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ABSTRACT

In this paper, the stabilisation problem is considered for a class of nonlinear interconnected systems
with matched uncertainties and mismatched unknown interconnections. A composite sliding sur-
face is designed firstly, and a set of conditions is developed to guarantee that the corresponding
sliding motion is uniformly asymptotically stable. Then, decentralised state feedback sliding mode
control is proposed to drive the interconnected systems to the designed sliding surface in finite time,
and a sliding motion is maintained thereafter. The bounds on the uncertainties and interconnections
have more general nonlinear forms, which are employed in the control design to reject the effects of
uncertainties and unknown interconnections to enhance the robustness. It is not required either the
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isolated nominal subsystems linearisable or the interconnections linearisable. Finally, a numerical
simulation example is presented to demonstrate the effectiveness of the proposed control strategy.

1. Introduction

With the advancement of scientific technology, many
industrial and commercial systems have become more
complex, which can be modelled by large-scale inter-
connected systems. These systems usually consist of a
set of composite objects through interactions, which
are possibly different sorts of physical, natural, and
artificial dynamics. Such a class of systems widely
exists in the real world, for instance, modern power
systems, transportation systems, aircraft systems and
robot systems (Dang et al., 2020; Xiang et al., 2021;
Yan et al.,, 2017). In reality, the existence of nonlin-
earities, uncertainties and interconnections makes the
analysis and design for interconnected systems very
difficult. Moreover, practical systems are prone to be
affected by internal and external disturbances includ-
ing modelling errors, parameter variations, tempera-
ture changes, pressure and mechanical loss, etc. There-
fore, the study of complex interconnected systems with
uncertainties and disturbances is full of challenges.

It should be noted that centralised control and
decentralised control are two different approaches.

Centralised control allows each controller to use the
whole system states/outputs information and thus
developed results usually have low conservatism. In
decentralised control, each controller only adopts local
states/outputs information of its own subsystem and
cannot use the other subsystems” information. There-
fore, decentralised control does not need informa-
tion transfer between subsystems which can avoid the
data transfer cost when compared with a centralised
scheme. Moreover, if information transfer channels
are blocked, centralised control usually does not work
but decentralised control is not affected by it. There-
fore, decentralised control is convenient for practical
implementation, particularly when the interconnected
systems are distributed in a large space. To be specific,
decentralised control law consists of several local con-
trollers, and each of these local controllers only uses its
local state information of the corresponding subsys-
tem. So the structure of decentralised control is usu-
ally more effective than centralised control from the
implementation point of view. In the last few decades,
decentralised control has received much attention and
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many results have been achieved (Misgeld et al., 2015;
Sombria et al., 2012; Zhang, 2020; Zhou et al., 2020).

Sliding mode control (SMC) due to its high robust-
ness has been recognised as an effective method for
control systems with uncertainties. Niu et al. (2008)
considered the sliding-mode control for nonlinear
stochastic systems modelled by Ito stochastic differ-
ential equations. Yan et al. (2005) proposed a mod-
ified SMC which was able to deal with mismatched
uncertainties, where dynamic feedback was employed.
R. Xu and Ozgiiner (2008) presented an innovative
SMC to stabilise a kind of under-actuated system in
the cascade case. Khan et al. (2011) proposed a novel
dynamic integral sliding mode controller for state-
dependent matched and mismatched uncertainties.
Kang and Fridman (2016) imposed an SMC com-
bined with a backstepping method to control a cas-
cade of equation-ODE systems with matched and
mismatched disturbances. A neural network fuzzy
SMC presented by Chiang and Chen (2017) was
applied to pneumatic muscle actuators, where an
adaptive training used neural network was able to
establish a fuzzy SMC controller, and an integrator
could minimise the tracking error. Feng et al. (2018)
adopted the terminal SMC and the full-order termi-
nal SMC to improve the performance of multiple-input
multiple-output systems with mismatched uncertain-
ties, respectively. It should be noted that all of the
results mentioned above only considered centralised
systems.

Recently, many researchers have focused on the
decentralised SMC of the interconnected systems.
Azizi et al. (2010) applied the decentralised SMC
to the distributed simulation of differential-algebraic
equation systems. But the proposed method was not
suitable for general nonlinear systems. An adaptive
decentralised SMC for a class of non-affine stochas-
tic nonlinear interconnected systems was presented in
Ning et al. (2016), which just estimated one adaptive
parameter of each subsystem. However, uncertainties
were not considered in Ning et al. (2016). Further-
more, a kind of novel decentralised state-feedback
adaptive SMC was imposed by Mirkin et al. (2011)
to large-scale interconnected systems with nonlinear
interconnections and time-delay. The global decen-
tralised discrete SMC for interconnected systems
based on output feedback was employed by Mah-
moud and Qureshi (2012). Although these two strate-
gies achieved good results for specific interconnected

systems, it is required that all the isolated subsystems
are linear. A decentralised integral SMC combined
with PID was proposed in Thien and Kim (2018) for
unmanned aerial vehicles, where the control sensitiv-
ity with respect to the network topology was anal-
ysed, but the mismatched uncertainties were not con-
sidered. Ark et al. (2020) proposed an SMC scheme
for load frequency problems in two area intercon-
nected power systems, where mismatched uncertain-
ties were not considered. A model-free decentralised
sliding mode control (SMC) scheme for each sub-
system is designed in Song et al. (2020) where it is
required that the interconnection terms are matched
and the considered interconnected systems are linear.
Although many researchers have obtained the remark-
able achievements of decentralised SMC, few people
concentrated on the nonlinear interconnected systems
with mismatched uncertainties and unknown inter-
connections at the same time. Due to the complexity
of nonlinear systems, the technology of SMC com-
bined with decentralised control for nonlinear inter-
connected systems with unknown interconnections is
challenging and significant.

In this paper, a state feedback decentralised SMC
scheme is proposed to stabilise a class of nonlin-
ear interconnected systems. The considered intercon-
nected systems possess both nonlinear interconnec-
tions and nonlinear isolated subsystems. A coordi-
nate transformation is applied to transform all the
isolated subsystems into the regular form to facili-
tate the controller design as well as the interconnected
system analysis. Then, for the transformed system, a
composite sliding surface is designed, and a set of
conditions are developed to guarantee that the cor-
responding sliding motion is uniformly asymptoti-
cally stable based on the Lyapunov theory. A state
feedback SMC law is established to drive the sys-
tem to the sliding surface in finite time and keep the
sliding motion after that. The bounds on all uncer-
tainties and interconnections have general nonlinear
forms, which are employed in the decentralised con-
trol design to reduce the effects of uncertainties. It
is shown that under certain conditions, the effect
of the unknown interconnections can be completely
cancelled by appropriate designed decentralised con-
trollers with regard to the reachability analysis. At
last, a numerical simulation example is provided to
demonstrate the effectiveness of the proposed control
strategy.



2. System description and problem formulation

For simplification of statement as well as readers’ con-
venience, a few concepts are introduced at first.

Definition 2.1 (Khalil, 2002): A continuous function
a : [0,a) —> [0, 00) is said to belong to class /C if it is
strictly increasing and «(0) = 0.

Definition 2.2 (Yan et al., 2014): A class K func-
tion is said to belong to class KC! if it is continuously
differentiable.

Consider nonlinear time-varying interconnected
systems with matched disturbances and unknown
interconnections consisted of n interconnected sub-
systems,

xi = fi(t, x;) + gi(t, xi) (ui + @i(t, xi)) + hi(t, x),
i=1,2,...,n, (1)

where x; € Q; C R™ (2; denotes a neighbourhood of
the origin), and u; € R™ are, respectively, state vari-
ables and inputs of the ith subsystem with m; < n;,
x = col(x1,xp,...,%,) € Q2 =Q1 X Q2 X --- X Q.
It is assumed that the matrix function g;i(-) € R™*™ is
known and has full column rank; the nonlinear vector
fi(-) € R"™ is known. The term ¢;(-) denotes matched
disturbance, and h;(-) represents the unknown inter-
connection. All nonlinear functions are assumed to
be continuous in their arguments in the considered
domain to guarantee the existence of system solutions.

Some definitions for system (1) are to be introduced
as follows.

Definition 2.3: Consider system (1). The following
system

xi = fi(t, xi) + gi(t, xi) (wi + @i(t, x1)),

i=12,...,n (2)

is called the ith isolated subsystem of system (1). The
system

j{i =ﬁ(t)xi) —|—g,~(t,x,')u,', i= 1; 2; BRI (3 (3)

is called the ith nominal isolated subsystem of sys-
tem (1).

It is well known that one of the major issues for
interconnected systems is to design a controller such
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that interconnected system (1) has the desired perfor-
mance if all nominal isolated subsystems (3) exhibit
the required performance. Compared with centralised
control, one of the important challenges for inter-
connected systems is to deal with interconnections,
because for the decentralised case each controller is
only allowed to use its own/local state information.
The definition of the decentralised control is given as
follows.

Definition 2.4 (Yan et al., 2017): Consider sys-
tem (1). If the controller u; for the ith subsystem only
depends on the time ¢ and states x;, that is,

ui = ui(t,x), i=12,...,n (4)

Then, control (4) is called the decentralised state feed-
back controller for system (1).

Now, consider a nonlinear transformation,

Zi = T,-(xi), i=12,...,n, (5)
which is a diffeomorphism, i.e. the Jacobian matri-
ces 0T;/0dx; is nonsingular in the considered domain
for i=1,2,...,n. Then, transformation (5) defines
a new coordinate z = col(z1,22, . ..,2,). In the new
coordinate z, system (1) can be described by

[E)T, }

Zi= | —Xi

0% =1, @)
aT;

= | — (it xi) + gi(t,x)
0x;
< (ui + @it xi) + hi(t’ x))]xiZTfl(Zi) >

i=12,...,n (6)

It is assumed that system (1) in the new coordinates z
can be described by
zip = Fi(t, zi, zi2) + Hir (t, 2), (7)
zip = Fp(t, zit, zi2) + Gi(t, zin, zi2)

- (ui + ®i(t,zit, zi)) + Hop(t,2),  (8)
where zjj € Q;, CRM™™, zjp € Qy, CR™, z=
COI(Zla 2250 Zl’l)a zZi = COI(ZiI)Ziz) € QT,‘ C R”i’

Qr, i= Qg X Qg = {(zi1> 212) | (zi152i2)

= Ti(xi),xi € Qi},
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and
Fa()] _[3Ti
= | —JillL X 4 9
|:Fi2(‘)] i 3xif(t * )i|x,-:Ti_1(Zi) ¥
[Hii () JT;
H;() := = L, >
¢ _Hig(->] [axih 4 x)}x,:mzo
(10)
0 [0T;
=|— i(t;xi):| > (11)
[Gi(-)] i 3xig =T, (z)
i) = [0i(t,x)], _p1 0 (12)

where G;(-) € R™>™ is nonsingular in the consid-
ered domain Qr; fori =1,2,...,n.

It should be noted that systems (7)-(8) are in the
traditional regular form, which is very useful for the
constructive application of the sliding mode paradigm.

Remark 2.1: It should be pointed out that there is no
systematic method to find a coordinate transforma-
tion (5) to transfer system (1) to regular form (7)-(8).
But the work in Marino and Tomei (1995) and Yan
et al. (2014) can be referred to construct the corre-
sponding transformation in certain cases.

In the following, the nonlinear interconnected sys-
tems (7)-(8) will be focused. The objective of this
paper is to develop a state feedback decentralised
SMC scheme, such that controlled systems (7)—-(8) are
uniformly asymptotically stable irrespective of distur-
bances and unknown interconnections. It should be
emphasised that the results developed in this paper can
be easily extended to all interconnected systems (1)
which can be transformed to systems (7)-(8) by a
known nonsingular transformation.

3. Sliding motion analysis and control synthesis

In this section, the sliding surface will be designed and
the corresponding sliding motion is to be analysed.
Then, a novel decentralised SMC strategy is to be pro-
posed under the assumption that all system states are
accessible.

3.1. Stability of sliding motion

Based on the specific structure of systems (7)-(8),
the switching function for the ith subsystem can be

selected as

si(zi) =zp, i=12,...,n. (13)

Then, the composite sliding function for intercon-
nected systems (7)-(8) is given as

S(z) = col (s1(21),52(22)5 - - - > Su(2n))

= col (12,222 - - -»Zn2) - (14)

So, the composite sliding surface is written by

{col(z1,22, .. .»2n) | si(zi)

=zp=0fori=1,2,...,n} (15)

When the interconnected system is limited to moving
on the sliding surface (15), zip = 0 for i = 1,2,...,n.
It follows from the structure of systems (7)-(8) that

the corresponding sliding mode dynamics can be
described by

zi1 = Fiis(t, zin) + His(t, 211, 2215 -+ -5 Zn1)s

i=12,...,n (16)

where zj; € Q,,, C R"™™ denotes the state of the
sliding mode dynamics, and

Fils(’) = Fil (t) Zi1» Zi2)|z,‘2=0) (17)
Hils(‘) = Hil (ta Z) |Z]2:0,...,Zn2:0> (18)

where F;;(-) and Hj;(-) are defined in (9) and (10,
respectively. From (10), it is clear to see that the
term Hjjs(-) comes from h;(t, x), which represents the
unknown interconnection of the ith subsystems in (16)
fori=1,2,...,n.

In order to analyse the sliding motion governed by
interconnected system (16) and related to the compos-
ite sliding surface (15), the following assumptions are
needed.

Assumption 3.1: There exists the continuously dif-
ferentiable functions V;(t,z;;) : RT x R" ™ > RT
fori=1,2,...,n,such that for any z;; € @, the fol-
lowing inequalities hold:

() pAlzal) < Vilt,zin) < ph(llzin s
(i) 2O 4 (EONTE(1,20) < —ph (2 ID;

Qi) 1CGEDTN < pialllzal),

where the functions p;(-) forl = 1,2, 3,4 are class £C !
functions.



From Definition 2.2, there are continuous func-
tions ¢;j(-) such that for any z;; € Q;,, pi(-) can be
decomposed as

palzinl) = salllzaDlizall, 1=1,2,3,4, (19)

where ¢;(-) are continuous functions in R for i =
1,2,...,nand [ = 1,2, 3, 4.

Remark 3.1: Assumption 3.1 implies that all the nom-
inal isolated subsystems of interconnected system (16)
are uniformly asymptotically stable. It is worth clar-
ifying that Assumption 3.1 is usually required when
the nominal sliding mode dynamics are fully nonlin-
ear (see e.g. Yan et al.,, 2013, 2014, 2017). Moreover,
if the nominal system is exponentially stable, then
Assumption 3.1 will be satisfied. It should be men-
tioned that the fact that z;; = Fj;(t,z;1) is uniformly
asymptotically stable does not mean that nominal sys-
tem (7) is uniformly asymptotically stable. It should
be pointed out that in Mahmoud and Qureshi (2012)
and Yan et al. (2013), the whole interconnected sys-
tems need to satisfy the constraint conditions to ensure
all the nominal isolated blue subsystems of (7)-(8) are
asymptotically stable, while only (16) needs to satisfy
the related conditions to guarantee that nominal iso-
lated subsystems of the reduced-order subsystems (16)
are asymptotically stable in this paper. Therefore, the
approach proposed in this paper has more advantages
than the work mentioned above in this regard.

Assumption 3.2: The interconnection term Hjj5(-) in
system (16) satisfies

| Hiis(t, 2115 2215 - - - > 2n) ||

n
< Btz 21 zm) ) NIzl (20)
j=1

where B;(-) are known continuous functions for i =
1,2,...,n.

Remark 3.2: Assumption 3.2 ensures that the inter-
connections in (16) are bounded by known functions.
However, the method developed in this paper can be
applied to a wider class of interconnections, for exam-
ple, (20) can be replace by

IHits(OIl < Bri()llz11ll + Bai()llz21 |l
+ o+ Bui(Dllzm -

It is required that Bj are the constants for i,j =
1,2,...,n in Mahmoud and Qureshi (2012). In this
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paper, Bji(-) are known continuous functions which
include the interconnections considered in Mahmoud
and Qureshi (2012) as a special case in this regard.
In reality, the bounds on uncertainties for a specific
practical system usually can be obtained/estimated
based on the prior knowledge and engineering experi-
ences as well as statistical/historical data collected for
the considered system. It should be noted that under
certain conditions, the method proposed in Y. Yang
Niu (2020) can be applied if the bounds on uncertain-
ties are unknown.

The following result is ready to be presented.

Theorem 3.1: Under Assumptions 3.1 and 3.2, the slid-
ing motion associated with the sliding surface (15) of
system (7)-(8) is uniformly asymptotically stable if the
function matrix MT(-) + M(:) > 0 in the considered
domain zj; € Qg C R"™™, where M = (m;j(-)) nxn
is a n X n function matrix with its entries defined by

2 CUN\R(. .
= {93(-) —GuOBOL = )

—gia()Bi(+), i # j,

where ¢i3(-) and cis(-) are given in (19) and Bi(-) is
defined in (20) fori,j = 1,2,...,n.

Proof: From the analysis above, it is clear to see that
system (16) is the sliding mode dynamics related to
the composite sliding surface (15). The remaining is
to show that system (16) is uniformly asymptotically
stable.

Under the condition that p;(-) is class C! function,
the equations in (19) hold. For system (16), consider
the candidate Lyapunov function

n
V(t,le,Z21,...,Zn1) - ZVi(tazil)) (22)

i=1

where V;(-) is defined in Assumption 3.1. The time
derivative of V(-) along the trajectory of system (16)
is described as

V(t’ Z11>2215 - - - )an)

n
= Vilt.zn)
i=1

(Vo) | (aViONT _
_;< T +( M) <F115(->+Hﬂs(->))
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(Vi) | (aViONT

f;( 3¢ +( 82,’1 ) les(’)

(avi(o)T
0zi1

From Assumptions 3.1 and 3.2, Equation (23) can be
written as follows:

: “Hz‘ls(')”) : (23)

’an)

= (—pé(nzﬂn) +pallzal) - B0 Y ||zﬂ||) .

i=1 J=1

V(t,z11, 2215 - - -

(24)

According to Equation (19), it follows that

V(ta Z11>2215 - - - >Zn1)

n
2 2
<> | —sadizablizall

i=1

+ sullzalDlzallBi) Y Izl

j=1

==Y (shlzal) = sallznDBi()) Iz l>
i=1

= > sullznl) - BiO Nzl -zl

i=1 j=1,#i
n n
=33 culllzal) - BOlzal - Izl
i=1 j=1,ji
1
=227 (MT n M) Z, (25)
where Z := col(||z11 1, |z21 1l - - - l1zn1|]) and M is the
n x n matrix with entries defined in (21). Hence, the
result follows from M + M > 0. [ |

Remark 3.3: Theorem 3.1 provides a set of suffi-
cient conditions under which the sliding mode is
uniformly asymptotically stable. The function matrix
M in Theorem 3.1 only depends on ¢j3(-), cia(-)
and B;(-), which are determined by the given sys-
tem. The condition that MT + M > 0 with M defined
in (21) implies the limitation to the mismatched
interconnections.

3.2. Reachability analysis

A set of conditions have been developed in Theorem 3.1
to guarantee the sliding motion stability of the con-
sidered interconnected systems (7)-(8). The objective
now is to design a decentralised state feedback SMC
such that the interconnected system is driven to the
sliding surface (15) in finite time.

For interconnected system (7)-(8), the correspond-
ing reachability condition based on the composite slid-
ing surface is described by

$"(28(2) = —nlIs@)|, (26)

where S(z) is defined by (14) and n is a positive con-
stant.

Consider system (7)-(8). The following assumption
is introduced for further analysis and control design.

Assumption 3.3: The uncertainties ®;(t, zj1, zip) and
Hij)(t,z) in (8) satisfy

|@i(t, zin, zi2) | < &in(t, zin> zin)s (27)

IHa(t, 2 < Y €t 2)), (28)

=1

where &1 (, zi1, zi2) and €;(t, zj) are known continuous
functions.

It should be noted that Assumption 3.3 is the lim-
itation to system uncertainties as well as interconnec-
tions. It is clear to see that the bounds on the uncertain-
ties and interconnections are fully nonlinear, which
are to be employed in the control design to reject the
effects of them on the system performance. Construct
the control law

ui = —G; ' (t,zin zi2) Fo (1 zins z2) — G (8, zin, zio)ki - sgn(zin)

-G (tzin, zn) (IIGi(t, zi1, zi2) i1 (¢, zi1» zin)sgn(zin)

n 1 zpp & 2 .
tozt+ -y etz |, i=12...,m (29
277 2zl

where Fjp(+) is given in (9), &1 (-) and Z}’Zl €ij(t, zj) are
given in (27) and (28), respectively, sgn(-) is the usual
signum function, and k; is the control gain which is a
positive constant.

Remark 3.4: From the control structure in (29), it fol-
lows that the functions €;(t,zj) need to be vanished



at zj =0 for i,j = 1,2,...,n. This implies that the
unknown interconnections Hj, (t, z) must be vanished
., n. Otherwise, it
Zi2
lzi2l12*

at the origin zj =0 for i = 1,2,..

may result in infinite control due to the term

Theorem 3.2: Under Assumption 3.3, nonlinear inter-
connected system (7)-(8) can be driven to the sliding
surface (15) in finite time by the designed controller in
(29) and maintains a sliding motion on it thereafter.

Proof: From the definition of s;(z;) in (13) and sys-
tem (8),

T/ y: T
S; (2)si(zi) = ZpZi
T
= z; (Fn(t, zi1, zi2) + Gi(t, zi1, zi2)

x (ui + ®i(t, zin, zin)) + Hin(t, 2)) .
(30)

Note, in Equation (30), the state variable z = col(zy, z3,

..»2n) is involved through the interconnection terms
Hj(t,z). However, for a decentralised scheme, the
control u; can only use the local states z;. In order
to cancel the effects caused by interconnections using
decentralised control, it is necessary to consider the
composite sliding surface in (14).

Then, from (14) and (30), it follows that

Z sT(z)3i(z)
i—1

ST(2)S(z) =

n
= Z 2} (Fa(t, zit, zio) + Gi(t, zin, Zia)
i—1

x (ui + Pi(t, zi1, zip)) + Hp(t, 2)) .
(31)

Substituting the control ; in (29) into Equation (31),
n

NGNEE P (Fiz(o + Gi<->< — G ()Fn()
i=1

1 n
GO (IG:O)l16 (sgn(zn) + S22
Zi2
i ||zlz||2 Z

- sgn(zp) + ‘Di(')) + Hiz(-)) (32)

.~ G (ki
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Rearranging the associated terms in Equation (32), it
follows that

ST(2)8(2)

=Y (hGO®O ~ 1GO g Ozhsgn(zn)

T ,2212
+zLHp () — + 2
i2 12() (2 ,2 Zi2 ) ||Z ”2 ]1 )

—kizigsgn(ziz))

=Z@wwmwwmm#mm)
i=1

(Z ZzZHIZ( ) — Z 22212 Z Z ; |*|Z;22|1|22 le )

i=1 j=1

n
— Z k,-ziTzsgn(ziz). (33)

i=1

Based on (27), (28) and the fact that sngn(s) > s ||
for any vectors s (see Lemma 1 in Yan & Edwards,
2008),

n

> (ZhGi) i) — 1GiO) [1En ()zhsgn(zi))

i=1

<Y (llz2ll - 1GOI - 19O =zl - 1G]

i=1

“&1(-) < 0. (34)

Then, by similar reasoning as in (34), and from (28)

Zzlezz() Z —zhzip — ZZ;HZZ;TZ € ()
< Z lz2ll - |1 H2 ()l — Z Z 2lznl?

i=1 j=1
—ZZ (t Zi)
i=1 j=1
= Z lz2ll - IH2 ()l — Z Z Lzal?
i=1 j=1

— Z Z %eé(t, zj). (35)

i=1 j=1
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2 2
From the fact that % > |a| |b|, it follows that

non 1 n n 1
> laalP+ 3 et

i=1 j=1 i=1 j=1

=332 (1=l + Git.)

i=1 j=1

n n
> > lznllet z)

i=1 j=1

n n
= lzall Y it z)
i=1 j=1

> llzall - [Ha ()]l (36)

i=1

From (36) and (35),

n "o
T T
§ ZizHiZ(') - E ~ZpHZi
i=1 i=1
n

" 1 ZTZ‘2
%2 3
- E E = €;() <0. (37)
2 |lzpl?

i=1 j=1

Substituting (34) and (37) into (33) yields

ST(2)S(z)

IA

n
— Z k,-zigsgn(ziz)

i=1

n
< -1 zhsgn(zp) < —nliSl,  (38)

i=1

where 7 is a positive constant which is chosen such that
n < min{ky, ka, ..., kn}.

Inequality (38) shows that reachability condi-
tion (26) is satisfied, and thus interconnected sys-
tems (7)-(8) can be driven to the sliding surface (15)
in finite time and maintain a sliding motion on it
thereafter. Hence, the result follows. [ |

According to SMC theory, Theorems 3.1 and 3.2
together show that the closed-loop system formed
by applying control law (29) to interconnected sys-
tems (7)-(8) is uniformly asymptotically stable.

Remark 3.5: From the proof of Theorem 3.2, it is clear
to see that both the matched uncertainties and the mis-
matched interconnection terms can be cancelled by

the designed decentralised controllers in the reacha-
bility analysis, which is one of the main contributions
in this paper. Such controllers can enhance the robust-
ness against unknown interconnections even in the
framework of a decentralised scheme. Moreover, the
developed decentralised controllers can guarantee that
the interconnected systems are driven to the compos-
ite sliding surfaces in finite time. As for how to estimate
the finite reaching time, refer to the recent work in
Li et al. (2020). It should be noted that the sliding
motion is not robust to the mismatched interconnec-
tions in the sliding phase. Actually, the limitation to the
mismatched interconnection is necessary for the slid-
ing phase, which can be seen from the comments in
Remark 3.3.

Remark 3.6: It should be emphasised that in this
paper, the considered systems are fully nonlinear with
nonlinear disturbances and nonlinear interconnec-
tions. It is not required that the nominal subsystems
are linear, or the nominal subsystems are linearisable
or partial linearisable. This is in comparison with most
of the existing work (Z. Xu et al., 2020). Therefore, the
methodology developed in this paper can be applied to
a wide class of interconnected systems.

4, Simulation results

Consider the nonlinear interconnected system which
is composed of two third-order subsystems

x| = —3x12x%5 — 3x12 + rls(xfz — x11)?
3xf2x13 —3x13 — %(xfz — x11) exp{—t} cos(x;3¢)

—4()6%3 sin?t + 1)
+ 0

2.2 2
—6x7,X73 — 4x7, — 2x11 :|

i| (w1 + @1(t, x1)) + hy (8, %),
0

(39)

—8x21 + x23 0
Xy =|—7xa2+x3 |+ | 0] (2 + @2(t, x2)) + ha(t, %), (40)
X21 1

where x; = col(xj1, X2, xi3) € R® and u; € R are,
respectively, the state variables and inputs of the i-
th subsystem for i = 1, 2. The terms ¢;(-) and h;(-)
for i = 1, 2 are matched disturbances and unknown
interconnections, respectively.



Consider the transformation T and T, defined by
i) = x12,
b _

Ty : § %11 = X13 and

1,
z12 = —(x7, — x11)>

4
zé‘l = X21,

. b
Tz 1§ 23 = x21 + x22,

222 = X23.

It is easy to find that the Jacobian matrices of T} and

T, are given by
0 1 0 1 0 0
0 0 1 and 1 1 0
—(1/4) (1/2)x 0 1

which are nonsingular in the whole state space. By
direct calculation, system (39)-(40) in the new coor-
dinates is given by

b \?2 2
2y = , ;32{111 (ill) — 32}, + 21, ,
3 (z‘fl) z{; — 3z{; — z12 exp{—t} cos (zut)

+ Hi1 (), (41)

) 1 2
Z12 = —2z12 + 52?12%2 + (1 + (Z?1> Sll’l2 t)

X (uy + ®1(-)) + Hi2(+), (42)

21 = [—828, + 220 — 728, — 28 + 2220 + Han (),
(43)
z2 = 25, + (uz + P2()) + Haz (), (44)

where Hy1(-) € R? and Hj(-) € Rl fori =1, 2.

In order to demonstrate the theoretical results
obtained in this paper, it is assumed that the uncertain-
ties in (41)-(44) satisfy

D1 < (1251 + 1) exp{—1}, (45)
IHy || < 12911 sin? ¢ + |z0a ] + l|z22 1), (46)

2
IHill <) et z)
j=1
< 0.25(|l2f, Il sin® £ + [lzi2]l + llz22l),  (47)
2

Y edtz) < 0.06(]128 | sin’ £ + l|ziall + llz221)%,
j=1
(48)
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|D2()] < 128, || sin? 222, (49)

2 .
IHo || < 1.618(2f; + (2§,)" — 4z12)* sin® 235, (50)

2
[Hall < ZGZj(t» zj)

J=1

<040z, + (2§,)° — 4z12)?sin’ 255, (51)

2
2 .
Zezzj(t, zj) < 0.32(z]; + (z’fl) — 4z15)* sin® z3,.
=1
(52)

For (41)-(44), select the switching function S(z) :=
col(z12, z22). When the sliding motion occurs, z1; =
z35 = 0. It can be obtained by direct calculation that
the sliding mode dynamics are written as follows:

2

. —3z% (z2)" — 32¢

zZi1 = |: ! (zllb) b“i| + His(4),  (53)
3 (211) z — 3z,

by = [_ e } + Hais(). (54)

It is clear to see from (46) and (50) that

15O < Iz, [l sin® £ < 2], (55)
[H215() 1 =0 (56)

and thus 8; = 1and 8, = 0.
For system (41)-(44), consider the candidate Lya-
punov function as

V() = Vi) + Va(),

where V] = (zi’l)2 + (2?1)2 and V, = (Zgl)2 + (zé’l)z.
By direct calculation,

Pil(||Zi1||) = gil”Zil”’ i=12 1[=123,4, (57)

where ¢j fori = 1,2,1 = 1, 2, 3, 4 are the positive con-
stants. It is easy to find that Assumption 3.1 holds and
the p;i(-) satisfy (57) with

sni=cn=1 c3=+6, cu=2
21 =6n=1, ¢3=+13, ¢y =2

Then from (21), it follows by direct calculation that
MY+ M>o. (58)

According to Theorem 3.1, the designed sliding mode
is asymptotically stable.
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Based on (29), the designed control is given b .
(29) 8 given by 0.0321 (1128, | sin? £ + [lz12l] + 122}

—2z15 + 0.52% 22 kisgn(z12) 2 .
w() = oA CUSEE o ezl (1 + (24,)" sin? )
1+ (zll) sin? t 14+ (Zn) sin? ¢ (59)
ur (1) =25, — kasgn(zy) — z
(122, + 1) exp{—t}sgn(z12) 2() = 23 — kasgnlan) — 222
. 0.1622>
- (nzé1 I sin® zp2sgn(z22) + ———
llz22l
. 20 4
c 4 a a \2 : 4
5 _ X <Z11 + (ZH) —4z12> - sin z22>, (60)
8 S 0
2 2 8
g o S -20 where constants k; and k; are chosen as
S
2
& 5 -40 ki =02 and k; =1.5.
0 1 2 3 0 1 2 3
ti ti
me 2 me From Theorems 3.1 and 3.2, it follows that con-
4 troller (59)-(60) can stabilise interconnected sys-

tem (41)-(44) uniformly asymptotically.

0
(—/k For simulation purposes, the initial states are cho-
-20
0 1 2

sen as x19 = (—2,7.5,5) and x,9 = (6, 2,3.5), and the
uncertainties and interconnections are chosen as

switching function s,
o \V)
control u,

-2 -40
0 1 . 2 3 _ 3 05 (Il 1l sin? ¢
ime time Hyy = |: 5 ([129, I sin? t + [lzi2]l + ||222||):|
| 0.7 (lIz% || sin® t + ||z z ’
Figure 1. The time responses of the switching function s; and (” nll +lzl 4 22”)
control signal uy (upper), and the time responses of the switch- Hyy = 0.05(]12f, || sin® £ + [|zi2 ]| + l|z22]),
ing function s, and control signal u, (bottom) for k; = 0.2 and
ky=15. ®1() =0.9- (|2}l + 1) exp{—t},
20 T T T T T
S
-~ X2
e 13 [
1.5 2 25 3
time
10 T T T T T
Xo1| |
- = Xy
T X23
_10 | | | | |
0 0.5 1 1.5 2 2.5 3

time

Figure 2. The time responses of the state variables of subsystem (39) (upper), and the time responses of the state variables of
subsystem (40) (bottom) for ky = 0.2and k; = 1.5.



u —0.647(z4, + (2‘1’1)2 — 4z15)? sin® 2,
1= 2 . .
0.323(zf; + (24,)" — 4z12)* sin® 2,

Figure 1 shows the control signals and the sliding func-
tions with respect to time. The simulation results in
Figure 2 show that the closed-loop system formed by
applying control (59)-(60) to interconnected system

— 20
1)
c 4
ke
° s 0
32 s
o <
£ 9 .90
s °
&
2 -40
0 1 2 3 0 1 2 3
time time

20

-20

switching function s,
N
control u,
o

0 1 2 3 0 1 2 3

time time

Figure 3. The time responses of the switching function s; and
control signal u; (upper), and the time responses of the switch-
ing function s, and control signal u, (bottom) for k; = 2.5 and
ky = 5.
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(41)-(44) is uniformly asymptotically stable which is
consistent with the obtained theoretical results.

It should be noted that the reachability constant
depends on the parameters k; and k, which affect the
convergent rates of sliding functions as well as sys-
tem state variables. In order to demonstrate this, keep
all the other parameters the same but increase k; and
ko to ki = 2.5 and ky = 5. The simulation results are
presented in Figures 3 and 4. It is clear to see, by com-
paring Figures 1 and 2 with Figures 3 and 4, that the
bigger the values of k; and k; are, the faster the sliding
functions and system state variables converge.

Remark 4.1: It should be noted that interconnected
systems (39)-(40) are fully nonlinear where both
matched uncertainties and unmatched interconnec-
tions are involved. Therefore, the methods proposed
in the recent work in Ma and Xu (2021) and X.
Yang and He (2021) cannot be applied to sys-
tem (39)-(40). Although the considered intercon-
nected systems are nonlinear in Ma and Xu (2021) and
X. Yang and He (2021), it is required that the nominal
subsystems have a triangle structure and the uncer-
tainties/interconnections have a linear growth rate in
Ma Xu (2021). Moreover, it is required that the inter-
connections are matched in X. Yang and He (2021).

20 T T T T T
10 X1
><‘_ ‘\‘\.\ 777—X12
§ 0 r pubinii-tCLCAPE -0 X13 —
©
»
-10 i
-20 I 1 1 1 L
0 0.5 1 1.5 2 2.5 3
time
10 T T T T T
Xo1 ] |
T T Xy
T X3
-'10 1 1 1 | 1
0 0.5 1 1.5 2 2.5 3
time

Figure 4. The time responses of the state variables of subsystem (39) (upper), and the time responses of the state variables of

subsystem (40) (bottom) for ky = 2.5and k; = 5.
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5. Conclusion

A class of fully nonlinear interconnected systems with
unknown nonlinear interconnections has been con-
sidered in this paper. A composite sliding surface
has been designed, and a set of conditions has been
developed to guarantee that the corresponding slid-
ing motion is uniformly asymptotically stable. A novel
decentralised state feedback control law is designed for
the nonlinear interconnected systems to ensure that
the interconnected system is driven to the designed
sliding surface in finite time. The proposed strategy
supplies an approach to improve the robustness for
nonlinear interconnected systems in that effects of all
matched uncertainties and mismatched interconnec-
tions can be rejected by the designed decentralised
control regarding the reaching phase. Finally, numeri-
cal simulation results have been presented to show the
effectiveness of the proposed methods. In the future,
it is expected to extend the results developed in this
paper to time delay nonlinear interconnected systems
and use some strategies to reduce possible chattering
towards practical applications.
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