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On the relationship between the ground-state wave function of a magnet and its static
structure factor

Jorge Quintanilla
Physics and Astronomy, Division of Natural Sciences,
University of Kent, Canterbury, CT1 7NH, United Kingdom
(Dated: 27 January 2022)

We state and prove two theorems about the ground state of magnetic systems described by very
general Heisenberg-type models. The first theorem states that the relationship between the Hamilto-
nian and the ground-state correlators is invertible. The second theorem states that the relationship
between the wave function and the correlators is also invertible. We discuss the implications of
these theorems for neutron scattering. We propose, in particular, a variational approach to quan-
tum magnets where a representation of the wave function (held, for instance, in a neural network
or in the qubit register of a quantum processor) is optimised to fit experimental neutron-scattering
data directly, without the involvement of a model Hamiltonian.

The Rayleigh-Ritz variational principle states that the
ground state wave function of a quantum system is an
absolute minimum of the energy. It provides the theoret-
ical underpinning of many successful approaches to the
quantum many-body problem including Density Func-
tional Theory (DFT) |1], Variational Monte Carlo meth-
ods 2], the BCS theory of superconductors [3] and the
Laughlin theory of the fractional quantum Hall effect ﬂ]
to name a few cases. More recently it has been used
to find optimal representations of wave functions using
quantum computers [3, 6] and neural networks [7]. Such

theories start with a model Hamiltonian H and proceed
by minimising the energy <\If ‘fl ‘ \Il> to obtain the wave

function ¥. The Rayleigh-Ritz variational principle en-
sures that no wave function can yield a lower value of the
energy than the system’s true ground state.

Once the wave function is known, it is is straight-
forward to predict expectation values of observables.
Very often, however, H is not known a priori. In such
instances H has to be found first from experimental data.
That involves a laborious and ill-posed inverse problem:
multiple candidate Hamiltonians must be studied until
one is found that predicts the experimentally-determined
value of a set of observables. In general there is no guar-
antee of uniqueness of H or ¥ for a given data set. Here
we consider the inverse problem for the magnetic struc-
ture factor of a magnetic insulator (in particular, one de-
scribed by an anisotropic Heisenberg model, which covers
a vast range of real materials). We show that, for systems
described by a Heisenberg model, there is a one-to-one
correspondence between the structure factors, the model
Hamiltonian and the ground state wave function.

Our results have several direct implications for the
study of magnetic insulators using neutron scattering.
Firstly, they put the inverse problem on a firmer foot-
ing and will help the design of efficient solutions, for in-
stance ones exploiting machine learning [@] Secondly,
they suggest new variational methods where the wave
function is optimised to describe the experimental data,
obviating the need to minimise the energy of a model
Hamiltonian. This provides an alternative to methods

based on neural-network ﬂ] or quantum-processor E] rep-
resentations that are based on minimising the energy for
a given model Hamiltonian. The new methods will be
appropriate when the model is not yet known but ex-
perimental structure factor information is available. In
analogy with the Rayleigh-Ritz variational principle, our
theorem guarantees that no wave function other than the
true ground-state wave function of the system under in-
vestigation can yield a better fit to the data. Finally,
our results imply that every ground-state property of the
system is contained in the structure factors. This has
important implications for efforts to quantify quantum
entanglement from experimental neutron scattering data

9, [10].

Our starting point is the anisotropic Heisenberg model:

H=Y"% 5080, (1)
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Here 4,5 = 1,2,..., N represent atomic sites, whose po-
sitions R;, R; we assume to be known. S{* represents the
ath component of the spin operator for the magnetic mo-
ment at the it atomic site (a = x, 7, z; we assume each
spin component is defined with reference to some local
axes defined on each site). We assume the spin quantum
number at each site is S = 1/2 in what follows but the re-
sults can be generalised to arbitrary S straight-forwardly.
Jff J’-B is an exchange constant describing the interaction

between the o™ component of the spin at the i*2 site of
a given lattice and the S component of the spin in the
7 site. The terms with ¢+ = j describe site anisotropy
(easy planes or easy axes). The dependence of Jff J’-B on
i,7,a, and B is entirely arbitrary. The model of Eq. (I
can thus describe a very broad range of magnetic models
in arbitrary dimensions with and without translational
invariance, including among others the Ising model M],
XY model [12], and Kitaev model to name but a few
[@] Models of this type are believed to describe well
the physics of many materials from single-molecule mag-
nets [14] through infinite-chain compounds [10] to three-
dimensional quantum spin ices ] and other spin liquids
M] The observable quantity of interest is the two-point
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The correlator is a single-valued functional of the wave
function ¥, as indicated.

We wish to prove two closely related theorems:

Theorem 1: The exchange constants in Eq. () are
single-valued functionals Jff J’-’B [p] of the correlators.

Theorem 2: The ground state wave function ¥y is also
uniquely determined by the correlators (we write
this \Ifo [p])

Our approach is inspired by the DFT formalism Heisen-
berg models developed by Libero and Capelle Iﬂ] Our
aims, however, are quite different. The latter work (like
other DFT formalisms for lattice models [17-19]) is an
energy-minimisation variational theory closely modelled
on the original DFT for electrons in solids ﬂ] In Den-
sity Functional Theories generally, the aim is to show
that the energy is a functional of a density-like quantity
(in the case of Ref. [17], the local magnetisation). One
then splits the energy into two parts, one that is “uni-
versal” and the other that depends on local fields. In
order to be useful, it is necessary to have exact results
for the universal function and motivated approximations
for the field-dependent contribution. Here our primary
quantity is not a density but a correlator, and we are not
interested in splitting the energy into one contribution
that is known and another that is to be approximated.
Instead we treat the energy as a single unit and are inter-
ested in proving that only one “universal” Hamiltonian is
compatible with a given set of correlators. In practice,
applications of our approach involve the optimisation of
the match to experimental data, rather than the min-
imisation of the energy. Moreover, we will work in the
absence of a known model Hamiltonian, rather than using
knowledge of one model (e.g. a translationally-invariant
Heisenberg model) to approximately solve another (e.g.
the same model but with an impurity potential).

Proof of Theorem 1.- Inspired by the original proof of
the Hohenberg-Kohn theorem of DFT, we will proceed
by redutio ad absurdum. Suppose there are two distinct
Hamiltonians H and H’, with different exchange inter-

action functions J;'; B and J ’f‘]ﬁ , respectively, that give

the same correlator piofjﬁ . In other words, if ¥o and ¥,
represent the respective ground states, then

pff [Wy] = p‘i;—’@ (W] for all 4, j, v, 3. (3)

In this case the ground-state energy obtained from the

first Hamiltonian is
By = <x110 ‘H‘ \I/0> < <\116

= <\1;6
=33 (o
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| w) (4)
)+ (|| wp)
(5)

I ) i 1wl + B

(6)

where the inequality due to the Rayleigh-Ritz variational
principle. Similarly the ground state energy obtained
from the second Hamiltonian is

) < (Wo |1 Wy ) (7)
(o 1|0 + (o] )

(8)

=22 (J/(i)f}'ﬂ - Jfff) P [Wo] + Eo,

ij ap
9)

- il

E) = <\Ifg il

Adding the two inequalities we obtain

E0+EO<ZZ(J'M “5)

B, @B
x {p?f (o] - iy’ [\1/6]} + Eo + Ej.
Using now our assumption (3 this reduces to
E\+ Ey < Ey + E} (10)

which is absurd. Thus our initial assumption must be
incorrect: two Heisenberg-type Hamiltonians with dif-
ferent exchange interaction constants can never give the
same correlator. In other words, the exchange interac-
tion function is a single-valued functional J;* J’-’B [p] of the

correlator pZ

Our result implies that the inverse problem of deduc-
ing the Hamiltonian from the correlators is indeed well-
defined, as long as we know that the material under in-
vestigation is described by a model of the form in Eq. ().
That could explain the success of a recent machine learn-
ing based approach to this problem [@] In that reference
an auto-encoder was trained using simulations of the neu-
tron scattering function S, 5 (q) obtained for a family of
candidate Hamiltonians [for completeness, we have of-
fered a proof of the equivalence between knowledge of
Sa,p(q) and of pf‘f in the Appendix. The auto-encoder
thus trained can be used to generate a low-dimensional la-
tent space on which experimental data can be projected,
effectively finding an optimal model Hamiltonian. Our
formal result guarantees that this is possible. We note
that the work in Ref. B] dealt with classical models how-
ever similar dimensionality-reduction has been shown for

quantum models using closely-related Principal Compo-
nent Analysis [20].



In the above paragraph we have implicitly assumed
that the ground states of H and H' are non-degenerate.
Let us now see what happens when we relax that as-
sumption. Let us first consider the case when the ground
state of one of the Hamitonians (which we take to be
H without loss of generality) is degenerate, while that
of the other Hamiltonian remains non-degenerate. Then
the first of the above two inequalities (dl[7) is not strict,
as there is always the possibility that |¥{) happens to be
a ground state of H as well as of being a ground state of
H'. Barring that possibility, the arguments above hold,
so we only need to consider that special case. In the
special case we have

Eo = Z Z (‘]l J

— ) e el By (1)

l]

and

By <3 (15) =0 ) i ol + B (12)

nj B

When we add the equality (1)) to this inequality (I2) we
still arrive at the same contradiction as before, (0.

Let us now consider the case when both Hamiltonians
have ground-state degeneracy. Then there is a new pos-
sibility, namely that |¥g) is a ground state of H’' and
|W;) is a ground state of H (all other possibilities have
already been covered above). In that case all the above
inequalities become equalities and we do not arrive at
a contradiction. Therefore, this is a special case when
Theorem 1 does not apply. Note, however, that in this
case the two Hamiltonians must share all their degener-
ate ground states as a single ground state of one which
is not also a ground state in the other suffices to gen-
erate a contradiction. Hence, this is a trivial case: if
two Hamiltonians share the ground state, then of course
they also must have the same ground-state correlators,
since those are single-valued functionals of the ground
state wave function. An example of this would be two
spin-1/2 ferromagnetic Ising models differing only by an
overall multiplicative factor. In both cases, the ground
state is a classical state where all the spins are pointing
along the positive or negative direction of the quantisa-
tion axis. The correlators are therefore identical in the
ground state (although differences would emerge at finite
temperatures) Iﬂ] Moreover this exception to Theorem
1 does not affect Theorem 2, below.

Proof of Theorem 2.- In the preceding paragraphs
we proved that the exchange constants Jf 5 are single-

valued functionals of the correlators pzf (with the caveat
mentioned above). Since obviously the ground state
|Wp) is in turn fixed by the choice of Jo"ﬂ this also

proves that |¥g) is uniquely determined by pl , within
the constraint that |¥y) must be the ground state of a
Heisenberg-type Hamiltonian of the form give by Eq. (D).
To prove Theorem 2 we need to show that the result holds

even without that constraint. Again, we proceed by re-
dutio ad absurdum. Let us assume that there is a state
|¥) that gives the same correlator as |¥g):

P?ff M — p” [Wo] for all i, j, a, B. (13)

Let us further assume that |¥) is not the ground state
of H. There are two possibilities: either it is the ground
state of some other Heisenberg-type Hamiltonian or it is
not the ground state of a Heisenberg Hamiltonian at all.
Below we will not assume either case, so our proof will
cover both instances. By the Rayleigh-Ritz variational
principle, we know that |¥g) gives the absolute minimum
of the energy, which implies

Fy = <\IJO ’H‘ \IJO> < <\IJ ‘H’ \if> (14)
Using Egs. () and (@) we can write this as
Bo= 3Tt ol < 305 7 oy 9]
4,J a,B 4,J a,B

Let us now consider separately the two cases when the
two expectation values of H in Eq. ([d) are different (a)
and when they are equal (b). Let us first consider the
case when they are different (a):

7).

Ey = <x1/0 ‘H‘ x110> < <x1/ i

Then we have

St o

1, a,B

<2 0.7

j B

e ] B

and from our assumption (3] this reduces to
DD T e (Wl <33 e W] (16)
1,7 o, ,j B

which is a contradiction. Therefore, the only possibility
is that the two expectation values are equal (b):

Ey = <\IJO ’H‘ \IJO> - <\IJ ‘H’ \if>

However in that case <\i! ‘fl

\Il> is the absolute miminum

Ey and therefore |¥) is a ground state of H, which con-
tradicts our starting assumption. Thus we conclude that
the only state that reproduces the ground-state correla-
tor of H is the actual ground state of H (or one of its
ground states, if the ground state of H happens to be de-
generate), quod erat demonstrandum. We note that this
is true even when we include candidate wave functions
that are not derived from any Hamiltonian of the form
(@) so Theorem 2 is stronger than just a corollary of The-
orem 1. We note also that our proof of Theorem 2 does
not rely on having proved Theorem 1.



Note that our result implies that the correlator com-
pletely determines the ground state wave function is gen-
eral, in particular it applies to wave functions which are
not ground states of any Heisenberg-type Hamiltonian.
This means that unconstrained searches in wave function
space are guaranteed to be able to find the true ground
state, which may be relevant for instance for quantum
processor-based evolutionary searches [@]

Our last result offers the possibility to study systems
for which experimental magnetic neutron scattering data
is available by working directly with the wave function,
without the need for a model Hamiltonian. Compared
to the machine learning based approaches commented on
above [@, ] the process here would be much swifter as
rather than multiple optimisations carried out for differ-
ent model Hamiltonians a single optimisation loop would
be required. For instance, one could encode the wave
function in a neural network, trained once to reproduce
the experimental data. Alternatively, a quantum circuit
could be optimised to place the qubits in quantum pro-
cessor in a state that reproduces the measurements. Both
neural networks and quantum circuits can, in principle,
generate any wave function. Our theorem implies that
any general-purpose optimisation algorithm will converge
towards the right ground state, because there are no wave
functions that can describe the data and are not solutions
to the physical problem at hand. This is akin to the guar-
antee offered by the Rayleigh-Ritz variational principle
that no wave function can give an energy lowerg than
the true ground state wave function.

To conclude we note some limitations of Theorem 2.
Firstly, it relies on the assumption that the physical sys-
tem under investigation is described by a Hamiltonian of
the form in Eq. (I). Systems with itinerant electrons or
with interaction terms involving three or more spins at
a time are therefore excluded. The generalisation of our
results to such systems is left for subsequent work. Sec-
ondly, Theorem 2 establishes the existence of a fitness
peak at Uy but says nothing about its steepness. The
peak could be almost a plateau in some cases, which
would complicate practical applications. Investigating
this for different models provides another focus for future
research. Finally, our theorems refer only to the ground
state. Generalisations to states of thermodynamic equi-
librium and to excited states are left for future work.
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Appendix A: Equivalence between correlators and
the spin structure factor

Here we show that the correlators pf}’ﬁ are unique func-
tionals of the diffuse magnetic neutron scattering func-
tion, or static spin structure factor, S, s(q), which can
be determined experimentally and is given by

S s (q) = % STt (aghy (A
0

This is not quite the same as a Fourier transform, in
which case we could say straightaway there is a 1-2-1

correspondence between S, g (q) and <S’f‘§f>, but al-

most. Again, let us proceed by redutio ad absurdum.
First, we assume that there are two different correlation
functions that give the same scattering function. Let

us designate these two correlation functions as p‘i;—’@ and
ﬁfﬁf , respectively. Our assumption is that the difference

A‘;ff = p‘if — ﬁf‘f # 0. Since they give the same scat-
tering function we have

1 iq-(Ri—Ry) o,
Se.(q) = ~ Ze q(Ri Rj)pmﬂ

]

1 :
_ iq-(R; —R;) .0
=N C Pis

2%
for all q, a, 5. The last equality implies that

Z eiq'(Ri—Rﬂ')A‘if =0 for all q, a, B.

(2]

(A2)

Suppose that all magnetic sites are equivalent. Then
the function Afﬁf = A%? (R; — R;) and (A2) becomes

Z eiq.RAOc,ﬁ (R) =0 for all q, &, B
R

which evidently implies A®# (R) = 0 for all R as the
Fourier transform of a null function is a null function
which contradicts our original assumption, concluding
our argument.

Suppose now that the magnetic sites are not equiv-
alent. Nevertheless, as long as we are dealing with a
crystal, the function pf‘f will have to be periodic. This
periodicity can be established experimentally (for in-
stance, by magnetic neutron crystallography) and it is
also straight-forward to impose it on the wave function
therefore we can restrict ourselves to the assumption that
Py 5 (and therefore, also Afﬁf ) has the same periodicity
“ﬁ] In practice this means that we can write the LHS



of Eq. (A2) in the following form:

. MXN M ‘
eI S 3 S oA (R
i,j i=1 j=1

Mo
=N e R (q)
Jj=1
with
MXxN

fil@= Y 1AM (R,).
=1

Here A is the number of magnetic unit cells (repeat-
ing units) and M is the number of sites within a unit
cell and the sum. Thus the sum over j runs over all
the sites in the first unit cell while the sum over ¢ runs
over all the other sites in the lattice. For the expression
Z?il e~ ‘@R f.(q) to vanish for all @ we must have each
of the f;(q) for j = 1,2,..., M vanish independently.
But f;(q) is the Fourier transform of A?’ﬁ (R;) there-
fore AJO-"B (R;) must vanish too for each j =1,2,..., M.
This means Af‘f is identically zero, contradicting again
our starting assumption.
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