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Abstract

In this paper, a consensus framework is proposed for a class of linear multiagent systems subject to matched and unmatched
uncertainties in an undirected topology. A linear coordinate transformation is derived so that the consensus protocol design can be
conveniently performed. The distributed consensus protocol is developed by using an integral sliding mode strategy. Consensus
is achieved asymptotically and all subsystem states are bounded. By using an integral sliding mode control, the subsystems lie
on the sliding surface from the initial time, which avoids any sensitivity to uncertainties during the reaching phase. By use of
an appropriate projection matrix, the size of the equivalent control required to maintain sliding is reduced which reduces the
conservatism of the design. MATLAB simulations validate the effectiveness and superiority of the proposed method.
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I. INTRODUCTION

Cooperative control of multiagent systems has received considerable attention in recent years due to its relevance in fields
including microgrids, spacecraft formation and industrial cooperative robotics [1]. The behaviour is characterised by cooperation
between subsystems via a communication network whereby each subsystem shares information with its neighbours to ensure
that all agents reach an agreed goal. Consensus control is a typical and fundamental collective behavior of cooperative control.
In a distributed system, consensus control generally focuses on how the agents come to agreement on certain quantities by using
their own information together with information received from their neighbours [2]. Consensus control can be widely applied
in practice. For instance, in order to increase production, multiple reactors are used to simultaneously perform a chemical
reaction where controllers communicate with each other and maintain the temperature, pressure and flow across the reactors
in order to maintain consistency of the product.

In process control, uncertainties or modeling errors can seriously affect the behaviour of subsystems. Within a multiagent
network this behaviour can spread across the systems because of the interactions between the agents. The performance can
decrease in terms of control accuracy if such uncertainties are not considered[3][4][5]. Robust control is an effective approach to
cope with such uncertainty. H∞ control is a typical robust control strategy which has been widely applied in consensus theory
[6][7]. The adaptive control paradigm is also commonly used to deal with uncertainties in multiagent systems [8][9]. However,
in much of this research, a high control gain is required to suppress uncertainties which may be undesirable in practice.
In some cases, a disturbance observer can be systematically designed to observe and then compensate for disturbances and
uncertainties [10][11][12]. However, well parameterised models are typically required to define the disturbance observer. Sliding
mode control possesses useful characteristics such as total invariance to matched uncertainties, straightforward implementation
and fast global convergence [13][14]. There are several contributions which consider distributed control using sliding mode
approaches. Consensus is achieved using a decoupled distributed sliding mode control for second-order multiagent systems
in [2]. Leader-following containment control is investigated for linear systems in [15]. Scaled consensus is studied for linear
systems by means of an H∞ sliding mode control in [16]. It should be noted that during the reaching phase in classical
sliding mode control, the system behaviour is still affected by matched uncertainties [17][18]. Integral sliding mode control
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serves as a solution to this problem as it eliminates the reaching phase. Finite-time consensus is achieved for second-order
multiagent systems with disturbances using an integral sliding mode approach in [19]. Fixed-time consensus tracking is studied
for second-order nonlinear systems in [20]. The consensus protocols in [19] and [20] are not applicable for more general classes
of linear system. A nearly optimal integral sliding-mode consensus protocol is designed for multiagent systems in the presence
of matched disturbances in [21]. Note that the unmatched uncertainties have not been considered in this work. Consequently,
it is valuable to develop a method to cope with matched and unmatched uncertainties for linear multiagent systems.

Much of the existing research in distributed control considers consensus for multiagent systems, but does not consider the
stability of the subsystems. For example, in [2][19] and [22], second order systems are usually considered as position-velocity
systems, in which position increases over time, i.e., the subsystems are unstable after achieving consensus. Theoretically, this
is due to the existence of multiple zero eigenvalues and their linearly dependent eigenvectors in the system matrix. However,
in physics, the second order system can also act as a mathematical model of a sensor system [23] or a motor system [24].
In these application scenarios, divergence of the states to infinity over time is undesirable. For other known research, though
the states reach the equilibrium point ultimately, there is no direct proof of the stability of the subsystems. In [1][8][9] and
[25], a robust adaptive strategy is utilized to achieve consensus, but it is difficult to synthesize this method to prove stability
of the subsystems. As a consequence, it is challenging to develop a consensus protocol which will stabilize the subsystems
and where proof of stability can be achieved constructively.

Motivated by the above discussion, in this paper a consensus framework is proposed for linear multiagent systems which
are subject to uncertainties by using an integral sliding mode strategy. Firstly, the distributed linear system is transformed into
a novel regular form by a linear coordinate transformation, which facilitates designing the distributed consensus protocol. In
comparison with the traditional regular form [26], the novel regular form inherits the property that matched and unmatched
uncertainties can be separated. Further, the transformed representation facilitates analysis of the consensus error. Secondly,
despite the presence of model uncertainties, an integral sliding mode strategy is employed so that the states start on the sliding
surface from the initial time, which achieves better robustness characteristics than classical sliding mode control [27][28].
Meanwhile, by using the integral sliding mode control, the matched uncertainties are eliminated, and the effect of unmatched
uncertainties is minimized by the projection matrix. Even if the states deviate from the sliding surface, the integral sliding
mode control can drive them back to it in finite time. In addition, when the system states move along the surface, a nominal
dynamics is exhibited. In consequence only a nominal protocol needs to be designed to guarantee consensus. In this way,
couplings are in the nominal control protocol, while not in the integral sliding control protocol, which simplifies control
protocol design in contrast to other robust methods [29][30]. Thirdly, in light of the novel regular form and integral sliding
mode strategy, a consensus control protocol is proposed for a distributed linear system, and it renders all the subsystem
states bounded. Considering subsystem stability is desirable, but it is usually ignored or not directly proved in other papers
[31][32][33][34][35]. Moreover, the proposed protocol is fully distributed without requiring global information when compared
to [7][36] and [37].

In this paper, the main contributions are twofold. On the one hand, an integral sliding mode based consensus protocol is
proposed so that matched uncertainties are eliminated while the effect of unmatched uncertainties is minimized. On the other
hand, in light of the consensus control framework, consensus for the multiagent system can be achieved asymptotically, while
the subsystem states are rendered bounded.

The rest of this paper is organized as follows. In Section II, some basic concepts are stated, a linear coordinate transformation
is given and the problem to be solved is formulated. In Section III, the integral sliding mode control is designed and sliding
motion stability is analyzed. In Section IV, consensus and subsystems’ stability are analyzed. In Section V, simulation results
are analysed and finally in Section VI, conclusions are drawn.

II. PRELIMINARIES AND PROBLEM FORMULATION

Graph theory is used to illustrate the communication among subsystems [38]. Let G = (V, E ,A) denote an undirected
graph consisting of N nodes V = {v1, v2, . . . , vN}, a set of undirected edges E ⊆ V × V , and a weighted adjacency matrix
A = (aij)N×N . An undirected edge Eij in the undirected graph G is denoted by a pair of unordered nodes (vi, vj), which
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indicates vi and vj are neighbours and can communicate with each other. The set of neighbours for node vi is denoted by
Nvi = {vj ∈ V : (vi, vj) ∈ E , i ̸= j}. The weights aij = aji= 1 in the weighted adjacency matrix A if and only if the edge
(vi, vj) exists, and aij = aji=0 otherwise. Define aij = 0 when i = j. The Laplacian matrix L = (Lij)N×N is defined by

Lij = −aij for i ̸= j, and Lii =
N∑

j=1,j ̸=i

aij . A path is a sequence of connected edges in a graph, and a graph is connected if

there is a path between every pair of vertices.
0n×m denotes an n−row and m−column matrix with all the entries being 0. 0n denotes an n−row vector with all the entries

being 0. Im denotes an m × m identity matrix. Let ∥M∥F =

√
p∑

i=1

q∑
j=1

|mij |2 be the Frobenius norm of M = (mij)p×q .

∥ϖ∥∞= max
1≤i≤n

|ϖi| denotes an infinite norm of ϖ ∈ Rn. ∥�∥ denotes the Euclidean norm in this paper unless additionally

stated. λi (P ) denotes an eigenvalue of P ∈ Rn×n, where i = 1, 2, . . . , n, λmax (P ) denotes the maximum eigenvalue of P .
h (o) is a function with o being the argument, and then o∗ = argmin

o
h (o) represents the argument o∗ which minimizes h (o).

Consider a distributed multiagent system with N subsystems where the communication among subsystems is denoted by an
undirected topology graph G. Each subsystem has the following identical nominal linear dynamics which is subject to model
uncertainties

ẋi (t) = Axi (t) +Bui (t) + ϕi (t, xi) , i = 1, 2, . . . , N (1)

where xi (t) ∈ Rn, ui (t) ∈ Rm, A ∈ Rn×n, B ∈ Rn×m are the state, control protocol, system matrix and input matrix of the
ith subsystem respectively. The uncertainties are lumped together and denoted as ϕi (t, xi) ∈ Rn.

The following assumptions will be imposed on system (1).
Assumption 1: The pair (A,B) is controllable.
Assumption 2: B has full column rank, i.e., rank (B) = m.
Assumption 3: The continuous uncertainty ϕi (t, xi) ∈ Rn is unknown but bounded, i.e., ∥ϕi (t, xi)∥ ≤ β, where β ∈ R is

a known constant.
Assumption 4: The undirected graph G is connected.

Under Assumption 2, it follows from Lemma 5.3 in [26] that there exists a linear coordinate transformation z̃i
∆
=
[
z̃Ti1 z̃Ti2

]T
=

T1xi such that (1) can be described as

˙̃zi1 (t) = Ã11z̃i1 (t)+Ã12z̃i2 (t) + ϕ̃i1 (t, z̃i)

˙̃zi2 (t) = Ã21z̃i1 (t) + Ã22z̃i2 (t) +B2ui (t) + ϕ̃i2 (t, z̃i)
(2)

where T1 is an invertible matrix, z̃i1 (t) ∈ Rn−m, z̃i2 (t) ∈ Rm, Ã11 ∈ R(n−m)×(n−m), Ã22 ∈ Rm×m, rank (B2) = m,
ϕ̃i1 (t, z̃i) ∈ Rn−m and ϕ̃i2 (t, z̃i) ∈ Rm are unmatched and matched uncertainties respectively.

Perform a coordinate transformation zi
∆
=
[
zTi1 zTi2

]T
= T2

[
z̃Ti1 z̃Ti2

]T
, where T2 =

[
K1 0(n−m)×m

K2 Im

]
, such that in the

new coordinates
[
zTi1 zTi2

]T
, system (1) can be described by

żi1 (t) = A11zi1 (t)+A12zi2 (t) + ϕi1 (t, zi)

żi2 (t) = A21zi1 (t) +A22zi2 (t) +B2ui (t) + ϕi2 (t, zi)
(3)

where T2 is an invertible matrix, zi1 (t) ∈ Rn−m, zi2 (t) ∈ Rm, A11 = K1

(
Ã11 − Ã12K2

)
K−1

1 ∈ R(n−m)×(n−m) is a real

negative symmetric definite, A22 ∈ Rm×m, ϕi1 (t, zi) = K1ϕ̃i1 (t, z̃i), ϕi2 (t, zi) = K2ϕ̃i1 (t, z̃i) + ϕ̃i2 (t, z̃i) are unmatched
and matched uncertainties respectively.

The steps required to render A11 real negative symmetric definite are presented as follows:
(a) Apply pole assignment to Ã11 − Ã12K2. Under Assumption 1, the pair

(
Ã11, Ã12

)
is controllable according to

Proposition 3.3 in [26], so there exists K2 ∈ Rm×(n−m) such that Ã11 − Ã12K2 has n−m real distinct negative eigenvalues
λi

(
Ã11 − Ã12K2

)
, i = 1, . . . , n−m. In this case, Ã11 − Ã12K2 is Hurwitz stable and rank

(
Ã11 − Ã12K2

)
= n−m.

(b) Since Ã11−Ã12K2 has n−m real distinct negative eigenvalues, it follows from Theorem 1.3.9 in [39] that Ã11−Ã12K2

can be transformed into the corresponding real diagonal matrix Λ , diag (λ1, . . . , λn−m) by using the nonsingular matrix
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K1 ∈ R(n−m)×(n−m).
(c) Let A11 ,

(
a11ij
)
(n−m)×(n−m)

and A12 ,
(
a12ij
)
(n−m)×m

. Select K1 such that a11ii ≤ −
m∑
j=1

∣∣a12ij ∣∣, then A11 =

K1

(
Ã11 − Ã12K2

)
K−1

1 , and A11 = Λ.
Remark 1: The invertible matrix T2 renders A11 to be a real negative symmetric definite in (3), which is helpful for consensus

protocol design and synthesis. This will play an important role in achieving consensus and ensuring the subsystems’ stability.

Remark 2: The condition that a11ii ≤ −
m∑
j=1

∣∣a12ij ∣∣ is given to make the subsystems stable. In step (c), K1 is straightforward

to determine. First, consider that a11ii = λi (A11) = λi

(
Ã11 − Ã12K2

)
, a11ii is only determined by K2. Second, because

A12 = K1Ã12, in order to satisfy a11ii ≤ −
m∑
j=1

∣∣a12ij ∣∣, the closer to 0 for the elements of K1, the easier the condition is to

satisfy. For A11 = K1

(
Ã11 − Ã12K2

)
K−1

1 , as both sides are multiplied by K1 and K−1
1 respectively, the elements of K1

can be very close to 0.
From [40], ϕi (t, xi), ϕi1 (t, zi) and ϕi2 (t, zi) may be expressed in the following form:[

0Tn−m, ϕ
T
i2 (t, zi)

]T
= T2T1BB

+ϕi (t, xi) (4)[
ϕTi1 (t, zi) , 0

T
m

]T
= T2T1B

⊥B⊥+ϕi (t, xi) (5)

where B+ ,
(
BTB

)−1
BT ∈ Rm×n is the left inverse of B, and the columns of B⊥ ∈ Rn×(n−m) span the null space of

BT , i.e., BTB⊥ = 0m×(n−m). Moreover, the following identity holds

BB+ +B⊥B⊥+ = In (6)

Definition 1: Consensus is said to be achieved for the distributed multiagent system (1) if for any initial conditions,
lim
t→∞

∥xi (t)− xj (t)∥ = 0, ∀i, j = 1, 2, · · · , N .
This paper concentrates on utilizing local information to develop a control protocol such that consensus can be achieved

when each subsystem (3) is affected by bounded uncertainties. In this case, the consensus problem for (1) can also be solved
correspondingly.

Before presenting the main results, some lemmas and definitions are given as follows.
Lemma 1: [41] (Global Invariant Set Theorem) Consider the autonomous system ẋ = f (x) with f continuous, and let V (x)

be a scalar function with the continuous first order partial derivatives. Assume that V (x) → ∞ as ∥x∥ → ∞, and V̇ (x) ≤ 0

over the whole state space. Let R be the set of all points where V̇ (x) = 0, and M be the largest invariant set in R. Then all
solutions globally asymptotically converge to M as t→ ∞.

Lemma 2: [42] Consider the non-homogeneous system of differential equation

ẋ = A (t)x+ f (t, x) , t ∈ [ξ,∞) (7)

where A : [ξ,∞) → B (Rn), f : [ξ,∞)×Rn → Rn are continuous. Assume that the Cauchy problem{
ẋ = A (t)x+ f (t, x) , t ∈ [ξ,∞)

x (t0) = x0, x0 ∈ Rn
(8)

has a unique solution defined in [ξ,∞)

x (t, t0, x0) = C (t, t0)x0 + C (t, t0)

∫ t

t0

C (t0, s) f (s, x (s, t0, x0))ds (9)

Suppose that the mapping f satisfies
∥f (t, x)∥ ≤ L (t, ∥x∥) (10)

0 ≤ L (t, u)− L (t, v) ≤M (t, v) (u− v) , u ≥ v ≥ 0 (11)

where M is nonnegative continuous. If the trivial solution x ≡ 0 of the corresponding homogeneous system is stable, i.e.,
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∥C (t, t0)∥ ≤ µ (t0) for all t ≥ t0, and the following conditions∫ ∞

t0

∥C (t0, s)∥L (s, µ (t0) ∥x0∥)ds ≤M1 (t0, x0) <∞ (12)

∫ ∞

t0

∥C (t0, s)∥M (s, ∥C (s, t0)x0∥)ds ≤M2 (t0, x0) <∞ (13)

hold, then there exists an M̃ (t0, x0) > 0 such that

∥x (t, t0, x0)− C (t, t0)x0∥ ≤ M̃ (t0, x0) (14)

for all t ≥ t0.
Definition 2: [43] Consider the system

ẋ = f (x, u) (15)

Assume that ẋ = f (x, 0) has a uniformly asymptotically stable equilibrium point at the origin. The system (15) is said to be
globally input-to-state stability (ISS) if there exist a KL function η, a class K function ϑ such that

∥x∥ ≤ η (∥x0∥ , t) + ϑ (∥u∥∞) , ∀t ≥ 0 (16)

for any initial state x0 ∈ Rn and any bounded input u ∈ Rm.
Definition 3: [43] A continuously differentiable function V : Rn → R is said to be an ISS global Lyapunov function on Rn

for the system (15) if there exist class K∞ functions ε1, ε2, ε3 and X such that:

ε1 (∥x∥) ≤ V (x (t)) ≤ ε2 (∥x∥) , ∀x ∈ Rn, t > 0 (17)

∂V (x)

∂x
f (x, u) ≤ −ε3 (∥x∥) , ∀u ∈ Rm : ∥x∥ ≥ X (∥u∥) (18)

Lemma 3: [43] (Globally ISS Theorem) Consider the system (15) and let V : Rn → R be an ISS global Lyapunov function
for this system. Then (15) is globally ISS according to Definition 2 with

ϑ = ε−1
1 · ε2 · X (19)

Remark 3: According to Definition 2, the response of ẋ = f (x, 0) with initial state x0 satisfies

∥x∥ ≤ η (∥x0∥ , t) , ∀t ≥ 0 (20)

As t increases to infinity, η (∥x0∥ , t) → 0, then
∥x∥ ≤ ϑ (∥u∥∞) (21)

Remark 4: Note that there is no contradiction between ∥x∥ ≥ X (∥u∥) in (18) and ∥x∥ ≤ ϑ (∥u∥∞) in (21). Definition
3 indicates that the derivative of the Lyapunov function V is negative definite whenever the trajectories of x are outside of
HX which represents a hypersphere centred at the origin given by HX = {x |∥x∥ ≥ X (∥u∥)}; Remark 3 indicates that the
trajectories of x will remain ultimately bounded by the hypersphere Hϑ which represents another hypersphere centred at the
origin given by Hϑ = {x |∥x∥ ≤ ϑ (∥u∥∞)}.

Lemma 4: [44] If µ1, µ2, . . . , µn ≥ 0 and 0 < p < q, then(
n∑

i=1

µq
i

)1/q

≤

(
n∑

i=1

µp
i

)1/p

(22)

III. INTEGRAL SLIDING MODE CONTROL PROTOCOL DESIGN AND STABILITY ANALYSIS OF THE SLIDING MOTION

This section aims to design an integral sliding mode control protocol and analyze the stability of the sliding motion for the
multiagent system (3). To simplify notation, some of the function arguments will be omitted.
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The sliding function is presented as follows

si (t) = αiG

([
zTi1 (t) zTi2 (t)

]T
−
[
zTi1 (t0) zTi2 (t0)

]T
−
∫ t

t0

[
A11 A12

A21 A22

][
zTi1 (τ) zTi2 (τ)

]T
+

[
0(n−m)×m

B2

]
uconi (τ) dτ

) (23)

where G ∈ Rm×n is a projection matrix that will be designed later according to the projection theorem and satisfies

rank

(
G

[
0(n−m)×m

B2

])
= m, αi ∈ R is a small positive parameter which can be chosen by the designer, zi1 (t0) and

zi2 (t0) are the initial values and uconi (t) is a consensus control protocol that is defined by

uconi (t) = B−1
2

 N∑
j=1

aij (zj2 (t)− zi2 (t)) +AT
12

N∑
j=1

aij (zj1 (t)− zi1 (t))

−A21zi1 (t)−A22zi2 (t) (24)

The corresponding sliding surface is{(
zT11, · · · , zTN1, z

T
12, · · · , zTN2

)T ∣∣∣ si (t) = 0m, ∀i = 1, 2, · · · , N
}

(25)

where si (t) is defined in (23).
The control protocol for the multiagent system (3) is given by

ui (t) = udisi (t) + uconi (t) (26)

where udisi (t) is a discontinuous control protocol and selected as

udisi (t) = −ρ

(
G

[
0(n−m)×m

B2

])T

si (t)∥∥∥∥∥∥
(
G

[
0(n−m)×m

B2

])T

si (t)

∥∥∥∥∥∥
(27)

where ρ > β∥B+∥F is a control gain.
Remark 5: It should be noted that full knowledge of the initial conditions is assumed in selecting the sliding function (23) as

part of the integral sliding mode strategy. In more classical sliding mode control, the system is affected by matched uncertainties
during the reaching phase. Integral sliding mode control can ensure the system states slide on the sliding surface from the very
beginning at the cost of assuming the initial conditions are known. It follows that integral sliding mode control has no reaching
phase and has strong robustness to matched uncertainties throughout the evolution of the system state. Note that discontinuous
feedback control is used in integral sliding mode control, which can stabilize the states to reach sliding mode in finite time
when they leave the sliding mode. Accordingly, the full knowledge of initial conditions is not very restrictive in practice but
desirable from the point of view of robustness.

Remark 6: For the integral sliding manifold (23), the system states slide on it from the initial time, and will not escape
from it under application of the integral sliding control. It is a suitable choice for distributed control of multiagent systems. A
nominal dynamics occurs when the system states move along the integral sliding manifold, while only the nominal protocol
(24) is needed to guarantee consensus. In this way, couplings are in the nominal control protocol, while not in the integral
sliding control protocol, which simplifies control protocol design.

Next, the behaviour when each subsystem is subjected to uncertainty effects will be analyzed when the system is controlled
by the discontinuous control protocol (27). Closing the loop in (3) with (26), the derivative of si (t) with respect to time is
given by

ṡi (t) = αiG

([
żTi1 żTi2

]T
−

([
A11 A12

A21 A22

] [
zTi1 zTi2

]T
+

[
0(n−m)×m

B2

]
uconi

))
(28)
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= αiG

([
A11 A12

A21 A22

] [
zTi1 zTi2

]T
+

[
0(n−m)×m

B2

] (
udisi + uconi

)
+
[
ϕTi1 ϕTi2

]T
−

([
A11 A12

A21 A22

] [
zTi1 zTi2

]T
+

[
0(n−m)×m

B2

]
uconi

))

= αiG

([
0(n−m)×m

B2

]
udisi +

[
ϕTi1 ϕTi2

]T)
The equivalent discontinuous control udisieq is obtained from this as

udisieq (t) = −

(
G

[
0(n−m)×m

B2

])−1

G
[
ϕTi1 ϕTi2

]T
(29)

By substituting (29) as udisi (t) in (3), the sliding dynamics can be obtained as

żi1 (t) = A11zi1 (t) +A12zi2 (t) + ϕi1 (t, zi)

żi2 (t) = A21zi1 (t) +A22zi2 (t) +B2u
con
i (t)−B2

(
G

[
0(n−m)×m

B2

])−1

G
[
ϕTi1 0Tm

]T (30)

As can be seen, the action of the integral sliding mode control strategy has transformed the original uncertainties
[
ϕTi1 ϕTi2

]T
into the following equivalent uncertainties [17][40]

ϕieq (t, zi) ,


ϕi1

−B2

(
G

[
0(n−m)×m

B2

])−1

G
[
ϕTi1 0Tm

]T
 =

In −


0(n−m)×n

B2

(
G

[
0(n−m)×m

B2

])−1

G


[ϕTi1 0Tm

]T
(31)

Theorem 1: Since G

[
0(n−m)×m

B2

]
has full rank, B+(T2T1)

−1 is a matrix which minimizes the norm of ϕieq (t, zi), i.e.,

G∗ = B+(T2T1)
−1

= arg min
G∈Rm×n

∥∥∥∥∥∥∥∥
In −


0(n−m)×n

B2

(
G

[
0(n−m)×m

B2

])−1

G


[ϕTi1 0Tm

]T∥∥∥∥∥∥∥∥ (32)

Proof : Notice that∥∥∥∥∥∥∥∥
In −


0(n−m)×n

B2

(
G

[
0(n−m)×m

B2

])−1

G


[ϕTi1 0Tm

]T∥∥∥∥∥∥∥∥ =

∥∥∥∥∥[ϕTi1 0Tm

]T
−

[
0(n−m)×m

B2

]
φi

∥∥∥∥∥ (33)

where φi =

(
G

[
0(n−m)×m

B2

])−1

G
[
ϕTi1 0Tm

]T
. Thus (32) can be transformed into

φ∗
i = arg min

φi∈Rm

∥∥∥∥∥[ϕTi1 0Tm

]T
−

[
0(n−m)×m

B2

]
φi

∥∥∥∥∥ (34)

which has φ∗
i = B+(T2T1)

−1
[
ϕTi1 0Tm

]T
as a solution according to the classical projection theorem in page 51 of [45].

Making G = B+(T2T1)
−1, it can be obtained that φi = B+(T2T1)

−1
[
ϕTi1 0Tm

]T
= φ∗

i , which implies that (32) is true.

Remark 7: By substituting φ∗
i = B+(T2T1)

−1
[
ϕTi1 0Tm

]T
into (33) and combining (6), it follows that

∥∥ϕ∗ieq∥∥=
∥∥∥∥[ϕTi1 0Tm

]T∥∥∥∥,

i.e., the norm of the equivalent uncertainties is driven by the unmatched uncertainties and the effects of the uncertainties are
minimized by designing the projection matrix G optimally.

Theorem 2: Assume Assumptions 1-3 hold. Then the control from (27) can keep the subsystem (3) on the sliding surface
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(25) from the initial time with G = B+(T2T1)
−1.

The proof of Theorem 2 is provided in Appendix A.
It follows that the subsystem (3) will slide on the surface (25) despite the presence of the uncertainties [26]. Even if the

states deviate from the sliding surface, the discontinuous control can drive them back to it in finite time. Because the subsystem
starts on the sliding surface at the initial time, it will remain on the sliding surface thereafter, i.e., s = ṡ = 0 when t ≥ 0.

IV. CONSENSUS AND STABILITY ANALYSIS OF SUBSYSTEMS

In this section, consensus will be analyzed for the distributed system in the presence of the control protocol. The stability
of each subsystem is then considered.

When the subsystem is restricted on the sliding surface (25), substitute G = B+(T2T1)
−1 and the consensus control protocol

(24) into (30). The sliding dynamics can then be described as

żi1 (t) = A11zi1 (t) +A12zi2 (t) + ϕi1 (t, zi)

żi2 (t) = ζi (t, zi, zj)
(35)

where ζi (t, zi, zj) =
N∑
j=1

aij (zj2 (t)− zi2 (t)) +AT
12

N∑
j=1

aij (zj1 (t)− zi1 (t)).

The lumped form of the closed-loop system (35) is shown as

żI(t) = (IN ⊗A11) zI(t) + (IN ⊗A12) zII(t) + ϕI (t, z)

żII(t) = −
(
L ⊗AT

12

)
zI(t)− (L ⊗ Im) zII(t)

(36)

where zI (t) =
[
zT11, z

T
21, · · · , zTN1

]T ∈ RN(n−m), zII (t) =
[
zT12, z

T
22, · · · , zTN2

]T ∈ RNm, z (t) =
[
zTI , z

T
II

]T ∈ RNn,
ϕI (t, z) =

[
ϕT11, ϕ

T
21, · · · , ϕTN1

]T ∈ RN(n−m).

Let Ā ,
[
IN ⊗A11 IN ⊗A12

−L⊗AT
12 −L⊗ Im

]
. In Appendix B, it is proved that the corresponding homogeneous system of (36) is

marginally stable, i.e.,
∥∥∥eĀ(t−t0)

∥∥∥ ≤ µ̄ (t0). The following assumption will be imposed on the system (35) and (36).
Assumption 5: For the closed loop system (35) and (36), ϕi1 (t, zi) satisfies ∥ϕi1 (t, zi)∥ ≤ γ (t) ∥zi (t)∥, where γ (t) ≤

−λmax (A11),
∫∞
t0

∥∥∥eĀ(t0−s)
∥∥∥γ (s)µ (t0) ∥z (t0)∥ ds ≤ ι, and ι is a known constant.

Remark 8: Assumption 5 is reasonable. First, ϕi1 (t, zi) donotes the uncertainty and it is a function of zi, so it is reasonable
to assume ∥ϕi1 (t, zi)∥ ≤ γi (t) ∥zi∥. Second, recall that in Remark 1, λi (A11) is only determined by K2, and the elements
of K1 can be very close to 0. In this way, though ϕi1 (t, zi) = K1ϕ̃i1 (t, z̃i), the norm of K1 can be very small, and the value
of −λmax (A11) can be large enough to make Assumption 5 hold. Assumption 5 will play its role in the proof of consensus
and stability.

Theorem 3: Suppose Assumptions 1-5 hold. The distributed system (35) can achieve consensus asymptotically.
Proof : The consensus problem can be transformed into the following stabilisation problem:

ėai (t) = A11e
a
i (t) +A12e

b
i (t) + eϕ1

i (t, zi, zj)

ėbi (t) = ζi (t, zi, zj)− ζ̄ (t, zi, zj)
(37)

where eai (t)
∆
=
(
eai1, . . . , e

a
i,n−m

)T
= zi1 − 1

N

N∑
j=1

zj1, ebi (t)
∆
=
(
ebi1, . . . , e

b
i,m

)T
= zi2 − 1

N

N∑
j=1

zj2, eϕ1

i (t, zi, zj) , ϕi1 −

1
N

N∑
j=1

ϕj1, ζ̄ (t, zi, zj)
∆
= 1

N

N∑
j=1

ζj .

Based on the errors defined above, ζi (t, zi, zj) can be rewritten as

ζi (t, zi, zj) =

N∑
j=1

aij
(
ebj − ebi

)
+AT

12

N∑
j=1

aij
(
eaj − eai

)
(38)
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Because aij = aji, for ζ̄ (t, zi, zj) it can be obtained that

ζ̄ (t, zi, zj) =
1
N

N∑
j=1

ζj

=
1
N

N∑
j=1

(
N∑

k=1

ajk
(
ebk − ebj

)
+AT

12

N∑
k=1

ajk
(
eak − eaj

))

=
1
2N

N∑
j=1

N∑
k=1

ajk
[(
ebk − ebj

)
+
(
ebj − ebk

)
+AT

12

(
eak − eaj

)
+AT

12

(
eaj − eak

)]
= 0m

(39)

A Lyapunov candidate function is constructed as

V2(t) =
1

2

N∑
i=1

N∑
j=1

n−m∑
k=1

∫ eaik−eajk

0

aijydy +
1

2

N∑
i=1

(
ebi
)T
ebi (40)

The derivative of V2 along the errors eai and ebi is given by

V̇2(t) =
1

2

N∑
i=1

N∑
j=1

n−m∑
k=1

aij
(
eaik − eajk

) (
ėaik − ėajk

)
+

N∑
i=1

(
ebi
)T
ėbi

=
N∑
i=1

N∑
j=1

n−m∑
k=1

aij
(
eaik − eajk

)
ėaik +

N∑
i=1

(
ebi
)T
ėbi

=

N∑
i=1

(ėai )
T

N∑
j=1

aij
(
eai − eaj

)
+

N∑
i=1

(
ebi
)T
ėbi

(41)

Combined with (35), it can be obtained that

V̇2(t) =
N∑
i=1

(
A11e

a
i +A12e

b
i + eϕ1

i

)T N∑
j=1

aij
(
eai − eaj

)
+

N∑
i=1

(
ebi
)T  N∑

j=1

aij
(
ebj − ebi

)
+AT

12

N∑
j=1

aij
(
eaj − eai

)
=

N∑
i=1

N∑
j=1

aij(e
a
i )

T
AT

11

(
eai − eaj

)
+

N∑
i=1

N∑
j=1

aij
(
ebi
)T (

ebj − ebi
)
+

1

2

N∑
i=1

N∑
j=1

aij

((
eϕ1

i

)T
−
(
eϕ1

j

)T)(
eai − eaj

)
=

1

2

N∑
i=1

N∑
j=1

aij
(
eai − eaj

)T
AT

11

(
eai − eaj

)
− 1

2

N∑
i=1

N∑
j=1

aij
(
ebi − ebj

)T (
ebi − ebj

)
+

N∑
i=1

N∑
j=1

aijϕ
T
i1

(
eai − eaj

)
=

1

2

N∑
i=1

N∑
j=1

aij(zi1 − zj1)
T
AT

11 (zi1 − zj1)−
1

2

N∑
i=1

N∑
j=1

aij(zi2 − zj2)
T
(zi2 − zj2) +

N∑
i=1

N∑
j=1

aijϕ
T
i1 (zi1 − zj1)

(42)
Further, note that A11 is negative real definite, so AT

11 is negative real definite. Combined with Assumption 5, the following
inequalities can be obtained

V̇2(t) ≤
1

2

N∑
i=1

N∑
j=1

aijλmax

(
AT

11

)
∥zi1 − zj1∥2 −

1

2

N∑
i=1

N∑
j=1

aij∥zi2 − zj2∥2 +
N∑
i=1

N∑
j=1

aij ∥ϕi1∥ ∥zi1 − zj1∥

≤ 1

2

N∑
i=1

N∑
j=1

aijλmax

(
AT

11

)
∥zi1 − zj1∥2 −

1

2

N∑
i=1

N∑
j=1

aij∥zi2 − zj2∥2 +
1

2

N∑
i=1

N∑
j=1

aij (γ ∥zi∥+ γ ∥zj∥) ∥zi1 − zj1∥

≤ 1

2

N∑
i=1

N∑
j=1

aij
(
λmax

(
AT

11

)
+ γ
)
(∥zi∥+ ∥zj∥) ∥zi1 − zj1∥ −

1

2

N∑
i=1

N∑
j=1

aij∥zi2 − zj2∥2

(43)
The analysis of (43) is presented as follows:

(
λmax

(
AT

11

)
+ γ
)
(∥zi∥+ ∥zj∥) ∥zi1 − zj1∥ ≤ 0, equality holds if and only if

zi1−zj1 = 0n−m (zi1 = zj1 = 0n−m included); ∥zi2 − zj2∥2 ≥ 0, equality holds if and only if zi2−zj2 = 0m. Hence, V̇2 ≤ 0.
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Referring to Lemma 1, it can be obtained that (a) V2 (t) is radially unbounded over eai and ebi ; (b) Since the undirected graph is
connected, if V̇2 ≡ 0, then zi1 ≡ zj1, zi2 ≡ zj2, ∀i, j = 1, 2, . . . , N . That is, lim

t→∞
∥zi1 − zj1∥ = 0 and lim

t→∞
∥zi2 − zj2∥ = 0,

∀i, j = 1, 2, . . . , N , i.e., lim
t→∞

∥xi − xj∥ = 0, ∀i, j = 1, 2, · · · , N . Based on the above analysis, system (35) can be driven to
consensus asymptotically.

Due to the presence of the unmatched uncertainties ϕi1 (t, zi), the evolution of zi1 (t) and zi2 (t) should be discussed.
Theorem 4: Suppose Assumptions 1-5 hold. The states of the system (36) are bounded.

Proof : (a) According to Assumption 3, ϕI (t, z) is continuous. (b) Because ∥ϕi1 (t, zi)∥ ≤ γ (t) ∥zi (t)∥, then
N∑
i=1

∥ϕi1 (t, zi)∥2 ≤

γ2 (t)
N∑
i=1

∥zi (t)∥2, i.e., ∥ϕI (t, z)∥2 ≤ γ2 (t) ∥z∥2. As a result, ∥ϕI (t, z)∥ ≤ γ (t) ∥z∥, which satisfies (10) and (11), and

L =M = γ (t) ∥z∥. (c) Recall that
∫∞
t0

∥∥∥eĀ(t0−s)
∥∥∥γ (s)µ (t0) ∥z (t0)∥ ds ≤ ι, which satisfies (12). Due to

∥∥∥eĀ(t−t0)
∥∥∥ ≤ µ (t0),∫∞

t0

∥∥∥eĀ(t0−s)
∥∥∥γ (s) ∥∥∥eĀ(s−t0)z (t0)

∥∥∥ ds ≤ ∫∞
t0

∥∥∥eĀ(t0−s)
∥∥∥γ (s) ∥∥∥eĀ(s−t0)

∥∥∥ ∥z (t0)∥ ds ≤ ∫∞
t0

∥∥∥eĀ(t0−s)
∥∥∥γ (s)µ (t0) ∥z (t0)∥ ds ≤

ι, which satisfies (13). (d) Note that the corresponding homogeneous system of (36) is marginally stable. In the light of Lemma
2, the states of the system (36) are bounded.

The functional relationship between the states and uncertainties is analyzed as follows.
In Assumption 3 ∥ϕi∥ ≤ β, thus ∥ϕi1∥ ≤ β. Because the states are bounded, zi2 is also bounded in (35).
A Lyapunov candidate function is constructed as

V3(t) =
1

2
zTi1zi1 (44)

Let −1 < θ < 0, then the derivative of V3 (t) is given by

V̇3 (t) = zTi1żi1

= zTi1 (A11zi1 +A12zi2 + ϕi1)

= (1 + θ) zTi1A11zi1 + zTi1A12zi2 + zTi1ϕi1 − θzTi1A11zi1

≤ (1 + θ)λmax (A11) ∥zi1∥2

(45)

provided that zTi1A12zi2 + zTi1ϕi1 − θzTi1A11zi1 ≤ 0.
Assume that

∥∥zTi1A12zi2 + zTi1ϕi1
∥∥ ≤

∥∥θzTi1A11zi1
∥∥. In the left-hand side of this inequality,

∥∥zTi1A12zi2 + zTi1ϕi1
∥∥ ≤

∥zi1∥ (∥A12zi2∥+ ∥ϕi1∥) ≤ ∥zi1∥ (∥A12∥F ∥zi2∥+ ∥ϕi1∥); in the right-hand side,
∥∥θzTi1A11zi1

∥∥ ≥ λmax (A11) θ∥zi1∥2. Sup-
pose that ∥zi1∥ (∥A12∥F ∥zi2∥+ ∥ϕi1∥) ≤ λmax (A11) θ∥zi1∥2, then equivalently

∥zi1∥ ≥
∥A12∥F ∥zi2∥+ ∥ϕi1∥

λmax (A11) θ
(46)

According to Definition 3, it can be shown that ε1 (∥zi1∥) = ε2 (∥zi1∥) = 1
2∥zi1∥

2, −ε3 (∥zi1∥) = (1 + θ)λmax (A11) ∥zi1∥2,
X =

∥A12∥F ∥zi2∥+∥ϕi1∥
λmax(A11)θ

, where zi1 is taken as the state and zi2 and ϕi1 as the inputs in Definition 3. It follows from Lemma
3 that the subsystem is globally ISS with

ϑ (∥u∞∥) =
∥A12∥F ∥zi2∥+ ∥ϕi1∥

λmax (A11) θ
(47)

Therefore, appealing to Remark 3, zi1 is bounded with

∥zi1∥ ≤
∥A12∥F ∥zi2∥+ ∥ϕi1∥

λmax (A11) θ
(48)

Remark 9: The above results indicate that the Lyapunov function V3 is negative definite along the trajectories of zi1 whenever
the trajectories are outside of the hypersphere defined by

{
zi1

∣∣∣∥zi1∥ ≥ ∥A12∥F ∥zi2∥+∥ϕi1∥
λmax(A11)θ

}
, and the trajectories will remain

ultimately bounded by the hypersphere of radius ∥A12∥F ∥zi2∥+∥ϕi1∥
λmax(A11)θ

.
Remark 10: This section considers stability of the subsystems. Note that the stability of the subsystems is not considered

in [1]. When the subsystem dynamics (1) is a class of second-order systems, the states may diverge due to the existence of
uncertainties. See Appendix C for a detailed analysis.
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V. SIMULATIONS AND ANALYSIS

In this section, two simulation examples are presented to demonstrate the validity of the proposed method.
Example 1. This example aims to demonstrate the effectiveness of the theoretical results in the presence of matched and

unmatched uncertainties. Consider a multiagent system with four subsystems, whose topology connection is shown in Fig.1.
The dynamics of each subsystem is given by

ẋi =


1 5 8 3

4 7 5 9

11 5 4 3

9 6 0 9

xi +


5 7

4 1

0 5

−8 6

ui + ϕi (49)

where the initial states are selected as follows:

x1 (0) =
[
−5 7 6 8

]T
, x2 (0) =

[
11 3 −10 −4

]T
x3 (0) =

[
8 −3 −1 0

]T
, x4 (0) =

[
−4 6 0 −2

]T (50)

Fig. 1: Undirected graph with 4 subsystems

The uncertainties are as follows:

ϕi =



⌣

t 11γ sin

((
⌢

t 11xi1 +
⌢

t 12xi2 +
⌢

t 13xi3 +
⌢

t 14xi4

)2
)
+

⌣

t 13 (0.1 cos (xi3)) +
⌣

t 14 (0.5 sin (t))

⌣

t 21γ sin

((
⌢

t 11xi1 +
⌢

t 12xi2 +
⌢

t 13xi3 +
⌢

t 14xi4

)2
)
+

⌣

t 23 (0.1 cos (xi3)) +
⌣

t 24 (0.5 sin (t))

⌣

t 31γ sin

((
⌢

t 11xi1 +
⌢

t 12xi2 +
⌢

t 13xi3 +
⌢

t 14xi4

)2
)
+

⌣

t 33 (0.1 cos (xi3)) +
⌣

t 34 (0.5 sin (t))

⌣

t 41γ sin

((
⌢

t 11xi1 +
⌢

t 12xi2 +
⌢

t 13xi3 +
⌢

t 14xi4

)2
)
+

⌣

t 43 (0.1 cos (xi3)) +
⌣

t 44 (0.5 sin (t))


(51)

where T2T1 =
[
⌢

t ij

]
4×4

, (T2T1)
−1

=
[
⌣

t ij

]
4×4

, γ (t) = 0.01e−t, i, j = 1, 2, 3, 4.
The coordinate transformation matrices are

T1 =


−0.4943 0.3465 0.7856 −0.1356
−0.1300 0.8433 −0.3951 0.3404
−0.4880 −0.3904 0.0000 0.7807
0.7076 0.1279 0.4762 0.5062

 , T2 =


1.0000 0.0000 0.0000 0.0000

0.0000 1.0000 0.0000 0.0000

0.3561 0.9858 1.0000 0.0000

−0.0737 0.6324 0.0000 1.0000

 (52)

and other parameters are selected as β = 1.00, αi = 0.0001, ρ = 0.15, G =

[
3.6493 10.1017
0.4614 −7.5056

]
.

It can be verified by computations that ∥ϕi∥ ≤ β. In addition, by coordination transformation, it can be obtained that

ϕi1 = γ

sin
((

⌢

t 11xi1 +
⌢

t 12xi2 +
⌢

t 13xi3 +
⌢

t 14xi4

)2
)

0

 (53)
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∥ϕi1∥ ≤ γ ∥zi∥ = γ

√
4∑

j=1

(
⌢

t j1xi1 +
⌢

t j2xi2 +
⌢

t j3xi3 +
⌢

t j4xi4

)2
and

∫∞
t0

∥∥∥eĀ(t0−s)
∥∥∥γ (s)µ (t0) ∥z (t0)∥ ds ≤ ι can be

verified.
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(e) xi1 with respect to time using boundary layer method
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Fig. 2: Subsystems’ states with respect to time
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(a) s1 with respect to time
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(b) s2 with respect to time
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(c) s3 with respect to time
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(d) s4 with respect to time

Fig. 3: Subsystems’ sliding motion with respect to time
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(a) u1 with respect to time
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(b) u2 with respect to time
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(c) u3 with respect to time
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(d) u4 with respect to time
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(e) u1 with respect to time using boundary layer method
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(f) u2 with respect to time using boundary layer method

Fig. 4: Subsystems’ control inputs with respect to time
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(c) Consensus errors with respect to time for the third subsystem
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(d) Consensus errors with respect to time for the fourth subsystem

Fig. 5: Consensus errors with respect to time in two protocols

A boundary layer approximation is used such that

(
G

[
0(n−m)×m

B2

])T

si (t)/

∥∥∥∥∥∥
(
G

[
0(n−m)×m

B2

])T

si (t) + δ

∥∥∥∥∥∥ is used to

replace (27), where δ is a small positive scalar and selected as δ = 0.01.
The simulation results are shown as Fig.2−4.
In Fig.2, (a)-(d) show the subsystems’ states with respect to time. As can be seen, in the presence of matched and unmatched

uncertainties, the system achieves consensus. Fig.3 shows the sliding variable with respect to time. It is seen that every subsystem
starts on the sliding surface from the beginning which avoids sensitivity to matched uncertainties in the reaching phase.

In Fig.4, (a)-(d) show the subsystems’ control inputs with respect to time. It can be seen that the control inputs remain bounded
after the subsystems are stabilized. In addition, the control inputs exhibit chattering, which is caused by the discontinuous
integral sliding mode control. The boundary layer method can help to reduce chattering but this is achieved at a price of the
system state no longer lying on the sliding surface but remaining within a small boundary layer of the sliding surface [14][46].
In Fig.2 and Fig.4, plots (e) and (f) are added to show the subsystems’ states and control inputs when a boundary layer is
introduced to alleviate chattering. In this case

udisi (t) =


−ρ

(
G

[
0(n−m)×n

B2

])T

si (t)

/∥∥∥∥∥∥
(
G

[
0(n−m)×n

B2

])T

si (t)

∥∥∥∥∥∥ ,
∥∥∥∥∥∥
(
G

[
0(n−m)×n

B2

])T

si (t)

∥∥∥∥∥∥ ≥ ω

−ρ

(
G

[
0(n−m)×n

B2

])T

si (t)

/∥∥∥∥∥∥
(
G

[
0(n−m)×n

B2

])T

si (t)

∥∥∥∥∥∥+ ω

 , otherwise

where ω = 0.1. As can be seen, in comparison with (a) and (b) which apply the corresponding discontinuous control, chattering
has decreased as expected.

Example 2. Consider the multiagent system whose topology connection is also shown as Fig.1. To further test the proposed
distributed protocol, the protocol (3) developed in [1] which uses an adaptive scheme will be compared with the method
proposed in this paper. The dynamics of each subsystem is given by

ẋi =

[
0 1

0 0

]
xi +

[
0

0.4

]
ui + ϕi (54)

where the initial states are selected as follows:

x1 (0) =
[
1 2

]T
, x2 (0) =

[
−1 −2

]T
, x3 (0) =

[
3 4

]T
, x4 (0) =

[
−3 −4

]T
(55)
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The uncertainties are as follows:

ϕi =


⌣

t 11γ sin

((
⌢

t 11xi1 +
⌢

t 12xi2

)2
)
+ 0.01

⌣

t 12 (cos (xi1) + sin (t))

⌣

t 21γ sin

((
⌢

t 11xi1 +
⌢

t 12xi2

)2
)
+ 0.01

⌣

t 22 (cos (xi1) + sin (t))

 (56)

where T2T1 =
[
⌢

t ij

]
2×2

, (T2T1)
−1

=
[
⌣

t ij

]
2×2

, γ (t) = 0.01e−t, i, j = 1, 2.
For the protocol proposed in this paper, the coordinate transformation matrices are

T1 =

[
−1 0

0 −1

]
, T2 =

[
1 0

1 1

]
(57)

and the other parameters are selected as β = 0.15, αi = 0.0001, ρ = 0.4, G =
[
0.4 −0.4

]
, δ = 0.0001.

It can be verified by computations that ∥ϕi∥ ≤ β. In addition, by coordination transformation, it can be obtained that

ϕi1 = γ sin

((
⌢

t 11xi1 +
⌢

t 12xi2

)2
)

(58)

∥ϕi1∥ ≤ γ ∥zi∥ = γ

√
2∑

j=1

(
⌢

t j1xi1 +
⌢

t j2xi2

)2
and

∫∞
t0

∥∥∥eĀ(t0−s)
∥∥∥γ (s)µ (t0) ∥z (t0)∥ ds ≤ ι can be verified.
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Fig. 6: Subsystems’ control inputs with respect to time in two protocols
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For the protocol (3) proposed in [1], the parameters are selected as Γ =

[
1.0000 2.4495

2.4495 6.0000

]
,K=

[
−1.0000 −2.4495

]
, d̄i (0) =

0, ēi (0) = 0, τi = 10, εi = 10, κi = 0.5, φi = 0.05, ψi = 0.05.
The simulation results are shown as Fig.5−7, where the method proposed in this paper is labeled as 2020; the method

proposed in [1] is labeled as 2014. Note that although the total simulation time is 1000s, the main graphs of Fig.5−7 show
the evolutions of the variables for an initial period of time and achievement of consensus, while the state evolution is shown
in the embedded graph.

From Fig.5, the consensus errors with respect to time using the proposed method (2020) have a larger overshoot than those
of the method in [1] (2014), but they have smaller fluctuation in the steady-state, which means higher product quality. In Fig.6,
the full graphs are shown as an embedded figure, while the main graphs indicate that the control inputs of the method in [1]
are several times higher than the proposed method for an initial period of time, which is energy-consuming.

Stability of the subsystems is not considered when designing the protocol (3) in [1], and the states correspondingly diverge.
This can be verified by substituting numerical values into the system matrix (74) in Appendix C. No matter what values d̄i
take, it can be seen that there are two zero eigenvalues in the system matrix, while the corresponding eigenvectors are linearly
dependent. The simulation results also illustrate this point, as shown in Fig.7 (a) and (b). With the proposed approach, the
negative symmetric definiteness of A11 guarantees the state evolution with the protocol devised in this paper are ultimately
bounded as seen in Fig.7 (c) and (d).
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(c) xi1 with respect to time in this paper
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Fig. 7: Subsystems’ states with respect to time
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VI. CONCLUSION

A consensus framework is proposed for a class of linear multiagent systems in the presence of matched and unmatched
uncertainties. An integral sliding mode strategy is utilized to ensure the subsystems lie on the sliding surface from the initial
time. The impact of the uncertainties are minimized according to the projection theorem. A consensus protocol is designed and
analyzed applying a linear coordinate transformation and the global invariant set theorem. The boundness of each subsystem
is guaranteed by appealing to results on global ISS. Numerical simulations show the validity and superiority of the proposed
method. Future work will focus on the case of a general directed switching graph and output feedback control.

APPENDIX A

The proof of Theorem 2 is provided as follows:
Substitute the discontinuous element from (27) with G = B+(T2T1)

−1 into (28). Then

ṡi (t) = αiB
+(T2T1)

−1

(
−ρT2T1B

si
∥si∥

+
[
ϕTi1 ϕTi2

]T)
(59)

A Lyapunov candidate function is selected as

V1 (t) =
1

2

N∑
i=1

sTi si (60)

Combining with (4), (5) and (59), the time derivative of V1 (t) is given by

V̇1 (t) =
N∑
i=1

sTi ṡi

=

N∑
i=1

sTi αiB
+(T2T1)

−1

(
−ρT2T1B

si
∥si∥

+
[
ϕTi1 ϕTi2

]T)

=
N∑
i=1

αi

(
−ρ ∥si∥+ sTi B

+ϕi
)

≤
N∑
i=1

αi

(
−ρ ∥si∥+ ∥si∥

∥∥B+ϕi
∥∥)

=
N∑
i=1

−αi

(
ρ−

∥∥B+ϕi
∥∥) ∥si∥

≤
N∑
i=1

−αi

(
ρ−

∥∥B+
∥∥
F
∥ϕi∥

)
∥si∥

≤
N∑
i=1

−αi

(
ρ− β

∥∥B+
∥∥
F

)
∥si∥

(61)

According to Lemma 4, it follows that

V̇1 (t) ≤
N∑
i=1

−σi ∥si∥

≤ −σmin

N∑
i=1

∥si∥

≤ −σmin

√
V1

(62)

where σmin = min
i

{σi}, and σi = αi (ρ− β∥B+∥F ).

APPENDIX B

The proof that the corresponding homogeneous system of (36) is marginally stable is given as follows:
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Let λi
(
Ā
)

be the real eigenvalues of Ā, and Ā ,
(
Āij

)
Nn×Nn

for i, j = 1, . . . , Nn. According to Geršgorin’s theorem,∣∣λi (Ā)− Āii

∣∣ ≤ Nn∑
j=1,j ̸=i

∣∣Āij

∣∣. If λi
(
Ā
)
−Āii ≥ 0, then Āii ≤ λi

(
Ā
)
≤ Āii+

Nn∑
j=1,j ̸=i

∣∣Āij

∣∣. Because a11ii ≤ −
m∑
j=1

∣∣a12ij ∣∣ and the

property of Laplacian matrix L, Āii+
Nn∑

j=1,j ̸=i

∣∣Āij

∣∣ ≤ 0, else if λi
(
Ā
)
−Āii < 0, then Āii−

Nn∑
j=1,j ̸=i

∣∣Āij

∣∣ ≤ λi
(
Ā
)
< Āii < 0.

Thus λi
(
Ā
)
≤ 0 (i = 1, . . . , Nn).

For the case that λi
(
Ā
)
= 0, it can be obtained that

0v̄ = Āv̄ (63)

where v̄ is the corresponding eigenvector of 0. Further,

0

[
v̄I

v̄II

]
=

[
IN ⊗A11 IN ⊗A12

−L⊗AT
12 −L⊗ Im

][
v̄I

v̄II

]
(64)

where v̄ =
[
v̄TI v̄TII

]T
, v̄I ∈ RN(n−m) and v̄II ∈ RNm, then it follows that

(IN ⊗A11) v̄I + (IN ⊗A12) v̄II = 0 (65)(
L ⊗AT

12

)
v̄I + (L ⊗ Im) v̄II = 0 (66)

As IN ⊗A11 is invertible,
v̄I = −

(
IN ⊗A−1

11 A12

)
v̄II (67)

Substitute (67) into (66), it follows that (
L ⊗

(
AT

12A
−1
11 A12 − Im

))
v̄II = 0 (68)

Remark 11: The two equations (68) and (63) are equivalent, the analysis of eigenvector v̄ corresponding to eigenvalue 0 of
Ā is equivalent to the analysis of v̄II corresponding to eigenvalue 0 of L ⊗

(
AT

12A
−1
11 A12 − Im

)
.

From Proposition 3.3 of [26] and Theorem 1 of [47], it follows that A12 has full row rank, then AT
12A

−1
11 A12 is real negative

symmetric definite, and λi
(
AT

12A
−1
11 A12

)
= λ−1

i (A11). Therefore, λi
(
AT

12A
−1
11 A12 − Im

)
< 0, and AT

12A
−1
11 A12 − Im is

invertible. Note that L has a simple eigenvalue 0 and all the other eigenvalues are positive, then L⊗
(
AT

12A
−1
11 A12 − Im

)
has

m eigenvalues 0.

Further, v̄II can be ᾱ

1, 0, . . . , 0︸ ︷︷ ︸
m−1

, . . . 1, 0, . . . , 0︸ ︷︷ ︸
m−1︸ ︷︷ ︸

Nm


T

, ᾱ

0, 1, 0, . . . , 0︸ ︷︷ ︸
m−2

, . . . 0, 1, 0, . . . , 0︸ ︷︷ ︸
m−2︸ ︷︷ ︸

Nm


T

, . . . , ᾱ

0, . . . , 0︸ ︷︷ ︸
m−1

, 1, . . . 0, . . . , 0︸ ︷︷ ︸
m−1

, 1

︸ ︷︷ ︸
Nm


T

(ᾱ ∈ R, ᾱ ̸= 0), and they are m linearly independent eigenvectors. The algebraic multiplicity of eigenvalue 0 is equal to the
geometric multiplicity. Recall that λi

(
Ā
)
≤ 0 (i = 1, . . . , Nn), so the corresponding homogeneous system of (36) is marginally

stable.

APPENDIX C

The analysis of the case where the subsystem states are diverging in [1] is presented as follows:
(a) Substitute the consensus protocol (3, [1]) into the subsystem dynamics (2, [1]), to obtain a lumped form:

ẋ =
[
IN ⊗A+

(
D̄L
)
⊗ (BK)

]
x+ (IN ⊗B) (R+ F ) (69)

It should be noted that in this appendix, (∗, [1]) refers to the corresponding equation (∗) in [1], and the notations also refer
to the ones in [1] unless otherwise stated.
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(b) Here, an eigenvalue can be acquired by the system matrix
[
IN ⊗A+

(
D̄L
)
⊗ (BK)

]
in (54) by which stability of the

subsystem can be judged.

(b.1) When the subsystem dynamics (1, [1]) is in a linear second-order form, then A ,
[
0 ā12

0 0

]
and B ,

[
0

b̄2

]
, where

ā12, b̄2 ∈ R. To guarantee the controllability of the subsystem, ā12 ̸= 0 and b̄2 ̸= 0. K ,
[
k̄1 k̄2

]
, where k̄1, k̄2 ∈ R.

(b.2) Calculate the elements item by item as follows for the system matrix
[
IN ⊗A+

(
D̄L
)
⊗ (BK)

]
:

IN ⊗A = diag


[
0 ā12

0 0

]
, . . . ,

[
0 ā12

0 0

]
︸ ︷︷ ︸

N

 (70)

D̄L =
[
d̄iLij

]
N×N

, i, j = 1, . . . , N (71)

BK =

[
0 0

k̄1b̄2 k̄2b̄2

]
(72)

(
D̄L
)
⊗ (BK) =

[
d̄iLij

[
0 0

k̄1b̄2 k̄2b̄2

]]
N×N

=

[[
0 0

d̄iLij k̄1b̄2 d̄iLij k̄2b̄2

]]
N×N

(73)

then
IN ⊗A+

(
D̄L
)
⊗ (BK)

= diag


[
0 ā12

0 0

]
, . . . ,

[
0 ā12

0 0

]
︸ ︷︷ ︸

N

+

[[
0 0

d̄iLij k̄1b̄2 d̄iLij k̄2b̄2

]]
N×N

,
[
Λ̄ij

]
2N×2N

(74)

In (74), Λ̄i1 + Λ̄i3 + Λ̄i5 + . . .+ Λ̄i(2N−1) = 0, then ᾱ

1, 0, . . . , 1, 0︸ ︷︷ ︸
2N

T

is an eigenvector of (74), where ᾱ ∈ R and ᾱ ̸= 0,

and the corresponding eigenvalue is 0.
(c) Consider now where there is more than one 0 in the eigenvalues of

[
IN ⊗A+

(
D̄L
)
⊗ (BK)

]
but the corresponding

eigenvectors are linearly dependent. As a consequence the states diverge. This covers the analysis of [1].
In addition to [1], there are other contributions [2][8][9][19] where the states may diverge for a second-order subsystem

when subjected to uncertainties.
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