interval caching.  

Furthermore, the larger the number of groups, the more prefetch is required; the denser 

and fewer the groups, the less the requirement for prefetch.  The higher cost of prefetch 

for smaller cache sizes is therefore compounded by the lower grouping efficiency. 

Residual data in the cache can result in better than expected performance, since an 

attempt to use data that is not predicted to be reused in fact makes a reuse hit on the 

cache.  This phenomenon is more likely when grouping density is high, since residual 

data then becomes available; the sum of the intervals is less than the size of the cache. 

The above is clearer when examining the four cache size traces separately, as shown 

in graph 5.22.  The reader will note that the 90Mbyte trace on average falls above the 

‘ideal’, whereas the lowest cache size mostly falls below it.  As remarked above, the 

relative cost of precache is higher for a smaller cache size.  In addition, large cache sizes 

have greater potential for residual data caching. 

Graph 5.22: Temporal Reuse against 1 / Mean Group Size (20 users 2-D plot) 

 

5.3.8 Internal Latency to Frame Transmission 

The overdue time, or latency, reported by the server is a cumulative counter since the start 

of monitoring the experiment.  In a similar approach to the calculation of the success to 

failure ratio, only the most recent 10 samples of latency are considered when deriving the 

internal latency.  Each stream has a separate latency counter such that different stream 

handler processes might be compared, though the facility is not employed here; only the 
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sum of latencies for each sample are used.  The latency samples 10 periods ago are 

subtracted from the most recent figures, and divided by the number of cache successes 

over that sample period.  The latency is divided among the cache successes over the same 

period, since only each successful transmission has its latency added to the total for that 

stream. 

Graph 5.23: Server Transmission Latency with time 

(15 users) 

Graph 5.24: Server Transmission Latency with time 

(25 users) 

 

In chapter 2, the importance of a constant and very low frame transmission-delay was 

covered.  Failure to keep a constant time between frames results in a jitter within the 

client display.  For the prototype server, if the transmission latency were too high, then 

the consequent control lag would be irritating to the user.  Similarly, if that latency 

response is highly variable, it may produce jitter.  Additionally, a scaling up of the 

number of users active on the system must not produce significant additional latency or 

greater latency deviation. 

Accurate timing across two or more TRAM systems is not possible, because each has 

a different clock.  Thus, the latency measured in these graphs covers only the time 

between when a stream handler process wakes in order to transmit, to the time the 

transmission block descriptors leave for the ATM TRAM.  That is, only variations within 

the management TRAM are measured.  However, the ATM TRAM will generally provide 

uniform transmit response times unless the interface is becoming overloaded.  In this 

case, the buffer pipeline will back up, and hence an additional delay equal to the time it 

takes to reach the head of the pipeline is incurred.  However, this delay may or may not 

occur regardless of the underlying file system, cache control and stream management.  

Thus, the effects of the stream management and stream optimised caching alone may 

legitimately be measured in order to examine the effects of scaling this approach to the 

delivery of continuous media. 

In any operational situation where cache space is at a premium, frequent group 

reassessments are needed in order to achieve the maximum benefit of the available 

memory.  In such cases, the response latency can be affected because the amount of free 

CPU time available for processing transmission requests is reduced.  Consequently, 
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transmit latency is generally lower for larger cache sizes where reassessment is not 

needed as frequently.  However, where poor success ratio occurs, no frame transmit 

request is made, and therefore no additional latency from such failures can be recorded.  

Hence, those user-set experiments that experience poor success ratios do not appear to 

suffer from greater transmission latency.  Furthermore, any comparison between cache 

sizes is not meaningful where their cache success ratios differ.  Nonetheless, latency is 

seen to be around 400s for all traces, and hence does not cause any significant problems 

with either control lag or playback jitter.  Indeed, the time taken to move the data from the 

cache into the network interface TRAM and transmit all the parts is significantly greater 

than this, at around 2ms per 4Kbyte block.  All of the user-set traces are very similar, 

hence only the 15 and 25 user sets are shown in graphs 5.23 and 5.24, respectively. 

The spread of the latencies in the experiment was examined by repeating the 

experiment with much shorter sample interval times.  The 20-user experiment was 

repeated for the largest cache size with 1 second, 500ms and 100ms sample intervals.  

The 100ms and 1 second experiments are shown in figures 5.25 and 5.26, respectively.  

The graphs of all three intervals show very similar traces, with a general worst case 

latency of 2ms.  The different sample intervals therefore suggest that the spread of 

latencies over the experiment samples is not large, and that the maximum worst case 

latency is no more than 4ms.  The increase in the sampling rate will produce additional 

server loading that will itself affect the transmission latency of the server.  However, the 

sampling intervals used here should not have a very significant effect on latency. 

Graph 5.25: Server Transmission Latency with time 

using 100ms sample interval  (20 users) 

Graph 5.26: Server Transmission Latency with time 

using 1 second sample interval (20 users) 

 

With respect to the buffering on the ATM TRAM, a worst case jitter arises where all 

active streams but one stop.  The remaining stream would suffer a jitter equal to the 

length of the suddenly empty buffers; the next frame after the stops arrives early at the 

target relative to the previous frame.  Similarly, if one stream is active and many streams 

suddenly all begin simultaneously, then buffers can fill rapidly and the next frame of the 

original stream arrives late at the target.  The prototype’s buffering takes at most 50ms to 

Title:

20.delay.eps

Creator:

gnuplot 3.5 (pre 3.6) patchlevel beta 340

Preview :

This EPS picture w as not saved

w ith a prev iew  included in it.

Comment:

This EPS picture w ill print to a

Pos tScript printer, but not to

other types  of printers.

Title:

Creator:

gnuplot

Preview :

This EPS picture w as not saved

w ith a prev iew  included in it.

Comment:

This EPS picture w ill print to a

Pos tScript printer, but not to

other types  of printers.



CHAPTER 5 

 

123 

empty in the worst case from 100% full.  In either case, the single stream considered in 

the examples suffers at most 50ms worst-case jitter.  In general, however, the delay 

imposed by the length of ATM buffering would rise and fall gradually, thus not adding 

significantly to transmission jitter.  Regardless, the 4ms worst case jitter caused by the 

manager TRAM in submitting transmissions does not add significantly to the worst case 

jitter caused by the ATM board’s buffering.  In any case, this buffering delay is an 

artefact caused by the CPU limitation on the ATM board; a faster implementation of this 

device would not suffer the buffer back-up phenomenon.  Such an implementation would 

therefore not be a source of potentially significant jitter. 

It is clear from the 10 second interval graphs that the latency on the manager TRAM 

does increase with a larger number of active users, reaching a maximum of 1ms whilst 

overloaded with either 20 or 25 users.  Given however, the lack-lustre performance of the 

T805 30MHz Transputer as compared to today’s CPUs, the very low latency response of 

the prototype should be maintainable for a far greater number of users.  Considering that 

each client display must be buffering received frames by at least one frame, a deviation in 

the order of a few milliseconds can be tolerated without introducing jitter into the output.  

Thus, these experiments suggest that the prototype meets the requirement of low latency 

frame transmission with very low timing deviation. 

5.3.9 Amount of Data Transferred from Disk 

The amount of data transferred for each point in these graphs is the difference between 

the current and previous server samples at that point, since the server reported values are 

cumulative totals. 

The purpose of streams caching is to reduce the I/O demands on the file system and 

consequently enable a larger number of users to be supported.  This section and the next 

two sections therefore look at the efficiency of the prototype’s file system. 

Examination of the effective disk transfer-rate graphs reveals the maximum transfer 

rate for the disks used within the prototype.  Most of the graphs show distinct maxima of 

approximately 15Mbytes/sample, for example in graph 5.28.  Given that each sample 

represents 10 seconds of activity, this represents an average sustainable transfer rate of 

1.5Mbytes/s.  The prototype’s disks’ maximum sustainable transfer rate is 2.2Mbytes/s 

under best case conditions.  Thus, the actual raw transfer rate achieved by the file system 

with its First Come First Served servicing order is reasonably efficient. 

For the five-user set traces, the disks are not saturated by any cache size and therefore 

excellent server performance is achieved.  In this case, even where cache reuse cannot 

occur between the users, the combination of disk bandwidth and play-out buffer can 

satisfy all active users.  For the 10 users of graph 5.27 however, the smallest cache size 

can be seen to saturate the file system during the peak of user activity.  This peak 

corresponds precisely with a drop in cache success to failure ratio and frame rate for the 
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11Mbyte 10 user-set graph traces.  Taking the maximum disk throughput as 1.5Mbytes/s 

with 1.4Mb/s (0.175Mbytes/s) streams, at most eight users could be satisfied with play-

out buffers alone. 

Graph 5.27: Relative Disk Data Transfer over time 

(10 users) 

Graph 5.28: Relative Disk Data Transfer over time 

(20 users) 

 

For smaller cache sizes with large numbers of users, the file system is 100% busy for 

almost all sample intervals.  In these cases, the disk cache is failing to satisfy a majority 

of transmit requests and consequently is placing a heavy load on the file system.  Notice 

however, for the largest cache size that the level of disk I/O is almost consistently below 

the point of saturation.  This suggests, in this data set, that the cache is being efficient at 

satisfying data transmit requests.  Comparison with the corresponding reuse efficiency 

graph confirms this to be the case. 

Were the transfer rate ceiling not enough, faster disks could be installed, which would 

allow a greater amount of data to be routed into the cache per unit time.  This would also 

enable more than 20 users to be supported, which in these emulations, appears to be the 

maximum number of users that could be supported; the 25 user trace does show periods 

of saturation of the file system interface. 

5.3.10 Time Used in Waiting for Disk Transfer 

Similarly to the amount of bytes transferred from the file system, the time spent in disk 

transfer is the difference between the two most recent server samples at that point. 

The time spent in disk I/O transfer shows a similar tale to those of the amounts of 

data transferred.  Again, an obvious ceiling of almost 10 seconds can be seen, which 

corresponds with the sample interval time.  Those emulation traces that follow this ceiling 

over a series of samples are saturating the file system with I/O requests, namely those that 

have too many users for too little cache space.  The ceiling therefore corresponds with a 

100% disk busy time. 

As before, the five-user traces are all consistently below the 10 second ceiling and 

never saturate the file system with transfer requests.  Similarly, the 10-user trace of graph 

5.29 shows some saturation for the smallest cache size.  Examining the 20-user set largest 
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cache trace in graph 5.30 however, a period of I/O saturation which is after the peak of 

user I/O activity is visible.  This is most likely due to the divergence of the streams and 

therefore an increased number of stream groups.  This will inevitably cause higher disk 

activity, as the cache will not be as efficient under these divergent conditions.  Indeed, 

graph 5.19 shows temporal caching efficiency to be poorest over this period of I/O 

saturation.  For 25 users, a similar pattern emerges, though the file system is saturated in 

the build up to the busiest part of the emulation.  However, the largest cache size trace is 

not permanently saturating the file system with I/O.  The graphs would suggest that the 

larger the cache size the less time is spent in disk I/O for that cache size.  This is to be 

expected, since a larger cache size will produce, and is shown to produce, a better cache 

success to failure ratio and therefore a reduced requirement of the physical disk. 

Graph 5.29: Relative Disk Access Time over time 

(10 users) 

Graph 5.30: Relative Disk Access Time over time 

(20 users) 

 

A comparison between the amount of data transferred per sample and time spent in 

I/O per sample for each user-set trace shows a remarkable resemblance in shape.  This 

relationship is not surprising however, since the amount of time spent in I/O will be 

directly proportional to the amount transferred.  The traces for the largest cache size of 

even 20 users is also remarkable however, when one considers that 20 1.4Mbps streams is 

a total of 3.5Mbytes/s – this is far beyond the capability of the raw disks.  Hence, for this 

large number of users, the larger cache size does appear to enable excellent performance 

in the provision of the continuous media. 

It is interesting to note that the cache efficiency graphs follow a trace that is almost 

the exact inverse of the disk-time used graphs.  For lower cache sizes, the data access 

traces tend to saturate, thus not following this observation.  This behaviour confirms that 

the demand for data that the cache cannot meet must be met by the file system. 

5.3.11 Number of Disk Hits 

The number of hits on the file system, similarly to the time spent in and amount of bytes 

transferred in I/O, is the difference between the two most recent samples.  Each hit on the 

file system however, is a single prefetch request that needs to access the file system.  
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Such a request may be split into several shorter disk transfers where the cache already 

contained some of the data over the requested interval.  In this case, the number of hits to 

the disk is still counted as one for this experiment. 

Generally, the number of disk hits rises and falls with the number of stream groups, 

such as in graph 5.31.  However, for the large user-sets of smaller cache sizes, such as in 

graph 5.32, the number of transfers reaches a ceiling, which is around 80 accesses per 

sample, or 8 per second.  The larger cache sizes are likely to have fewer disk accesses, 

since the prefetch requests of the streams will be more frequently satisfied by the cache.  

In particular, the resemblance of the disk hits traces with the number of groups traces 

should be expected, and suggests that the cache algorithm is successfully reducing the 

disk requirements to the leading stream of each group.  Each disk hits trace does not 

match up with the corresponding groups trace where the disk is saturated with requests.  

In this case, the disk hits trace follows the graph ceiling until the number of groups drops 

sufficiently.  The threshold at which this occurs is eight groups for the largest cache size.  

For the smaller cache sizes, the threshold is much lower and suggests that the disk is 

being consumed by streams that are not group leaders.  This itself suggests that the cache 

is not large enough for stable state conditions to arise within the prototype’s cache; this 

would cause following streams to access the disk and break the relationship between the 

number of groups and number of hits to the disk.  This hypothesis is supported by the 

temporal efficiency graphs, which all indicate significantly lower cache performance 

under such conditions. 

The ceiling of around eight accesses per second should correspond with the maximum 

transfer rate of 1.5Mbytes/s.  In fact, dividing the amount of data transferred by the 

number of disk hits for any sample gives 0.175Mbytes/s (1.4Mbps), or less.  That is, the 

average amount of data transferred per request.  Where the cache is not of any benefit, 

each stream will access the disk and will require a full 1.4Mbps bandwidth.  Taking the 

1.5Mbytes/s maximum disk throughput, this would allow 8 streams per second, or 80 1 

second prefetches over the sample period of the experiments.  This is indeed the ceiling 

observed, e.g. figure 5.32 at 800 seconds.  Where the trace goes above this ceiling, the 

size of the disk transfers is smaller than at the ceiling, thus allowing more of them. 

Each stream handler makes two prefetch calls per second.  The amount of data 

fetched from the disk will generally be half a second ahead.  Thus, one would expect two 

accesses per stream per second.  However, where the disk is having to service more users 

than it has bandwidth for, the service time for each stream will cause its play-out buffer to 

empty.  In this case, each prefetch serviced will be the full 1 second amount because the 

earlier prefetch was not serviced. This explains why only 8 prefetches are serviced at the 

‘ceiling’ of the graph.  For all traces reaching this ceiling however, it is first breached, and 

the trace settles back down at the ceiling.  This crossover effect is happening as more of 



CHAPTER 5 

 

127 

the active streams are running out of play-out buffer before the disk next services their 

prefetch requests.  That is, as more of the streams request a full second of prefetch instead 

of half a second.  Under such conditions, the frame rate of the client streams is likely to 

be 25 for part of the time, and zero for the remainder. 

Graph 5.31: Relative Disk Hits over time (10 users) Graph 5.32: Relative Disk Hits over time (20 users) 

 

When the cache is not providing any benefit from re-use, or the file system is 

otherwise becoming overloaded, the cache space may better be put to use by increasing 

the amount of prefetch per stream.  By increasing the size of the transfers, file system 

overheads would be reduced and the effective transfer rate improved towards the 

maximum rate of the disks.  The approach would however, tie the monitoring activity to 

the prefetch mechanism as a trigger, which is not presently possible.  However, these 

results do suggest that a cache reactive to monitoring output could improve the server 

performance under overloaded file system conditions. 

5.4 Discussion of Experiments 

5.4.1 Relationship Between Cache Performance and Disk Performance 

When comparing the file system graphs to cache success ratio and effective frame rate, 

there is a clear correspondence between frame dropout and saturated disk I/O.  During 

such periods, the number of requests serviced by the file system tends to exactly that 

number of 1-second prefetches of which it is capable.  This indicates that a gap in some of 

the play-out buffers has appeared, possibly following a connection to an uncached clip, or 

a reposition to an uncached area of a clip.  Otherwise, it is because the file system does 

not have enough bandwidth for the number of users it is trying to support; stable state 

conditions cannot be reached within the assigned groups.  Where the cache size is not 

large enough for the number of active users, a less significant reuse is possible.  

Consequently, the cache fails regularly and more frequently saturates the file system. 

For the 20-user largest cache trace, an area of increasing disk activity and worsening 

cache performance can be seen, despite a dropping number of active users.  Examination 
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of the group trace reveals however, that the number of groups during the user peak is 

relatively low, and for a period thereafter that the group numbers increase with a dropping 

user population.  This behaviour underlines the direct relationship between the number of 

groups and the consequent cache reuse efficiency and amount of disk activity.  Indeed, 

after the 1400 second peak, the group numbers decrease and the disk activity drops below 

the point of saturation.  The grouping technique is therefore shown to be a successful 

approach in satisfying data requests that would otherwise fall to the file system.  A major 

finding of these experiments is that the disk activity follows the number of groups that 

can be formed, not the number of users.  Hence, the fewer the number of groups that can 

be formed, the smaller the disk bandwidth requirements and the greater the cache 

efficiency. 

As noted above, the number of groups will not necessarily be directly proportional to 

the number of users.  The emulations have divergent user behaviour; group numbers are 

low initially, even despite a high number of active users.  However, later divergence 

causes an increase in the group numbers.  This in turn has a knock-on effect on the file 

system, as each group’s leader will be making continuous requests on the file system; this 

was demonstrated by the disk performance traces.  In practice, the similarity between 

users is, perhaps, likely to be considerable and less divergent than the emulations, since 

users tend to affect one another during the progress of a learning activity. 

The cache success to failure ratio was seen to diminish where the file system was 

unable to satisfy the transfer requests made of it.  Clearly, a less than 100% cache success 

rate for data transmissions will have a direct effect on outgoing frame rate.  A direct 

relationship between saturated disk I/O and cache failure was demonstrated. 

5.4.2 Prefetch and Cache Efficiency 

For the largest cache sizes, the data prefetch mechanism was found satisfactory to 

produce good cache reuse efficiency.  However, this somewhat simplistic scheduler 

proved ill effective for the smallest cache size experiments.  This suggests a need for a 

more reactive scheduler to minimise prefetch costs in terms of cache space.  The 

experiments show that good cache efficiency leads to a better cache success-rate 

generally.  Hence, it is better to sacrifice disk I/O throughput in order to improve caching 

efficiency provided that no stream is starved during the scheduler cycle.  In reducing 

prefetch spatial requirements, more space is available for interval (or residual) caching 

and thus the potential for reuse is increased. 

The present disk scheduler attempts to maintain a second of data in prefetch for each 

stream by requesting a second of data ahead of the stream for each half second used.  

Thus, only half a second of data is fetched from the disk; under ideal conditions, all 

streams have at least half a second in prefetch present in the cache at all times.  As the 

server becomes busier, the amount of prefetch remaining when a stream is serviced is 
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diminished towards system overload, where it is exhausted prior to servicing.  Since the 

scheduler attempts to maintain a full second of prefetch for each stream, the less prefetch 

remaining at the instance of servicing, the more data is fetched from the disk.  The use of 

a fixed large prefetch for each stream is a poor approach, as less cache space is then 

available for interval caching, which itself has a direct impact on cache efficiency.  In 

addition, the usage efficiency of a large play-out buffer beyond the optimum for disk 

scheduling is worse the larger the buffer. 

Aside from the prefetch issue, the experiments showed that a non-saturated cache, 

that is, a cache that can satisfy all intervals, achieves better than expected performance 

according to the observed rule efft = 1 – (1  meanGroupSize).  This latter rule can be 

used as an effectiveness measure for an implementation of stream caching, and indicates 

that the performance could be markedly improved for smaller cache sizes.  Better than 

expected performance is enabled through the unpredicted reuse of residual cache data. 

5.4.3 Use of Monitoring Feedback for Disk Scheduling 

In the results of the disk hits section, it was suggested that the output of monitoring could 

be tied to the policy used by the prefetch mechanism.  Where a poor cache success ratio is 

detected, together with a heavy file system loading and emptying play-out buffers, the 

prefetch of each stream could be lengthened to improve the effective data throughput into 

the cache towards the theoretical maximum.  The present process responsibilities in the 

prototype however, would need substantial rearrangement to enable such a strategy. 

The current scheduler does increase the amount of prefetch per stream as the server 

becomes busier, though this behaviour is incidental and not intentional in the original 

design.  Consequently, the scheduler is not sensitive to how much prefetch each stream 

has or will have remaining in prefetch at the point of servicing.  However, it does suggest 

that the strategy of increasing the amount of prefetch per stream may succeed.  This 

observation is important since the strategy carries with it a risk.  Namely, using more 

space for prefetch leads to less space for interval caching, which can lead to more demand 

on the disks, which can lead to greater prefetch requirements, and so on.  Such a “run 

away” effect is clearly to be avoided, though it is difficult to predict if this would occur in 

practice without attempting to implement such a strategy. 

The current scheduler fetches a maximum of one second ahead for each stream, 

which for MPEG-1 without audio, is approximately 170Kbytes each fetch.  To achieve 

the maximum throughput rate of the disks, this unit fetch size is not enough.  According 

to the ceiling observed in the data transferred graphs, the prototype’s 2.2Mbyte/s disks 

achieved only 1.5Mbytes/s in practice – 256Kbytes per fetch or greater is required.  In 

increasing the transfer rate into the cache, stable state conditions within the groups might 

be restored.  Once achieved, prefetch may then be reduced and more space made 

available for interval caching.  For a small cache, it is more difficult to effectively utilise 
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stream caching.  In this case, it is perhaps better to sacrifice more cache space for prefetch 

in order to increase disk throughput and devolve the disk scheduler to a standard 

continuous media scheduler without cache reuse.   

Regardless, using the monitor output could improve server performance as the size of 

prefetch could then be appropriately minimised for the prevailing conditions, thus giving 

the maximum amount of cache space for interval caching. 

5.4.4 Achieving Maximisation of Group-Size 

In the results traces, a good average group-size could only be achieved where there were a 

large number of users in an experiment.  This proves, at least for these experiments, that a 

reasonable user population is required before stream optimised caching becomes an 

efficient technique by which to provide continuous media.  It was also found that for very 

few users, less significant reuse took place.  However, the cache effectiveness for few 

users is dependent upon the similarity of accesses between those users, and on the 

behaviour of those users.  For example, for a cache under light load, and users that are 

frequently backtracking and reviewing different clips from each other, the cache will 

return better success to failure ratio.  In this scenario, the lightly loaded cache could 

maintain data not predicted for reuse (residual data), which would be reused by the 

reviewing users.  This phenomenon was demonstrated in the traces for cache efficiency 

against mean group size. 

5.4.5 Maximum Server Transmission Rate 

The maximum outgoing transmission rate of the prototype was reached with the 25-user 

set traces, the rate being ‘clipped’ to the maximum of the CPU-bound ATM board.  

However, the disk performance into the cache does suggest that the system might support 

more than 20 users, though perhaps only with faster disks.  The present disks are 2100-

rpm with a maximum sustained transfer rate of 2.2Mbytes/s.  The prototype’s file system 

and transfer mechanisms achieved a maximum of 68% disk efficiency.  The experiments 

suggest that the prototype is able to support at least five users without any significant 

reuse or data cache.  However, the aggregate bandwidth of this few users is within the 

achieved performance of the file system.  This is not true of 10 or more users, where the 

performance of the over all system is dependent upon the success of the cache. 

5.4.6 Frame Timing and Average Transmission Latency 

The frame transmission and control latency of the server was found to be very low at 

around 400s, with little deviation.  Peaks of 1ms latency during points of frequent group 

reassessment were found with the 10 second sample interval experiments.  Further 

investigation suggested an upper bound on transmit latency of around 4ms.  Given 

however, that the server generates each transmission time from the manager TRAM’s 

clock relative to the clip’s calculated first frame time, only a slight deviation in 
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transmission timing will be experienced; no drifting of the inter-frame time will occur.  

That is, the server transmit timing will not slowly drift out of phase with the ideal frame 

transmit times, although a per-frame deviation from this ideal may occur.  For example, a 

25fps MPEG clip should transmit its frames at times, relative to the first frame, that are 

divisible by 40ms.  However, if the server drifted out-of-phase with this ideal event 

timeline, the decoder buffers would either underflow or overflow.  Given further that a 

client end-system will buffer at least a single frame (usually 33 or 40 ms), the latency to 

transmission (including the delay to the data leaving the server) are sufficiently low so as 

not to produce jitter.  Additionally, the number of users on the server does not 

significantly affect the transmit latency, except where the ATM adapter becomes highly 

overloaded.  

5.4.7 Conclusion 

At the outset of the project to build the prototype server, a target of 20 users was aimed 

for in the provision of 1.5Mbps continuous media.  The figure of 1.5Mbps was derived 

from the width of ‘text book’ MPEG streams, though in fact the media files used within 

the experiments had no audio track.  Consequently, the clips used were 1.4Mbps.  

However, this has proved important in the experiments, with the targeted population of 20 

users lightly touching on the ATM interface limitation of 28Mbps.  This, of course, 

corresponds to the total aggregate bandwidth of 20 1.4Mbps streams.  In conclusion then, 

the original aims of the SERVICE project have been reached.  Further considering that 

the theoretical maximum transfer rate of the raw disks is around 18Mbps, reaching an 

outgoing bandwidth of 28Mbps gives another indicator of the success of stream optimised 

caching. 

5.5 Deployment of SERVICE – success of implementation 

As noted in section 5.1, the prototype server was used by the CIMIS project to provide 

real-time interactive video for a tourist information system.  On two occasions, the CIMIS 

prototype was deployed for five working days in Royal Victoria Place Shopping Centre, 

Tunbridge Wells, in Kent.  System reliability was of utmost importance and much effort 

was expended in ensuring that the video server was bug free and gave the necessary 

stability.  In practice, the video server failed exactly once during the two trials.  The 

author strongly believes that the system is now highly reliable with the last reliability 

problems having now been resolved.  It is furthermore very likely that the prototype video 

server will be employed within future projects at the University of Kent involving 

continuous media data-types.  Modifications and additions to the server itself are also 

possible, though the reader is referred to chapter 6, which discusses the possible future for 

the server and its underlying technology.  In terms of results as considered in this chapter 
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however, the usage of the prototype has been as more than only for taking experimental 

measurements, and is robust and very reliable. 

A discovery of the CIMIS project trials was that users do not expect an immediate 

response from a VCR control request.  It was found that a delay of between one and two 

seconds was tolerable.  In this case, the delay was caused by a large pipeline within the 

PC end system MPEG hardware.  However, this delay to response may be put to use 

within the server to further optimise stream grouping organisation.  Further discussion of 

this phenomenon can be found in chapter 6. 

One of the first student projects in the department to use the video server was the 

multimedia ropes player of John Salter [JS97].  The ropes editor allows segments of 

various media clips to be embedded into the logical timeline of the rope.  An example 

rope is given in figure 5.1, where the rope contains two clips each of video and audio.  A 

user playing such a rope views the rope as a single multimedia clip, the playback 

application handling the interfacing to the underlying media server. 

Figure 5.1: Example of a multimedia rope with two video and two audio clips 

embedded into the logical timeline of the rope 

 

The ropes project was the first application to play audio clips from the prototype 

server simultaneously with video into the same client PC.  Salter’s analysis of the PC 

client display suggested acceptable performance, though suffered the same MPEG 

hardware/driver decode delays as the CIMIS project.  Nevertheless, the prototype server 

was a necessary part in the success of this ‘client’ project.  Other student projects are 

known to be ongoing and others under consideration within the Distributed Systems 

research group. 

Salter’s project required the construction of a CORBA protocol proxy with the server, 

as the PC was using COBRA as part of the ropes project.  The CORBA proxy enabled the 

PC to communicate with the server; PCs do not support Sun Microsystems’ RPC 

protocol.  The COBRA proxy was ported by Salter from a previous proxy by Ian 

Buckner, which used the ANSAware communications library.  Buckner’s ANSA proxy 

was the first to enable the use of the prototype server within a distributed system. 

Practical experience with the server within CIMIS and with other Motion JPEG and 

uncompressed video clients suggests that there is no discernible control lag to the user.  

That is, for example, that the client display changes immediately after a user reposition 
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Video 1
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and even despite an intermediate protocol proxy.  Additionally, the viewed material does 

not suffer from jitter or dropout.  This supports the conclusion that server latency is both 

consistent and low.  At the time of writing, the largest real-user system loading has been 

two motion JPEG clients (8Mbps per stream) and one MPEG client.  System response 

remains crisp under these conditions. 

Observed output quality during execution of the experiments reinforces the above 

conclusion.  During the largest cache size, 20 users experiment, the observed output was 

as when only one user was using the server.  However, as predicted by the experiments in 

this chapter, once the server begins to breakdown, the output of the streams is periodical.  

That is, for each one second of video played, a one second ‘gap’ follows it.  This was 

explained as an artefact of the disk scheduling policy. 

As noted above, the server has successfully been used with varying media formats: 

motion JPEG, 256-greyscale raw video, 256-colour palette raw video, RIFF (wav) audio, 

and MPEG.  This proves the success of the format-neutral container-format designed for 

the video server. 

5.6 Summary 

The chapter began with a description of how user emulation can be performed by a 

pattern generator, and how its output can be altered.   It then described the scientific 

approach to how the stream optimised caching architecture was assessed.  The details of 

how data was recorded during the experiments and how this data relates to the graphs 

presented were covered.  Several configurations of user loading and cache size were used. 

The results of the experiments were presented with a discussion of each aspect of the 

data taken.  This concluded with a discussion of all those aspects, which was able to 

consider the system as a whole.  The stream optimised caching technique was found to be 

a valuable approach to the provision of continuous media.  In particular, it was shown that 

the throughput demands of the file system are directly proportional to the number of 

stream groups that can be formed.  Additionally, it was shown that stream optimised 

caching efficiency follows the rule efft = 1 – (1  meanGroupSize).  It was suggested that 

the performance of the caching could be improved by minimising prefetch spatial cost 

under normal conditions and using the monitoring output to determine the data prefetch 

policy.  The effectiveness of streams caching was found better for larger numbers of 

users. Transmission latency was found to be low with little spread, a conclusion that is 

supported by the observed jitter-free output.  Server performance was found to be 

restricted by hardware limitations, however the goals of the SERVICE development 

project were reached. 

The chapter ended with a justification of why the prototype server is more than a 

simple experimentation box, with a brief discussion of other areas of work in which the 

server has been involved. 
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6. Future Directions for Research and Development 

“Nothing endures but change”                     — Proverb 

 

With a limited project lifetime, only the most basic of system implementations has been 

achieved.  Nonetheless, the ideas behind stream caching have, it is hoped, been proved 

both correct and appropriate for the intended environment.  There is however, still much 

potential to be tapped from the prototype itself and the ideas on which it is based.  This 

chapter considers these many areas of potential, first by exploring aspects of the 

prototype, and later by discussing options for server implementation using alternative 

technologies and system architectures. 

6.1 Improving the Prototype Server 

As it stands, the existing prototype server does allow for further experimentation with 

different caching algorithms, and has the advantage of the already existing telemetry and 

processing tools for analysis.  However, the prototype server does have some physical 

limitations, most notably the 28Mbps bottleneck onto the ATM network; the cache was 

seen in the results to saturate the current ATM hardware.  The first half of this chapter 

discusses the many possible optimisations to the prototype’s software and hardware 

components. 

6.1.1 The ATM Network Interface TRAM 

Perhaps the most necessary and notable area for improvement in the prototype is the 

ATM network interface.  By improving the other components in the system, although the 

quality of service provided would be improved, the maximum number of users that the 

server could support would be unchanged.  Hence, the discussion for improvements 

begins here. 

6.1.1.1 Reasons for CPU Limitation 

The prototype’s link transfer engine is responsible for data transfers from the SCSI to 

cache TRAMs, cache to ATM TRAM, and vice versa.  It was optimised early on in the 

project to check that the necessary aggregate bandwidth could be achieved.  For the ATM 

interface however, in addition to the simultaneous link transfers, the CPU is responsible 

for the PDU segmentation into cells and cell set-up.  A consequence of this arrangement 

is that data transmission soon becomes CPU bound.  An analysis of the ATM TRAM 

revealed that the MOVE2D segmentation and reassembly instructions were simply taking 

too long.  An optimisation of the process models, their data exchanges and some 

algorithms found more CPU time and hence allowed more cells to be formatted for 
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transmission.  The segmentation itself however, could not be optimised beyond the single 

MOVE2D instruction.  Thus, despite the achieved parallel link transfer rate of over 

40Mbps, CPU overheads within the ATM TRAM prevented this transfer rate being 

achieved in practice.  In hindsight, the TRAM needed DMA segmentation/reassembly 

hardware assists to relieve the CPU of the task, and allow it to do other useful work. 

6.1.1.2 Eliminating the Segmentation/Reassembly CPU Overhead 

A possible alternative method to improve the ATM hardware’s throughput without 

modification to the board may be to redesign the Xilinx firmware.  The existing firmware 

co-locates the cell header with the data to be transmitted.  However, if the cell headers 

could be specified separately from the data then segmentation/reassembly by the host 

CPU would then no longer be necessary. 

One implementation may be to utilise an additional register for each of the transmit 

and receive Xilinx chips; the register specifies the location of a cell header data array.  In 

the transmitter’s case, the firmware would then take the cell headers from the register 

specified location; the receiver transfers received data headers into the specified location.  

As with the current implementation, transmit and receive would be initiated by reading 

from the shadow memory location.  In this case, the shadow address read would 

correspond with the location of the actual data, not the cell header/data pair.  Such an 

implementation therefore replaces the MOVE2D instruction with a write into the cell-

header address register, these operations being per cell and per page (1024 bytes) 

respectively, regardless of the transfer direction.  However, by eliminating the memory 

copy operation the performance of the board should be significantly improved.  The 

interaction with the cell header address register may be minimised if the firmware auto-

incremented the address register for each cell transferred, thus reducing interaction to the 

‘wrap’ of the cell header memory array. 

The current firmware implementation is capable of the full 100Mbps of the ATM 

hardware.  However, the four hardware links of the Transputer are each capable of at 

most 14Mbps, giving a maximum server transmit rate of 56Mbps.  Thus, it would be 

acceptable if the reorganisation of the firmware reduced the maximum performance of the 

raw interface by up to half, since then the server as a whole would still be faster than the 

existing prototype.  Such a loss of efficiency might result from using separate data arrays 

for the cell headers and cell data. 

The current firmware implementation achieves the maximum board performance by 

reading or writing 1Kbyte pages from the Video-RAM, that is, 16 cell-header/cell-data 

pairs.  With separate arrays, the number of cells in one page is 21, giving a maximum 

transfer size of 1008 Bytes, with a residual 16 Bytes forming the start of the next cell’s 

data and the base of the next page.  In this case then, VRAM performance should not be 

significantly impacted with the transfer size being 1008 Bytes instead of the full 1K page.  
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However, for each 21 cell-data elements transferred, 21 cell-headers are also needed, 

which is a transfer size of only 336 Bytes.  In this case, VRAM performance would be 

only a third of the current firmware implementation.  Nonetheless, considering both cell-

data and cell-headers, memory throughput performance would be 65% of the current 

firmware implementation.  Hence, the necessary 50Mbps throughput from the interface 

should be maintainable. 

One solution to maintain the maximum VRAM throughput performance may be to 

allow 63 cell-headers to be transferred ahead of each three 21 cell-data elements.  

However, this is only possible if sufficient buffer memory exists within the physical ATM 

hardware and firmware.  Furthermore, this approach requires that at least 63 cells be 

queued for transmit or receive.  However, this prerequisite is reasonable from a practical 

standpoint, though only in the transmitter case.  For the receiver side, data receipt per cell 

must be possible, so the existing solution is perhaps optimal here.  However, an 

asymmetrical solution to transmit/receive is not ruled out. 

A second implementation may be to partially interleave the cell header and cell data.  

That is, for each 1Kbyte page, there are 16 cell headers and 16 48-Byte data pairs.  

However, the header/data pairs are not interleaved; the 16 headers are contiguous in 

memory and are followed by 768 Bytes of contiguous data corresponding to those 

headers.  Thus, in this arrangement, the VRAM performance is maintained and therefore 

the full 100Mbps adapter throughput. 

To avoid the MOVE2D instruction requires that the data to transfer place 768 Bytes 

of data in each 1024 Byte block.  This may be achieved by modifying the link transfer 

engine to transfer in 768 Byte maximum units instead of the current 4096.  The link 

transfer size will therefore vary from 16 to 768 Bytes because of cache block 

misalignment, which will increase CPU scheduler overheads.  However, the technique 

should be faster than the current implementation with MOVE2D – the prototype already 

has such an ‘auto-segmentation’ link-engine placing each 48 bytes of link data into a 64-

byte block.  The approach was no faster than using 4096 Byte transfers together with the 

MOVE2D instruction, and was consequently disabled in the code.  Therefore, in using a 

larger link transfer size, i.e. 16 to 768 Bytes, overall server performance should be 

increased.  Modification of the existing auto-segmenting link-transfer-engine to transfer 

the data into 768 Byte sized 1K aligned blocks should be trivial and would provide a good 

indicator for expected performance from this scheme. 

In the worst case, were the approach not faster than the current prototype 

implementation, the MOVE2D instruction could be reinstated.  In this case, the 

segmentation would be to 768 Bytes per 1K page, instead of the current 48 per 64 Bytes.  

However, this may itself improve server performance because of increased memory 

throughput from the MOVE2D instruction itself, which is dependent upon the per-line 
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memory-copy size.  In fact, a normal MOVE becomes necessary where less than 768 

Bytes need to be segmented or reassembled. 

One of the original aims of the ATM board design was to allow the interleaving of 

several outgoing VCI transmissions and allow traffic shaping within the individual cell 

streams.  For the designs outlined above, this is not easily achievable, with the original 

design intending to use MOVE2D in order to achieve the outgoing interleave.  In practice, 

VCI-interleaving was never implemented and would likely have resulted in poor 

aggregate performance.  The performance of any scheme is dependent upon maintaining 

the 1K-page VRAM access size, that is, that the interleave must be achieved by the 

Transputer prior to submission to the firmware.  Therefore, for the above suggestions, it 

might be possible to use the link transfer size as a means to coarsely interleave the 

outgoing transmissions into pages.  Thus, a single outgoing cell-stream would then 

consist of bursts of cells at the maximum rate of the interface separated by one or more 

bursts of cells from other VCI-streams.  The interleaving of several outgoing streams at 

the cell level is a general weakness within the design of the ATM TRAM. 

In conclusion, any of the above suggestions should lead to improved throughput in 

the ATM adapter.  An additional advantage to all of them over the existing firmware 

driver is that the Transputer’s buffer requirements are reduced from both PDUs and cell 

header/data pairs to PDUs and cell headers.  Thus, board performance may be further 

improved because of the larger buffer space available.  However, the implementation of 

any scheme is dependent upon sufficient Xilinx storage space; the current implementation 

is itself at the limits of the Xilinx.  However, it is hoped that a rewrite of the firmware 

would result in a similarly sized code image.  Failing this, a newer larger FPGA might be 

used, though this would require a change in the hardware design. 

6.1.1.3 Limitations of the Link Technology 

Ultimately, faster hardware is needed to exploit the potential of the prototype’s cache 

transfer rate.  Even if the ATM interface were not a bottleneck, the prototype would then 

be limited to the rate of the inter-processor links, i.e. 56Mbps at best.  The realistic 

transfer rate, however, could only be increased to little more than 40Mbps, unless all the 

Transputer links were hard-wired to bypass the C004 link-router.  Ideally, the next 

generation of the server should be able to achieve 125Mbps sustained network 

throughput.  SGS-Thompson offer a 50Mhz T450 part, which may improve throughput on 

the ATM network TRAM, though it is impossible to say if it will remove the 

segmentation/reassembly bottleneck. 

If the use of Transputers is to continue then, a DSLink based component should be 

employed, such as in the T9000.  The DSLink has a raw data throughput rated at 
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100Mbps per link, and in practice achieves a transfer rate of 6.6Mbytes/s (52Mbps)11.  

Hence, a potential parallel transfer rate of 200Mbps to the ATM TRAM is possible, 

resulting in aggregate network bandwidths far in excess of the 100Mbps-capable first 

generation technology. 

The T9000 however, is likely to suffer from insufficient CPU power as did the 

prototype’s T805 based TRAM if segmentation/reassembly remains performed by the 

MOVE2D instruction.  Current T9000 parts are rated at 25MHz maximum, so the 

Transputer will likely not be quick enough; compare this to the 450MHz Pentium II, or 

500MHz DEC Alpha!  To add to the problem, SGS-Thompson has withdrawn support for 

the T9000 series.   

6.1.1.4 Replacing the Transputer Board 

The next generation of ATM hardware developed at the University of Kent is likely to 

employ Texas Instrument’s TMS320C40 DSP chip, which is ideal for pipelined activities 

such as data transmission.  The new board will also employ a DMA system to perform the 

segmentation and reassembly, thus relieving the CPU of the task. 

The new board originally considered the use of a Transputer, though only for its link 

transfer engine, effectively rendering it a coprocessor to the DSP.  The author believes the 

selection of a DSLink based Transputer essential, since a new video server based on the 

prototype would otherwise quickly reach the limits of the 20Mbps older type link.  

Interfacing with the older links is not a problem, with DSLinks being compatible with 

those of the T2, T4 and T8 series Transputers.  The T9’s recent status as ‘obsolete’ does 

make this unlikely, however. 

The TI C4x series DSP processors have 4 to 6 bi-directional communications ports, 

which each give an application visible transfer rate of around 20Mbytes/s (80Mbps).  The 

C4x comports therefore render the addition of a Transputer unnecessary, though its 

inclusion would have provided an upgrade path for the existing file server prototype. 

 Of course, the practicalities may not match with the theory; a series of experiments 

should first establish whether a DSLink based Transputer, such as the T9000, could 

simultaneously engage all four links and achieve the required aggregate bandwidth.  This 

is especially so if the CPU is responsible for such intensive tasks as segmentation or 

reassembly for all data transferred over the links – such overheads must also be included 

in the experiments.  If these simple tests cannot be satisfied then further development with 

the CPU under test would be rather pointless.  In this case, a radical change in the system 

architecture is the only realistic solution.  In fact, the second-generation adapter will not 

employ a Transputer part, thus closing this development option. 

 
11 Source: Michael Poole from the Parallel Systems Group of the University of Kent, formerly of 

INMOS, Bristol, U.K. 
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6.1.2 TCP/IP, RPC and Protocols 

Most closely related to the raw network interface, is the protocol stack engine to drive 

communications with other network end systems.  The TCP/IP module used in the 

prototype was an optimisation of an engine written by Andrew Smith for the ANSA-RPC 

project [LIP95].  This shortened the development time for the server, however the code 

was a ‘single shot’ approach that was intended only to provide UDP support; TCP is not 

available in this implementation.  Remote Procedure Call (RPC) support was added atop 

of the prototype’s optimised UDP support.  However, similar to the UDP engine, the RPC 

code needed only to support specific protocols, viz. mount, NFS, ukcStreams, and 

vfsBench.  As such, this support is directly coded and the RPC engine is not easily 

extendable.  For this reason, an external proxy approach was used when needing to 

communicate with the server via other network protocols, such as ANSA and CORBA. 

Thus, the TCP/IP and RPC engines might be considered an area for replacement with 

an existing or specifically developed code module.  Such replacement should enable 

direct support of other protocols.  However, given that the server is a bespoke system, 

then underlying support of any additional protocols would still need to be written.  Given 

the necessary development effort to add any additional protocol support therefore, 

modifying the existing prototype engine is likely to be easier than replacement. 

6.1.3 The Continuous Media File System 

Some additional performance could be gained by further optimisation of the file system 

from which the cache reads its data.  Although the prototype file system was 

fundamentally designed for continuous real-time media, a number of more obvious file 

system optimisations remain to be implemented.  By increasing the throughput efficiency 

of the file system, the stream optimised cache will benefit, since it will be better able to 

cope with periods of poor hit ratio.  As was shown in the results, a higher sustainable data 

throughput rate leads to a better cache success-rate.  Consequently, a larger number of 

users may be supported. 

The file-system maintains a queue of transfer requests, though the queue is not 

optimised for a sequential head scan (Scan scheduler) or any of its derivatives.  Thus, the 

seeking costs of the First Come First Served policy may be high due to consequent 

random head movement.  The high throughput efficiency of the prototype is achieved 

simply by using a large basic transfer request size of between 32 and 256Kbytes.  The 

implementation of sequential head scanning would not immediately deliver any 

improvement to data throughput, however.  The cache does not submit more than one 

prefetch request job to the file system at a time, regardless of the number of active 

streams.  Therefore, only simultaneous NFS read traffic could benefit, since writes bypass 

the cache mechanism.   
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To benefit from Scan or a derivative, the prefetch servicing mechanism of the cache 

TRAM would need to be rewritten to allow all such prefetch requests to be submitted to 

the file system at one time.  In doing so however, the issues of real-time servicing are 

likely to become more important, since I/O request starvation must not occur.  In this 

sense, the server prototype would then share the problems of other continuous media 

servers, which use the shortest possible playout buffer, equivalent to the prototype’s 

prefetch.  The adoption of a variable size and variable length scan-based cycle mechanism 

for the prefetch requests may however be the route to take.  It would produce a scheduler 

with real-time response to all the active streams and would vary disk throughput into the 

data cache as required.  The stream optimised cache should then be more effective 

because of the higher disk throughput and increased interval space.  This subject is 

discussed further in section 6.1.7. 

Of course, the very easiest way to increase the disk performance is to simply use a 

faster disk.  Exchanging the 2Mbyte/s disks of the prototype system for 10Mbyte/s 

devices should provide significant improvements in system performance.  Such disk 

performance however, is far quicker than the performance of the ATM network interface.  

It is also faster than the aggregate throughput of all the Transputers’ hardware links.  This 

further implies a need for an improvement in the bandwidth between the file system and 

cache and between the cache and network interface.  Consequently, any experiments of 

the kind in chapter 5 would not be very meaningful.  For the same reason, the more 

difficult addition of a RAID based file-system would be pointless until the basic 

throughput issues have been addressed. 

6.1.4 Human Computer Interface exploitation 

Users of both the CIMIS prototype, and of other systems [SKS97], have been found not 

to expect an immediate response to a control request.  A wait time of up to around two 

seconds can be effectively used within the server to optimise the organisation of the 

stream groups.  Furthermore, users’ requests for repositions are generally approximate; a 

user would not know the difference if the server played a section 5 seconds earlier, or 

later, than the time requested.  This ‘time shift’ phenomenon could also be used to 

advantage in optimising stream groups.  The reorganisation would be simply to increase 

the size of groups by ‘piggy-backing’ two or more streams, as described by Aggarwal et 

al [AWY96].  In this case, the interval across a group is zero, and it might be argued that 

the stream optimised cache is therefore not required.  However, the HCI optimisation can 

only be applied to a point – a user will notice an optimisation if it is too harsh.  However, 

as Aggarwal says, a slight increase in the trailing stream’s, or decrease in the leading 

stream’s rate of play-out is required in order to allow piggy-backing to occur.  In this 

case, the stream optimised cache plays an important role since it allows the catch-up to 

occur without having any impact on the disks once the stream interval allows caching.  
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This will itself enable a greater number of simultaneous users to be supported, especially 

where VCR requests are the exception and not the rule. 

To minimise the response time seen by a user for each interaction with the server, the 

passive/active accumulation scheme suggested by [KS97] might additionally be 

employed.  In this case, the service to the user could continue uninterrupted over the 

period of the transition. The current prototype server honours reposition primitives 

immediately, so consequently causing cache failure until the stream’s new prefetch 

request is serviced by the file-system unless the data is already cached.  Therefore, with 

passive/active accumulation, the server would achieve a 100% cache success rate under 

ideal conditions whilst additionally servicing user control primitives. 

Of course, the above approaches are only appropriate when the server’s clients are 

real users.  For ‘robot’ users such as the emulation scripts or multimedia ropes, or for 

editing applications, a precise and/or timely response from the server may be a 

requirement.  In this case, the server may possibly be given a parameter during 

connection to indicate that such temporal optimisations must not be performed by the 

server. 

Broadcasters might influence client behaviour by advertising, for example, a new film 

as 20% price reduced, if the movie is watched within a specified period.  The majority of 

users are therefore likely to watch this movie at the prescribed time, and again, the 

probability of re-use and size of groups are much increased.  A further technique to 

improve group density might be to insert an additional advert, such that a leading group 

client is delayed and the resulting group density increased. However, this latter approach 

may be a rather contentious issue, and would not be possible in an ‘advert-free’ system in 

any case. 

6.1.5 Predicted File Usage Optimisation 

For each class, the clips viewed are prescribed and in a known order.  If the server were 

given ‘hint scripts’, or some expected access programme, the server may speculatively 

cache sections of media files, even though they have no users.   In so doing, the user 

throughput can be increased by decreasing the start-up latency of each new clip session.  

This technique is employed by Wang et al [WCLW97] in their use of a memory buffer as 

a means to improve the level of service provided by a Video-on-Demand server – the 

generalised relay mechanism.  For Wang’s system, the clients are karaoke machines, with 

expected clip usage patterns.  The server contains 5000 3-minute long MPEG-1 clips, 

around 100 of these on 4Gb of disk, and the remainder on a tape jukebox.  The server 

memory buffer sizes examined range up to almost 1Gb.  Thus, the scale of Wang’s model 

is much larger than the developed prototype described in this thesis.  Wang’s simulation 

results show a large improvement upon their previous system [WCL97], which did not 

take advantage of expected clip usage, and was similar to pure streams caching.  These 
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results do however, suggest that streams caching does scale up to a much larger number 

of users, and that it would perform far better than a least recently used approach. 

Of some benefit to the caching efficiency would be the implementation of hotspot 

reorganisation, that is, placing the files used by a class on the fastest areas of the disks, 

and in order of their temporal access as the class proceeds.  Such an optimisation would 

decrease seeking costs and therefore improve data throughput to the data cache, hence 

benefiting the cache efficiency as a whole.  The same hint scripts used by speculative 

caching could also be used here to perform hotspot reorganisation on the disks. 

6.1.6 Continuous Media File Format 

In terms of the Continuous Media File Format, the contained data is always encoded as 

AAL5.  If an ATM interface were used that were capable of generating the AAL5 trailer, 

including the computationally expensive CRC while maintaining the necessary network 

throughput, then the file format may allow for either pure raw data frames or AAL5 

encapsulated data.  As processor technology advances, such a trade off of space for 

processor-time optimisation is inevitable since it would allow more media to be stored on 

a disk.  A further advantage of increasing the information density on the storage device is 

an improved effective data throughput as a result of the extra compression. 

As an intermediate step however, the server’s file format supports a more compact 

block-sharing version (section 4.5.2 option Q).  Here, each file block can contain the data 

from one or more consecutive frames.  Thus, the end of each frame does not waste an 

average of half a file block, since the remainder of the block is occupied by the next one 

or more frames.  The number of blocks making up each frame is consequently increased 

by at most one.  This may have a detrimental effect on the maximum throughput rate of 

the ATM interface because of the increased complexity.  This was the reason the more 

compact version of the file format was not used.  Nevertheless, the option still exists, and 

may benefit cache performance because of the increased effective disk data-throughput. 

At the very least, the generator utility to convert media into the container format 

might be modified to create a ‘shadow’ compact file-format version (that is, without 

writing it to the disk).  This would allow the utility to generate statistics on the non-block 

sharing and block sharing file format versions, thus allowing a simple comparison of the 

approaches in terms of file sizes and storage efficiency.  In addition, the statistics on data 

storage efficiency are alone of great interest since the server performance is tightly linked 

to the effective data transfer performance of the file system. 

A further part of the design of the file format was the use of a page table in the index 

blocks.  The prototype locks down all of the index blocks of a media file, and does not 

attempt to page them.  The ability to page out parts of the index becomes important when 

dealing with very large media files – particularly where the server does not have an index 

block space large enough to hold the entire file index.  The prototype could therefore be 
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used to develop an appropriate algorithm for memory management in index blocks, and 

further to analyse the impact of paging these blocks on server performance.  Such a 

development would allow a slightly larger main cache size, since the memory for index 

blocks and that for data is currently partitioned, not shared.  Thus, if an extremely large 

file is loaded, the prototype may report that it does not have enough memory for the index 

blocks, despite having an empty main cache. Ideally, the main cache should be the 

maximum possible for the main cache TRAMs, with an additional memory space for the 

indices on the manager TRAM.  There are obvious performance implications for the 

server if data blocks must be discarded to make way for index blocks, hence the partition 

decision in the prototype. 

6.1.7 Approaches to Streams Caching 

A more efficient caching algorithm would enable the server to satisfy more users from the 

cached data, and would therefore reduce I/O demands on the file-system.  For the same 

effective transfer rate file-system then, more users could be supported by the server.  Of 

the possible cache algorithms to examine, the most obvious is an implementation of 

modulated stream caching, while building in the ability to switch between modulated and 

non-modulated modes in order to allow a practical comparison between the two related 

algorithms.  As mentioned in the section above, the effects of the compact file format may 

also be examined for both caching approaches. 

6.1.7.1 Active Discard of Data Predicted to Have No Re-Use 

Beyond modulated stream optimisation, an implementation of active discard may be a 

development option.  That is, any data not predicted for reuse is marked for discard in an 

attempt to increase the accuracy of the physical cache content against the logical model.  

Such a scheme may be computationally expensive, which is largely the reason it was not 

attempted as part of the original development project; Transputers are not 

computationally powerful in comparison to current microprocessor technology.  

Nonetheless, the prototype does provide the necessary system support to enable practical 

experimentation with different algorithms. 

After a frame has been transmitted for which there is no predicted successor, the data 

might be placed into a separate structure, though not freed.  In this case, when looking for 

a block in the cache, both the main and marked structures would need to be searched.  

The marked-list might be a perpendicular structure however, so a search for a block in the 

cache would require a search of only the main cache structure.  The marked-list could be 

sorted in a FIFO order, such that the data first marked for re-use is the first to be re-used.  

However, with a modulated interval active, which data is re-used becomes academic, 

since the modulated interval will consume all free-space and marked blocks.  Where there 
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is no such interval, all stream intervals will be satisfied and the potential for re-use cannot 

be predicted.  In this case, an oldest first re-use policy would be sufficient. 

With a marked-list, when an allocation is made, the free-list is used first, and if 

exhausted, then the marked-list is used.  However, if allocations are taken from the 

marked-list, those blocks must be unlinked from their current file chains.  Once removed, 

they are then re-linked into their new owner file.  Thus, allocation becomes a more 

complicated and expensive operation.  However, the alternative is frequent group 

reassessment, so the extra cost of allocation may trade off against reassessment costs by 

making reassessment less frequent.  A further complication to the scheme comes from the 

deferral of cache data access by the ATM adapter until the ATM TRAM can deal with the 

transmission request.  Until the data has been successfully transmitted, it cannot be 

reallocated to other data blocks or another file chain.  Synchronisation mechanisms 

therefore make this scheme more expensive than the existing implementation.  However, 

with careful design to avoid heavy CPU loading peaks and balance processing load over 

time, a successful implementation is feasible. 

A further possibility with the marked list is to discard from the data cache based upon 

the probability of data re-use, rather than on a FIFO basis.  In so doing, a popular clip is 

more likely to remain in the cache whilst it has no clients.  Such an approach would 

require a popularity distribution for the files on the server and is similar to the 

‘generalised relay mechanism’ of Wen et al. [WCL97].  However, whereas Wen use the 

distribution to pull data into the cache that is predicted to be used, the scheme suggested 

here merely leaves data in the cache if it is likely to be reused without having immediate 

re-use.  Such probability distributions may use both day-of-week and time-of-day as 

parameters in determining clip popularity at any instance. 

6.1.7.2 Optimisation of Prefetch 

Prefetch is allocated to each client stream, which may be absorbed into a stream group 

during the assessment process.  The amount of prefetch allocated is based on an index 

look-up a small period into the future – the amount reserved is the amount of data to be 

consumed in this time.  However, a better cache space usage could be achieved by 

improving the management of prefetch allocation. 

All of the Video-on-Demand techniques covered in Chapter 2 try to minimise their 

equivalent of prefetch.  For each stream, only enough prefetch is allocated such that the 

buffer runs empty just as the stream is next serviced by the disk.  In the prototype server, 

the next prefetch request is made when half of the look-ahead window has been 

consumed.  Consequently, there will generally always be some data still unused when 

data is next pulled from the disk.  As noted by Ng and Yang [NY94], this results in poor 

utilisation of the memory buffer because space is occupied and not used during a cycle; 

this space could have been allocated elsewhere.  Ideally, only enough prefetch should be 
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allocated such that this prefetch is running dry just as the stream is serviced by the file 

system.  This would require a change of process responsibility, since the stream handler 

processes currently request data from the file system.  To minimise the amount of cache 

space used by prefetching, the stream management process would need to additionally 

manage the file system demands of its stream handler clients.  In so doing, the order of 

servicing of requests could be optimised using some variation of the Scan scheduler. 

A further advantage to such a tuning of the prefetch for each stream is that very large 

fetches are possible in order to extract the maximum transfer rate of the file system.  

During user sessions with little reuse, the number of users that can be supported will 

therefore be higher than with the prototype.  Care must be taken, however, since greater 

demands for prefetch space mean less space for interval caching.  Hence, a user session 

exploiting reuse and requiring high disk throughput may cause the cache controller to 

become unstable.  More specifically, higher prefetch space demands reduce available 

interval space.  Reduced interval space will lead to poorer cache efficiency, which the 

results indicate causes higher load on the file system.  Thus, to obtain higher data 

throughput, more space is given to lengthening the scheduler cycle (less to intervals), 

leading again to poorer cache efficiency and yet greater disk demands.  Consequently, it 

is important to experiment with such a real-time scheduler to examine if such a “run 

away” effect can occur in practice, and if so, to limit its effects. 

Stream caching causes an additional complication, in that the length of the scheduler 

cycle would vary, since some stream accesses might hit the cache and consequently have 

zero or very small prefetch.  Were an optimised disk scheduler built to yield an equivalent 

technique to that used by cacheless Video-on-Demand servers, more interest in stream 

caching might result.  Indeed, in the limiting case of no re-use, streams caching would 

then degenerate to a standard Video-on-Demand server bounded by the maximum disk 

bandwidth.  Furthermore, in the case where two clients accessing the same clip are 

separated by an interval larger than the cache size, a modulated interval results.  Hence, in 

this case, some benefit is gained from the memory buffer.  The results in Chapter 5 have 

already shown the value of streams caching, though access to the disk is clearly an area 

for much optimisation. 

In the current implementation, a disk transfer request must complete and an 

acknowledgement be received by the cache manager before the data is available in the 

cache.  A consequence of this approach is that a stream can empty its prefetch while the 

data that the file system is fetching for it may already be partially available in cache 

memory.  However, the stream cannot use that data until the full file transfer is complete, 

which for a 256Kbyte-transfer unit will take at least 130ms for the prototype. 

Cache success to failure ratio should therefore be improved during heavy loading 

conditions by marking each cache line as resident in the cache once it is known to have 
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been received.  A possible implementation is to use the ‘write.lock’ bit of the 

management structure as a residency bit.  An allocation of cache space will automatically 

set the lock bit to indicate that there is no data in the cache line.  The link-transfer engine 

may then clear the write-bit of the cache line that was received in the previous transfer 

cycle.  The final file transfer acknowledgement to the cache manager will cause the lock 

bit of the last line to be cleared.  The clearing of the lock-bit must be deferred by one 

cycle, since the four Transputer links into the cache may complete their transfers at 

different times.  Consequently, the receipt of a block at the manager TRAM does not 

guarantee the receipt of all blocks, i.e. the cache line, in all TRAMs. 

6.1.7.3 NFS/Streams Cache Co-existence 

The concept of sharing streamed data with normal file data, in this case NFS traffic, was 

only briefly explored in Chapter 3.  Experimentation of the dynamic behaviour of cache 

sharing could prove invaluable, since the implementation of stream caching in general 

may then become a more attractive proposition.  The benefits of stream caching over 

conventional approaches is undeniable – an acceptable coexistence with current caching 

techniques should lead to a wider acceptance of the principle.  Such a development 

assumes sufficient real-time response from the server hosting the media. 

6.1.8 Further Experiments with Caching 

Although the emulated loading of the server can provide a good indication of expected 

real performance, there is no substitute for the predictably unpredictable human user.  A 

possible realisation of real traffic may be derived from playback of multiple pre-recorded 

user sessions of some actual learning material containing video and audio.  However, 

such an approach does not take account of the user to user interaction taking place within 

a live classroom.  Such an interaction is, perhaps, likely to produce a ‘near 

synchronisation’ across the users.  Ultimately, the most accurate test can only be gained 

from the involvement of a real classroom of users. 

Stream optimised caching was originally devised for environments with predicted 

reuse, such as in a teaching room as adopted by SERVICE.  However, the approach might 

also be successful in other environments.  In particular, the results of the previous chapter 

showed that the caching approach works best with a larger number of users.  In this case, 

the application of a memory buffer to a video subscriber service might be applicable, 

though provided that the temporal locality of access property could be demonstrated. 

6.1.9 Quality of Service and Admission Control 

The prototype server does not implement any kind of service quality guarantee for its 

clients, nor does it attempt to deny connections where the quality of service of any active 

streams would be jeopardised.  To implement such a mechanism requires an accurate 

understanding of how the system behaves for a given set of users.  For example, that the 
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disk bandwidth requirements of those users is understood, and that the maximum disk 

performance is not exceeded for the pattern of access.  For a server based around a stream 

optimised cache, the outgoing bandwidth of the server can legitimately be in excess of the 

disk bandwidth.  The policies of ‘cacheless’ Video-on-Demand servers are therefore 

inappropriate.  Whether the disks can cope with a pattern of users while taking account of 

the stream cache is still not fully understood.  For this reason, an admissions control 

policy cannot be applied without further study.  At this stage, the only control policy 

possible is to deny connections once the potential outgoing bandwidth of the accepted 

streams exceeds the abilities of the network interface.  Clearly, such a simplistic policy is 

not sufficient. 

If a quality of service level is to be maintained, the HCI issues in section 6.1.4 are 

important from the QoS viewpoint also.  The need to maintain the level of service might 

force a deferral of user requests for a few seconds until the request can be serviced 

without impacting upon the quality of other clients. 

6.1.10 Recording Continuous Media Streams 

One feature that the original server design considered was the recording of multimedia 

streams.  To this end, the ATM TRAM adds a timestamp to each received AAL5 block 

with its own clock, thus avoiding the problem of clock differences across the cache 

TRAMs.  Besides the designs however, the receive timestamping remains the only 

recording feature implemented in the prototype server.  Because of the large available 

cache and consequent deferred write to the disk, multi-session recording is feasible.  

Furthermore, the prototype provides a ready platform on which to implement a real-time 

continuous media recorder. 

6.2 A New Architecture 

Regardless of the possible improvements to the Transputer prototype, it still suffers from 

a lack of development system support.  For example, the UDP/IP and RPC support was 

hand written; TCP support is missing, and the extensibility of the system is poor.  A more 

thorough implementation could only realistically be built on a platform with operating 

system support, but provided only that the timing characteristics of that system were 

sufficient for the task; the Transputer was chosen for the prototype because of its known 

timing characteristics.  Unix had previously been rejected because of its far too 

heavyweight real-time response, which is in the order of 10ms granularity.  Nevertheless, 

for the prototype, any attempt to add direct protocol support for CORBA, say, would be a 

large project in its own right.  A re-engineering of the media server is therefore inevitable, 

though it is stressed that a feasibility study examining response latency for multiple users 

must first be carried out. 
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For general Video-on-Demand servers, RAID storage systems are now essential, 

since otherwise the necessary disk bandwidth cannot be achieved.  The development of 

stream optimised caching should next be attempted with a RAID back-end, in order to 

examine the scalability of the solution.  This again points to the need to use a hardware 

platform with operating system support, including RAID devices. 

In the discussion of the ATM network interface in section 6.1.1, the TI C4x DSP was 

mentioned as a replacement for the T805 Transputer.  Additionally, it was noted that the 

C4x devices contain communications ports, each with a performance of around 20 

Mbytes/s.  With the six ports of the C40, or the four ports of the C44, a number of parallel 

processing topologies are possible.  Furthermore, with SGS-Thompson’s announcement 

to discontinue support for the T9000 series, some other parallel or distributed computing 

platform must be found.  If it is desirable to maintain the multiprocessor parallel 

architecture in the prototype video server, high throughput low latency inter-processor 

communications links are essential.  Alternative technologies for such links are the C4x 

comport, Fibre Channel, FireWire and IEEE1355.  These are now summarised in the 

following subsections. 

6.2.1 Texas Instruments C4x 

The Texas Instruments TMS320C4x [TI95] devices employ communications links, or 

comports, to communicate with other devices.  Each comport is a bi-directional half-

duplex asynchronous 8-bit wide parallel port running at 28Mbytes/s, of which an 

application will see around 20Mbytes/s (160Mbps). The multiple comports would allow a 

number of processor topologies; an architecture very similar to, though possibly not the 

same as the prototype server, are possible.  Furthermore, the bandwidth available on a 

single comport is beyond the 58Mbps capability of all four Transputer hardware links.  

The construction of an ATM adapter based on the C4x should therefore be able to support 

a 155Mbps adapter to saturation by use of two or four comports in parallel.  The half-

duplex nature of the comport device may however, be an obstacle.  The turn-around 

latency for each comport is relatively high, so ideally, two comports are required per 

device for a full-duplex communications link.  Consequently, only two (320Mbps) or 

three (480Mbps) full-duplex links are possible, depending upon whether the C40, or C44 

with all its comports, are used. 

6.2.2 Analog Devices SHARC 

An alternative to Texas Instruments DSP devices might be Analog Devices’ SHARC DSP 

series [AD98].  Each SHARC features six 40Mbytes/s (320Mbps) bi-directional half-

duplex synchronous point-to-point communications links. Thus, arranging these as three 

bi-directional links in the same topology as suggested for the TI DSPs, gives an aggregate 

bandwidth of 120Mbytes/s (960Mbps) in each direction, or 80Mbytes/s (640Mbps) if 
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only two bi-directional links are used.  Since each link port transfer can be set as either 

transmit or receive, however, other topologies are possible which consider each of the six 

links as true bi-directional links.  The SHARC does not suffer the link turn-around latency 

of the TI equivalent.  In this case, the 40Mbytes/s would be shared between the up-link 

and down-link directions. 

6.2.3 FireWire (IEEE 1394) 

FireWire [And98], otherwise known as IEEE1394, is a joint development between Texas 

Instruments and Sony, originally having been developed by Apple Computer Corporation.  

The technology is a serial communication bus with a scalable bandwidth specification.  

At present, 100 and 200Mbps FireWire channels are available, with 400 and 800Mbps in 

development. 

Unlike the C4x technology, which is a point-to-point link, FireWire is a shared 

bandwidth bus, similar to ThinLAN Ethernet.  The technology was originally devised for 

the connection of video devices, such as camcorders, and other peripherals.  Each device 

can be added and removed from the bus while in operation, without disturbing other 

devices.  Digital video devices are already appearing on the market with IEEE 1394 

sockets.  In the context of a video server, the higher bandwidth serial bus provides enough 

raw bandwidth to cope with accessing an array of disks and moving data out onto the 

ATM adapter for transmission.  A bus bandwidth of at least 200Mbps would be needed 

however, and it is not clear whether the bus would give sufficiently low inter-processor 

transfer latency. 

6.2.4 Fibre Channel (FC) 

Fibre Channel [Sta95] is a specification for the interconnection of storage devices and is 

another successor of the SCSI specification, besides UltraWide SCSI and Ultra2Wide 

SCSI. The Fibre Channel specification is purely a physical layer – a number of protocols 

are supported on top of FC as follows: SCSI, TCP/IP, AAL5, Link Encapsulation (FC-

LE) and IEEE 802.2.  FC-devices may be attached via either copper or fibre interfaces, so 

the name ‘fibre channel’ is somewhat misleading.  Each FC node (a storage device or 

host, for example) uses a female DB-9 serial connector.  The nodes may be connected 

together in one of three topologies. 

In point-to-point topology, two nodes are connected directly together.  This 

arrangement gives the lowest transfer latency since there are no intervening devices.  The 

second topology connects the devices into an Arbitrated Loop (FC-AL).  This 

arrangement is most similar to a token ring LAN, with the loop bandwidth being fairly 

shared between the nodes that form it.  FC-AL allows up to 126 devices within a single 

loop.  The third topology is a switched fabric, which allows any number of devices to be 
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switched with a single node network.  Using a switched fabric is more expensive than FC-

AL, since it requires a switch to be used to connect the FC nodes. 

Each FC device link is rated at 100Mbytes per second.  Thus, since each node may be 

full duplex, such as when connected point-to-point or via a switch, 100Mbytes/s can be 

achieved in both transmit and receive directions.  Consequently, FC is as fast as the 

fastest and as yet unavailable FireWire link (800Mbps), and furthermore, allows this 

speed in both directions.  Given further that this bandwidth is not necessarily shared 

between devices, that is, when using a switch or is point-to-point, it is a more appropriate 

technology for use within a video file server. 

Consequently, Fibre Channel is likely to be the ideal technology for the connection of 

one or more storage devices to a cache host, since it is specifically intended for this 

purpose.  FC allows a lot of flexibility in device interconnection, with an inter-node 

distance of up to 10km with single-mode fibre.  FC also gives the most possibilities with 

respect to connecting a RAID storage system to a video server based around this 

technology, which is essential for any large-scale server. 

With respect to the use of FC as a technology for the interconnection of multi-

processors, there remains a question mark over whether the link latency would be 

sufficiently low.  However, given that FC can be used in point-to-point mode, it would be 

a far more appropriate technology than FireWire in this respect. 

6.2.5 DSLink/HSLink (IEEE1355) 

IEEE1355, also known as ISO/IEC 14575, is a development of the T9000’s 100Mbps 

DSLink originally developed by INMOS.  The primary goal of IEEE1355 is as a low-

latency high-throughput systems interconnect.  A minimisation of cost and simple design 

were also factors in the specification of IEEE1355, such that each device can support 

many such links. 

Similarly to the C4x and SHARC, the technology is a point-to-point inter-device 

communications link.  The standard specifies interconnects from 300Mbps, the DSLink, 

to 1280Mbps, the HSLink.  Efforts to design and manufacture devices using the 

technology are currently ongoing. Link routers and interface ICs are available on the 

market already, though the T9000 is presently the only processor that employs the link 

technology.  Consequently, unless the standard is taken up by other silicon manufacturers, 

an exploitation of this technology is difficult.  It would appear that the development of 

IEEE1394 has overtaken that of 1355; 1394 has substantial industrial backing.  Indeed, 

consumer products are already available on the marketplace that contain IEEE 1394 

communication links.  An announcement from the PPRAM consortium dated 20th January 

1996 does lend support to the 1355 standard, however.  PPRAM includes as members, 

NEC, Texas Instruments, Matsushita and Sony corporations.   
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The PPRAM consortium press release announces an integrated device containing 

CPU, DRAM and communications links on a single chip, much like the Transputer.  The 

device is rumoured to be of a CSP/Occam discipline and is the expected successor to the 

T9.  No news of this device has surfaced since the press release, however, possibly due to 

1394’s dominance of the marketplace.  It must be emphasised that the FireWire serial link 

technology is intended for peripheral interconnection, and not for high-speed parallel-

computer communications; FireWire is not an appropriate technology for this application.  

Fibre Channel is not well suited to this purpose either, since it is overly complex for the 

task and it is unlikely that FC could be cost-effectively integrated into a single chip 

device. Consequently, IEEE 1355 may yet surface as the winning technology for inter-

processor communications, though this looks unlikely with the current state of play. 

6.2.6 Standard Workstation Technologies 

Of course, the above solutions come from out of the original architecture used in the 

prototype server.  A diamond topology was chosen to achieve the necessary aggregate 

bandwidth and large enough cache size.  Consequently, modern day workstation 

technologies with multiple CPUs, dedicated ATM and Fibre Channel SCSI adapters may 

contain enough power to reengineer the prototype without resorting to more complicated 

architectures.  However, it is not clear that such a solution would scale well, nor that the 

necessary timing characteristics of the prototype be maintained.  It may nonetheless, 

provide a low-cost solution to the provision of Video-on-Demand, since such components 

are readily available on the marketplace and would not require any hardware 

development.  As noted in the introduction to this section, a study of the timing 

characteristics of such commonplace technology is essential in order to determine the 

feasibility of this and the above approaches. 

6.3 Summary 

In this chapter, the major subsystems of the prototype server were explored for 

possibilities in improving the performance of the system – both pure software extensions, 

and simple to more complicated hardware solutions were covered.  Further cache 

algorithms and experiments on the server were suggested for both the current cache 

algorithm and its extensions.  Accepting the realistic practical limitations of the prototype, 

a new architecture for a caching media server was considered which builds upon the 

existing media file format, streams control protocol and a ported cache architecture and 

algorithm.  A warning was given for a need of a feasibility study to ensure that the timing 

requirements of a media server could be met. 
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7. Conclusions 

“Theory without practice is sterile, but practice without 

theory is blind”  

— Lenin 

 

This thesis has described the development of a small scale Video-on-Demand file server 

for a classroom environment.  The idea of stream optimised caching has been refined and 

a simple implementation of it achieved.  This has enabled the realisation of both working 

client systems and emulation experiments with the prototype server.  This last chapter 

examines the contributions of the author, explores the successes of the work presented, 

and discusses how it has furthered the field of Video-on-Demand. 

7.1 The Author’s Contribution 

In the construction of the server, all of the system components with two exceptions were 

designed and implemented by the author, including the neutral file format and RPC 

protocols.  The first exception is that the server was build on top of Peter Linington’s 

ATM cell driver, which is equivalent to the physical layer (layer 1) of the ISO network 

protocol stack.   The second exception was in the use of Andrew Smith’s UDP/IP 

implementation, which was much improved upon and optimised by the author.  The 

ukcStreams protocol was derived from the ANSAware rate interface [Lin90]; all 

similarities with this protocol are deliberate. 

To achieve the necessary throughput performance, the author optimised the ATM 

TRAM process layout and communications structure.  A technique originally suggested 

by Linington was used to profile CPU usage.  Essentially, the technique is to examine the 

Transputer’s ready process-queues at regular intervals and count the quantized execution 

addresses.  The author’s implementation of this strategy enabled the location of those 

processes using the CPU most frequently.  This analysis hence directed subsequent 

optimisation efforts.  Further remarks about the above code profiling and other techniques 

used to optimise the server are discussed in section 7.3. 

The HP-UX and PC client end-systems’ display utilities were all developed by the 

author, including the PC’s MPEG-hardware intermediate driver.  The latter driver allowed 

the PC’s hardware to display MPEG received from the network – a task it was not 

originally intended to do.  The RPC ukcStreams protocol clients for HP-UX and Solaris 

were also the author’s responsibility.  The ANSAware and ORBIX proxy API’s were 

developed from the author’s RPC API by Ian Buckner and John Salter, respectively.  The 

server content generation utilities and an MPEG clip-editing suite were entirely efforts of 

the author. 
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The concept of Stream optimised Caching and Modulated Stream Caching was 

originally devised by Peter Linington.  The author was responsible for the refinement of 

the idea, and for producing an implementation of the concept in the prototype server.  In 

the experiments with the prototype’s caching performance, the user-behaviour script-

generator and user behaviours were created by Peter Linington.  The script driven 

emulator, the vfsBench protocol and the server monitor were all written by the author.  

Similarly, the server variables to monitor and the MPEG clip files and user-sets for the 

experiments were chosen by the author. 

7.2 Degrees of Success 

At the start of the project to build the video server, it was unclear how far the attempt 

would go, given the time constraints12.  With time, it became clear that the amount of 

work involved was not insignificant, and that a great deal of work would be involved in 

reaching the project objective.  Despite this worrying outlook, and through long term 

planning and efficient hard work, a fully functional and stable Video-on-Demand server 

has resulted.  The use of the server within the CIMIS project, which was itself deployed 

to its intended clients, is some indication of the degree of success of the implementation. 

In respect of stream optimised caching, the simulated multi-user sessions showed that 

20 users could be supported with a cache of 90Mbytes with a very good level of service.  

Hence, the project goal to support 20 simultaneous users has been reached.  This 

maximum of 20 is imposed more by the throughput limitation on the ATM network 

adapter, than any limitation of stream optimised caching.  The prototype server now 

enables further work to be carried out in the investigation of stream optimised caching 

algorithms and other Video-on-Demand techniques. 

The objective to produce a neutral file format, which can support multiple types of 

continuous media, has also been successful.  The prototype has been used to provide both 

audio and video media types, and of various encodings in the latter case.  The initial 

assumption that the low latency of ATM networks would obviate data resynchronisation 

protocols at the client has also been proved in practice. 

The limitations in the solution very much derive from the prototype’s hardware 

capabilities.  The Transputer CPU and link technologies are now over ten years old, and 

are ripe for replacement.  Given however, that the limits of this technology were reached 

in the prototype implementation, it should follow that a more powerful hardware solution 

will produce better results.  In this sense also, the concept of streams caching and its 

implementation have been successful. 

 
12 The original SERVICE project lifetime was two years.  CIMIS enabled further work on the 

prototype server for a further year.  However, no more than 6 months of CIMIS’ development time 

was used in additional server development. 
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7.3 Lessons Learned in Embedded Systems Development 

Today’s embedded systems development environments include tools for profiling code 

and locating those processes most responsible for consuming CPU time.  However, in the 

absence of such tools, the ATM TRAM’s CPU profiler demonstrates that a programmer 

can implement the equivalent functionality.  For the prototype server, this analysis was 

essential in the success of the project, since without it, the maximum outgoing transfer 

rate would have been much lower.  Thus, in a system where performance is a critical 

issue, code profiling is highly recommended as a means to locate bottlenecks and improve 

overall performance. 

Operations such as link transfers, cell segmentation and Occam-channel protocol 

exchanges between processes all have associated overheads.  Such overheads can be 

reduced, however, by maximising the size of unit transfers, thus minimising CPU 

scheduler intervention.  In particular, each individual Occam protocol unit on a channel 

will cause rescheduling of the sending and receiving processes.  Hence, in the prototype, 

the majority of channels use simple data arrays with the processes taking responsibility 

for marshalling and unmarshalling arguments, where necessary.  In this respect, to avoid 

memory copies in processes, the arguments are simply ‘aliased’ within their data block 

and accessed by reference.  Large memory copies are avoided by passing such data by 

reference, which is very important for systems with very high data throughput. 

Communication overheads must always be considered and effort given to reducing 

interaction between processes on a critical line.  The programmer should always be aware 

of the knock-on effect between processes sharing a CPU.  For example, the prototype’s IP 

implementation was optimised although it is not needed during streams playback.  

However, the IP process will draw on CPU resource, which will impact upon server 

performance if it has poor efficiency, especially if it reschedules frequently.  Furthermore, 

overuse of high priority tasks should be avoided, since it can impact negatively on 

performance; each low priority task pre-emption has associated context-switching 

overheads.  In essence, no process can be considered as isolated with respect to its system 

demands because of this knock-on effect. 

In any new prototype system, one should never assume that the chosen components 

will be sufficient for the task.  The feasibility (a.k.a. ‘back of the envelope’) calculation at 

the beginning of chapter four is an example of this.  In performing such estimation, 

caution must be emphasised with respect to the real-world performance of the 

components, since these rarely match with the theoretical performances given in the 

manufacturers’ brochures.  Both the raw computational and the real-time response of such 

parts should be considered, in addition to any other system critical aspects. 

A detailed knowledge of the components to be used is always necessary – this is 

particularly true of today’s processors.  For example, the Transputer instruction set uses 
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8-bit instructions, of which 4-bits are argument.  Thus, when unrolling loops to improve 

code performance, 16 sequential operations with relative indices 0 through 15 are most 

efficient for this processor.  Similarly, the Transputer has a variety of dedicated 

instructions such as the CRC instructions, which were used in the calculation of the 

AAL5 trailer CRC.  Modern RISC CPUs must be noted particularly in this respect, with 

emphasis being placed on their instruction pipelines.  For example, a sequence of 

instructions with two different orders may take differing amounts of CPU cycles to 

execute because of the effects of pipeline optimisations. 

It will of course be noted that such code optimisation can only be achieved if the 

programmer writes the opcodes by hand in assembler.  However, where performance is 

critical, the compiler output should be examined to check that it is indeed optimal.  This is 

particularly true in the case of old compilers such as INMOS’s Occam compiler; a 

programmer can often out-code it.  An example of this in the prototype’s source code is 

the routine used to reverse the order of bytes in each 32-bit longword – the Transputer is 

natively little-endian, whilst network protocols normally use big-endian byte order.  

Careful consideration of the number of registers and instruction cycle times produced a 

handcrafted routine far faster than the compiler could produce. 

7.4 Contributions to the Field 

Some of the efforts in the Video-on-Demand field have been concerned with re-clocking 

received data for jitter-free display on the client.  Such an approach to smoothing the 

display output requires a buffer, which introduces delay in the display pipeline.  

Experience with the prototype server would suggest however, that such a re-clocking is 

not required for ATM network end-systems – at least between a few switches.  The 

implications of this discovery are twofold.  Firstly, the lower latency to the client display 

gives a little more time for the server to perform HCI type optimisations to achieve better 

server performance.  Secondly, in combination with the VCR-like control protocol, the 

implementation of the client end-systems is greatly simplified, since the server is 

responsible for the client playback model and handling of frame transmissions. 

The use of knowledge about users’ relative positions and of their predicted behaviour 

has been shown useful in improving the level of service provided by a Video-on-Demand 

server.  The use of a stream-optimised memory-buffer can enable a server to provide 

service to a number of users greater than it could with its disk(s) alone.  This suggests that 

the relationship between a memory buffer and a file system is similar to that between a 

file system and a tape jukebox.  That is, the memory, disk and tape are levels of a 

hierarchy, and each layer improves the level of service capability of those layers below it. 

In the introduction to the Video-on-Demand chapter, the work of Wen, Wang, Chen 

et al [WCL97, WCLC97] was covered as most similar to that of this thesis.  In fact, no 

other literature could be found that attempted to use knowledge of user activities together 
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with a memory buffer to improve the level of service.  Wen’s ideas on a relay mechanism 

are identical to those of group formation by stream interval, that is, stream optimised 

caching.  In [WCL97] however, the physical server implementation, at the time of 

writing, is an earlier developed two disk striping approach without a memory buffer 

[WCL96].  The physical prototype of [WCL96] was used to derive the mathematical 

model of disk behaviour used in [WCL97, WCLC97].  Thus, their work on the relay 

mechanism is theoretical, and their conclusions are based upon a simulated server and 

simulated client load. 

In contrast, the results of this thesis are based upon a working server implementation 

containing real movie clips with only the larger user loads being ‘simulated’.  These two 

efforts are further separated by the type of users using the system.  For Wen et al, the 

assumption is that each playback request is on-demand, and plays to completion without 

user intervention once it is accepted.  Such requests for service can be rejected if the 

system cannot start them within a finite period.  For the streams caching prototype on the 

other hand, each request for service is assumed always to succeed.  Furthermore, the users 

are expected to perform VCR-like operations, though this being exceptional behaviour, 

rather than very frequent.  The scale of the prototype server is also much smaller in 

comparison to the simulations of Wen at al.  They are therefore applying a pure streams-

optimised-caching algorithm to a different target audience.  They do not give an 

equivalent of modulated stream caching, which is a concept first introduced in this thesis. 

A development in [WCLC97] from [WCL97] is a ‘generalised relay mechanism’, 

which forms speculative chains.  That is, cache space is allocated to stream data that is 

not predicted to have any immediate reuse.  However, such allocations are given to those 

data that are predicted to be most likely to be used by new users.  As such, the generalised 

mechanism requires a popularity distribution for the clips that it serves, such that the 

algorithm may choose the most popular clips for speculative caching.  Consequently, 

since idle cache space is being used for such speculative caching, modulating the smallest 

uncached interval is an alternative technique.  The two techniques differ in that the 

interval modulation is based on a reuse predicted from current user behaviour, whereas 

the generalised mechanism uses predetermined (or possibility calculated) clip 

popularities.  However, where the cache is not saturated, that is, where the sum of 

intervals is less than the total cache space, streams caching may retain data for which no 

reuse is predicted.  In this case, speculative caching based on clip popularity is possible.  

However, in practice, the size of cache is likely to be considerably smaller than the size of 

disk it supports.  Consequently, the cache will normally run under saturated conditions 

such that only one of speculative or modulated caching is possible for the remaining 

cache space. 
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The work on stream caching in this thesis has not concerned itself with situations in 

which disk bandwidth becomes limited; it does not try to prevent the disk becoming 

overloaded.  Indeed, part of the exercise was to examine precisely those conditions under 

which the streams caching failed and find out why – it was not a study of a disk 

scheduling mechanism.  Thus, the lack of the disk-scheduler issues is not an oversight on 

the part of the author.  In relation to Wen’s work, the prototype is further separated, since 

Wen does address the issue of limited disk resource, with the play-out quality of each 

stream being guaranteed.  In this respect, the results of the simulation study in Chapter 5 

give an insight into precisely those situations under which streams caching will perform 

well, or will break down. 

In the discussions on the future of the prototype, a tuning of the disk scheduling 

mechanism was suggested, which is much the same as used within current ‘cacheless’ 

Video-on-Demand servers.  Thus, it can be concluded that stream optimised caching is a 

complementary technique to these approaches, and not an alternative.  This conclusion is 

further reinforced by the results of Wen et al.  Video-on-Demand servers require memory 

in any case.  Thus, commercial servers will inevitably contain significant amounts of 

memory, driven largely by the recent dramatic drop in the price of semiconductor 

memory – at the time of writing, less than $1 per MByte.  Furthermore, in chapter 3, it 

was said that all caching algorithms are organised on predicted minimum time to reuse, 

which is precisely how stream optimised caching is defined.  Therefore, stream optimised 

caching must be the optimal solution for caching continuous media data types.  Stream 

optimised caching should therefore play an important role in how best to use the physical 

memory resource. 

7.5 Future Work 

Many potential avenues could be pursued in the light of this manuscript.  However, the 

concentration suggested here is on stream optimised caching, this being the main thrust of 

the thesis.  Furthermore, future work should be possible using the existing prototype 

server and without resorting to more exotic architectures in order to hasten the 

performance; raw power can always be used to improve performance, but that does not 

improve the technique itself. 

Perhaps the most notable immediate performance improvement is the implementation 

of marking cache lines as resident in the cache as they are transferred from the file 

system.  At present, it is only once the full transfer request is completed that the data is 

marked resident and available for use by cache clients.  This optimisation will give much 

improved performance when the server loading is such that each stream’s prefetch is 

starting to become exhausted before being serviced by the disk.  The technique is similar 

to the k-buffer technique of [LDS95] with the buffer unit being one cache line.  On the 

next scheduler cycle the stream will fetch up to a full second ahead and cause a 
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comparatively large transfer, since the stream prefetch is running dry.  Thus, server 

behaviour is further degraded since the time to the data being marked cache resident is 

longer than when all prefetch requests can be serviced, that is, are all half a second.  In 

using the k-buffer like approach, the time to the data being available is minimised. 

Since the server is heavily dependent upon the performance of the effective file-

system throughput, an implementation of block sharing in the container file format may 

show significant performance improvement.  Further improvement may also be gained 

from an implementation of modulated stream caching.  As suggested in chapter 6, the 

ability of the server to use a modulated interval should be switchable such that the 

difference in performance can be directly compared.  Similarly, the packed file format 

should be compared against the non-block-sharing version for both caching algorithms.  

In this respect, a utility to convert a server file between the two formats would be very 

useful and could additionally generate storage efficiency statistics for the two cases. 

As with the current prototype server, it is suggested that no attempt be made to 

exercise any admissions control algorithm.  The point of this approach is to find and 

understand those conditions that cause service failure within the server, such as in the disk 

scheduling or cache algorithms.  In particular, the server offers the possibility of 

experimentation in the slipping of user requests, both in real-time and on the logical 

timeline, in an attempt to prevent such server overload.  In any case, an admissions 

control policy is complicated by the presence of the cache, which reduces load on the 

disks and improves outgoing bandwidth to above that of the disks.  Nevertheless, an 

admissions control policy may be formulated based upon the located areas of breakdown 

in a stream optimised server. 

The most promising development area for stream optimised caching is without doubt 

integration with a real-time disk scheduler.  That is, to use one (or several) of the 

scheduling techniques documented in the literature.  Achieving this would prove the 

assertion that the family of cache management techniques is complementary to the family 

of real-time disk scheduling techniques.  In particular, the server’s first-come-first-served 

(FCFS) approach has the worst performance in terms of incurred disk-head seeking and is 

a clear area for potential performance improvement.  Due to the very likely tightly 

coupled cache and disk scheduling algorithms, this might give rise to the family of real-

time caching disk scheduler algorithms, for example, SOC-Scan and SOC-BSCAN. 

The use of cache space by stream prefetch in relation to space used in interval 

caching is an area that should be examined; it was shown in the results that maximising 

space available to intervals leads to improved cache performance.  The prototype’s 

approach is very simplistic and purely functional, however focus should be placed on 

minimising use of cache space for prefetch.  At the same time, it is also necessary to 

increase prefetch lengths to achieve maximum disk throughput, when needed, whilst 
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reducing such lengthened prefetch once bandwidth requirements diminish.  In so doing, 

the amount of cache space available for re-use data is maximised whilst achieving the 

necessary disk throughput.  It is in this area that the performance monitor data may be 

used to influence the scheduler cycle length and size of stream prefetch.  In fact, the 

replacement of the current disk scheduler with a real-time scheduler would attempt 

minimise prefetch lengths for the prevailing conditions by design. 

7.6 Summary 

In this chapter, the contributions of the author to the work contained in this thesis were 

declared.  The chapter included an overview of the practices and techniques used in the 

construction of the server, and that are recommended in the development of other such 

systems.  The impact of the work, both within the university department, and within the 

field of Video-on-Demand in general, was discussed.  In conclusion, the development 

options for the prototype server and the principle of stream optimised caching were 

considered. 
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9. Appendix A:  Pattern Generator User Behaviour 

Scripts 

This section gives the details of the pattern generator input scripts as used for the 

experiments of Chapter 5.  The field descriptor tables are given again here for reference. 

9.1 Target Clip Descriptors 

CLIPLEN Length of clip when played at normal speed (milliseconds) 

CLIPWAIT Waiting time before making a transition to a successor clip (ms) 

CLIPDETAIL Probability per second of interaction during the clip (0 to 1) 

CLIPTERM Probability per second that the clip will be terminated before its 

end (0 to 1) 
 

 

10 #nclip 

#CLIPLEN CLIPWAIT CLIPDETAIL CLIPTERM File Size / Bytes 
103760 500    0.9   0.01   17338368 

38360  3000    0.9   0.01    6582272 

154280  10000    0.9   0.01   23810048 

104240   5000    0.9   0.01   23183360 

129560   10000    0.9   0.01   31076352 

232760   80000    0.9   0.01   49930240 

70160 15000    0.9   0.01   10252288 

37240  5000    0.9   0.1     7057408 

61240 15000    0.9   0.01    9224192 

38160  2000    0.9   0.1     6680576 

      Total: 185135104 Bytes 

 

9.2 Clip Transition Probability Matrix 

The following is the NCLIP by NCLIP transition probability matrix from clip i to j: 

 
# clip transition matrix 

0 0.9 0.1 0 0 0 0 0 0 0 

0 0 0.8 0 0.1 0 0 0 0 0.1 

0.1 0 0.1 0.8 0 0 0 0 0 0 

0 0 0 0 0.9 0 0 0 0.1 0 

0 0 0 0 0.05 0.95 0 0 0 0 

0 0 0 0.05 0 0.15 0.7 0.05 0 0.05 

0 0.05 0.05 0 0 0.1 0.1 0.6 0.05 0.05 

0.05 0 0 0 0 0.05 0 0 0.85 0.05 

0 0 0 0 0 0 0.05 0 0.05 0.9 

0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.5 

 

9.3 Emulated User Behaviour Descriptors 

USERHASTE A multiplier for CLIPWAIT above.  Allows each user to have 

different tolerances for watching each clip (real number) 

USERLATE A delay before the user becomes active in the simulation (ms) 
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USERVCI An outgoing virtual channel identifier such that the resulting 

video can be watched. 

USERSTYLE An index into a user interaction behaviour table - see below 

 
 

25 # users 

 

#HASTE LATE  VCI STYLE 

0.5  0   128 1 

0.6  0  129 1 

0.6  0  130 1 

0.9  0  131 1 

1.0  60000 132 1 

1.0  60000 133 1 

0.6  60000 134 1 

0.8  60000 135 1 

0.7  120000 136 1 

0.6  120000 137 1 

0.5  120000 138 1 

0.9  120000 139 1 

0.5  180000 140 1 

0.6  180000 141 1 

0.7  180000 142 1 

0.7  180000 143 1 

1.0  240000 144 1 

0.7  240000 145 1 

0.6  250000 146 1 

0.8  250000 147 1 

0.7  180000 148 1 

0.7  180000 149 1 

1.0  240000 150 1 

0.7  240000 151 1 

0.6  250000 152 1 

 

9.4 User Behavioural Style Descriptors 

PAUSE A multiplier for CLIPDETAIL which gives the probability per second 

that the user will pause the playback 

CONTINUE The probability per second that a user will continue with the playback 

SKIP Similarly to PAUSE, is a multiplier for CLIPDETAIL giving the 

probability per second of the user skipping  over the playback 

MEANSKIP The average length of a skip action in seconds 

VARSKIP The standard deviation of the skip length in seconds 
 

1 #act types 

# PAUSE CONTINUE SKIP MEANSKIP VARSKIP 

0.005     0.1    0.01   -15000   30000 
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10.  Appendix B:  vfsBench Protocol Definition 

/* 

 * vfs data collection protocol 

 * 

 * An accompanying protocol for ukcStream protocol.  Simply allows 

 * a client to start up data collection on the video server and to 

 * collect that data as required.  Assumes that only one server collects 

 * data at any time, hence the lack of session key from RESET. 

 * 

 * Kneale J Rothwell, 2/12/96 

 * 

 * Returning data for the active streams is all very well, but it tends 

 * to leave out part of the picture.  I've therefore added some total 

 * counts to remove some inconsistencies in the data.  (kjr1 - 24/1/97) 

 */ 

 

#ifndef VFSBENCH_H 

#define VFSBENCH_H 

 

struct RESETres { 

  int errno; 

}; 

 

struct COLLECT_resok { 

  u_long  streams_active; 

  u_long  total_hits; 

  u_long  cache_hits<>; 

  u_long  total_misses; 

  u_long  cache_misses<>; 

  u_long  total_dropped; 

  u_long  dropped_Tx<>; 

  u_long  total_Txd; 

  u_long  frames_Txd<>; 

  float   frame_rate<>; 

  u_long  total_overdue; 

  u_long  overdue_us<>; 

  u_long  total_daccess; 

  u_long  disk_accesses<>; 

  u_long  total_dbytes; 

  u_long  disk_bytes<>; 

  u_long  total_dtime_ms; 

  u_long  disk_time_ms<>; 

  u_long  groups_active; 

}; 

 

union COLLECTres switch (int errno) { 

case 0: 

  COLLECT_resok  resok; 

default: 

  void; 

}; 

 

struct HALTres { 

  int errno; 

}; 

 

union REINITres switch (int errno) { 

case 0: 

  u_long  size_set;      /* Size of cache in Bytes set by call */ 

default: 

  void; 

}; 

 

program VFSBENCH { 

  version VFSBVERS { 

    RESETres 
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      VFSBPROC_RESET  (void)   = 1; 

    COLLECTres 

      VFSBPROC_COLLECT(void)   = 2; 

    HALTres 

      VFSBPROC_HALT   (void)   = 3; 

    REINITres 

      VFSBPROC_REINIT (u_long) = 4; /* Arg of 0 sets all available mem */ 

  } = 2; 

} = 200022; 

 

#endif 

 

 

 

 


