
Zeng, Shihong, Li, Gen, Wu, Shaomin and Dong, Zhanfeng (2022) The Impact 
of Green Technology Innovation on Carbon Emissions in the Context of 
Carbon Neutrality in China: Evidence from Spatial Spillover and Nonlinear 
Effect Analysis.  International Journal of Environmental Research and Public 
Health, 19 (2). pp. 1-25. ISSN 1660-4601. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/92629/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.3390/ijerph19020730

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/92629/
https://doi.org/10.3390/ijerph19020730
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


����������
�������

Citation: Zeng, S.; Li, G.; Wu, S.;

Dong, Z. The Impact of Green

Technology Innovation on Carbon

Emissions in the Context of Carbon

Neutrality in China: Evidence from

Spatial Spillover and Nonlinear

Effect Analysis. Int. J. Environ. Res.

Public Health 2022, 19, 730. https://

doi.org/10.3390/ijerph19020730

Academic Editor: Xiaowei Chuai

Received: 16 November 2021

Accepted: 5 January 2022

Published: 10 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

The Impact of Green Technology Innovation on Carbon
Emissions in the Context of Carbon Neutrality in China:
Evidence from Spatial Spillover and Nonlinear Effect Analysis
Shihong Zeng 1,* , Gen Li 1, Shaomin Wu 2,* and Zhanfeng Dong 3,*

1 College of Economics & Management, Beijing University of Technology, Beijing 100124, China;
Lgn1912@emails.bjut.edu.cn

2 Kent Business School, University of Kent, Kent, Canterbury CT2 7FS, UK
3 Chinese Academy of Environmental Planning, Beijing 100012, China
* Correspondence: zengshihong@bjut.edu.cn (S.Z.); s.m.wu@kent.ac.uk (S.W.); dongzf@caep.org.cn (Z.D.)

Abstract: The Paris agreement is a unified arrangement for the global response to climate change and
entered into force on 4 November 2016. Its long-term goal is to hold the global average temperature
rise well below 2 ◦C. China is committed to achieving carbon neutrality by 2060 through various
measures, one of which is green technology innovation (GTI). This paper aims to analyze the levels
of GTI in 30 provinces in mainland China between 2001 and 2019. It uses the spatial econometric
models and panel threshold models along with the slack based measure (SBM) and Global Malmquist-
Luenberger (GML) index to analyze the spatial spillover and nonlinear effects of GTI on regional
carbon emissions. The results show that GTI achieves growth every year, but the innovation efficiency
was low. China’s total carbon dioxide emissions were increasing at a marginal rate, but the carbon
emission intensity was declining year by year. Carbon emissions were spatially correlated and show
significant positive agglomeration characteristics. The spatial spillover of GTI plays an important
role in reducing carbon dioxide emissions. In the underdeveloped regions in China, this emission
reduction effect was even more significant.

Keywords: carbon emissions; green technology innovation; regional heterogeneity; spatial spillover
effect

1. Introduction

Over the past few decades, China’s rapid economic development has brought about
a series of side effects such as resource depletion and environmental degradation, which
makes the sustainable development of China’s economy and society a huge challenge [1–7].
Carbon dioxide emissions (CDE) are a key factor in climate deterioration [8,9]. China, as the
largest CDE producer in the world and one of the countries committed to achieving carbon
neutrality and complete elimination of carbon emissions by 2060 [10], is under tremendous
pressure to reduce emissions [10–12]. In order to curb the increase of CDE, the Chinese
government has made a series of commitments and plans to promote a comprehensive shift
in socio-economic development to a green development model, starting from 2021 [13].

With the severe challenges brought about by environmental degradation, green tech-
nology innovation (GTI), as a new innovative method that highlights green environmental
protection, can not only achieve economic growth, traditionally driven by traditional tech-
nological innovation, but also effectively alleviate the dual pressures of energy and the
environment. This is a cause of concern for governments around the world [14–17]. GTI is
an important means to alleviate the internal contradictions between economic growth and
environmental pollution, and has become a key factor in promoting green and sustainable
development [18,19]. At present, China’s economy is in a critical period of high-quality
development, and promoting GTI is an important way to realize the transformation and
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upgrading of China’s strategic emerging industries [20,21]. It is also an important mea-
sure to advocate the construction of ecological civilization and high-quality economic
growth [22–25].

Regional heterogeneity and spatial interconnection are essential features affecting the
influence of technological innovation on the ecological environment [26]. Owing to the
existence of spatial interaction, the GTI or CDE of a region will have specific effects on
the surrounding regions through diffusion or polarization. The GTI and CDE of different
regions are therefore both interconnected and distinct. China has a vast territory, and each
region has its own traits, ignoring the spatial spillover effect can cause biases in model
estimation. As such, there is a need to conduct an in-depth study on the spatial spillover
effects of both GTI and carbon emissions.

GTI is of great significance to promote carbon emission reduction and can help gov-
ernments fully realize the strategic goal of carbon neutrality. However, so far, research on
carbon emission factors has focused more on technological innovation and neglected the
GTI, which is more closely related to carbon emission. Therefore, the aim of this research is
to quantitatively analyze the levels of GTI and carbon emissions across China, explore the
spatial distributing characteristics of GTI and carbon dioxide, based on which, an in-depth
analysis of the spatial spillover and non-linear impact of GTI on regional CDE will be
performed and relevant countermeasures and suggestions will be proposed.

The remainder of this article is structured as follows. Section 2 reviews the literature
on carbon emissions and GTI. Section 3 explains the data sources, variable selection, and
research methods. Section 4 presents the empirical results. Section 5 wraps up the paper
and suggests further research.

2. Literature Review

As global climate change intensifies, environmental issues, together with food secu-
rity, education, health, poverty, etc., have become the most pressing global issues in the
world [27,28]. An important factor leading to climate change is the emission of greenhouse
gases [8,29], and carbon dioxide is a major component of greenhouse gases, so current
concerns about carbon emissions has become a hot topic of scholars [28,30–32]. As the
world’s largest carbon dioxide emitter [10,12], China contributed an average of 63.9% of the
increase in global emissions from 2006 to 2016 [12]. As a responsible major country, China
proposed that it should reach the peak of CDE by 2030 and achieve the strategic goal of
carbon neutrality by 2060 [33]. Nowadays, accelerating GTI and transforming the economic
development mode have become an important means to achieve carbon peaking and car-
bon neutrality goals, and therefore, achieve sustainable economic development [16,28]. It
should be noted that managing to hold carbon emission peak and carbon neutrality does
not blindly pursue energy conservation and carbon reduction. It aims to apply a green
economic development model that can achieve harmony between humans and nature,
while ensuring stable economic development, which is an economic model of sustainable
development [34]. The green economy consists of sociopolitical and economic elements,
the balance of which makes an economy sustainable [35]. In view of the current worsening
ecological environment, green economy has become the economic development model
pursued by all countries, and a topical research field among academia. Vukovic et al. [35]
propose main principles and a methodology of the criteria evaluation for a regional green
economy and combine the current state and dynamics of the green economy in evaluating
and forecasting. Pociovălis, teanu et al. [36] study a situation of green jobs at the European
Union level and the relationship between environment and employment, by analyzing the
link between employment and environmental policies. Dulal et al. [37] analyze the role of
financial tools in Asian countries in the process of achieving green economy. To promote
a green economy and achieve sustainable economic development, the primary issue is to
control greenhouse gas emissions. Therefore, it is necessary to conduct an in-depth study
on reducing carbon dioxide emissions.
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GTI is a term widely used in different research areas, its goal being to achieve cleaner
production, improving environmental performance, and promoting the comprehensive
utilization of resources and energy [38–41]. It not only emphasizes technological innova-
tion to save resources and energy, but also requires the reduction or even elimination of
pollution and damage to the ecological environment [20]. As a new innovative method
that highlights green and environmental protection, GTI can not only achieve economic
growth driven by traditional technological innovation, but also alleviate the dual pressure
of energy and the environment. It can therefore promote low-carbon sustainable economic
development [42–46]. In the literature, there is much research on the mechanism and effec-
tiveness of specific green technologies to improve environmental performance [47–50]. For
example, Diaz et al. [51] analyzes the impact of carbon capture technology on carbon emis-
sion reduction in view of greenhouse gas emissions in the U.S. refining industry, and finds
that carbon capture technology can effectively reduce carbon emissions. López et al. [52]
find that technological innovations, such as electric buses and emission-free buses, should
be prioritized in order to achieve a greater performance in the environmental dimension.
Green technologies, such as carbon capture, waste management, and power generation
technologies, are expected to significantly alleviate the global energy, environment, and
climate change crises in the future [53–55].

For the measurement of GTI, some scholars use green patents to evaluate the level of
GTI. For example, Du et al. [56] use the number of green technology patents as the proxy
variable of the level of GTI to study the impact of environmental regulations at different
levels of economic development on GTI. Some authors use parametric analysis to measure
the level of GTI. For example, Lv et al. [57] measure the green total factor productivity
(GTFP) of 30 provinces in China from 2003 to 2017 and find that the financial structure is
conducive to GTI, while the financial scale and financial efficiency have a negative impact on
GTI. Wang et al. [17] use the GTFP decomposition index to refer to the level of GTI, and find
that GTI has a positive impact on the region’s GTFP and a negative impact on the periphery.
As an important part of green innovation [58], GTI can effectively alleviate the pressure on
resources and the environment in the process of promoting economic modernization [59].
To solve the current severe climate change and environmental pollution issues, it is of great
significance to study the impact of GTI on CDE.

When we consider the regional heterogeneity and spatial interconnection, traditional
econometric models are inefficient [60]. Spatial econometric models consider the spatial
dependence between observations, and different approaches are used when spatial effects
are considered [61]. Among them, the spatial autoregressive model (SAR), the spatial error
model (SEM), and the spatial Durbin model (SDM) are the three most commonly used
spatial econometric models [62]. Chen et al. [26] use the SDM to examine the influencing
factors of urban eco-efficiency associated with technological innovations, and find that
high innovative ability can increase urban eco-efficiency. Zhang et al. [63] use the SDM
to examine the impact of high-speed rail on the consumption of urban residents, and
found that HSR had different effects on consumption density in cities in eastern, central,
and western China due to different levels of urban economic development and inter-city
relationships. Yao et al. [60] use the SAR, SEM, and SDM to analyze the impact mechanisms
of urbanization dimensions and the internal structure effect of each dimension on eco-
efficiency, and find that population and ecological urbanization have a significant positive
impact on local eco-efficiency, while social and spatial urbanization have a negative impact.
Chica-Olmo et al. [64] use the SAR, SEM, and SDM to investigate the spatial dependence
between GDP and renewable energy consumption for 26 European countries. Considering
the existence of spatial interaction, it is of great significance to analyze the spatial spillover
effect of GTI on CDE.

The existence of regional heterogeneity often lead to different results of innovation.
For example, in some regions, despite favorable conditions and successful innovation
factors, many attempts have failed, while in other regions, such attempts have been suc-
cessful [65]. This phenomenon can be explained by innovative susceptibility of regions.
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Innovative susceptibility is an economic phenomenon relevant to certain level of scientific
and technological progress and market relations [66]. Regional innovation sensitivity refers
to the availability and ability of regional units to create and apply innovation based on
existing conditions and resources in a specific and continuous regional innovation policy.
Belyakova et al. [66] discuss the issues related to the content of the definitions “innovative
susceptibility” and “regional innovation system”, and reveal the characteristics and classifi-
cation of innovative susceptibility of the region. Volkova et al. [67] regard the innovation
susceptibility of the regional economy as a condition of the digitalization of the regional
economy, and propose an evaluation method of the innovation susceptibility to clarify the
influence of various factors on the innovation susceptibility of the region and the pace of
digital transformation. From the literature review, we can conclude that different regions
differ in the degree of innovative development, owing to the innovative susceptibility.
Therefore, it is necessary to conduct an in-depth analysis of the regional heterogeneity
of GTI.

In the literature, there is a bulk of research on the relationship between technological in-
novation and carbon emissions. These studies have provided us with important references
and enlightenment, but there are still some deficits. First, existing research has investigated
the relationship between carbon emissions and technological innovation [68–71], but little
on the GTI, which is more relevant to carbon emissions. Second, existing research on
GTI focuses more on the overall research at the national level in China, but little on the
regional heterogeneity of GTI, which results in a fragmentary understanding of the regional
heterogeneity of GTI [72–74]. Last, the analyses of the impact of GTI on environmental
issues in the literature do not consider spatial correlation [73,75–77]. Considering that
China is a country with significant regional differences in resource endowments, economic
structures and policy environments, ignoring spatial spillover effects will inevitably lead to
biased results.

The contributions of this study are threefold. First, this paper combines the SBM (Slack
Based Measure) model and the GML (Global Malmquist-Luenberger) index to measure GTI
by constructing an environmental pollution unexpected output, and uses the Gini coefficient
to measure the regional differences of GTI. This is conducive to a clear and comprehensive
understanding of the phase characteristics of China’s green technology and its regional
development characteristics, and lays the foundation for subsequent research on GTI.
Second, it uses the kernel density estimation method to reveal the spatiotemporal evolution
characteristics of carbon emissions, which helps us to obtain a clearer understanding of the
spatial distribution and evolution characteristics of CDE. Third, it focuses on the spatial
spillover effects of GTI on carbon emissions, through which the spatial correlation of CDE
is fully considered and the research settings are therefore more realistic.

This paper uses the SBM model and GML index to measure the GTI of China’s 30
provincial administrative regions from 2001 to 2019. It constructs a spatial panel model
to analyze the spatial spillover effects and nonlinear effects of GTI on carbon emissions.
Regardless of the analysis of the regional spatial distribution characteristics of GTI and CDE,
or the study of GTI’s spatial spillover effects of CDE, it is an enrichment and improvement
of the theoretical system of carbon emission reduction in environmental economics. This
study can also help policy makers to fully consider the spatial spillover and nonlinear
impact of GTI on carbon emissions, and formulate different regional policies and measures
based on the development characteristics of each province.

3. Materials and Methods
3.1. The Measurement Method of Green Technology Innovation

Data envelopment analysis (DEA) is a method for evaluating the relative effectiveness
of decision-making units with multiple inputs and multiple outputs. It does not need to
set a specific function form, which can effectively avoid the negative effects of subjectively
setting the production function. However, the traditional DEA model does not consider
the influence of the “slack variable” on the efficiency value. In order to solve this problem,
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Tone [78] proposed the Slack-Based Measure (SBM) model based on input and output slack
variables. The SBM model addresses the problem of slack variables and is a good solution
to the problem of green technology efficiency evaluation in which undesired outputs are
included [11].

The total factor productivity is an important indicator to measure efficiency growth.
Chung et al. [79] propose to apply the directional distance function, which contains un-
desired outputs to the Malmquist model, and call the Malmquist index as the Malmquist-
Luenberger (ML) index. The ML index is often used to measure the growth of GTFP [80],
but the index in the form of geometric average cannot observe the long-term growth trend
of production efficiency, and the mixed directional distance function can also easily lead
to infeasible solutions for linear programming. For this reason, Oh [81] constructed the
Global Malmquist-Luenberger (GML) index on the basis of the ML index. The expression
of the GML index is as follows:

GMLt+1
t =

1 +
→
D

G

0 (xt, yt, bt; yt,−bt)

1 +
→
D

G

0 (xt+1, yt+1, bt+1; yt+1,−bt+1)

= ECt+1
t × TCt+1

t (1)

where x ∈ R+ is the input vector; y ∈ R+ is the desired output vector; and b ∈ R+ is the
undesired output vector. The input-output value in period t can be expressed as (xt, yt, bt).
→
D0

G(xt, yt, bt; g) = sup{β : (y, b) + θg ∈ P(x)} is the global directional distance function
of period t, g = (gy − gb) is the directional deviation function of desired output and non-
desired output; θ denotes the maximum multiple of desired output and non-desired output
that can be increased along the directional vector g with given inputs.

Since the evaluated decision unit is included in the global reference set, the GML index
always has a feasible solution. GMLt+1

t can be decomposed into technical efficiency change
index (ECt+1

t ) and technical progress change index (TCt+1
t ), which represent the degree

of technical efficiency improvement and technical progress of the decision-making unit
DMU from t to t + 1 period, respectively. The input of GTI in this article includes energy
consumption, capital, and manpower, and the output level includes not only expected
outputs, but also unexpected outputs. Therefore, this article measures China’s GTI based
on the SBM model and GML index [17,57].

3.2. Carbon Emissions Estimation

Since China’s existing statistics do not include data on carbon emissions in various
provinces, we estimate carbon emissions as the product of the consumption of various
energy sources and the corresponding carbon emission coefficients, which is a common
method to measure carbon emissions [9,11,82–87]. Based on the energy consumption
data of the China Energy Statistical Yearbook and the practices of Wei and Li [88] and
Liang et al. [89], we select 14 types of fossil fuels to calculate the CDE:

CE =
14

∑
i=1

CO2,i =
14

∑
i=1

Ei × NCVi × CEFi (2)

where CE means CDE, Ei, NCVi, and CEFi represent the consumption, the average net
calorific value, and the carbon dioxide emission factor of energy fuel i, respectively. The
fourteen types of fuels are energy fuels, namely, coal, coke, coke oven gas, blast fur-
nace gas, converter gas, other gas, crude oil, gasoline, kerosene, diesel, fuel oil, lique-
fied petroleum gas, natural gas, and liquefied natural gas. The calculation formula is
CEFi = CCi × COFi × 44/12, where CCi and COFi are the carbon content and the carbon
oxidation factor of fuel i, respectively. The constant 44/12 is the molecular weight ratio of
carbon dioxide to carbon.

Carbon emission (CE) is often closely related to economic activities. It is natural that a
rapidly developing economic body may cause large-scale carbon emissions. As such, to
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reduce carbon dioxide emissions may harm economic development. Effectively reducing
carbon dioxide emissions and meanwhile achieving economic development are of vital
importance. We often use the carbon emission intensity (CI) indicator to reflect the degree
of the dependence of economic development on carbon. Reducing the intensity of carbon
emissions is the key to solving the current conflicts among economic development, energy
constraints, and environmental pressures. The CI index is expressed as:

CI = CE/GDP (3)

3.3. Models

Ordinary least squares (OLS) is the classical method used to estimate panel data
models and assumes independence between observations [60]. However, everything
is related to everything else, but near things are more related than distant things [90].
Compared with the traditional econometric model, the spatial econometric model takes
into account the prevalent spatial dependence in economics, which is reflected in the lag
term of the dependent variables and the error term in the spatial econometric model. The
SAR is mainly used to study the direct spillover effects of the behavior of neighboring
regions on the other regions in the entire system, and its spatial dependence is reflected in
the lag term of the dependent variable. The SEM is mainly used to study the interaction
between regions. The relationship is realized through the structural correlation of the error
term, and its spatial dependence is reflected in the lag term of the error term. However, the
transmission of spatial effects may occur simultaneously from spatial lags in the dependent
variable and from changes in the error term caused by random shocks. To solve this issue,
the SDM can be used and it takes into account not only the above two types of spatial
transmission mechanisms, but also the spatial interaction. The OLS, SAR, SEM, and SDM
model expressions are expressed as:

CEit = β1GTIit + β2STRit + β3URBit + β4EDUit + β5 ln PGDPit + β6 ln TRAit + µi + εit (4)

CEit = γW0CEit + β1GTIit + β2STRit + β3URBit + β4EDUit + β5 ln PGDPit + β6 ln TRAit + µi + δt + εit (5)

CEit = β1GTIit + β2STRit + β3URBit + β4EDUit + β5 ln PGDPit + β6 ln TRAit + µi + δt + ϕit
ϕit = τW7 ϕit + εit , εit ∼ N

(
0, σ2 I

) (6)

CEit = γW0CEit + β1GTIit + β2STRit + β3URBit + β4EDUit + β5 ln PGDPit + β6 ln TRAit + θ1W1GTIit
+θ2W2STRit + θ3W3URBit + θ4W4EDUit + θ5W5 ln PGDPit + θ6W6 ln TRAit + µi + δt + εit

(7)

respectively, where CEit represents the CDE of province i in year t, GTIit represents the
level of GTI in province i in year t, STRit, URGit, EDUit, PGDPit, and TRAit are the control
variable vectors for separating other influencing variables, W0, W1, . . . , W7 are the spatial
weight matrixes, µi is the spatial individual effect, δt is the time effect, ϕit is the error
term, εit is the stochastic error term, and γ, τ, β1, . . . , β6, θ1, . . . , θ6 are the corresponding
regression coefficients, respectively. In order to ensure the reliability and robustness of the
regression results, this paper will use SAR, SEM, and SDM models to perform regression
analysis on the spatial spillover effects of GTI and carbon emissions.

In economic relationships, the phenomenon that an economic parameter reaches a
certain value and causes another economic parameter to suddenly shift to other forms of
development (structural mutation) is referred to as the threshold effect. The non-linear
threshold effect cannot be described by ordinary linear regression, but can be done by
threshold regression. Xie et al. [91] find that the relationship between energy consumption
transition and green total factor productivity (GTFP) is inverse “N” type of nonlinear rela-
tionship through the threshold regression method. Du et al. [43] find that the impact of GTI
on carbon emissions has a non-linear effect. Therefore, to further study whether the impact
of GTI on carbon emissions depends on the level of regional economic development, we
use Hansen’s panel threshold model [92]. This panel threshold model aims to incorporate
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a certain threshold value and empirically test and estimate the corresponding threshold
value and the effect of the threshold [93]. The single-threshold model is as follows:

CEit = β1 · [GTIit × I(sit ≤ q)] + β2 · [GTIit × I(sit > q)] + βcXit + µi + δt + εit (8)

where Xit is the control variable vector used to separate other influencing variables; sit is
the threshold variable to represent the level of regional economic development, and q is
the threshold parameter. For group sit ≤ q, the marginal effect of GTI is β1, and for group
qit > q, it is β2. More generally, a model with K thresholds can be expressed as follows:

CEit = β · [GTIit × I(sit)] + βcXit + µi + δt + εit (9)

where β is a K-dimensional vector, K is the number of thresholds, I(·) is an indicator
function vector, and its kth component can be expressed as follows:

Ik(sit) =

{
1, qk−1 < sit ≤ qk

0, others
(10)

where k ∈ {1, . . . , K + 1}, q1 < q2 < . . . < qK are the K estimated threshold parameters,
and q0 ∈ (−∞, q1), qK+1 ∈ (qK,+∞).

3.4. Variables and Data Sources

To explore the relationship between GTI and carbon emissions, we select a sample of
570 observations from 30 provincial administrative regions in mainland China from 2001 to
2019 as an empirical study. Unless otherwise specified, the data in this work are taken from
the China Statistical Yearbook, China Energy Statistical Yearbook, and statistical yearbooks
of various provinces.

In this paper, CDE (CE) is used as the explained variable, which is calculated based on
the energy consumption data of the China Energy Statistical Yearbook. We take GTI (GTI)
as the core explanatory variable, follows the idea of Lv et al. [57] and Yang and Yang [94],
measures GTI with green total factor productivity. Similar to Lv et al. [57], Fan and Xiao [16]
and Xie et al. [91], we use capital stock, labor productivity, and energy consumption as
inputs, regional GDP as expected outputs, and industrial waste gas, industrial wastewater,
and industrial solid waste as undesired outputs (see Table 1). Finally, we use the SBM
model and the GML index [17,91] to measure the level of GTI.

Table 1. The evaluation indicators of GTI.

Target Layer First-Level Indicators Second-Level
Indicators Index Definition

The evaluation
indicators of green

technology innovation

Input indicators

Capital stock Capital stock based on 2000

Labor force Year-end employed persons

Energy consumption Total energy consumption

Output indicator

Expected Real GDP Real GDP based on 2000

Unexpected

Waste gas Industrial waste gas emissions

Wastewater Total industrial wastewater discharge

Solid waste Industrial solid waste generation

The control variables include

(1) the regional economic development level (PGDP), expressed by per capita GDP and
calculated at constant prices based on the year 2000;

(2) industrial structure rationalization (STR), calculated by the reciprocal of the Theil
index, which is measured by the number of employees and the ratio of output value
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among the three industries, and the expression is TL =
n
∑

i=1
(Yi

Y ) ln(Yi/Li
Y/L ), where Yi

represents the output value of industry i, Li represents the number of employees in
the industry i;

(3) urbanization level (URB), calculated by the proportion of urban population;
(4) education level (EDU), measured by the average years of education in each province

and calculated by the formula: [(primary school population × 6 years) + (junior mid-
dle school population× 9 years) + (senior high school population× 12 years) + (junior
college population and above × 16 years)]/(population aged 6 years and above);

(5) openness (TRA), expressed in terms of total import and export volume at the location
of the business unit. Table 2 gives the statistical description of the relevant variables.

Table 2. Statistical description of variables.

Type Variable Name Variable Declaration Average Value Standard
Deviation Min Max

Explained variable CE Carbon Emission 27,404.3000 21,180.8200 856.4017 110,603.2000
Core explanatory variable GTI Green technology innovation 1.0275 0.0511 0.8200 1.6012

Threshold variable PGDP Economic level 34,416.2500 26,847.7800 3000.0000 164,563.0000
Control variables STR Industrial structure 0.0728 0.0846 0.0114 0.6192

URB Urbanization level 0.5169 0.1483 0.2035 0.9415
EDU Education level 8.6174 1.0517 6.0405 12.7820
TRA Foreign trade level 932.1860 1772.7710 1.9664 10,915.8100

4. Results
4.1. Evaluation of Green Technology Innovation Indicators
4.1.1. The Estimation Results of GTI

China’s GTI was estimated using Equation (1). The results shown in Figure 1 illustrate
that from 2001 to 2019, the overall development of GTI was stable and the score remained
above 1, which indicates that China’s GTI has achieved a positive growth in all years of
the sample period. In the long run, China’s GTI level is in the range of 1.0014 to 1.0764,
with an average level of 1.0275, showing a long-term stable development trend. In the
short term, China’s GTI shows the development characteristics of local fluctuations, for
example, the level of GTI was 1.0014 in 2012, increased to 1.0295 in 2013, decreased to
1.0058 in 2014, and then increased to 1.0449 in 2015. This suggests that the innovation speed
is constantly changing, but the level of GTI is constantly improving, which is also evident
in other empirical studies [17]. Through the GML index, GTI can be decomposed into green
technological change (GTC) and green technical efficiency change (GEC). The GTC reflects
the extent to which the frontier has been moved. ECH is the degree of change in the green
technical efficiency of the DMU from period t to period t + 1. It shows from Figure 1 that
the GTC ranges from 1.0126 to 1.1149, with an average level of 1.0510, indicating that China
has achieved a positive green technology progress every year and the rate of progress
is higher than that of GTI. This is because GEC is generally not high. The innovation
efficiency ranges from 0.9490 to 1.0060, with an average value of 0.9795, and the index
level is generally below 1. This suggests that China only pays attention to the extent of
technological progress, but ignores the importance of innovation efficiency, which results
in that the overall level of China’s GTI is not high. This conclusion is also confirmed in
other empirical studies [17].
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Figure 1. GTI and its decomposition, 2001–2019.

4.1.2. Regional Heterogeneity of GTI

Dagum [95] proposes the Gini coefficient method that sets the overall Gini coefficient
(G) to be: G = Gw + Gnb + Gt, where Gw represents the distribution differences in the
GTI between provinces within a region; Gnb represents the distribution differences in the
GTI between provinces in different regions; and Gt represents the remainder of the Gini
coefficient due to the cross-impact of the GTI between different regions [96,97].

Through the Gini coefficient method, we measured and decomposed the regional
differences in the GTI in China (see Table 3), which helps us to obtain a clearer understand-
ing of the spatial distribution and evolution characteristics of GTI. This is also one of the
contributions of this article.

Table 3. The Dagum Gini coefficient and its decomposition of GTI.

Year G
Intra-Regional Differences Inter-Regional Differences Contributions (%)

East Central West Central-East West-East Central-West Gw Gnb Gt

2001 0.0130 0.0098 0.0092 0.0155 0.0112 0.0156 0.0131 31.15 34.54 34.31
2002 0.0182 0.0211 0.0164 0.0140 0.0195 0.0200 0.0163 32.20 9.09 58.71
2003 0.0103 0.0088 0.0074 0.0094 0.0103 0.0131 0.0090 28.89 53.42 17.69
2004 0.0158 0.0248 0.0058 0.0110 0.0168 0.0200 0.0093 33.30 43.28 23.42
2005 0.0181 0.0223 0.0096 0.0181 0.0169 0.0216 0.0148 33.74 26.63 39.63
2006 0.0246 0.0400 0.0149 0.0100 0.0323 0.0283 0.0139 32.16 49.12 18.72
2007 0.0248 0.0372 0.0167 0.0116 0.0324 0.0277 0.0161 31.63 47.67 20.70
2008 0.0152 0.0162 0.0155 0.0119 0.0169 0.0150 0.0153 32.15 18.77 49.08
2009 0.0160 0.0134 0.0171 0.0151 0.0179 0.0154 0.0168 31.67 32.03 36.30
2010 0.0157 0.0148 0.0113 0.0170 0.0153 0.0178 0.0148 32.30 27.48 40.22
2011 0.0133 0.0138 0.0081 0.0145 0.0125 0.0152 0.0120 33.04 17.19 49.77
2012 0.0166 0.0240 0.0070 0.0127 0.0176 0.0208 0.0111 32.68 19.43 47.89
2013 0.0267 0.0404 0.0116 0.0188 0.0285 0.0334 0.0169 33.03 27.73 39.24
2014 0.0247 0.0433 0.0082 0.0113 0.0291 0.0325 0.0117 32.25 25.85 41.90
2015 0.0255 0.0344 0.0162 0.0185 0.0266 0.0299 0.0201 32.52 20.17 47.31
2016 0.0354 0.0698 0.0084 0.0114 0.0444 0.0470 0.0114 33.24 37.71 29.05
2017 0.0113 0.0110 0.0074 0.0116 0.0108 0.0118 0.0126 31.44 39.25 29.31
2018 0.0111 0.0121 0.0076 0.0105 0.0110 0.0121 0.0109 32.10 29.63 38.27
2019 0.0099 0.0101 0.0096 0.0079 0.0112 0.0095 0.0105 31.36 30.41 38.23

Figure 2 reveals the law of regionally differentiated development of China’s GTI.
Figure 2a describes the trends of the overall Gini coefficient of China’s CTI. It illustrates that
from 2001 to 2019, the overall Gini coefficient of China’s GTI has a stable long-term trend,
but large short-term fluctuations. During the sample period, the overall Gini coefficient of
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GTI fluctuates between 0.0099 and 0.0354, around the average value 0.0182 and decreases
by 1.50% annually. Figure 2b shows the intra-regional differences and their evolution of the
GTI in the eastern, central, and western regions. Overall, the intra-regional difference of the
eastern region displays a volatile development law, the central and western regions show a
steady development trend in intra-regional difference. Figure 2c describes the inter-regional
differences in the eastern, central, and western regions and their trends. The figure shows
that the inter-regional Gini coefficients of the eastern and central regions and the eastern
and western regions have relatively consistent trends, with inter-regional Gini coefficients
fluctuating between 0.0103~0.0444 and 0.0095~0.0470, respectively. It shows significant
fluctuations, while the inter-regional Gini coefficients in the central and western regions
fluctuate between 0.0090~0.0201 show a more stable trend. Figure 2d illustrates the sources
of the differences in China’s GTI and the trends of their contributions. It shows that the
mean contributions of the intra-regional differences, inter-regional differences, and intensity
of transvariation towards regional differences in China’s GTI during the study period are
32.15, 31.02, and 36.83%, respectively. From the evolution process, the contribution due
to the intra-regional differences is relatively stable during the study period as it fluctuates
within 28.89~33.74%. The contribution of the inter-regional differences and that from the
intensity of transvariation experience a dynamic evolution process of repeated increases
and decreases.

Figure 2. The trends of the Dagum Gini coefficient of GTI in China. (a) The overall Gini coefficient of
the GTI in China. (b) The intra-regional differences of the GTI. (c) The inter-regional differences of
the GTI. (d) The evolution of the contribution rate.

The above results indicate that China’s GTI has developed steadily for a long term,
but fluctuates greatly in some years during the study period. In terms of the regional
distribution, the imbalance among the eastern, central regions and the eastern, western
regions is more prominent. Within the three major regions, the imbalance in the eastern
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region is also the most prominent. The possible reason is that the eastern coastal area is the
most economically developed area, in which the infrastructure is well developed and the
investment in scientific research is the strongest. Therefore, the level of GTI in the eastern
region is better than the central and western regions [98]. However, not all provinces in the
eastern region have highly developed economies, and some provinces are still sluggish in
development and have a rigid industrial structure. Therefore, within the eastern region,
there is a large gap in GTI among provinces.

4.2. Evolution Characteristics of the Carbon Emissions
4.2.1. The Estimation Results of Carbon Emissions

This paper uses Equation (2) to estimate the CDE of various provinces in China from
2001 to 2019, and obtain the CDE intensity on this basis. Figure 3 depicts the average level of
China’s carbon emissions and carbon emission intensity over the years. It can be found that
CDE increased at a marginal declining rate from 2001 to 2019. From 2001 to 2011, carbon
emissions increased significantly, with an average annual growth rate of 10.95%; after 2011,
CDE have further slowed down, with an average annual growth of 1.87%. This suggests
that China has achieved a staged victory in controlling the total amount of CDE, which is of
great significance for gradually advancing the strategic goal of carbon peaking and carbon
neutrality. We can also know from the figure that from 2001 to 2005, the carbon emission
intensity fluctuated between 3.0195 and 3.1566, with an average annual decrease of 0.04%.
The evolution of carbon emission intensity shows a characteristic of stable development.
From 2006 to 2019, the carbon emission intensity fluctuated between 1.1782 and 2.9067,
with an average annual decrease of 6.71%, and the carbon emission intensity showed a
significant downward trend. This shows that, over time, the amount of carbon dioxide
emitted per unit of GDP produced in China has declined significantly, and that China’s
transition to a low-carbon economy, which used to rely on the traditional development
model of high pollution and high emissions, has yielded significant results.

Figure 3. China’s carbon emissions and carbon emission intensity, 2001–2019.

4.2.2. Spatial Characteristics of Carbon Emissions

A distinctive feature of China’s carbon emissions and carbon emission intensity is
its temporal and spatial heterogeneity. Although China’s current growth rate of CDE is
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slowing down and the intensity of carbon emissions continues to decline, there is still
a problem of regional imbalance in carbon emissions in various regions of China. This
paper uses ArcGIS, an online geographic information system, to characterize the spatial
distribution and intensity of carbon emissions in various regions of China in 2019. The
results are shown in Figure 4. Figure 4a describes the CDE of various provinces in China
and shows that there is a large gap in carbon emissions among provinces. Provinces
Hebei, Shandong, Jiangsu, and Inner Mongolia are ranked in the first echelon in terms
of carbon emissions, which are all maintained above 80 million tons; Provinces Tianjin,
Gansu, Chongqing, Beijing, Qinghai, and Hainan are ranked in the fourth echelon in
terms of carbon emissions. Carbon emissions are generally less than 200 million tons.
As the province with the highest carbon emissions (110,603.16), Hebei is about 29 times
more than Hainan (3824.87), the province with the lowest carbon emissions. From the
perspective of regional distribution, the east and central regions are generally higher than
the western regions. The possible reason is that the east and central regions of China have a
complete industrial system, including a large number of heavy and light industries, while
the industrial system in the western regions is relatively backward, resulting in more carbon
emissions in the east and central regions than in the western regions. Figure 4b describes
the carbon emission intensity of various provinces in China. As can be seen from the figure,

Figure 4. Spatial distribution of CE and CI in China in 2019. (a) Spatial distribution of CE. (b) Spatial
distribution of CI. (Note: The graphics are drawn by ArcGIS software (Version 10.8) based on the
results of CE and CI calculations).

(1) the carbon emission intensities of provinces Ningxia, Inner Mongolia, Xinjiang, and
Shanxi are ranked the first echelon, with their carbon emission intensity remaining
above 3 tons/10,000 yuan;

(2) provinces Yunnan, Jiangsu, Henan, Hunan, Hubei, Hainan, Chongqing, Fujian,
Sichuan, Zhejiang, Shanghai, Guangdong, and Beijing have carbon emission intensi-
ties below 1 ton/10,000 yuan, which belongs to the fourth echelon of carbon emissions.

(3) province Ningxia has the highest carbon emission intensity (5.8995) and is 24 times
that of Beijing (0.2453), which has the lowest carbon emission intensity.

In terms of the regional distribution, the carbon emission intensity of the northern
region is much higher than that of the southern region. The possible reason is that carbon
emissions in the north are generally higher, and economic development is lagging behind
that in the south, resulting in a generally higher average CDE required to produce a unit of
GDP. In addition, residents in the north need energy to heat their homes in the cold weather
and therefore generate more carbon emission.
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Based on the analysis of the regional heterogeneity, we further analyze the characteris-
tics of the temporal and spatial evolution of CDE. Figure 5 shows the dynamic evolution of
CDE across the country and the eastern, central, and western regions from 2001 to 2019.
Figure 5a reveals the characteristics of the dynamic evolution of national carbon emissions.
From the perspective of the distribution position, the position of the main peak of the
national carbon dioxide emission distribution curve moves slowly to the right, indicating
that the country’s CDE are slowly increasing. In terms of the distribution pattern of the
main peak, the peak of the main peak of the national carbon emission density function
is increasing and the width of the main peak is decreasing, indicating that the absolute
difference in national carbon emissions is showing a decreasing trend. From the perspective
of the number of peaks, the national carbon emissions in most years showed a multi-peak
distribution, and the heights of the main peak and side peaks were quite different, indicat-
ing that the national carbon emissions distribution showed a weak multi-polarity trend. In
terms of the extension of the distribution, the kernel density curve shows a trailing right-
ward trend and a widening of the extension of the distribution, which implies that there
are provinces with higher CDE across the country, and this emission gap has a tendency
to further expand. Figure 5b–d illustrates the dynamic evolution characteristics of carbon
emissions in the eastern, central, and western regions, respectively. From the distribution
position, the main peak of the distribution curve of carbon emissions in the eastern and
western regions shows an overall rightward trend, indicating that CDE in the eastern and
western regions have a tendency to increase, while the main peak in the central region first
shifts to the right and then slowly shifts to the left, indicating that the central region is
slowly decreasing after experiencing an increase in carbon emissions. From the perspective
of the distribution pattern of the main peaks, the three regions show the characteristics that
the peak of the main peak first declines and then rises or keeps rising, and the width of the
main peak gradually decreases, indicating that the absolute difference of carbon emissions
within the three regions shows a decreasing trend. In terms of the number of peaks, carbon
emissions in the eastern region show a multi-peak distribution, with the main and side
peaks being of equal height, and even the side peaks exceeding the main peak in height in
some years. This implies that there is a significant multi-level differentiation in the eastern
region, while the distribution of carbon emissions in the central and western regions shows
a polarized difference.

4.3. Spatial Spillover and Nonlinear Effects
4.3.1. Analysis of Spatial Spillover Effects

Due to the geographical proximity, economic activities between neighboring regions
are closely related. As an undesired output of economic activities, carbon dioxide will also
proceed simultaneously and evolve in coordination. Therefore, to explore the impact of
GTI on carbon emissions, it is necessary to consider whether the technological innovation
of a certain province will have a significant impact on the carbon emissions of neighboring
provinces. To further test the spatial effects of GTI on carbon emissions, we will use the
spatial panel measurement model to analyze the relationship between them. At the same
time, to ensure the reliability of the test results, we use the adjacent weight matrix (w1) and
geographic distance weight matrix (w2) to measure the performance of the space model.
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Figure 5. The dynamic evolution characteristics of CE in various regions, 2001–2019. Note: The graph
is drawn by MATLAB software (version R2019b) based on the GTI calculation result.

An element in the adjacency weight matrix is the value to indicate the degree of
the proximity: it is 1 if two provinces are adjacent, and 0 otherwise. An element in the
geographical distance weight matrix measures the reciprocal of the distance between
provinces. In order to judge whether regional carbon emissions can be statistically analyzed
through spatial measurement, it is necessary to examine whether the variables are spatially
correlated. Moran’s I index reflects the degree of similarity between spatially adjacent or
spatially adjacent regional unit attribute values [99], and is usually used to test the spatial
correlation of variables. The value range of Moran’s I index is [−1, 1], a value greater than
0 suggests a positive correlation, a value 0 suggests no correlation, and a value less than
0 suggests negative correlation. The results of this paper on the global Moran’s I index of
carbon emissions are shown in Table 4. It can be found that the global Moran’s I index of
China’s carbon emissions from 2001 to 2019 is between [0.2400, 0.3060] and [0.2040, 0.2930]
under the two weights. They all passed the significance test, indicating that there is a
significant positive spatial correlation between carbon emissions.
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Table 4. Calculation results of the global Moran’s I values of CE, 2001–2019.

Year
w1 w2

I z p I z p

2001 0.2940 2.9880 0.0010 0.2760 2.3150 0.0100
2002 0.2750 2.8260 0.0020 0.2930 2.4540 0.0070
2003 0.2530 2.6360 0.0040 0.2650 2.2550 0.0120
2004 0.2660 2.7600 0.0030 0.2460 2.1070 0.0180
2005 0.3060 3.1820 0.0010 0.2260 1.9920 0.0230
2006 0.2990 3.1060 0.0010 0.2070 1.8440 0.0330
2007 0.3060 3.1560 0.0010 0.2190 1.9230 0.0270
2008 0.3010 3.1130 0.0010 0.2250 1.9720 0.0240
2009 0.2910 3.0120 0.0010 0.2200 1.9280 0.0270
2010 0.2990 3.0860 0.0010 0.2080 1.8340 0.0330
2011 0.2760 2.8630 0.0020 0.2060 1.8170 0.0350
2012 0.2630 2.7540 0.0030 0.2040 1.8070 0.0350
2013 0.2860 2.9730 0.0010 0.2420 2.1010 0.0180
2014 0.2850 2.9560 0.0020 0.2330 2.0250 0.0210
2015 0.2810 2.9260 0.0020 0.2170 1.9160 0.0280
2016 0.2690 2.8160 0.0020 0.2220 1.9480 0.0260
2017 0.2400 2.5330 0.0060 0.2260 1.9700 0.0240
2018 0.2570 2.7220 0.0030 0.2340 2.0510 0.0200
2019 0.2400 2.5570 0.0050 0.2240 1.9710 0.0240

Since the global spatial autocorrelation focuses on describing whether there is spatial
agglomeration of variables in the overall distribution space, ignoring the issue of spatial
correlation between regions, the spatial heterogeneity characteristics need further investi-
gating with Moran’s scatterplot. By testing the global spatial correlation, we draw Moran
scatter plots in 2001, 2007, 2013, and 2019 to further analyze the spatial agglomeration of
carbon emissions, respectively. In a Moran’s scatterplots, the region under examination
is divided into four parts, namely H-H, L-H, L-L, and H-L, which in turn correspond to
quadrants I, II, III, and IV of the scatter plot, respectively. The first quadrant indicates that
these provinces have high values, and the neighbor provinces have high values; the second
quadrant indicates that these provinces have low values and the neighbor provinces have
high values; the third quadrant indicates that these provinces and neighbor provinces have
low values; the fourth quadrant indicates that these provinces have high values, and the
surrounding provinces have low values. When provinces are of H-H type or L-L type,
it suggests that the provinces have positive spatial autocorrelation. If provinces are of
L-H type or H-L type, it suggests that the provinces have negative spatial autocorrelation.
Figure 6 shows Moran’s scatter plot based on the geographical distance weight matrix (w2).
It shows that most of the provinces in different years fell into the first and third quadrants,
in the H-H type agglomeration area or L-L type agglomeration area. This indicates that
carbon emissions show positive agglomeration characteristics. From 2001 to 2019, the
scattered points gradually moved from the second and fourth quadrants to the first and
third quadrants, indicating that the characteristics of positive carbon emission accumula-
tion have been continuously strengthened. Provinces Hebei, Shanxi, Neimenggu, Jiangsu,
Shandong, Henan always fall in the first quadrant, while province Beijing, Hunan, Guangxi,
Hainan, Chongqing, Sichuan, Guizhou, Yunnan, Gansu, Beijing, Hunan, Guangxi, Hainan,
Chongqing, Sichuan, Guizhou, Yunnan, Gansu, Qinghai, Ningxia always fall in the third
quadrant, indicating that the spatial correlation of carbon emissions has a strong stability.
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Figure 6. Moran scatterplot of carbon dioxide emissions.

The results of the above spatial correlation test show that there is a positive and long-
term stable global correlation in carbon emissions in various regions of China, and the
local spatial correlation shows positive agglomeration characteristics. We will then use the
spatial measurement method to build a regression model to examine the impact of GTI on
CDE. In order to ensure the reliability and robustness of the regression results, we use the
SDM, the SEM, and the SAR to perform regression analysis, respectively.

Table 5 depicts the regression results of the impact of GTI on carbon emissions, where
the regression results under column (1) is ordinary least squares (OLS). It shows that the
coefficient of the impact of GTI on CE is −0.5570 and significant at the 1% significance level,
suggesting that on average, increasing every 1% in the level of GTI can effectively contribute
to a reduction of carbon emissions by 0.557%. Columns (2) and (3) are the regression results
of the SDM model under the weight matrices of w1 and w2, respectively. It can be found
that the coefficients of the effect of GTI on carbon emissions are −0.3449 and −0.3761, both
of which are significant at the 10 and 5% significance levels, respectively. Similarly, the
regression results of the SEM and SAR models under the weight matrices w1 and w2 can
be obtained. The influence coefficients of GTI on GE are −0.3999, −0.5539, and −0.4245,
−0.5597, respectively. All results are negative and significant at the 5% significance level.
The four sets of estimates show that the coefficient of impact of GTI on carbon emissions
remains between −0.5597 and −0.3449, indicating that on average, increasing every 1%
in the level of GTI results in a reduction of at least 0.3449% in carbon emissions. From



Int. J. Environ. Res. Public Health 2022, 19, 730 17 of 25

the perspective of measurement methods, Table 5 compares OLS estimates with SDM,
SEM, and SAR estimates. From the table, we can see the fit of the four models through
AIC (Akaike information criterion) [100] and BIC (Akaike information criterion) [101],
both of which are estimators of prediction error of statistical models [102]. As such, the
model with the smallest AIC or BIC is preferred. The spatial ρ is the intensity of the spatial
interdependency. Take the calculation results of the SDM model and the adjacent weight
matrix (w1) as an example, it explains that 1% rise in adjacent carbon emissions is expected
to be associated with a 0.4188% rise in local carbon emissions while the other variables are
hold unchanged. λ is an autoregressive parameter that traces the spatial effect in error term.
Table 5 indicates that local carbon emissions increased by 0.4539% with 1% increase in
neighbor carbon emissions. This means that carbon emissions relate to space and transmit
from one region to the other country, which creates the uncertainty of its growth process. In
conclusion, the results of the four sets of estimates are relatively robust and the differences
in measurement methods do not lead to significant differences in the results, which strongly
suggests that GTI has a significant contribution to the reduction of carbon emissions.

Table 5. Spatial panel regression results of GTI on CE.

EP
OLS SDM SEM SAR

(1) (2) (3) (4) (5) (6) (7)

GTI −0.5570 *** −0.3449 * −0.3761 ** −0.3999 ** −0.5539 *** −0.4245 ** −0.5597 ***
(0.1474) (0.1358) (0.1418) (0.1357) (0.1462) (0.1376) (0.1425)

STR −0.5106 * −0.4802 * −0.3507 −0.5769 ** −0.4608 * −0.6701 *** −0.4639 *
(0.1994) (0.2113) (0.1984) (0.1914) (0.1987) (0.1858) (0.1976)

URB 0.3828 1.0779 *** 1.1402 *** 1.0854 *** 0.7729 ** 0.4844 0.3957
(0.2794) (0.2582) (0.2700) (0.2602) (0.2987) (0.2587) (0.2704)

EDU −0.1421 *** −0.0883 ** −0.0931 ** −0.1192 *** −0.1406 *** −0.1317 *** −0.1386 ***
(0.0298) (0.0296) (0.0315) (0.0292) (0.0305) (0.0276) (0.0290)

lnPGDP 0.5706 *** 0.5838 *** 0.6215 *** 0.5271 *** 0.5705 *** 0.4467 *** 0.5739 ***
(0.0478) (0.0510) (0.0457) (0.0445) (0.0468) (0.0478) (0.0463)

lnTRA 0.0460 −0.0042 −0.0218 0.0209 0.0190 0.0164 0.0526 *
(0.0235) (0.0238) (0.0244) (0.0229) (0.0253) (0.0221) (0.0235)

ρ 0.4188 *** 2181.2510 ** 0.2749 *** −520.7427
(0.0473) (798.8768) (0.0404) (486.9011)

λ 0.4539 *** 2801.3080 **
(0.0465) (892.9952)

n 570 570 570 570 570 570 570
R2 0.8520 0.8598 0.8684 0.8488 0.8510 0.8485 0.8532

AIC −492.9306 −580.5652 −558.2373 −566.0237 −500.0683 −533.8109 −492.0737
BIC −462.5111 −519.7262 −497.3984 −531.2586 −465.3032 −499.0458 −457.3086

Note: ***, ** and * indicate that coefficients are statistically significant at 1, 5, and 10%, respectively. Standard
errors are given in brackets. This table does not show variable lags.

According to the scope and object of the spatial effect, the effect of independent
variables on dependent variables in spatial measurement models can be divided into direct
effects, indirect effects, and total effects [17]. The direct effect reflects the impact of GTI
on carbon emissions in the region, the indirect effect reflects the impact of GTI on carbon
emissions in other regions, and the total effect reflects the average impact of GTI on carbon
emissions in the entire region, with the results shown in Table 6. Under the SDM model, the
direct and indirect effects of GTI on carbon emissions are−0.3945 and−0.7878, respectively,
which are significant at the level of 1 and 10%. The indirect effect is greater than the direct
effect, indicating that GTI has significant spatial spillover effect. Improving the level of local
GTI can not only reduce CDE in the region, but also promote carbon emissions reduction in
neighboring regions. The results under the SAR model are similar, with a significant direct
and indirect effect of GTI on carbon emissions. The total effects under the two models are
both negative and significant at the level of 5%, indicating that China’s GTI has a significant
role in reducing CDE, and this positive impact has a significant spatial spillover effect.
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Table 6. Spatial effect decomposition under SDM model and SAR model.

SDM SAR

Direct Effect Indirect Effect Total Effect Direct Effect Indirect Effect Total Effect

GTI −0.3945 *** −0.7878 * −1.1823 ** −0.4268 *** −0.1446 *** −0.5715 ***
(0.1437) (0.4207) (0.4778) (0.1435) (0.0546) (0.1915)

STR −0.4983 *** −0.1388 −0.6371 −0.6903 *** −0.2374 *** −0.9277 ***
(0.1906) (0.6417) (0.6344) (0.1831) (0.0836) (0.2560)

URB 0.8929 *** −2.6883 *** −1.7954 ** 0.4851 * 0.1674 * 0.6525 *
(0.2622) (0.6870) (0.8101) (0.2613) (0.0984) (0.3542)

EDU −0.0894 *** −0.0070 −0.0965 −0.1350 *** −0.0461 *** −0.1810 ***
(0.0279) (0.0587) (0.0652) (0.0262) (0.0125) (0.0359)

lnPGDP 0.6119 *** 0.3307 *** 0.9426 *** 0.4597 *** 0.1560 *** 0.6157 ***
(0.0487) (0.1144) (0.1279) (0.0454) (0.0285) (0.0568)

lnTRA −0.0123 −0.0968 * −0.1090 * 0.0152 0.0049 0.0202
(0.0225) (0.0550) (0.0610) (0.0210) (0.0071) (0.0279)

Note: ***, ** and * indicate that coefficients are statistically significant at 1%, 5% and 10%, respectively. Standard
errors are given in brackets.

4.3.2. Nonlinear Effect Analysis

Some previous studies suggest that the effect of GTI on CDE can be positive or
negative under different conditions [43]. We argue that the existence of differences in the
level of regional economic development is an important factor relating to the non-linear
relationship between GTI and CDE. This is because: when the economic development is
relatively backward, less investment on GTI will be made and the region may therefore
adopt a traditional model with greater pollution to promote a rapid development of the
regional economy; as a result, GTI’s effect on reducing CDE is relatively weak. On the other
hand, when the economy is highly developing, sufficient R&D investment will be made
and the effect of GTI on reducing CDE will therefore increase significantly.

To test the above presumption and investigate the non-linear relationship between
GTI and carbon emissions, we take the development level of each regional economy as
the threshold, and establish a single threshold, a dual threshold, and a triple threshold
model. The threshold value was sampled for 400 times. The final results show that there is
a single threshold between GTI and carbon emissions. The specific results are shown in
Table 7. It can be seen from the table that when using the level of economic development
as the threshold variable, the results of the threshold regression model show that this
threshold is 9.6509. When the economic development level is below 9.6509, the impact
coefficient of GTI on carbon emissions is −0.9096, which is significant at the level of 1% and
indicates that when the economy is at a low level of development, on average, increasing
every 1% in GTI can reduce CO2 emissions by 0.9096%. When the development level
of the economy is above 9.6509, the impact coefficient of GTI on CDE becomes −0.6782,
indicating that as the development level of the economy increases, the driving effect of GTI
on carbon emission conservation decreases. The possible reason is that when the economy
is highly developed, the marginal reduction in emissions from investing capital in GTI is
diminishing, making the reduction in emissions from GTI more significant in areas that are
relatively less developed.
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Table 7. Regression results of the panel threshold of GTI on CE.

EP Value EP Value EP Value

p value
Single 0.0010 GTI*I(Th < q) −0.9096 *** n 570

Double 0.2133 (0.1548) R2 0.8336
Triple 0.6200 GTI*I(Th ≥ q) −0.6782 *** AIC −426.2066

Threshold q 9.6509 (0.1555) BIC −395.7871

Coefficient

STR 0.0396 URB 1.912 *** CONS 8.5510 ***
(0.2173) (0.2473) (0.2331)

EDU 0.0363 lnTRA 0.1507 ***
(0.0273) (0.0212)

Note: *** indicate that coefficients are statistically significant at 10%, respectively. Standard errors are given
in brackets.

4.3.3. Robustness Test

To further verify the reliability of the regression, we incorporate regional economic
activities into the construction of the weight matrix, and construct an economic distance
weight matrix (w3) [103] that considers the economic correlation between regions. Eco-
nomic factors play an important role in the connection of various elements between different
regions. Therefore, it is of important practical significance to study the effect of GTI on the
basis of economic distance on the spatial spillover of CDE. The economic distance weight
matrix is expressed as

w3 =

{
1/
∣∣∣yi − yj

∣∣∣, i 6= j
0 , i = j

(11)

where i and j represent provinces, and y represents the real GDP per capita of a province
from 2008 to 2018.

Under the economic distance weight matrix, the spatial spillover effects of GTI on
carbon emissions are multi-dimensionally measured, and the regression results are shown
in Table 8, where column (1) is the regression result of the SDM model under the economic
distance weight matrix, column (2) is the regression result of the SEM model under the
economic distance weight matrix. The significance level is 1% level. Although the coeffi-
cients of the estimated results are different, their direction and significance level have not
fundamentally changed, which shows that the research results are robust and reliable. At
the same time, this paper uses the method of replacing the spatial measurement regression
model to perform further robustness testing. Specifically, because the generalized spatial
panel random effects model (GSPRE) assumes that all the explained variables will affect
other regions through spatial interaction, which is consistent with the hypothesis of spatial
spillover effects, this paper uses the GSPRE model to investigate the relationship between
GTI and carbon emissions. The results in column (3) show that the impact coefficient of GTI
on carbon emissions is significantly negative at the 1% confidence level. The direction and
significance level of the regression coefficients do not change fundamentally, compared to
the previous spatial econometric regression. Therefore, the results of this paper are robust
and reliable.
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Table 8. Spatial panel regression results of GTI on CE (robustness).

EP
SDM-w3 SEM-w3 GSPRE

(1) (2) (3)

GTI −0.6839 *** −0.4910 *** −0.5491 ***
(0.1468) (0.1424) (0.1498)

STR −0.7960 ** −0.5357 ** −0.5069 *
(0.2659) (0.2024) (0.2028)

URB 0.6578 * 0.621 0* 0.6362 *
(0.2714) (0.2757) (0.3029)

EDU −0.1218 *** −0.1358 *** −0.1419 ***
(0.0297) (0.0308) (0.0308)

lnPGDP 0.5984 *** 0.5994 *** 0.5630 ***
(0.0494) (0.0471) (0.0471)

lnTRA −0.0035 −0.0156 0.0367
(0.0233) (0.0245) (0.0255)

ρ 0.2979 ***
(0.0081)

λ 0.1083 *** 2436.4580 **
(0.0125) (926.9712)

n 570 570 570
R2 0.8412 0.8496 0.8517

AIC −475.9781 −535.4121 −285.5882
BIC −415.1392 −500.6470 −237.7862

Note: ***, ** and * indicate that coefficients are statistically significant at 1, 5, and 10%, respectively. Standard
errors are given in brackets.

5. Conclusions

This paper studied the impact of green technology innovation (GTI) on carbon emis-
sions, selected relevant panel data from 2001 to 2019 for 30 provincial regions in China, and
comprehensively analyzed the spatial spillover and non-linear effects of GTI on carbon
emissions. The main findings are the following.

First, China’s GTI has developed steadily and has achieved growth over the previous
years. Among them, China’s green technology progress has improved significantly, but the
innovation efficiency is not high, indicating that in the process of promoting GTI, China has
paid too much attention to the extent of technological progress, but little to the importance
of innovation efficiency. This not only causes the waste of human and material resources,
but also leads to the low level of China’s overall green innovation.

Second, China’s total carbon dioxide emissions (CDE) have grown at a marginal rate
of decline, and the intensity of carbon emissions has been declining year by year, indicating
that China has achieved phased success in controlling CDE. However, at the current
stage, China’s carbon emissions in various regions still have the regional development
imbalances problem.

Third, GTI cannot only effectively reduce CDE in the region, but also have a significant
spatial spillover effect on the reduction of CDE outside the region. From the perspective
of the overall trend, as the development level of the economy increases, the effect of GTI
on carbon emission reduction has weakened. A possible reason is that when the economy
is highly developed, the marginal reduction in emissions from investing capital in GTI
is diminishing.

Based on the above conclusions, our recommendations are as follows:

(1) In the process of increasing investment in GTI, each region should strive to improve
the efficiency of technological innovation. At the same time, in view of the differences
in regional economic development and carbon emissions, relevant regional policies
and measures should be formulated in accordance with local conditions.

(2) From the perspective of the temporal and spatial distribution characteristics of
China’s CDE, the government should coordinate regional development characteris-
tics, accelerate the transformation and upgrading of the regional industrial structure,
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achieve coordinated planning for regional development, and promote coordinated
regional development.

(3) In the process of formulating policies, local governments need to pay attention to both
the production and development of the region, and the development strategies of the
surrounding areas, and actively build a regional collaboration platform to promote
the coordinated development of green multi-regional technological innovation and
energy conservation and emission reduction.

(4) Taking into account the threshold characteristics of GTI, only by continuously increas-
ing R&D expenditures on GTI and promoting the continuous development of GTI can
regions effectively achieve the reduction of carbon dioxide and ensure the successful
realization of carbon peak and carbon neutral goals.

Finally, it is worth pointing out that this paper attempted to provide new evidence
on the heterogeneous impact of GTI on CDE, whereas measuring GTI is a challenging
issue. Due to the data availability, we employed GTFP as the proxy of the GTI that has
some potential limitations. Future research will aim to find ways to better measure GTI. Of
course, the limitations do not cast doubt on the results of this study, but they should be
addressed in future studies. In addition, in the study of regional differences, we can focus
on the analysis of the innovative susceptibility of regions in the future. This can help us to
obtain the sensitive differences in GTI from development to application in different regions,
and play an important role in achieving regional joint reduction of carbon emissions.
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