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ABSTRACT The oil and gas industry faces difficulties in optimizing well placement problems. These 

problems are multimodal, non-convex, and discontinuous in nature. Various traditional and non-traditional 

optimization algorithms have been developed to resolve these difficulties. Nevertheless, these techniques 

remain trapped in local optima and provide inconsistent performance for different reservoirs. This study 

thereby presents a Surrogate Assisted Quantum-behaved Algorithm to obtain a better solution for the well 

placement optimization problem. The proposed approach utilizes different metaheuristic optimization 

techniques such as the Quantum-inspired Particle Swarm Optimization and the Quantum-behaved Bat 

Algorithm in different implementation phases. Two complex reservoirs are used to investigate the 

performance of the proposed approach. A comparative study is carried out to verify the performance of the 

proposed approach. The result indicates that the proposed approach provides a better net present value for 

both complex reservoirs. Furthermore, it solves the problem of inconsistency exhibited in other methods for 

well placement optimization. 

INDEX TERMS Quantum Computation, Well placement optimization, Multimodal optimization, 

Metaheuristic, Nonlinear optimization problem, Reservoir simulation 

I. INTRODUCTION 

Well placement is a boring process used to bring oil to the 

surface and placing wells in an appropriate location involves 

optimization techniques. Well placement optimization is a 

difficult task in the oil and gas industry as it creates 

inconsistency in the cost functions [1], [2]. It is also 

challenging due to the heterogeneities of reservoirs [1]. 

Reservoir heterogeneity is the variation of reservoir properties 

in space and time [3]. The surface of the search field in well 

placement optimization changes with the changes of reservoir 

heterogeneity. Furthermore, reservoirs such as PUNQ-S3 [4], 

[1], [5] and SPE-1 [6], have different properties and produce 

dynamic search spaces [7]. Hence, it is desirable to develop an 

effective algorithm to deal with complicated optimization 

problems.  

A.  Related Works 

The optimization algorithms used in the well placement 

optimization problems can be categorized into three main 

sections: (i) Traditional, (ii) Non-traditional, and (iii) Hybrid 

Techniques. Researchers initially applied traditional 

techniques such as the simultaneous perturbation stochastic 

approximation method (SPSA) [5] [6], mixed integer 

programming (MIP) [8], steepest ascent method [9], 

multivariate interpolation algorithms [10], and the finite 

difference method [11] to optimize the well placement 

problem. These traditional techniques have the vulnerability 
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to entrap in local optima, as they use gradient information. 

Thus, it can be inferred that gradient-based techniques are 

inappropriate for well location optimization [12], [5]. In 

contrast, non-traditional or gradient-free techniques perform 

better than traditional techniques [13-15]. Various non-

traditional techniques have been implemented such as Bat 

Algorithm (BA) [16], covariance matrix adaptation evolution 

strategy (CMA-ES) [17], firefly (FF) [18], differential 

evolution (DE) [19], particle swarm optimization (PSO) [20], 

[12], and genetic algorithm (GA) [21] to solve the well 

placement optimization problem. These techniques are 

derivative-free and provide a preferable solution for the 

optimization problem compared to the traditional techniques 

[22]. To obtain a better solution, niching techniques with Crow 

Search Algorithms (CSA) are used in well placement 

optimization problems [23]. However, the convergence 

capability of these techniques is poor. Furthermore, the 

problem of local optima for well placement optimization still 

abates the performance of these optimization algorithms [24]. 

Again, the particle swarm optimization algorithm is also 

incorporated with a novel weighting scheme [25]. The 

evaluation process used seven references data sets with 

different characteristics and complexity. The findings confirm 

that the proposed method produced the best results. 

Additionally, a novel population-based optimization 

approach, the Aquila Optimizer (AO) is proposed in [26]. 

Experimental results demonstrate the superiority of the AO 

algorithm compared to well-known metaheuristic methods. 

Moreover, a study validated the Sine Cosine Algorithm’s 

(SCA) success against related algorithms with a series of 

statistical tests [27]. However, the SCA does not have the 

ability to address the complexity of multimodal search space.  

To improve the whale optimization algorithm (WOA), 

researchers combined multi-swarm and chaotic strategies to 

obtain optimized parameters and selected feature 

simultaneously for support vector machine (SVM) [28]. The 

results show that the CMWOAFS-SVM outperforms all other 

competitors. Another study proposes a variant of WOA, which 

incorporates two techniques at once [29]. The proposed 

EWOA (Evolutionary geography-based Whale Optimization 

Algorithm) has not been investigated in dynamic 

landscapes.Furthermore, Wang et al. [30] seek the optimal 

kernel extreme learning machine (KELM) using the chaotic 

moth-flame optimization (CMFO) approach. This technique 

performed better than the kernel extreme learning machine 

(KELM) models based on the GA, PSO, and MFO. Again, a 

fruit fly optimization (FOA) algorithm is used to optimize a 

KELM [31]. To avoid the limitation, an improved FOA is 

introduced by incorporating the Slime mould, Elite 

opposition-based learning, and levy flight algorithms. The 

proposed algorithm has a reliable trade-off between 

exploitation and exploration strategy. Double adaptive weight 

mechanism is introduced in the Moth flame optimization 

(MFO) to train kernel extreme learning machine (KELM). The 

proposed algorithm shows superior performance than other 

compared algorithms [32]. Table I illustrates the recent and 

compared algorithms that have been used for optimization in 

well placement optimization problem. It can be seen that a few 

well-known metaheuristics algorithms are used in 

experiments. Also, in many cases, experimenters only use 

primary algorithms for comparison purposes [24], [33]. 

Again, for better exploitation strategy, researchers 

incorporated local search techniques in the global search 

algorithms [13]. However, the local search algorithm's 

performance depends on the initialization [34]. Hence, 

investigators have implemented a hybrid algorithm 

incorporating non-traditional techniques for a better solution 

[35], [34]. The hybrid strategy, based on the best features of 

different algorithms, seeks a suitable solution to well 

placement optimization [36], [37], [17]. For instance, Dong et 

al. [38] proposed a hybrid of PSO to avoid the local optima, as 

the primary PSO algorithm can find a solution to a limited 

extent. Nwankwor et al. [24] used a combined HPSDE 

algorithm to determine optimal locations. They concluded that 

the hybridization of stand-alone DE and PSO algorithms 

performed better than stand-alone algorithms. Isebor et al. [22] 

combined two well-known search methods: the Mesh 

Adaptive Direct Search (MADS) and the PSO approach. 

Analysis demonstrates that the performance of the hybrid 

algorithm is superior compared to PSO and MADS. 

Humphries et al. [35] used a combination of PSO and 

generalized pattern search (GPS) strategy. Siddiqui et al. [39] 

conducted a comparison of CMA-ES, DE, and PSO in which 

DE performed better than PSO and CMA-ES.  

 
TABLE I ALGORITHMS AND THEIR COMPARISON 

REF.  YEAR COMPARISON OF 

OPTIMIZATION METHODS 

Chen et al. [40] 2018 O-CSMADS Vs CSO Vs 

MADS Vs CSMADS  

Ma et al. [33] 2018 ACO-GA-PSO Vs GA 

Vs PSO Vs RS Vs SPSO 

Hamida et al. [41] 2017 GSA Vs Ga 

Dossary et al. [42] 2016 ICA Vs SCGA Vs SPSO 

Wang et al. [43] 2016 MCS Vs GPS Vs PSO 

Vs CMA-ES 

Dossary and 

Nasrabadi [44] 

2015 ICA Vs GA 

Naderi and 

Khamehchi [16] 

2017 BA Vs PSO Vs GA  

Khoshneshin et al. 

[45] 

2018 ABC Vs PSO 

Siddiqui et al. [39] 2015 DE Vs PSO Vs CMA-ES 

Nwankwor et al.[24] 2013 HPSDE Vs DE Vs PSO 

B.  Research Gaps and Motivations 

Though researchers have mostly applied non-traditional [12], 

[16] and hybrid techniques [12]-[16] to resolve the well 

placement optimization problem, room for improvement 

remains. These techniques often fail to provide a better 
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solution and faster convergence in different reservoirs [46]. 

Nevertheless, a better solution and faster convergence for a 

multimodal well placement optimization problem are still the 

dominant issues [5]. In the oil and gas industry, each reservoir 

has different sizes and search spaces for different well 

placement problems. Additionally, the surface may be non-

smooth, or it may contain local optima. Metaheuristic 

techniques also require parameters tuning for different well 

placement problems. Hence, to provide better results in 

different search spaces, parameters tuning are required. 

However, the well placement optimization problems are 

computationally expensive. A single function evaluation 

requires one reservoir simulation, which is demanding in CPU 

time [47]. Thus, due to additional computational challenges, 

parameters tuning are difficult and researchers compare their 

work with few metaheuristic techniques [42].  

In many studies only one reservoir is used. Hence, the 

performance of an algorithm is determined  based on the 

results of one search space. In the oil and gas industry, each 

reservoir has different sizes and search spaces for different 

well placement problems. Additionally, the surface may be 

non-smooth, or it may contain local optima.  However, in well 

placement optimization problem different reservoir will have 

different search space. The problem of this approach is that the 

algorithms parameter can be tuned to perform in one search 

space. Also, this process requires rigorous tuning of 

parameters. Again, the well placement optimization problems 

are computationally expensive. Therefore, in many sudies 

different reservoirs are not considered in the experiments [48]. 

For example, the PUNQ-S3 [4], [1], [5] and SPE-1 reservoirs 

[6] can be highly multimodal and both reservoirs are not 

considered in the same study. An ambiguity persisted when 

researchers used different reservoirs for evaluation in different 

studies. For example, DE performed better than CMA-ES in a 

specific study [39]. Conversely, CMA-ES performed better 

than DE in another study [49]. Hence, it can be observed that 

the algorithm’s parameters setting in one study cannot be used 

in another study as it may not provide a better solution for a 

different reservoir [50]. Every reservoir requires a different 

exploration-exploitation strategy to explain this phenomenon 

[6]. Thus, the challenge is to obtain a better result in the 

different reservoirs using the same search algorithm. 

To solve the limitation, this study considers an ensemble 

approach. Previous work demonstrates that quantum-based 

techniques, such as the quantum bat algorithm (QBA) and 

quantum particle swarm optimization algorithm (QPSO) 

performed better for well placement optimization [7], [51]. 

Moreover, quantum computation can manage highly non-

linear multimodal optimization problems [51], and PSO also 

works linearly. In contrast, the probabilistic approach can 

determine the QPSO's next position [52]. In QBA, researchers 

use the mean best approach to avoid local optima [53]. 

However, the QBA and QPSO techniques are better for 

specific reservoirs [6]. A single algorithm-based approach 

uses the same search approach. It may cause an algorithm to 

follow a similar trajectory. In turn, this may cause the 

algorithm to get stuck in local optima. However, the 

incorporation of different methods can improve the ability to 

find the best solution in complex conditions with complex 

areas [54]. Integrating several strategies using the appropriate 

adaptation mechanism allows an algorithm to select the 

appropriate strategy during optimization [55]. This integration 

can support search strategies with a variety of skills, 

improving the algorithm’s performance. For example, a search 

strategy can find promising undiscovered areas. Using other 

search strategies can further improve the algorithm’s 

performance [56].  

C.  Research Contributions 

A summary of the contributions of this study is as follows: 

• We combined different approaches with surrogate 

assistance which provides better solutions and faster 

convergence of each primary technique. 

• A large set of algorithms are adopted for performance 

evaluation and two different reservoirs are considered for 

the evaluation. 

• An ensemble approach of QPSO and QBA with surrogate 

assistance is proposed and implemented along with an 

approximation technique. It provides a better solution and 

faster convergence for the multimodal well placement 

optimization problems. 

• Experimental evaluations were carried out to verify the 

proposed approach. The results demonstrate that the 

proposed method is more efficient and effective 

compared to existing optimization methods for well 

placement. 

To the best of our knowledge, this study is the first attempt 

that successfully applies ensemble-based optimization 

techniques to different complex reservoirs. The proposed 

search strategy provides the best solution in a dynamic search 

environment. The ensemble approach combines different 

methods and adjusts its strategy based on the success of its 

components. Furthermore, the ensemble approach does not 

require parameters tuning. Instead it utilizes the availability of 

diverse approaches at different stages and alleviates 

computationally intensive parameters tuning [57]. Finally, the 

ensemble strategy provides an effective tool to implement 

multiple search techniques suited to different reservoirs [57], 

[58]. 

II. PROBLEM FORMULATION 

The Net Present Value (NPV) estimates the economic effect of 

a certain well location to extract oil/gas for a period. Certain 

well locations have effects on well NPV. We, therefore, 

propose using optimization techniques to find optimal well 

locations which provide maximum NPV. Figure 1 shows a 

common search technique to find the highest NPV for the well 

placement optimization problem. In this study, NPV is the 

objective function for well placement optimization. Equation 

(1) expresses NPV and considers oil, gas and water production, 
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injection costs, oil sale prices, drilling cost, water production 

cost, and gas sale prices: 

𝑁𝑃𝑉(𝑢𝑛)   =

∑
𝑄𝑂𝑃𝑂(𝑢𝑛)+𝑄𝑔𝑃𝑔(𝑢𝑛)−𝑄𝑤𝐶𝑤(𝑢𝑛)−𝑂𝑃𝐸𝑋

(1+𝐷)𝑖 −𝑇
𝑖=1

𝐶𝐴𝑃𝐸𝑋. 

(1) 

CAPEX designates the capital expenditure, Qw represents 

cumulative water production, 𝑃𝑂 signifies oil price, 

𝐶𝑊 indicates the cost of produced water, 𝑄O symbolizes 

cumulative oil production, OPEX stands for the operational 

expenditure, T denotes the numerical value of years that have 

passed, and D is the discount rate. 

 

 

FIGURE 1. A general flow chart for the well placement optimization model. 

 

The goal of well placement optimization is to maximize 

NPV and minimize expenditure. This research aims to 

optimize the location by maximizing production. In each 

iteration, the vectors containing all well positions in the 

PUNQ-S3 reservoir and SPE-1 reservoir are changed. For 

example, in the case study, investigators can place a well 

anywhere. After locating the well, the NPV or total production 

of the corresponding location is calculated. Therefore, an 

algorithm will try to change the position using the search 

technique. In each iteration, a new position is calculated and 

stored at its corresponding NPV. When the maximum number 

of iterations has been achieved, the algorithm displays the 

maximum NPV. The formulation of well placement 

optimization is the maximization of NPV based on well 

locations: 

𝑀𝑎𝑥 𝑅(𝑢𝑛) (2) 

 

𝑅(𝑢𝑛) = 𝑁𝑃𝑉(𝑢𝑛) (3) 

Subjected to: 

𝐿𝐵 ≤ 𝑢𝑛 ≤ 𝑈𝐵  ∀ 𝑛𝜖 (0,1,2,3 … … 𝑁 − 1), (4) 

where 𝑈𝐵 and 𝐿𝐵 represent the upper bound and the lower 

bound of the reservoir, respectively, 𝑁𝑃𝑉 depicts net present 

value, and 𝑢𝑛 presents well coordinates. 

III. PROPOSED SURROGATE ASSISTED QUANTUM-
BEHAVED ALGORITHM 

In the proposed approach an ensemble approach and proxy 

model are employed. The ensemble approach consists of QBA 

and QPSO. Additionally, a radial basis approximation 

technique is incorporated later. Figure 2 shows the concept of 

the proposed Surrogate Assisted Quantum-behaved 

Algorithm. It demonstrates the application of the QPSO and 

QBA techniques to the sample in the multimodal search space. 

Then the samples are evaluated and stored their corresponding 

fitness values. The sampling points and their corresponding 

fitness values allowed us to create a radial basis function 

(RBF) model. After solving the RBF model, its vertex has 

been identified. The approximate models are used to find 

better solutions rather than evaluate time-consuming cost 

functions. The following section gives an overview of QBA, 

QPSO, radial basis approximation, and the proposed 

approach.  

 

FIGURE 2. Conceptualization of the proposed work. 

 

QBA
QPSO

RBF
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A. Quantum Bat Algorithm (QBA) 

In the proposed methodology (refer to Figure 2), the QBA is 

used as a component of an ensemble approach with QPSO. 

Due to QBA’s high exploration rate, it is used to evaluate the 

search space [6]. Yang et al. [59] proposed the original Bat 

Algorithm (BA), and they constructed the BA using three 

rules. The first rule states that usage of echolocation capability 

in every bat is similar, and echolocation capability can realize 

the distances 

FIGURE 3.  Flowchart of Quantum Bat Algorithm for the proposed approach. 

 

 

between various background barriers and prey (food). In the 

second rule, bats in the 𝑥𝑖 position having velocity 𝑣𝑖 with 

varying wavelength λ0 and fixed frequency 𝑓𝑚𝑖𝑛 use loudness 

A0 to search for food. Depending on targeted proximity, 

adjustment of the rate of pulses and adjustment of the 

wavelengths in their emitted pulses is performed 

automatically. In rule three, they assumed that it could change 

loudness A0 from a large positive value to a minimum value 

Amin. The primary bat algorithm (BA) offers a fast convergence 

and straightforward implementation. However, the BA tends 

to get trapped into local optima points while optimizing the 

multimodal function. A study of bat trajectories reveals that, 

as the variety declines, many bats are restricted to the best 

local solutions. Also, the bats are guided by the best solution 

now available. However, if the best solution is categorized as 

a local point, the bats are then misguided. Furthermore, the BA 

has no mechanism for jumping out of local optima. Hence, to 

tackle the difficulties in boosting population variety and 

preventing premature convergence, quantum behavior is 

incorporated in the bat algorithm. The bats are guided by the 

present global solution in the early search stage, and the mean 

best position is employed during the later search. The formula, 

which is used to update location, is based on the Monte Carlo 

method [53]. Figure 3 depicts the flowchart of QBA. It 

indicates that frequency and pulse rates are updated after the 

random initialization of bats. 

The upper and lower bounds are used to initialize the bat's 

position. The following equation determines the common 

solution: 

𝑋𝑖𝑗 = 𝑋0−(𝑋𝑚 − 𝑋0)𝑟𝑎𝑛𝑑, (5) 

where 𝑋𝑖𝑗 denotes the position of the jth dimension of the ith 

bat, 𝑋0 and 𝑋𝑚 denote the upper and lower bounds, 

respectively, and rand is a random number between 0 and 1. 

This scenario leads to the following formula where we 
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considered the bats’ frequency, velocity, and position, 

respectively: 

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛼; (6) 

𝑣𝑖
𝑡 = 𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡 − 𝑔𝑡)𝑓𝑖; (7) 

𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1 + 𝑣𝑖
𝑡; (8) 

where 𝛼 represents a random vector ranging [0,1], 𝑓𝑖 

represents the pulse frequency, 𝑓min is the minimum 

frequency, and 𝑓max  is the maximum frequency. Furthermore, 

𝑔𝑡  refers to the global best position of bats. 𝑥𝑖
𝑡 and 𝑥𝑖

𝑡−1 depict 

the ith bats position at the t iteration and the (t-1) iteration, 

respectively. 𝑣𝑖
𝑡  and 𝑣𝑖

𝑡−1 refer to the ith bat’s velocity for the t 

iteration and the (t-1) iteration, respectively.  

 

In the following equations (9-11), the Doppler effect is 

considered. Moreover, for each bat, the compensating rate C 

is considered. As in normal air, the velocity of the air is 340 

m/s, and the reformed equations (6-8) stand as: 

𝑓𝑖𝑑 =
(340+𝑣𝑖

𝑡−1)

(340+𝑣𝑔
𝑡−1)

× 𝑓𝑖𝑑 × [1 + 𝐶𝑖 ×
(𝑔𝑑

𝑡 −𝑥𝑖𝑑
𝑡 )

|𝑔𝑑
𝑡 −𝑥𝑖𝑑

𝑡 |+𝜀
], (9) 

𝑣𝑖𝑑
𝑡 = (𝑤 × 𝑣𝑖𝑑

𝑡−1) + (𝑔𝑑
𝑡 − 𝑥𝑖𝑑

𝑡 )𝑓𝑖𝑑, (10) 

𝑥𝑖𝑑
𝑡 = 𝑥𝑖𝑑

𝑡−1 + 𝑣𝑖𝑑
𝑡 , (11) 

where 𝑓𝑖𝑑 represents the ith bats frequency at the dimension 

d, 𝑣𝑔
𝑡−1 and 𝑣𝑔

𝑡 represent the velocity for the global best 

position at the (t - 1)th  and the tth iteration, and 𝐶𝑖 refers to the 

number ranging [0,1] for the bat's position. ε is introduced so 

𝜎2, the standard deviation, remains positive. Furthermore, w 

stands for weight, xid
t  denotes the position in the d dimension 

for the ith bat at the t iteration, xid
t−1 denotes the position in the 

d dimension for the ith bat at the t -1 iteration, vid
t  denotes the 

velocity in the d dimension for the ith bat at the t iteration, vid
t−1 

denotes the velocity in the d dimension for the ith bat at the t-1 

iteration, 𝑔d
t  denotes the position in the d dimension for the 

global best of the t iteration. 

In QBA, the following equation can express a new position:  

𝑥𝑖𝑑
𝑡+1 = 𝑔𝑑

𝑡 . [1 + 𝑗(0, 𝜎2)]𝜎2 = |𝐴𝑖
𝑡 − 𝐴𝑡| + 𝜀. (12) 

where 𝑗(0, 𝜎2) denotes a gaussian distribution with zero mean 

and a standard deviation of 𝜎2. 𝑥𝑖𝑑
𝑡+1 is the ith bat’s position in 

the d dimension at the t+1 iteration, and 𝑔𝑑
𝑡  is the global best 

position in the d dimension at the t+1 iteration. 𝐴𝑖
𝑡is the ith bat's 

loudness.  

Equation (12) shows the global best 𝑔𝑑
𝑡  is an attractant. 

Hence, the following equations express the position of the 

Quantum-behaved bat: 

𝑥𝑖𝑑
𝑡 = 𝑔𝑑

𝑡 + 𝛽|𝑚𝑏𝑒𝑠𝑡𝑑 − 𝑥𝑖𝑑
𝑡 | 𝑙𝑛(

1

𝑢
), 𝑢(0,1) < 0.5; (13) 

𝑥𝑖𝑑
𝑡 = 𝑔𝑑

𝑡 − 𝛽|𝑚𝑏𝑒𝑠𝑡𝑑 − 𝑥𝑖𝑑
𝑡 | 𝑙𝑛(

1

𝑢
), 𝑢(0,1) ≥ 0.5. (14) 

where 𝑢 is a random number. 𝛽 is the contraction coefficient, 

𝑚𝑏𝑒𝑠𝑡𝑑 is the average of personal best in the d dimension, and 

𝑥𝑖𝑑
𝑡  is the ith bat's position in the d dimension for the t iteration.   

After formalization of a new solution for every bat, we 

selected multiple solutions and used a random local nature 

walk. The new position for local search, therefore, was: 

𝑥𝑛 = 𝑥𝑜 + 𝜀𝐴𝑡,  (15) 

where 𝐴𝑡 denotes the average loudness of bats, ε is used to 

denote a random number, xo is the present location, and xn is 

the new position after the local search. 

In each iteration, the following equations can update the 

loudness Ai and pulse rate ri: 

𝐴𝑖
𝑡+1 = ∆𝐴𝑖

𝑡, (16) 

𝑟𝑖
𝑡+1 = 𝑟𝑖

0[1 − 𝑒𝑥𝑝( − 𝛾𝑡)], (17) 

where 𝐴𝑖
𝑡+1 denotes the ith bat’s loudness in the (t + 1)th 

iteration and 𝐴𝑖
𝑡 denotes the ith bat’s loudness in tth iteration. γ 

and ∆ are constant values. 𝑟𝑖
0 denotes the ith bat’s initial pulse 

rate, and 𝑟𝑖
𝑡+1 denotes the ith bat’s pulse rate at the (t + 1)th 

iteration.  

B. Quantum Particle Swarm Optimization (QPSO) 

In well placement optimization, different reservoirs have 

different properties. Thus, the search space will be different 

for each case [6]. To address this problem the QPSO is used  

in parallel with QBA as a component of an ensemble 

approach. Furthermore, the implementation of multiple search 

techniques is suited to different reservoirs [57]. 

Sun et al. [60] proposed an algorithm with the adaptation of 

the quantum mechanics principle for the basic PSO algorithm. 

There are certain dissimilarities between QPSO and PSO. 

PSO’s current position is guided based on the personal and 

global best. On the other hand, QPSO  follows a purely 

probabilistic scheme in which the next position is drawn from 

a probability distribution. In QPSO, current position is guided 

by mean best. Figure 4 illustrates the flowchart of QPSO. 

The distinction between QPSO and traditional PSO is that 

QPSO follows quantum behavior in all particles, and all other 

versions of PSO follow classical Newtonian dynamics.  

Instead of the position and the velocity, a wave function 

Ψ(�⃗�, s) describes the particle’s state in the Quantum-behaved 

Algorithm. The QPSO algorithm effectively removes the 

drawbacks and preserves the benefits PSO provides.  

In PSO, the following equation updates the velocity of each 

particle: 

𝑉𝑖
𝑘+1 = 𝑤𝑉𝑖

𝑘 + 𝑐1𝑟𝑎𝑛𝑑1(𝑝𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑥𝑖

𝑘) +

𝑐2𝑟𝑎𝑛𝑑2(𝑔𝑏𝑒𝑠𝑡𝑘 − 𝑥𝑖
𝑘), 

(18) 

where 𝑥𝑖
𝑘 and 𝑉𝑖

𝑘 represent the ith individual’s position and the 

velocity for iteration k, respectively. w is the weight vector, 

𝑟𝑎𝑛𝑑1 𝑎𝑛𝑑 𝑟𝑎𝑛𝑑2 are the random numbers, 𝑐1𝑎𝑛𝑑 𝑐2 are 
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acceleration constants, 𝑝𝑏𝑒𝑠𝑡𝑖
𝑘 is the personal best of the 

individual i, and 𝑔𝑏𝑒𝑠𝑡𝑘 denotes the best position in the k 

iteration.  

Each particle’s new position is calculated using the following 

equation:  

𝑥𝑖
𝑘+1 = 𝑉𝑖

𝑘+1 + 𝑥𝑖
𝑘. (19) 

 

 

In QPSO, for a population of k particles with d dimensions, 

𝑥 i = (xi1, xi2, …, xid) denotes the ith particle’s location. Qi = 

(Qi1, Qi2, …, Qid) denotes the ith particle’s personal best, i.e.,  

 

FIGURE 4.  Flowchart of Quantum Particle Swarm Optimization Algorithm for the proposed approach. 

 

pbest. Similarly, Qg = (Qg1, Qg2, …, Qgd) describes the global 

best position, i.e., gbest. qid, expressed as [64], denotes the 

local attractor of the ith particle on the d dimension: 

𝑞𝑖𝑑 = 𝜑 . 𝑄𝑖𝑑 + (1 − 𝜑 ). 𝑄𝑔𝑑 , (20) 

where φ is a random number. Sun et al. [60] proposed the 

mean best position (mbest) to avoid local optima. 

The mbest is calculated with the following equation (21): 

 

𝑚𝑏𝑒𝑠𝑡 =
1

𝑛
∑ 𝑄𝑖

𝑛

𝑖

= [
1

𝑛
∑ 𝑄𝑖1

𝑘

𝑖=1

,
1

𝑛
∑ 𝑄𝑖2

𝑛

𝑖=1

, . . . ,
1

𝑛
∑ 𝑄𝑖𝐷

𝑛

𝑖=1

] . 

(21) 

where mbest is the average position of all particles, and n is 

the number of particles. 

The following equation updates the ith particle’s next 

position on the d dimension: 

𝑥𝑖𝑑 = 𝑞𝑖𝑑 ± 𝛽|𝑚𝑏𝑒𝑠𝑡𝑑 − 𝑥𝑖𝑑|𝑙𝑛(
1

𝑢
), (22) 

where 𝑢 is a random number and 𝛽 represents the contraction 

coefficient and is expressed by [61]: 

𝛽 = (1 −
1

2
)

𝑡𝑚𝑎𝑥 − 𝑡

𝑇𝑚𝑎𝑥

+
1

2
 ,      (23) 

where 𝑡𝑚𝑎𝑥  is the maximum number of iterations and t is the 

current number of iteration. 
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C. Radial Basis Function Approximation 

In optimization, an approximation technique is used to 

accelerate the search process for computationally expensive 

problems. The radial basis function (RBF) approximation 

technique is used to determine the optimal point based on all 

the particles’ locations. After combining different approaches 

in the last stage, the approximation technique is employed to 

seek better solutions and faster convergence. In optimization, 

if N is the number of populations with d dimensions, then the 

input layer consists of the 𝑁 × 𝑑 matrix, and the output layer 

consists of the 𝑁 × 1 matrix. Using RBF, we approximated 

the function 𝑢(𝑥) as a linear combination of N radial 

functions. The following equation expressed this [62]: 

 

𝑢(𝑥) ≅ ∑ 𝜆𝑗∅(𝑥, 𝑥𝑗),         𝑓𝑜𝑟 𝑥 ∈ 𝛺𝑁
𝑗=1 ⊂ 𝑅𝑑  , (24) 

where N denotes the data points number, 𝜆𝑗 are the coefficients 

that need to be determined, and ∅ indicates the RBF. 

Thin Plate Spline (TPS) and Multi Quadrics (MQ) are 

considered advantageous for scattered data estimations [63]. 

For this reason, TPS is used in this study. The following 

equation defines a mth order TPS: 

∅(𝑥, 𝑥𝑗) = ∅(𝑟𝑗) = 𝑟𝑗
2𝑚 𝑙𝑜𝑔(𝑟𝑗),   

𝑚 = 1,2,3 … …, 
(25) 

where 𝑟𝑗 = ||𝑥 − 𝑥𝑗|| denotes the Euclidean norm. Since ∅ is 

continuous, higher-order partial differential operators require 

a higher-order TPS. In the second-order equation, we utilized 

m = 2 as an assurance of the least C2 continuity for u.  

D. Proposed Surrogate Assisted Quantum-behaved 
Algorithms  

The key feature of the proposed approach is that it 

concurrently searches the solution space through two 

strategies, solutions, or individuals. Figure 5 and Algorithm 1 

illustrate the flowchart and pseudocode of the proposed 

method. The proposed approach provides a framework for 

exchanging knowledge and immersive learning between 

algorithms with different search behaviors. Initially the 

population is subdivided into two groups. These two groups 

are used in two different search techniques such as QPSO and 

QBA to find a new position. 

 

FIGURE 5.  Flowchart of the proposed Surrogate Assisted Quantum-behaved Algorithm. 
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Algorithm 1:  Surrogate Assisted Quantum-behaved Algorithm 

Begin 

set number of swarms=N; 

the maximum number of iterations=tmax; 

randomly generate the current position of all the swarms in the population (k), the dimensions of the swarms (D), and  

find the value of the fitness function for the initial position.  

find the global best value 

Set t = 0; 

subdivide the populations into two groups m and N-m. 

while t<tmax do 

subdivide the populations into two groups m and N-m. 

              for i = 1 to the m population size do 

update search location   𝑋𝑖,𝑖𝑡𝑟+1 using the QPSO algorithm. 

               end 

               for i = m+1 to the N-m population size do 

update search location   𝑋𝑖,𝑖𝑡𝑟+1 using the QBA algorithm. 

              end 

         evaluate the fitness function value; 

         update memory location;    

         apply TPS-RBF for current population to generate approximate model; 

         find Locate optima for approximate model using QBA. 

         evaluate the fitness function value. 

         update personal best and global best location;  

        t=t+1; 

end while 

The new positions are evaluated and stored with the 

corresponding fitness values. Considering the position vector 

of the entire population as the input layer and the 

corresponding fitness values as the output layer, a proxy 

model with the TPS-RBF approximation technique is created. 

Then the optima of the approximate model are sought by 

utilizing the QBA technique.  Finally, the optimal solutions of 

the approximate model are evaluated in the primary reservoir 

and the global best location is updated after comparing it with 

the current global best location.  The approach of the proposed 

technique is below:  

Step 1: Subdivide the populations into two groups m and 

N-m. 

Step 2: For the first m population, update search location 

    𝑋𝑖,𝑖𝑡𝑟+1 using the QPSO algorithm. 

Step 3: For the first m+1 to nth population update, search        

location 𝑋𝑖,𝑖𝑡𝑟+1 using the QBA algorithm. 

Step 4: Evaluate the fitness function value. 

Step 5: Apply TPS-RBF for the current population to 

generate an approximate model. 

Step 6: Locate optima for the approximate model. 

Step 7: Update personal best and global best location. 

 

E. Advantages and Disadvantages of Proposed 
Technique  

The characteristics of the proposed technique are: (1) the 

proposed approach spontaneously subdivides its population 

into two groups, enabling it to perform better than existing 

algorithms to address a nonlinear, multimodal optimization 

problem, (2) the PSO, BA, and GA have the disadvantage of 

premature convergence, (3) the proposed approach overcomes 

this limitation because it does not update its location based on 

the personal best information, and there is no explicit global 

best either, and (4) it functions as a QBA and QPSO, giving 

this technique the advantages of these two algorithms [64].  

IV. RESULTS AND DISCUSSION 

In this study, Eclipse, a numerical simulator, and MATLAB 

were used. The simulator provided production data for specific 

well placement. All simulations ran on a PC with an i7-7500U 

CPU @2.70 GHz (4 CPUs), 3.2 GHz, and 8 GB RAM. Two 

different case studies were considered. Case study 1 used the 

SPE-1 reservoir model, and case study 2 used the PUNQ-S3 

reservoir model. In case study 1, the number of iterations and 

particles were 100 and 20, respectively, for all algorithms. In 

case study 2, the number of iterations and particles were 30 

and 5, respectively, for all algorithms [6]. Table II lists the 

parameters of algorithms. Table III lists the economic 
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parameters used to evaluate the objective function, as depicted 

in Equation 1.  

A. Case Study 1 

In this case study, a 3D simulation of a black oil reservoir is 

used to develop the SPE-1 model. [65, 66] describes detailed 

properties and specifications of the reservoir model, as shown 

in Figure 6(a). The SPE-1 model has a 10x10x3 grid block. As 

(x, y) is the coordinate for the wells, this case study optimizes 

the variable 2x2 for two wells. The dataset of this reservoir can 

be found at: https://www.spe.org/web/csp/datasets/set01.htm. 

B. Case Study 2 

In this case study, the PUNQ-S3 model is developed by 

utilizing a real field used by Elf Exploration Production to test 

methods for quantifying uncertainty assessments. The PUNQ-

S3 has 19x28x5 grid blocks. The details of the reservoir 

model can be found in [67]. Four vertical wells for 

optimization are considered. Hence, this experiment optimizes 

the 2x4 variable. Figure 6(b) shows a detailed description of 

Case Study 2. The data set of this reservoir can be found at: 

https://www.imperial.ac.uk/earth-science/research/research-

groups/perm/standard-models/eclipse-dataset/. 

C. Performance Criteria 

Clerc [68] revealed that in trial a mean value runs alone, and it 

might be inadequate to measure the performance of an 

algorithm. The researchers utilized the graphical 

representation of the convergence curve with average value 

versus function evaluations. The standard deviation provides 

the consistency of the algorithm. As the evaluation process of 

the algorithms is a prime concern for this task, the researchers 

considered several criteria [68, 69]. These criteria are below:  

Effectiveness is a simple, important measure of 

performance. This is a measure of the average value between 

tests of the best solution found as a percentage of the global 

optimum or, 

𝑓̅ =
1

𝑁
∑

𝑓(𝑝𝑖
^)

 𝑓(𝑝∗)

𝑁
𝑖=1  , (26) 

where f(p) refers to the solution of p, 𝑝 ∗ denotes the global 

optimum solution, 𝑝𝑖
^ represents the best solution found in trial 

i in N number of trials for each algorithm. 

Efficiency, another crucial criterion, indicates the speed at 

which the algorithm reaches a performance level utilizing a 

unique evaluations number required to find a proper solution, 

at least 98% of the best solution found, on average between 

tests or, 

�̅� =
1

𝑁
∑

𝐿𝑖
98

 𝑀

𝑁

𝑖=1

  , (27) 

where 𝐿𝑖
98 refers to the unique function evaluations number 

that is essential to calculate q as f(q) > 0.98f(𝑝 ∗) for trial i (for 

maximization) and M denotes the function evaluations gross 

number per trial. 

D. Convergence Analysis 

Each algorithm is run 30 times and their average convergence 

curve is shown in Figure 7. Figure 7(a) shows that, in case 

study 1, the proposed technique provided superior results 

compared to other compared algorithms for finding better 

NPV. Additionally, this study established that the second-best 

algorithm is QPSO, and QBA achieved the third best NPV. GA 

and PSO were trapped in local optima. Case study 1 showed 

the proposed algorithm has faster convergence and achieved 

the highest NPV. Figure 7(b) shows that the proposed 

technique acquired a better NPV in the PUNQ-S3 reservoir 

model. QBA was the second-best algorithm. However, The 

GA, CSA, and GSA algorithms could not provide a 

satisfactory NPV in either case study. It has been observed that 

the performance of the stand-alone algorithm was inconsistent 

[6]. Additionally, Figure 7 shows that the proposed algorithm 

reached convergence after 10 and 60 iterations. However, 

other algorithms required more iterations to achieve 

convergence. Therefore, it is worth mentioning that the 

proposed approach provided faster convergence than other 

algorithms in both case studies. Furthermore, Table IV lists the 

minimum, maximum, average, standard deviation, efficiency, 

and effectiveness of NPV from trials. It also shows that the 

proposed algorithm is better in four criteria. The BA, however, 

had superior efficiency. The reason for this phenomenon is 

that efficiency is calculated concerning its own best solution. 

Despite having a lower NPV than other algorithms, the BA 

achieved higher efficiency. 

The QBA provided the maximum value, but the standard 

deviation was higher. Furthermore, the proposed technique 

had the highest average with the lowest standard deviation. 

Table V demonstrates that the proposed algorithm is better in 

five criteria. Figure 8 shows the  convergence curve of the best 

performed result. Figure 9 shows the proposed algorithm 

provided the 2nd lowest standard deviation compared to other 

algorithms. It can be inferred that the proposed algorithm’s 

performance is better than in both of the case studies. 
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TABLE II 

PARAMETERS FOR METAHEURISTIC ALGORITHMS 

 LITERATURE YEARS ALGORITHM PARAMETER CONFIGURATION 

1 [48] 2017 BA 
Frequency range = [0, 1] 

Pulse rate = Loudness are = 0.5 

2 [6] 2020 QPSO 

Final inertia weight, wmin = 0.5 

Initial inertia weight, wmax = 1 

𝑐1 and 𝑐2 = 1.494 

3 [70] 2018 PSO 

𝑐1 and 𝑐2 = 1.494 

Inertial factor = 0.729 

(Here 𝑐1 and 𝑐2 represent acceleration) 

4 [37] 2018 GA 
Mutation = 5% 

Crossover = 60% 

5 [71] 2010 CSA 
Awareness Probability, Ap = 0.3 

Flight length, fl = 2 

6 [65, 66] 2018 DE 
weighting factor F = 0.5  

crossover probability, Cr = 0.9 

7 [67] 2009 GSA 
G0 = 100 

Alfa = 20 

8 [6] 2020 QBA 

The maximal and minimal pulse rate of 1 and 0 

A𝑚𝑎𝑥 and A𝑚𝑖𝑛= 2 and 1 

The frequency of updating the loudness and emission pulse 

rate, G = 10 

wmax and wmin = 0.9 and 0.5 

The probability of habitat selection = 0.9 and 0.6 

fmax and fmin = 1.5 and 0 

Delta, δ = 0.99 

 βmax and βmin = 1 and 0.5 

Cmax and Cmin = 1 and 0.9 

Gamma, γ  = 0.9 

 

 
TABLE III 

ECONOMIC PARAMETERS [18], [6] 

ECONOMIC PARAMETER VALUE UNIT 

Discount rate 10% - 

CAPEX 6.4 × 107 $ 

Gas price, 𝑃𝑔 0.126  $/MScf 

Oil price, 𝑃𝑂 290.572 $/STB 

Water production cost 31.447  $/STB 

Gas price, 𝑃𝑔 0.126  $/MScf 

Oil production cost 72.327 $/STB  
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(a) Initial gas saturation (b) Initial pressure saturation 

  

(c) Initial water saturation (d) Initial oil saturation 

(a) Case study 1. 
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(a) Initial gas saturation (b) Initial pressure saturation 

  

(c) Initial water saturation (d) Initial oil saturation 

(b) Case study 2. 

FIGURE 6.   Initial pressure, oil, and gas saturation properties under different case studies [6]. 

V. LIMITATIONS 

Although researchers contributed to many areas in well 

placement selection, improving the reservoir proxy model,  

and NPV of well placement are the main interests of this study. 

To enhance results and extract maximum NPV from input 

data, a new type of algorithm is employed in this study. This 

study attempts to optimize well positions. In the oil and gas 

sectors, however, investigators must optimize history 

matching and well management parameters. In this analysis, 

well controls remain fixed. Nevertheless, the need exists for 

optimal well controls [72]. Furthermore, deciding the location 

of oil wells and operating settings (for example, 

infusion/recuperation rates for heterogeneous supplies) poses  

 

 

difficult challenges and has an impact on underground oil 

recovery and monetary value. The optimization of well 

position is an integer-based problem. 

Moreover, researchers usually optimize the well position first, 

and they optimize well control settings with the fixed optimal 

well location [73]. Optimization requires a thorough 

sensitivity analysis. Additionally, only two case studies are 

used in this study. Furthermore, uncertainty analysis is not 

considered in this study.  The Monte Carlo Simulation (MCS) 

is the most often used method for dealing with uncertainty 

problems. The key drawback of this method is that it 

converges slowly, which means it is expensive to compute. To 

maintain a variety of uncertainties, a standard MCS needs a  
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(a) Case study 1                                                                     (b)  Case study 2 

FIGURE 7.  Convergence Curve for the well placement optimization problem. 

(a) Case study 1                                                                     (b)  Case study 2 

FIGURE 8.  Convergence Curve for the well placement optimization problem 

 

TABLE IV 
 STATISTICAL DATA OF CASE STUDY 1 

 
GSA [6] 

[23] 
BA [6] DE [6] 

PSO [6] 

[23] 
GA [6]  QBA [6] QPSO [6] 

CSA [6, 
23] 

PROPOSED 

Min 3.63× 1010 3.56×1010 3.64×1010 3.75×1010 3.30× 1010 3.82× 1010 3.78× 1010 3.34× 1010 3.8318× 1010 

Max 3.84× 1010 3.85×1010 3.86×1010 3.86×1010 3.80× 1010 3.86× 1010 3.86× 1010 3.83× 1010 3.8618× 1010 

Average 3.76× 1010 3.76× 1010 3.80×1010 3.82×1010 3.60× 1010 3.84× 1010 3.8350×1010 3.66× 1010 3.8443× 1010 

Standard 

deviation 
6.21× 108 6.92×108 5.39× 108 3.09× 108 1.37× 108 1.61× 108 2.58× 108 1.63× 108 

1.2421× 108 

Effectivene

ss 
9.74× 10-1 9.74× 10-1 9.84× 10-1 9.89× 10-1 9.32× 10-1 9.95× 10-1 9.93× 10-1 9.49× 10-1 

9.944× 10-1 

Efficiency 9.79× 10-2 1.00× 10-1 1.46× 10-1 1.52× 10-1 1.23× 10-1 1.79× 10-1 2.17× 10-1 1.54× 10-1 1.097× 10-1 
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TABLE V 

 STATISTICAL DATA OF CASE STUDY 2 

 
GSA [6] 

[23] 
BA [6] DE [6] 

PSO [6] 

[23] 
GA [6]  QBA [6] QPSO [6] CSA [6, 23] 

PROPOSED 

Max 3.84×109 5.30× 109 5.13×109 5.14×109 5.09×109 5.33×109 5.03× 109 3.72× 109 5.0887× 109 

Min 2.83× 109 2.10× 109 3.38×109 3.43×109 3.01×109 4.29×109 4.38× 109 2.43× 109 4.5488 × 109 

Average 3.33×109 3.28× 109 4.26×109 4.07×109 3.67×109 4.67×109 4.77× 109 3.24× 109 4.8991× 109 

Standard 

deviation 
2.62×108 8.35× 108 4.59×108 5.72×108 5.11×108 2.74×108 1.60× 108 3.73× 108 

2.2516× 108 

Effectivene

ss 
6.24× 10-1 6.16× 10-1 8.00× 10-1 7.63× 10-1 6.88× 10-1 8.76× 10-1 8.94× 10-1 6.08× 10-1 

9.192× 10-1 

Efficiency 1.39× 10-1 8.25× 10-1 6.46× 10-1 5.53× 10-1 4.78× 10-1 5.38× 10-1 4.28× 10-1 5.09× 10-1 5.140× 10-1 

(a) Case study 1                                                                                (b)  Case study 2 

FIGURE 9.  Box plot for CSA, PSO, QPSO, GA, CSA, QBA, BA, DE, and proposed technique. 

 

few hundred runs, which is impractical for very large and 

complicated models. Furthermore, the findings of a MCS are 

highly vulnerable to distribution assumptions. Even if the 

mean and variance are the same, the outcomes can vary 

significantly due to different distributions [74]. To address 

these shortcomings, future research can integrate rigorous 

architecture optimization based on polynomial chaotic 

expansion [75] and Sparse Grid-based Polynomial Chaos 

(SGPC) [76]. Investigators can also consider info-gap decision 

theory as an alternative to MCS. 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

In this study, the QBA algorithm and QPSO were 

implemented in parallel for the investigation of well 

placement optimization. The performance is investigated on 

two separate reservoirs. As a standalone technique, QPSO’s 

performance was better in the PUNQ-S3 reservoir than other 

stand-alone techniques. The QBA’s performance was also 

better than other stand-alone techniques for the SPE-1 

reservoir. Hence, this study implemented a Surrogate Assisted 

Quantum-behaved Algorithm and exploited the different 

search techniques. 

The experimental results show the proposed technique can 

enhance the search technique and provide a better solution 

than other algorithms. Concluding remarks are as follows: 

• Due to the same search pattern, a stand-alone search 

algorithm cannot perform well.  

• Quantum-based metaheuristic techniques are less likely 

to be stuck in local optima and less susceptible to 

premature convergence for well placement optimization. 

• In both case studies, the proposed approach’s standard 

deviation is lower than other existing state-of-the-art 

algorithms. Hence, the proposed approach can provide 

better solutions for well placement optimization problem. 

• QBA performed well in case study 2 and QPSO 

performed well in case study 1. 

• The ensemble strategy effectively solved the well 

placement optimization problem by providing better 

results for both case studies. 

The conclusion of the study is that proxy model-based 

optimization techniques provided better results. Furthermore, 

ensemble approaches of algorithms effectively address 

dynamic search space. Future work on well placement 

optimization can utilize other methods, such as Elephant 

Herding, Monarch Butterfly, the Kidney-inspired Algorithm, 

the Pity Beetle Algorithm, the Spotted Hyena Optimizer, 
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Thermal Exchange Optimization, the Grasshopper 

Optimization Algorithm, and the Grey Wolf Optimizer. 

Moreover, the main focus was the optimization algorithm. 

The history matching is not considered in this study since it is 

in another stage of oil production. As part of ongoing research, 

classical benchmark functions and other reservoirs will be 

included to evaluate the performance of the proposed 

algorithm. A sophisticated deep learning and data mining 

method to address reservoir uncertainty modeling is the clear 

way of the future [77]. 

The authors identified four challenges for well placement 

optimization: 

i) The general closed-loop workflow of proxy simulation 

for uncertainty optimization. 

ii) An approximation approach to generate a surrogate 

model that is computationally feasible and quantifies the 

uncertainty set of all chosen models. 

iii) Carrying out optimizations while considering 

complexity. 

iv) Perform risk identification and decision-making under 

decision-makers’ attitudes and expectations. 

For metaheuristic algorithms, investigation of the effects of 

decision variables, limits, and internal parameters is critical. 

Problem-related customization, such as algorithm parameter 

tuning, is also important, and generating a diverse population 

to prevent local optima is a challenge. Strong diversity can 

help to prevent problems caused by local optima. To escape 

local optima, future research should consider incorporating 

levy flight, chaotic maps, and other techniques into current 

metaheuristic algorithms. Finally, researchers should consider 

a large search space to find the optimal solution.  

 

Acronyms 

WPO Well Placement Optimization 

CSA Crow Search Algorithm  

ABC Artificial Bee Colony 

PSO Particle Swarm Optimization 

GA Genetic Algorithm 

QPSO Quantum Particle Swarm Optimization 

SCGA   Standard Continuous Genetic Algorithm 

GSA Gravitational Search Algorithm 

QBA Quantum-behaved Bat Algorithm 

ICA Imperialist Competitive Algorithm 

MADS Mesh Adaptive Direct Search 

SPSO Standard Particle Swarm Optimization 

NFL No Free Lunch Theorem 

O-CSMADS Meta-optimized hybrid cat swarm 

MADS  

MFO 

 

Moth-Flame Optimization 

 

SCA Sine Cosine Algorithm 

 

Symbols 

A Loudness 

D Discount rate (fraction) 

Cw Cost of produced water ($/STB) 

T   Number of years 

NPV Net present value ($) 

OPEX Operational expenditure ($) 

CAPEX Capital expenditure ($) 

Po Oil price ($/STB) 

Nomenclature 

T Number of years 

SPE-1 A Synthetic Reservoir 

w The inertia weight 

Q Cumulative production (STB) 

G The frequency of updating emission pulse 

rate and the loudness 

C The compensation rate for Doppler Effect  

𝑗(0, 𝜎2) A Gaussian distribution 

PUNQ-S3 A synthetic Reservoir 

f The frequency  

λ Varying wavelength 

r Pulse rate 

Rand random 

Min Minimum 

Max Maximum 
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