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A compositional theory of protocol engineering

Laura Bocchi, Dominic Orchard, and Laura Voinea

University of Kent, UK

Abstract. Real-world communication protocols are often built out of
a number of simpler protocols that cater for some specific functionality
(e.g., banking, authentication). However much of the formal definitions
of protocols used for program verification treat protocols as monolithic
units. Composition is considered for implementations of a protocol, but
not for the protocols themselves as engineering components. We propose
primitives and techniques for the modular composition of protocols. Our
notion of composition defines an interleaving of two or more protocols in
a way that satisfies user-specified context-dependent constraints which
serve to explain “contact points” between the protocols. The resulting
approach gives a theoretical basis for protocol (re-)engineering based on
a process calculus with constraint annotations. We have implemented
our approach as a tool for Erlang that supports generation of protocol
compositions with formal guarantees, and code generation/extraction.

Keywords: Process-calculi, Distributed protocols, Protocol engineering

1 Introduction

Protocols are everywhere. Whenever two entities need to communicate, a pro-
tocol can be used to ensure that both parties effectively exchange information.
Protocols can be seen as a specification of communication, and as such have
been leveraged for the purposes of verification in programming languages, e.g.,
session types [18,19,8,20], choreographies [10,11,28], typestate [31], behavioural
types in general [21,17], and more. There may be many protocols that a program
has to conform to, capturing different interactions between different parts of a
system. Here we use the term protocol to denote a specification of the interaction
patterns between different system components. For example, when considering
distributed systems, a protocol may describe the causalities and dependencies of
the communication between processes. To give a more concrete intuition, an in-
formal specification of a protocol for an e-banking system may be as follows: The
banking server repeatedly offers a menu with three options: (1) request a banking
statement, which is sent back by the server, (2) request a payment, after which
the client will send payment data, or (3) terminate the session. We elaborate on
this example later, using it as a motivating example.

Much of the work on systematising the process of programming against a
specification assumes a monolithic view of protocols: a protocol is often given
for the entire system, explaining the communication between all parties involved.



2 L. Bocchi et al.

This up-front, single point of definition runs contrary to the human aspects of
real-world programming, in which a programmer gradually pieces together their
code, perhaps heavily leveraging libraries, to reach their intended goal; programs
are gradual compositions. A view that is globally defined once does not reflect the
real process of software composition. In contrast, a view that defines lots of local
protocols or sub-protocols places the burden of configuring their interaction on
the programmer: programmers must themselves work in a situation where they
have to consider many smaller protocols and work out how they want dependen-
cies between them to be resolved. Instead, a flexible, non-monolithic notion of
composition (and possibly recomposition, when a piece of code is refactored and
rewritten, or reused) is needed to support the engineering of protocol-dependent
code. Ideally, such a notion should support well-founded semi-automated proto-
col composition and implementation with formal guarantees.

This work lays a foundation for compositional protocol engineering based on
a notion of interleaving composition of protocols. An interleaving composition of
two protocols ‘weaves’ them together into a single unified protocol, differing from
a sequential composition in which one protocol follows the other, or one’s inputs
are coupled to the other’s outputs. We address, in general terms, the question
of what a correct protocol composition is, and introduce a syntactic definition
of composition that characterises finite sets of correct interleaving compositions,
each representing a ‘good way’ to interleave the component protocols with re-
spect to domain-specific user-specified constraints. The resulting approach gives
a theoretical basis for protocol (re-)engineering based on a process calculus with
constraint annotations. Interleaving composition has the purpose of enhancing
the awareness (of engineers and programmers) of what a protocol means, as
well as facilitating the reasoning about its properties. We give an algorithmic
implementation of interleaving composition supporting the process of defining
protocols and inspecting the generated compositions, and code generation for
Erlang, producing skeletons of processes following a given protocol (compos-
ite or not). Code generation is based on Erlang/OTP gen_statem behaviour [1]
allowing code to be automatically migrated in subsequent compositions and re-
engineering. Correspondence of our protocol language with Finite State Machines
(FSM) (via directed graphs) yields a straightforward link between protocols and
FSM-structured code.

A related line of work is that of automata compositions. Team Automata,
introduced in [7,16], provide several means of composing machines via synchro-
nization on their common actions, and give a formal framework for composi-
tion. Unlike Team Automata, we express composition constraints orthogonally
to communication: instead of synchronization on common actions, we use ‘as-
serts’/‘requires’ as asymmetric contact points for composition, and reason about
the properties of a composite protocol from the perspective of the application
logic. The resulting composition relation given in this work is not characteriz-
able as one of the synchronizations of Team Automata (discussed further in Sec-
tion 7). Another related line of work defines composition as run-time weav-
ing, for example applying principles of aspect-oriented programming to protocol
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SB := µt .&


statement : !statement.t
payment : ?details.t
logout : end


SA := ?pin.⊕

 ok : µr.!id.?tan.⊕
{

ok : r
fail : r

}
fail : end


Fig. 1. Banking (SB) and PIN/TAN authentication (SA) protocols.

composition [32]. Unlike the aforementioned work, we statically derive protocol
compositions that enable (human/automated) reasoning and verification of their
properties.

Motivating example Consider the banking protocol discussed earlier in this
section. The banking protocol can be formally specified as SB in Figure 1 using
a process calculus notation. SB repeatedly (via a fixed point µt) offers (denoted
&) three options: option statement is followed by a send action (denoted !) of
a message with the bank statement, option payment is followed by a receive
action (denoted ?) with details of the payment, and option logout is followed by
termination of the protocol (denoted end). After each of the first two options,
the control flow goes back to the initial state (via t).

Assume now that we want to extend SB with two-level authentication: one
level for accessing the service and one additional level for each payment trans-
action. Concretely, we wish to compose SB with the PIN/TAN (Personal Iden-
tification Number/Transaction Authentication Number) protocol modelled in
Figure 1 as SA which offers two-stage authentication. The first stage is pin au-
thentication: the server receives a pin and decides (⊕) whether to continue (i.e.,
ok) or terminate (i.e., fail). If ok is chosen, the protocol enters a loop (i.e., µr)
that manages multiple TAN authentications, supporting multiple transactions
requiring an additional level of security. In the loop, the server sends an identifier
id for which the client must send back a tan. The server notifies the client about
the correctness of the tan with either ok or fail.

We want to compose the banking and authentication protocols into one
single protocol where the actions of the two protocols follow a specific inter-
leaving: access to the banking service requires a PIN authentication, and each
payment instance/iteration requires an extra TAN authentication (see dotted
arrows in Figure 1). This specific interleaving entails an authorization property,
which we later express and ensure by using assertion annotations. Moreover, we
want tools that facilitate (re-)engineering of programs implementing interleaving
compositions. For example, we want to obtain a skeleton implementation for the
banking and PIN/TAN protocol, and in a second stage we want to reuse the code
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when composing banking with a different multi-factor authentication protocol,
e.g., offering other options besides TAN, such as keycard authentication.

Contributions Central to our work is our definition of interleaving compo-
sition. We use a process-calculus-based notation for protocols with ‘assertions’
that specify contact points and constraints between component protocols (Sec-
tion 2). Interleaving composition is defined relationally as there may be many
possible valid interleaved protocols (or even none) (Section 3). In Section 4,
we prove that our composition relation returns correct interleaving composi-
tions. Correctness comprises three properties: (1) behaviour preservation (The-
orem 1): interleaving compositions only perform sequences of actions that may
be performed by either of the component protocols, (2) fairness (Theorem 3):
interleaving compositions eventually execute the next available action of each
protocol, and (3) well-assertedness (Proposition 3): interleaving compositions
always satisfy requirements prescribed by the assertions in the protocols be-
ing composed. Thus, we establish that the composition relation produces sets of
correct-by-construction protocol compositions. In Section 3.1 we provide two less
restrictive definitions of interleaving composition with the use of two additional
rules, weak branching and correlating branching that are able to capture a larger
number of scenarios but enjoy a weaker fairness property (Theorem 2).

In Section 5, we introduce a tool to aid code reuse and modularisation in
Erlang. The tool implements interleaving composition, and provides code gener-
ation as well as protocol extraction from existing code. For instance, starting with
two gen statem separated implementations of the authentication and banking
protocols, we can extract their underlying protocols (together with any assertion
constraints they may have), automatically compose the extracted protocols and
generate a new Erlang module.

In Section 6, we discuss instantiating our protocol language into well-known
formalisms such as CCS [27] and Session Types [19,8,20], and illustrate possible
synergies. Section 7 discusses related work.

2 Asserted Protocols

We introduce a simple language of protocols to abstractly capture essential fea-
tures of sequential computation: sequencing, choice, and looping. Our protocol
language somewhat resembles Milner’s CCS [27] or the π-calculus [30] (but with-
out parallel composition or name restriction) and has some relation to Kleene
algebras [24] but we provide more general patterns of recursion via recursive
binders rather than a single closure operator.

Generally, two protocols can be composed in several ways, each reflecting
a possible interleaving of the actions of the two protocols. Not all such inter-
leavings are meaningful depending on the scenario or domain. The protocol
language therefore includes a notion of ‘assertions’ which can be used to capture
the behavioural constraints of a protocol to guide interleaving composition in a
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meaningful way; they act as a specification of minimal ‘contact points’ between
protocols akin to pre- and post-conditions.

Following an explanation of the syntax and various examples, we give an
operational model to the protocol language which serves to explain both the
program semantics which it abstracts, and the meaning of the assertion actions.

Definition 1 (Asserted protocols). Asserted protocols, or just protocols for
short, are ranged over by S and are defined as followsing syntax rules:

S ::= p.S action prefix
| +{li : Si}i∈I branching
| µt.S fixed-point
| t recursive variable
| end end
| assert(n).S assert (produce) }

assertion fragment| require(n).S require
| consume(n).S consume

where p ∈ P ranges over prefixing actions, l ∈ L ranges over labels used to label
each branch of the n-ary branching construct, t ranges over protocol variables
for recursive protocol definitions, n ∈ N ranges over names of logical atoms used
by assertions. The sets of actions P, labels L, and names N are parameters to
the language and thus can be freely chosen. Furthermore + ranges over a set of
operators O used to represent branching choice and thus can also be instantiated.

The prefixing action provides sequential composition (in the style of process
calculi). Branching is n-ary, taking the form of a set of protocol choices with a
label li for each choice. Looping behaviour is captured via the recursive protocol
variable binding µt, which respects the usual rules of binders, and recursion
variables t. We assume variables to be guarded in the standard way (they only
occur under actions or branching). Unless otherwise stated, we consider protocols
to be closed with respect to these recursion variables.

Protocols can be annotated with assertions to introduce guarantees assert(n),
requirements require(n), and linear requirements consume(n): assert(n) intro-
duces a true logical atom n into the scope of the following protocol, require(n)
allows the protocol to proceed only if n is in scope, and consume(n) removes the
truth of logical atom n from the scope of the following protocol.

Remark 1 (Language instantiation). The protocol language can be instantiated
to model different protocol languages. In the examples we often instantiate the
prefixing actions P to sends !T and receives ?T capturing interaction with some
other concurrent program, i.e., p ∈ {!T, ?T} where T is a type (e.g., booleans,
integers, strings), and instantiate choice + to a pair of polarised choice operators:
+ ∈ {⊕,&}, either offering of a choice ⊕ or selecting from amongst some choices
&. This yields a session types-like syntax like the one of Dardha et al. [14].
Different instantiations are possible, as shown in Section 6.

Examples often colour assertions green and labels purple for readability.
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2.1 Assertion examples

Consider a payment process ?pay.end that receives a payment and terminates,
and a dispatch process !item.end that sends a product link and terminates.
We can interleave these two protocols in two ways: ?pay.!item.end (payment
first) or !item.?pay.end (dispatch first). By using assertions, we can require that
payment happens before dispatch: below, I1 asserts the logical atom paid as a
post-condition to receiving payment while in I2 the sending action depends on
the logical atom paid as a pre-condition, and in doing so consumes it.

I1 =?pay.assert(paid).end I2 = consume(paid).!item.end

The only interleaving composition of I1 and I2 that satisfies the constraints
posed by the assertions is:

?pay.assert(paid).consume(paid).!item.end

The exact definition of well-assertedness, that specified constraints are satisfied
in all of the protocol’s executions, will be given later in this section (Definition 6).

Linear constraints model guarantees that can be used only once. For example,
the scenario “in a recursive payment/dispatch scenario there is one dispatch for
each one payment” can be modelled by recursive payment µt.?pay.assert(paid).t
and recursive dispatch µr.consume(paid).!item.r protocols. Non-linear constraint
require(n) does not consume guarantees. It can express, e.g., that at a prepaid
buffet, payment remains valid (hungry) until the meal ends (end):

µt.&{hungry : require(paid).!food.t, end : consume(paid).end}

Example 1 (Asserted banking and authentication protocols). Returning to the
banking and PIN/TAN example, the informal requirement discussed in the intro-
duction can be modelled using assertions. An asserted version of the banking pro-
tocol, given below as S′B , uses require(pin) to ensure a successful PIN authenti-
cation before accessing the banking menu; consume(tan) to require one successful
TAN authentication for each iteration involving a payment; and consume(pin)
to remove the PIN guarantee when logging out. Assertions assert(pay) and
consume(pay) ensure TAN authentication only happens in case of payment.

S′
B = require(pin).µt.&


statement : !statement.t
payment : assert(pay).consume(tan).?details.t
logout : consume(pin).end


In the asserted authentication protocol S′A below, assert(pin) and assert(tan)
provide guarantees of successful PIN and TAN authentication, respectively:

S′
A = ?pin.⊕

ok: assert(pin).µr.consume(pay).!id.?tan.⊕
{

ok: assert(tan).r
fail : r

}
fail : end


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2.2 Protocols semantics

The semantics of a protocol is given in Definition 3 in terms of an environment
that keeps track of guarantees, and lets protocols progress only if stated guar-
antees can be met by the environment. The semantics is up to the (standard)
structural equivalence rules given in Definition 2 where S[µt.S/t] is the one-time
unfolding of µt.S (all occurrences of t are substituted with µt.S).

Definition 2 (Structural congruence). Protocols have a structural congru-
ence relation ≡ (used in reasoning and the proofs for this paper) where:

µt.µt′.S ≡ µt′.µt.S µt.S ≡ S (where t 6∈ fv(S)) µt.S ≡ S[µt.S/t]

Definition 3 (Operational semantics). The semantics of protocols is de-
fined by a labelled-transition system (LTS) over configurations of the form (A,S)
where A ranges over ‘environments’: sets of logical atoms (i.e., A ⊆ N ), with
transition labels ` ::= p | +l | assert(n) | require(n) | consume(n) and the
transition rules below:

(A, p.S)
p−→ (A, S) 〈Inter〉

(A,+{li : Si}i∈I)
+lj−−→ (A, Sj) (j ∈ I) 〈Branch〉

(A, assert(n).S)
assert(n)−−−−−−→ (A ∪ {n}, S) 〈Assert〉

(A, require(n).S)
require(n)−−−−−−−→ (A, S) (n ∈ A) 〈Require〉

(A, consume(n).S)
consume(n)−−−−−−−→ (A \ {n}, S) (n ∈ A) 〈Consume〉

(A, S)
`−→ (A′, S′)

(A, µt.S)
`−→ (A′, S′[µt.S/t])

〈Rec〉

Rules 〈Inter〉 and 〈Branch〉 always allow a protocol to proceed with some action,
resulting in the appropriate continuation, without any effect to the environment.
Rule 〈Assert〉 adds atom n to the environment. Rules 〈Require〉 and 〈Consume〉
both require the presence of atom n in the environment for the protocol to con-
tinue. Although 〈Require〉 leaves the environment unchanged, 〈Consume〉 con-
sumes the atom n from the environment. In 〈Rec〉, S′[µt.S/t] means that the
recursive protocol is unfolded by substituting µt.S for t in S′.

We write: (A, S) 6→ if (A, S)
`−→ (A′, S′) for no `,A′, S′; (A, S)

`−→ (A′, S′)

for a vector ` = `1, . . . , `n if (A, S)
`1−→ . . .

`n−→ (A′, S′). We say that (A′, S′) is

reachable from (A, S) if (A, S) = (A′, S′) or (A, S)
`−→ (A′, S′) for a vector `. We

omit labels and target states where immaterial.

Definition 4 (Stuck state). State (A, S) is stuck if S 6≡ end and (A, S) 6→.

Definition 5 (Progress). A protocol S enjoys progress if every state (A′, S′)
reachable from (∅, S) is not stuck.

A protocol may reach a stuck state when it does not have sufficient pre-
conditions in its environment A. In Example 1, S′B does not enjoy progress
because the pre-condition expressed by require(pin) cannot be met; similarly,
S′A does not enjoy progress because of unmet pre-condition consume(pay).
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2.3 Well-assertedness

The assertions are key to generating meaningful compositions of protocols. Fol-
lowing the labelled transitions semantics, we define a judgment which captures
the pre- and post-conditions of a protocol implied by its assertions. We use the
notation A {S}A′ reminiscent of a Hoare triple where A and A′ are pre- and
post- conditions of S respectively.

Definition 6 (Well-assertedness). Let A be a set of names. Well-assertedness
of a protocol S with respect to A is defined below, as an inference system on
judgments of the form A {S}A′ , where A′ is the set of names (logical atoms)
resulting after the execution of S given the set of names A.

A {S}A′

A {p.S}A′ [act]
∀i ∈ I. A {Si}Ai

A {+{li : Si}i∈I}
⋂

i∈I Ai
[bra]

A ∪ {n} {S}A′

A {assert(n).S}A′ [assert]

A ∪ {n} {S}A′

A ∪ {n} {require(n).S}A′ [require]
A \ {n} {S}A′ n ∈ A

A {consume(n).S}A′ [consume]

A {S}A ∪A′

A {µt.S}A ∪A′ [rec]
−

A {end}A [end]
−

A {t}A [call]

We write A {S} when A {S}A′ for some A′ (i.e., when the post-condition is
not of interest). We say that S is very-well-asserted if ∅ {S}. We say that a
state (A, S) is well-asserted if S is well-asserted with respect to A.

Protocols S′A and S′B in Example 1 are not very-well-asserted but they are well-
asserted with respect to {pin, tan} and {pay}, respectively.

We now consider some properties of well-asserted protocols. Proofs are in Ap-
pendix C. Firstly, protocols that do not contain assertions are very-well-asserted:

Proposition 1 (Very-well-assertedness) If S is generated by the grammar
in Definition 1 without the assertion fragment then it is very-well-asserted.

Next, well-asserted protocols can have their environment weakened, akin to
pre-condition weakening in Hoare logic:

Proposition 2 (Environment weakening) If A {S} and A ⊆ A′ then A′ {S}.
Hence, ∅ {S} implies A {S} for all A.

Next, Lemma 1 states that the redux of a well-asserted state is well-asserted,
moreover the postconditions are not weakened by reduction:

Lemma 1 (Reduction preserves well-assertedness). If A {S}A′ and

there is a reduction (A, S)
`−→ (A′′, S′) then ∃A′′′ ⊇ A′.A′′ {S′}A′′′ .

Lemma 2 (Well-asserted protocols are not stuck). If A {S} and S is
closed with respect to recursion variables (fv(S) = ∅) then (A, S) is not stuck.
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Next, Lemma 3 shows that if a protocol “gets stuck”, this is because it does
not have enough preconditions to proceed. Thus, the protocol needs assumptions
that may be provided by other protocols it could be composed with.

Lemma 3 (Progress of very-well-asserted protocols). If S is very-well-
asserted (i.e., ∅ {S}) and closed then it exhibits progress.

Lemma 3 follows by induction on the length of a protocol’s execution, com-
bined with Lemmas 1 and 2.

We next introduce protocol composition, which produces protocols that are
meaningful with respect to their assertions (i.e., that exhibit progress).

3 Interleaving Compositions

We compose protocols by computing syntactic interleavings. We derive the ‘in-
terleaving composition’ of two protocols S1 and S2 via a relation with judgments
of the form: TL,TR, A, S1 ◦S2 ` S where S is the resulting composed protocol,
and A is the set of names (i.e., assertions) provided by the environment to S.
Environments TL and TR are sets of protocol variables that are free in S1 and
S2 respectively, and are used to handle composition of recursive protocols. The
composition relation is illustrated by examples after its definition in Definition 7.

Definition 7 (Interleaving composition). Let Top(µt.S) = {t} and Top(S) =
∅ for all other cases of S. Interleaving composition is defined as follows.

TL,TR, A, S1 ◦ S2 ` S
TL,TR, A, p.S1 ◦ S2 ` p.S

TR,TL, A, S2 ◦ S1 ` S
TL,TR, A, S1 ◦ S2 ` S

[act/sym]

TL,TR, A ∪ {n}, S1 ◦ S2 ` S
TL,TR, A ∪ {n}, require(n).S1 ◦ S2 ` require(n).S

[require]

TL,TR, A \ {n}, S1 ◦ S2 ` S n ∈ A

TL,TR, A, consume(n).S1 ◦ S2 ` consume(n).S
[consume]

TL,TR, A ∪ {n}, S1 ◦ S2 ` S
TL,TR, A, assert(n).S1 ◦ S2 ` assert(n).S

[assert]

∀i ∈ I TL,TR, A, Si ◦ S2 ` S′
i

TL,TR, A, +{li : Si}i∈I ◦ S2 ` +{li : S′
i}i∈I

[bra]

TL ∪ {t1},TR, A, S1 ◦ µt2.S2 ` S A {µt1.S} Top(S1) = ∅
TL,TR, A, µt1.S1 ◦ µt2.S2 ` µt1.S

[rec1]

TL,TR, A, S1[t/t1] ◦ S2 ` S t ∈ TR Top(S1) = ∅
TL,TR, A, µt1.S1 ◦ S2 ` S

[rec2]

A {µt.S} fv(µt.S) = ∅
TL,TR, A, µt.S ◦ end ` µt.S [rec3]

t ∈ TL ∨ t ∈ TR

TL,TR, A, t ◦ t ` t

−
TL,TR, A, end ◦ end ` end

[call/end]
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Rule [act] is for prefixes, [sym] is the commutativity rule, and [end] handles a ter-
minated protocol. By combining [act] and [sym] one can obtain all interleavings
of two sequences of actions. Rule [require] includes the continuation of a protocol
only if a required assertion n is provided by the environment. Rule [consume] is
similar except the assertion is removed in the precondition’s environment. Con-
versely, [assert] adds assertion n to the environment of the precondition. Rules
[require], [assume], and [consume] enforce a particular order in actions of an
interleaving, seen in the next example.

Example 2 (Composition with assertions). Section 2.1 informally discussed the
composition of I1 =?pay.assert(p).end and I2 = consume(p).!item.end which
produces only one possible interleaving given by the derivation:

−
[end]

∅, ∅, ∅, end ◦ end ` end
[act]

∅, ∅, ∅, !item.end ◦ end ` !item.end
[consume]

∅, ∅, {p}, consume(p).!item.end ◦ end ` consume(p).!item.end
[sym]

∅, ∅, {p}, end ◦ I2 ` consume(p).!item.end
[assert]

∅, ∅, ∅, assert(p).end ◦ I2 ` assert(p).consume(p).!item.end
[act]

∅, ∅, ∅, ?pay.assert(p).end ◦ I2 ` ?pay.assert(p).consume(p).!item.end

Rule [bra] is similar to [act] but the continuations are composed with each
branch. For example the composition +{l1 : end, l2 : end} ◦ !Int.end with
initially empty environment produces the following two interleavings:

+{l1 :!Int.end, l2 :!Int.end} (applying [bra], [sym], [act], [end])
!Int.+ {l1 : end, l2 : end} (applying [sym], [act], [act], [sym], [bra], [end])

Rule [end] requires both protocols to be terminated. Rules [rec1] and [rec2] allow
two recursive protocols to be composed. When composing two recursive proto-
cols, say µt1.S1 and µt2.S2, rules [rec1] and [rec2] both contribute to merging
the two recursion bodies into one, associated to one protocol variable, either t1
or t2. More precisely, rule [rec1] picks t1 as name for the interleaving compo-
sition, records t1 into environment TL and continues with the composition of
the recursion body S1 with µt2.S2. Assumption Top(S1) = ∅ rules out protocols
of the form µt.µt′.S.1 The premise A {µt1.S} ensures well-assertedness of the
arbitrary repetition of S, that is µt1.S (the composition rules would only check
that S is well-asserted). Rule [rec2] completes the merge of two recursions, with
t1 here being a second recursion variable merged to t ∈ TR. In the premise,
all calls to t1 are redirected to t (via a substitution). Again, for simplicity and
with no loss of generality Top(S1) = ∅. To understand [rec1], [rec2], consider a
derivation of two recursive protocols µt1.!p1.t1 and µt2.!p2.t2:

1 This assumption simplifies the theory with no loss of generality, as µt.µt′.S is be-
haviourally equivalent to µt.S[t/t′].
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t1 ∈ {t1}
[call]

∅, {t1}, ∅, t1 ◦ t1 ` t1
[act]

∅, {t1}, ∅, !p2.t1 ◦ t1 ` !p2.t1
[rec2]

∅, {t1}, ∅, µt2.!p2.t2 ◦ t1 ` !p2.t1
[sym]

{t1}, ∅, ∅, t1 ◦ µt2.!p2.t2 ` !p2.t1
[act]

{t1}, ∅, ∅, !p1.t1 ◦ µt2.!p2.t2 ` !p1.!p2.t1
[rec1]

∅, ∅, ∅, µt1.!p1.t1 ◦ µt2.!p2.t2 ` µt1.!p1.!p2.t1

Thus the end result is a protocol with just one recursion.
The composition of a recursive protocol with a non-recursive one is delicate.

An approach to composition that is too permissive could generate interleaving
compositions that violate behaviour preservation and fairness. These properties
will be formally introduced later, but we offer an intuition here so that the reader
can understand some of our design choices for Definition 7.

The intuition of behaviour preservation is: ‘All executions allowed by an inter-
leaving composition preserve the interaction structures of each component proto-
col that comprises it’. When composing a recursive protocol with a non-recursive
one e.g., S1 = µt.!p1.t with S′2 = !p2.end, then we would not want to derive the
following protocol: S = µt.!p1.!p2.t. This allows e.g., execution !p1, !p2, !p1, !p2
where action !p2 is repeatedly executed (while S2 only prescribes one instance of
!p2) hence violating behaviour preservation (Theorem 1). Our rules do not allow
S above to be derived from S1 and S′2, thanks to rule [call] checking that the
protocols being composed are indeed recursive protocols that have been correctly
merged (i.e., share a recursion variable t). Below, for illustration purposes, we
use / to denote ‘non-derivable protocol’:

{t}, ∅, ∅, end ◦ t ` /
[act]

∅, {t}, ∅, !p2.end ◦ t ` !p2./
[sym]

{t}, ∅, ∅, t ◦ !p2.end ` !p2./
[act]

{t}, ∅, ∅, !p1.t ◦ !p2.end ` !p1.!p2./
[rec1]

∅, ∅, ∅, µt.!p1.t ◦ !p2.end ` µt.!p1.!p2./

Another consideration when composing recursive and non-recursive protocols
is fairness. The intuition of fairness is: ‘In all executions allowed by an interleav-
ing composition, each component protocol can proceed until it terminates’. For
the two protocols S1 and S′2 given above, if we interleave them so that S1 ‘comes
first’ we may obtain the following interleaving composition µt.!p1.t that morally
represents the protocol that behaves as S′2 after an infinite loop. Such a protocol
clearly violates fairness. Similarly, an interleaving µt.!p1.!p2.end would violate
fairness by preventing S1 from proceeding until it terminates (i.e., forever) again
compromising fairness (Theorem 2). A composition that satisfies fairness is one
in which the terminating protocol ‘comes first’: !p2.µt.!p1.t. Such a composition
is obtained via [rec3]. Crucially, [rec3] only allows a recursive protocol to be in-
troduced in an interleaving composition when the non-recursive component has
already been all merged (i.e., it is end). Thus, we can derive:
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∅ {µt1.!p1.t1} fv(µt1.!p1.t1) = ∅
[rec3]

∅, ∅, ∅, µt1.!p1.t1 ◦ end ` µt1.!p1.t1
[sym]

∅, ∅, ∅, end ◦ µt1.!p1.t1 ` µt1.!p1.t1
[act]

∅, ∅, ∅, !p2.end ◦ µt1.!p1.t1 ` !p2.µt1.!p1.t1

The premise fv(µt1.!p1.t1) = ∅ prevents [rec3] being used inappropriately in
case of nested recursion, e.g., to prevent the composition of µt1.!p1.µt3.!p1.t1
and !p2.end to produce (with some applications of [rec1], [act], [sym], and finally
[rec3]) µt1.!p1.!p2.µt3.!p1.t1, which would violate behaviour preservation.

3.1 Variations on the branching rule

The branching rule of interleaving composition can be viewed as a distributivity
property: sequential composition after a control-flow branch can be distributed
inside the branches. Algebraically, we can informally describe this distributivity
exhibited by the branching rule as follows, for a 2-way branch (sans labelling):
(S1 + S2) ◦ T ≡ (S1 ◦ T ) + (S2 ◦ T ). Such a property is familiar in Kleene
algebra models of programs and program reasoning [24] and monotone dataflow
frameworks in static analysis [22]. Since interleaving composition generates a set
of possible protocols it would be more accurate to express this property in terms
of set membership rather than equality (for simplicity of the analogy, this elides
the fact that each composition ◦ is itself a set):

(S1 + S2) ◦ T 3 (S1 ◦ T ) + (S2 ◦ T ) (distributivity)

In this section we consider two variants of this distributive behaviour for compo-
sition called (1) ‘weak branching’ and (2) ‘interchange branching’ which can be
summarised via the algebraic analogy as variants of distributivity, respectively:

(S1 + S2) ◦ T 3 (S1 ◦ T ) + S2 ∧ (S1 + S2) ◦ T 3 S1 + (S2 ◦ T ) (weak)

(S1 + S2) ◦ (T1 + T2) 3 (S1 ◦ T1) + (S2 ◦ T2) (interchange)

In (weak), composition distributes inside one branch but not the other. In (in-
terchange)2, composing branches with branches has a ‘merging’ effect on the
branches rather than distributing within.

We motivate and discuss each variation in term from the protocol perspective.
In the rest of this section we introduce two additional composition rules: [wbra]
for weak branching, and [cbra] for interchange branching (which we will refer
to as correlating branching as it better reflects the effects of the rule on the
protocols). Note that these two variations grow the set of possible interleavings,
rather than shrinking it: they provide more general composition behaviours but
do not exclude the more specialised behaviours. For generality of the theory, the
derivation of interleaving composition can apply any branching ([bra], [wbra],
[cbra]). For practicality, our tool allows engineers to choose the kind of branching
to use in any specific scenario (as shown in Section 5).

2 The naming of algebraic properties of this form is common in category theory [23].
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Weak branching Weak branching allows for partial execution of some of the
protocols being composed if there are not sufficient assertions to continue, as
long as all protocols are completely executed in some execution path.

Example 3 (Branching with “asymmetric” guarantees). Protocol SB below needs
assertion n to proceed. Assume we want to compose SB with a protocol SA, which
can provide n in only one of its branches ok. SA may be an authentication server,
granting or blocking access to SB depending on a password pwd:

SA ::= ?pwd.⊕ {ok : assert(n). end, ko : end} SB ::= require(n).S′

for some S′. Since we want the actions of SB not to be executed after selection
of label ko, we want interleaving composition to generate the following protocol:

SAB = ?pwd.⊕ {ok : assert(n).require(n).S′, ko : end}

Interleaving composition SAB is not attainable using the rules of Definition 7:
the derivation blocks when composing require(n).S′ with the second branch’s
end in the empty environment. 3

Example 3 illustrates that asymmetric composition is a reasonable character-
ization of some scenarios. Definition 8 introduces a ‘weak branching’ composition
rule [wbra] to allow for asymmetric guarantees.

Definition 8 (Weak branching). Weak branching composition of protocols
is derived using the judgements in Definition 7 and the additional rule [wbra]:

I = IA ∪ IB IA ∩ IB = ∅ IA 6= ∅
∀i ∈ IA. TL,TR, A, Si ◦ S ` S′i
∀i ∈ IB . TL,TR, A, Si ◦ S 6` ∧ A {Si}

TL,TR, A, +{li : Si}i∈I ◦ S ` +{li : S′i}i∈IA ∪ {li : Si}i∈IB
[wbra]

Precondition IA 6= ∅ ensures that each protocol’s actions are executed in at least
one execution path, and is key to the fairness property introduced in Section 4.1.
Hereafter we denote with `s derivations obtained using the judgements in Defi-
nition 7 only, and `w for derivations with the additional rule [wbra].

Example 4 (Weak interleaving composition of banking and PIN/TAN). Con-
sider the banking and PIN/TAN protocols in Example 1. Interleaving composi-
tion of SA and SB using `s returns an empty set. When using `w, instead, we
can derive the following interleaving composition modelling a banking/authen-
tication protocol that satisfies the requirements specified in Section 1.

SBA =?pin.⊕

ok : assert(pin).require(pin).µr.&


payment : STAN ,
statement : !statement.r,
logout : consume(pin). end


fail : end


3 If we start from a non-empty environment {n} we can derive ?pwd. ⊕ {ok :
assert(n).require(n).S′, ko : require(n).S′}. However, initial assumption {n}
means that access to SB is granted regardless of the authentication outcome.
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STAN = assert(pay).consume(pay).!id.?tan.⊕


ok : assert(tan). consume(tan).

?details. r,
fail : r


Correlating branching Correlating branching allows two protocols to be com-
posed by ‘correlating’ each branch of one with at least one branch of the other.

Example 5 (Correlating branching). Consider two branching protocols: S1 of-
fering two services s1 and s2, and S2 offering two kinds of payment p1 and p2.
When composing S1 and S2, we want to correlate s1 with p1, and s2 with p2.
We use assertions to model the desired correlation, as shown below:

S1 = ⊕{s1 : assert(one).end, s2 : assert(two).end}
S2 = ⊕{p1 : consume(one).end, p2 : consume(two).end}

We would like to obtain the following composition:

S12 = ⊕
{

s1 : assert(one).⊕ {p1 : consume(one).end},
s2 : assert(two).⊕ {p2 : consume(two).end}

}
Composition rule [bra] is too strict and returns an empty set for S1 and S2.
Weak branching [wbra] is also not useful in this case, producing the interleaving
below, which does not capture the intended correlation:

⊕
{

p1 : ⊕
{

s1 : assert(one).consume(one).end, s2 : assert(two).end
}
,

p2 : ⊕
{

s1 : assert(one).end, s2 : assert(two).consume(two).end
} }

Definition 9 introduces a further rule [cbra], to allow for correlating compositions.

Definition 9 (Correlating branching). The correlating branching compo-
sition of two protocols is derived using the judgement in Definition 7 with the
addition of rule [cbra] below:

∀i ∈ I Ji 6= ∅ ∧
⋃

i∈I Ji = J, ∀j ∈ Ji TL,TR, A, Si ◦ S′j ` Sij ,
∀j ∈ J \ Ji TL,TR, A, Si ◦ S′j 6`

TL,TR, A, +{li : Si}i∈I ◦ +′{l′j : S′j}j∈J ` +{li : +′{l′j : Sij}j∈Ji
}i∈I

[cbra]

The first premise requires that: (1) each branch of the first protocol can be
correlated with at least one branch of the second protocol (Ji 6= ∅), and (2) each
branch of the second protocol can be correlated with at least one branch of the
first protocol (

⋃
i∈I Ji = J). This precondition is critical to ensure the fairness

property we introduce in Section 4.1. Rule [cbra] allows us to obtain S12 as the
interleaving composition of S1 and S2 above, modelling the intended correlation.

`w
⊂ ⊂

`s `wc
⊂ ⊂
`c

Hereafter we denote with `c (resp. `wc) deriva-
tions obtained using the judgments in Definition 9
with the addition of rule [cbra] (resp. [cbra] and
[wbra]). The inclusion relation between the different
kinds of judgment is shown of the right (with `s and
`wc being the most and less strict, respectively).
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4 Properties of interleaving composition

In this section, we give the main properties of interleaving compositions. First,
we give some general properties of well-assertedness and algebraic/scoping prop-
erties (i.e., sanity checks). Then, in Section 4.1 we give behaviour preservation
and fairness, both formulated using a semantics of ‘protocol ensembles’ (a se-
mantic counterpart of syntactic composition). Hereafter, we will denote with `
any kind of judgment in {`s,`w,`c,`wc}.

Well-assertedness of compositions Critical for the validity of our approach
is that interleaving compositions preserve the constraints of assertions:

Proposition 3 (Validity) If TL,TR, ∅, S1 ◦S2 ` S then S is very-well-asserted.

Appendix D details the proof. A corollary of Proposition 3 and Lemma 3
(progress of very-well-asserted protocols) is that interleaving compositions enjoy
progress:

Corollary 1 (Progress) If TL,TR, ∅, S1 ◦ S2 ` S then S enjoys progress.

Algebraic and scoping properties Protocols may contain recursion variables,
thus we consider notions of open and closed protocol with respect to recursion
variables. Observe that, when composing two closed recursive protocols we only
obtain closed protocols. This property is a corollary of a more general property,
that free variables are preserved by interleaving composition:

Proposition 4 If TL,TR, A, S1 ◦ S2 ` S then fv(S1) ∪ fv(S2) = fv(S).

That is, the free variable set of a composed protocol is exactly the union of
the free variables of the protocols being composed. Hence, composing protocols
with no free variables necessarily obtains a closed protocol:

Corollary 2 (Composition preserves closedness) For all A, S and closed
protocols S1, S2, if TL,TR, A, S1 ◦ S2 ` S then S is a closed protocol.

A useful algebraic property is that composition has end protocols as units:

Proposition 5 (Interleaving composition has left- and right-units)

A {S} ∧ fv(S) = ∅ =⇒ TL,TR, A, S ◦ end ` S ∧ TL,TR, A, end ◦ S ` S

Appendix E details the proofs of the above results.

4.1 Behaviour preservation and fairness of protocol ensembles

To formalise a notion of behaviour preservation for interleaving composition, we
first define an intermediate notion of protocol ensembles.
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Protocol ensembles In Section 3, we gave a syntactic definition of interleaving
composition. Interleaving composition makes the dependencies between proto-
cols explicit, and provides a blue-print of an implementation. In this section, we
consider ‘protocol ensembles’, which can be understood as the semantic compo-
sitions of two asserted protocols. Semantic compositions have a behaviour that
is similar to parallel composition (e.g., as in CCS), but unlike parallel composi-
tion the two asserted protocols cannot communicate with each other, i.e., there
are no internal τ actions. All interactions in a semantic composition are directed
towards other endpoints (i.e., communication co-parties). Semantic composition
provides a more general and somewhat familiar notion of composition, which we
will use as a reference to analyze the properties of interleaving compositions.

Protocol ensembles, ranged over by C, are defined as follows:

C ::= S (asserted protocol)
| S ||S (semantic composition)

By defining protocol ensembles C as either asserted protocols (which may be
compositions) or semantic compositions, we obtain a common LTS for compar-
ing the behaviour of interleaving compositions and semantic compositions. For
simplicity of presentation, we limit the theory to the composition S1 ||S2 of two
protocols S1 and S2. The extension to n parallel protocols is straightforward
although possibly verbose e.g., based on labelling each protocol, as well as its
actions, with a unique identifier.

The LTS for protocol ensembles extends the LTS for asserted protocols: it
is defined over states of the form (A, C), transition labels L (as for asserted
protocols), and by the rules in Definition 3 plus the following two rules:

(A, S1)
`−→ (A′, S′1)

(A, S1 ||S2)
`−→ (A′, S′1 ||S2)

〈Com1〉 (A, S2)
`−→ (A′, S′2)

(A, S1 ||S2)
`−→ (A′, S1 ||S′2)

〈Com2〉

We write (A, C)→ if (A, C)
`−→ (A′, C ′) for some `,A′, C ′. Protocols in C do not

communicate internally, but they may affect each other by adding, checking, or
removing assertions in A.

Behaviour preservation Fix an LTS for protocol ensembles (Q,L,−→) de-
fined on the set Q of states s of the form (A, C). We use the standard notion
of simulation [30] to compare protocols of interleaving compositions and pro-
tocol ensembles, using protocol ensembles as a correct general model to which
interleaving compositions need to adhere.

Definition 10 (Simulation). A (strong) simulation is a relation R ⊆ Q × Q
such that, whenever s1Rs2: ∀` ∈ L, s′1 : s1

`−→ s′1 implies ∃s′2 : s2
`−→ s′2 and s′1R s′2.

We call ‘similarity’ the largest simulation relation. We write s1 . s2 when there
exists R such that s1Rs2.
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Definition 11 (Behaviour preservation). We say that C1 preserves the be-
haviour of C2 with respect to A if (A, C1) . (A, C2).

Theorem 1 (Behaviour preservation of compositions - closed).

∅, ∅, A, S1 ◦ S2 ` S ⇒ (A,S) . (A,S1 ||S2)

Therefore, interleaving compositions will only show behaviour that would be
allowed by a protocol ensemble. Clearly, protocol ensembles allow more possible
executions than an interleaving composition, which is only one of the possible
interleavings. The proof of Theorem 1 is by induction on the derivation of S
and, although the statement assumes closed protocols, some inductive hypothe-
ses in the proof (e.g., premises of [rec1] or [rec2]) require reasoning about open
protocols. The proof hence relies on a property (Lemma F6 – appendix) on open
protocols: (roughly) given two protocols and one of their interleaving composi-
tions, any action of the interleaving composition is matched by an action of the
ensemble of the two protocols, and this property is preserved upon transition.
Note that, while environments TL and TR are trivially empty in Theorem 1
(closed protocols), they have a key role in proving Lemma F6 (open protocols):
they include the variables of each component protocol that are “morally” bound
in a derivation, and give critical information of the scope and structure of the
original component protocols in that derivation. The proof focusses on proving
`wc which is the most general case; the other cases can be obtained by omitting
the cases for rules not used by that kind of composition (e.g., for `s omit the
[wbra] and [cbra] case). Appendix F details the full proof.

Fairness The fairness enjoyed by interleaving compositions depends on the set
of composition rules used to derive that composition.

Given the ensemble of two protocols S0 ||S1, and any of their interleaving
compositions S, each action of S0 ◦ S1 (and hence of any one of the two protocols
S0 and S1 being composed) can be observed in at least one execution of the
interleaving composition S, possibly after a finite sequence of other actions by
the other protocol being composed. For readability, in the following definition
we will write ( , S) to denote (A, S) when A is not relevant to the definition.

Definition 12 (Fairness). S is fair w.r.t. S0 and S1 on A, if ∀i ∈ {0, 1} and

any transition ( , Si)
`−→ ( , S′i) there exists r such that: 1) (A, S|1−i|)

r−→ ( , S′|1−i|),

2) (A, S)
r`−→ (A′, S′), and 3) S′ is fair with respect to S′i and S′|1−i| on A′.

Theorem 2 (Fairness of compositions with ` ). If ∅, ∅, A, S0 ◦ S1 ` S
then S is fair w.r.t. S0 and S1 on A.

One key characteristic of fairness in Definition 12 is that first we fix `, and
then we require at least one execution in which ` is eventually executed by S.
This implies that although not all possible future branches include all parts of
the protocols being composed, some will. This is illustrated for `c in Example 6,
and for `w later in the section in Example 7.
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Example 6 (Fairness and correlating branching). We illustrate fairness on S1,
S2, and their interleaving composition S12 with correlating branching given in
Example 5. If S1 makes a transition, then it is trivial to show that S12 is a
fair composition by taking r as the empty vector. The interesting case is the
one where S2 makes a step, picking one of the two possible labels. Assume S2

transitions with ⊕p1. Given ` = ⊕p1, there exists r = ⊕ s1, assert(1) such

that (∅, S1)
r−→ and (∅, S12)

r−→ ({1},⊕{p1 : consume(1).end}) ⊕ p1−−−→ as required.
The case for ⊕p2 is similar.

In Theorem 3 we give a stronger fairness result for compositions using only
[bra] (i.e., holding only for `s judgments). Each action of the protocol ensemble
S0 ◦ S1 (and hence of one of the protocols in the ensemble) can be observed in
any execution of the interleaving composition, possibly after a finite sequence of
other actions by the other protocol in the ensemble composed.

Definition 13 (Strong fairness). S is strongly fair w.r.t. S0 and S1 on A, if

any i ∈ {0, 1} and all transitions ( , Si)
`−→ ( , S′i) and (A, S|1−i|)

r−→, there exist

r′, r′′ with (A, S|1−i|)
r′

−→ ( , S′|1−i|) and either:

1) r′r′′ = r (i.e., r′ is a prefix of r), or
2) r′ = rr′′ (i.e., r is an ex prefix of r′)

such that (A, S)
r′`−−→ (A′, S′) and S′ is strongly fair w.r.t. S′i and S′|1−i| on A′.

By Definition 13 any action of a composition can be matched by an action of the
protocols being composed, and this property is preserved by transition. Vectors
r, r′, and r′′ are used to universally quantify on r and yet allow for the cases
where ` comes before (1) or after (2) r in the composition.

Theorem 3 (Strong fairness of compositions with `s ). Assume

∅, ∅, A, S0 ◦ S1 `s S

then S is strongly fair with respect to S0 and S1 on A.

Appendix G details the proofs.

Example 7 (Fairness and weak branching). Consider a simpler variant of the
protocols in Example 3 (omitting password exchange and continuation):

SA = ⊕{ok : assert(n).end, ko : end} SB = require(n). end
SAB = ⊕{ok : assert(n).require(n).end, ko : end}

Observe ∅, ∅, ∅, SA ◦ SB 6`s and ∅, ∅, ∅, SA ◦ SB `w SAB . We show that SAB

is a fair composition w.r.t. SA and SB on ∅, but it is not a strongly fair one.
First focus on fairness. SA can move with either label ⊕ ok or ⊕ ko. In either

cases (∅, SAB) can immediately make a corresponding step with r empty. If SB

moves, that is by label require(n), then for some environment {n}:

({n}, SB)
require(n)−−−−−−−→ (∅, end) (1)
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There exists a sequence of transitions with labels r = ⊕ ok, assert(n) such that

(∅, SB)
⊕ ok,assert(n)−−−−−−−−−→ ({n}, end)

(∅, S)
⊕ ok,assert(n)−−−−−−−−−→ ({n}, require(n).end)

require(n)−−−−−−−→ (∅, end)

and ∅, ∅, ∅, end ◦ end `w end. In the case above, we could select a ‘good’ path
of SA and SAB that allows the transition with label require(n) to happen.

Focus now on strong fairness and again, consider the step in Equation (1) by

SB . Now we can pick an arbitrary r, say, ⊕ ok, such that (∅, SB)
⊕ ko−−−→ (∅, end).

Looking at SAB , there is no prefix nor extension of r = ⊕ ok that allows a
require(n) step by SAB once the branch ko is taken. Therefore, SAB is not
strongly fair with respect to SA and SB on ∅.

5 Implementation

We have implemented our approach as a tool for Erlang that offers functionality
for protocol composition, code generation, and protocol extraction.

Interleaving composition. Interleaving composition is defined as a function
producing 0 or more possible protocol compositions, giving an algorithmic im-
plementation of the relation in Definition 7. Following the variations on the
branching rule, the tool offers strong, weak, correlating, and weak/correlating
compositions. The user can select the kind of branching to use. Looking at the
running Example 1, we can give as input the banking and authentication pro-
tocols, and opt for strong composition, which returns an empty set as expected.
When opting for weak composition instead, the tool outputs two possible inter-
leaving compositions, from which the user can choose the desired protocol. The
banking and authentication protocols are composed into a single protocol where
the actions of the two protocols follow a specific interleaving dictated by the
assertions. The resulting interleaving composition, equivalent to example 4, is:

bank_pt () -> {act ,r_pin ,{branch ,

[{ok,{assert ,pin ,{require ,pin ,{rec ,r,{branch ,

[{payment ,{assert ,pay ,{consume ,pay ,{act ,s_id ,{act ,r_tan ,

{branch ,[{ok ,{assert ,tan ,{consume ,tan ,

{act ,r_details ,{rvar ,r}}}}},

{fail ,{rvar ,r}}]}}}}}},

{statement ,{act ,s_statement ,{rvar ,r}}},

{logout ,{consume ,pin ,endP}}]}}}}},

{fail ,endP}]}}

Listing 1.1. PIN/TAN Banking Protocol

Offering all of the four different options of composition options (and not only
the less restrictive weak/correlating branching) improves relevance of the com-
positions returned, and hence facilitates analysing and choosing between them.
For example, as observed in Example 5, using [wbra] in a context where we need
to correlate branching likely returns irrelevant compositions.4 Another way to

4 Annotations specifying which branching rule to use at specific points in the protocol
would further increase relevance of the returned results. This is a further work.
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Protocols Strong Weak Correlating Weak/Correlating

service(), login() 0 1 0 1
services(), payments() 3 3 3 3
payment(), dispatch() 1 1 1 1
http(), aws_auth() 1 1 1 1
login(), booking() 0 1 0 1
pin(), tan() 0 1 0 1
pintan(), bank() 0 2 0 2
resource(), server() 1 1 1 2
userAgent(), agentInstrument() 0 0 2 2
bankauthsimple(), keycard() 0 1 0 1

Table 1. Number of Compositions for Variations on the Branching Rule; running
example highlighted in grey.

reduce the number of returned (irrelevant) compositions is to introduce more
relevant assertions. In fact, one of the aims of the tool is to support step-wise
understanding of the protocol via progressive insertion of assertions. For the
main examples, presented in this paper, by selecting the most appropriate kind
of composition and most appropriate assertions, the tool returns at most two
interleaving compositions; this mostly happens when composing two recursive
protocols as [sym] allows the recursion variable of each component to be used
to denote the interleaved recursion. Table 1 shows the number of interleaving
compositions obtained for each variation of the branching rule for a suite of ex-
amples used in this paper or from literature. For additional details and examples,
see our repository with the complete benchmark (https://anonymous.4open.
science/r/protocol-reengineering-implementation-2DC5/). For most ex-
amples, with appropriate assertions, the tool returns a small number of composi-
tions. Thus, it is not hard for the user to assess and choose the most suitable for
their domain. However, if for instance, several branches of a protocol offer the
same assertion, when composed with another with that particular requirement,
the number of compositions will be higher.

Code generation. Code generation takes a protocol definition and produces
an Erlang stub. Protocol structures (action, sequence, choice) can be represented
as a directed graph and then as finite state machines that transition based on
the messages received. The finite state machines are used to generate a stub
that uses the Erlang/OTP gen_statem [1], a generic abstraction which supports
the implementation of finite state machine modules. Not only is it convenient
to represent the protocol as a state machine, but gen_statem offers some useful
features. Internal events from the state machine to itself are a good way of repre-
senting branches that make a selection among some choices. Co-located callback
code for each state enables the use of non-atomic states, e.g., complex states or
even hierarchical states. ‘Postponing events’ and timeouts provide functionality
for further implementation of the generate code stubs.

Action and branch are represented as events that trigger a state transition.
We use function declarations to represent incoming events, and function appli-

https://anonymous.4open.science/r/protocol-reengineering-implementation-2DC5/
https://anonymous.4open.science/r/protocol-reengineering-implementation-2DC5/
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cations to represent outgoing events. Each state has its own handler function
used to send an event to the state machine. When the event is received the cor-
responding state function is called and the transition to the next state is made.
The default generated event is an asynchronous communication (called a ‘cast’
in Erlang/OTP parlance). For sending actions and selecting branches, the event
type is internal, an event from your state machine to itself. End is represented
by the terminate function of a gen_statem module, whilst the fixed-point and the
recursive variables dictate the control flow of the state machine. State variables
must be declared by including them in a record definition — Data.

Following the example of [13], we represent assertions as specially formatted
comments. For example: {assert, pay} is represented as an Erlang comment
%assert pay. These comments are positioned before code that implements the
state to which this assertion acts as a pre-condition in the protocol.

Below is an excerpt of the code generated for the PIN/TAN Banking protocol,
bank_pt(), showing the states generated for the first action and branch:

state2(cast , fail , Data) -> {stop , normal , Data}.

%assert pay

%consume pay

state3(cast , payment , Data) -> {next_state , state4 , Data};

state3(cast , statement ,Data) ->{next_state , state10 ,Data};

%consume pin

state3(cast , logout , Data) -> {stop , normal , Data}.

Listing 1.2. PIN/TAN Banking State Machine

Protocol extraction and migration. Protocol extraction generates protocols
from code via a static analysis of Erlang modules implemented as state machines
using either gen_statem, or gen_fsm behaviour. When assertions are expressed
using the comments illustrated above, they are also extracted. The obtained
protocol can be annotated with extra assertions as necessary and composed with
another to obtain a more complex protocol. The extraction option preserves pre-
existing local code that can be automatically migrated when generating a new
stub. For example, starting out from an existing implementations of banking,
we can use the tool to extract the protocol SB (in this case manual introduction
of assertions may be needed), obtain an interleaving composition with SA, and
generate a new implementation where pre-existing code for the banking code
can be migrated.

If we wanted to re-engineer the banking/authentication server to include an
option for keycard authentication (in addition to TAN authentication) we could
further compose the PIN/TAN Banking Protocol with a keycard option protocol
as the one below. Assertions ensure that the branching for choosing TAN or
keycard authentication is plugged in (using assertion keyp) to the payment option
of the PIN/TAN protocol, and that TAN authentication in PIN/TAN protocol
is plugged only in the tan branch of the keycard protocol (using assertion otp):

keycard () -> {rec , y, {require , keyp ,

{branch , [{tan , {assert , otp , {rvar , y}}},

{keycard , {rvar , y}}]}}}.

Listing 1.3. Keycard Option Protocol



22 L. Bocchi et al.

By adding an assertion of keyp and a consume otp at the beginning of the branch
payment of the PIN/TAN Protocol one would obtain the desired extension as in-
terleaving composition, using the weak composition option. The tool can be used
to generate a stub for the extended protocol and migrate reusable code from the
implementation of the PIN/TAN Banking Protocol to the new implementation.

Together these features satisfy the requirements laid out in Section 1, fa-
cilitating program re-engineering. We can obtain skeleton implementations for
banking and PIN/TAN protocol, extract the protocol and reuse the code when
composing with a different protocol.

6 Instantiation to known protocol languages

Our protocol language (Section 2) is parametric on the set of action/branch-
ing prefixes and branching labels and our results hold regardless of the specific
instantiation used. Instantiation allows us to apply our framework to different
scenarios. Many of the examples in this paper are in the context of concurrency
or distribution, yet protocols are pervasive in monolithic sequential code, e.g.,
for interacting with an operating system or libraries. A classic example is the
stateful protocol of file handling in which files must be opened and closed, and
only read and written to according to their permissions between those two ac-
tions. Our protocol language can easily model such situations, with interleaving
composition providing a range of choices to a developer about how to combine
and interact multiple stateful protocols.

In this section we provide a more concrete discussion of a few use cases fo-
cussing on interaction and communication, providing hints at possible synergies
between our framework and techniques already studied for specific formalisms.

6.1 Protocols for communicating processes

Interaction structures of a communicating process can be characterised using
process calculi such as CCS [27]. For example, a CCS process S = com.S+out .0
can be understood as a protocol prescribing the interactions supported by a
server: repeatedly receive commands (com is a receive action) or decide to logout
(out is a send action) and terminate. The CCS notation can be expressed in our
protocol language by instantiating

P = {a, a | a ∈ Names} + ∈ {+} L = P

where a (resp. a) models a receive (resp. send) action on channel a, and Names
is a set of channel names. Hence, S above can be represented in our framework
as the process below µt.+ {com : t, out : end}. In many examples in this paper
we used the following instantiation:

P = {!T, ?T | T ∈ T } + ∈ {⊕,&} L ⊂ N

where T is a set of datatypes for messages. The above instantiation yields a
session types-like syntax in the style of [14]. Session types [18,33,19] represent
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types of sessions through communication channels, describing the type of data
that can be sent or received on a channel (e.g., !T and ?T where T is a datatype)
and the patterns of message exchanges (e.g., sequential composition, recursion).
This syntax is more restrictive than CCS (e.g., it is not possible to model mixed
choices as in the CCS process above, where S is in a state in which it can either
receive or send a message). The syntactic restrictions of session types contribute
to their effectiveness for verification.

6.2 Protocols as session types

As mentioned in Remark 1 we often used a session types-like syntax in our
examples. In this section we show how to use our framework in combination
with session types techniques.

Recall, in Example 4, we have used interleaving composition to generate a
banking/authentication protocol SBA using a session types-like syntax, and in
Section 5 we have shown that our tool can generate a stub implementation of
SBA, which one can then extend with local (i.e., non communication-related)
behaviour. Assume this implementation, say bank pt.erl, is published as a web
API. SBA can be published as a behavioural API.

So far, our framework has provided assurances on the relationship between
component protocols and their interleaving composition (which pertains to the
engineering within one node in a distributed system – in this case the bank-
ing/authentication server). Session types serve an orthogonal purpose: to provide
assurances about the inter-relations of the protocols implemented in different
nodes, e.g., given a well-defined banking/authentication server, how to derive a
suitable client?

Anyone willing to develop a client for the banking/authentication service can
use SBA to algorithmically derive a client protocol by using the notion of duality
of Session Types [18,33,19]. The dual of a protocol is obtained alghorytmically,
by swapping the ‘direction’ of each action and branching: ! with ?, ⊕ with &,
and vice-versa. We let SBA denote the dual of SBA. Our tool can be used again
to generate a stub for SBA (e.g., file co bank pt.erl). Session types duality and
communication structuring (e.g., determinism, no mixed choices) yields a safe
distributed system, resulting from, say, the concurrent and possibly distributed
execution of bank pt.erl and co bank pt.erl. In this context, safe means no
deadlock and no communication mismatches even when communications are
asynchronous [12] as in Erlang.

The protocol language can be instantiated as multiparty session types (e.g.,
local types in [9]) by setting P = {ab#T | a, b ∈ Roles, # ∈ {!, ?}, T ∈ T } with
+ ∈ {ab# | a, b ∈ Roles, # ∈ {⊕,&}} and L ⊂ N. Safety can then be ensured
using existing multiparty compatibility [15] and verification techniques [26]. See
Appendix A.2 for an example of interleaving composition based on the multi-
party session types instantiation.
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7 Related Work and Conclusion

There is a vast literature on protocol specification (both theory and practice,
e.g. [25]). Most techniques provide a monolithic, closed view of a system: a pro-
tocol is given for the entire system and all components are assumed to be present.
We instead studied composition in open, general terms, defining composition as
the interleaving of protocols, using ‘assertions’ to specify contact points and con-
straints between the protocols. We have given correctness in terms of behaviour
preservation, fairness and well-assertedness, and shown that all compositions
enjoy it. There are three main lines of research that relate to our work.

Firstly, software adaptors give typed protocol interfaces between software
components [34]. The idea is similar to the structured view of communication in
session types [19], with the notion of duality capturing when opposite sides of a
protocol are compatible. Composition in these works is really about parallel com-
position along a protocol interface, guaranteeing sound communication. Instead,
we study a sequential interleaving composition of protocols from the perspective
of a single party (the common situation of engineering a single component of a
larger system). Our assertions provide a kind of compatibility, but at the level
of the protocol’s (possibly interacting) application logics.

Secondly, composition has been studied as the run-time ‘weaving’ of compo-
nent actions. Barbanera et al. study such a composition in the setting of asyn-
chronous FIFO communicating finite state machines, while guaranteeing lock
freedom [2,3]. Participants in two communicating systems can be transformed
into coupled ‘gateways’, forming a composite system. Messages sent to one of the
gateways are forwarded to the other, which in turn sends it to the other system.
A compatibility relation is based on dual behaviour of the two gateways. Safety
of the resulting system is by this compatibility, along with conditions of ‘no
mixed states’ and determinism for sends and receives. Building from this idea,
later work looks at composition in a setting of synchronous CFSMs, and replaces
the two coupled gateways with a single one [5]. [4] look at direct composition
and decomposition on global types in the setting of multiparty session types.
Inspired by aspect-oriented programming, [32] support protocol extensions with
‘aspectual’ session types, that allow messages in session types to be matched and
consequently introduce new behaviour in addition to, or in place of, the matched
messages. [29] look at composition in the setting of choreographies. Composition
relies on the use of partial choreographies, which can mix global descriptions
with communication among external peers. Unlike the above approaches, we fo-
cus on a syntactic, statically derivable notion of composition. Concretely, we use
process calculi to model protocols as simple syntactic objects that can be used to
reason about the desired application logic and generate/engineer modular code.
Again, we differ in that our protocols are understood as being enacted by a single
process (within a larger system).

The third pertinent thread in the literature defines syntactic compositions in
the form of Team Automata [16,7,6] or related calculi [7]. These works define dif-
ferent ways of composing machines, primarily based on synchronising machines
via common actions. They consider a general framework that is parametric in
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choices about synchronisation in an n-party context. In contrast, our means of
composition is via assertions (orthogonal to actions) which express directional
(i.e., rely-guarantee-style) dependencies. Our use of assertions aims to reflect pro-
gramming practice. Assertions are also kept in our generated code and can be
used to enable protocol extraction and re-engineering (as well as understanding
and code documentation). Thus we focus on protocol compositions that are sen-
sitive to the application logic of the protocols being composed. Our composition
cannot capture the whole range of synchronizations offered by Team Automata.
Conversely, Team Automata cannot capture the range of compositions possi-
ble in our approach. One can encode some interleaving compositions as Team
Automata, by modelling each assert(n)-require(n) or assert(n)-consume(n)
pair as a common synchronization action. However, the options offered by Team
Automata (e.g., ‘free’, ‘state indispensable’, or ‘action indispensable’) do not
capture our requirement that synchronization (i) always happens on assertion-
actions and (ii) never happens on communication actions (these are a separate
syntactic entity). Furthermore, our assertions do not imply immediate synchro-
nisation: an assert(n) can occur in a protocol some way before a require(n).
Thus an attempted encoding of Team Automata into our protocols, encoding
synchronization actions as unique assert(n)-consume(n) pairs, would not pre-
serve the behaviour of Team Automata for all possible compositions (just the
ones where such ‘annihilating’ pairs appeared contiguously). Thus, Team Au-
tomata and our approach overlap in some synchronising behaviours, but not all.
A formal study of the class of overlapping compositions between our approach
and Team Automata is further work.

Unlike applications of team automata for safe communication [6], and other
works discussed above, we do not focus on safe communications as such, which
is an orthogonal concern for us. Our focus is on correct representation of the
application logic via a notion of composition steered by assertions. However, the
specific session-type-like notation we use, following [14], would allow us to inherit
communication-safety properties from session types, even with asynchronous
communications [12] and multiparty sessions [9], as discussed in Section 6.2.
We can model higher order messages by instantiating prefixes to incorporate
the entire protocol language itself, preventing use of delegated channels using
assertions.

Future work For the theory, we are currently working on a factorisation function
that decomposes protocols, as a kind of algebraic inverse to composition. This
would allow us to ‘close the loop’, factorizing (possibly extracted) protocols into
simple components for later (re)composition. Interestingly, our weak composition
still retains sufficient information (existential quantification on the branches in
Definition 8) about the component protocols for them to be correctly factorized.
We also plan to extend recursion to model quantified recursion and assertion
environments as multisets (e.g., to quantify on rely and guarantees).



26 L. Bocchi et al.

References

1. AB, E.: Stdlib, reference manual. https://erlang.org/doc/man/gen_statem.

html (2021), version 3.15.1

2. Barbanera, F., de’Liguoro, U., Hennicker, R.: Global types for open systems. In:
Bartoletti, M., Knight, S. (eds.) Proceedings 11th Interaction and Concurrency
Experience, ICE 2018, Madrid, Spain, June 20-21, 2018. EPTCS, vol. 279, pp.
4–20 (2018). https://doi.org/10.4204/EPTCS.279.4, https://doi.org/10.4204/

EPTCS.279.4

3. Barbanera, F., Dezani-Ciancaglini, M.: Open multiparty sessions. In: Bartoletti,
M., Henrio, L., Mavridou, A., Scalas, A. (eds.) Proceedings 12th Interaction and
Concurrency Experience, ICE 2019, Copenhagen, Denmark, 20-21 June 2019.
EPTCS, vol. 304, pp. 77–96 (2019). https://doi.org/10.4204/EPTCS.304.6, https:
//doi.org/10.4204/EPTCS.304.6

4. Barbanera, F., Dezani-Ciancaglini, M., Lanese, I., Tuosto, E.: Com-
position and decomposition of multiparty sessions. Journal of Log-
ical and Algebraic Methods in Programming 119, 100620 (2021).
https://doi.org/https://doi.org/10.1016/j.jlamp.2020.100620, http://www.

sciencedirect.com/science/article/pii/S235222082030105X

5. Barbanera, F., Lanese, I., Tuosto, E.: Composing communicating systems, syn-
chronously. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal
Methods, Verification and Validation: Verification Principles - 9th International
Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes,
Greece, October 20-30, 2020, Proceedings, Part I. Lecture Notes in Computer Sci-
ence, vol. 12476, pp. 39–59. Springer (2020). https://doi.org/10.1007/978-3-030-
61362-4 3, https://doi.org/10.1007/978-3-030-61362-4_3

6. ter Beek, M.H., Hennicker, R., Kleijn, J.: Team automata@work: On safe commu-
nication. In: Bliudze, S., Bocchi, L. (eds.) Coordination Models and Languages.
pp. 77–85. Springer International Publishing, Cham (2020)

7. ter Beek, M.H., Kleijn, J.: Team automata satisfying compositionality. In: Araki,
K., Gnesi, S., Mandrioli, D. (eds.) FME 2003: Formal Methods. pp. 381–400.
Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

8. Bettini, L., Coppo, M., D’Antoni, L., Luca, M.D., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions.
In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008 - Concurrency The-
ory, 19th International Conference, CONCUR 2008, Toronto, Canada, August
19-22, 2008. Proceedings. Lecture Notes in Computer Science, vol. 5201, pp.
418–433. Springer (2008). https://doi.org/10.1007/978-3-540-85361-9 33, https:

//doi.org/10.1007/978-3-540-85361-9_33

9. Bettini, L., Coppo, M., D’Antoni, L., Luca, M.D., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions.
In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008 - Concurrency The-
ory, 19th International Conference, CONCUR 2008, Toronto, Canada, August
19-22, 2008. Proceedings. Lecture Notes in Computer Science, vol. 5201, pp.
418–433. Springer (2008). https://doi.org/10.1007/978-3-540-85361-9 33, https:

//doi.org/10.1007/978-3-540-85361-9_33

10. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred pro-
gramming for web services. In: European Symposium on Programming. pp. 2–17.
Springer (2007)

https://erlang.org/doc/man/gen_statem.html
https://erlang.org/doc/man/gen_statem.html
https://doi.org/10.4204/EPTCS.279.4
https://doi.org/10.4204/EPTCS.279.4
https://doi.org/10.4204/EPTCS.279.4
https://doi.org/10.4204/EPTCS.304.6
https://doi.org/10.4204/EPTCS.304.6
https://doi.org/10.4204/EPTCS.304.6
https://doi.org/https://doi.org/10.1016/j.jlamp.2020.100620
http://www.sciencedirect.com/science/article/pii/S235222082030105X
http://www.sciencedirect.com/science/article/pii/S235222082030105X
https://doi.org/10.1007/978-3-030-61362-4_3
https://doi.org/10.1007/978-3-030-61362-4_3
https://doi.org/10.1007/978-3-030-61362-4_3
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-540-85361-9_33


A compositional theory of protocol engineering 27

11. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. ACM SIGPLAN Notices 48(1), 263–274 (2013)

12. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N.: Asynchronous session types and
progress for object oriented languages. In: Bonsangue, M.M., Johnsen, E.B. (eds.)
Formal Methods for Open Object-Based Distributed Systems, 9th IFIP WG
6.1 International Conference, FMOODS 2007, Paphos, Cyprus, June 6-8, 2007,
Proceedings. Lecture Notes in Computer Science, vol. 4468, pp. 1–31. Springer
(2007). https://doi.org/10.1007/978-3-540-72952-5 1, https://doi.org/10.1007/
978-3-540-72952-5_1

13. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C: A Software Analysis Perspective. In: International conference on software
engineering and formal methods. pp. 233–247. Springer (2012)

14. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. Inf. Comput.
256, 253–286 (2017). https://doi.org/10.1016/j.ic.2017.06.002, https://doi.org/
10.1016/j.ic.2017.06.002

15. Deniélou, P.M., Yoshida, N.: Multiparty compatibility in communicating automata:
Characterisation and synthesis of global session types. In: Fomin, F.V., Freivalds,
R., Kwiatkowska, M., Peleg, D. (eds.) Automata, Languages, and Programming.
pp. 174–186. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

16. Ellis, C.: Team automata for groupware systems. In: Proceedings of the Inter-
national ACM SIGGROUP Conference on Supporting Group Work: The Inte-
gration Challenge. p. 415?424. GROUP ’97, Association for Computing Machin-
ery, New York, NY, USA (1997). https://doi.org/10.1145/266838.267363, https:
//doi.org/10.1145/266838.267363

17. Gay, S., Ravara, A.: Behavioural Types: From Theory to Tools. River Publishers
(2017)

18. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR ’93, 4th In-
ternational Conference on Concurrency Theory, Hildesheim, Germany, August 23-
26, 1993, Proceedings. Lecture Notes in Computer Science, vol. 715, pp. 509–523.
Springer (1993). https://doi.org/10.1007/3-540-57208-2 35, https://doi.org/10.
1007/3-540-57208-2_35

19. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) Program-
ming Languages and Systems - ESOP’98, 7th European Symposium on Program-
ming, Held as Part of the European Joint Conferences on the Theory and Prac-
tice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceed-
ings. Lecture Notes in Computer Science, vol. 1381, pp. 122–138. Springer (1998).
https://doi.org/10.1007/BFb0053567, https://doi.org/10.1007/BFb0053567

20. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session
types. In: Necula, G.C., Wadler, P. (eds.) Proceedings of the 35th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, January 7-12, 2008. pp. 273–
284. ACM (2008). https://doi.org/10.1145/1328438.1328472, https://doi.org/

10.1145/1328438.1328472
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A Additional Examples

A.1 Interleaving Composition

Consider the protocols !Int.end and !String.end. By combining [act] and [sym]
one can obtain all interleavings of two sequences of actions, !Int.!String.end
and !String.!Int.end, as shown with the two example derivations below:

Example 8 (Composition with [act] and [sym] rules).

- [end]
∅, ∅, ∅, end ◦ end ` end

[act]
∅, ∅, ∅, !String.end ◦ end ` !String.end

[sym]
∅, ∅, ∅, end ◦ !String.end ` !String.end

[act]
∅, ∅, ∅, !Int.end ◦ !String.end ` !Int.!String.end

−
[end]

∅, ∅, ∅, end ◦ end ` end
[act]

∅, ∅, ∅, !Int.end ◦ end ` !Int.end
[sym]

∅, ∅, ∅, end ◦ !Int.end ` !Int.end
[act]

∅, ∅, ∅, !String.end ◦ !Int.end ` !String.!Int.end
[sym]

∅, ∅, ∅, !Int.end ◦ !String.end ` !String.!Int.end

A.2 Interleaving Composition and Multiparty Session Types

Consider a protocol, modelled using the session types syntax, that specifies the
possible interactions between a user U and a remote instrument I (e.g., a cam-
era). Below, SI is the protocol specified from the perspective of I, which offers a
menu with two choices: set or get. In case of set, I receives coordinates to update
its own state, and in case of get, I sends a picture from the current coordinates.
Protocol SU is the dual of SI (i.e., specified from the perspective of U).

SI = µt.& {set : ?coord.t, get : !snap.t} SU = µt.⊕{set : !coord.t, get : ?snap.t}

The protocols above may have been designed top-down or extracted using our
tool out of an existing system. Assume we need to modify the scenario above by
introducing a proxy agent A, so that U and I will only interact via A. We need
to: (1) express the protocols so that it is clear which roles are involved in each
interaction, and (2) define the protocol for A. We address (1) by using a different
instantiation of the protocol language to make roles explicit. For example, by
fixing a set Roles of protocol roles, a set T of datatypes, and letting

P = {ab#T | a, b ∈Roles,# ∈{!, ?}, T ∈T }
+ ∈{ab# | a, b ∈Roles,# ∈{⊕,&}} L ⊂ N

Then we obtain protocols in a multiparty session types syntax (e.g., local
types in [9]), where ab! (resp. ab?) denotes a send action by a (resp. receive
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action by b) in an asynchronous interaction from a to b. Similarly for branching
and selection. This instantiation allows us to model the following multiparty
versions of SI and SU , respectively:

SAI = µt.AI &

{
set : AI ?coord.t,

get : IA !snap.t
SUA = µt.UA⊕

{
set : UA !coord.t,

get : AU ?snap.t

We would like A to act as a server for U and as a client for I. Concretely, we could
generate the protocol for A as a specific ‘forwarding’ interleaving of the dual of
SAI and the dual of SUA. We use assertions to ensure that A sends I a menu
choice only after having received one from U (and this must be the same choice
received by U), and then A must reflect the behaviour of I following the given
choice. The asserted protocols to be composed into the protocol for A are given
below, where assert(set)/consume(set) and assert(get)/consume(get) express
the desired correlation between branches, and assert(f)/consume(f) model the
forwarding pattern:

µt. AI ⊕
{

set : consume(set). consume(f). AI !coord.t,
get : consume(get). AI ?snap.assert(f). t

}

µt. UA&

{
set : assert(set). UA ?coord.assert(f). t,
get : assert(get). consume(f). AU !snap.t

}
Using interleaving composition with correlating branching (Section 3.1) on

the two protocols above we obtain the following interleaving composition speci-
fying the protocol for A, where we omit the assertions for readability:

SUAI = µt. UA&

{
set : AI ⊕ {set : UA ?coord. AI !coord. t},
set : AI ⊕ {get : IA ?snap. AU !snap. t}

Now that we have the protocols of the extended multiparty system we can use
our tool to generate code for SUAI , SAI , and SUA. Thanks to the extraction/mi-
gration functionality of our tool, pre-existing local code for U and I can be reused
in the new code for U and I, where the specific endpoints for communication can
be added manually. The tool does not yet support syntax for specifying roles,
so in the case of an agent communicating with several parties such as SUAI the
direction of the communication would need to be specified manually.

In the multiparty scenario, correctness of the interaction structures can be
checked using multiparty compatibility [15] and verification techniques [26].

B Basic properties of protocols

We first define some additional results in this appendix which are used for some
of the key lemmas of this section. We have the following set of inversion lemmas
on well-assertedness:

Lemma B1 (Prefix well-asserted inversion) ∀A,A′, S. A {p.S}A′ =⇒ A {S}A′ .
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Proof. There is only one rule that provides the well-assertedness of prefixing:

A {S}A′

A {p.S}A′

Lemma B2 (Branch well-asserted inversion) ∀A,A′, I, {Si}i∈I .

A {+{li : Si}i∈I}A′ =⇒ A′ ≡ ∃{Ai}i∈I .
⋂
i∈I

Ai ∧ ∀i ∈ I.A {Si}Ai

Proof. There is only one rule that provides the well-assertedness of branching:

∀i ∈ I. B {Si}Bi

B {+{li : Si}i∈I}
⋂

i∈I Bi)

Given the antecedent of this lemma, we then have that {Ai}i∈I = {Bi}i∈I and
A′ =

⋂
i∈I Bi then the premise provides the consequent of the lemma, ∀i ∈

I.A {Si}Ai .

Lemma B3 (Assert well-asserted inversion) ∀A,A′, n, S. A {assert(n).S}A′ =⇒
A ∪ {n} {S}A′.

Proof. There is only one rule that provides the well-assertedness of assert:

A ∪ {n} {S}A′

A {assert(n).S}A′

Lemma B4 (Require well-asserted inversion) ∀A,A′, n, S. A {require(n).S}A′ =⇒
A {S}A′ ∧ n ∈ A.

Proof. There is only one rule that provides the well-assertedness of require:

B ∪ {n} {S}B ′

B ∪ {n} {require(n).S}B ′

Thus we have that A = B ∪ {n} and so n ∈ A and A′ = B ′ thus the premise
provides the consequent of this lemma.

Lemma B5 (Consume well-asserted inversion) ∀A,A′, n, S. A {consume(n).S}A′ =⇒
n ∈ A ∧ A \ {n} {S}A′ .

Proof. There is only one rule that provides the well-assertedness of consume:

B {S}B ′ n ∈ (B ∪ {n})
B ∪ {n} {consume(n).S}B ′

Thus let A = B ∪ {n} and A′ = B ′ and therefore n ∈ A. The (first) premise of
this rule then provides the consequent of this lemma.
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Lemma B6 (Recursion well-asserted inversion) ∀A,A′, n, S. A {µt.S}A′ =⇒
A {S}A′ ∧A ⊆ A′.

Proof. There is only one rule that provides the well-assertedness of recursion:

B {S}B ∪ B ′

B {µt.S}B ∪ B ′

Thus we let A = B and A′ = B∪B ′ yielding (A ⊆ A′) and then premise provides
the consequent of this lemma.

Lemma B7 (Well-asserted unfolding extension) For all

A {S[µt.S/t]}A′ ⇒ A {S[µt.e.S/t]}A′

where e ranges over p, require(n), assert(n), consume(n), µt′ (in the last case
then . becomesa scoping rather than a prefixing, by overloading).

Proof. – (act) S = p.S′. Assuming A {p.S′[µt.p.S′/t]}A′ then by inversion
(Lemma B1) this yields A {S′[µt.p.S′/t]}A′ .
By induction then A {S′[µt.e.p.S′/t]}A′ , which then allows us to derive:

A {S′[µt.e.p.S′/t]}A′

A {p.S′[µt.e.p.S′/t]}A′
[act]

which equals our goal

A {(p.S′)[µt.e.p.S′/t]}A′

by the definition of syntactic substitution.
– (bra) S = +{li : Si}i∈I then by inversion (Lemma B2) this yields A {Si}Ai

for all i ∈ I. with A′ ≡ ∃{Ai}i∈I .
⋂

i∈I Ai.
By induction on each then we have A {Si[µt.e.+{li : Si}i∈I/t]}A′i allowing
us to re-derive branching well-assertedness:

A {Si[µt.e.+ {li : Si}i∈I/t]}A′i
A {+{li : Si[µt.e.+ {li : Si}i∈I/t]}i∈I}A′

[bra]

which equals our goal by the definition of syntactic substitution:

A {(+{li : Si}i∈I)[µt.e.+ {li : Si}i∈I/t]}A′

– (assert) S = assert(n).S′. Assuming A {assert(n).S′[µt.assert(n).S′/t]}A′

then by inversion (Lemma B3) this yields A∪{n} {S′[µt.assert(n).S′/t]}A′ .
By induction then A∪{n} {S′[µt.e.assert(n).S′/t]}A′ , which then allows
us to derive:

A ∪ {n} {S′[µt.e.assert(n).S′/t]}A′

A {assert(n).S′[µt.e..S′/t]}A′
[assert]

which equals our goal

A {(assert(n).S′)[µt.e.assert(n).S′/t]}A′

by the definition of syntactic substitution.
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– (require) S = require(n).S′. Assuming A {require(n).S′[µt.require(n).S′/t]}A′

then by inversion (Lemma B4) this yields A {S′[µt.require(n).S′/t]}A′

(with n ∈ A).
By induction then A {S′[µt.e.require(n).S′/t]}A′ , which then allows us
to derive:

A {S′[µt.e.require(n).S′/t]}A′ n ∈ A

A {require(n).S′[µt.e.require(n).S′/t]}A′
[require]

which equals our goal

A {(require(n).S′)[µt.e.require(n).S′/t]}A′

by the definition of syntactic substitution.
– (consume) S = consume(n).S′. Assuming A {consume(n).S′[µt.consume(n).S′/t]}A′

then by inversion (Lemma B5) this yields A\{n} {S′[µt.consume(n).S′/t]}A′

(with n ∈ A).
By induction then A\{n} {S′[µt.e.consume(n).S′/t]}A′ , which then allows
us to derive:

A \ {n} {S′[µt.e.consume(n).S′/t]}A′ n ∈ A

A {consume(n).S′[µt.e.consume(n).S′/t]}A′
[consume]

which equals our goal

A {(consume(n).S′)[µt.e.consume(n).S′/t]}A′

by the definition of syntactic substitution.
– (rec) S = µt′.S′ Assuming A {(µt′.S′)[µt.(µt′.S′)/t]}A′ then by inversion

(Lemma B6) this yields A {S′[µt.(µt′.S′)/t]}A′ (with A ⊆ A′).
By induction then A {S′[µt.e.(µt′.S′)/t]}A′ , which then allows us to de-
rive:

A {S′[µt.e.(µt′.S′)/t]}A′

A {µt′.S′[µt.µt′.S′/t]}A′
[rec]

(note the post-condition here satisfies ∃A′′.A ∪A′′ = A′ since A ⊆ A′).
The conclusion equals our goal

A {(µt′.S′)[µt.µt′.S′/t]}A′

by the definition of syntactic substitution and uniquness of binders property.
– (end) S = end Assuming A {end[µt.end/t]}A′ .

Since end[µt.end/t] = [µt.e.end/t] then this holds trivially from the as-
sumption.

– (call) S = t′. Assuming A {t′[µt.t′/t]}A′ .

• t = t′ then t′[µt.t′/t] = t[µt.t/t] = µt.t Such a protocol is not allowed
by the syntactic guardness requirement, so this case is trivial (ex falso
quodlibet).

• t 6= t′ then t′[µt.t′/t] = t′ Then the goal hoalds trivially here as from
the assumption we get A {t′[µt.e.t′/t]}A′ .
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Lemma B8 (Well-asserted unfolding extension under branch) For all

A {Si}A′ ∧ A {+{li : Si}i∈I}A′ ⇒ A {Si[+{li : µt.Si}i∈I/t]}A′

Proof. By induction over the structure of Si.
In each case, we proceed by induction, rebuilding well-assertedness (exactly

as in the proof of Lemma B7). The key case is when we have a recursion variable
that we are substituting into, t′.

– t′ ≡ t then we substitute here: t′[+{li : µt.Si}i∈I/t] = +{li : µt.Si}i∈I and
so well-assertedness holds by the second conunct of the premise.

– t′ 6= t′ then trivially A {t′}A′ since t′[+{li : µt.Si}i∈I/t] = t′

Lemma B9 (Well-asserted unfolding) For all sets of names A,A′ and pro-
tocols S, then:

A {S}A′ =⇒ A {S[µt.S/t]}A′

Proof. By induction on the structure of terms S:

– (act) S = p.S′ with assumption A {p.S′}A′ . By Lemma B1 (inversion) we
then have A {S′}A′ .
By induction on this judgment we have that A {S′[µt.S′/t]}A′ .
By Lemma B7 then this gives us A {S′[µt.p.S′/t]}A′ which we can use to
build the well-assertedness derivation:

A {S′[µt.p.S′/t]}A′

A {p.S′[µt.p.S′/t]}A′
[act]

which yields our goal by the definition of syntactic substitution.

– (bra) S = +{li : Si}i∈I with assumption A {+{li : Si}i∈I}A′ .
By inversion (Lemma B2) this yields A {Si}Ai for all i ∈ I. with A′ ≡
∃{Ai}i∈I .

⋂
i∈I Ai.

By induction on each i ∈ I then we have that A {Si[µt.Si/t]}A′ . Applying
Lemma B8 on each then this give us: A {Si[+{li : µt.Si}i∈I/t]}A′ which
we can then use to build the well-assertedness derivation:

∀i ∈ I. A {Si[µt.+ {li : Si}i∈I/t]}Ai

A {+{li : Si[µt.+ {li : Si}i∈I/t]}i∈I}
⋂

i∈I Ai

which by the definition of syntactic substitution yields the goal:

A {(+{li : Si}i∈I)[µt.+ {li : Si}i∈I/t]}
⋂
i∈I

Ai [bra]
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– (require) S = require(n).S′ with assumption A {require(n).S′}A′ .
By Lemma B4 (inversion) we then have A {S′}A′ and n ∈ A.
By induction on this judgment we have that A {S′[µt.S′/t]}A′ .
By Lemma B7 then this gives us A {S′[µt.require(n).S′/t]}A′ which we
can use to build the well-assertedness derivation:

A {S′[µt.require(n).S′/t]}A′

A {require(n).S′[µt.require(n).S′/t]}A′
[require]

(where ∃A′′.A = A′′ ∪ {n} sinch n ∈ A). which yields our goal by the
definition of syntactic substitution.

– (consume) S = consume(n).S′ with assumption A {consume(n).S′}A′ .
By Lemma B5 (inversion) we then have A \ {n} {S′}A′ and n ∈ A.
By induction on this judgment we have that A \ {n} {S′[µt.S′/t]}A′ .
By Lemma B7 then this gives us A\{n} {S′[µt.consume(n).S′/t]}A′ which
we can use to build the well-assertedness derivation:

A \ {n} {S′[µt.consume(n).S′/t]}A′ n ∈ A

A {consume(n).S′[µt.consume(n).S′/t]}A′
[consume]

which yields our goal by the definition of syntactic substitution.

– (assert) S = assert(n).S′ with assumption A {assert(n).S′}A′ .
By Lemma B3 (inversion) we then have A \ {n} {S′}A′ and n ∈ A.
By induction on this judgment we have that A ∪ {n} {S′[µt.S′/t]}A′ .
By Lemma B7 then this gives us A∪{n} {S′[µt.assert(n).S′/t]}A′ which
we can use to build the well-assertedness derivation:

A \ {n} {S′[µt.assert(n).S′/t]}A′

A {assert(n).S′[µt.assert(n).S′/t]}A′
[assert]

which yields our goal by the definition of syntactic substitution.

– (rec) S = µt′.S′ with assumption A {µt′.S′}A′ .
By Lemma B6 (inversion) we then have A {S′}A′ and A ⊆ A′.
By induction on this judgment we have that A {S′[µt.S′/t]}A′ .
By Lemma B7 then this gives us A {S′[(µt.(µt′.S′))/t]}A′ which we can
use to build the well-assertedness derivation:

A {S′[µt.µt′.S′/t]}A′

A {µt′.S′[µt.µt′.S′/t]}A′
[rec]

(leveraging A ⊆ A′) which yields our goal by the definition of syntactic
substitution.

– (end)
−

A {end}A
Trivial since end[µt.end/t] = end.
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– (call) S = t′ with assumption A {t′}A′ thus A ≡ A′.
Case
• t = t′ thus t′[µt.t′/t] = µt.t. Then we can apply construct well-

assertedness by the derivation:

A {t}A

A {µt.t}A
[rec]

• t 6= t′ then t′[µt.t′/t] = t′ therefore using the assumption we have
A {t[µt.t′/t]}A′ .

C Proof of Lemmas 1, 2, 3 on well-assertedness and
progress

Lemma 1 (Reduction preserves well-assertedness). If A {S}A′ and

there is a reduction (A, S)
`−→ (A′′, S′) then ∃A′′′ ⊇ A′.A′′ {S′}A′′′ .

Proof. By induction on the structure of A {S}A′ .

– (act)
A {S}A′

A {p.S}A′

Then the only possible reduction is 〈Inter〉:

(A, p.S)
p−→ (A, S)

Therefore we can conclude with the premise of A {S}A′ which shows that
S is well-asserted (and trivially A ⊇ A).

– (bra)
∀i ∈ I. A {Si}Ai

A {+{li : Si}i∈I}
⋂

i∈I Ai

Then the only possible reduction is 〈Branch〉:

(A,+{li : Si}i∈I)
+lj−−→ (A, Sj) (j ∈ I)

Therefore we can conclude with the premise A {Sj}Aj which shows that
Sj is well-asserted (and Aj ⊇

⋂
i∈I Ai since j ∈ I).

– (require)
A ∪ {n} {S}A′

A ∪ {n} {require(n).S}A′

Then the only possible reduction is 〈Require〉 with:

(A ∪ {n}, require(n).S)
require(n)−−−−−−−→ (A ∪ {n}, S) (n ∈ (A ∪ {n}))

(note the trivial satisfaction of the side condition here). Therefore we can
conclude with the premise A∪{n} {S}A′ which shows that S is well-asserted
(and trivially A′ ⊇ A′).
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– (consume)
A {S}A′

A ∪ {n} {consume(n).S}A′

Then the only possible reduction is 〈Consume〉:

(A ∪ {n}, consume(n).S)
consume(n)−−−−−−−→ ((A ∪ {n}) \ {n}, S) (n ∈ (A ∪ {n}))

Thus since (A∪{n}) \ {n} = A we can conclude with the premise A {S}A′

showing that S is well-asserted (and trivially A′ ⊇ A′).
– (assert)

A ∪ {n} {S}A′

A {assert(n).S}A′

Then the only possible reduction is 〈Assert〉:

(A, assert(n).S)
assert(n)−−−−−−→ (A ∪ {n}, S)

Thus we can conclude with the premise A ∪ {n} {S}A′ showing that S is
well-asserted (and trivially A′ ⊇ A′).

– (rec)
A {S}A ∪A′

A {µt.S}A ∪A′

Then the only possible reduction is 〈Rec〉:

(A, S)
`−→ (A′′, S′)

(A, µt.S)
`−→ (A′′, S′[µt.S/t])

(*)

We now proceed by an inner induction on the structure of S to prove that
∃A′′′ ⊇ A ∪A′.A′′ {S′[µt.S/t]}A′′′ .

• (prefix) S = p.S1 thus A {p.S1}A∪A′ , and thus (∗) must be the reduc-
tion:

(A, p.S1)
p−→ (A, S1)

〈Inter〉

(A, µt.p.S1)
p−→ (A, S1[µt.p.S1/t])

〈Rec〉

thus A′′ = A.
By lemma B9 on A {p.S1}A∪A′ then A {p.S1[µt.p.S1/t]}A∪A′ (**)
Then by the definition of substitution and lemma B1 (inversion of prefix
well-assertedness) on (**) we get: A {S1[µt.p.S1/t]}A ∪ A′ providing
the goal with A′′′ = A ∪A′.

• (branch) S = +{li : Si}i∈I thus A {+{li : Si}i∈I}A ∪ A′ , and thus (∗)
must be the reduction:

(A,+{li : Si}i∈I)
+lj−−→ (A, Sj) (j ∈ I)

〈Branch〉

(A, µt.p.+ {li : Si}i∈I)
p−→ (A, Sj [µt.+ {li : Si}i∈I/t])

〈Rec〉
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thus A′′ = A.
By lemma B9 on A {+{li : Si}i∈I}A∪A′ and unfolding the definition of
syntactic substitution then A {+{li : Si[µt.+{li : Si}i∈I/t]}i∈I}A∪A′

(**)
Then by the definition of substitution and lemma B2 (inversion of branch
well-formendess) on (**) we get: ∃{Ai}i∈I .A ∪ A′ ≡

⋂
i∈I Ai ∧ ∀i ∈

I.A {Si[µt.+ {li : Si}i∈I/t]}Ai .

Then taking i = j we get A {Sj [µt. + {li : Si}i∈I/t]}Aj providing the
goal of this lemma with A′′′ = Aj and Aj ⊇ A ∪ A′ =

⋂
i∈I Ai since

j ∈ I.
• (assert) S = assert(n).S1 thus A {assert(n).S1}A ∪A′ , and thus (∗)

must be the reduction:

(A, assert(n).S1)
assert(n)−−−−−−→ (A ∪ {n}, S1)

〈Assert〉

(A, µt.assert(n).S1)
assert(n)−−−−−−→ (A ∪ {n}, S1[µt.assert(n).S1/t])

〈Rec〉

thus A′′ = A ∪ {n}.
By lemma B9 on A {assert(n).S1}A∪A′ then (unfolding substitution)
A {assert(n).S1[µt.assert(n).S1/t]}A ∪A′ (**)
Then by the definition of substitution and lemma B3 (inversion of assert
well-assertedness) on (**) we get: A∪{n} {S1[µt.assert(n).S1/t]}A∪
A′ providing the goal with A′′′ = A ∪A′.

• (require) S = require(n).S1 thus A {require(n).S1}A ∪A′ , and thus
(∗) must be the reduction:

(A, require(n).S1)
require(n)−−−−−−−→ (A, S1)

〈Require〉 (n ∈ A)

(A, µt.require(n).S1)
require(n)−−−−−−−→ (A, S1[µt.require(n).S1/t])

〈Rec〉

and thus A′′ = A.
By lemma B9 on A {require(n).S1}A ∪ A′ then (unfolding substitu-
tion) A {require(n).S1[µt.require(n).S1/t]}A ∪A′ (**)
Then by the definition of substitution and lemma B4 (inversion of require
well-assertedness) on (**) with n ∈ A we get:
A {S1[µt.require(n).S1/t]}A∪A′ matching the goal with A′′′ = A∪A′.

• (consume) S = consume(n).S1 thus A {consume(n).S1}A∪A′ , and thus
(∗) must be the reduction:

(A, consume(n).S1)
consume(n)−−−−−−−→ (A \ {n}, S1)

〈Consume〉 (n ∈ A)

(A, µt.consume(n).S1)
consume(n)−−−−−−−→ (A \ {n}, S1[µt.consume(n).S1/t])

〈Rec〉

and thus A′′ = A \ {n}.
By lemma B9 on A {consume(n).S1}A ∪ A′ then (unfolding substitu-
tion) A {consume(n).S1[µt.consume(n).S1/t]}A ∪A′ (**)



A compositional theory of protocol engineering 39

Then by the definition of substitution and lemma B5 (inversion of con-
sume well-assertedness) on (**) with n ∈ A we get:
A\{n} {S1[µt.consume(n).S1/t]}A∪A′ matching the goal with A′′′ =
A ∪A′.

• (rec) S = µt1.S1 thus A {µt1.S1}A ∪ A′ , and thus (∗) must be the
reduction:

(A, S1)
`−→ (A1, S

′
1)

(A, µt1.S1)
`−→ (A1, S′1[µt1.S1/t1])

(A, µt.µt1.S1)
consume(n)−−−−−−−→ (A1, S′1[µt1.S1/t1][µt.µt1.S1/t])

〈Rec〉

and thus A′′ = A1.
By lemma B9 on A {µt1.S1}A ∪ A′ then (unfolding substitution and
since t 6= t1)
A {µt1.S1[µt.µt1.S1/t]}A ∪A′ (**)
Then by the definition of substitution and lemma B6 (inversion of con-
sume well-assertedness) on (**) with A ⊆ A ∪ A′ by usual set theory
laws, then we get:
A {S1[µt.µt1.S1/t]}A ∪A′ matching the goal with A′′′ = A ∪A′.

Thus by this sublemma we conclude that ∃A′′′ ⊇ A∪A′.A′′ {S′[µt.S/t]}A′′′ .
– (call)

−
A {t}A

A recursive variable on its own cannot reduce thus this case holds trivially
since the premise is false.

– (end)
−

A {end}A

The terminated process end cannot reduce thus this case holds trivially since
the premise is false.

Lemma 2 (Well-asserted protocols are not stuck). If A {S} and S is
closed with respect to recursion variables (fv(S) = ∅) then (A, S) is not stuck.

Proof. We proceed by structural induction on the derivation of well-assertedness
A {S}A′ (and thus simultaneously on the structure of S since every syntactic
construction has one well-assertedness rule):

– S = end there are no further reductions possible and the thesis trivially
holds: we conclude with the first conjunct of the definition 4.

– S = t then progress is trivial since the premise is that the S is closed.
– S = p.S′ with:

A {S′}A′

A {p.S′}A′
[act]

Thus S can reduce by 〈Inter〉 as (A, p′.S′)
p−→ (A, S′)
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– S = +{li : Si}i∈I with:

∀i ∈ I. A {Si}Ai

A {+{li : Si}i∈I}
⋂

i∈I Ai)
(2)

where A′ =
⋂

i∈I Ai. Thus, S can reduce by 〈Branch〉 to (A, Sj) for any
j ∈ I.

– S = assert(n).S′ with

A ∪ {n} {S′}A′

A {assert(n).S′}A′

Thus S can reduce by 〈Assert〉 to (A ∪ {n}, S′)
– S = consume(n).S′ with

A \ {n} {S′}A′ n ∈ A

A {consume(n).S′}A′

Thus S can reduce by 〈Consume〉 to (A\{n}, S′) since well-assertedness gives
us that n ∈ A. to give us the side condition of this reduction rule.

– S = require(n).S′ with

A ∪ {n} {S′}A′

A ∪ {n} {require(n).S′}A′

Thus S can reduce by 〈Require〉 to (A∪{n}, S′) since well-assertedness gives
us that n ∈ (A ∪ {n}) to give us the side condition of this reduction rule.

– S = µt.S′ with:
A {S′}A′

A {µt.S′}A′
(3)

By induction on the first premise we get that S′ = end or (A, S′)→ (A′′′, S′′).

• In the case of S′ = end then we have S = µt.end which by structural
congruence (definition 2) then means S = end.

• In the case of (A, S′)→ (A′′′, S′′) this provides the premise of the 〈Rec〉
rule such that S can reduce to (A′′′, S′′[µt.S′/t]).

Below we write:

(A, S)→n (A′, S′) if

{
n = 1 ∃`.(A, S)

`−→ (A′, S′)

n > 1 ∃`.(A, S)
`−→ (A′′, S′′) ∧ (A′′, S′′)→n−1 (A′, S′)

Lemma 3 (Progress of very-well-asserted protocols). If S is very-well-
asserted (i.e., ∅ {S}) and closed then it exhibits progress.

Proof. We proceed by induction on the length of the reduction sequence n and
prove a stronger lemma:

If S is closed (fv(S) = ∅) and very-well-asserted (∃A′. ∅ {S}A′ ) then S has
progress, i.e., ∀A, n, S′ if (∅, S)→n (A, S′) then (S′ = end ∨ (∃A′′, S′′.(A, S′)→
(A′′, S′′) and ∃A′′′.A′′ {S′′}A′′′ ).
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– n = 0.

Thus, A = ∅ and S′ = S.

By lemma 2, with ∅ {S}A′ then we get that S = end ∨ ∃A′′, S′′.(A, S) →
(A′′, S′′).

In the latter case (of a reduction), we then apply lemma 1 to get that
∃A′′′.A′′ {S′′}A′′′ .

– n = k + 1

Then we have the assumption that (∅, S)→k+1 (Ak+1, S
′
k+1) and thus there

exists (∅, S)→k (Ak, S
′
k)→ (Ak+1, S

′
k+1).

We can apply the lemma inductively on (∅, S) →k (Ak, S
′
k) (i.e., the n = k

case) to get that S′k = end (not possible because of the k+ 1 reduction here)
or ∃A′′, S′.(Ak, S

′
k)→ (A′k+1, S

′′
k+1) and that ∃A1.A

′
k+1 {S′′k+1}A1 .

Since reduction is deterministic we have that: (Ak+1, S
′
k+1) = (A′k+1, S

′′
k+1).

The goal here is to show that either S′k+1 = end or that ∃Ak+2, S
′
k+2.(Ak+1, S

′
k+1)→

(Ak+2, S
′
k+2) where ∃A2.Ak+2 {S′k+2}A2 .

By lemma 2 (local progress) with A′k+1 {S′k+1}A1 then we have that (S′k+1 =
end)∨∃Ak+2, S

′
k+2.(Ak+1, S

′
k+1)→ (Ak+2, S

′
k+2). In the case of the left dis-

junct we are done. In the case of the right disjunct, we then have the remain-
ing piece of evidence via lemma 1 (reduction preserves well-assertedness)
with the A′k+1 {S′k+1}A1 and (Ak+1, S

′
k+1)→ (Ak+2, S

′
k+2) which gives us

that ∃A2.Ak+2 {S′k+2}A2 .

Thus we are done.

D Proof of Proposition 3 on validity of composition

Proposition 3 (Validity) If TL,TR, ∅, S1 ◦S2 ` S then S is very-well-asserted.

Proof. Proposition 3 follows immediately from Lemma 5, given in this section,
setting A = ∅. The proof of Lemma 5 relies on an auxiliary lemma, Lemma 4,
given below. Lemma 4 makes use of environment weakening (Proposition Propo-
sition 2) given in earlier sections.

Lemma 4. If A0 {S}A and A {S′} then A0 {S[S′/end]} .

Proof. The proof is by induction on the size of S, proceeding by case analysis
on the syntax of S.

Base cases There are two base cases: S = end and S = t. If S = end, by
[end] A0 = A. The thesis follows then immediately from the hypothesis A {S′}
since end[S′/end] = S′ If S = t the thesis follows immediately by hypothesis
A0 {S}A since S[S′/end] = S.
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Inductive cases The inductive cases are analyzed below:

– Case S = p.S′′. By [act] on hypothesis A0 {p.S′′}A follows (as premise)

A0 {S′′}A (4)

By induction, (Equation (4)) and hypothesis A {S′} follows

A0 {S′′[S′/end]} (5)

By applying rule [act] to (Equation (5)) obtain A0 {p.S′′[S′/end]} as re-
quired.

– Case S = require(n).S′′. By [assume] on hypothesis A0 {require(n).S′′}A
follows (as premise)

A0 {S′′}A (6)

with n ∈ A0. By induction, (Equation (6)) and hypothesis A {S′} follows

A0 {S′′[S′/end]} (7)

By applying rule [assume] to (Equation (7)) – observe that n ∈ A0 – obtain

A0 {require(n).S′′[S′/end]}

as required.
– Case S = consume(n).S′′. By [consume] on hypothesis A0 {consume(n).S′′}A

follows (as premise) n ∈ A0 and

A0 \ {n} {S′′}A (8)

By induction, (Equation (8)) and hypothesis A {S′} follows

A0 \ {n} {S′′[S′/end]} (9)

By applying rule [consume] to (Equation (9)) obtain A0 {consume(n).S′′[S′/end]}
as required.

– Case S = assert(n).S′′. By [assert] on hypothesis A0 {assert(n).S′′}A
follows (as premise)

A0 ∪ {n} {S′′}A (10)

By induction, (Equation (10)) and hypothesis A {S′} follows

A0 ∪ {n} {S′′[S′/end]} (11)

By applying rule [assert] to (Equation (11)) obtain A0 {assert(n).S′′[S′/end]}
as required.

– Case S = µt.S′′. By [rec] on hypothesis A0 {µt.S′′}A follows (as premise)

A0 {S′′}A (12)

By induction, (Equation (12)) and hypothesis A {S′} follows

A0 {S′′[S′/end]} (13)

By applying rule [rec] to (Equation (13)) obtain A0 {µ.S′′[S′/end]} as re-
quired.
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– Case S = +{li : Si}i∈I . By [bra] on hypothesis A0 {+{li : Si}i∈I}A follows
(as premise)

∀i ∈ I. A0 {Si}Ai (14)

for some {Ai}i∈I . Since by [bra] applied in (Equation (14))
⋂

i∈I Ai = A
then

∀i ∈ I. A ⊆ Ai (15)

By Proposition 1 (environment weakening), (Equation (14)), and (Equa-
tion (15)), follows

Ai {Si} for all i ∈ I. (16)

By induction, (Equation (14)) and (Equation (16)) give

∀i ∈ I. A0 {Si[S
′/end]} (17)

By applying (Equation (17)) as a premise of [bra] obtain A0 {+{li : Si}i∈I [S′/end]}
as required.

Lemma 5. If TL,TR, A, S1 ◦ S2 ` S then A{S}.

Proof. The proof is by induction on the derivation, proceeding by case analysis
on the last rule (Definition 7) applied.

Base cases. There are two base cases: the last application was rule [end] or [call].
If the last (and only) rule applied was [end] in Definition 7 then S = end and
by rule [end] in Definition 6 A {end} as required. If the last (and only) rule
applied was [call] in Definition 7 then S = t and by rule [call] in Definition 6
A {t} as required.

Inductive cases. We show below the inductive cases.

– Case last rule is [act]. The conclusion is on the form TL,TR, A, p.S′1 ◦ S2 `
p.S′ with premise

TL,TR, A, S′1 ◦ S2 ` S′ (18)

By induction, from (Equation (18)) it follows:

A {S′} (19)

By applying rule [act] in Definition 6 to (Equation (19)) it follows A {p.S′}
as required.

– Case last rule is [sym]. The conclusion is on the form TL,TR, A, S1 ◦S2 ` S
with premise

TL,TR, A, S2 ◦ S1 ` S (20)

By induction, from (Equation (20)) it follows that A{S} as required.
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– Case last rule is [require]. The conclusion is on the form

TL,TR, {n} ∪A′, require(n).S′1 ◦ S2 ` require(n).S′

with premise

TL,TR, {n} ∪A′, S′1 ◦ S2 ` S′ (21)

By induction, from (Equation (21)) follows {n} ∪A′ {S′} . By using {n} ∪
A′ {S′} as a premise for rule [require] in Definition 6 we obtain {n} ∪
A′ {require(n).S′} as required.

– Case last rule is [consume]. The conclusion is on the form

TL,TR, {n} ∪A′, consume(n).S′1 ◦ S2 ` consume(n).S′

with premise

TL,TR, A
′, S′1 ◦ S2 ` S′ (22)

By induction, from (Equation (22)) it follows

A′ {S′} (23)

By applying (Equation (23)) as a premise for rule [consume] in Definition 6
obtain {n} ∪A′ {consume(n).S′} as required.

– Case last rule is [assert]. The conclusion is on the form

TL,TR, A, assert(n).S′1 ◦ S2 ` assert(n).S′

with premise

TL,TR, A ∪ {n}, S′1 ◦ S2 ` S′ (24)

By induction, from (Equation (24)) it follows

A ∪ {n} {S′} (25)

By applying rule [act] in Definition 6 to (Equation (19)) it follows A {assert(n).S′}
as required.

– Case last rule is [bra] (without weakening). The conclusion is on the form

TL,TR, A, +{li : Si}i∈I ◦ S2 ` +{li : S′i}i∈I

with premise

∀i ∈ I. TL,TR, A, Si ◦ S2 ` S′i (26)

By induction, from (Equation (26)) it follows:

∀i ∈ I. A {S′i} (27)

By applying (Equation (27)) as premise of [bra] in Definition 6 it follows
A {+{li : S′i}i∈I} as required.
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– Case last rule is [bra] (with weakening). The conclusion is on the form

TL,TR, A, +{li : Si}i∈I ◦ S2 ` +{li : S′i}i∈IA ∪+{li : Si}i∈IB
with premises IA ∪ IB = I, IA ∩ IB = ∅ and IA = ∅, and

∀i ∈ IA. TL,TR, A, Si ◦ S2 ` S′i (28)

∀i ∈ IB . A {Si} (29)

By induction, from (Equation (28)) it follows:

∀i ∈ IA. A {S′i} (30)

By applying (Equation (29)) and (Equation (30)) as premise of [bra] in
Definition 6 it follows A {+{li : S′i}i∈IA ∪+{li : Si}i∈IB} as required.

– Case last rule is [rec1]. The conclusion is of the form

TL,TR, A, µt1.S
′
1 ◦ µt2.S′2 ` µt1.S

with premise

TL ∪ {t1},TR, A, S′1 ◦ µt2.S′2 ` S A {µt1.S} (31)

The thesis follows by condition A {µt1.S} in the premise (Equation (31)).
– Case last rule is [rec2]. The conclusion is of the form

TL,TR, A, µt1.S
′
1 ◦ S′2 ` S

with premise
TL,TR ∪ {t}, A, S′1[t1/t] ◦ S′2 ` S

. By induction A {S1} which is the thesis.
– Case last rule is [rec3]. The conclusion is of the form

TL,TR, A, µt1.S
′
1 ◦ end ` µt1.S′1

with premise A {µt1.S′1} which gives the thesis.

E Proof of Algebraic and Scoping Properties

Definition 14 (Substituting for end). Given two protocols S and S′ then
S[S′/end] is defined:

(p.S)[S′/end] = p.S[S′/end]

(+{li : Si}i∈I)[S′/end] = +{li : Si[S
′/end]}i∈I)

(assert(n).S)[S′/end] = assert(n).S[S′/end]

(consume(n).S)[S′/end] = consume(n).S[S′/end]

(require(n).S)[S′/end] = require(n).S[S′/end]

(µt.S)[S′/end] = (µt.S[S′/end])

t[S′/end] = t

end[S′/end] = S′
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Lemma E1 Assume TL, TR, A, S1 ◦ S2 ` S and t ∈ fn(S1), then t ∈ fn(S2)
and t ∈ fv(S).

Proof. The proof is by induction on the derivation of S, proceeding by case
analysis on the last rule used. Base case [end] holds since t 6∈ fn(S1). Base
case [call] yields immediately t ∈ fn(S2) and t ∈ fv(S). Base case [rec3] holds
since fn(S1) = ∅ (by condition in the premise). All other cases hold directly by
induction.

Proposition 4 If TL,TR, A, S1 ◦ S2 ` S then fv(S1) ∪ fv(S2) = fv(S).

Proof. By induction on TL,TR, R, S1 ◦ S2 ` S:

– (act)
TL,TR, A, S′1 ◦ S2 ` S

TL,TR, A, p.S′1 ◦ S2 ` p.S

By induction and then that fv(p.S) = fv(S).
– (sym)

TL,TR, A, S2 ◦ S1 ` S
TL,TR, A, S1 ◦ S2 ` S

By induction and commutativity of ∪ on sets.
– (require)

TL,TR, A ∪ {n}, S′1 ◦ S2 ` S
TL,TR, A ∪ {n}, require(n).S′1 ◦ S2 ` require(n).S

By induction and then fv(require(n).S) = fv(S) (recall free variables are
with respect to recursion variables rather than assertion names).

– (consume)

TL,TR, A \ {n}, S′1 ◦ S2 ` S n 6∈ A

TL,TR, A, consume(n).S′1 ◦ S2 ` consume(n).S

By induction and then fv(consume(n).S) = fv(S).
– (assert)

TL,TR, A ∪ {n}, S′1 ◦ S2 ` S
TL,TR, A, assert(n).S′1 ◦ S2 ` assert(n).S

By induction and then fv(assert(n).S) = fv(S).
– (bra)

∀i ∈ I TL,TR, A, Si ◦ S2 ` S′i
TL,TR, A, +{li : Si}i∈I ◦ S2 ` +{li : S′i}i∈I

By induction we have that fv(Si) ∪ fv(S2) ⊇ fv(S′i) then since
⋃

i∈I fv(S′i) =
fv(+{li : S′i}i∈I) and

⋃
i∈I fv(Si) = fv(+{li : Si}i∈I) we get that fv(+{li :

S′i}i∈I) ∪ fv(S2) ⊇ fv(+{li : S′i}i∈I).
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– (rec1)

TL ∪ {t1}, TR, A, S1 ◦ µt2.S2 ` S A {µt1.S} Top(S1) = ∅
TL, TR, A, µt1.S1 ◦ µt2.S2 ` µt1.S

By induction fv(S1) ∪ fv(S2) = fv(S). Since fv(µt1.S1) = fv(S1) \ {t1} and
fv(µt1.S) = fv(S) \ {t1} then fv(µt1.S1) ∪ fv(S2) = fv(µt1.S) as desired.

– (rec2)

TL, TR, A, S1[t/t1] ◦ S2 ` S t ∈ dom(TR) Top(S1) = ∅
TL, TR, A, µt1.S1 ◦ S2 ` S

By induction we have that fv(S1[t/t1])∪ fv(S2) = fv(S). We have two cases:
• t1 6∈ fv(S1) then fv(µt1.S1) = fv(S1[t/t1]) hence fv(µt1.S1) ∪ fv(S2) =

fv(S), as required.
• t1 ∈ fv(S1) then t ∈ fv(S1[t/t1]). In this case fv(µt1.S1) = fv(S1[t/t1])\
{t1} ∪ {t}. By lemma E1 t ∈ fv(S2) hence the thesis also holds for the
consequence of [rec2]: fv(µt1.S1) ∪ fv(S2) = fv(S), as required.

– (rec3)
A {µt.S} fv(µt.S) = ∅

TL, TR, A, µt.S ◦ end ` µt.S
This is a base case and holds since fv(end) = ∅ and trivially fv(µt.S) ∪ ∅ =
fv(µt.S).

– (call)
t ∈ TL ∨ t ∈ TR
TL, TR, A, t ◦ t ` t

Thus fv(t) ∪ fv(t) = fv(t) trivially.
– (end)

−
TL,TR, A, end ◦ end ` end

Trivial since fv(end) = ∅.

Corollary 2 (Composition preserves closedness) For all A, S and closed
protocols S1, S2, if TL,TR, A, S1 ◦ S2 ` S then S is a closed protocol.

Proof. Simple corollary of proposition 4 since ∅ = fv(S).

Proposition 5 (Interleaving composition has left- and right-units)

A {S} ∧ fv(S) = ∅ =⇒ TL,TR, A, S ◦ end ` S ∧ TL,TR, A, end ◦ S ` S

Appendix E details the proofs of the above results.

Proof. We split the proposition into two parts. First proving the right unit, then
the left unit.

For the right unit, we proceed by induction on the derivation of A {S}:
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– S = p.S′

A {S′}A′

A {p.S′}A′

Then by induction on S′ we have that TL,TR, A, S′ ◦ end ` S′ and thus
by (act) we get TL,TR, A, p.S′ ◦ end ` p.S′

– S = +{li : Si}i∈I
∀i ∈ I. A {Si}Ai

A {+{li : Si}i∈I}
⋂

i∈I Ai

By induction on the premise for each Si we get that TL,TR, A, Si ◦ end ` Si.
Applying all these as the premises of (bra), we get that:

TL,TR, A, +{li : Si}i∈I ◦ end ` +{li : Si}i∈I

Satisfying the goal.
– S = require(n).S′

A′ ∪ {n} {S′}A′′

A′ ∪ {n} {require(n).S′}A′′

thus A = A′ ∪ {n}
By induction on the premise with S′ then we have TL,TR, A′ ∪ {n}, S′ ◦
end ` S′.
Applying this to (require) for interleaving composition then gives us:

TL,TR, A′ ∪ {n}, require(n).S′ ◦ end ` require(n).S′

Satisfying the goal.
– S = consume(n).S′

A \ {n} {S′}A′ n ∈ A

A {consume(n).S′}A′

By induction on the premise with S′ then we have TL,TR, A \ {n}, S′ ◦
end ` S′.
Applying this to (consume) for interleaving composition (with the side con-
dition of n ∈ A from the well-assertedness rule) then gives us:

TL,TR, A, consume(n).S′ ◦ end ` consume(n).S′

Satisfying the goal.
– S = assert(n).S′

A ∪ {n} {S′}A′

A {assert(n).S′}A′

By induction on the premise with S′ then we have TL,TR, A ∪ {n}, S′ ◦
end ` S′.
Applying this to (assert) for interleaving composition then gives us:

TL,TR, A, assert(n).S′ ◦ end ` assert(n).S′

Satisfying the goal.



A compositional theory of protocol engineering 49

– S = µt.S′

A {S′}A ∪A′

A {µt.S′}A ∪A′

If fv(µt.S) = ∅ then we apply (rec3) and obtain the thesis. If fv(µt.S) 6= ∅
the hypothesis does not hold hence done.

– S = end
−

A {end}A

We can then conclude with our goal via the (end) rule of interleaving com-
position: TL,TR, A, end ◦ end ` end.

– S = t
−

A {t}A

In this case fv(S) = {t} 6= ∅ which contradicts the hypothesis hence done.

Thus we have proved the right unit property of interleaving composition: that
for all S we have TL,TR, A, S ◦ end ` S.

To prove the left unit property we can then compose the above result with
the (sym) rule of interleaving composition:

TL,TR, A, S ◦ end ` S
TL,TR, A, end ◦ S ` S

[sym]

giving the left-unit property. ut

F Proof of behaviour preservation (Theorem 1)

We recall the theorem for convenience.

Theorem 1 (Behaviour preservation of compositions - closed).

∅, ∅, A, S1 ◦ S2 ` S ⇒ (A,S) . (A,S1 ||S2)

Proof. We use stratification of similarity, along the lines of [30](Definition 2.2.10).
Consider the relation R = R1 ∪R2 ∪R3 ∪R4 where

R1 = {(S, S1 ||S2) | ∅, ∅, A, S1 ◦ S2 ` S}
R2 = {(S′[µt.S/t], S′1[µt.S1/t] ||S2)|S . S1 ∧ S′ . S1 ∧ S′ 6= t}
R3 = {(S′, S′1[µt.S1/t] ||S2)}
R4 = {(S, S ||S2)}

First note that:

– R1 is used to capture the initial scenario of two closed types producing an
interleaving composition
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– R2 is used to handle the scenario where two recursive processes in R1
(one component and the composition) have a transition involving unfold-

ing: ∅, ∅, A, µt.S1 ◦ S2 ` µt.S with (A, µt.S1)
`−→ (A′, S′1[µt.S1/t]) and

(A, µt.S)
`−→ (A′, S′[µt.S/t]). R2 is a simulation by Lemma F7.

– R3 is used to handle the scenario where one recursive processes in R1 (one
component) has a transition involving unfolding: ∅, ∅, A, µt.S1 ◦S2 ` S with

(A, µt.S1)
`−→ (A′, S′1[µt.S1/t]) and (A, S)

`−→ (A′, S′). R3 is a simulation
by Lemma F8 .

– R4 is a simulation as it is a special case of R4 in Lemma F9 where S = S1,
and models the case of weak branching.

We show that is two processes are in relation R1, upon transition they will
’stay’ in R1 or go to states related by R2, R3, or R4, which are simulations.
First assume that the two processes considered are in R1.

Assume (A, S)
`−→ (A′, S′), we proceed by case analysis on the structure of S.

Case ` 6∈ {⊕l,&l} By hypothesis (S, S1 ||S2) ∈ R1. By lemma 6 either S1 or

S2 can move. Assume first that S1 moves: (A, S1)
`−→ (A′, S′1) and ∅, ∅, A′, S′1 ◦

S2 ` S′ with S′1 up to unfolding. If there is no unfolding then immediately
(S′, S′1 ||S2) ∈ R1. If there is unfolding in both S′1 and S then (S′, S′1 ||S2) ∈ R2,
if there is unfolding only in S1 then (S′, S′1 ||S2) ∈ R3. If S2 moves the case
is symmetric (as the previous case using symmetry in composition rules and in
transition rules of protocol ensembles).

Case ` ∈ {⊕l,&l} By Lemma 6 (point 3) we have two cases. If the transition
is matched by a transition of either S1 or S2 that preserves the composition

derivation this case is identical to the case for ` 6∈ {⊕l,&l}). If, instead, (A, S)
`−→

(A′, S[µt.S/t]) and (A, Si)
`−→ (A′, S[µt.Si/t]) with i ∈ {1, 2} in this case the

protocols are in relation R4.

F.1 Behaviour preservation - auxiliary definitions and lemmas

Lemma F1 If (A, S1)
`−→ (A′, S′1) and t 6∈ fn(S1) then t 6∈ fn(S′1).

Proof sketch. The proof is by induction observing that no reduction rule adds
free names.

Lemma F2 (A, S1[t/t1])
`−→ (A′, S′1)∧ t 6∈ fn(S1) =⇒ (A, S1)

`−→ (A′, S′1[t1/t]).

Proof sketch. The proof is by induction on the proof of
`−→. All cases are base

cases (trivial) except 〈rec〉. For 〈rec〉 we consider two cases:

1. S1 = µt1.S1. In this case µt1.S1[t/t1] = µt1.S1 and by 〈rec〉

(A, S1)
`−→ (A′, S′1)

µt1.S1
`−→ (A′, S′1[µt1.S1/t1])
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The thesis is by observing that S′1[µt1.S1/t1] = S′[µt1.S1/t1][t1/t] since

– t 6∈ fn(µt1.S1) by hypothesis;
– t 6∈ fn(S′1[µt1.S1/t1]) by Lemma F1.

2. S1 = µt2.S1. By hypothesis (and rule 〈rec〉)

(A, S1[t/t1])
`−→ (A′, S′1)

µt2.S1[t/t1]
`−→ (A′, S′1[µt2.S1[t/t1]/t2])

(32)

By induction using the premise of eq. (32)

(A, S1)
`−→ (A′, S′1[t1/t])

The above used as premise of 〈rec〉 gives

(A, µt2.S1)
`−→ (A′, S′1[t1/t][µt2.S1/t2]) (33)

Looking at eq. (32), we need to prove that S′1[µt2.S1[t/t1]/t2][t1/t] is equal
to S′1[t1/t][µt2.S1/t2] from eq. (33). We show this below.

S′1[µt2.S1[t/t1]/t2][t1/t]
= S′1[t1/t][µt2.S1[t/t1][t1/t]/t2] (distribution of substitution)
= S′1[t1t][µt2.S1/t2] (since t 6∈ fn(S1) then S′1[t/t1][t1/t] = S′1)

As desired.

Lemma F3

A{S} ∧A′{S′}A⇒ A′{S′[S/t1]}

Proof. By induction on the syntax of S′

Base cases

– If S′ = t then A′{t}A. If t 6= t1 then thesis is by hypothesis. If t = t1 then
A′{t1}A and A′ = A by [call] so A{t1}A hence hypothesis A{S1} yields the
thesis.

– If S′ = end then A′{end}A and the thesis is the hypothesis as t1 6∈ fn(end).

Inductive cases

– If S′ = p.S′′ then by well-formedness rule [act]

A′{S′′}A
A′{p.S′′}A

By induction A′{S′′[S/t1]}A which, by [act] gives A′{p.S′′[S/t1]}A as de-
sired.



52 L. Bocchi et al.

– If S′ = consume(n).S′′ then by well-formedness rule [consume]

A′ \ {n}{S′′}A
A′{consume(n).S′′}A

By induction A′ \ {n}{S′′[S/t1]}A which by [consume] gives

A′{consume(n).S′′[S/t1]}A

as desired.
– The cases for assert, assume, and branching are similar to consume.
– If S′ = µt.S′′ then by well-formedness rule [rec]

A′S′′A ∪A′′

A′µt.S′′A ∪A′′

We have two cases: if t = t1 then A′{µt1.S′′[S/t1] = µt1.S
′′}A ∪A′′ hence

done; if t 6= t1 then by induction A′S′′[S/t1]A ∪ A′′ which used as premise
of [rec] gives A′{µt.S′′[S/t1]}A ∪A′′.

Lemma F4 (Environment Unfolding)

TL,TR, A, µt1.S1 ◦ S2 ` µt1.S (34)

and
TL ∪ TL ∪ {t1},TR ∪ TR, A, S1 ◦ S2 ` S (35)

and
A{S}A (36)

imply

TL ∪ fn(S1) ∩ TL,TR ∪ fn(S2) ∩ TR, A, S1[µt1.S1/t1] ◦S2[S2/t1] ` S[µt1.S/t1]

Proof. This lemma holds for all variants of composition: `s, `w, `c, and `wc

(recall that notation ` is used to refer to any of the aforementioned composition
judgments). The proof focusses on proving `wc which is the most general case;
the other cases can be obtained by simply omitting the inductive cases for rules
not used by that kind of composition (e.g., for `s omit the [wbra] and [cbra]
case).

The proof by induction on the derivation of S by case analysis on the last
rule used.

[rec1] - S1 = µt.S′1 and S = µt.S′. By hypothesis (showing the last rule appli-
cation by [rec1])

TL ∪ TL ∪ {t1, t}, ∅, A, S′1 ◦ S2 ` S′ A{µt.S′}
TL ∪ TL ∪ {t1}, ∅, A, µt.S′1 ◦ S2 ` µt.S′

(37)
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By induction, considering the premise of eq. (37)

TL ∪ fn(S′1) ∩ TL ∪ {t},TR ∪ fn(S2) ∩ TR, A, S′1[µt1.S1/t1] ◦S2[S2/t1] ` S′[µt1.S/t1]

Since TR ⊆ T ′R and T ′R = ∅ the above is equivalent to

TL ∪ fn(S′1) ∩ TL ∪ {t}, ∅, A, S′1[µt1.S1/t1] ◦ S2[S2/t1] ` S′[µt1.S/t1] (38)

By hypothesis eq. (36) A{µt.S′}A and by hypothesis eq. (34) it follows A{S}
hence by lemma F3

A{µt.S′[µt1.S/t1]} (39)

Then I can use eq. (38) and eq. (39) as premise of [rec1] obtaining the thesis

TL ∪ fn(S1) ∩ TL, ∅, A, µt.S′1[µt1.S1/t1] ◦ S2[S2/t1] ` µt.S′[µt1.S/t1]

as required.

[rec2] - S1 = µt.S′1 By hypothesis (showing the last rule application by [rec2])

TL ∪ TL ∪ {t1},TR ∪ TR ∪ {t2}, A, S′1[t2/t] ◦ S2 ` S
TL ∪ TL ∪ {t1},TR ∪ TR ∪ {t2}, A, µt.S′1 ◦ S2 ` S

(40)

By induction

TL ∪ fn(S′1[t2/t]) ∩ TL,TR ∪ fn(S′2) ∩ TR ∪ t2, A, S′1[t2/t][µt1.S1/t1] ◦S2[S2/t1 ` S[µt1.S/t1]

By applying the above as a premise of [rec2] we obtain

TL ∪ fn(S′1[t2/t]) ∩ TL,TR ∪ fn(S′2) ∩ TR ∪ t2, A, µt.S′1[µt1.S1/t1] ◦S2[S2/t1 ` S[µt1.S/t1]
(41)

Observe the following:

fn(S′1[t2/t]) = fn(S′1) since t 6∈ TLby bound names convention. (42)

TL∪fn(S1) = TL since fn(S1) ∈ TL by hypothesis (1) and Lemma B (43)

fn(S′1) ∩ TL = fn(S′1) \ {t1} ∩ TL since t1 6∈ TL (44)

fn(S′1[µt1.S1/t1]) = fn(S′1) \ {t1} ∪ fn(S1) (45)

So

TL ∪ fn(S′1[t2/t]) ∩ TL = TL ∪ fn(S′1) ∩ TL by eq. (42)
= TL ∪ fn(S1) ∪ fn(S′1) ∩ TL by eq. (43)
= TL ∪ fn(S1) ∪ fn(S′1) \ {t1} ∩ TL by eq. (44)
= TL ∪ fn(S1) ∪ fn(S1?) \ {

rv1} ∩ TL by eq. (45)
= TL ∪ fn(S′1[µt1.S1/t1]) ∩ TL

By substituting TL ∪ fn(S′1[t2/t])∩TL with TL ∪ fn(S′1[µt1.S1/t1])∩TL in
eq. (41) we have the thesis.
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[call] If S′1 = t then by hypothesis TL ∪ TL ∪ {t1},TR ∪ TR, A, t ◦ t ` t The
thesis is immediate as t[µt1.S1/t1] = t[µt1.S/t1] = t[S1/t1] = t.

If S′1 = t1 then by hypothesis TL ∪ TL ∪ {t1},TR ∪ TR, A, t1 ◦ t1 ` t1
The thesis is equivalent to hypothesis eq. (34) observing that

TL = TL ∪ fn(S′1) ∩ TL = TL ∪ (∅ ∩ TL)

TR = TR ∪ (fn(S2) ∩ TR) = TR ∪ (∅ ∩ TR)

as desired.

[consume] - S1 = consume(n).S′1 By hypothesis

TL ∪ TL ∪ {t1},TR ∪ TR, A, S′1 ◦ S2 ` S
TL ∪ TL ∪ {t1},TR ∪ TR, A ∪ {n}, consume(n).S′1 ◦ S2 ` S

By induction, considering the premise of the derivation above:

TL ∪ fn(S′1) ∪ TL,TR ∪ fn(S2) ∩ TR, A, S′1[µt1.S1/t1] ◦S2[S2/t1] ` S[µt1.S/t1]

by using the above as a premise of [consume] we obtain

TL ∪ fn(consume(n).S′1) ∪ TL,TR ∪ fn(S2) ∩ TR, A ∪ n, consume(n).S′1[µt1.S1/t1] ◦S2[S2/t1] ` S[µt1.S/t1]

which is the thesis, observing that fn(consume(n).S′1) = fn(S′1) as desired.

[wbra] - S1 = +{li : Si}i∈I By hypothesis

∀i ∈ IA TL ∪ TL ∪ {t1},TR ∪ TR, A, Si ◦ S2 ` S′i
∀i ∈ IB A{Si} ∧ TL ∪ TL ∪ {t1},TR ∪ TR, A, Si ◦ S2 6` S′i

TL ∪ TL ∪ {t1},TR ∪ TR, A, +{li : Si}i∈I ◦ S2 ` +{li : S′i}i∈IA ∪ {li : Si}i∈IB
(46)

By induction:

∀i ∈ IA TL ∪ fn(Si) ∩ TL ∪ {t1},TR ∪ fn(S2) ∩ TR, A, Si[µt1.S1/t1] ◦S2[S2/t1] ` S′i[µt1.S/t1]
(47)

and by second premise of eq. (46)

∀i ∈ IB TL ∪ fn(Si) ∩ TL ∪ {t1},TR ∪ fn(S2) ∩ TR, A, Si[µt1.S1/t1] ◦S2[S2/t1] 6`
(48)

By applying eq. (47) and eq. (48) as premise of [wbra] we obtain

TL ∪ fn(+{li : Si}i∈I) ∪ TL,TR ∪ fn(S2) ∩ TR, A, +{li : Si[µt1.S1/t1]}i∈I ◦ S2[S2/t1] `
+{li : S′i[µt1.S/t1]}i∈IA ∪ {li : Si[µt1.S/t1]}i∈IB

which by definition of substitution is equivalent to

TL ∪ fn(+{li : Si}i∈I) ∪ TL,TR ∪ fn(S2) ∩ TR, A, +{li : Si}i∈I [µt1.S1/t1] ◦ S2[S2/t1] `
(+{li : S′i}i∈IA ∪ {li : Si}i∈IB )[µt1.S/t1]

which is the thesis, observing that fn(+{li : Si}i∈I) =
⋃

i∈I fn(Si) as desired.
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[bra] - S1 = +{li : Si}i∈I This case is a special case of [wbra] above with IB = ∅.

F.2 On the relation R1

Definition 15 (Folding).

Fold(p.S, t) = p.Fold(S, t)
Fold(assert(n).S1, t) = assert(n).Fold(S, t)
Fold(consume(n).S1, t) = consume(n).Fold(S, t)
Fold(require(n).S1, t) = require(n).Fold(S, t)
Fold(+{li : Si}i∈I , t) = +{li : Fold(Si, t)}i∈I
Fold(µt.S1, t) = t

Fold(µt′.S1, t) = µt′.Fold(S1, t)
Fold(end, t) = end

Fold(t′, t) = t′

Definition 16 (Top).

Top(S) =

{
t if S = µt.S′

∅ otherwise

Lemma F5 If TL, TR, A, S1 ◦ S2 ` µt.S then Top(S) = ∅

Proof sketch. Can be proved by induction on the proof of µt.S. Observe that
the composition rules never concatenate recursions from the same protocol (by
premise Top(S1) = ∅ in [rec1]) or from different protocols (by premise Top(S1) =
∅ in [rec2]).

Lemma F6 (Preservation - open protocols) If TL,TR, A, S1 ◦S2 ` S and

(A, S)
`−→ (A′, S′) for some `,A′, S′ then one of the following holds:

1. (A, S1)
`−→ (A′, S′1) and TL,TR, A′, Fold(S′1, Top(S1))@ ◦S2 ` Fold(S′, Top(S)),

for some @ substitution of t′ ∈ Top(S1) \ fn(S′) with t ∈ TR

2. (A, S2)
`−→ (A′, S′2) and TL,TR, A′, S1 ◦ Fold(S′2, Top(S2))@ ` Fold(S′, Top(S)),

for some @ substitution of t′ ∈ Top(S2) \ fn(S′) with t ∈ TL

3. (A, Si)
+l−→ (A′, S′i) with i ∈ {1, 2} and S′ = S[S/Top(S)] and S′i = S[Si/Top(Si)]

for some S

Proof. This lemma holds for all variants of composition: `s, `w, `c, and `wc

(recall that notation ` is used to refer to any of the aforementioned composition
judgments). The proof focusses on proving `wc which is the most general case;
the other cases can be obtained by simply omitting the inductive cases for rules
not used by that kind of composition (e.g., for `s omit the [wbra] and [cbra]
case).

By induction on the derivation of S by case analysis on last rule used.
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[end] The hypothesis does not hold since (A, end) 6→ hence done.

[call] The hypothesis does not hold since (A, t) 6→ hence done.

[consume] - S = consume(n).S The top of the derivation is of the following
form:

TL,TR, A, S1 ◦ S2 ` S
TL,TR, A ∪ {n}, consume(n).S1 ◦ S2 ` consume(n).S

(49)

By hypothesis

(A ∪ {n}, consume(n).S)
`−→ (A, S′)

Since the only transition rule applicable to (A∪{n}, consume(n).S) is 〈consume〉
then ` = consume(n) and S′ = S

(A ∪ {n}, consume(n).S)
consume(n)−−−−−−−→ (A, S)

Similarly, by 〈consume〉

(A ∪ {n}, consume(n).S1)
consume(n)−−−−−−−→ (A, S1)

The thesis (item 1) follows immediately by the premise of (eq. (49)) observing
that Top(S1) = ∅ and Top(S) = ∅ and @ is the empty substitution.

Cases [pref ], [assume], [assert] are similar to the case for [consume].

Cases [wbra] By hypothesis

IA ∩ IB = ∅ IA ∪ IB = I IA 6= ∅
∀i ∈ IA TL,TR, A, Si ◦ S2 ` S′i
∀i ∈ IB A{Si} TL,TR, A, Si ◦ S2 6`

TL,TR, A, +{li : Si}i∈I ◦ S2 ` +{li : S′i}i∈IA ∪+{li : Si}i∈IB
(50)

S = +{li : S′i}i∈IA ∪ +{li : Si}i∈IB can only move by 〈Branch〉 with ` = lj and
either j ∈ IA or j ∈ IB .

Case j ∈ IA. (A,+{li : S′i}i∈IA ∪ +{li : Si}i∈IB )
+li−−→ (A, S′j). Similarly, by

〈Branch〉 on S1

(A,+{li : Si}i∈I)
+lj−−→ (A, Sj)

The thesis hold (item 1) as it is the premise in (eq. (50)) for i = j ∈ IA observing
that Top(+{li : S′i}i∈I) = ∅ and Top(+{li : Si}i∈I) = ∅ and @ is the empty
substitution.

Case j ∈ IB. (A,+{li : S′i}i∈IA ∪ +{li : Si}i∈IB )
+li−−→ (A, Sj). Similarly, by

〈branch〉 on S1

(A,+{li : S′i}i∈I)
+lj−−→ (A, Sj)

Thesis holds (item 3) with S = Sj since fn(Sj) \ fn(S) = fn(Sj) \ fn(S1) = ∅.
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Cases [bra] As the case [wbra] assuming IB = ∅.

Cases [cbra] By hypothesis

∀i ∈ I Ji 6= ∅
⋃

i∈I Ji = J
∀j ∈ Ji TL,TR, A, Si ◦ S′j ` Sij

∀j ∈ J \ Ji TL,TR, A, Si ◦ S′j 6`
TL,TR, A, +{li : Si}i∈I ◦ +′{l′j : S′j}j∈J ` +{li : +′{l′j : Sij}i∈Ji

}i∈I
(51)

S = +{li : +′{l′j : Sij}i∈Ji
}i∈I can only move by 〈Branch〉 with ` = li as follows:

(A,+{li : +′{l′j : Sij}i∈Ji
}i∈I)

+li−−→ (A,+′{l′j : Sij}i∈Ji
)

Similarly, by 〈Branch〉 on S1

(A,+{li : Si}i∈I)
+li−−→ (A, Si)

The first premise in (eq. (50)) can be applied as axiom in the derivation below
to obtain the thesis (item 1) and observing that Top(+{li : S′i}i∈I) = ∅ and @ is
the empty substitution:

TL,TR, A, Si ◦ S′j ` Sij
[sym]

TR,TL, A, S′j ◦ Si ` Sij
[bra]

TR,TL, A, +′{l′j : S′j}j∈J ◦ Si ` +′{l′j : Sij}i∈Ji
[sym]

TL,TR, A, Si ◦ +′{l′j : S′j}j∈J ` +′{l′j : Sij}i∈Ji

Case [sym] The last rule applies is of the following form:

TL,TR, A, S2 ◦ S1 ` S
TL,TR, A, S1 ◦ S2 ` S

By hypothesis (A, S)
`−→ (A′, S′).

By induction one of the following holds:

1. if (A, S2)
`−→ (A′, S′2) then TL,TR, A′, Fold(S′2, Top(S2))@ ◦S1 ` Fold(S′, Top(S))

which yields the thesis when applied as a premise of [sym]. The case for

2. if ` ∈ {⊕l,&l} and (A, S1)
`−→ (A′, S′1) and S′ = S[S/fn(S) \ fn(S)] and

S′1 = S[S1/fn(S) \ fn(S1)] for some S then the thesis (item 3) holds after
applying [sym].

3. if ` ∈ {⊕l,&l} and (A, S2)
`−→ (A′, S′2) the case is similar to case (2).

4. if (A, S1)
`−→ (A′, S′1) the case is similar to case (1).
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Case [rec1] - S = µt1.S and TR = ∅ By hypothesis

TL ∪ {t1}, ∅, A, S1 ◦ µt2.S2 ` S Top(S1) = ∅
TL, ∅, A, µt1.S1 ◦ µt2.S2 ` µt1.S

(52)

and

(A, S)
`−→ (A′, S′)

(A, µt1.S)
`−→ (A′, S′[µt1.S/t1])

(53)

By induction, considering the premise of (eq. (52)) we have one of the following
three cases:

Case S1 moves and composition is preserved. If (A, S1)
`−→ (A′, S′1) and

TL ∪ {t1}, ∅, A′, Fold(S′1, Top(S1))@ ◦ S2 ` Fold(S′, Top(S))

then by premise of (eq. (52)) Top(S1) = ∅ hence @ is empty substitution and we
get

TL ∪ {t1}, ∅, A′, S′1 ◦ S2 ` S′ (54)

By 〈rec〉, (A, µt1.S1)
`−→ (A′, S′1[µt1.S1]). The thesis to prove is therefore

TL, ∅, A′, Fold(S′1[µt1.S1/t1], Top(S1))@ ◦ S2 ` Fold(S′[µt1.S/t1], Top(S))

Observing that Top(S1) = t1, the derivation above is equivalent to

TL, ∅, A′, Fold(S′1[µt1.S1/t1], t1)@ ◦ S2 ` Fold(S′[µt1.S/t1], t1)

that is
TL, ∅, A′, S′1@ ◦ S2 ` S′

Observing that @ is the empty substitution since in Top(S1) = t1 and t1 ∈ fn(S′)
the above follows immediately by eq. (54).

Case S2 moves and composition is preserved. If (A, S2)
`−→ (A′, S′2) and

TL ∪ {t1}, ∅, A′, S1 ◦ Fold(S′2, Top(S2))@ ` Fold(S′, Top(S))

then by Lemma F5, Top(S) = ∅ and @ is empty. Therefore, the above is equiv-
alent to

TL ∪ {t1}, ∅, A′, S1 ◦ Fold(S′2, Top(S2)) ` S′ (55)

The thesis

TL, ∅, A′, µt1.S1 ◦ Fold(S′2, Top(S2))@ ` Fold(S′[µt1.S/t1], Top(S))

is equivalent to eq. (55) since: Top(S) = t1, Fold(S′[µt1.S/t1], t1) = S′ and
@ is the empty substitution (as fn(S′) = t1 which is not a name in S2 as we
assume bound names of S1 and S2 to be disjoint.
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Case ` ∈ {⊕l,&l} and composition is not preserved. By induction either S1 or
S2 makes a transition with label `. We show the case in which S1 moves, as the

case in which (A, S2)
`−→ (A′, S′) is symmetric.

Assume by induction (A, S1)
`−→ (A′, S′). Then: (1) since Top(S1) = ∅ then

fn(S′) \ fn(S1) = ∅, and (2) by Lemma F5 Top(S1) = ∅ then S = S′ and
fn(S′) \ fn(S) = ∅. So, by 〈rec〉

(A, µt1.S1)
`−→ (A′, S′[µt1.S1/t1] (A, µt1.S)

`−→ (A′, S′[µt1.S/t1])

with fn(S′) \ fn(µt1.S) = t1 and fn(S′1) \ fn(µt1.S1) = t1 hence the thesis.

Case [rec2] - S = µt1.S and TR = TR ∪ {t} By hypothesis

TL,TR ∪ {t}, A, S1[t/t1] ◦ S2 ` S Top(S1) = ∅
TL,TR ∪ {t}, A, µt1.S1 ◦ S2 ` S

(56)

and

(A, S)
`−→ (A′, S′)

(A, µt1.S)
`−→ (A′, S′[µt1.S/t1])

(57)

We apply induction to the premise of eq. (56).
By induction considering the premise of eq. (56) we have one of the following

cases:

1. First, assume

(A, S1)
`−→ (A′, S′1) (58)

and

TL,TR ∪ {t}, A′, Fold(S′1, Top(S1[t/t1]))@ ◦ S2 ` Fold(S′, Top(S)) (59)

Observe that by premise of eq. (56) Top(S1) = ∅ hence Top(S1[t/t1]) = ∅.
It follows that @ is empty and eq. (59) is equivalent to

TL,TR ∪ {t}, A′, S′1 ◦ S2 ` Fold(S′, Top(S)) (60)

By 〈rec〉 with premise eq. (58)

(A, µt1.S1[t/t1])
`−→ (A′, S′1[µt1.S1[t/t1]/rv1])

By the transition above and Lemma F2

(A, µt1.S1)
`−→ (A′, S′1[t1/t][µt1.S1/t1]) (61)

We need to prove

TL,TR ∪ {t}, A′, Fold(S′1[t1/t][µt1.S1/t1], Top(µt1.S1))@ ◦S2 ` Fold(S′, Top(S))
(62)
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which, since Top(µt1.S1) = t1, is equivalent to

TL,TR ∪ {t}, A′, Fold(S′1[t1/t][µt1.S1/t1], t1)@ ◦ S2 ` Fold(S′, Top(S))

which, by applying the folding on S′1[t1/t], is equivalent to

TL,TR ∪ {t}, A′, S′1[t1/t]@ ◦ S2 ` Fold(S′, Top(S)) (63)

In eq. (63), @ = [t/t1] since t1 ∈ Top(S1) and t1 6∈ fn(S) and t ∈ TR∪{t},
hence eq. (63) is equivalent to eq. (60). The thesis eq. (62) holds therefore
by eq. (60).

2. Second, assume

(A, S2)
`−→ (A′, S′2) (64)

By induction on the premise of eq. (56)

TL,TR ∪ {t}, A′, S1[t/t1] ◦ Fold(S′2, Top(S2))@ ` Fold(S′, Top(S)) (65)

for some @. Applying eq. (65) as premise of [rec2] we obtain the thesis

TL,TR ∪ {t}, A′, µt1.S1 ◦ Fold(S′2, Top(S2))@ ` Fold(S′, Top(S))

as desired.
3. Finally, assume ` ∈ {⊕l,&l}. By induction we have (A, S1)

`−→ (A′, S′) with

fn(S′) \ fn(S) = ∅ (the case in which (A, S2)
`−→ (A′, S′) is symmetric). So,

by 〈rec〉
(A, µt1.S1)

`−→ (A′, S′[µt1.S1/t1]

Recall also that
(A, S)

`−→ (A′, S′)

The thesis hold for S = S′ since fn(S′) \ fn(S) = ∅, fn(S′1) \ fn(µt1.S1) = t1.

Lemma 6 (Preservation - closed protocols). Assume ∅, ∅, A, S1 ◦ S2 ` S.

For all `,A′, S1 such that (A, S)
`−→ (A′, S′) either

1. (A, S1)
`−→ (A′, S′1) and ∅, ∅, A, S′1 ◦ S2 ` S′ (S′1 up to unfolding), or

2. (A, S2)
`−→ (A′, S′2) and ∅, ∅, A, S1 ◦ S′2 ` S′ (S′2 up to unfolding)

3. ` ∈ {⊕l,&l} and (A, Si)
`−→ (A′, S[S1/fn(S) \ fn(S1)]) with i ∈ {1, 2} and

S′ = S[S/fn(S) \ fn(S)] for some S

Proof. This lemma holds for all variants of composition: `s, `w, `c, and `wc

(recall that notation ` is used to refer to any of the aforementioned composition
judgments). The proof focusses on proving `wc which is the most general case;
the other cases can be obtained by simply omitting the inductive cases for rules
not used by that kind of composition (e.g., for `s omit the [wbra] and [cbra]
case).

We proceed by induction on derivation of S proceeding by case analysis on
the last rule used.
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Case [sym] The last rule applies is of the following form:

∅, ∅, A, S2 ◦ S1 ` S
∅, ∅, A, S1 ◦ S2 ` S

By induction either (A, S2)
`−→ (A′, S′2) and ∅, ∅, A′, S′2 ◦ S1 ` S′ which applied

as a premise of [sym] yields the thesis (item 2) ∅, ∅, A′, S1 ◦ S′2 ` S′, or (A, S1)
`−→

(A′, S′1) and ∅, ∅, A′, S2 ◦ S′1 ` S′ which applied as a premise of [sym] yields the
thesis (item 1) ∅, ∅, A′, S′1 ◦ S2 ` S′. Alternatively, case (3) applies by induction
and yields the thesis as item 3 is symmetric (i ∈ {1, 2}).

Case [consume] - S = consume(n).S proceeds as the corresponding case in Lemma F6.
The top of the derivation is of the following form:

∅, ∅, A, S1 ◦ S2 ` S
∅, ∅, A ∪ {n}, consume(n).S1 ◦ S2 ` consume(n).S

By 〈consume〉

(A ∪ {n}, consume(n).S)
consume(n)−−−−−−−→ (A, S)

and

(A ∪ {n}, consume(n).S1)
consume(n)−−−−−−−→ (A, S1)

The thesis holds as it is identical to the the premise of Equation (49).

Cases [pref ][assume][assert] are similar to [consume].

Case [wbra] Proceeds as the corresponding case in Lemma F6. By hypothesis

I = IA ∪ IB IA ∪ IB 6= ∅
∀i ∈ IA.∅, ∅, A, Si ◦ S2 ` S′i
∀i ∈ IB .∅, ∅, A, Si ◦ S2 6` ∧ A{Si}

∅, ∅, A, +{li : Si}i∈I ◦ S2 ` +{li : S′i}i∈IA ∪ {li : S′i}i∈IB

By 〈bra〉, picking i ∈ IA which is not empty by premise of the derivation
above

(A,+{li : Si}i∈I)
+lj−−→ (A, Sj)

and

(A,+{li : S′i}i∈I)
+lj−−→ (A, S′j)

The thesis holds as it is identical to the the premise of the derivation above
for j ∈ IA.

Case [bra] This follows by [wbra] setting IB = ∅.
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Case [cbra] By hypothesis

∀i ∈ I Ji 6= ∅
⋃

i∈I Ji = J
∀j ∈ Ji ∅, ∅, A, Si ◦ S′j ` Sij

∀j ∈ J \ Ji ∅, ∅, A, Si ◦ S′j 6`
∅, ∅, A, +{li : Si}i∈I ◦ +′{l′j : S′j}j∈J ` +{li : +′{l′j : Sij}j∈Ji

}i∈I
(66)

By 〈bra〉, picking i ∈ I

(A,+{li : +′{l′j : S′j}j∈Ji}i∈I)
+li−−→ (A,+′{l′j : Sij}j∈Ji)

and similarly

(A,+{li : Si}i∈I)
+li−−→ (A, Si)

By applying [sym] to the second premise of eq. (66):

∀j ∈ ji +′ {l′j : S′j}j∈Ji ◦ Si ` +′{l′j : Sij}j∈Ji (67)

By applying eq. (67) as premise of [bra] and then [sym] we obtain the thesis
(1):

∅, ∅, A, Si ◦ +′{l′j : S′j}j∈Ji
` +′{l′j : Sij}j∈Ji

Case [rec1] - S = µt1.S and TR = ∅ By hypothesis

{t1}, ∅, A, S1 ◦ S2 ` S Top(S1) = ∅ A{µt1.S}
∅, ∅, A, µt1.S1 ◦ S2 ` µt1.S

(68)

and

(A, S)
`−→ (A′, S′)

(A, µt1.S)
`−→ (A′, S′[µt1.S/t1])

(69)

By Lemma F6 we have one of the following three cases:

1. (A, S1)
`−→ (A′, S′1) hence by 〈rec〉

(A, µt1.S1)
`−→ (A′, S′1[µt1.S/t1])

and
{t1}, ∅, A′, Fold(S′1, Top(S1)) ◦ S2 ` Fold(S′, Top(S)) (70)

By premise of eq. (68) Top(S1) = ∅ and by Lemma F5 Top(S) = ∅. Hence
by eq. (70) we obtain, with @ being the empty substitution:

{t1}, ∅, A′, S′1 ◦ S2 ` S′ (71)

By premise of eq. (68) [rec1] A{µt1.S} which looking at the well formedness
rule [rec] can be written as

A{µt1.S}A ∪A′′ (72)
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for some A′′. By Lemma 1 eq. (72) and eq. (69) imply

A′{S′1[µt1.S1/t1]}A′′′ such that A′′′ ⊇ A ∪A′′ (73)

By Lemma F4 since eq. (68) and eq. (71) and eq. (73) we obtain

∅, ∅, A′, S′1[µt1.S1/t1] ◦ S2 ` S′[µt1.S/t1]

as desired.
2. (A, S2)

`−→ (A′, S′2) and

{t1}, ∅, A′, S1 ◦ Fold(S′2, Top(S2)) ` Fold(S′, Top(S)) (74)

By Lemma F5, Top(S) = ∅ hence eq. (74) is equivalent to

{t1}, ∅, A′, S1 ◦ Fold(S′2, Top(S2)) ` S′ (75)

We proceed by inner induction on the syntax of S2.
– If S2 = p.S2 then S′2 = S2, and Top(S2) = 0 hence and @ is the empty

substitution. Therefore, eq. (75) is equivalent to the thesis {t1}, ∅, A′, S1 ◦
S′2 ` S′ as desired;

– If S2 = a.S2 with a ∈ {assert(n), consume(n), require(n)} the case is
similar to the prefix case above;

– If S2 = end or S2 = t then (A, S2) 6→ hence done.
– If S2 = µt2.S2 (interesting case) then S′2 = S′2[µt2.S2/t2] with (A, S2)→

(A′, S′2) as premise of 〈rec〉. Since Top(S2) = t2 and fn(S′) 63 t2 then
@ = [t1/t2]. Therefore, Fold(S′2, Top(S2))@ = S′2[t1/t2] and substitut-
ing this in eq. (75) we obtain

{t1}, ∅, A′, S1 ◦ S′2[t1/t2] ` S′

By applying Lemma F4 to the above we get

∅, ∅, A′, S1[µt1.S1/t1] ◦ S′2[t1/t2][µt2.S2/t1] ` S′[µt1.S/t1]

which is equivalent to

∅, ∅, A′, S1[µt1.S1/t1] ◦ S′2[µt2.S2/t2] ` S′[µt1.S/t1]

as desired.
– By Lemma F6 either S1 or S2 makes a transition with label ` and

(A, µt1.S1)
`−→ (A′, S′[µt1.S1/t1] (A, µt1.S)

`−→ (A′, S′[µt1.S/t1])

with fn(S′) \ fn(µt1.S) = t1 and fn(S′1) \ fn(µt1.S1) = t1 hence the
thesis.

Case [rec2] S = µt1.S and TR 6= ∅ Contradicts the hypothesis (TR 6= ∅) hence
done.
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F.3 R2, R3 and R4 are simulations

Lemma F7

R2 = {(S′[µt.S/t], S′1[µt.S1/t]) |S . S1 ∧ S′ . S′1 ∧ S′ 6= t}

R2 is a simulation.

Proof. (sketch) (S, S1) ∈ R2. So S = S′[µt.S/t] and S1 = S′1[µt.S1/t]. We
proceed by induction on S′. All cases are immediate as any step of S′ is matched
by a step of S′1 since S′ . S′1. Notice that the only case that would require care,
S′ = t is ruled out.

Lemma F8 Let
R3 = {(S′, S′1[µt.S1/t]) |S′ . S′1}

R3 is a simulation.

Proof. (sketch) We proceed by induction on S′. All cases (except the case S′ = t)
are immediate as any step of S′ is matched by a step of S′1 since S′ . S′1. If
S′ = t then S′ 6→ hence done.

Lemma F9 Let
R4 = {(S, S1 | S2) |S . S1}

R4 is a simulation.

Proof. (sketch) Straightforward by induction on the structure of S.

G Proofs of fairness

Definition 17. Define the following context:

C[ · ] = g.C[ · ] g ∈ {p, assert(n), consume(n), require(n)}
| +{l : C[ · ]} ∪ {li : Si}i∈I
| µt.C[ · ]
| [ · ]

Write S = C[ · ] if S = C[S′ ] for some S′. Write C ′ ∈ C (resp. C ′ 6∈ C) is there
exists (resp. there exists no) C1, C2 such that C = C1[C ′[C3[ · ] ] ]. Define the
following functions:

clab(g.S) = {g} clab(+{li : Si}i∈I) = {+li}i∈I clab(µt.S) = clab(S)

and
V(g.C[ · ]) = g, V(C[ · ]) V([ · ]) = ε V(µt.C[ · ]) = V(C[ · ])
V(+{lj : C[ · ]} ∪ {li : Si}i∈I\j) = +lj , V(C[ · ])
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Lemma G1 If (A, S)
`−→ (A′, S′) then (A, S[S/t])

`−→ (A′, S′[S/t])

Proof. (sketch) Mechanical by induction on the transition, by case analysis on
the last rule used to make step `.

Lemma G2 If TL, TR, A, S0 ◦ S1 ` S and S1 = end then S0 = S

Proof. (sketch) By induction on the proof of S proceeding by case analysis on
the last rule used, observing that the last rule used cannot be [rec1] or [rec2] as
the only axiom that can be used if [end] (i.e., not [call]) due to the form of S1.

Lemma G3 If (A, S)
`−→ then ` ∈ clab(S).

Proof. (sketch) Mechanical by induction on the derivation of transition
`−→ pro-

ceeding by case analysis on the last transition rule used.

Lemma G4 If (A, S)
r−→ then S = C[S′] for some S′ and V(C) = r.

Proof. (sketch) First prove that (A, S)
r−→ implies S = C[S′] for some S′ and

V(C) = r by induction on the transition proceeding by case analysis on the last
transition rule used. Then by induction on the size of r based on the fact that
contexts compositionality.

Lemma G5 If S = C[S′ ], A{S}, and ` ∈ clab(S′), then (A, S)
r−→ `−→ for some

(possibly empty) vector r of transition labels such that V(C) = r.

Proof. By induction on the syntax of C.

– Case C = [ · ] (and hence V(C) is the empty vector of labels). We show the
case for S′ = consume(n).S′′ and hence clab(S) = {consume(n)}. By well-
assertedness of S, which in this case last applies rule [consume], n ∈ A, then
by semantic rule 〈consume〉 we have

(A, consume(n).S′)
consume(n)−−−−−−−→ (A \ {n}, S′)

as desired. The cases for S′ ∈ {require(n).S′′, assert(n).S′′, p.S′′} are sim-
ilar.

– If C = consume(n).C ′[ · ] then we proceed with a generic S′. By well-assertedness
of S which last applies rule [consume] we have n ∈ A hence by semantic rule
〈consume〉 we have

(A, consume(n).C ′[S′])
consume(n)−−−−−−−→ (A \ {n}, C ′[S′])

By Lemma 1 (well-assertedness is preserved by transition) we have

A \ {n}{C ′[C[S′ ] ]}
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By induction (A \ {n}, C ′[S′ ]) r−→ `−→ with ` ∈ lab(S′) and V(C ′) = r hence

(A, consume(n).C ′[S′])
consume(n)−−−−−−−→ r−→ `−→

with ` ∈ lab(S′) and V(C) = consume(n), V(C ′) = consume(n), r as desired.
– The other cases for C = g.C ′[·] are similar to the case above.
– If C = +{l : C ′[·]} ∪ {li : Si}i∈I . By semantic rule 〈branch〉 we have

(A,+{l : C ′[S′]} ∪ {li : Si}i∈I)
+l−→ (A, C ′[S′])

By Lemma 1 (well-assertedness is preserved by transition) we have

A{C ′[S′ ]}

By induction (A, C ′[S′ ])
r−→ `−→ with ` ∈ clab(S′) and V(S′) = r hence

(A,+{l : C ′[S′]} ∪ {li : Si}i∈I)
+l−→ r−→ `−→

with ` ∈ clab(S′) and V(C) = +l, V(C) = +l, r as desired.
– If C = µt.C ′[·] then by well-assertedness of A{S}. In this case the last rule

applied is [rec]. We have by premise of [rec], A{C ′[S′ ]}. Hence, by Lemma 2
(well-asserted protocols are not stuck)

(A, C ′[S′ ])
`′−→ (A′, C ′′[S′ ]) (76)

for some C ′′ and by Lemma 1 A′{C ′′[S′ ]}. By induction

(A′, C ′[S′ ])
`′−→ r−→ `−→ ` ∈ clab(S′) `′, r = V(C ′[ · ]) (77)

By 〈Rec〉 with as premise the first transition of eq. (77):

(A, µt.C ′[S′ ])
`−→ (A′, C ′′[S′ ][µt.C ′[S′ ]/t])

By Lemma G1 and eq. (77)

(A′, C ′′[S′ ][µt.C ′[S′ ]/t])
r−→ `−→

hence

(A, µt.C ′[S′ ])
`′−→ r−→ `−→ ` ∈ clab(S′)

V(µt.C ′[ · ]) = V(C ′[ · ]) and by induction V(µt.C ′[ · ]) = `′, r as desired.

Lemma G6 If TL, TR, A, S0 ◦ S1 ` S then ∀` ∈ clab(S1)∃C[ · ], C0[ · ], S′, S′0
such that

1. S = C[S′ ] and S0 = C0[S′0 ]

2. V(C[ · ]) = V(C0[ · ])

3. ` ∈ clab(S′)

Proof. We proceed by induction on the proof of S, proceeding by case analysis
of the last rule applied.
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Case [end] In this case clab(S1) = ∅ hence done.

Case [call] In this case clab(S1) = ∅ hence done.

Case [act] Fix ` ∈ clab(S1). In this case S0 = p.S′0 and S = p.S′ then

TL, TR, A, S′0 ◦ S1 ` S′

TL, TR, A, p.S′0 ◦ S1 ` p.S′

By induction there exists C[S′′ ] = S′ and C0[S′′0 ] = S′0 such that V(C[ · ]) =
V(C0[ · ]) and ` ∈ clab(S′′). Hence there exists p.C and p.C0 such that C[S′′0 ] =
S0 and p.C[S′′ ] = p.S′ = S and p.C0[S′′0 ] = p.S′0 = S0. Moreover, since
V(C[ · ]) = V(C0[ · ]) then p, V(C[ · ]) = p, V(C0[ · ]) and hence V(p.C[ · ]) = V(p.C0[ · ]).
Finally, still ` ∈ clab(S′′) as desired.

Case [consume] [assert], [require] Are similar to [act].

Case [wbra] Fix ` ∈ clab(S1). In this case S = +{li : S′i}i∈IA ∪ {li : Si}i∈IB ,
S0 = +{li : Si}i∈I and

IA ∪ IB = I IA ∩ IB = ∅
∀i ∈ IA. TL, TR, A, Si ◦ S1 ` S′i
∀i ∈ IB . A{Si} TL, TR, A, Si ◦ S1 6`

TL, TR, A, +{li : Si}i∈I ◦ S1 ` +{li : S′i}i∈IA ∪ {li : Si}i∈IB
By induction ∀i ∈ IA with IA 6= ∅ there exist Ci[Si ] = Si and C ′i[S

′
i ] = S′i

such that V(Ci[ · ]) = V(C ′i[ · ]) and ` ∈ clab(S′i).
Hence, there exists C0[Si ] = +{li : Ci[Si ]} ∪ {lj : Sj}j∈I\{i} and C[S′i ] =

+{li : C ′i[S
′
i ]} ∪ {lj : S′j}j∈IA\{i} ∪ {li : Si}i∈IB . Moreover, V(Ci[ · ]) = V(C ′i[ · ])

implies li, V(Ci[ · ]) = li, V(C ′i[ · ]) and hence V(C0[ · ]) = V(C[ · ]). Finally, still
` ∈ clab(S′i) as desired.

Case [bra] As the case [wbra] assuming IB = ∅.

Case [cbra] Fix ` ∈ clab(S1). In this case S = +{li : +′{lj : Sij}j∈Ji
}i∈I ,

S0 = +{li : Si}i∈I and

∀i ∈ I Ji 6= ∅
⋃

i∈I Ji = J
j ∈ Ji. TL, TR, A, Si ◦ Sj ` Sij

∀j ∈ J \ Ji TL, TR, A, Si ◦ Sj 6`
TL, TR, A, +{li : Si}i∈I ◦ +′{lj : Sj}j∈J ` +{li : +′{lj : Sij}j∈Ji

}i∈I

By induction ∀i ∈ I there exist Ci[Si ] = Si and C ′i[Sij ] = Sij such that
V(Ci[ · ]) = V(C ′i[ · ]) and ` ∈ clab(Sij).

Hence, forall lj ∈ clab(S0) (which is non empty since I 6= ∅) there exist
j ∈ Ji, C1[Si ] = +{li : Ci[S

′
i ]}∪{lj : Sj}j∈I\{j} and C[Sij ] = +{li : C ′i[Sij ]}∪

{lj : Sij}j∈Ji\{i}, V(C0[ · ]) = V(C[ · ]) = li, V(Ci[ · ]) = li, V(C ′i[ · ]) and still ` ∈
clab(Sij).
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Case [rec1] Fix ` ∈ clab(S1). In this case S0 = µt.S′0, S = µt.S′ (and for
simplicity we leave the recursive form of S1 implicit as it is immaterial here). By
composition rule [rec1]:

TL ∪ {t}, TR, A, S′0 ◦ S1 ` S′

TL, TR, A, µt.S′0 ◦ S1 ` µt.S′

By induction there exist C[S′ ] = S′ and C0[S′0 ] = S′0 such that V(C[ · ]) =
V(C0[ · ]) and ` ∈ clab(S′). Hence there exists µt.C[S′ ] = S and µt.C0[S′0 ] =
S0. Moreover, since by induction V(C[ · ]) = V(C0[ · ]) and hence V(µt.C[ · ]) =
V(µt.C0[ · ]) (since V(µt.C[ · ]) = V(C[ · ]) and V(µt.C0[ · ]) = V(C0[ · ]) by defini-
tion of V()). Finally, still ` ∈ clab(µt.S′) as desired.

Case [rec2] Fix ` ∈ clab(S1). In this case

TL, TR ∪ t′, A, S′0[t′/t] ◦ S1 ` S
TL, TR ∪ t′, A, µt.S′0 ◦ S1 ` S

By induction there exists C[S′ ] = S and C0[S′0 ] = S′0[t′/t] such that
V(C[ · ]) = V(C0[ · ]) and ` ∈ clab(S′).

Hence there exists C[S′ ] = S and µt.C0[t/t′][S′0[t/t′] ] = S0. By induction
V(C0) = V(C) and by definition of V() (observing that t′ does not affect the
returned value), V(µt.C0[t/t′]) = V(C0[t/t′]) and V(C0[t/t′]) = V(C0). Hence
V(C[ · ]) = V(µt.C0[t/t′]) and still ` ∈ clab(µt.S′) = clab(S′).

Case [sym] In this case

TL, TR, A, S1 ◦ S0 ` S
TL, TR, A, S0 ◦ S1 ` S

(78)

Assume that [sym] is applied only once. If [sym] it is applied multiple (but
finite) times subsequently, say n times, then if n is even the thesis is immediate
by hypothesis, and if n is odd then the case is equivalent to the one where the
rule is applied once. Fix ` ∈ clab(S1). If clab(S0) 6= ∅ then by induction there
exists C[S′ ] = S and C1[S′1 ] such that V(C[ · ]) = V(C1[ · ]) and ` ∈ clab(S′).
From V(C[ · ]) = V(C1[ · ]), C[S′ ] = S and C1[S′1 ] it follows that S and S1 have
the same first prefix hence

` ∈ clab(S)

hence the thesis with contexts [ · ] for S and S0 and trivially V([ · ]) = V([ · ]).
If clab(S0) = ∅ then either S0 = end or S0 = t. In either case S1 = S:
by lemma G2 if S0 = end and by [call] if S0 = t. Hence with contexts [ · ] for S
and S0 trivially clab(S1) = clab(S) and hence ` ∈ clab(S) and V([ · ]) = V([ · ])

Lemma G7 is a stronger version of Lemma G6 where quantification over con-
texts is universal rather than existential, and holds only for strong composition
(not for weak one).

Lemma G7 If TL, TR, A, C0[S0 ] ◦ S1 `s S and clab(S1) 6= ∅, then either:
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1. there exist C ′0, C ′′0 , C[S′] = S such that

– C0[ · ] = C ′0[C ′′0 [ · ] ], and

– V(C ′0[ · ]) = V(C[ · ]), and

– clab(S′) = clab(S1), or

2. there exist C ′0[S′0], C[S′] = S such that

– C0[C ′0[S′ ] ] = S0, and

– V(C0[C ′0[ · ] ]) = V(C[ · ]), and

– clab(S′) = clab(S1)

Proof. We proceed by induction on the syntax of C0.

Case C0[ · ] = p.C0[ · ] By hypothesis

TL, TR, A, C0[S0 ] ◦ S1 `s S
TL, TR, A, p.C0[S0 ] ◦ S1 `s p.S

By induction either of the following holds:

1. there exist C ′0[C ′′0 [ · ] ] = C0[ · ] and C[S′] = S such that V(C ′0[ · ]) = V(C[ · ])
and clab(S′) = clab(S1). Therefore there exist p.C ′0[C ′′0 [ · ] ] = C0[ · ] and
p.C[S′] = p.S such that V(C ′0[ · ]) = p, V(C ′0[ · ]) = p, V(C[ · ]) = V(p.C[ · ]) and
clab(S′) = clab(S1).

2. there exist C ′0[S′0], C[S′] = S such that C0[C ′0[S′ ] ] = S0, V(C0[C ′0[ · ] ]) =
V(C[ · ]), and clab(S′) = clab(S1). Therefore there exist C ′0[S′0], p.C[S′] =
S such that p.C0[C ′0[S′ ] ] = p.S0, V(p.C0[C ′0[ · ] ]) = p, V(C0[C ′0[ · ] ]) =
p, V(C[ · ]) = V(p.C[ · ]) and clab(S′) = clab(S1).

The cases for consume, assert, and require are similar to the prefix case above.

Case C0[ · ] = +{lj : C0[ · ]} ∪ {li : Si}i∈I\{j} By hypothesis

∀i ∈ I \ {j} TL, TR, A, Si ◦ S1 `s S′i
C0[Sj ] = Sj TL, TR, A, C1[Sj ] ◦ S1 `s S′j

TL, TR, A, +{lj : C0[Sj ]} ∪ {li : Si}i∈I\{j} ◦ S1 `s +{li : Si}i∈I

By induction either of the following holds:

1. there exist C ′0[C ′′0 [ · ] ] = C0[ · ] and C[S′′j ] = S′j such that V(C ′0[ · ]) = V(C[ · ])
and clab(S′′j ) = clab(S1). Therefore there exist +{lj : C ′0[C ′′0 [ · ] ]} ∪ {li :
Si}i∈I\{j} = C0[ · ] and +{lj : C[S′′j ]} ∪ {li : Si}i∈I\{j} = +{li : Si}i∈I such
that V(+{lj : C ′0[ · ]} ∪ {li : Si}i∈I\{j}) = lj , V(C ′0[ · ]) = V(+{lj : C[ · ]} ∪ {li :
S′i}i∈I\{j}) and clab(S′j) = clab(S1).
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2. there exist C ′0[S′′′j ], C[S′′j ] = S′j such that C0[C ′0[S′′′j ] ] = Sj , V(C0[C ′0[ · ] ]) =
V(C[ · ]), and clab(S′) = clab(S1). Therefore there exist C0[C ′0[S′′′j ] ], +{lj :
C[S′′j ]}∪{li : Si}i∈I\{j} = +{li : Si}i∈I such that V(C0) = lj , V(C0[C ′0[ · ] ]) =
lj , V(C[ · ]) = V(+{lj : C[ · ]} ∪ {li : Si}i∈I\{j}) and clab(S′) = clab(S1).

Case C0[ · ] = µt.C0[ · ] By induction observing that V(µt.C0[ · ]) = V(C0[ · ]).

Case C0[ · ] = [ · ] Immediate by induction.

Theorem 2 (Fairness of compositions with ` ). If ∅, ∅, A, S0 ◦ S1 ` S
then S is fair w.r.t. S0 and S1 on A.

Proof. Immediately from Lemma G8.

Lemma G8 (Fairness) Let ∅, ∅, A, S0 ◦ S1 ` S. Then ∀i ∈ {0, 1} and any

transition (Ai, Si)
`−→ (A′i, S

′
i) there exists r such that: (1)

– (A, S|1−i|)
r−→ (A′|1−i|, S

′
|1−i|)

– (A, S)
r`−→ (A′′, S′)

– ∅, ∅, A′′, S′0 ◦ S′1 ` S′.

Proof. Assume (A, S1)
`−→ (A′1, S

′
1). By Lemma G3 ` ∈ clab(S1) so, by Lemma G6,

there are two contexts C0 and C such that the hypothesis can be rewritten as

∅, ∅, A, C0[S′0 ] ◦ S1 ` C[S′ ]

with
V(C0[ · ]) = V(C[ · ]) (79)

and
` ∈ clab(S′) (80)

By eq. (79), eq. (80) and Lemma G5

(A, S0)
r−→ (A′0, S

′
0) (for some A′0, S

′
0)

(A, S)
r`−→ (A′, S′) (for some A′′, S′)

(81)

It remains to prove that
∅, ∅, A′′, S′0 ◦ S′1 ` S′ (82)

For every transition r ∈ r, by case (1) of Lemma 6 the composition relation is
preserved. More precisely, let r = r0, . . . , rn:

∅, ∅, A, S0 ◦ S1 ` S ∧ (A, S0)
r0−→ (A1, S1

0) ∧ (A, S)
r0−→ (A1, S1)⇒ ∅, ∅, A1, S1

0 ◦ S1 ` S1

. . .

∅, ∅, An, Sn
0 ◦ S1 ` Sn ∧ (An, Sn

0 )
rn−→ (A′, S′

0) ∧ (An, Sn)
rn−→ (A′, Sn+1)⇒ ∅, ∅, An+1, S′

0 ◦ S1 ` Sn+1

Note that, when using Lemma 6, case (1) of Lemma 6 can always apply (case 2
applies for the symmetric case in which S0 moves first). Assume by contradiction
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that only case (3) applies (the case where continuations are not preserved), then
S0 and S would move to a state in which they are both S. By taking any S0

(and hence S) that does not include any ` action we have a counter-example
for eq. (81) (second row) already proved above. Hence case (1) must always be
applicable. Hence done.

Assume now that (A, S0)
`−→ (A′, S′0). Then by applying [sys] after the last

composition rule in the hypothesis we obtain

∅, ∅, A, S1 ◦ S0 ` S′

and the case is then identical to the one where S1 moves, proved above.

Theorem 3 (Strong fairness of compositions with `s ). Assume

∅, ∅, A, S0 ◦ S1 `s S

then S is strongly fair with respect to S0 and S1 on A.

Proof. Immediately from Lemma G9.

Lemma G9 Let ∅, ∅, A, S0 ◦ S1 `s S. Then ∀i ∈ {0, 1} and all transitions

( , Si)
`−→ ( , S′i) and (A, S|1−i|)

r−→, there exist r′, r′′ with (A, S|1−i|)
r′

−→
( , S′|1−i|) with either

1. r′r′′ = r (r′ is a prefix of r), or
2. r′ = rr′′ (r is an ex prefix of r′)

such that (A, S)
r′`−−→ (A′, S′) and ∅, ∅, A′, S′0 ◦ S′1 `s S′.

Proof. We fix i = 1. By Lemma G3 if (A, S1)
`−→ (A′, S′1) then ` ∈ clab(S1)

and hence clab(S1) 6= ∅. Fix any r such that (A, S0)
r−→. By Lemma G4 we can

rewrite S0 as C0[S′′0 ] with V(C0[ · ]) = r. By Lemma G7, since clab(S1) 6= ∅, for
C0 either

1. there exist C ′0, C ′′0 , C[S′′] = S such that

– C0[ · ] = C ′0[C ′′0 [ · ] ], and

– V(C ′0[ · ]) = V(C[ · ]), and

– clab(S′′) = clab(S1), or

2. there exist C ′0[S′0], C[S′′] = S such that

– C0[C ′0[S′′ ] ] = S0, and



72 L. Bocchi et al.

– V(C0[C ′0[ · ] ]) = V(C[ · ]), and

– clab(S′′) = clab(S1)

In case (1) above, we can write S0 as C ′0[S′′′0 ] for some S′′′0 , r′ = V(C ′0), and
r′′ = V(C ′′0 ). By Lemma G4

(A, C ′0[S′′′0 ])
r′

−→ ( , S′0)

for some S′0. Since clab(S′′) = clab(S1) then ` ∈ clab(S′′). Since A{S} by
hypothesis (it is a composition) and ` ∈ clab(S′′) then by Lemma G5

(A, C[S′′ ])
r′`−−→ (A′, S′)

for some A′ and S′.
In case (2) above, we set r′ = V(C0[C ′0[ · ] ]) and we can write S0 as C0[C ′0[S′′′0 ] ]

for some S′′′0 . By Lemma G4

(A, C0[C ′0[S′′′0 ] ]
r′

−→ ( , S′0)

for some S′0. Since clab(S′′) = clab(S1) then ` ∈ clab(S′′). Since A{S} by
hypothesis (it is a composition) and ` ∈ clab(S′′) then by Lemma G5

(A, C[S′′ ])
r′`−−→ (A′, S′)

for some A′ and S′.
In both case (1) and case (2) above, it remains to prove that

∅, ∅, A′, S′0 ◦ S′1 `s S′

For every transition r ∈ r, by Lemma 6 (1) the composition relation is preserved;
this can be shown proceeding as in Lemma G8.

The case for i = 1 is symmetric (proceeds similarly, thanks to symmetric
rules of composition and transition of protocols ensembles).


