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Simple Summary: Colorectal cancer (CRC) is one of the most common cancer worldwide. CRC
is derived from polyps and many factors, such as Matrix Metalloproteinases (MMPs) can gain the
progression of colorectal carcinogenesis. Many investigations have indicated the role of MMPs in
CRC development while there is not enough knowledge about the function of MMPs in precancerous
conditions. This review summarizes the current information about the role of MMPs in polyps and
CRC progression.

Abstract: Colorectal cancer (CRC) is the third and second cancer for incidence and mortality world-
wide, respectively, and is becoming prevalent in developing countries. Most CRCs derive from
polyps, especially adenomatous polyps, which can gradually transform into CRC. The family of
Matrix Metalloproteinases (MMPs) plays a critical role in the initiation and progression of CRC.
Prominent MMPs, including MMP-1, MMP-2, MMP-7, MMP-8, MMP-9, MMP-12, MMP-13, MMP-14,
and MMP-21, have been detected in CRC patients, and the expression of most of them correlates
with a poor prognosis. Moreover, many studies have explored the inhibition of MMPs and targeted
therapy for CRC, but there is not enough information about the role of MMPs in polyp malignancy.
In this review, we discuss the role of MMPs in colorectal cancer and its pathogenesis

Keywords: Matrix Metalloproteinases (MMPs); polyp; colorectal cancer; TIMPs; MMP polymor-
phisms; MMP targeting

1. Introduction

At approximately 11% of all diagnosed cancer cases, CRC is the third most common
cancer and the second most lethal cancer worldwide [1,2]. It is today well known that
several factors contribute to the CRC pathogenesis, driving complex genetic and epigenetic
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processes that, ultimately, transform normal colonic mucosa to cancerous tissue [3]. CRC
may initiate from benign polyps with the mucosal origin and can develop into carcinoma.
Colorectal polyps, especially adenomas, are proliferative lesions that have been defined
as the precursor of CRC. Therefore, the early detection and removal of these polyps can
interrupt the progression of the adenoma-carcinoma sequence [4,5].

Many molecular signaling pathways are involved in CRC initiation and progression,
such as ERK/MAPK, TGF-β, PI3K/Akt, Src/FAK, and β-catenin pathways. These path-
ways can promote the hallmarks of cancer such as inflammation, angiogenesis, metastasis,
and invasion, also via the activation and overexpression of MMPs [6,7]. Thus, MMPs have
been suggested as potential prognostic factors for the malignancy risk of colorectal polyps.
MMPs are proteolytic enzymes implicated in the degradation of stromal connective tissues
and of the extracellular matrix (ECM), a complex network that plays a key role in sustaining
signaling transduction and thus cancer development and progression [8]. As such, MMPs
have key roles in tumor initiation, progression, and metastasis and can affect tumor cell
behavior by cleaving proapoptotic agents and producing an aggressive phenotype [9].
Because of these roles, MMPs have been detected as biomarkers in CRC progression [10].
A new challenge in CRC treatment is finding an effective pharmacological and therapeutic
method for suppression of MMPs and targeted therapy of CRC [11]. This review will deal
with the role of MMPs in colorectal carcinogenesis from colorectal polyps to CRC.

2. CRC Pathogenesis and Molecular Classification

Colorectal polyps result from atypical cell proliferation in the colorectal tissue. Based on
histological and morphological features, colorectal polyps are divided into neoplastic (ade-
noma) and non-neoplastic (hyperplastic, hamartomatous, and inflammatory) types [5,12].
Neoplastic polyps, also known as adenomatous polyps, are subclassified by their histologi-
cal characteristics as tubular, villous, or tubulovillous adenomas. Previous investigations
demonstrated that approximately 5–10% of neoplastic polyps are villous adenomas and
most of them show dysplasia. Approximately 10–15% of neoplastic polyps show mor-
phological features of both villous and tubular types [13]. Adenomas are not usually
transformed to carcinoma, but there is evidence that the adenoma-carcinoma sequence
originates from adenomatous polyps [14]. Also, hyperplastic polyps may possess malig-
nancy potential [15]. CRC is caused by the misregulation of some oncogenes such as KRAS
and c-MYC and tumor suppressor genes such as P53 and APC, which control cellular signal
transduction [16–18].

2.1. Molecular Mechanism of CRC

Specific features characterize CRC and its pathogenesis based on genetic, epigenetic,
and transcriptomic factors. Three main molecular abnormalities are involved in CRC
carcinogenesis:

A. Microsatellite instability (MSI): it consists of mutations in DNA mismatch repair
(MMR) genes such as MSH2, MLH1, PMS2, MLH3, MSH3, PMSI, and EXO1; MSI is
rare in polyps but it is always found in serrated polyps and about 15–20% of all CRC
cases are derived from MSI [19,20].

B. Chromosomal instability (CIN): this abnormality is identified in 85% of CRC cases
and consists of a gain (1q, 7p, 8q, 13q, 2pq) or loss (8q, 15q, 17p, 18p) of chromosomal
genes, activation of proto-oncogenes (KRAS, SRC, c-MYC), and inactivation of tumor
suppressor genes (P53, APC) [21].

C. CpG Islands Methylator Phenotype (CIMP): these regions, located in the gene pro-
moter, could disturb the activation of tumor suppressor genes. CIMP phenotype is
represented by hypermethylation of CpG dinucleotides and premalignant serrated
polyps are correlated with CIMP [22,23]
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2.2. Molecular Classification Based on Transcriptomic Analysis

Based on gene expression profiles, CRC has been classified into subgroups with
distinct molecular and clinical features [24].

A. Consensus molecular subtype (CMS) classification: CMS classification provides bio-
logical insight into metastatic colorectal cancer (mCRC) carcinogenesis and predicts
CRC prognosis [25].

◦ CMS1 (14%) indicates MSI, CIMP, and BRAF mutation and immune activation.
◦ CMS2 (37%) shows Wingless-Type MMTR integration site family member

(WNT), MYC signaling activation, and epithelial involvement.
◦ CMS3 (13%) demonstrates MSI, CIMP, and KRAS mutations and metabolic

involvement.
◦ CMS4 (23%) includes invasion, metastatic situations, and TGF-β signaling co-

activation and angiogenesis. Also, epithelial-mesenchymal transition (EMT)
is a crucial event in colorectal carcinogenesis and is involved in CMS4 status.
EMT can result in advanced-stage CRC, poor patient survival, and worst
clinical features [26,27] and CMS4 subgroup shows the most unfavorable
prognosis.

B. CRC intrinsic subtypes (CRIS): CRIS is a unique classification exclusively based on
the cancer cell-specific transcriptome of CRC since the extrinsic factors of the stroma
have not been analyzed. It classifies CRC into five novel transcriptional groups that,
thus, further clarify biological understanding of CRC heterogeneity.

◦ CRIS-A is enriched for BRAF-mutated MSI tumors and KRAS-mutated MSS
tumors that are without targeted therapeutic options.

◦ CRIS-B is related to invasive tumors with poor prognosis and high TGF-ß
signaling. CRIS-B is unconnected to the CMS4 mesenchymal subtype, which
also indicates aggressive tumors with TGF-ß pathway activation.

◦ CRIS-C is dependent on EGFR signals and is sensitive to anti-EGFR mono-
clonal antibody treatment.

◦ CRIS-D shows IGF2 overexpression. This occurrence has been involved in de-
sensitization to the EGFR blockade in patients with KRAS wild-type tumors.

◦ CRIS-E indicates KRAS-mutated, Paneth cell-like CIN tumors refractory to
anti-EGFR antibody treatment [28].

3. Structure and Function of MMPs

MMPs are a family of zinc-dependent endopeptidases consisting of a propeptide
sequence, a catalytic domain, a hinge region, and a hemopexin (PEX) domain [29]. The
propeptide domain is highly conserved and can regulate the sequence that interacts with
Zn2+. Also, cystine within this area permits the MMPs to be in the active or inactive
status [30]. The catalytic domain possesses a conserved zinc-binding motif which, in the
active condition, will disconnect from the propeptide domain. Movement between the
catalytic and PEX domain is done via hinge regions [29]. According to their structural
domains, MMPs have been categorized into collagenase, gelatinase, stromelysin, matrilysin,
and membrane-bound MMPs (MT-MMPs) [31,32].

MMPs play a crucial role in the remodeling of the ECM by digestion of ECM com-
ponents, stimulation of cell surface proteins. Also, they can control the activity of other
proteinases, growth factors, chemokines, and cell receptors, and moderate many biological
functions [33]. MMPs can regulate cellular growth, migration, survival, and adhesion
in biological and pathological statuses (Table 1, Figure 1). Due to the MMP’s key roles,
the dysregulation of their expression levels and their activation lead cancerous cells to
proliferation, angiogenesis, survival, invasion, malignant transitions, and immune dys-
regulation [34–36]. Also, the tissue inhibitors of metalloproteinase (TIMPs) control the
activation of MMPs and have a critical action in precancerous conditions, CRC progression,
and metastasis (Table 2, Figure 2) [11,37].
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Table 1. Matrix Metallopeptidases Features in Humans.

MMP Gene Chromosomal
Location Enzyme Substrate

MMP-1 11q22.2 Collagenase-1 Col I, II, III, VII, VIII, X, Gelatin

MMP-8 11q22.2 Collagenase-2 Col I, II, III, VII, VIII, X, Gelatin, Aggrecan

MMP-13 11q22.2 Collagenase-3 Col I, II, III, VII, VIII, X, Gelatin

MMP-2 16q12.2 Gelatinase A Gelatin, Col I, II, III, IV, VII

MMP-9 20q13.12 Gelatinase B Gelatin, Col IV, V

MMP-3 11q22.3 Stromelysin-1 Col II, III, IV, IX, X, proteoglycans,
fibronectin, laminin, and elastin.

MMP-10 11q22.2 Stromelysin-2 Col II, III, IV, IX, X, proteoglycans,
fibronectin, laminin, and elastin

MMP-7 11q22.2 Marilysin-1 Fibronectin, Laminin, Col I, Gelatin

MMP-14 14q11.2 MT-MMP Gelatin, Fibronectin, Laminin

MMP-12 11q22.2 Metalloelastase Gelatin, Fibronectin, Col IV

MMP-21 10q26.2 XMMP Aggrecan

Figure 1. Summary of the prominent MMP genes in CRC. MMPs play different functions in CRC.
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Table 2. Summary of Investigations about the Roles of MMP Genes and Proteins in Colorectal Polyps and Cancer.

References Gene/Protein
Expression Samples Methods Results

Huang X., et al.,
2021 [38]

MMP-7,
MMP-9,

MMP-11,
TIMP-1, TIMP-2,

CEA

Human polyps
and tumor

Enzyme-linked
immunosorbent assay

A combined detection model,
including MMP-7, TIMP-1, and

CEA improved both the specificity
and sensitivity for detecting CRC.

Zhou X., et al.,
2021 [39]

MMP-7,
MMP-9,

MMP-11,
TIMP-1, TIMP-2,

CEA

Human CRC
ELISA and electro-
chemiluminescence

immunoassay

The miR 135a was downregulated
and MMP 13 was increased in

samples. Combined detection of
the two had a good diagnostic

effect on the occurrence of CRC.

Rasool M., et al.,
2021 [40]

TGF, VEGF, TNF,
ILs, MMP-2, 9,

11, and 19

Human polyps
and tumor ELISA

Significant upregulation of MMP-2,
MMP-9, MMP-11, and MMP-19

was reported in polyp and colon
cancer samples compared with

their MMP profile in normal
samples.

Barabás L., et al.,
2020 [41]

MMP-2, MMP-7,
MMP-9, TIMP-1

and TIMP-2

Human adenomas,
and CRC ELISA

The serum antigen concentrations
of MMP-7, MMP-9, TIMP-1, and

TIMP-2 were significantly increased
in patients with CRC and

adenomas compared
with the controls.

They were also activated in
premalignant adenomas.

Hsieh S.L., et al.,
2019 [42]

Study of the
mechanism of

carnosine,
TIMP-1, and

MMP-9

Human HCT-116
CRC cell line MTT assay and qPCR

The carnosine inhibits the
migration and intravasation of

human CRC cells.
The regulatory mechanism may

occur by suppressing NF-κB
activity and modulating MMPs and

EMT-related gene expression in
HCT-116 cells treated

with carnosine.
MMP-9 mRNA and protein levels
were decreased. TIMP-1 mRNA

and protein levels were increased.

Kıyak R., et al.,
2018 [43]

MMP-7, COX-2,
TIMP-1, and
CEA protein

Human polyps

ELISA and
chemiluminescent

enzyme
immunometric assay

(CEIA)

The plasma TIMP-1 levels were
significantly elevated in cancer

compared with the polyp group.
The plasma MMP-7 levels were

decreased in polyps compared with
the control group.

The plasma CEA and TIMP-1 are
valuable biomarker candidates for

differentiating CRC from
colorectal polyps.

Eiró N., et al.,
2017 [44]

MMP-1, 2, 7, 9,
11, 13 and 14

Human adenomas
and hyperplastic

polyps

Real-time PCR and
Western-blot, and

The hyperplastic polyps had the
lowest levels of MMP-1 and

MMP-7. Tubular polyps had high
levels of both MMP-7 and MMP-14,
and tubulo-villous adenomas had
high levels of MMP-1, 7, and 14

compared with the normal group.
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Table 2. Cont.

References Gene/Protein
Expression Samples Methods Results

Pezeshkian Z., et al.,
2017 [45]

MMP-7 and
VEGF-A Human adenomas

Real-time PCR in
50 biopsy samples of
adenomas including
villous, tubular, and
tubulo-villous types,
and 20 paired tissue

samples

The MMP-7 mRNA expression was
significantly higher in villous

adenoma with high-grade
dysplasia compared with the

control group. MMP-7 and VEGF-A
are prognostic biomarkers for

colorectal adenoma polyp
progression to malignancy.

Wernicke A.K., et al.,
2016 [46]

Association
between grade of

dysplasia and
MMP-13

expression

Human adenomas
and hyperplastic

polyps

Immunohistochemistry
and immune-reactive

score (IRS)

The MMP-13 has been identified as
an excellent marker of high-grade
intraepithelial neoplasia and CRC.

The strength of the association
between pathologic stage and

immune-reactive MMP-13 scoring
emphasizes its potential for
diagnosis in precancerous

colorectal lesions.

Gimeno-García A., et al.,
2016 [47] MMP-9

Patients’ blood,
adenomas,

hyperplastic
polyps, and CRC

tissue

Luminex XMAP
technology, gelatin

zymography, western
blot, and SNP

analysis in 150 blood
and tissue

There was a significant correlation
between plasma and tissue

levels of MMP-9.
Plasma MMP-9 levels in patients

with neoplastic lesions were
significantly higher than in healthy
controls. Also, MMP-9 in CRC was

higher than in non-advanced
adenomas.

Annaha’zi A., et al.,
2016 [48] MMP-9

Patients′ stool
samples,

adenomas,
hyperplastic

polyps, and CRC
tissue

ELISA

Stool MMP-9 was significantly
increased in CRC compared with

all the other groups.
Stool MMP-9 may be a new
noninvasive marker in CRC.

Klupp et al.,
2016 [49]

MMP-7,
MMP-10, and

MMP-12

Serum specimens
of patients with

colon
adenocarcinoma

Luminex based
multiplex assay

Expression levels of MMP-7,
MMP-10, and MMP-12 in serum of
colon cancer patients are different

compared with serum specimens of
the healthy control group. The

upregulation of MMP-7, MMP-10,
and MMP-12 in colon cancer

patients’ serum was associated with
a poor prognosis.

Otero-Estévez O., et al.,
2015 [50] MMP-9 Human adenomas

and CRC

non-invasive stool
immunochemical test

(FIT) and ELISA

The MMP-9 levels were higher in
advanced adenomas and CRC

compared with those reported in
samples of healthy individual.

Elevated MMP-9 concentration was
associated with several lesions, size,

and adenoma histology.
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Table 2. Cont.

References Gene/Protein
Expression Samples Methods Results

Bengi G., et al.,
2015 [51]

MMP-7, TIMP-1,
and COX-2

Human adenomas
and CRC Real-time PCR

The expression of TIMP-1, COX-2,
and MMP-7 was significantly

higher in polyps compared with
normal tissue.

Overexpression of MMP-7, COX-2,
and TIMP-1 determine an

important role of these genes in the
progression of colon cancer.

Odabasi M., et al.,
2014 [52]

MMP-9 and
NGAL

Human adenomas
and CRC Immunohistochemistry

The MMP-9 and NGAL
overexpression in neoplastic polyps

might be used as markers to
separate them from non-neoplastic

polyps.
These genes as

immune-histochemical markers
determine dysplasia in the early

steps of the colorectal
adenoma-carcinoma sequence.

Qasim B.J., et al.,
2013 [53] MMP-7 Human adenomas Immunohistochemistry

MMP-7 was expressed in advanced
colorectal adenomatous polyps

with large size, severe dysplasia,
and villous.

Sheth R.A., et al.,
2012 [54]

MMP-2, and
MMP-9

Xenograft model
of CRC in nude

mice

The MMP enzyme
activity was

measured by an
enzyme-activatable
optical molecular

probe and
quantitative
fluorescence

colonoscopy in nude
mice which received

celecoxib versus
vehicle

There was an apparent linear
relationship between measured

MMP activity and tumor
growth rate.

Murname M.J., et al.,
2009 [55]

MMP-2 and
MMP-9

Mouse models of
CRC and human
HT-29 CRC cell

line

Gene-expression
microarray and

ELISA

The plotted receiver operating
characteristic (ROC) curves

estimated the sensitivity and
specificity profiles of MMP-2 and

MMP-9 for the identification
of CRC.

Jeffery N., et al.,
2009 [56]

MMP-1, 2, 3, 7, 9,
13, MT1-MMP,
MT2-MMP and
TIMP-1, TIMP-2,

and IMP-3

Human adenomas
and CRC Immunohistochemistry

MMP-1, MMP-2, MMP-3, TIMP-1,
and TIMP-2 showed a significant

increase in carcinomatous
epithelium compared with

adenoma epithelium.
The increased expression of MMPs

and TIMPs occurred at an early
stage of colorectal neoplasia.

Lièvre A., et al.,
2006 [57]

The functional
gene promoter

polymorphisms
of MMP1,

MMP3,
and MMP7

Human adenomas Real-time PCR allelic
discrimination assay

These data showed a relation
between MMP-1 -1607 ins/del G

and MMP-3 -1612 ins/del A
combined polymorphisms and risk

of small adenomas.
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Table 2. Cont.

References Gene/Protein
Expression Samples Methods Results

Tutton M.G., et al.,
2003 [58]

MMP-2 and
MMP-9

Patients’ plasma
samples,

adenomas, and
CRC

Immunohistochemistry,
real-time PCR, and

ELISA

The expression of MMP-2 and
MMP-9 was significantly increased

in CRC tissues compared with
matched normal tissues. Plasma
MMP-2 and MMP-9 levels were

significantly elevated at all stages
in CRC patients.

Plasma levels of these enzymes
may be a noninvasive indicator of

invasion or metastasis in CRC.

Figure 2. The diagram indicates the role of MMPs genes in adenoma development, colorectal
adenoma-carcinoma sequence, and tumor progression. MMP-1, MMP-3, MMP-7, MMP-9, and
MMP-13 are involved in adenoma development. MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-
9, MMP-12, MMP-13, MMP-14, and MMP-21 participate in adenoma-carcinoma sequence and
tumor progression.

4. The Function of MMPs in Colorectal Polyps and Cancer
4.1. MMP-1, MMP-13, and MMP-8 (Collagenases)

The specific targets for MMP-1 and MMP-13 are in the intestine. MMP-1 can digest
type I, II, III, VII, VIII, X collagen, and gelatin. Upregulation of MMP-1 gene was detected in
CRC patients compared to normal tissue [6,59]. Eiro et al., found overexpression of MMP-1
gene in serrated, villous, and tubulovillous adenomas (i.e., polyps with high potential
for transformation to CRC) [44]. Previous investigations demonstrated the correlation
between MMP-1 gene expression and CRC progression: high expression levels of MMP-
1 were associated with invasion, advanced stage metastasis, LNM, and shorter overall
survival [60,61]. Wang, et al. investigated the role of MMP-1 in the development of CRC.
They found that the downregulation of MMP-1 expression inhibited the progression of
CRC in vitro and in vivo by suppressing the PI3K/Akt/c-myc signaling pathway and
the EMT [6].

MMP-13, another member of the collagenase category, could degenerate type III
collagen. According to the strength of the association between pathologic stage and
immunoreactivity scoring (IRS) of MMP-13, in high-grade adenomas and CRC, MMP-13
was observed with a moderate and strong staining intensity, respectively [46]. This result
indicated that MMP-13 could help to predict metastatic behavior and prognosis of early-
stage cancerous and precancerous colorectal adenoma [46,62]. The study of the association
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between grade dysplasia and MMP-13 expression in 137 biopsies from patients with
cancerous and non-cancerous colorectal adenomas showed that the high expression level of
MMP-13 IRS could be helpful to predict metastatic state, prognosis, and recrudescence at an
early stage of cancerous and precancerous colorectal adenoma. Moreover, the upregulation
of MMP-13 IRS from low to high-grade adenoma was considered an early predictive
cancer biomarker [46]. Meanwhile, several studies confirmed that upregulation of MMP-
13 was related to advanced CRC and liver metastasis [62–64]. Also, the expression of
MMP-13 on the primary tumor cell surface is increased in inflammatory bowel disease.
The expression of MMP-13 is closely related to the progression, early relapse, and high
mortality of CRC [63,65].

Another member of collagenase enzymes is MMP-8 which is frequently expressed
by neutrophils. MMP-8 cleaves many substrates, such as type I, II, and III collagen. This
MMP is mainly considered to play a protective role against cancer. However, more recent
findings also suggest an oncogenic function of MMP-8 gene [66,67].

Sirnio et al., found that enhanced-serum MMP-8 level in CRC patients was significantly
related to advanced-stage CRC, distant metastasis, lack of MMR, and poor survival. Thus„
they evidenced that MMP-8 is correlated with inflammation and CRC progression [68].

4.2. MMP-2 and MMP-9 (Gelatinase)

MMP-2 and MMP-9, known as gelatinases, can digest type IV collagen and gelatin [69].
Murname et al. showed that MMP-2 protein activity in adenomas with high-grade dyspla-
sia (HGD) was different from adenomas with low-grade dysplasia (LGD). They suggested
that the active MMP-2 gene could predict CRC malignancy risk in patients with ade-
nomatous polyps [70]. Some studies also indicated high expression levels of MMP-9
protein in adenomas with HGD compared to adenomas with LGD and normal tissue. As
such, researchers speculated that upregulation of MMP-9 is a primary event in the CRC
adenoma-carcinoma sequence [41,71]. High expression levels of MMP-2 protein in CRC
tumors compared to normal mucosa have also been reported [41,72]. In addition, a statisti-
cally significant relationship between upregulation of MMP-2 gene with advanced-stage
CRC or CRC progression has been observed [41,73–75]. On this basis, MMP-2 has been
suggested as a potential biomarker to detect CRC progression and predict patient survival.
Furthermore, overexpression of the MMP-2 gene was associated with metastasis of lymph
nodes and a decrease of cell adhesion in tumors [73].

Finally, also the upregulation of MMP-9 gene was associated with the advanced stage
of CRC and suggested as a biomarker predictive of poor overall survival [41,76]. Chen et al.
indicated that the overexpression of MMP-9 gene promoted CRC metastasis through the
MKK-3/p38/NF-κB pro-oncogenic pathway. Furthermore, they suggested MMP-9 gene as
a potential molecular target for targeted therapy to treat metastatic CRC patients [76].

On the contrary, some investigations reported that MMP-9 gene has a protective
role in CRC by stimulating Notch activation resulting in the activation of p21WAF1/Cip1
leading to the suppression of β-catenin [77,78]. In a recent study, although in colitis-
associated colon cancer, Walter et al. confirmed this observation by revealing that MMP-9
protein expression was associated with reduced ROS levels, decreased DNA damage, and
stimulated mismatch repair pathway [79].

In an interesting study, Wei et al., by analyzing microbiota in tumors obtained by
patients with different prognoses, found that the expression of some inflammatory genes,
including MMP-9, was associated with the abundance of specific bacteria. High levels of
MMP-9 expression were significantly correlated with the high abundance of B. fragilis and
F. nucleatum whereas a high level of F. prausnitzii was associated with downregulation of
MMP-9 [80].

4.3. MMP-3, MMP-10 (Stromelysin)

Another member of MMPs family is MMP-3, or stromelysin-1, which degrades colla-
gen (types II, III, IV, IX, and X), proteoglycans, fibronectin, laminin, and elastin in ECM.
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Sipos et al., found a positive association between MMP-3 protein expression and the
adenoma–dysplasia–carcinoma sequence. In particular, they reported that high-grade
dysplastic sessile adenomatous-stage and early-stage CRC conditions can be differentiated
based on the stroma expression of MMP3 [81]. Meaningful positive associations between
the protein expression level of MMP-3, invasion, lymph node metastasis, histological type
of CRC, and poorly differentiated tumor were reported by Islekel et al. [82]. MMP-3 can
activate other MMPs, such as MMP-1, MMP-7, and MMP-9, to promote the progression of
tumor initiation [83,84].

MMP-10 also belongs to the stromelysin family. It can digest collagen types II, III,
IV, IX, X, proteoglycans, fibronectin, laminin, and elastin. Also, MMP-10 enhances cell
growth and invasion in CRC, and its upregulation was found to be associated with poor
survival [49,85].

4.4. MMP-7 (Matrilysin)

MMP-7, or matrilysin, digests fibronectin, laminin, type I collagen, and gelatin. It can
provide the right condition for vascularization via cleavage of ECM [86]. A major ratio of
MMP-7 expression in tumor cells has been reported. Qasim et al., found MMP-7 protein
overexpression in villous adenomatous polyps compared to other types of polyps and
demonstrated that MMP-7 protein overexpression is an initial event in CRC carcinogenesis
that could lead adenomas to CRC [53]. In our laboratory, we observed high expression
levels of MMP-7 and VEGF-A mRNA in adenomatous polyps compared to normal tissue.
We found that the expression levels of MMP-7 and VEGF-A genes were higher in villous
adenoma than in other types of adenomas. Thus, we concluded that the MMP-7 gene
overexpression has a critical role in colorectal adenoma angiogenesis and could be a
primary event in the adenoma-carcinoma sequence [45].

MMP-7 gene can enhance tumor growth and metastasis [87]. Also, MMP-7 activates
other MMPs, such as proMMP9 and proMMP2 [88] In addition. MMP-7 exerts a wide
spectrum of activities not only as an enzyme but also as a signaling molecule. In fact, it has
been shown that MMP-7 trans-activates EGFR by releasing the heparin-binding epidermal
growth factor (HB-EGF) in CRC cells, with consequent cell proliferation and apoptosis
regulation [89,90].

4.5. MMP-12 (Metalloelastase)

MMP-12, or metalloelastase, can digest different substrates. Several studies considered
MMP-12 gene as an anti-metastatic agent [91,92]. Also, it could inhibit angiogenesis by
downregulation of VEGF and enhancement of the endogenous angiogenesis inhibitor
angiostatin. Overall, the role of MMP-12 in tumor suppression and increase in overall
survival has been widely recognized [93–95].

Importantly, Klupp et al., found higher levels of MMP-12 protein expression in sera
of CRC patients compared with those of healthy individuals. Also, they suggested an
association between MMP-12 protein expression levels and CRC advanced disease and
vascular invasion. Furthermore, a significant correlation between the upregulation of
MMP-12 expression and poor survival was shown [49].

4.6. MMP-21 (XMMP)

MMP-21 (XMMP) can degenerate aggrecan (cartilage-specific proteoglycan core pro-
tein) in the internal region of ECM [96]. Overexpression of MMP-21 protein in CRC
compared with normal tissue was shown in many studies [97,98]. Furthermore, significant
associations between MMP-21 protein expression and CRC tumor invasion, lymph node
metastasis, and distant metastasis were found [97,99]. Wu et al., showed that MMP-21
not only affected CRC progression but also was an independent prognostic biomarker
in patients with stage II and stage III CRC cancer. Taken together, these facts led them
to conclude that MMP-21 could be used for targeted therapy in CRC [97]. Huang et al.,
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demonstrated that the upregulation of MMP-21 protein was related to shorter overall
survival in patients with CRC [98].

4.7. MMP-14 (MT1-MMP)

MMP-14, called MT1-MMP, acts on matrix substrates, such as collagens I, II, III,
and gelatin. The MMP-14 gene plays a crucial role in many biological and pathological
conditions and activation of proMMP2 [92,100]. The role of MMP-14 in angiogenesis
and cancer invasion has been identified by previous investigations [101–103]. Cui et al.,
observed statistically significant associations between the overexpression of MMP-14 gene
in CRC compared to normal mucosa. Their analysis indicated that high expression levels
of MMP-14 were associated with advanced-stage CRC, lymph node metastasis, and poor
overall survival. They concluded that the MMP-14 gene is an oncogene and may represent
a potential prognostic biomarker in CRC [104].

Yang et al., showed in an in vivo CRC model that the STAT3 phosphorylation activity
and the overexpression of MMP14 protein were enhanced by the overexpression of Hes1
gene. Also, they suggested that Hes1 promoted the invasion of colorectal cancerous cells
via the STAT3-MMP14 pathway [103]. It was reported that the overexpression of MMP-14
protein was associated with Prox1 gene. When Prox1 gene was deleted, MMP14 protein
was increased, and the mice showed slow-growing, matrix-rich, chemotherapy-resistance,
and cancerous cells with malignant stromal features, including activation of fibroblasts,
blood vessels dysfunction, and lack of cytotoxic T cells [105].

5. The Effects of Polymorphisms of MMP Genes on Colorectal Carcinogenesis

Single-nucleotide polymorphisms (SNPs) are a common genetic variation involving a
single base pair in DNA. SNPs are mostly located in the gene promoter region and may
have an impact on gene and protein expression levels. The effects of MMP polymorphisms
have been observed in many cancers such as CRC and hepatocellular carcinoma [106,107].

In a Japanese population, the MMP-1 1G/2G polymorphism was detected and as-
sociated with the development of CRC [108]. In the Iranian population, Kouhkan et al.,
demonstrated that MMP-1 2G/2G genotype polymorphism was correlated with invasion
risk of CRC, especially in smoker men [109]. In the Netherlands, MMP-2-1306C>T SNP
was detected in CRC patients, and the T/T genotype was found to be associated with poor
overall survival whereas C/C and C/T genotypes showed better outcomes. No difference
in overall survival was instead observed among patients with different genotypes of the
MMP-9-1562C>T SNP [110]. Also, in a cohort study of Taiwanese CRC patients, Ting
et al. indicated that patients carrying the A/A genotype of the MMP-2-1575G>A SNP
had a higher risk to develop distant metastasis compared with patients carrying the T/T
genotype [111]. In a Polish population with CRC, individuals with the G/G variant geno-
type of MMP-7-181A>G SNP had a higher risk of lymph node involvement and advanced
tumor infiltration than patients carrying the A/A genotype [112]. A Chinese study showed
that the MMP-9 R279Q SNP relative to the R/R genotype was correlated with a higher
risk of CRC compared with the QQ genotype. Also, the allele frequency of the MMP-1
16071G/2G and MMP-7 181 A/G polymorphisms were not associated with CRC [113]. In
a Korean population, the homozygous MMP-9-1562C/C genotype was significantly more
frequent in CRC cases than in the control group [114]. In Sweden, researchers found that the
A/A genotype of MMP-12-82A>G increased the risk of disseminated malignancy in CRC
patients while the A/A genotype of MMP-13-82A>G was not correlated to invasion [115].

Lièvre et al., investigated MMP-3, MMP-7, and MMP-1 genes promoter polymor-
phisms in 295 patients with large adenomas and 302 patients with small adenomas. The
analysis revealed a significant association between MMP-3-1612 ins/del A, MMP-1-1607
ins/del G polymorphism, and small adenomas; also, adenomas were associated with the
combined genotype 2G/2G-6A/6A. However, no significant association between MMP-7
polymorphism and the development of adenomas was found. The authors suggested that
only the study MMP-3 and MMP-1 gene promoter polymorphisms had potential roles in
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the development of adenomas from normal colon epithelial cells or in the earliest steps
of CRC [57].

Tai et al., showed that MMP-8 rs11225395 related to the risk of CRC and worst outcomes
in a subpopulation of the Han Chinese population. On this basis, they suggested MMP-8
rs11225395 polymorphism as a potential biomarker predictive of CRC susceptibility [116].

6. Targeting MMPs in CRC Treatment
6.1. Pharmacological Inhibition

Several pharmacological inhibitors of MMPs (MMPIs) have been studied and tested
in phase I-III clinical trials, but to date, none of these drugs has been approved for the
treatment of cancer, including CRC. Overall, the late stages of the clinical experimentation
failed because of the substantial toxicity and weak selectivity of MMPIs [117]. Mainly,
candidate MMPIs are represented by small molecules, peptides, and antibodies [118].
Currently, only one broad-spectrum MMPI has been approved by FDA but it has not
indication in cancer (i.e., the small molecule periostat) [117,119]. Other MMPIs, such as the
small molecule prinomastat, selective for MMP-1, MMP-2, and MMP-9 [120–123] and the
GA-5745/andecaliximab, a selective anti-body against MMP-9, have reached the phase
III [124,125]. However, none of these trials includes CRC.

6.2. Inhibition of MMPs by TIMPs

Since MMPs are naturally inhibited by TIMPs, these proteins have also been widely
investigated mainly to exploit their ability to discover potential strategies for MMP inhibi-
tion [126]. The TIMP family consists of four members of proteins (TIMP1-4) that form a 1:1
complex with MMPs. Dysregulation of this complex due to the increased expression of
MMPs or a decreased control by TIMPs has been observed in several diseases, including
cancer. TIMPs control the activity of MMPs via binding to them (Figure 3) [126–128].

Figure 3. MMPs inhibition by TIMPs. TIMP-1 inhibits MMP-1, 3, 7, 9. TIMP-2 can suppress MMP-2
and 9, and TIMP-4 blocks MMP-2. These inhibitions result in the primary tumor transitioning to
advanced CRC. Moreover, TIMP-3 has a protective effect on CRC cases and could bind to several
MMPs [126–128].

TIMP-1 inhibits MMP-1, 3, 7, 9 and affects angiogenesis [37,129]. Previous investiga-
tions considered a dual activity for the TIMP-1 gene: in particular, TIMP-1 was associated
with tumor growth at the early stages of colon cancer, and decreased activity of TIMP-1
could lead to tumor invasion [130,131].

TIMP-2 can suppress MMP-2, MMP-9, and microvascularization [129,132]. Also,
downregulation of TIMP-2 is related to invasive CRC [133]. Wang et al., reported that
downregulation of TIMP-2 in CRC tumor tissues was meaningfully correlated with the
depth of invasion, lymph node metastasis, tumor stage, and poor survival [134].
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TIMP-3 is known as a tumor suppressor gene and inhibits several MMPs. TIMP-
3 downregulation is associated with advanced CRC [135]. Lin et al., represented that,
adenovirus-mediated TIMP-3 transduction in CT26 colon cancer cell line suppressed cell
growth and stimulated apoptosis. Also, TIMP-3 transduction inhibited migration and
invasion. In vivo data indicated that TIMP-3 prevented in vivo tumor growth and liver
metastasis [136].

TIMP-4 protein suppresses MMP-2, and one study showed that overexpression of
TIMP-4 increased the survival rate of rectal cancer [128].

Currently, no drug mimicking the TIMP activity has been obtained as well as no gene
therapeutic approach able to modulate the activity of TIMPs is available.

6.3. MMPs Regulation by microRNA

MicroRNAs, a class of small, endogenous RNAs of 21–25 nucleotides in length, control
gene and protein regulation via binding and digesting target mRNA (Table 3). Suppression
of MMPs by microRNAs is a suggested way for CRC treatment. Some evidence has been
provided. In particular, microRNA-34 (miR-34a) plays a role as a tumor suppressor, and its
overexpression could suppress MMP-1, MMP-9, and tumor cell proliferation, migration,
and invasion via acetylation of P53 in CRC [137–139]. The upregulation of miR-139 reduces
proliferation, migration, and invasion by suppression of the IGF-IR/MEK/ERK signaling
and MMP-2 gene in CRC patients [140]. Upregulation of miR-29a increases CRC metastasis
via suppression of KLF4 (Kruppel-like factor 4), transcription factor, and upregulation of
MMP-2 gene [141]. Also, miR-29b suppresses CRC metastasis, reduces angiogenesis and
EMT by targeting the MMP-2 gene [142]. Overexpression of miR-143 can suppress the
MMP-7 gene directly and prevent colorectal tumor cell proliferation and invasion [143].

Table 3. MMPs are Regulated by microRNAs in CRC.

MicroRNA MMP Result

miR-34a MMP-1, MMP-9 miR-34a overexpression prevents tumor cell
proliferation, migration, and invasion [138,139].

miR-139 MMP-2 Downregulation of miR-139 reduces proliferation,
migration, and invasion [140].

miR-29a MMP-2 Upregulation of miR-29a increases metastasis [141].

miR-29b MMP-2 Upregulation of miR-29b increases metastasis [142].

miR-143 MMP-7 Upregulation of miR-143 enhances tumor cell
proliferation and invasion [143].

6.4. MMPs Regulation by Long Non-Coding RNAs

Long non-coding RNAs (lncRNAs) can regulate gene expression and have key roles
in cell proliferation, migration, invasion, apoptosis, metastasis, and EMT in CRC. In this re-
gard, lncRNA-targeted therapy is today considered a potential promising strategy for CRC
treatment [144]. In fact, based on mechanistic studies investigating the complex lncRNA-
mediated sponge interactions in CRC, potential therapeutic targets for the treatment of this
cancer may be identified. Among the available findings, Tian et al., demonstrated that the
suppression of TUG1 by shRNA prevented MMP-14 expression, proliferation, invasion,
and EMT in colon cancer [145]. Sun et al., found a significant association between XIST
inhibition and suppression of c-Myc, cyclinD1, and MMP-7 expression through inactivation
of Wnt/β-catenin signaling pathway [146]. A recent investigation showed a meaningful
correlation between the overexpression of LINC00963 and the upregulation of MMP-2 and
MMP-9, proliferation, migration, and invasion of CRC cells [147]. Duan et al., revealed
that the inhibition of the CCEPR lncRNA reduced the expression levels of MMP-2 and
MMP-9, and prevented EMT in CRC cells [148]. Pan et al., realized that the expression
level of MMP-2 protein was notably decreased when PCA3 was knocked out. In addition,
suppression of PCA3 inhibited colon cancer cell invasion and migration [149].
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7. Conclusions

In summary, MMPs genes and proteins, through complex mechanisms involving the
induction of many molecular signaling pathways and the EMT process, play a relevant role
in the transition from pre-cancerous lesions and polyps to advanced CRC. However, further
investigation is needed to understand how MMPs exactly work. This would improve the
selectivity of MMPIs that could be exploited in a dual-mode: to treat CRC alone or in
combination with targeted agents and/or chemotherapy and to prevent CRC development.
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