
Delgado-Santos, Paula, STRAGAPEDE, GIUSEPPE, Tolosana, Ruben, Guest, 
Richard, Deravi, Farzin and Vera-Rodriguez, Ruben (2022) A Survey of Privacy 
Vulnerabilities of Mobile Device Sensors.  ACM Computing Surveys . ISSN 
0360-0300. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/92768/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1145/3510579

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY-ND (Attribution-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/92768/
https://doi.org/10.1145/3510579
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


A Survey of Privacy Vulnerabilities of Mobile Device Sensors

PAULA DELGADO-SANTOS∗, School of Engineering and Digital Arts, University of Kent, UK

GIUSEPPE STRAGAPEDE∗, Biometrics and Data Pattern Analytics Lab, Universidad Autonoma de Madrid,

Spain

RUBEN TOLOSANA, Biometrics and Data Pattern Analytics Lab, Universidad Autonoma de Madrid, Spain

RICHARD GUEST, School of Engineering and Digital Arts, University of Kent, UK

FARZIN DERAVI, School of Engineering and Digital Arts, University of Kent, UK

RUBEN VERA-RODRIGUEZ, Biometrics and Data Pattern Analytics Lab, Universidad Autonoma de Madrid,

Spain

The number of mobile devices, such as smartphones and smartwatches, is relentlessly increasing to almost 6.8 billion by 2022,
and along with it, the amount of personal and sensitive data captured by them. This survey overviews the state of the art of
what personal and sensitive user attributes can be extracted from mobile device sensors, emphasising critical aspects such as
demographics, health and body features, activity and behaviour recognition, etc. In addition, we review popular metrics in
the literature to quantify the degree of privacy, and discuss powerful privacy methods to protect the sensitive data while
preserving data utility for analysis. Finally, open research questions are presented for further advancements in the ield.
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1 INTRODUCTION

Mobile devices such as smartphones, tablets, and wearables are provided with several sensors that are able to
acquire a vast amount of personal information in diferent forms and for diferent purposes. This aspect, in
combination with the signiicant advancements of the computational and communication capabilities of mobile
devices over the last years, has shown the high potential of mobile devices in many application ields [69, 114, 165].
The large availability of personal data generated on mobile devices, in combination with their ubiquity (with 3.9
billion smartphones globally in 2016, estimated to rise to 6.8 billion by 2022 [81]) and their always-on nature has
turned this technology into a potential source of major invasion of persona privacy.
The European Union has provided the General Data Protection Regulation (GDPR), deining personal data

as any information related to an identiied or identiiable natural person [2]. Moreover, the GDPR also deines
sensitive data as a subset of personal information, that includes: i) personal data revealing racial or ethnic origin,
political opinions, religious or philosophical beliefs; ii) trade-union membership; iii) genetic data, biometric data
processed solely to identify a human being; iv) health-related data; and v) data concerning a personâĂŹs sex
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life or sexual orientation [2]. Automated processing of user data, also known as user proiling [2], can easily
reveal such attributes from data acquired through mobile user interaction by requesting irrelevant permissions,
lax deinition of permissions or misuse of permissions, combined with the aggregation of highly personalised
data, reducing the privacy and security experience of the inal users [26, 36]. Consequently, many works in the
literature have focused on preventing potential misuse. This is the motivation of recent EU-funded, Innovative
Training Networks (ITN) such as PriMa [5] and TReSPAsS [6].

In this context, we distinguish between privacy protection and sensitive data protection. They both aim to
de-identify the user data and avoid re-identiication [76] of direct identiiers, such as names, social security
numbers, addresses, etc. [3], and indirect identiiers. The latter are not capable of identifying a particular individual
but can be used in conjunction with other information to identify data subjects [58]. However, privacy protection
refers to the security of the personal data and it borrows terminology, deinitions and methods from cybersecurity,
whereas sensitive data protection focuses on data modiication techniques that account for the sensitive data while
maximising the residual data utility for analysis. The idea of selective sensitive data protection was conceived with
the development of the irst large databases [23]. Early works in this ield led to the concept of data sanitisation
[34], as a database transformation before its release to a third party, and to the concept of Privacy Preserving Data
Mining (PPDM) [24], as the development of models about aggregated data without access to precise information
in individual data records. Furthermore, the term de-identiication was coined to deine the operation of Personal
Identiiable Information1 (PII) removal from data collected, used, archived, and shared by organisations [76].

Privacy is a multifaceted concept which has received a plethora of formulations and deinitions [35, 43, 133, 174].
A profound discussion of the concept of privacy is, however, not in the scope of the present work. We will adopt
the perspective of Article 21 of the GDPR, which states that the subject shall have the right to object, on grounds
relating to his or her particular situation, at any time to processing of personal data concerning him or her. From
this perspective, the main contributions of the present article are:

• An overview of the sensors and the raw data commonly available in modern mobile devices, paying special
attention to the background sensors as they may be considered innocuous by the end users.
• A description of the typical application scenarios and purposes of collected data for mobile scenarios.
• An in-depth analysis of the personal and sensitive data extracted from mobile background sensors and the
corresponding automated methods, focusing on: demographics, activity and behaviour, health parameters
and body features, mood and emotion, location tracking, and keystroke logging.
• A summary of the metrics proposed in the literature for privacy quantiication from the perspective of
sensitive data, including also a review of the methods to achieve sensitive data protection.

For completeness, we would like to highlight other recent surveys in the ield focusing on other privacy aspects.
In [80], the authors focused on privacy protection in the context of authentication. In [78], a broad survey was
presented about privacy leakage in mobile computing with especial interest in mobile applications, advertising
libraries, and connectivity. A comprehensive overview is provided, but without a speciic focus on the sensitive
data. Finally, an analysis of privacy in the context of soft biometrics2 is considered in [59], focusing on the
extraction of demographic information such as gender from image and video data, not from mobile background
sensors as in the present survey. Similarly, privacy was studied in the context of audio data in [73]. In contrast to
previous work, we pay special attention to sensitive data and provide, to the best of our knowledge, the irst
survey that focuses directly on sensitive data and their privacy protection metrics and methods.

1Personal Identiiable Information (PII) is deined as information suicient to distinguish or trace an individual’s identity. This information
may be used on its own or in conjunction with other information relating to an individual [103].
2Soft biometrics is deined as the characteristics that provide some information about the individual, but lack the distinctiveness and
permanence to suiciently diferentiate any two individuals [89].
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The rest of this survey is organised as follows. We irst provide in Sec. 2 an overview of the sensors and the raw
data commonly available in modern mobile devices. In Sec. 3 the typical application scenarios and purposes of
collected data are described. Sensitive user information extraction is addressed in Sec. 4. In addition, the methods
used to achieve the goal of extracting information are systematically discussed. Sec. 5 focuses on metrics whereas
Sec. 6 focuses on methods for privacy protection techniques from the perspective of the sensitive data. In Sec. 7,
the general conclusions of the present study are drawn and some open research questions that have emerged
through the present survey are outlined for further investigation.

2 MOBILE ACQUISITION OF SENSITIVE DATA

Mobile devices ofer a rich ground for data collection and processing. Smartphones, to begin with, are in fact
distinguished from previous generation cellular phones by their stronger hardware capabilities (e.g., equipped
with multi-core processors, GPUs, hardware acceleration units and gigabytes of memory) and powerful mobile
operating systems, which facilitate wider sensing, software, internet, and multimedia functionalities, alongside
core phone functions.
Mobile device built-in sensors, known as background sensors, are capable of providing frequent measures of

physical quantities in an unobtrusive and transparent way. However, these data can be easily utilised to extract
sensitive information of the user such as gender, age, emotion, ethnic group, etc.

This is also the case of other popular wearable devices such as smartwatches. Wearables might be considered
under the broad deinition of Internet of Things (IoT) devices since they are connected to the internet to collect
and exchange data to perform automated decision making [61]. Their popularity among consumer electronics
is rapidly increasing and they are progressively becoming capable of more specialised measurements and
analyses [91]. In general, wearable manufacturers often provide users with mobile applications to install on their
smartphones for communication and computing purposes, together with a more complete user interface. For
example, smartwatches or itness tracker bracelets can provide measurements of walked or run distances (based
on data from motion sensors and Global Positioning System (GPS)) but also physiological parameters such as
heart rate, Electrocardiogram (ECG), stress, sleep quality, etc.

Table 1 provides a description of the sensors and the raw data commonly available in modern mobile devices,
grouped according to their sensing domain. In general, sensors can be classiied into two categories based on
the process adopted to produce the output signal: i) hardware sensors, on one hand, are physically installed
components that perform a transduction of the physical quantity they measure to an electrical signal, which is
converted into the digital domain for further processing; ii) software sensors, on the other hand, rely on data
already made available by hardware sensor and/or calculate them to produce a measurement.
Motion sensors are responsible for measuring the acceleration and rotational forces in the three axes of the

device. Hardware-based motion sensors will register continuous quantities as in the case of acceleration or
angular velocity, whereas, when software-based, their output could be either continuous or event-driven as in
the case of a step detector. Position sensors range from measuring changes in the Earth’s magnetic ield for
orientation in space to proximity sensors, whereas environmental sensors are generally triggered by an event
and return a single scalar value measurement. When designed to return continuous measurements, the sampling
rate of these sensors can reach up to around 200Hz. Nevertheless, their power consumption is low [17].
Speciic physiological/biological parameter measurements are also available on many mobile devices thanks

to dedicated health sensors. For example, most smartphones and smartwatches include built-in optical sen-
sors to capture changes in blood volume in the arteries under the skin, from which heart-related as well as
polysomnographic parameters can be obtained [54, 161].

Touchscreen data can be in the form of keystrokes acquired from the keyboard [122], or in the form of touch
data acquired throughout the user interaction [166]. In the former case, the virtual keys pressed are logged

ACM Comput. Surv.
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Table 1. Description of the sensors and the raw data commonly available in modern mobile devices. BPM- Beats Per

Minute, ECG- Electrocardiogram, SpO2- Saturation of Peripheral Oxygen, GPS- Global Positioning System, SSID- Service

Set IDentifier, RSSI- Receiver Signal Strength Indicator.

Sensor Type Sensor / Data Source Measured / Logged Quantity Scope / Purpose Sensor Type

Motion

Accelerometer /
Linear Accelerometer

Acceleration Force Device Traslation Hardware

Gyroscope Angular Velocity Device Rotation Hardware

Rotation Vector Angle Device Orientation
Hardware,
Software

Gravity Magnitude of Gravity Device Orientation
Hardware,
Software

Signiicant Motion Change of user movement Walking or Riding Vehicle Software
Step Counter Number of Steps Physical Activity Tracking Software
Step Detector Step Physical Activity Tracking Software

Position

Geomagnetic Field Earth’s Magnetic Field Device Orientation Hardware
Proximity Distance Device Distance from Surface Hardware
Magnetometer Earth’s Magnetic Field Device Orientation Hardware
Geomagnetic Rotation
Vector

Earth’s Magnetic Field Device Orientation
Hardware,
Software

Game Rotation Vector Angle Device Rotation
Hardware,
Software

Environmental

Light Illuminance Screen Luminosity Regulation Hardware
Pressure Ambient Pressure Contextual Information Hardware
Temperature Ambient Temperature Contextual Information Hardware
Humidity Ambient Humidity Contextual information Hardware

Health

BPM Number of Beats
Physical Activity
Monitoring

Hardware

ECG Sinus Rhythm Graph
Physical Activity
Monitoring

Hardware

SpO2
Arterial Blood Oxygen
Saturation Percentage Level

Physical Activity
Monitoring

Hardware

Blood Pressure
Systolic and Diastolic
Average Pressure

Physical Activity
Monitoring

Software

Stress
Percentage based on
Heart Beat Variability

Physical Activity
Monitoring

Software

Sleep / Wake Amount Time
Physical Activity
Monitoring

Hardware,
Software

Sleep Phase Transitions Time
Physical Activity
Monitoring

Hardware,
Software

Caloric Consumption Step Counter
Physical Activity
Monitoring

Software

Touchscreen
Keystroke Keys Presses and Releases Key Input Hardware

Touch Data
Screen Coordinates,
Pressure of Touch

Complex Touch Gestures Hardware

Network, Location
and Application

Wi-Fi
SSID, RSSI, Encryption Protocol,
Frequency, Channel

Connectivity Hardware

Bluetooth
SSID, RSSI, Encryption Protocol,
Frequency, Channel

Connectivity Hardware

Cell Tower ID Connectivity Hardware

GPS
Latitude, Longitude, Altitude,
Bearing, Accuracy

Navigation Hardware

App Usage Name and Time of Used Apps System Log Software
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together with pressure and timestamps, for each key press and release. From these raw data, it is possible to
extract more complex features, such as the hold time, inter-press time, inter-release time, etc. [18]. In addition
to keystroke, touchscreen panels signiicantly enlarged the input data space including touch data. In fact, it is
possible to track the touch position in terms of X and Y coordinates in the screen reference system, but also
pressure information and complex multi-touch gestures such as swipe, pinch, tap and scroll. Other complex
features that can be extracted from touch data are velocity, acceleration, angle and trajectory [167].

Connectivity is yet another fundamental aspect of mobile devices. Their usefulness and ubiquity stem from the
vast spectrum of functionalities they support thanks to many installed network protocols. Network connection
data retains information about users’ routine patterns, therefore it can be used for behavioural proiling and
sensitive information extraction [108]. With the ifth-generation standard for cellular networks (5G) being
commercialised and the sixth generation (6G) in development, signiicant improvement in terms of bit rates
and latency will allow for extensive machine-to-machine communications, thus increasing the vast spectrum of
functionalities already supported by mobile devices [60].

3 SENSOR APPLICATION SCENARIOS

In 2008, the two most common mobile operative systems, Android and iOS, had less than 500 apps available for
download. To date, Android users are able to download over 2.87 million apps, followed by the Apple App Store
with almost 1.96 million apps [7]. The possible application scenarios are wide ranging. Here we describe some
popular application scenarios using mobile sensors.

3.1 User Authentication

In traditional authentication schemes, the legitimate user is expected to have knowledge of a secret such as a PIN
code, a password or a pattern to gain access (authentication based on łwhat-you-know"), or an object, such as a
card reader (authentication based on łwhat-you-have"), whereas recent authentication schemes largely deployed
on mobile devices are based on the łwhat-you-are" paradigm: some traits of the user are acquired and processed
in order to verify their identity [131]. With regard to mobile user authentication, a common approach is based
on biometrics (both physiological and behavioural) [90], as in the case of entry-point ingerprint or face-based
identiication. A severe limitation of these processes consists in the fact that once the device is unlocked, as long
as it remains active, an intruder would have unlimited time at their disposal. To provide prolonged protection,
several studies have investigated and proved the feasibility of continuous authentication schemes for mobile
devices based on behavioural biometrics [170]. In this case, biometric data would be continuously acquired in
a passive way throughout normal device usage to constantly verify the user’s traits. Diferent aspects such as
modality, scenarios or environment, among others, can lead to alterations in the performance of mobile biometric
systems [39]. Often combined, background sensors [10, 176], touchscreen [150], and network information [108]
are among the most frequent modalities explored to develop behavioural biometric continuous authentication
systems.

3.2 Healthcare and Fitness

Healthcare is a major ield of study for mobile applications. The term łmHealth" was coined to indicate a sub-set of
eHealth that includes medical and public health practice supported by mobile devices. Mobile apps help improve
healthcare delivery processes and patients could beneit in terms of monitoring and treatment of diseases and
chronic conditions, among many other healthcare purposes[130]. Examples of mobile apps include those that
provide measurements of postures, report on mental disorders [77], and assess symptoms of conditions such as
Parkinson disease, stress, dementia, etc. [71, 143]. Moreover, mobile health apps can be essential in sustaining a
healthy lifestyle among people by monitoring and recommending behaviour corrections. From this perspective,
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mobile devices such as smartwatches are largely used for itness tracking. Physical exercise monitoring takes
place by acquiring and processing background and GPS sensor data in a explicit and transparent way for the user
[30, 31, 98].

3.3 Location-based Services

GPS and geolocation data are used by applications to present information related to the environment and the
position of the users, for purposes such as targeted advertising, navigation, and recommendations [78]. These
location-aware applications are under the context awareness paradigm [147]. Additionally, besides their native
scope of communication, short range protocols such as Bluetooth and Wi-Fi allow mobile devices to exploit
the information of nearby devices for purposes similar to the ones described. This concept can be particularly
useful deining a semantic context of immediate surrounding, especially in the case of indoor environments.
For example, in [113], the authors explored the feasibility of creating virtual tours in museums or expositions
to deliver information about the items in the proximity of the users, who can receive this information on their
mobile devices.

3.4 Other Applications

Traditionally, background sensors contribute to improving the mobile device user experience in several ways. For
instance, position sensors are useful for recognising the orientation of the device in order to switch from portrait
to landscape modality, and vice versa. Light sensor information about the illuminance is used to automatically
adjust the screen brightness. The proximity sensor will lock the screen and activate a diferent speaker when the
user is placing a call. Mobile device background sensors are also widely employed for Augmented Reality (AR)
applications in several ields, such as education, entertainment, commerce, and navigation, among others [100].
AR-based apps heavily rely on the information provided by the background sensors to deliver information.

In addition, the sophisticated sensing capabilities of mobile devices, combined with their vast difusion, have
led to the idea of accomplishing large-scale sensing through them, known in literature as mobile participatory
sensing [42]. Individuals with sensing and computing devices volunteer to collectively share data to measure and
map phenomena of common interest, in a crowd-sourced fashion [78]. Applications where mobile participatory
sensing has been used include noise pollution monitoring, litter monitoring, monitoring of traic and road
conditions, among others [117].

4 PRIVACY SENSITIVE DATA

The automated processing of user data acquired by mobile device sensors can reveal a signiicant amount of
personal and sensitive information. In particular, while sensors such as cameras, GPS, or microphone are privacy-
sensitive and require explicit user permission, many other sources such as accelerometer, touchscreen or network
connection logs are less protected in terms of privacy. However, these data can also become crucial in obtaining
private user information, since they can be processed to ascertain attributes that allow to re-identify a person, to
extract demographic information or data related to their activity and health, among others.
Processing data from which it is possible to extract personal and sensitive information can lead to problems

arising from the nature of these data. A common characteristic of sensitive data is in fact its uniqueness for each
individual and its strict association to their owner. These implications are particularly relevant with regard to
biometric data. In the biometric scenario, additional risk factors include: the modalities used to store personal
data, the owner of the system, the used recognition modality (authentication or identiication in a biometric
database), the durability and class of the used traits, depending on which the severity of the consequences can
vary [107]. An outline of the diferent sensitive aspects of mobile device users that can be extracted from the
diferent mobile device sensors, with some of the most important work in each ield, is shown in Table 2. In the
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Table 2. Comparison of diferent state-of-the-art sensitive data acquisition approaches. k-NN- k-Nearest Neighbours, RF-

Random Forest, SVM- Support Vector Machines, LSTM- Long-Short Term Memory, HMM- Hidden Markov Model, AUD-

Active User Detection, DBSCAN- Density-based Spatial Clustering of Applications, CNN- Convolutional Neural Network,

RNN- Recurrent Neural Network, DTW- Dynamic Time Warping, Acc- Accuracy, ERR-Equal Error Rate, AUROC- Area Under

the Receiver Operating Characteristic, KL-Score- Kullback-Leibler Score

Sensitive Data Sensors Study Classiier
Best

Performance

Demographics

Motion

Jain and Kanhangad (2016) [12] SVM Acc. = 76.83%
Davarci et al. (2017) [67] k-NN Acc. = 85.3%
Nguyen et al. (2019) [129] RF Acc. = 96%
Singh et al. (2019) [144] 4 Classiiers Acc. = 80%
Sabir et al. (2019) [145] LSTM + Leave One Out Acc. = 94.11%
Ngo et al. (2019) [160] HMM ERR = 5.39%
Meena and Saeawadekar (2020) [116] Ensemble Boosted Tree Acc. = 96.3%

Touchscreen

Miguel-Hurtado et al. (2016) [119] Decision Tree Acc. = 78%
Acien et al. (2019) [9] AUD Acc. = 97%
Nguyen et al. (2019) [129] RF Acc. = 99%
Jain and Kanhangad (2019) [88] k-NN Acc. = 93.65%

Network, Location and
Application

Riederer et al. (2015) [141] Logistic Regresion Acc. = 72%
Neal and Woodard (2018) [127] RF + Naïve Bayes Acc. = 91.8%
Wu et al. (2019) [180] XGBoost Acc. = 80%

Activity and Behaviour

Motion

Sun et al. (2010) [105] SVM Acc. = 93.2%
Anjum and Ilyas (2013) [29] Decision Tree AUROC = 99%
Thomaz et al. (2015) [164] DBSCAN Acc. = 76.1%
Arnold et al. (2015) [33] RF Acc. = 70%
Chang et al. (2018) [104] k-NN Acc. = 71%

Network, Location and
Application

Wan and Lin (2016) [177] Fuzzy Classiication Acc. = 96%
Chen et al. (2018) [55] CNN Acc. = 97.7%
Ma et al. (2021) [182] 2D CNN + RNN Acc. = 83%

Health Parameters and
Body Features

Motion
Yao et al. (2020) [183] CNN+ LSTM Acc. = 94.8%
Hussain et al. (2021) [84] Naïve Bayes Acc. = 71%

Touchscreen Arroyo-Gallego et al. (2017) [158] SVM AUROC = 88%
Network, Location and
Application

Palmius et al. (2016)[124] Linear Regression Acc. = 85%

Mood and Emotion

Motion
Quiroz et al. (2018) [138] RF AUROC >81%
Neal and Canavan (2020) [159] RF F1-Score >95%

Touchscreen
Gao et al. (2012) [74] SVM Acc. = 69%
Shah et al. (2015) [153] Lienar Regressin Acc. 90.47%

Network, Location and
Application

Zhang et al. (2018) [188] Factor Graph Acc. = 62.9%

Location Tracking
Motion

Hua et al. (2017) [87]
Naïve Bayes
+ Decision Tree

Acc. = 92%

Nguyen et al. (2019) [93] DTW KL-Score = 0.057%
Network, Location and
Application

Singh et al. (2018) [156] RF Acc. = 85.7%

Keystroke Logging and
Text Inferring

Motion
Cain and Chen et al. (2011) [45] Gaussian Distribution Acc. = 70%
Aviv et al. (2012) [11] HMM Acc. = 73%
Owusu et al. (2012) [68] Hierarchical Classiier Acc. = 93%

remainder of this Section, examples of the personal and sensitive information extracted from the mobile device
sensor data are presented, grouped in several categories depending on the nature of the extracted information
and arranged by the particular data acquisition sensor.
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4.1 Demographics

Probably the largest share of personal and sensitive information extracted from mobile user interaction data
consists of attributes such as age, gender and ethnicity, which can all be ascribed to the category of demographics.

4.1.1 Motion Sensors. In [67] the user age range was extracted from the accelerometer data, while performing a
task based on tapping on a predetermined series of diferent spots appearing on the device screen. The authors
exploited the k Nearest Neighbours (k-NN) algorithm, obtaining an accuracy of 85.3%. Similarly, Nguyen et al.
[129] developed a method to distinguish an adult from a child exploiting the behavioural diferences captured
by the motion sensors. Based on the hypothesis that children, with smaller hands, will tend to be shakier, they
achieved an accuracy of 96% using the Random Forest (RF) method. In [12], the gender of the users was determined
from their walking patterns acquired by smartphone motion sensors. The authors achieved an accuracy of 76.8%
by processing with Support Vector Machines (SVM) and bagging algorithms. Meena and Saeawadekar [116]
presented an approach for gender recognition based on the gait data extracted from smartphone sensors. The
authors achieved an accuracy of 96.3% using the bagged tree classiier. The authors in [144] also focused on gender
recognition from the data extracted by the accelerometer and gyroscope, obtaining an accuracy of 80% through
Principal Component Analysis (PCA). Ngo et al. [160] focused on extracting gender and age with Hidden Markov
Models (HMMs). The authors organised a competition based on accelerometer and gyroscope data acquired
by wearable devices, which lead to a percentage error rate of 24.23% for gender and 5.39% for age. With the
development of deep learning techniques, it has been possible to achieve enhanced results, as in the case of Sabir
et al. [145], who obtained an accuracy of 94.11% analysing gait for gender classiication by the means of Long
Short-Term Memory (LSTM) Recurrent Neural Networks (RNN), a class of deep learning models particularly apt
to capture temporal dependencies underlying in the data.

4.1.2 Touchscreen. In [9], the authors performed an analysis to identify whether the user using the device was a
child or an adult based on swipe and tap gestures. For this purpose, an Active User Detection (AUD) algorithm has
been used, achieving 97% accuracy. In [165], a new database of children’s mobile interaction was presented. The
authors used touch interaction information to classify children into three groups aged 18 months to 8 years old.
The authors used a SVM algorithm achieving and accuracy of 90.45%. Nguyen et al. [129] also conducted a study
using RF on tap gestures to distinguish between an adult and a child, achieving an accuracy of 99%. Touchscreen
data has also been used to extract a person’s gender. Miguel-Hurtado et al. in [119] focused their work on the
prediction of soft-biometrics from swipe gesture data. They achieved 78% accuracy rate using a decision voting
scheme from four classiiers: Decision Tree (DT), Naïve Bayes (NB), SVM and Logistic Regression (LR). In [88],
behavioural data from a smartphone’s accelerometer, gyroscope and orientation sensors were used while the
user interacted with the device. The authors used gestural attributes in which the k-NN classiier recognises the
gender of the user, providing a classiication accuracy of 93.65%.

4.1.3 Network, Location and Application. Studies have shown a strong correlation between a user’s geolocation
and usage patterns and their demographics. For instance, in [27], authors highlight the value of mobile device data
as a means of demographic modelling and measurement, without having to deal with the logistics of traditional
censuses and surveys, which limit the speed for which policies can be designed and evaluated. In [186], based on
three indicators of travel behaviour (radius, eccentricity, and entropy), the authors focus on understanding how
usage of mobile phones correlates with individual travel behaviour exploring indicator correlations between
mobile phone call frequencies evaluating factors such as age, gender, social temporal orders and characteristics
of the built environment. Similarly, in [151], an unsupervised, data-driven approach is proposed to identify
diferent user types based on high-resolution human movement data collected from a smartphone navigation app.
In [141] the authors showed how demographic information can be inferred from geo-tagged photos on social
networks. Speciically, they performed an analysis of how a person’s ethnicity can be extracted from their location
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patterns based on spatial segregation in two metropolitan areas. They distinguished between people belonging to
three diferent ethnicity groups with an accuracy of 72% using LR. Also, Wu et al. [180] studied location data
to obtain information on marital status and state of residence. They extracted spatio-temporal features from
human mobility patterns and used them in conjunction with semantic features based on geographical context,
which provided information about the places the subjects were visiting, such as residences, parks, hospitals,
schools, and shopping malls. On this ground, they were able to achieve an accuracy of 80% based on an XGBoost
algorithm. In [127], starting from gender-related behavioural patterns found in application, Bluetooth, and Wi-Fi,
the authors were able to estimate the user gender with an accuracy of 91.8% using RF and multinomial NB. From
the network connection logs, the total frequency of every event data record is computed. After sorting the events
by frequency of occurrence, an evaluation of temporal patterns is carried out on the 1,000 most frequent events.
Such contextual behavioural information is employed in a variety of user services, such as in personalising ads
and customising home screens.

4.2 Activity and Behaviour

It has been shown that a broad variety of users’ behaviour or activities can be inferred from mobile device sensor
data [52].

4.2.1 Motion Sensors. In [105] the authors were able to detect whether the person was stationary, walking,
running, bicycling, climbing stairs, going downstairs or driving using only the accelerometer information. Their
proposed approach, based on SVM, was able to achieve an accuracy of 93.2%. Using accelerometer and gyroscope
data, Anjum and Ilyas [29] developed an application to track the user activities, while the mobile device was kept
in their hand, trouser pocket, breast pocket or handbag. Using a DT classiier, they achieved an average Area Under
the Receiver Operating Characteristic (AUROC) curve of over 99.0%. In [164], the movements made by a user
while eating were recognised by the accelerometer on a smartwatch. In [149], the authors, based on smartphone
accelerometer data, classiied drinking behaviour of young adults using nightlife physical motion. Density-based
Spatial Clustering of Applications (DBSCAN) algorithm was used, achieving an accuracy of 76.1%. Even the
amount of alcohol taken by users can also be extracted from the accelerometer data. In [33], the authors detected
if a subject is sober, tipsy or drunk based on the accelerometer data and users’ self-reporting of consumption.
Their system achieved an accuracy of 70% using a RF algorithm. Motion sensors have also been used to extract
information related to sleep such as sleep posture and habits. In [104] accelerometer, gyroscope and orientation
data from a smartwatch was used to detect the sleep posture (supine, left lateral, right lateral, prone) achieving
an accuracy over 95% with the Euclidean distance of the input values, and also to detect the hand position while
sleeping (placed on the abdomen, chest or head) achieving an accuracy over 88% with k-NN algorithm.

4.2.2 Network, Location and Application. From GPS data, the authors in [177] determined whether the user
was standing, walking, or using other transportation with a fuzzy classiier monitoring the speed and angle of
the person obtaining a matching rate of 96% at a ive-second interval. Also, Wi-Fi transmitters and receivers
can reveal a signiicant amount of information about users’ activity. In [55] the Wi-Fi Received Signal Strength
Indicator (RSSI) was used on a smartphone to determine what activity users were doing, among lying down,
falling, walking, running, sitting down, and standing up. For that purpose, diferent features of each activity were
studied obtaining an accuracy rate of 97.7% with a Convolutional Neural Network (CNN). In [182], the authors
used three neural networks on Channel State Information (CSI) measured by the Wi-Fi module, being able to
discriminate whether a person is sitting, standing, walking with an accuracy of 83%.
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4.3 Health Parameters and Body Features

4.3.1 Motion Sensors. The Body Mass Index (BMI) is a mathematical ratio that associates the mass and height
of an individual. The usual way to calculate it is by using the parameters of a person’s height and weight. In
turn, human gait is based on the interaction between hundreds of muscles and joints in the body, and motion
sensors can pick them up and translate them into characteristic patterns linked to the traits of the subjects, such
as BMI. Yao et al. [183] used a hybrid model with a CNN-LSTM architecture to estimate the continuous BMI
value from the accelerometer and the gyroscope data with a maximum accuracy of 94.8%. From the BMI many
health attributes can be inferred [25, 63]. Another parameter that can be measured from the accelerometer is
stress. Garcia-Ceja et al. [75] achieved 71% accuracy using similar user models and the Naïve Bayes algorithm.

4.3.2 Touchscreen. It is possible to identify whether a person has Parkinson’s disease by analysing their keystroke
writing pattern independently of the written content. In [158] the authors used a SVM algorithm achieving an
AUROC of 0.88 on this problem. In [47], diferent types of features extracted from handwriting were studied as
biometrics for Parkinson disease, achieving very promising results. In [37] the authors showed how people with
longer thumbs perform swipe gestures in less time.

4.3.3 Network, Location and Application. In [124], the authors aimed at identifying periods of depression using
geolocation patterns acquired from mobile phones of individuals with bipolar disorder (BD). While the subjects’
depressive symptomatology was monitored through a weekly questionnaire, the authors used a linear regression
algorithm and a quadratic discriminant analysis algorithm achieving an 85% accuracy. GPS can also determine
sleep disorders, showing a good ability to detect sleep-wake stages and sleep-disordered breathing disorders
(SRBD) such as Obstructive Sleep Apnea (OSA) with an accuracy up to 92.3% using SVM algorithms [15, 85].
StayActive3 is an application that detects stress by analysing the behaviour of the users via smartphone, using
the data from the Wi-Fi, step counter, location and battery level among others. In [132], the authors used a
combination of simple relaxation scores based on the information extracted from the sleeping pattern of the
users (largest time interval that the user did not touch his/her screen), their social interaction and their physical
activity to determine the stress level.

4.4 Mood and Emotion

The user eiciency or motivation when performing a task changes in accordance to their mood. Thus, it can be
inferred from diferent sensors.

4.4.1 Motion Sensors. In [159], Neal and Canavan studied how mood can have a signiicant impact on the
recognition performance of a mobile biometric system. In their study, the authors observed that the subjects
with the least accurate identiication (<70%) were those with the least mood changes using a RF classiier. The
walk pattern data obtained from a smartwatch accelerometer and gyroscope can be used to determine a person’s
mood (happy, sad or neutral). The authors in [138] determined the mood with a RF algorithm achieving a mean
AUROC of 81%.

4.4.2 Touchscreen. Numerous studies have shown how, from the way a user interacts with the screen of his
or her mobile device, it is possible to extract their mood. In [46], the authors investigated the manifestations of
psychiatric diseases unobtrusively and in the setting of patients’ daily lives, exploring the possible connections
between bipolar afective disorder and mobile phone usage. Based on keystroke metadata and accelerometer
data, they reported a 90.31% prediction accuracy on the depression score. In [83], in order to provide people with
preventive treatments before subjects reach clinical depression, the authors exploited a mobile app to capture
emotional states, by the means of call logs and usage of apps, with a predictive accuracy for negative emotions

3StayActive App: http://www.aal-europe.eu/projects/stayactive/
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of around 86%. Gao et al. [74] demonstrated how inger-stroke features during gameplay could automatically
discriminate between four emotional states (excited, relaxed, frustrated, bored). By means of an SVM algorithm
they obtained an accuracy of 69%. In [153], inger strokes were studied. These strokes were assumed to be indirect
indications to the user’s emotional state. The authors predicted the emotional state of a person into one of the
three states: positive, negative or neutral. They achieved an accuracy of 90.47% using a linear regression.

4.4.3 Network, Location and Application. MoodExplorer 4 is an app that collects data from mobile sensors such
as GPS, accelerometer and Wi-Fi among others. From them, the authors in [188] demonstrated how self-reported
emotional states have high correlation with smartphone usage patterns and sensing data. The authors recognised
the composite emotions (happiness, sadness, anger, surprise, fear, disgust) of users through a proposed model
called Graph Factor with a performance metric called exact match of 62.9% on average.

4.5 Location Tracking

Mobile devices usually come with built-in GPS modules for the purpose of location tracking. However, even
when GPS coordinates are not available explicitly, position can be inferred by other sensors.

4.5.1 Motion Sensors. Several studies have shown how the position of a person can be inferred from the
accelerometer, gyroscope and magnetometer while he or she is walking, driving or using public transport. In [93],
the authors compared the pre-established routes with those taken by users while using diferent transport modes
such as walking, train, bus or taxi. They compared both routes with a Dynamic Time Warping (DTW) algorithm
obtaining a Kullback-Leibler distance of 0.00057 in the case of a taxi journey. In [87], it was demonstrated how,
when a person uses the subway, it is possible to track them from the accelerometer data. They achieved an
accuracy of 92% when the passenger travelled through 6 stations using boosted NB and DT algorithms. In [86],
the authors were able to determine the location of an individual driving in a vehicle based solely on motion
sensor measurements. The approach adopted was based on deriving irst an approximate motion trajectory given
acceleration measurements, then on correlating such trajectory with map information to infer the location. In
this way, they were able to locate a device owner to within a 200-meter radius of the true location.

4.5.2 Network, Location and Application. From the diferent Wi-Fi networks to which a user connects, it is also
possible to determine the position of an individual. In [156] the location was determined in real time in indoor
places. The authors achieved an accuracy of 85.7% using a RF algorithm.

4.6 Keystroke Logging and Text Inferring

4.6.1 Motion Sensors. Touchlogger [45] was an application created to determine the region of the phone
touchscreen touched by the user, based on the device micro-movements captured by the accelerometer and
the gyroscope. The screen was divided into 10 regions and with the help of a probability density function for
a Gaussian distribution an accuracy of 70% was obtained. Based on this result, it could be possible to identify
the text that the user is writing. In this task, Owusu et al. [68] obtained an accuracy of 93% using a hierarchical
classiication scheme. Similarly, in [11], with a controlled environment, the authors were able to identify the PIN
entered 43% of the times and the pattern 73% of the time by means of LR and HMM.

5 PRIVACY METRICS FOR SENSITIVE DATA

All privacy protection methods work by modifying the original data in order to deprive it of user sensitive
information. For instance, the modiied data should only reveal allowed attributes (e.g., gender) in order to
maintain some data utility, in terms of available information, while other attributes (e.g., ethnicity) are suppressed.

4MoodExplorer App: https://play.google.com/store/apps/details?id=com.
examsuniverse.moodexplorer
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The degree of privacy achieved is typically related to the extent of data modiication; however, the utility of the
resulting dataset can be signiicantly impacted [76].
In order to evaluate the efectiveness of privacy protection approaches, the degree of privacy protection

achieved, as well as the residual data utility after data modiication, should be quantiied. The former task can be
achieved through speciic privacy metrics, whereas the latter can be expressed in terms of reduction of traditional
performance metrics such as accuracy or Equal Error Rate (EER).
User sensitive data acquired through mobile interaction is very heterogeneous and can be structured, as in

the case of high-level health data, network, location and application data, or unstructured, i.e. motion, position,
environmental, touchscreen and low-level health data. Consequently, diferent metrics are required depending
on the speciic application scenario. In this context, we will consider data after having undergone modiications
in order to suppress or alter speciic sensitive attributes, while retaining utility for analysis and extraction of
non-sensitive information.
In our discussion, privacy metrics will be classiied based on their output, in other words, depends on the

characteristics of the data that are measured with a speciic metric. There is no speciic metric that can be
applied to every characteristic, so many studies use their own metrics. Table 3 shows the metrics considered in
our discussion and input data needed for the speciic metric computation, grouped by the property measured.
According to this criterion, some of the most relevant privacy metrics in the context of data acquired through
mobile interaction can be grouped as follows [175]:

Anonymity-based metrics. these metrics stem from the idea of k-Anonymity [106], deined as the property of
a dataset ensuring that in case of release, based on an individual’s disclosed information, it is not possible to
distinguish than individual from at least k − 1 individuals whose information has also been disclosed. This is
achieved by grouping subject data into equivalence classes with at least k individuals, indistinguishable with
respect to their sensitive attributes. k-Anonymity is independent of the information extraction technique and
it quantiies the degree of privacy exclusively considering the disclosed data. It is useful to express the degree
of similarity between datasets, namely the original one and the sanitised one, or it can be applied to samples
within a single dataset. However, several studies have reported some limitations of k-anonymity, which have led
to the development of new metrics based on the original, aiming to overcome some of its issues by imposing
additional requirements. For instance, m-invariance [181] modiies k-anonymity to allow for multiple, diferent
releases of the same dataset. (α ,k)-Anonymity [179] imposes a predetermined maximum occurrence frequency
for sensitive attributes within a class to protect against attribute disclosure. ℓ-diversity [13] was developed to
prevent linkage attacks by specifying the minimum diversity within an equivalence class of sensitive information,
namely at least ℓ well-represented diferent sensitive values. For a skewed distribution of sensitive attributes,
t-closeness [123] and stochastic t-closeness [64] were introduced, starting from the idea that the distribution of
sensitive values in any equivalence class must be close to their distribution in the entire dataset. Consequently,
knowledge of the original distribution is needed to compute this metric. Similarly, starting from the original
data distribution (c,t)-isolation [51] indicates the number of data samples present in the proximity of a sample
predicted from the transformed data. Depending on the semantic distance between sensitive user records, such as
in the case of numerical values, (k,e)-anonymity [187] requires the range of sensitive attributes in any equivalence
class to be greater than a predetermined safe value. Despite the highlighted shortcomings, k-anonymity and
the derived metrics are still largely employed today in a broad variety of diferent privacy contexts, but mainly
for low-dimensional structured data [21]. It has in fact been shown that k-anonymity-based properties do not
guarantee a high degree of protection in case of high-dimensional data.

Diferential Privacy-based metrics. diferential privacy is a deinition that has become popular thanks to its
strong privacy statement according to which the data subject will not be afected, adversely or otherwise, by
allowing their data to be used in any study or analysis, no matter what other studies, datasets, or information
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Table 3. Some of the most common privacy metrics grouped by the property measured. ADE - Adversary’s Estimate: generally

a posterior probability distribution. ADR - Adversary’s Resources: computational power, time, etc. PAR - Parameters: for

configuring privacy metrics. PK - Prior Knowledge: generally a prior probability distribution. TO - True Outcome: also known

as ground truth, it can be used to evaluate the ADE.

Property Metric Input Data

Anonymity

k-Anonymity [106] PAR
m-Invariance [181] PAR
(α , k)-Anonymity [179] PAR
ℓ-Diversity [13] PAR
t-Closeness [123] PAR, TO
Stochastic t-closeness [64] PAR, TO
(c, t)-Isolation [51] ADE, PAR, TO
(k, e)-Anonymity [187] PAR

Diferential Privacy

(d-χ )-Privacy [49] PAR, TO
Joint Diferential Privacy [97] PAR, TO
Geo-indistinguishability [28] PAR, TO
Computational Diferential Privacy [120] ADE, ADR, PAR, TO
Information Privacy [65] ADE, PAR

Entropy

Entropy [154] ADE
Cross-Entropy [118] ADE, TO
Cumulative Entropy [92] ADE
Inherent Privacy [22] ADE, TO
Mutual Information [110] ADE, TO
Conditional Privacy Loss [22] ADE, TO

Success Probability

Privacy Breach [70] ADE, TO
(d-γ )-Privacy [139] ADE, TO
(δ )-Presence [128] ADE, TO
Hiding Failure [8] ADE, TO

Error Euclidean Distance [155] ADE, TO

Accuracy

Conidence Interval Width [24] ADE, PAR
(t-δ )-Privacy Violation [95] ADE, PAR, PK, TO
Size of Uncertainty Region [56] ADE
Customisable Accuracy [32] PAR

Time
Maximum Tracking Time [148] ADE
Mean Time to Confusion [82] ADE, PAR

sources, are available [43]. As discussed in Sec. 6, diferential privacy is generally achieved by adding noise to the
original data. Therefore, in order to quantify diferential privacy as a property of the data indicating the degree of
privacy, it is a requirement to have knowledge of the original data. Diferential privacy was deined in the context
of databases to achieve indistinguishability between query outcomes, but thanks to its generality it has found
application in diferent contexts for low-dimensional data, including biometrics and machine learning systems. It
is in fact based on the requirement that independently of the presence of a particular data subject, the probability
of the occurrence of any particular sequence of responses to queries is provided by a parameter, ϵ , which can
be chosen after balancing the privacy-accuracy trade-of inherent to the system. For a given computational
task and a given value of ϵ , there can be several diferentially private algorithms, which might have diferent
accuracy performances. As in the case of k-anonymity, many metrics were originated from the initial deinition
of diferential privacy, including approximate diferential privacy, which has less strict privacy guarantees but is
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able to retain a higher utility [66]. d-χ -Privacy [49] allows diferent measures for the distance between datasets
than the Hamming distance used in the deinition of diferential privacy. Joint diferential privacy [97] applies to
systems where a data subject can be granted access to their own private data but not to others’. In the context
of location privacy, geo-indistinguishability [28] is achieved by adding diferential privacy-compliant noise
to a geographical location within a determined distance. In contrast to previously described metrics based on
diferential privacy, computational diferential privacy [120] adopts a weaker adversary model, favouring accuracy.
In order to adopt computational diferential privacy, it is necessary to have knowledge of the posterior data
distribution reconstructed from the transformed data. Similarly, information privacy [65] is met if the probability
distribution of inferring sensitive data does not change due to any query output.

Entropy-based metrics. in the ield of information theory, entropy describes the degree of uncertainty associated
to the outcome of a random variable [154]. Metrics based on entropy are generally computed from the estimated
distribution of real data obtained from the sanitised data, even though additional information can be needed for a
particular metric, such as the original data or some of the data transformation parameters. When attempting
to estimate sensitive information from protected user data, high uncertainty generally correlates with high
privacy. Nonetheless, a correct guess based on uncertain information can still occur. In [118], the degree of
privacy protection is quantiied by cross-entropy (also referred to as likelihood) of the estimated and the true
data distribution in the case of clustered data derived from the original data. A cumulative formulation of entropy
was deined in [92] in the context of location privacy to measure how much entropy can be gathered on a route
through a series of independent zones. Inherent privacy [22] represents another example of metric derived
from the deinition of entropy, considering the number of possible diferent outcomes given a number of binary
guesses. Mutual information and conditional privacy loss [22, 110] are also metrics based on entropy. The former
provides a measure of the quantity of information common to two random variables and it can be computed as the
diference between entropy and conditional entropy, also known as equivocation, which is useful to compute the
amount of information needed to describe a random variable, assuming knowledge of another variable belonging
to the same dataset. The latter property is built on similar premises, but it considers the ratio between true data
distribution and the amount of information provided by another variable revealed.

Success Probability-based metrics. metrics in this category do not take into account properties of the data but
only the outcome of sensitive information extraction attempts, as low success probabilities indicate high privacy.
However, even if this trend is observable considering the entire dataset, single users’ private data could still be
compromised. In [70], based on the original and estimated data, a privacy breach is deined as the event of the
reconstructed probability of an attribute, given its true probability, being higher than a ixed threshold, whereas
in [139], this idea was extended by (d,γ )-privacy, in which additional bounds are introduced for the ratio between
the true and reconstructed probabilities. In contrast, δ -presence [128] evaluates the probability of inferring that
an individual is part of some published data, assuming that an external database containing all individuals in the
published data is available. Hiding Failure (HF) [8] is a data similarity metric used to detect sensitive patterns.
This metric is computed as the ratio between the sensitive patterns found in the sanitised data set and those
found in the original data set. If HF is equal to zero, it means all the patterns are well hidden.

Error-based metrics. these metrics measure the efectiveness of the sensitive information extraction process,
for example, using the distance between the original data and the estimate. A lack of privacy generally takes
place in case of small estimate errors. In location privacy, the expected estimation error measures the inference
correctness by computing the expected distance between the true location and the estimated location using a
distance metric, such as the Euclidean distance [155]. Furthermore, with particular regard to high-dimensional,
unstructured data such as the ones acquired by mobile background sensors or images, a simple but common
approach to quantify privacy consists in comparing the traditional performance metrics of sensitive attribute
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extraction methods (i.e. accuracy) before and after the data modiication process. A signiicant performance drop
is a valid indicator of the efectiveness of a data modiication technique.

Accuracy-based metrics. quantify the accuracy of the inference mechanism, as inaccurate estimates typically
show higher privacy. The conidence interval width indicates the amount of privacy given the estimated interval
in which the true outcome lies [24]. It is expressed in percentage terms for a certain conidence level. (t, δ ) privacy
violation [95] provides information whether the release of a classiier for public data is a privacy threat, depending
on how many training samples are available to the adversary algorithm. Training samples link public data to
sensitive data for some individuals, and privacy is violated when it is possible to infer sensitive information from
public data for individuals who are not in the training samples. In location privacy, the size of the uncertainty
region denotes the minimal size of the region to which it is possible to narrow down the position of a target user,
while the coverage of sensitive region evaluates how a userâĂŹs sensitive regions overlap with the uncertainty
region [56]. A diferent approach was proposed in [32]. In this work, data subjects are given the possibility to
customise the accuracy of the region they are in when submitting it to an internet service. The accuracy of the
obfuscated region can therefore be seen as an indicator of privacy.

Time-based metrics. time-based metrics measure the time that elapses before sensitive information can be
extracted. For instance, in location tracking, to evaluate a given privacy protection method, it can be useful
to measure for how long it is possible to breach privacy by successfully tracking the user, by computing the
maximum tracking time [148] or the mean time to confusion [82].

6 PRIVACY PROTECTION METHODS FOR SENSITIVE DATA

Given the amount of personal and sensitive information that can be extracted from mobile device sensors, it is
necessary to apply a series of techniques to protect the data, as speciied in the GDPR. The data should be used for
its primary purpose, consented by the user, and it should not be possible to obtain additional information from
the re-purposed data. Privacy protection methods aim to decrease the efectiveness of information extraction
tools by transforming data with regard to speciic sensitive attributes, while preserving the utility of the data for
the original application scenario. In the remainder of this section, the discussed methods are grouped according
to the type of input data they work on: (i) traditional data modiication techniques work well with structured
data, as most of them were developed for the purpose of disclosing sanitised datasets and their application fulils
the requirements of some of the properties discussed above, thus guaranteeing a certain degree of privacy; (ii)
machine learning-based data modiication techniques, which are more apt in the case of complex unstructured
data, as the relationship between privacy gains and information loss changes completely for high-dimensional,
highly correlated unstructured data like images, audio signals and time sequence signals provided by background
sensors in mobile devices [125, 178]. An overview of the diferent privacy protection methods can be found in
Table 4.

6.1 Traditional Data Modification Methods

Traditional data modiication techniques have proven to work well with structured data. According to [173],
these methods can be divided into the following groups:

6.1.1 Data Perturbation. It is accomplished by the alteration of an attribute value by a new value. Among
traditional data perturbation approaches, randomisation techniques are based on the use of noise to mask the
values of the data [20]. By incorporating suiciently large noise, individual data can in fact no longer be recovered,
whilst the probability distribution of the aggregate data can be recovered and used safely from a privacy protection
standpoint. Noise can be added to the original values in a number of ways:

• additive noise, which works by adding a stochastic value to conidential quantitative attributes [41, 121];
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Table 4. Comparison of diferent state-of-the-art Privacy Protection Methods for Sensitive Data. AE- Autoencoder, SGD-

Stochastic Gradient Descent, CNN- Convolutional Neural Network, GAN- Generative Adversarial Network, SAN- Semi-

Adversarial Network, FAR- False Acceptance Rate, TASR- Task Assigment Sucess Rate, HF- Hiding Failure, Acc- Accuracy, SA-

Sensitive Atribute, AUROC- Area Under the Receiver Operating Characteristic, AD- Atribute Disclosure, IVE- Incremental

Variable Eliminator, COCR- Correct Overall Classification Rate, LFW- Labeled Faces in the Wild

Traditional Methods

Method/ Classiier Field Sensitive Data Protected Study Best Performance Database

Data Perturbation
Fingerprint
Faces Images

Demographics
Sadhya et al.
(2016) [146]

0.45% probability of success
@ FAR = 10%

VC2002-DB1 Database
AR Face Database

Location Data Location Tracking
Yang et al.
(2018) [184]

TASR ≈ 80%
SimpleGeo
Places Database
Yelp Database

Data Blocking Weather Parameters Health Parameters
Parmar et al.
(2011) [134]

HF = 0/3 attribute disclosure
UCI Repository:
Weather Dataset

Data Aggregation
or Merging

Physiologic Signals Health Parameters
Ren et al.
(2013) [140]

-
MIT-BIH
Polysomnographic
Database

Data Swapping Personal Attributes Health Parameters
Hasan et al.
(2016) [79]

l-Diversity = 0 attribute disclosure
UCI Repository:
Synthetic Dataset
Adult Dataset

Data Sampling Personal Attributes Health Parameters
Liu et al.
(2019) [111]

l-Diversity ≈ 0.15 error
UCI Repository:
Adult Dataset

Machine Learning-based Methods

Method/ Classiier Field Sensitive Data Protected Study Best Performance Database

Data Level Methods

Diferential Privacy-based
AE

Activity Signals,
Biomarkers,
Biometric Measures

Health Parameters
Phan et al.
(2016) [136]

Acc. Privacy ≈ 85% Own Database

SGD sanititation Language Modeling Text Inferring
McMahan et al.
(2018) [115]

-0.13% in accuracy with
(4.6e10−9)-diferential privacy

Reddit Dataset

Siamese CNN
Face Images Identity Osia et al.

(2019) [142]

EER before ≈ 1%
EER after ≈ 28%

IMDB-Wiki +
LFW Datasets

Activity Signals Demographics
EER before ≈ 22%
EER after ≈ 36%

MotionSense Dataset

Siamese CNN Activity Signals Demographics
Garofalo et al.
(2019) [72]

F1-score SA before = 72.58%
F1-score SA after = 52.99%

OU-ISIR Database

GAN Activity Signals Demographics
Ngueveu et al.
(2020) [44]

Acc. SA before = 98.5%
Acc. SA after = 61.0%
Acc. SA before = 98.5%
Acc. SA after = 57.0%

MotionSense Dataset
MobiAct Dataset

SAN
Face Images Demographics

Mirjalili et al.
(2018) [171]

Error Rate SA before = 19.7%
Error Rate SA after = 39.3 %
Error Rate SA before = 8.0%
Error Rate SA after = 39.2 %
Error Rate SA before = 33.4%
Error Rate SA after = 72.5 %
Error Rate SA before = 16.9%
Error Rate SA after = 53.8%

CelebA Dataset
MORPH Dataset
MUCT Dataset
RaFC Dataset

Face Images Demographics
Mirjalili et al.
(2020) [172]

EER SA before ≈1%
EER SA after = 20%
EER SA after = 20%
EER SA after = 10%
EER SA after = 10%

CelebA Dataset
UTK-face Dataset
MORPH Dataset
MUCT Dataset

AE Activity Signals Demographics
Delgado-Santos et al.
(2021) [62]

AUROC SA before = 99.00%
AUROC SA after = 57.2%

MotionSense + MobiAct Databases

Feature Level Methods

Decision Tree Ensemble Face Images Demographics
Terhorst et al.
(2019) [163]

COCR before = 94.7%
COCR after = 64.7%

FERET Database

AE Face Images Demographics
Bortolato et al.
(2020) [40]

EER SA before = 1.8%
EER SA after = 41.9%
EER SA before = 4.9%
EER SA after = 41.4%
EER SA before = 14.5%
EER SA after = 50.2%

CelebA Dataset

LFW Dataset

Adience Dataset

Sensitivity Detector +
Triplet Loss

Face Images Demographics
Morales et al.
(2020) [14]

Acc. SA before = 95.1%
Acc. SA after = 54.6%

DiveFace Database
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• multiplicative noise, in which protected numerical attributes are multiplied by a stochastic value [99];
• geometric perturbation, in which a mix of additive and multiplicative perturbations are used through a
rotation matrix [94];
• nonlinear transformation, applying a sigmoid distortion for mapping the data to a diferent space but
preserving the statistical properties of the data [4, 38];
• data condensation, in which the data is transformed into a new distribution where the new data include
the correlations among the diferent dimension [19];
• through a combination of the above techniques [48].

Diferential privacy has been widely used in several applications. For instance, in [146], diferential privacy was
used in a privacy-preserving framework for a recognition system based on soft biometrics, such as age, gender,
height, and weight extracted from ingerprints and face images. In the context of mobile devices, diferential
privacy has also been applied for providing rigorous protection of worker locations in a company centralised
server crowdsensing application [184].

6.1.2 Data blocking. It consists in hiding a certain set of sensitive attributes by replacing the original attribute
values. An existing attribute value can be replaced with a predetermined value to indicate the data suppression
(it could be ł?", ł0" or łx" in the case of one-character values). A new sanitised dataset is generated in which the
classiication rules of the sensitive data can no longer be extracted [96, 134].

6.1.3 Data Aggregation or Merging. It is the combination of values in a coarser category [109] or the processing by
a compression algorithm to reduce the number of embedded bits used to store the sensitive data. The compression
algorithm is used to reduce sensitive embedded data to alleviate the efect of data masking on the quality of
ordinary data. At the same time, data merging lowers the processing power consumption [140].

6.1.4 Data Swapping. It refers to interchanging values of individual records decreasing the risk of attribute
disclosure. This technique obtains new data with no valid information making impossible for the adversary to
access the real data. In addition, the data swapping method ensures that the published data satisies l-diversity
and guarantees that the adversary cannot violate individual privacy [79].

6.1.5 Data Sampling. It consists in the releasing data of a sample of the population. This technique is based on
the conditional probability distribution of the data. However, values that appear with little recurrence in a dataset
may give rise to privacy problems. Therefore, it is important to choose a sample from the set that is represen-
tative and has the same shape as the original dataset, thus achieving good results in terms of (d-γ )-privacy [50, 111].

Such strategies have found a large number of diferent implementations for structured data and are often
adopted by governmental or statistical agencies. Many are available in libraries under open-source license, like
ARX5 or the R-package sdcMicro [162, 178]. However, a critical aspect of these modiication techniques is often
scalability, i.e. there is a signiicant performance drop as the number of the dimensions of the dataset increases;
in addition, the computational overhead will increase exponentially with respect to the number of attributes
and number of instances. These limitations of the traditional data modiication methods are commonly grouped
under the label of łcurse of dimensionalityâĂİ [102].

6.2 Machine Learning-based Data Modification Methods

In addition to the goal of information extraction as discussed in Sec. 4, considering its potential in big data
processing [137], machine learning approaches have in turn been investigated for the purpose of perturbing the
data in the attempt to overcome the limitations of traditional modiication techniques. Within these algorithms, a

5Available at https://arx.deidentiier.org.
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subdivision into two groups can be made of those that operate at the i) data level and those that operate at the ii)
feature level, depending on the input data. In this section we present a brief summary of the most competitive
techniques of the two groups according to [40].

6.2.1 Data level methods. Algorithms that operate at the data level have raw data as input. Within the algorithm
itself they are processed and the output is a transformed dataset containing the protected sensitive data.
Among privacy protection solutions adopted to protect sensitive data in the context of machine learning

models, diferential privacy-based mechanisms are popular in the literature. In [136], a diferentially private
model implementation based on perturbing the objective functions was proposed for deep Autoencoders (AE) for
human behaviour prediction in a health social network. Such method can be applied to each layer of the network.
Similarly, the idea of sanitising the gradient in Stochastic Gradient Descent (SGD) was introduced in [16] for
CNN, and for complex sequence models for next-word prediction in [115]. Diferential privacy has also been
implemented in dedicated Tensorlow6 and PyTorch7 libraries. Generally, however, at a modest privacy budget
diferentially private mechanisms come with a cost in software complexity, training eiciency, and model quality
[168].
Using a convolutional architecture, another possibility is ofered by the Siamese architecture, which has two

diferent input vectors while maintaining equal weights in the two halves of the network to acquire comparable
output vectors. Osia et al. [142] used this architecture both in the ield of facial images, to protect the identity
of the person, and in the ield of activity recognition to protect the gender of the user. The authors in [72] also
used a Siamese CNN. In this case their work focused solely on activity recognition while protecting demographic
information.
Also, Generative Adversarial Networks (GAN) are among the most popular techniques considered for this

purpose in the literature. GAN are unsupervised methods that exploit two adversarial subnetworks (the generator
and the discriminator), and are able to learn well, in a competitive manner, the statistical structure of high
dimensional signals. A GAN-based approach called DySan was developed in [44] for data sanitisation, in the
context of a mobile application for physical activity monitoring through the accelerometer and the gyroscope
data. Before sending the data to a server hosted on the cloud, gender inferences are prevented by distorting the
data while limiting the loss of accuracy on physical activity monitoring.

A similar approach for privacy protection is based on Semi-Adversarial Networks (SAN). SAN are diferent from
typical GAN in the fact that, in addition to the generator subnetwork, they include two independent discriminator
classiiers rather than one. A semi-adversarial coniguration was proposed by Mirjalili et al. [171] for the purpose
of image data perturbation. Based on the feedback of two classiiers, where one acts as an adversary of the other,
this model was able to privatise gender while maintaining the same accuracy in face recognition. The authors
extended their work in [172], by including, among other things, the possibility of choosing to obfuscate speciic
attributes (e.g., age and race), while allowing for other types of attributes to be extracted (e.g., gender).
Delgado-Santos et al. [62] proposed GaitPrivacyON, an autoencoder trained in an unsupervised way. The

authors where able to create new transformed data that achieved signiicant improvements in protection in the
gait veriication task while sensitive information reminded private (e.g., activity and gender).

6.2.2 Feature level methods. There is a second set of methods that, instead of using raw data as input, apply on
the embedding representation of the data. Therefore, a pre-trained model used as features extractor is needed.
After that, this set of features will be the input of the privacy method. Finally, a transformed dataset that keeps
the sensitive data privatised will be the output. Terhöst et al. [163] proposed an Incremental Variable Eliminations

6Available at https://github.com/tensorlow/privacy.
7Available at https://github.com/pytorch/opacus.
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algorithm (IVE). The authors, by training a set of decision trees, obtain a measure of the importance of the
variables that predict the sensitive attributes to be reduced.

An AE was also used by Bortolato et al. [40]. The authors introduced Privacy-Enhancing Face-Representation
learning Network (PFRNet), a neural network-based model that works at the level of face representations
(templates) from images, aiming to achieve distinct encodings for both identity and gender in the feature space.
The model showed how training a loss function for gender suppression (where the distributions of male and
female subjects were similar) for the identity feature space, was an efective way to preserve privacy.

Morales et al. [14] aimed to leave out sensitive information in the decision-making process in an image-based
face recognition system without a signiicant drop of performance by focusing on the feature space. Developed
for the purpose of ensuring fairness and transparency, their systems inherently improve the privacy of the data.
It works as an independent, decoupled module on top of a pre-trained model and takes as input the embeddings
generated by the model. By deining and minimising its own triplet-loss function, SensitiveNets generates new
representations agnostic of gender and ethnicity information, which however still retain information useful for
extraction of other attributes.

6.3 Other Perspectives

Finally, it is important to highlight that in order to protect users’ privacy while handling their private data,
besides data modiication methods, other important perspectives to be considered to comply with secure data
management practices in relation to privacy include:

6.3.1 Template protection. It is an important ield of research in the area of biometrics. Templates are compact
representations of users’ biometric data for the purpose of storage. They are transformed into protected biometric
references for security purposes. Template protection schemes should provide the following properties [126]:

• Irreversibility: it should be computationally diicult8 to compute the original template from a subjectâĂŹs
protected biometric reference.
• Revocability: it should be computationally diicult to compute the original biometric template frommultiple
instances of protected biometric reference derived from the same biometric trait of an individual. Biometric
data is permanently associated with the data subject and it cannot be revoked and reissued if compromised,
contrarily to credit cards or passwords. However, through revocable and irreversible transformations
templates can be cancelable, thus mitigating the risks associated with biometric template theft [135].
• Unlinkability: it should be computationally diicult to determine whether two or more instances of
protected biometric reference were obtained from the same biometric trait of a user. Unlinkability prevents
cross-matching across databases.

6.3.2 Data outsourcing. Usually mobile applications exploit cloud resources for model training and inference.
Therefore, users’ personal data containing sensitive information may be on the internet. If stored on the cloud,
data subject privacy undergoes greater risks than being stored locally in the device [157]. Performing the training
and inference tasks locally is among alternative solutions investigated. However, the computational resource
constraints are much stricter [53, 152].

A diferent approach could be federated learning, a machine-learning strategy according to which models are
trained on datasets distributed across multiple devices, thus preventing data leakage [101, 112]. However, recent
attacks demonstrate that simply maintaining data locality during training processes does not provide suicient
privacy guarantees as intermediate results, if exposed, could still cause some information leakage [185]. Possible
solutions to this problem are given by diferential privacy mechanisms and Secure Multiparty Computation (SMC)
schemes, or a combination of the two [169].

8A problem is deined computationally diicult if it cannot be solved using a polynomial-time algorithm.
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Finally, it should be pointed out that the considered techniques should be complemented by widely deployed
encryption protocols that would guarantee data security, such as hash functions, secret-key and public-key
cryptography, among others [57, 80].

7 CONCLUSIONS AND OPEN RESEARCH QUESTIONS

7.1 Conclusions

As demonstrated, seemingly innocuous user data can reveal personal and sensitive information about the user,
which must be protected in compliance with the GDPR. We have provided a state-of-the-art review of the diferent
kinds of sensitive data that can be extracted by the mobile device sensor data. A survey of the metrics that allow
a comparison of diferent aspects and quantify the efectiveness of the privacy protection methods was carried
out for the purpose of identifying the most suitable metric for each speciic application. Some of the most popular
privacy protection data modiication methods were also discussed, aiming to ofer useful guidelines for managing
the trade-of between protecting the sensitive attributes while disclosing the allowed attributes, inherent to the
privacy problem.

7.2 Open Research uestions

Many paths of development remain to be investigated. The most relevant ones are discussed below.

7.2.1 Protection of the Privacy of User Sensitive Data.

Correlation between Sensitive Attributes. It is important to observe the correlation between the diferent sensitive
attributes, in order to identify from which sensitive attributes it is possible to extract others. For example, the
user location obtained from the mobile device Wi-Fi data can also reveal information about the activity a user is
involved in.

Data Modiication Algorithms for Privacy Protection. As shown in Sec. 4, inferrable attributes can assume very
diverse sets of values, in terms of size and number of attributes per subject. For instance, the presence of a disease
or the gender of a data subject are unique to each subject and can assume a binary or limited set of values. A
diferent scenario is given by attributes such as the age (unique attribute, but wider set of possible values), or
the activity the user is involved in or their location (several possible attributes per subject, but one at a time).
Depending on the formulation of the attribute output categories, at the cost of increased system complexity, it is
possible to achieve a iner granularity in terms of information about the data subject, which typically relates to a
higher extent of privacy invasion. Therefore, from the perspective of sensitive data protection, a possible step
towards the protection of the privacy of sensitive data could be developing a system that would modify the data
so that the possible sensitive attribute recognisable output categories would be fewer and coarser.

Ethical Implications. The digitalisation of data storage and communications, combined with the ever-growing
capacity of computers to automatically process data, has made possible to mine structures and relationships lying
in the data to extract information in unprecedented ways. Among other things, the GDPR provides a deinition
of personal and sensitive information to safeguard the right to privacy in the digital domain, thus laying the
cornerstone of an ethical usage of user data. Nonetheless, even if the sensitive information is suppressed, it would
be beneicial to assess the side efects of automated processing, with regard to sensitive attributes, paying special
attention to the ethical consequences this might entail. Therefore, even if data is collected and processed for a
legitimate purpose, the results yielded might be inluenced by personal and sensitive information that the models
are covertly recognising and exploiting. For instance, in 2018, Amazon withheld their machine learning engine
in charge of selecting the most suitable job applicant proiles as it was discovered that it was biased against
women, downgrading resumes that included the word âĂĲwomenâĂŹs,âĂİ as in âĂĲwomenâĂŹs chess club
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captainâĂİ and graduates of all-womenâĂŹs universities. This was due to the fact that the models utilised were
trained with resumes submitted to the company over a 10-year period, which came mostly from men [1]. Such
risks are exacerbated by the fact that, in the case of deep learning models, it is often diicult to ascertain how
such information is encoded in the intermediate layers, and that the sensitive and legitimate attributes might be
entangled within their representation instances. Fairness in AI is an novel, yet very active ield of investigation,
deeply connected with the protection of the privacy of user sensitive data.

7.2.2 Performance of the Algorithms.

Robustness. Given the ubiquity of mobile devices, the data are captured by the built-in sensors in a variety of
diferent scenarios. Therefore, a typical requirement of mobile device computing is robustness. For instance, with
regards to the recognition of sensitive information, the property of position invariance would grant a negligible
impact in the performance of an algorithm due to changes in the position of the mobile device with respect to the
user who is carrying. In other words, the algorithm should be able to recognise the predetermined user attributes
regardless of whether the mobile device is in the front pocket, in the hand or in the backpack or whether it is
performing a speciic activity such as answering a call or typing.

Reliability of Labels. It is important to identify whether the subjects themselves are in charge of the task of
labelling the sensitive attribute. In this case it is important to ensure that a subject is able to do it in an objective
way, in the case of mood recognition, for instance. Additionally, with particular regard to 3D motion sensor data in
the time domain, labelling is often not straight-forward and it can be expensive and time-consuming. Improving
or overcoming the labelling process is an interesting open problem for further investigation. A solution could be
adopting self-supervised learning (SSL), a paradigm according to which the training of the feature extraction
algorithms can take place in an unsupervised manner.

Impact of Hardware Diferences. After performing a study of the diferent mobile device sensors, it would be
interesting to evaluate how innate sensor characteristics afect the processes of sensitive data extraction and
protection. This is due to the fact that not all smart device sensors have the same characteristics, i.e. full-scale
values, resolution, sampling frequencies, etc.

Computation Time. With regard to mobile devices, time constraints are often crucial for real-time applications,
and a seamless user experience is among the main user concerns. Therefore, incorporating in the processing
chain additional steps aiming to protect the privacy of the sensitive data should not impact the computation time
signiicantly.

Storage of the Algorithms. Finally, a signiicant aspect is related to the storage of the algorithms. The captured
user raw data may then be sent to the cloud, for training the models, as more powerful hardware resources
are typically available remotely. In such way, the raw data might be exposed to greater risks related to being
transmitted and stored in a server. It is therefore necessary to develop systems that achieve the desired degree of
sensitive data protection, without impacting the performance of the models. Among the solutions proposed for
such goals is federated learning, in combination with algorithms that would guarantee diferential privacy and
SMC.

7.2.3 General metric framework. With regard to the protection of the privacy of sensitive data, it would be
desirable to create a general metric framework that can be applied to any set of protected data and indicate with
certainty the degree of protection through a score, encompassing which attributes are being protected and how
many classes are being used to diferentiate an attribute. Based on this, a standardised set of limit values should
be established in order to indicate the point at which sensitive data is considered fully protected. In such way,
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protected data could be freely processed for extraction of information without putting at stake the privacy of
users’ sensitive data.
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