University of

"1l Kent Academic Repository

Helal, Ayah and Otero, Fernando E.B. (2022) Data stream classification
with ant colony optimisation. International Journal of Intelligent Systems
. ISSN 0884-8173.

Downloaded from
https://kar.kent.ac.uk/92827/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1002/int.22809

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/92827/
https://doi.org/10.1002/int.22809
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Received <day> <Month>, <year>; Revised <day> <Month>, <year>; Accepted <day> <Month>, <year>

DOI: xxx/xxxx

RESEARCH ARTICLE

Data Stream Classification with Ant Colony

Optimization

Ayah Helal'? | Fernando E. B. Otero®

I Department of Informatics, King’s
College London, UK

2Department of Computer Science,
University of Exeter, UK

3School of Computing, University of
Kent, UK

Correspondence

Fernando E. B. Otero, School of
Computing, University of Kent,
Canterbury, CT2 7NF, UK
Email: F.E.B.Otero@kent.ac.uk

Abstract

Data stream mining has recently emerged in response to
the rapidly increasing continuous data generation. While the
majority of Ant Colony Optimization (ACO) rule induction
algorithms have proved to be successful in producing both
accurate and comprehensive classification models in non-
streaming (batch) settings, currently ACO-based algorithms
for classification problems are not suited to be applied to
data stream mining. One of the main challenges is the iter-
ative nature of ACO algorithms, where many procedures—
e.g., heuristic calculation, selection of continuous attributes,
pruning—require multiple passes through the data to create a
model. In this paper, we present a new ACO-based algorithm
for data stream classification. The proposed algorithm, called
Stream Ant-Miner, uses a novel hybrid pheromone model
combining both a traditional construction graph and solu-
tion archives models to efficiently handle a large number of
mixed-type (nominal and continuous) attributes directly with-
out the need for additional procedures, reducing the computa-
tional time required to complete an iteration of the algorithm.
Our results show that Stream Ant-Miner produces statistically
significant concise models compared to state-of-the-art rule
induction data stream algorithms, without negative effects on

their predictive accuracy.

Ayah Helal and Fernando E. B. Otero equally contributed to this study.

2 | Ayah Helal and Fernando E. B. Otero

1 | INTRODUCTION

In a data stream context, data arrives in rapid and continuous form as an unbounded sequences of data
items. Data stream mining aims at extracting information from the incoming stream of data. While
traditional data mining techniques are applied in an off-line mode to discover patterns and/or relation-
ships in data representing useful knowledge, usually characterised by slow data generation where data
storage is feasible [[1} 2} 3] 4], data stream mining techniques are applied in real-time mode with rapid
data generation where data storage is not feasible.

The main properties of data streams are volume, velocity and volatility—these properties present
challenges in handling data streams [5]. As data streams volume incrementally increases from zero
to potentially infinity (unbounded), data stream mining approaches need to incorporate data in an
incremental form without storing all data. Velocity impacts the mining process, preventing the use of
any off-line or time consuming procedure due to the fact that data arrives quickly and continuously,
and latency of the response is important. Volatility is the concept drift and change of patterns, target,
and/or features of the data being mined, which require continuous updates of the model. An example
of volatility is the behaviour of customers in an on-line shop, where the prediction of how profitable a
week is will differ with the increase of advertising and brand loyalty over time.

Data stream classification techniques are used to find patterns and create predictive models to under-
stand and classify the incoming stream of data [6]. The research in data stream classification has gained
attraction due to the importance of its applications and the increase of generation of streaming data
[7]. Examples of data stream mining applications include sensor networks [8]], web logs [9]], computer
network [[10]], and social media data [[11]. Krempl et al. [5] highlighted the need to create simpler mod-
els, considering not only accuracy but also the interpretability of the knowledge discovered by data
stream algorithms. This was one of the recommendations based on the study of real-world applica-
tions and the shortcomings of the existing approaches. Notably, current rule induction algorithms in
the field follow an incremental approach (e.g., [12,[13]]), which leads to large and difficult to interpret
models. Ensembles approaches are among the most used used data stream algorithms given their high
predictive performance (e.g., [14} 15, (16} [17,118]]), although this is achieved at the expense of compre-
hensibility as ensembles aggregate the predictions of multiple weak models. Our aim in this paper is
to produce accurate, concise, interpretable models to be used in data stream classification.

Classification problems can be viewed as optimization problems, where the aim is to create the
best model to represent the predictive patterns in the data. As a result, many metaheuristics have
been applied to create classification models, including evolutionary and swarm intelligence algorithms
[19] 20} 21} 22]]. Ant Colony Optimization (ACO) [23] is amongst the most successful ones. ACO
algorithms are inspired by the behaviour of real ants. Ant colonies, and more generally social insect
societies, are distributed systems that in spite of the simplicity of their individuals’ behaviour present
a highly structured social organization. As a result of this organisation, ant colonies can accomplish
complex tasks that in some cases far exceed the individual capabilities of a single ant. In ACO, the
colony consists of artificial ants, where each ant incrementally builds a solution using the pheromone
deposited by other ants and heuristic values. Artificial pheromones are deposited proportionally to the
quality of the solution created, guiding the colony towards good regions of the search space.

The first ACO rule induction algorithm for classification problems, called Ant-Miner, was proposed
in [24]]. Ant-Miner was used to successfully extract /F-THEN classification rules from data. Since Ant-
Miner introduction, the majority of ACO-based classification algorithms are limited to cope only with
categorical attributes, while continuous attributes are discretised in a pre-processing step. cAnt-Miner

Ayah Helal and Fernando E. B. Otero | 3

[25 26] was the first Ant-Miner extension to cope with continuous attributes directly by employing
dynamic discretisation procedure every time a continuous attribute is selected. The discretisation step,
either as a pre-processing or dynamic step, is a time-consuming procedure requiring multiple passes
through the data as it evaluates candidates threshold values. More recently, Ant-Minery, [27, 28] used
an archive-based pheromone model to handle continuous attributes directly without a discretisation
procedure—this lead to significant gains in terms of computational time, allowing the algorithms to
handle larger datasets but showed limitations when there is an increased number of attributes. ACO
classification algorithms also employ a pruning procedure, which removes irrelevant attribute-value
condition added due to the stochastic nature of the construction process. A pruning procedure requires
n — 1 passes through the data each time it is used, where n is the number of attributes to be considered
for removal. Given the iterative nature of ACO algorithms—i.e., multiple ants create solutions for a
number of iterations—these characteristics present a challenge to apply ACO classification algorithms
to data streams, where the learning algorithm is required to process data as fast as they arrive and, at
the same time, storage of prior data is infeasible and/or not relevant as old data may not represent the
current concept.

In this paper, we propose a new approach to extract classification rules from data streams using an
ACO-based rule induction algorithm, where the model is replaced instead of incremented to improve
its interpretability. ACO algorithms are good candidates for classification problems given that they
already have shown good performance in creating classification models, in terms of both predictive
accuracy and size of the model-—measured as number of discovered rules. While they can handle
continuous attributes efficiently without requiring full knowledge of the data distribution [27, [28]], a
requirement when dealing with data stream, many procedures (e.g., heuristic calculation, pruning)
require multiple passes through the data to create a model. The proposed algorithm, called Stream Ant-
Miner (sAnt-Miner), uses a novel hybrid pheromone model combining both a traditional construction
graph and solution archives models to efficiently handle a large number of mixed-type (nominal and
continuous) attributes directly without the need for additional procedures, thus making it suitable to
handle data streams. We compare the proposed algorithm against state-of-the-art rule induction algo-
rithms for data stream classification using a total of thirteen benchmark data sets. Our results show
that the proposed algorithm significantly improve the model size, while competitive in both runtime
and predictive accuracy.

The remainder of this paper is organised as follows. Section [2] presents a review of well-known
data stream mining algorithms, focusing on rule induction algorithms and Ant-Miner variations. The
proposed Stream Ant-Miner (sAnt-Miner) algorithm is detailed in Section[3] Computation results are
presented in Section[d] Finally, Section [5| presents the conclusions and future research directions.

2 | RELATED WORK

2.1 | Data Stream Classification

Given a stream D of data instances observed over time T', where each data instance is described by a
set of predictor attributes” values {A;, ..., A,}, a data stream classification problem can be formally
specified as the problem of learning a model M over D such that M associates a label [€ L to
each instance in D, i.e., M : D — L. At each time step t € T, the algorithm learns a model M, to
classify the data points in D, based on the previous observed instances D,_,. Several algorithms for

4 | Ayah Helal and Fernando E. B. Otero

data stream classification have been proposed in the literature—Table [T | presents a summary of data
stream classification works.

Hoeffding bound framework [29] is one of the most influential data stream mining techniques. The
Hoeffding bound is used in data stream algorithms to obtain probabilistic bounds on the difference
between the mean of a distribution and the value of the mean calculated using a subset of the data—
i.e., it allows to estimate the mean of a distribution with a probability using a subset of the data (finite
data). This characteristic fits well within data stream scenarios, where the distribution of the data is
unknown (infinite data). Hoeffding bound is generally used to determine number of instances seen by
an algorithm to make a decision regarding the model being created. Two of the notable successful
algorithms based on this framework are Very Fast Decision Trees (VFDT) and Very Fast Decision
Rules (VFDR). VFDT [30] is a data stream decision tree algorithm that does not store any examples
in main memory, requiring only space proportional to the size of the tree and associated statistics to
calculate the information gain of attributes. For each attribute, VFDT stores the frequency of all seen
values. The Hoeffding bound is used to decide on the number of instances needed to be seen at a leaf
node before making a decision to create a test and divide the node into two leaves. Computational
experiments showed that VFDT using the Hoeffding bound on a subset of the data chose the same
node to divide as when the entire data set used. At first, the VFDT algorithm was designed for static
data stream without concept drift and provided no forgetting mechanism.

Hulten [31] proposed CVFDT algorithm as an extension of VFDT to cope with concept drift, which
uses a fixed window size to determine which nodes in the tree are ageing. Fragments of the tree that
become old (after seeing a user defined number of instances) and inaccurate are replaced with alterna-
tive subtrees. The process incrementally improves and updates the decision tree, building subtrees to
update the model using the data instances of the current window. The resulting accuracy of the CVFDT
is similar to what would be obtained by reapplying a VFDT learner to the entire window every time a
new instance arrive. Computational experiments showed that CVFDT is better in controlling the size
of the tree throughout concept drifts, while VFDT considers many more examples and it is forced to
grow larger trees to make up for early decisions becoming incorrect.

Very Fast Decision Rules (VFDR) was proposed by Gama and Kosina [12f]. It is a single pas
algorithm, similar to VFDT and CVFDT, that learns ordered or unordered classification rules. Sim-
ilar to VFDT’s approach, statistics are stored for all possible values for each attribute. A rule is then
expanded with the attribute-value condition (term) that minimizes the entropy of the class labels of
the instances covered by the rule. Hoeffding bound is used to determine the number of instances seen
before a rule can be expanded or new rule can be induced. Experiments showed that the number of
rules produced by VFDR is much smaller than the number of leaves in a tree produced by VFDT.

Stahl et al. [[13] proposed the eRules algorithm for rule induction in data streams. eRules uses a fixed
sliding window and learns rules using the Prism algorithm [32] on a batch of data (window). Prism
is a greedy rule induction algorithm that creates a set of rules, where each attribute-value pair in the
antecedent of a rule is chosen to maximise the probability of the target class. New instances are added
to a buffer if they are not covered by the current rule set and a majority classifier is used to make a pre-
diction. When the number of instances in the buffer reaches a user-defined threshold, eRules triggers
the incremental creation of new rules. To adapt to concept drift, the rule set is validated using the cur-
rent buffer; if a rule’s accuracy is deteriorated as results of mistakenly classifying instances over time,

I A single pass algorithm uses each data instance only once.

Ayah Helal and Fernando E. B. Otero | 5

it is removed from the rule set. eRules use a discretisation procedure, testing multiple intervals to create
continuous attribute-value conditions—it is important to note that this process is time consuming.

Le et al. [33] proposed an extension to eRules in order to handle continuous attributes in a more
computational efficient way. The proposed G-eRules extension uses a Gaussian distribution on con-
tinuous attribute values to efficiently sample values to create continuous attribute-value conditions.
The sampling procedure replaces the time-consuming procedure used in eRules. Le et al. [34] added
a Hoeffding bound procedure to determine the credibility of a rule term. A rule term is added to the
current rule only if the difference of the conditional probabilities between the new rule condition and
the second best possible rule condition is greater than the Hoeffding bound.

Xu and Wang [35] proposed the Dynamic Extreme Learning Machine (DELM) for data stream
classification. Extreme learning machine (ELM) is a single hidden layer feedback neural network.
Due to its fast training and good generalization, ELM has been applied to many fields and recently
to data streams. DELM uses two hidden layers to dynamically adjust the ELM layer when concept
drift is detected. From the results comparing DELM with different ELM implementations for data
streams, DELM achieves a better balance between accuracy and time overhead than online sequence
extreme learning machine (OS-ELM) [36]. One of the limitations of models based on neural networks
is that they represented black box models that lack comprehensibility. In this paper we focused on
interpretable models, represented as a list of /F-THEN classification rules.

Several evolutionary approaches have been presented to handle data stream classification.
Vivekanandan [19]] proposed an online genetic algorithm (OGA), an incremental rule learning
algorithm that creates a rule set for data stream classification with concept drift. Each individual is
represented as a classification rule, and the algorithm builds the rule set gradually by evaluating each
individual on a window of instances, adding the best individual of the population to the rule set. Rules
that falls a under user-defined threshold of quality are removed from the rule set. OGA has a limitation
of coping with only categorical attributes; continuous attributes are not supported.

Vahdat et al. [20] proposed a GP for streaming data classification tasks with label budgets, where
the GP learns a model using a limited number of labelled instances. The approach uses a sampling
procedure to select instances from data stream to receive a label and add them to an archive. Then, a
GP procedure is triggered to create a model on the archive instances. The best individual of the GP
is selected as the anytime classifier. Khanchi et al. [37] proposed an improvement for problems with
class imbalance under label budget. The archive and sampling polices are optimised to preform under
class imbalanced context, where they incrementally introduce bias in the sampling of the stream and
replacement of instances in the archive to balance the classes in the archive and improve the model
creation.

Sancho-Asensio et al. [38] proposed a supervised neural constructivist system (SNCS) for mining
data streams with concept drift. The SNCS classifier uses a population of multilayer perceptrons (MLP)
with feed forward topology (i.e., the signal propagates from inputs toward the output layer). SNCS
operates in two modes, the learning mode and the prediction mode. In the learning mode, SNCS dis-
covers and evolves new MLPs that accurately predict a desired label. In the prediction mode, SNCS
uses its current knowledge to determine the best label for a new input instances.

Adaptive Random Forests (ARF) [18] is one of the most successful ensemble approaches applied to
data stream mining. ARF is an adaptation of the random forest algorithm [39]], where each tree is build
based on the VFDT algorithm. It employs an adaptive strategy to cope with concept drift: new trees
are created once the algorithm detects the possibility of a drift; once the drift is confirmed, these trees
replace existing trees on the ensemble. More recently, the popular XGBoost ensemble algorithm [40]

6 Ayah Helal and Fernando E. B. Otero

TABLE 1 Examples of data stream mining algorithms.

Algorithm Model Type Main Characteristic

VEDT[30] Decision Trees Uses Hoeffding bound to decide on the number of instances
needed to be seen to split nodes

CVEDTI[31] Decision Trees Extends on VFDT to use a fixed window size to determine the
age of nodes

VEDR[12]] Decision Rules Similar to VEDT, uses Hoeffding bound to determine the num-
ber of instances seen before a rule is expanded

eRules [13] Decision Rules Uses a sliding window to learn rules using the Prism algorithm

G-eRules[33]] Decision Rules Extends eRules by using a gaussian distribution to efficiently
sample continuous attributes’ values

DELM[35] Neural Network Uses two hidden layers to dynamically adjust the learning layer
when concept drift is detected

Online GA [19] Decision Rules Uses online genetic algorithm that creates rules of each class in
parallel

GP [20] Decision Rules Uses genetic programming with a sampling procedure for data
stream classification under limited label budgets

SNCS[38] Multi-layer Perceptron Uses a population of multilayer perceptrons (MLP) with feed
forward topology

ARF[18] Random Forest An adaptation of the random forest algorithm, where each tree
is build based on the VFDT algorithm

AXGBJ[40] Decision Trees Uses an ensemble of weak learners (trees), where older trees are

replaced by new trees created on mini-batches of the data

was adapted to classify evolving data streams by Montiel et al. [41]. In Adaptive XGBoost (AXGB),
the ensemble is created incrementally by building weak learners (trees) on mini-batches of the data;
these learners then replace older learners on the ensemble.

2.2 | Classification with ACO

Ant-Miner was the first ACO-based classification algorithm proposed in the literature [24]. Ant-
Miner uses an ACO-based procedure to extract I[F-THEN classification rules from data. Each rule is a
n-dimensional vector of terms ¢ representing tests on specific attribute values that are joined by con-
juctions (ANDs), such that IF t; AND ... t, THEN predicted value. Each term ¢, consists of a tuple
(attribute, operator, value) and they are arranged in a graph structure—each term represents a node
in the graph. Ants traverse the graph, selecting terms to create rules. Pheromones are deposited on the
edges of the graph indicating sequences of terms that create good rules. A list of rules is created by
iteratively creating one rule at a time using the ACO procedure.

Ant-Miner uses a graph-based pheromone model similar to the original Ant-System [42] and the vast
majority of Ant-Miner extensions preserved the use of a graph-based pheromone model, focusing on
other aspects of the algorithm [43]]. Ant-Miner?2 [44] and Ant-Miner3 [45] presented a simple heuristic
function using density-based estimation; Ant-Miner+ [46] extended Ant-Miner by using a directed
acyclic graph to reduce the graph complexity and allow the pre-selection of the predicted class value;
cAnt-Miner [26] added a dynamic discretisation procedure to handle continuous attribute directly,
addressing Ant-Miner limitation of only coping with categorical attributes. A new strategy to create a
list of rules, where an ant creates a complete list of rules at each iteration rather than just one rule at a

Ayah Helal and Fernando E. B. Otero | 7

time, was used in cAnt-Minerpg [47]]. The idea of pheromone attraction and exclusion was used in Ant-
Minerp,g [48], which extended c Ant-Minerp pheromone calculation to include weights for attraction
and exclusion—ants are attracted by their own pheromone while excluding pheromone from other
ants—to improve both exploration and exploitation of the algorithm. Ant-Miner,,,. [49] proposed the
use of multiple list of rules to create an ensemble, where a weighted voting procedure is used to provide
the final classification. AM,, [S0] was proposed as an improvement over Ant-Miner, incorporating
a rule evaluation function that takes into account their coverage, length, the number of correctly and
incorrectly predicted instances; selection of terms is performed using a rank-based strategy; and it
employs a criteria to reject rules that do not meet a minimum threshold of quality and coverage.

Recently, Ant-Minery;, [27] proposed the use of a pheromone model inspired by ACO,,—an ACO
algorithm designed for mixed-variable optimization problems [S1]. ACO,,y handles ordinal, categor-
ical and continuous variables using a solution archive as the pheromone model instead of a graph. One
of the advantages of adopting a solution archive is the ability to directly cope with different types of
attributes, e.g., eliminates the need of a discretisation procedure to handle continuous attribute. Ant-
Minery;, starts by initializing the solution archive with R random generated rules (solutions). Each
rule .S; is associated with weight w; related its quality Q(S;), where w), is calculated using a Gaussian
function. At each iteration, an ant creates a single rule using an ACO,,y procedure. Ant-Minery,’s
solution archive is used to sample conditions for the creation of the rules, instead of using ants to tra-
verse a construction graph. During rule creation, the algorithm samples the archive to select attributes
and corresponding operators and values to create terms to be added to the antecedent of rules. The
sampling procedure is based on the type of attribute—either categorical or continuous—and it is influ-
enced by the existing rules on the archive. Once m new rules have been created, where m is the number
of ants, they are added into the solution archive. The R and m rules are sorted based on their quality
and the m worst ones are removed from the archive. The procedure to create new rules is repeated until
a maximum number of iterations is reached. At the end, the best rule (top of the archive) is added to
the list of rules. Ant-Miner,;, showed significant improvements in computational time compared to
cAnt-Miner, one order of magnitude faster in large size data sets, as a result of the elimination of the
time-consuming dynamic discretisation procedure.

Previous work identified a limitation of Ant-Minery;, when the number of attributes increased
over fifty, resulting in an increase of the runtime compared to cAnt-Miner. Also, cAnt-Miner showed
improvement in accuracy in data sets where the number of attributes was over fifty, which proved
the advantage of the graph pheromone model in selecting the best attributes to use faster than Ant-
Minery;, . Ant-Minery, g proposed in [28]], combined the graph pheromone model and the archive
pheromone model. The proposed approach used a fully configurable framework to automatically
design an algorithm. The approach implemented both pheromone model independently and allowed
the configurable framework to divide the rule creation between both models. Results showed that such
automatically configured design outperformed cAnt-Miner to a significant level, indicating that the
combination of both pheromone models leads to an improvement in the rule creation procedure. Cur-
rently, both pheromone models operate independently, i.e., changes in one model are not automatically
reflected on the other. Due lack of integration between the models implementing a learning procedure
to create a complete list—such as the one used in cAnt-Minerpg—at each iteration would be difficult.

Related works on ACO-based data stream algorithms have mainly focused on clustering [52} 153} 154}
53], an unsupervise(ﬂ learning task where the goal is to group data instances based on their features

2Label information for each data instance is not available.

8 | Ayah Helal and Fernando E. B. Otero

into homogeneous clusters. The only exception, to the best of our knowledge, is the Stream Ant Colony
Decision Forrest (strACDF) algorithm proposed in [56] for solving the data stream e-mail foldering
problem. Stream ACDF handles data streams by learning an ensemble of classifiers, one classifier
for each package of data—a package contains a small number of messages. The algorithm creates »
classifiers to form the ensemble, where each classifier by itself is a random forest (ensemble) model
created by an ACO-based procedure, and additional classifiers can be created by replacing previous
ones.

3 | STREAM ANT-MINER: DATA STREAM CLASSIFICATION WITH
ACO

In this paper, we propose an ACO-based algorithm for rule induction in data stream classification. The
algorithm uses a novel hybrid pheromone model to handle continuous attributes directly without the
need for a discretisation step and a simplified construction graph to optimise the selection of attributes.
The rationale is to use a construction graph to select attributes and determine their order, which is
naturally a combinatorial problem, and a solution archive to select values to create attribute tests, which
is a mixed-variable problem. This addresses two current challenges in existing ACO classification
algorithms: (1) in graph-based pheromone representation, discretisation of continuous values is time
consuming; and (2) in archive-based pheromone representation, large number of attributes affect both
the quality and runtime of the algorithm. It is necessary to mitigate these challenges in a data stream
context, where both volume and velocity are important aspects of the algorithm.

The proposed algorithm, called Stream Ant-Miner (sAnt-Miner), is an anytime prediction data
stream algorithm. sAnt-Miner uses an ACO-based learning procedure where each ant creates a com-
plete rule list in a single iteration. The continuous learning procedure replaces the classification model
(rule list) rather than incrementing it, as illustrated in Figure[I | The high-level view of the algorithm
comprises two procedures. The first procedure is responsible for classifying the incoming data stream
(prediction procedure) using a classification model; the second procedure is responsible for updating
the classification model by learning from an updated subset of the labelled data (learning procedure).
Labelled data, once available, is stored in a buffer. When the buffer is full or a high percentage of mis-
classification occurs, the learning procedure is triggered to update the model, allowing the algorithm
to refine the model and/or adapt to a concept drift.

Considering how the algorithm would operate in real-world scenarios, the unlabelled instances
are first classified by the model, then either in an automated or manual fashion, these instances are
labelled and fed back to the algorithm to train on them. An example of this is a fraud control sys-
tem for ecommerce transactions, where a transaction would be first classified by the algorithm, then
receive a label (e.g., fraudulent or not) after a period of time and fed back to the model to learn from
it. The performance of the algorithm can be monitored by comparing the predicted and real label of
transaction.

3.1 | Prediction Procedure

At the very first stage, the classification model used by sAnt-Miner is a majority classifier based on the
labelled instances and it remains so until the learning procedure is triggered for the first time. There-
fore, the initial prediction is a random choice between any of the available class values, then as each

Ayah Helal and Fernando E. B. Otero 9

stream sAnt-Miner
l un/z’be//ed d .
Jata
rule —> prediction
model | <=

-

updates

[
Iabelled R

s > | leaming
1 § . (ACO)
buffer

e e 000

FIGURE 1 Overview of the proposed sAnt-Miner: unlabelled data from the stream is classified by
the current rule model; the continuous learning procedure is triggered by the availability of labelled
data or rate of misclassification to update the current model, allowing the algorithm to refine the model
and/or adapt to a concept drift.

labelled instance arrives, a majority classification model is built—the model predicts the most frequent
class value to every data instance. When the learning procedure is completed and a new classification
model created, the current model is replaced if the new model has a higher predictive quality. Any sub-
sequent prediction is then performed by the new model. Note that in all cases, predictions are very fast
even when a classification model different than a majority one is used. Additionally, the model is not
incrementally generated as it occurs in algorithms such as VFDT [29]], VFDR [[12] and G-eRules [33]].
Instead, the model is replaced between executions of the learning procedure. Therefore, the model does
not suffer from the potential problem of growing indefinitely [[12}|13]].

3.2 | Learning Procedure

The learning procedure of sAnt-Miner uses the buffer of labelled instances and creates a new classi-
fier using an ACO-based procedure. This procedure uses a novel hybrid graph and archive pheromone
model, combining the strengths of both: the graph is used to select the attributes to be used while
individual archives are used to create rule conditions. As shown in previous work [27, [28]], there are
advantages in using a hybrid integrated pheromone model, as the archive provides the ability of han-
dling continuous attributes without the need to know the complete attribute values’ distribution, while
the graph helps to select the best attributes to create the antecedent of rules and their sequence. The
learning procedure is triggered when the buffer is full or a high percentage of misclassifications occurs,
and it is designed to be fast, running only a limited number of iterations each time it is triggered. If
new instances requiring classification arrive before it is completed, the current model performs the
classification.

A high-level pseudocode of the learning algorithm is shown in Algorithm [T] At the start of the
learning procedure, the current best model (M,) is re-evaluated using the buffer instances (line 2).
This is done to assess if a new model (rule list) created during the learning procedure performs better
than the current model. Then, for a limited number of iterations, each ant in the colony creates a
complete rule list (lines 5-10). The creation of a rule list consists of sampling the current pheromone
model to create rules, pruning rules to remove irrelevant attribute conditions, and evaluating the rule
list using the buffer instances. Once all ants create a rule list, the iteration-best rule list—i.e., the rule

10 | Ayah Helal and Fernando E. B. Otero

Algorithm 1: High-level pseudocode of the learning procedure of sAnt-Miner.

input : current best model M, buffer instances
output: rule list model

1 Mbest « Mc

2 Evaluate(M,., Buffer)

3 while t < maximum iterations do
4 M’b « Mbest

1

5 while m < colony size do

6 L,, < CreateRuleList(Buffer)

7 Evaluate(L,,, Buffer)

8 if Quality(L,,) < Quality(Mj) then
9 My, < L),

10 end
11 end

12 PheromoneUpdate(Mj;,)
13 if Quality(M,) < Quality(M,,) then

14 ‘ Myep < My,
15 end

16 t—t+1

17 end

18 ClearBuffer()
19 return M.

list with the highest quality among the creates lists—is used to deposit pheromone. If the quality of
the iteration-best rule list My, is higher than the current best model My, it replaces My, as the
current best model. Note that when the first iteration does not create a model better than the current
best model, M, is used to update pheromone values until a better performing rule is created. This
takes full advantage of how ACO algorithms represent the state of the search: by updating pheromones
using the current model, the search is biased to continue around the region of the current model. In
other words, the algorithm uses the pheromone as a memory and, as long as there is not a significant
decrease in accuracy, the search starts from the same position—this allows the algorithm to refine a
model over multiple executions of the learning procedure. The procedure to create a new rule lists
(lines 3-16) is repeated until the maximum number of iterations has been reached. Once the maximum
number of iterations is reached, all instances in the buffer are removed and the best model is returned.
In the case that all rule lists created during the procedure are not better than the current best model,
the procedure returns the same model.

Considering the computational time complexity, we divided the analysis into two parts. First, we
considered the time complexity of creating a rule list, as this is performed by every ant in the colony.
The creation of an individual rule involves the selection of k out of A available attributes. After a rule
is created, it undergoes a pruning procedure where the rule is evaluated over D instances to consider
the removal of any of its k attributes. Since in the worst case the algorithm could create D rules in a
list—one rule per data instance—and select up to A attributes (k = A) per rule, the time complexity to
create a rule list is O(A - D?). Second, the creation of a rule list is repeated C (colony size) times over

Ayah Helal and Fernando E. B. Otero 11

level 1
v

EEE
ol =]
©=|=
e o P

S[S[E]
Lo =[] @
R b P
I

Q
v. 10.7
v 10.610.5
v 102

level

=

Iy
2

®
N

S[S[E]
Lo = [cn| @
B bt Pt
e o

level

0.8

o[=[=[<]
S5
o| =2
S
B

02

olelelo] =

FIGURE 2 Representation of the hybrid construction graph: (1) multiple values are stored on the
edges between nodes, representing the likelihood of visiting a node in relation to the level of the rule
being created; (2) solution archives are used at each node, one for each level. Note that for categorical
attribute nodes (Aff]), a single solution archive is used to select a value; for continuous attribute nodes
(A?), one solution archive is used to select a value and one solution archive is used to select the
relational operator; nodes S and E indicate the start and end of the antecedent of a rule, respectively.

I (maximum number of iterations), therefore the overall time complexity of the learning procedure is
O(I - C - A - D?). Note that this is the worst case estimation, since the number of data instances D
tends to decrease during the creation of rules and k tends to be much smaller than A.

In comparison with the offline (non-streaming) c Ant-Minerpg, which also creates complete rule lists
in its learning procedure, sAnt-Miner improves the rule creation time complexity from O(A3 - D3)
to O(A - D?) as the hybrid pheromone model allows the algorithm to efficiently handle continuous
attributes and pruning of rules.

3.2.1 | Pheromone Model

The hybrid construction graph consists of a fully connected graph, where each attribute in the data
set is represented by a node. Each node holds an archive to sample values for the attribute. An addi-
tional archive is used by continuous attribute nodes to sample a relational operator (e.g., “>", “<").
Two additional nodes are added to represent the start (S) and end (E) of the antecedent of a rule. The
pheromone model consists of several levels, which correspond to the indexes of the rules being cre-
ated (e.g., 1 for the first rule, 2 for the second rule and so forth). This allows the algorithm to store
pheromone and archive values for different rules, following a Pittsburgh-style strategy to create rule
lists [47]. Figure[2]illustrates the hybrid construction graph and the underlying pheromone model.

Pheromone is deposited on the edges of the construction graph, representing the selected attributes
and their order to create rules; the operator and values are sampled from individual archives. Each
archive is sorted by the quality of the rule where the entry (value or operator) appears. The weight of
an entry j is calculated by:

12 Ayah Helal and Fernando E. B. Otero

1 —(rank(j)—1)?

w; 1)

= T —=°
qK\/ﬂ

where g is a user-defined value used to control the extent of the top-ranked entry influence on the
sampling of new values, K is the size of the archive and rank(j) is the position of the j-th entry in
the archive. The weight of an entry is used during the sampling of new values as an indicator of the
level of attractiveness of this value. The greater the weight of an entry, the higher the probability of
sampling a new value around it.

3.2.2 | Rule List Creation

When the rule list creation process starts, m ants create rule lists by traversing the construction graph.
An ant uses the pheromone model to create multiple rules covering different training instances by
specifying a tour identification (level), which corresponds to the index of the rule being created—1 for
the first rule, 2 for the second and so forth. This way, each ant will use pheromone entries corresponding
to the level of the rule being created during the rule construction process. The pheromone entries are
stored in a pheromone matrix, where column and row indexes indicate the edge between two vertices.
The probability of an ant to follow the edge leading to a vertex v; when creating the rule 7 and located
at vertex vu; is given by:

t
0;,0;

'1Ui

27,

k=1

where T:}“U/ is the amount of pheromone associated with the entry (¢, v;, v j), and AU’ is the set of neigh-
bouring vertices of vertex v;. For each node selected by an ant, a term (operator, value) is sampled from
the node’s archive(s) based on the type of the attribute. The rule creation stops when the ant chooses to
visit the end node of the graph. At this point, the rule is pruned to remove irrelevant attributes added
due to the stochastic nature of the creation procedure, and the value predicted by the rule (consequent)
is set to be the majority class value observed among the covered instances—i.e., the instances that sat-
isfy the attribute-conditions represented by the terms in the antecedent of the rule. Finally, the covered
instances are removed and another rule is created until the number of instances remaining is equal to
or lower than a user-defined threshold of uncovered instances.

The novel hybrid pheromone model in sAnt-Miner takes full advantage of the combined construction
graph and solution archive approach, using the graph-based approach to select attributes and their
order, and solution archives to determine operator and values for terms. Additionally, the rule list
creation process automatically learns the minimum number of attributes required by each rule, since
the construction graph includes an end (E) node and pheromone is increased between the last attribute
node in a rule and the end node. Therefore, every time the pruning procedure removes attributes from
a rule, the pheromone update reflects this change. Over time, the creation process will not include
irrelevant attributes, relying less on the pruning procedure and thus improving the computational time
of the algorithm.

T
PUJ_

2

3.2.3 | Archive Sampling

At start of the learning procedure, random values are used since solution archives are empty. Sampling
only starts when an archive is full—the size of the archive is determined by a user-defined parameter.

Ayah Helal and Fernando E. B. Otero | 13

For categorical attributes, the relational operator is always set to EQUAL (=) and a value is sampled
from the archive based on ACO,,y categorical value sampling. Consider a categorical attribute i that
has N possible values, each value v, (where v, € {v,,v,,.., Uy }) has the probability p, given by:

a;

P = 3)

@;

M=

I
-

J

where q, is the weight associated to the /-th value of the categorical attribute i. The weight of each
value is based on the current values in the archive for attribute i, calculated as:

ﬂ+§, ifn > 0andu, >0,

U

a =44, ify =0and u, > 0, 4)

U

3, ifn>0anduy, =0,

where wy, is the weight of the highest entry calculated according to Equation (I that uses the value
v;, u; is the number of entries that use the value v,, 1 is the number of values of attribute i that are
not present in the archive, and ¢ is a variable that is used to control the extend of the top-ranked entry
influence on the sampling of new values. The categorical sampling procedure allows an ant to consider
two components when sampling a new value: the first component biases the sampling towards values
that are used in high-quality entries but do not occur very frequently; the second component biases the
sampling towards unexplored values.

For continuous attributes, each node has two archives: one for the relational operator and another
for the value. The relational operator is sampled using a nominal sampling procedure, where the pos-
sible values are {<, >}. The value is sampled using a continuous sampling procedure. First, each ant
probabilistically chooses an entry j from the archive based on:

py=—)

where p; is the probability of selecting the j-th entry from the archive to sample the new continuous
value around it, K is the size of the archive, and w; is the weight associated with the j-th entry in the
archive calculated according to Equation (T). The new value is sampled using a Gaussian probability
density function (PDF), where the mean is set as the value of the selected entry j, as follows:

1 G—p?

e 22 6)
2

g(x, u,0) =

IS” S“I

K
= Z ™
=1,j#l

where ij‘ is the value of the continuous attribute a in the entry j of the archive, and £ is a user-
defined value representing the convergence speed of the algorithm. Hence, o-}? is the standard deviation
calculated as the average distance between the values of the attribute a in the entry j and all other
entries in the archive.

14 | Ayah Helal and Fernando E. B. Otero

3.2.4 | Pruning

After the creation of arule, the rule is pruned using a single pass procedure through the buffer to remove
irrelevant rule terms. The pruning procedure calculates the coverage of each rule term based on the
instances in the buffer. Then, each term is added to a new rule one at a time in the same order until the
quality of the rule decreases or the addition of a term makes the rule cover less than a user-specified
minimum number of instances. The remaining unused terms are then discarded.

For the purpose of pruning, the quality of a single rule is measured as sensitivity X specificity, the
same measure employed in Ant-Miner, given by:

0= TP TN ®)
TP+ FN F P+TN

where T P is the number of covered instances that are correctly classified; FN is the number of
instances that are not covered that have the same class as the rule; F P is the number of covered
instances that are incorrectly classified; TN is the number of instances that are not covered and do not
have the same class as the rule.

3.2.5 | Pheromone update

The pheromone update is divided into two steps: the first step updates the edges of the construction
graph, while the second updates each individual archive.

The graph update starts with pheromone evaporation, simulated by decreasing the amount of
pheromone of each entry by a user-defined factor p. Then, the pheromone value of the entries used in
the iteration-best rule list (M;;,) is increased based on the quality of the rule list, which corresponds to
its predictive accuracy measured on the buffer (training) instances. The pheromone update is given by:

X, if(t,v;,0;) & My,
Tto0

)]
PXTy O(M;,), 1f(t,v;,0;) € My,

where p is the user-defined evaporation factor, Trow, is the amount of pheromone associated with
the entry (¢, v;,0;), t is the tour identification (i.e., the 7 rule in the rule list), Q(Mj,) is the quality
of the iteration-best rule list, v; and v; are the start and end vertices of the edge, respectively. The
values given by Equation (9) are 11m1ted to the interval [7,,,, T,,.,], following the same approach as
the MAX-MIN Ant System (MMAS) [57]]. This procedure is the same as the update procedure in
the Pittsburgh-based cAnt-Minerpg [47].

After updating the construction graph edges, each individual archive of a node (attribute) used in a
rule is updated. The update consists of adding a pair (value, quality) to the archive at the level #, where
the quality corresponds to the iteration-best rule list quality. Note that for continuous attributes, a pair
(operator, quality) is also added to the operator archive. After all pairs are added, each archive is then
sorted based on the pairs’ quality and the weight associated with each pair is recalculated based on
their (updated) ranks. Finally, the low quality pairs are removed to resize the archive to K pairs.

4 | COMPUTATION RESULTS

The proposed sAnt-Miner was implementecﬂ using the Massive Online Analysis (MOA) [58]] frame-
work for data stream mining. MOA includes a collection of machine learning algorithms—such

3https://github.com/AyahHelal/Stream AntMiner

Ayah Helal and Fernando E. B. Otero 15

TABLE 2 Summary of the data sets used in the experiments.

Attributes
Data set # Instances # Categorical # Continuous # Classes
Real-world
Airlines 539383 4 3 2
Connect4 67557 42 3
Diabetes 101766 34 11 3
Electricity 45312 1 7 2
Forest Type 581012 44 10 7
GMSC 150000 0 10 2
Spam 9831 504 0 2
Poker Hand 829201 5 5 10
Artificial
Hyperplane 1000000 0 10 2
LED 1000000 0 24 10
Random RBF 1000000 0 10 2
RT 1000000 5 5 3
SEA 1000000 0 3 2

as classification, regression, clustering, outlier detection, concept drift detection and recommender
systems—as well as stream generators and evaluation measures. We used a total of 13 standard bench-
mark data sets in the evaluation: 6 real-world data sets (Airlines, Connect4, Electricity, Diabetes,
ForestType, and PokerHand) from the UCI Machine Learning repository [59]; the “Give Me Some
Credit” (GMSC) data set from Kaggle repositoryﬂ; the spam corpus data created as the result of a text
mining process on an online news dissemination system [60]; and 5 artificial data sets generated using
MOA random data generator. The details of the data sets used on the experiments are shown in Table
21

In order to determine optimal values for sAnt-Miner’s user-defined parameters, we used the I/F-Race
procedure [61]]. To maintain the comparison fair, 3 different synthetic data sets were used for tuning—
Table [3_] presents the details of the data sets used for tuning. The input parameters for I/F-Race and
the final selected values are presented in Table[d |

We compared the proposed sAnt-Miner algorithm against VFDR and G-eRules, both well-known
rule induction data stream classification algorithms, and the state-of-the-art Adaptive Random Forests
(ARF) ensemble algorithm. VFDR and ARF are available on MOA framework; G-eRules was down-
loaded from the GitHub repositoryE] and upgraded to work on the 20.07 version of MOA. We used the
prequential tenfold bootstrap validation with ADaptive WINdowing (ADWIN) [62] evaluation win-
dow; ADWIN is a traditional test-then-train evaluation and it has theoretical guarantees that the chosen
size is optimal without the need to decide beforehand on the size of the sliding window [63]]. For G-
eRules, VFDR and ARF, the values over the tenfolds of a single prequential evaluation are averaged
since they are deterministic algorithms; for sAnt-Miner the values over the tenfold bootstrap valida-
tion with ADWIN of fifteen prequential evaluations (a total 150 evaluations) are averaged to take into

“https://www.kaggle.com/c/GiveMeSomeCredit
Shttps://github.com/thienle2401/G-eRules

16 | Ayah Helal and Fernando E. B. Otero

account the stochastic nature of the algorithm. Following the recommendations in [63]], our comparison
uses 4 different measures:

1. Prequential accuracy: instances are first classified by the algorithm (test) before they are
available for the learning procedure (training);

2. Kappa Statistics: takes into account the class unbalance of the data stream in three different
ways:

(a) Kappa: compares an algorithm’s prequential accuracy to a chance classifier (one that
assigns the same number of instances to each class as the algorithm being evaluated);

(b) Kappa M: compares an algorithm’s prequential accuracy to a simple majority class
classifier;

(c) Kappa Temporal: compares an algorithm’s prequential accuracy to a persistent classifier
(one that predicts the class label of the previous instance for the current instance);

3. Runtime: runtime measured in seconds of a single prequential tenfold bootstrap validation with
ADWIN evaluation window;

4. Rules count: number of rules in model generated.

The Kappa statistics values range from (—oo, lf_’]; when an algorithm has a Kappa value greater than
0 (x > 0), it represents the case where it is more often correct than the baseline (naive) classifier—
kx = 1 being the extreme case where the algorithm is always correct; a Kappa value less than 0 (x < 0)
represents the case where the algorithm performs worse than the baseline classifier; and Kappa equal
to 0 (x = 0) represents the case where the algorithm is correct as often as the baseline classifier.

Tables[5 HIO | show the average values of the ADWIN prequential evaluation for each of the dif-
ferent measures—the best value for each data set is shown in bold. In order to measure statistical
significance of the differences in algorithms’ performance, we used the non-parametric Friedman test
with Nemenyi’s post-hoc test [65] to compare all algorithms to each other. The last six rows on Tables
[5_HIO |present the results of the Friedman statistical test, including the algorithm’s average rank and
adjusted p-value for the pairwise comparison. A symbol A (¥) is used to indicate the case when the
average ranking of the algorithm represented by the row is statistically significantly better (worse) than
the average ranking of the algorithm represented by the column, corresponding to the case where the
obtained p-value is lower than 0.05 (p < 0.05).

Table[5_|presents the results regarding the prequential accuracy. ARF achieved the highest ranking,
with an average rank of 1.23, and it was the most accurate algorithm in 11 out of 13 data sets; sAnt-
Miner achieved the highest ranking, with an average rank of 2.38, followed by VFDR and G-eRules
with 3.08 and 3.31, respectively. Both sAnt-Miner and VFDR were each the most accurate algorithm
in 1 out of 13 data sets. The statistical test showed that ARF is statistically significantly better than
VFDR and G-eRules; no statistical significant differences were observed between the performance of
ARF and sAnt-Miner.

The results of Kappa measures are presented in Tables[6_H8 |—a negative value in these tables indi-
cates that the compared algorithm performs worse than the baseline (naive) classifier. Table[6 |presents

6While the exact lower limit depends on the distribution, it is important to note that Kappa statistics can take negative values when
the performance of the algorithm is worst than the baseline classifier [64].

Ayah Helal and Fernando E. B. Otero | 17

TABLE 3 The data sets used in the I/F-Race procedure. All data sets were generated using the MOA
data generator.

Attributes
Data set # Instances # Categorical # Continuous # Classes
Wave Form 100000 0 40 3
Sine 100000 0 4 2
Agrawal 100000 3 6 2

TABLE 4 I/F-Race parameters range used in the tuning phase.

Parameters Range Final value
Buffer Size [250, 1500] 1459
Colony Size [5, 20] 6
I3 [0.00, 1.00] 0.367
q [0.00, 1.00] 0.119
Archive Size [5, 50] 17
Max Iteration [5, 70] 54
Buffer Trigger [0.00, 1.00] 0.748
Minimum Cases [5, 30] 30
Uncovered Percentage [0.00, 0.2] 0.176

the results regarding the Kappa statistic. Similarly to the prequential accuracy results, ARF achieved
the highest ranking (1.31), followed by sAnt-Miner (2.38), and both VFDR (3.15) and G-eRules (3.15).
It is interesting to note that G-eRules has negative values in the Poker Hand and Hyperplane data sets,
indicating that in these data sets G-eRules performed worse than the chance classifier. The statisti-
cal test showed that ARF is statistically significantly better than VFDR and G-eRules; no statistical
significant differences were observed between the performance of ARF and sAnt-Miner.

Table[7 |presents the results regarding the Kappa M measure. Once more, ARF achieved the highest
ranking (1.23), followed by sAnt-Miner (2.54), VFDR (3.00) and G-eRules (3.23). Note that there are
eight imbalanced data sets, where a single class has a high number of instances: Airlines, Connect4,
Diabetes, Electricity, Forest Type, GMSC, Poker Hand and Hyperplane. It is expected the majority
class classifier to perform relatively well in these data sets. Comparing the performance of the algo-
rithms against the majority classifier, ARF performs better than the majority classifier in all of them;
sAnt-Miner preforms better in 6 out of 8§ (Kappa M is negative in both Forest Type and Poker Hand);
VFDR performs better in only 2 out of 8 (Kappa M is negative in Airlines, Connect4, Diabetes, Forest
Type, GMSC and Poker Hand); and G-eRules performs better in only 2 out of 8 (Kappa M is negative
in Diabetes, Electricity, Forest Type, GMSC, Poker Hand and Hyperplane). The statistical test showed
that ARF is statistically significantly better than all algorithms—sAnt-Miner, VFDR and G-eRules.

18 Ayah Helal and Fernando E. B. Otero

TABLE 5 Prequential accuracy

Data set G-eRules VFDR ARF sAnt-Miner
Airlines 57.92 56.06 64.66 59.21
Connect4 69.27 65.67 77.71 66.49
Diabetes 50.81 53.83 53.94 56.06
Electricity 49.49 70.40 90.49 89.18
Forest Type 63.48 64.35 94.97 70.30
GMSC 93.32 93.28 93.54 93.35
Spam 92.76 82.40 98.30 93.00
Poker Hand 53.07 59.58 89.34 56.05
Hyperplane 50.00 71.00 65.08 69.60
LED 51.28 47.72 73.97 47.86
Random RBF 52.14 78.04 95.18 68.45
RT 64.58 60.76 95.44 57.62
SEA 66.68 80.29 89.59 84.02
Average rank 3.31 3.08 1.23 2.38
Adjusted p-values (a = 0.05)

G-eRules - 0.6486 v2.4E-4 0.2049
VEDR 0.6486 - v(0.0013 0.3431
ARF A2 4E-4 A0.0013 - 0.0907
sAnt-Miner 0.2049 0.3431 0.0907 -

Bold values indicate the best results per data set.

Table [8] presents the results regarding the Kappa Temporal measure. Similarly to the previous
Kappa measures, ARF achieved the highest ranking (1.23), followed by sAnt-Miner (2.38), VFDR
(3.08) and G-eRules (3.31). There are four data sets with known temporal nature: Electricity, Forest
Type, Spam and Poker Hand. ARF performs better than the persistent classifier in 3 out of 4 (Kappa
M is negative in Forest Type); sAnt-Miner performs better than the persistent classifier in 1 out of
4 (Kappa M is negative in Forest Type, Spam and Poker Hand); both VFDR and G-eRules perform
worse than the persistent classifier in all four data sets. The statistical test showed that ARF is statisti-
cally significantly better than VFDR and G-eRules; no statistical significant differences were observed
between the performance of ARF and sAnt-Miner.

Table 0] presents the results regarding the runtime, measured in seconds. sAnt-Miner achieved the
highest ranking (1.85), followed by G-eRules (1.92), VFDR (2.23) and ARF (4.00). All three rule
induction algorithms are faster than ARF, as expected as ARF build multiple models to create an

Ayah Helal and Fernando E. B. Otero 19

TABLE 6 Kappa statistic (percentage)

Data set G-eRules VFDR ARF sAnt-Miner
Airlines 15.27 2.38 27.77 13.43
Connect4 22.18 0.00 45.78 8.92
Diabetes 2.94 0.04 0.93 9.63
Electricity 2.31 41.77 80.89 78.39
Forest Type 10.27 13.05 71.21 29.41
GMSC 0.00 1.35 16.57 10.31
Spam 67.55 18.40 93.95 73.09
Poker Hand -0.02 7.05 73.68 7.44
Hyperplane -0.08 42.01 30.17 39.20
LED 45.89 41.95 71.06 42.09
Random RBF 4.05 56.08 90.37 36.91
RT 40.42 32.93 92.75 28.54
SEA 9.42 54.79 76.83 64.06
Average Rank 3.15 3.15 1.31 2.38
Adjusted p-values (a = 0.05)

G-eRules - 1.0000 v0.0016 0.3862
VEDR 1.0000 - v0.0016 0.3862
ARF A0.0016 A0.0016 - 0.1338
sAnt-Miner 0.3862 0.3862 0.1338 -

Bold values indicate the best results per data set.

ensemble. The statistical test showed that sAnt-Miner, VFDR and G-eRules are statistically signifi-
cantly better than ARF; no statistical significant differences were observed between sAnt-Miner, VFDR
and G-eRules.

As aforementioned, the simplicity of the model is also an important evaluation criterion, as discussed
in [3]. In order to evaluate the size of the discovered models, we focus on the results regarding the
average number of rules, presented on Table @ In this case, the lower the number of rules, the
simpler (concise) the model is considered. Note that this was not measured for ARF, since ARF builds
an ensemble model with multiple decision trees. sAnt-Miner creates the smallest models, achieving an
average rank of 1.15; VFDR ranked second (2.15) followed by G-eRules (2.69). The results obtained
by sAnt-Miner are statistically significantly better than both G-eRules and VFDR. This emphasises the
advantage of replacing the model between executions of the learning procedure instead of updating
(increasing) the same one—as a result, sAnt-Miner is able to keep the size of the model relatively small.

20 Ayah Helal and Fernando E. B. Otero

TABLE 7 Kappa M statistic (percentage)

Data set G-eRules VFDR ARF sAnt-Miner
Airlines 2.23 -1.88 17.67 5.16
Connect4 10.06 -0.48 34.77 1.92
Diabetes -6.70 -0.15 0.07 4.68
Electricity -7.55 36.98 79.74 76.95
Forest Type -274.71 -227.66 56.64 -298.48
GMSC -0.04 -0.73 3.30 0.32
Spam 65.39 15.93 91.89 66.57
Poker Hand -36.75 -17.76 67.92 -28.28
Hyperplane -0.23 41.87 29.91 39.06
LED 45.80 41.83 71.04 41.99
Random RBF 3.82 55.87 90.32 36.61
RT 32.27 24.97 91.28 18.97
SEA 6.78 44.86 70.88 55.30
Average Rank 3.23 3.00 1.23 2.54
Adjusted p-values (a = 0.05)

G-eRules - 0.7241 v4.7E-4 0.5147
VFDR 0.7241 - v(0.0024 0.7241
ARF A4.7E-4 A0.0024 - A0.0392
sAnt-Miner 0.5147 0.7241 v0.0392 -

Bold values indicate the best results per data set.

Overall, the results obtained by the proposed sAnt-Miner are positive. It discovered smaller models
while maintaining similar predictive accuracy when compared to ARF, considered one of the state-
of-the-art data stream classification algorithms; both VFDR and G-eRules rule induction algorithms
are statistically significantly worse than ARF. Additionally, sAnt-Miner is competitive regarding its
runtime, despite being an iterative algorithm. We attribute this to the proposed hybrid construction
graph, where a solution archive handles attribute values combined with a construction graph to select
attributes to compose rules. This combination addressed the limitation of using only a solution archive
to create classification rules, identified in a previous work [27]], where using a solution archive did not
produce accurate models in data sets with a larger number of attributes (more than 50 attributes). Our
results indicate that the hybrid model allows the algorithm to deal with a larger number of attributes
effectively: the construction graph focuses on selecting the most relevant attributes and their order,
and at the same time, solution archives deal with deciding the values to create attribute conditions; the
need for a time-consuming discretisation procedure is replaced by a fast sampling procedure.

Ayah Helal and Fernando E. B. Otero 21

TABLE 8 Kappa Temporal statistic (percentage)

Data set G-eRules VFDR ARF sAnt-Miner
Airlines 4.63 0.46 19.87 7.64
Connect4 37.77 30.48 54.86 32.13
Diabetes 14.67 19.91 20.09 23.77
Electricity -232.25 -94.69 37.41 28.79
Forest Type -834.40 -800.35 -26.10 -645.48
GMSC 48.72 48.38 50.44 48.92
Spam -115.45 -423.29 49.54 -108.11
Poker Hand -77.20 -56.70 58.47 -67.45
Hyperplane 0.15 42.09 30.09 39.29
LED 45.84 41.88 71.06 42.03
Random RBF 4.34 56.11 90.38 36.95
RT 43.93 37.88 92.78 3291
SEA 27.44 57.08 77.34 65.21
Average Rank 3.31 3.08 1.23 2.38
Adjusted p-values (a = 0.05)

G-eRules - 0.6485 v2.5E-4 0.2049
VFDR 0.6485 - v0.0013 0.3431
ARF A2.5E-4 A0.0013 - 0.0907
sAnt-Miner 0.2049 0.3431 0.0907 -

Bold values indicate the best results per data set.

S | CONCLUSION AND FUTURE RESEARCH

In this paper, we introduced the ACO-based sAnt-Miner algorithm for data stream classification. sAnt-
Miner uses a novel hybrid pheromone model, combining both construction graph and solution archive
pheromone models, to create rule-based classification models. The main motivation is to allow the
algorithm to benefit from a solution archive model, which can handle both nominal and continuous
attribute values without the need for any preprocessing procedure (e.g., discretisation), and a graph
model for selecting the best attributes to use when creating rules. The use of a simplified construction
graph, where each attribute is represented by a node, allowed the use of an end node to indicate the
termination of the selection of attributes for a rule. Therefore, the algorithm iteratively remembers
the (irrelevant) terms removed by the pruning procedure and these are not selected at later iterations,
reducing the computational time taken by the pruning procedure. These improvements contribute to
the ability of the algorithm to handle large number of attributes and mixed attributes types efficiently,
an important aspects in a data stream context.

22 Ayah Helal and Fernando E. B. Otero

TABLE 9 Runtime (seconds)

Data set G-eRules VFDR ARF sAnt-Miner
Airlines 2407.67 172.53 26222.18 187.72
Connect4 101.52 13.30 1695.51 65.40
Diabetes 1248.68 23.53 5255.84 82.37
Electricity 15.13 45.72 619.53 20.79
Forest Type 1099.44 566.90 18427.74 538.75
GMSC 30.70 327.65 1723.18 58.28
Spam 88.88 10.79 1970.69 138.78
Poker Hand 1570.68 1259.51 14653.76 505.93
Hyperplane 180.85 2809.90 53431.88 97591
LED 3009.83 3663.33 38714.37 2027.74
Random RBF 191.29 6660.39 33207.85 440.59
RT 874.90 5874.18 28269.53 1240.41
SEA 137.65 2383.27 168649.48 678.19
Average Rank 1.92 2.23 4.00 1.85
Adjusted p-values (a = 0.05)

G-eRules - 1.0000 A24E-4 1.0000
VFDR 1.0000 - A0.0028 1.0000
ARF v2.4E-4 v0.0028 - v1.2E-4
sAnt-Miner 1.0000 1.0000 Al12E-4 -

Bold values indicate the best results per data set.

The proposed sAnt-Miner was compared against ARF, VFDR and G-eRules, well-known algorithms
from the literature, using a collection of standard benchmark data sets. Our results using 6 real-world
and 5 artificial data sets showed that sAnt-Miner is competitive in terms of predictive accuracy and data
stream oriented evaluation measures; importantly, there are no statistically significantly differences
between sAnt-Miner and ARF—an ensemble algorithm considered one of the state-of-the-art for data
stream mining—in 3 out of the 4 prediction measures. Moreover, the rule list models produced by
sAnt-Miner were significantly smaller in terms of the number of rules, which contributes to their
interpretability since concise models are intuitively easier for an user to visualise and understand their
predictions. The results also showed that sAnt-Miner is competitive regarding its computational time,
despite using an iterative ACO procedure to create the classification model.

There are several interesting directions for future research. In this paper, we tested the performance
of the algorithms in data sets without (explicit) concept drift. While it is likely that the real-world data
sets do have naturally occurring concept drift, it will be interesting to measure the performance of
sAnt-Miner in data sets with a known factor of concept drift. Moreover, the novel hybrid pheromone

Ayah Helal and Fernando E. B. Otero 23

TABLE 10 Number of rules

Data set G-eRules VFDR sAnt-Miner
Airlines 2760.63 110.40 2.47
Connect4 915.10 19.70 2.94
Diabetes 1621.75 13.05 2.19
Electricity 368.30 26.90 3.13
Forest Type 399.08 34.90 3.27
GMSC 315.00 44.00 1.78
Spam 181.60 2.50 3.32
Poker Hand 1187.38 101.81 3.28
Hyperplane 5.74 162.64 6.56
LED 121.43 22.13 8.67
Random RBF 17.62 203.79 4.61
RT 400.45 110.97 7.64
SEA 50.22 213.22 5.11
Average Rank 2.69 2.15 1.15
Adjusted p-values (a = 0.05)

G-eRules - 0.1698 v2.6E-4
VFDR 0.1698 - v0.0215
sAnt-Miner A2.6E-4 A0.0215 -

Bold values indicate the best results per data set.

model proposed in sAnt-Miner had a positive effect in terms of both quality of the rules created and
computational time. It would be interesting to evaluate its performance in traditional (offline) classi-
fication problems. Moreover, sAnt-Miner does not use any heuristic information to guide the search,
a common feature in ACO algorithms. The use of heuristic information can have a positive impact on
both the quality of the rule lists created and the runtime of the algorithm. Finally, another research
direction worth further exploration is to compare the performance of sAnt-Miner against interpretable
models generated by eXplainable Al systems [66) 67].

References

[1] Fayyad U, Piatetsky-Shapiro G, Smith P. From data mining to knowledge discovery: an overview.
In: Advances in Knowledge Discovery & Data Mining. ; 1996: 1-34.

[2] GamaJ. Knowledge Discovery from Data Streams. CRC Press . 2010. 255 p.

24

| Ayah Helal and Fernando E. B. Otero

(3]

[4]

(5]

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Sayed-Mouchaweh M, Lughofer E. Learning in non-stationary environments: methods and
applications. Springer Science & Business Media . 2012. 440 p.

Khamassi I, Sayed-Mouchaweh M, Hammami M, Ghédira K. Discussion and review on evolving
data streams and concept drift adapting. Evolving systems 2018; 9(1): 1-23.

Krempl G, Zliobaite I, Brzeziriski D, et al. Open Challenges for Data Stream Mining Research.
SIGKDD Explorations Newsletter 2014; 16(1): 1-10.

Gaber MM, Zaslavsky A, Krishnaswamy S. Mining Data Streams: A Review. SIGMOD Record
2005; 34(2): 18-26.

Ramirez-Gallego S, Krawczyk B, Garcia S, WoZniak M, Herrera F. A survey on data prepro-
cessing for data stream mining: Current status and future directions. Neurocomputing 2017; 239:
39-57.

Rehman uMH, Chang V, Batool A, Wah TY. Big data reduction framework for value creation in
sustainable enterprises. International Journal of Information Management 2016; 36(6): 917-928.

Mundhe RV, Manwade KB. Continuous Top-k Monitoring on Document Streams. In: 2018
International Conference on Inventive Research in Computing Applications (ICIRCA). ; 2018:
1008-1013.

Andreoni Lopez M, Mattos DM, Duarte OCM, Pujolle G. Toward a monitoring and threat detec-
tion system based on stream processing as a virtual network function for big data. Concurrency
and Computation: Practice and Experience 2019; 31(20): 1-17.

Aggarwal C, Philip S. Online Analysis of Community Evolution in Data Streams. In: Proceedings
of the 2005 SIAM International Conference on Data Mining (SDM). ; 2005: 56-67.

Gama J, Kosina P. Learning Decision Rules from Data Streams. In: Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IICAT’11). ; 2011: 1255-1260.

Stahl F, Gaber MM, Salvador MM. Research and Development in Intelligent Systems XXIX
(International Conference on Innovative Techniques and Applications of Artificial Intelli-
gence)ch. eRules: A Modular Adaptive Classification Rule Learning Algorithm for Data Streams:
65-78; 2012.

Minku L, Yao X. DDD: A New Ensemble Approach for Dealing with Concept Drift. IEEE
Transactions on Knowledge and Data Engineering 2012; 24(4): 619-633.

Baena-Garcia M, Campo—Avila dJ, Fidalgo R, Bifet A, Gavalda R, Morales-Bueno R. Early drift
detection method. In: . 6 of Fourth International Workshop on Knowledge Discovery from Data
Streams. ; 2006: 77-86.

Street WN, Kim Y. A Streaming Ensemble Algorithm (SEA) for Large-scale Classification. In:
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ; 2001:
377-382.

Almeida E, Kosina P, Gama J. Random rules from data streams. In: Proceedings of the 28th
Annual ACM Symposium on Applied Computing. ACM; 2013: 813-814.

Ayah Helal and Fernando E. B. Otero | 25

[18] Gomes H, Bifet A, Read J, et al. Adaptive random forests for evolving data stream classification.
Machine Learining 2017; 106: 1469-1495.

[19] Vivekanandan P, Nedunchezhian R. Mining data streams with concept drifts using genetic
algorithm. Artificial Intelligence Review 2011; 36(3): 163-178.

[20] Vahdat A, Atwater A, MclIntyre AR, Heywood MI. On the Application of GP to Streaming Data
Classification Tasks with Label Budgets. In: Companion Publication of the Annual Conference
on Genetic and Evolutionary Computation. ; 2014: 1287-1294.

[21] Cervantes A, Isasi P, Gagné C, Parizeau M. Learning from non-stationary data using a growing
network of prototypes. In: IEEE Congress on Evolutionary Computation. ; 2013: 2634-2641.

[22] Nag K, Pal NR. A Multiobjective Genetic Programming-Based Ensemble for Simultaneous
Feature Selection and Classification. IEEE Transactions on Cybernetics 2016; 46(2): 499-510.

[23] Dorigo M, Stiitzle T. Ant Colony Optimization. MIT Press . 2004. 319 p.

[24] Parpinelli R, Lopes H, Freitas A. Data mining with an ant colony optimization algorithm. /EEE
Transactions on Evolutionary Computation 2002; 6(4): 321-332.

[25] Otero F, Freitas A, Johnson C. cAnt-Miner: An Ant Colony Classification Algorithm to Cope
with Continuous Attributes. In: Ant Colony Optimization and Swarm Intelligence (LNCS 5217).
; 2008: 48-59.

[26] Otero F, Freitas A, Johnson C. Handling continuous attributes in Ant Colony Classification algo-
rithms. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM °09). ;
2009: 225-231.

[27] Helal A, Otero F. A Mixed-Attribute Approach in Ant-Miner Classification Rule Discovery
Algorithm. In: Genetic and Evolutionary Computation Conference (GECCO). ; 2016: 13-20.

[28] Helal A, Otero F. Automatic Design of Ant-miner Mixed Attributes for Classification Rule
Discovery. In: Genetic and Evolutionary Computation Conference (GECCO). ; 2017: 433-440.

[29] Domingos P, Hulten G. A general framework for mining massive data streams. Journal of
Computational and Graphical Statistics 2003; 12(4): 945-949.

[30] Domingos P, Hulten G. Mining High-speed Data Streams. In: ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ; 2000: 71-80.

[31] Hulten G, Spencer L, Domingos P. Mining Time-changing Data Streams. In: ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ; 2001: 97-106.

[32] CendrowskaJ. PRISM: An algorithm for inducing modular rules. International Journal of Man-
Machine Studies 1987; 27(4): 349-370.

[33] Le T, Stahl F, Gomes JB, Gaber MM, Fatta GD. Computationally Efficient Rule-Based Classi-
fication for Continuous Streaming Data. In: International Conference on Innovative Techniques
and Applications of Artificial Intelligence. ; 2014: 21-34.

26 | Ayah Helal and Fernando E. B. Otero

[34] Le T, Stahl F, Gaber MM, Gomes JB, Fatta GD. On expressiveness and uncertainty awareness in
rule-based classification for data streams. Neurocomputing 2017; 265: 127-141.

[35] Xu S, Wang J. Dynamic Extreme Learning Machine for Data Stream Classification. Neurocom-
puting 2017; 238(C): 433-449.

[36] Liang NY, Huang GB, Saratchandran P, Sundararajan N. A fast and accurate online sequen-
tial learning algorithm for feedforward networks. IEEE Transactions on Neural Networks 2006;
17(6): 1411-1423.

[37] Khanchi S, Heywood MI, Zincir-Heywood AN. Properties of a GP Active Learning Frame-
work for Streaming Data with Class Imbalance. In: Genetic and Evolutionary Computation
Conference. ; 2017: 945-952.

[38] Sancho-Asensio A, Orriols-Puig A, Golobardes E. Robust on-line neural learning classifier
system for data stream classification tasks. Soft Computing 2014; 18(8): 1441-1461.

[39] Breiman L. Random Forests. Machine Learning 2001; 45: 5-32.

[40] Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16).
; 2016: 785-794.

[41] Montiel J, Mitchell R, Frank E, Pfahringer B, Abdessalem T, Bifet A. Adaptive XGBoost for
Evolving Data Streams. In: 2020 International Joint Conference on Neural Networks (IJCNN). ;
2020: 1-8.

[42] Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 1996; 26(1): 29-41.

[43] Martens D, Baesens B, Fawcett T. Editorial survey: swarm intelligence for data mining. Machine
Learning 2011; 82(1): 1-42.

[44] Liu B, Abbass HA, McKay B. Density-based heuristic for rule discovery with ant-miner. In:
Australasia-Japan Joint Workshop on Intelligent and Evolutionary Systems (AJWIS-2002). ;
2002: 180-184.

[45] Liu B, Abbass HA, McKay B. Classification rule discovery with ant colony optimization. In:
IEEE/WIC International Conference on Intelligent Agent Technology. ; 2003: 83—88.

[46] Martens D, De Backer M, Haesen R, Vanthienen J, Snoeck M, Baesens B. Classification With Ant
Colony Optimization. I[EEE Transactions on Evolutionary Computation 2007; 11(5): 651-665.

[47] Otero F, Freitas A, Johnson C. A New Sequential Covering Strategy for Inducing Classification
Rules With Ant Colony Algorithms. IEEE Transactions on Evolutionary Computation 2013;
17(1): 64-76.

[48] Yang L, Li K, Zhang W, Ke Z. Ant colony classification mining algorithm based on pheromone
attraction and exclusion. Soft Computing 2017; 21(19): 5741-5753.

Ayah Helal and Fernando E. B. Otero | 27

[49] Liang Z, Sun J, Lin Q, Du Z, Chen J, Ming Z. A Novel Multiple Rule Sets Data Classification
Algorithm Based on Ant Colony Algorithm. Applied Soft Computing 2016(38): 1000-1011.

[50] Ayub U, Ikram A, Shahzad W. AM_;,: An Improved Ant-Miner to Extract Comprehensible and
Diverse Classification Rules. In: Genetic and Evolutionary Computation Conference. ACM;

2019: 4-12.

[51] Liao T, Socha K, Oca M. dM, Stiitzle T, Dorigo M. Ant Colony Optimization for Mixed-Variable
Optimization Problems. IEEE Transactions on Evolutionary Computation 2014; 18(4): 503-518.

[52] Fernandes C, Mora A, Merelo J, Rosa A. KANTS: A Stigmergic Ant Algorithm for Cluster
Analysis and Swarm Art. IEEE Transactions on Cybernetics 2014; 44(6): 843-856.

[53] Fahy C, Yang S, Gongora M. Finding Multi-Density Clusters in non-stationary data streams using
an Ant Colony with adaptive parameters. In: IEEE Congress on Evolutionary Computation. ;
2017: 673-680.

[54] Fahy C, Yang S, Gongora M. Ant Colony Stream Clustering: A Fast Density Clustering
Algorithm for Dynamic Data Streams. IEEE Transactions on Cybernetics 2019; 49(6): 2215-
2228.

[55] Lucky L, Girsang AS. Hybrid Nearest Neighbors Ant Colony Optimization for Clustering Social
Media Comments. Informatica 2020; 44(1): 63-74.

[56] Kozak J, Juszczuk P, Probierz B. The hybrid ant colony optimization and ensemble method for
solving the data stream e-mail foldering problem. Neural Computing and Applications 2020;
32(19): 15429-15443.

[57] Stiitzle T, Hoos HH. MAX-MIN Ant System. Future Generation Computer Systems 2000; 16(9):
889-914.

[58] Bifet A, Holmes G, Kirkby R, Pfahringer B. MOA: Massive Online Analysis. Journal of Machine
Learning Research 2010; 11: 1601-1604.

[59] Dua D, Graff C. UCI Machine Learning Repository. 2019. [http://archive.ics.uci.edu/ml].

[60] Katakis I, Tsoumakas G, Banos E, Bassiliades N, Vlahavas I. An adaptive personalized news
dissemination system. Journal of Intelligent Information Systems 2009; 32(2): 191-212.

[61] Loépez-Ibafiez M, Dubois-Lacoste J, Caceres LP, Stiitzle T, Birattari M. The irace package: Iter-

ated Racing for Automatic Algorithm Configuration. Operations Research Perspectives 2016; 3:
43-58.

[62] Bifet A, Gavalda R. Learning from time-changing data with adaptive windowing. In: SIAM
International Conference on Data Mining. ; 2007: 443—448.

[63] Bifet A, Francisci Morales dG, Read J, Holmes G, Pfahringer B. Efficient Online Evaluation
of Big Data Stream Classifiers. In: ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ; 2015: 59-68.

28 | Ayah Helal and Fernando E. B. Otero

[64] Cohen J. A Coefficient of Agreement for Nominal Scales. Educational and Psychological
Measurement 1960; 20(1): 37-46.

[65] Demsar J. Statistical Comparisons of Classifiers over Multiple Data Sets. Machine Learning
Research 2006; 7: 1-30.

[66] Nascita A, Montieri A, Aceto G, Ciuonzo D, Persico V, Pescapé A. XAI meets
Mobile Traffic Classification: Understanding and Improving Multimodal Deep Learning
Architectures. IEEE Transactions on Network and Service Management 2021. doi:
https://doi.org/10.1109/TNSM.2021.3098157

[67] Hagras H. Toward human-understandable, explainable Al. Computer 2018; 51(9): 28-36.

[

http://dx.doi.org/https://doi.org/10.1109/TNSM.2021.3098157
http://dx.doi.org/https://doi.org/10.1109/TNSM.2021.3098157

