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ABSTRACT

Longitudinal datasets contain repeated measurements of the same
variables at different points in time. Longitudinal data mining algo-
rithms aim to utilize such datasets to extract interesting knowledge
and produce useful models. Many existing longitudinal classifica-
tion methods either dismiss the longitudinal aspect of the data
during model construction or produce complex models that are
scarcely interpretable. We propose a new longitudinal classification
algorithm based on decision trees, named Nested Trees. It utilizes a
unique longitudinal model construction method that is fully aware
of the longitudinal aspect of the predictive attributes (variables) and
constructs tree nodes that make decisions based on a longitudinal
attribute as a whole, considering measurements of that attribute
across multiple time points. The algorithm was evaluated using
10 classification tasks based on the English Longitudinal Study of
Ageing (ELSA) data.
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« Computing methodologies — Classification and regression
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1 INTRODUCTION

Longitudinal datasets contain repeated measurements of the same
attributes taken at different time points. The repeatedly-measured
attributes of longitudinal datasets are referred to as longitudinal
attributes. An example of a longitudinal attribute is an attribute
consisting of 4 measurements of a patient’s blood cholesterol levels,
taken once every 4 years.

Longitudinal data mining aims to utilize such datasets in order to
extract interpretable and potentially useful knowledge or patterns
hidden in the data. The main advantage of such datasets is their
temporal nature, which can be utilized to make predictions based
not only on a set of attribute values, but also on the trends that
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occur within them over time. Most importantly, the longitudinal
nature of these datasets can be used to construct models that use
previously recorded data to predict future events.

Note that longitudinal data should not be confused with time
series data [1], even though both have a temporal nature. In the
context of classification (supervised learning), time series data typ-
ically contain a single real-valued variable repeatedly measured
across a large number of timepoints; whilst our target longitudinal
datasets consist of a large number of both numerical and nominal
variables repeatedly measured across a small number of timepoints.

Over the past few years, several real-world longitudinal data
mining studies have been conducted [17, 15, 8, 2, 7]. Such studies can
be split into two approaches: data transformation (pre-processing)
and algorithm adaptation (specialized algorithms).

Several recent works on longitudinal classification [9, 19, 10] use
a pre-processing step known as flattening, where a longitudinal
dataset is ‘flattened’ into a non-longitudinal one by considering
each repeated time-specific measure of an attribute as a different
attribute. This removes the longitudinal aspect from the data and
allows non-longitudinal classification algorithms to be used.

In this work, we focus on the less explored approach of algorithm
adaptation, and we propose a new type of decision tree algorithm
for longitudinal classification, since many decision tree models
have the advantage of interpretability [13, 5]. Decision trees are in
general transparent and their decision making can be described by
a simple diagram that a user can inspect manually - as long as the
tree is not too large - to understand the exact reasoning behind
every prediction made by the model.

The proposed longitudinal decision tree algorithm preserves the
longitudinal nature of the dataset by constructing a Nested Trees
model, where each node of the decision tree represents an embedded
decision tree that makes decisions based solely on the values of one
longitudinal attribute (i.e., its values across multiple time points).
The final model is composed by an outer decision tree made up
of inner decision trees in each node, hence the name Nested Trees.
This algorithm produces longitudinally-aware prediction models,
analysing each longitudinal attribute as a whole rather than treating
its temporal values independently. It also provides longitudinal
classification models more interpretable than the models produced
by conventional decision tree algorithms.

The remainder of the paper is structured as follows. Section 2
describes the proposed longitudinal classification algorithm. Section
3 describes the dataset and the experimental methodology used
to evaluate the proposed algorithm. Section 4 presents the results
of the computational experiments and their discussion. Section 5
presents the conclusions.
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2 THE PROPOSED LONGITUDINAL
CLASSIFICATION ALGORITHM

The proposed Nested Trees algorithm is a classification algorithm
designed to be used with longitudinal datasets. The algorithm con-
structs a classification model similar in structure to models learned
by conventional decision tree algorithms. The difference is that,
while conventional decision tree models have nodes that can be ex-
pressed as simple attribute-value tests, the Nested Trees algorithm
constructs a model that uses inner (typically smaller) decision trees
as nodes of an outer (often larger) tree, thus constructing a decision
tree made of decision trees. Hence, the construction procedure uses
a two-layer structure. On the outer layer, it constructs a decision
tree where each node uses a single longitudinal attribute to make
the split. On the inner layer — inside each node of the outer tree
- it constructs an embedded decision tree that uses the different
temporal values of a single longitudinal attribute, i.e., the attribute’s
values measured at different time points. Hence, it takes full ad-
vantage of the longitudinal information present on the data. An
illustration of a Nested Trees model is shown in Figure 1.

The inner embedded decision trees construct small decision trees
that use the longitudinal values of a single longitudinal attribute.
These inner trees are constructed by a custom decision tree algo-
rithm implementation which is a hybrid of CART[4] and C4.5[13]
algorithms. It constructs a tree made of binary splits, using a greedy
approach based on the Gini impurity metric to select the attribute
to split the data in the current node; a minimum node size require-
ment and a maximum depth limit are used as both the stopping
criteria and the pre-pruning methods to mitigate overfitting. Miss-
ing values are handled in a way similar to the C4.5 algorithm: when
an instance has a missing value for an attribute used to split the
data in the current node, each branch coming out from that node
gets a fraction of the instance (represented by an instance weight
in [0..1]) equal to the proportion of instances in the current node
having the attribute value associated with that branch.

The outer layer construction process uses the same algorithm
with a different attribute selection mechanism. While traditional
decision tree algorithms construct each node by selecting the single
best attribute to split the current data into subsets, the outer layer
selects a longitudinal attribute as a whole, which comprises a group
of time-specific attributes, and searches for an optimal decision
tree that would split the current data using only the values of the
attributes from that specific group. In other words, the outer layer
treats each longitudinal attribute as a unit, instead of considering
each repeated time-specific measure of an attribute as a different
attribute. Each node of the outer tree contains an embedded tree
produced by the inner tree construction algorithm using only the
temporal values of the selected longitudinal attribute. Each leaf of
anode’s inner decision tree is used to create a branch and the outer
layer construction process is repeated on each generated subset.

The main advantage of the Nested Tree algorithm is longitudinal
awareness. There is currently no work in the literature where a
decision tree used in longitudinal classification had any inherent
longitudinal awareness. All previous approaches in this area used
a combination of the flattening approach and a simple decision
tree algorithm to create longitudinal predictive models. Such ap-
proaches result in the model treating the different values of the
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same longitudinal attribute as independent attributes, ignoring the
longitudinal aspect of the data. In contrast, the proposed algorithm
analyses each longitudinal attribute as a whole and does not sepa-
rate its longitudinal values (different time points) from each other
as is the case in the flattening approach. The longitudinal aspect of
the data is preserved and the model consists of an outer decision
tree, where each node represents a split on a whole longitudinal
attribute instead of just one of its temporal values.

This has several advantages regarding model usability. The first
advantage is the potential improvement in predictive accuracy as
the algorithm is able to benefit from the longitudinal information.

The second advantage is the model interpretability and the ap-
parent attribute importance. The trees produced using a flatten-
ing approach are not restricted in how they use the attributes in
model construction, so they can produce models where different
time-specific attributes representing different values of a single
longitudinal attribute (e.g., values of the longitudinal cholesterol at-
tribute measured across different time points) are scattered around
different parts of the model. This makes it difficult to estimate at-
tribute importance for longitudinal attributes, since a longitudinal
attribute’s impact on the prediction is not always clear. In the pro-
posed approach, all temporal values of a longitudinal attribute are
grouped together (in an inner decision tree) in a node of the outer
tree,

thus making it easier to analyze the importance of a longitudinal
attribute as a whole. Improved model acceptance by users is another
advantage. A longitudinally-aware decision model that preserves
the longitudinal nature of the data during model construction can
also make the model more likely to be accepted by domain experts
than a longitudinally unaware model.

In addition, the algorithm implementation uses instance weights
that represent how much each instance affects the prediction. Hence,
in order to mitigate class imbalance issues (where one class is much
less frequent than another [6]), a class balancing pre-processing
step is added to adjust the instance weights to make the total sum of
instance weights equal for each class. This adjustment is made as a
pre-processing step for the training set before model construction.

In the remainder of this section we discuss the most related work.
The proposed Nested Trees algorithm bears some similarity to the
Tree of Predictors algorithm (ToP) [18]. ToP also constructs a pre-
diction model that has an outer structure resembling a decision tree
with nodes representing embedded predictors. The main difference
is that, while the Nested Trees algorithm always uses inner deci-
sion trees as nodes of the outer tree, the ToP algorithm has a larger
variety of predictors (some of them not interpretable) that can be
used as inner nodes. Also, ToP was not designed for longitudinal
classification, it does not recognize longitudinal attributes.

The RE-EM trees algorithm [16] is a decision tree algorithm for
clustered and longitudinal data. Similarly to Nested Trees, it has an
algorithm-level adaptation for dealing with attributes that can be
grouped together by some common property, e.g. different temporal
measurements of the same longitudinal attribute. The RE-EM trees
algorithm provides some additional functionality that can be used
for constructing regression models using longitudinal datasets: clus-
tering the attributes into groups and using mixed effects. However,
it does not use a longitudinally-aware model construction process
and does not produce a longitudinally-interpretable model.
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wave_4 < 0.61

Figure 1: Illustration of a Nested Trees model. Internal nodes of the outer tree use values of a single longitudinal attribute
to construct an inner decision tree, while leaf nodes—labelled as ‘L’—correspond to class predictions. Each node of an inner
tree makes a split based on the value of the longitudinal attribute at a specific time point (wave); leaf nodes of the inner trees
correspond to the branches of the outer node the inner tree is nested in.

In [11], the XGBoost algorithm was used to learn boosted deci-
sion tree models from the same longitudinal datasets used in this
current paper. That study focused on improving model acceptability
by using monotonicity constraints to produce monotonic classifi-
cation models, instead of improving the longitudinal awareness of
the models. Hence, that study did not produce fully longitudinally-
aware models and only used a set of derived attributes to represent
longitudinal information.

Another work [14] proposed a random forest method for lon-
gitudinal classification, which selects features in tree nodes based
on both their predictive power and their time indices (favouring
more recent features). However, their random forest models are not
directly interpretable.

3 EXPERIMENTAL METHODOLOGY

The dataset used in this study comes from the “Nurse Visit” sec-
tion of the English Longitudinal Study of Ageing (ELSA) [3]. The
predictor attributes represent patient health measurements such as
blood test results and physical exercise tests. Ten class attributes
are derived from the ELSA dataset, each expressed as a binary class
variable representing presence or absence of a certain disease in the
final wave (time point), i.e., wave 8. The 10 classification problems
- one for each class attribute - contain records of the same 7097
individuals participating in the ELSA study.!

Each record contains 2 non-longitudinal attributes (age and sex)
and 40 longitudinal attributes. Since the “Nurse Visit” data is avail-
able only for waves (time points) 2, 4, 6 and 8 of the ELSA study,
each longitudinal attribute is represented by up to 4 separate at-
tributes (one for each of those waves) and a class label. In total,
the dataset contains 130 predictive attributes, counting all multiple
values of each longitudinal attribute across the four waves. This
dataset was used to create 10 different classification problems - all

The codebase for this project and the instructions for accessing the dataset can be
found at: http://github.com/NestedTrees/NestedTrees

problems using the same set of 130 attributes, but each problem
using a different disease as the class variable to be predicted.

A full description of attributes used and their meaning can be
found in a related study that previously used the same data prepa-
ration techniques in the context of automatic feature selection [12].
The same dataset has also been previously used to evaluate other
longitudinal data mining approaches [11].

A well-known 10-fold cross validation was used to evaluate
the performance of the constructed models. Additionally, in each
experiment, the cross-validation was repeated 30 times (varying the
random seed) and the results were averaged over all runs. The cross-
validation was applied to data instances only and not to the time
points of longitudinal attributes — both training and test subsets
used the full set of longitudinal time points.

In addition, the algorithm implementation uses instance weights
that represent how much each instance affects the prediction. Hence,
in order to mitigate class imbalance issues (where one class is much
less frequent than another [6]), a class balancing pre-processing
step is added to adjust the instance weights to make the total sum of
instance weights equal for each class. This adjustment is made as a
pre-processing step for the training set before model construction.

The experiments compared the proposed Nested Tree algorithm
against a conventional Decision Tree algorithm (the same as the
one used for constructing the inner trees of the Nested Trees mod-
els). These algorithms were evaluated in terms of two predictive
accuracy measures: the average F-Measure values over the two
class labels, and the average Area Under the ROC curve (AUROC).

Based on preliminary experiments we use the following hyper-
parameter settings for all of our experiments: Maximum Outer Tree
Depth: 10; Maximum Inner Tree Depth: 5; Minimum Tree Node
Size: 2 (for both inner and outer tree nodes).
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Table 1: Comparison of average predictive accuracy measures of the two algorithms. Higher values are highlighted in boldface.

F-Measure AUROC

Dataset Decision Tree Nested Tree Decision Tree Nested Tree
Angina 0.455 0.515 0.537 0.517
Arthritis 0.560 0.548 0.572 0.548
Cataract 0.620 0.575 0.657 0.577
Dementia 0.420 0.532 0.687 0.536
Diabetes 0.365 0.584 0.584 0.595
HBP 0.555 0.602 0.577 0.604
Heart attack 0.382 0.513 0.565 0.537
Osteoporosis 0.403 0.541 0.573 0.570
Parkinson’s 0.345 0.500 0.587 0.508
Stroke 0.280 0.527 0.576 0.550

# wins 2 8 8 2

4 EXPERIMENT RESULTS AND ANALYSIS [5] Alex A. Freitas. “Comprehensible classification models”. In: ACM SIGKDD

Table 1 reports the average F-Measure and AUROC values for the
two algorithms. The average F-measure was computed by consid-
ering each class in turn as the positive class and macro-averaging
the results, i.e., considering both classes as equally important.
The Nested Tree algorithm achieved higher F-measure values in
8 out of 10 classification problems; but the conventional decision
tree achieved higher AUROC values in 8 out of 10 problems.
These AUROC results are likely the result of the different sizes
of the models generated by the two algorithms. The Nested Trees
algorithm tends to create a large number of splits, resulting in a very
large tree, where each of the leaf nodes uses a very small number of
training instances (usually 2-4 instances). It can therefore only have
avery small number of different class probability values, making the
ROC curve less defined, having only a few points between [0,0] and
[1,1] and thus having a smaller area under the curve than a smaller
model generated by the conventional decision tree algorithm.

5 CONCLUSIONS

This work proposed a new longitudinally-aware Nested Trees al-
gorithm that constructed a decision tree structure made of nodes
that contained inner decision trees. This algorithm did not use the
flattening pre-processing step and constructed models that properly
took into account the longitudinal nature of the dataset.

The proposed algorithm outperformed a conventional longitudinally-

unaware decision tree algorithm in terms of average F-Measure,
but the latter outperformed the former in terms of the AUROC
measure.

REFERENCES

[1]  Anthony Bagnall et al. “The great time series classification bake off: a review
and experimental evaluation of recent algorithmic advances”. In: 31.3 (Nov.
2016), pp. 606-660.

[2] Maria T Ballestar et al. “Impact of robotics on manufacturing: A longitudinal
machine learning perspective”. In: Technological Forecasting and Social Change
162 (2021).

[3] M. Blake et al. English Longitudinal Study of Ageing: Waves 0-8, 1998-2017. 2018.

[4] L.Breiman et al. Classification And Regression Trees. Routledge, 1984.

(13]

[14]

[15]

[16]

[17]

(18]

(19]

Explorations Newsletter 15(1) (2014), pp. 1-10.

Qiong Gu et al. “Data Mining on Imbalanced Data Sets”. In: 2008 International
Conference on Advanced Computer Theory and Engineering. IEEE, 2008, pp. 1020—
1024.

Ann F. Haynos et al. “Machine learning enhances prediction of illness course:
a longitudinal study in eating disorders”. In: Psychological Medicine (2020),
pp. 1-11.

Samantha Joel, Paul W. Eastwick, and et al. Colleen J. Allison. “Machine learning
uncovers the most robust self-report predictors of relationship quality across 43
longitudinal couples studies”. In: Proc. of NAS 117(32) (2020), pp. 19061-19071.
Jue Mo et al. “Classification of Alzheimer Diagnosis from ADNI Plasma Biomarker
Data”. In: Proc. of the International Conf. on Bioinformatics, Computational Biol-
ogy and Biomedical Informatics. ACM, 2013, pp. 569-574.

Uli Niemann et al. “Can We Classify the Participants of a Longitudinal Epidemi-
ological Study from Their Previous Evolution?” In: 2015 IEEE 28th International
Symposium on Computer-Based Medical Systems. 2015, pp. 121-126.

Sergey Ovchinnik, Fernando E. B. Otero, and Alex A. Freitas. “Monotonicity
Detection and Enforcement in Longitudinal Classification”. In: LNCS, Artificial
Intelligence XXXVI. Springer International Publishing, 2019, pp. 63-77.
Tossapol Pomsuwan and Alex A. Freitas. “Feature Selection for the Classi-
fication of Longitudinal Human Ageing Data”. In: 2017 IEEE International
Conference on Data Mining Workshops (ICDMW). 2017, pp. 739-746.

JR. Quinlan. C4.5 : programs for machine learning. San Mateo, Calif. : Morgan
Kaufmann Publishers, 1993.

Caio Ribeiro and Alex Freitas. “A New Random Forest Method for Longitudinal
Data Classification Using a Lexicographic Bi-Objective Approach”. In: 2020
IEEE Symposium Series on Computational Intelligence (SSCI). 2020, pp. 806-813.
Caio Ribeiro and Alex A. Freitas. “A Mini-Survey of Supervised Machine
Learning Approaches for Coping with Ageing-Related Longitudinal Datasets”.
In: 3rd Workshop on Al for Aging, Rehabilitation and Independent Assisted Living
(ARIAL), IJCAI-2019. 2019.

Rebecca J. Sela and Jeffrey S. Simonoff. “RE-EM trees: a data mining approach
for longitudinal and clustered data”. In: By Machine Learning, 86(2), 2012 (July
2011), pp. 169-207.

Colin G. Walsh, Jessica D. Ribeiro, and Joseph C. Franklin. “Predicting suicide
attempts in adolescents with longitudinal clinical data and machine learning”.
In: Journal of Child Psychology and Psychiatry 59(12) (2018), pp. 1261-1270.
Jinsung Yoon, William R. Zame, and Mihaela van der Schaar. “ToPs: Ensemble
Learning With Trees of Predictors”. In: IEEE Transactions on Signal Processing
66.8 (2018), pp. 2141-2152.

Yuejin Zhang et al. “Study on Prediction of Activities of Daily Living of the
Aged People Based on Longitudinal Data”. In: Procedia Computer Science 9
(2016), pp. 470-477.



	Abstract
	1 Introduction
	2 The Proposed Longitudinal Classification Algorithm
	3 Experimental methodology
	4 Experiment results and analysis
	5 Conclusions

