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= Analysis of recurrent events data:
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= Applications
— modelling of insurance claims/warranty claims: times between claims
— modelling of the outbreak of an epidemic disease: the number of cases
— modelling of time between failures of technical systems (software or hardware)

Challenges
1. Common difficulties in reliability engineering:
. Lacks of failures, technical systems are normally reliable and do not have many failure data
. Censoring: when the observation period ends, not all units have failed - some are survivors
2.  Recurrent event data analysis is also widely studied in the healthcare sector, in which
. the effect of covariates is the focus and
. they have more data available for modelling
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= Recurrent events:
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2.

Sp < t} = sup{n:S,, <t} Questionsin reliability mathematics:
1.

What are the distributions of the gap times, i.e., the
distributions of X;?

How many events occurred within a given time, i.e.,
How can we estimate m(t)?
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Bathtub curve in reliability engineering Kent

random failure period

- -

failure rate

Early-life failures with decreasing failure
intensity function

: [P)Z?ergssi:rl]gtr;] & (et Failures with increasing
. Manufacturing problems Failures with approximately a constant failure intensity function
failure intensity * Lowcycle fatigue
* Maintenance errors + Bearing failures
*  Human errors * Corrosion, erosion

* Failures due to nature



Existing modelling methods

University of

Kent

= Parametric methods, for example

— Renewal process (RP): replacement, repaired as good as new

— Virtual age models

— Geometric process

= Non-parametric methods

Nonhomogeneous Poisson process (NHPP): minimal repair

A ---- As good as new

| /\

new failed

B ---- As bad as old

\ |

new failed

C ---- between A & B

new failed
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= Given a sequence of non-negative random variables {X,, k = 1,2, ...}, if they are
Independent and identically distributed, then {X,,k = 1,2, --- } is called a renewal

process (RP).

A

Infant mortality wear-out
failure period period

random failure period

failure rate

time

Renewal process )
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= Given a sequence of non-negative random variables {X,, k = 1,2, ...}, if they are
independent and the cdf of X}, is given by F(ak_lx) for k = 1,2, ..., where a is a positive
constant, then {X;, k = 1,2,--- } is called a geometric process (GP) (Lam, 1988).

= Remarks
— Ifa > 1,then {X;,k =1,2,--}is stochastically decreasing.
— Ifa < 1,then {X;, k =1,2,-}is stochastically increasing.
— Ifa=1,then{Xy,k=1,2,---}is arenewal process (RP).

- If{Xy, k =1,2,..}is a GP and X; follows the Weibull distribution, then the shape parameter of
X, for k = 2,3, ... remains the same as that of X;.
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= The GP has been extensively studied since its introduction in 1988 (Lam, 1988), mainly
due to its elegance and convenience in deriving mathematical properties in applications

[ Geometric Process (GP) ]

l=ag; < <ag.. Wy are iid (Braun, et. al. forms a renewal process (Borfles et. al 20,13)
(Finkelstein, 1993) ) (Wang, et. al. 1996) 2005) (Chan, et. al., 2006) T

[ Geometric Process (GP) ]

!

[ Xe~F(g(l)x) J

g (k) is a function of k
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The process {Xy, k = 1,2, ...} with X;, ~F (g(k)x) has the following restrictive implications

= Invariance of the CV (coefficient of variation): Given a GP {X4, X5, ... }, then

il JE(X%) — (E(xp)’

Ve=TExo T EG

6
= Invariance of the shape parameter: Suppose X;~1 — exp{— (ei) 2}, then
1

X 62
F(g(k)x) =1—exp{—(————= }
(oro0r7)
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= Monotonicity of the GP: from the remarks, the GP {X,., kK = 1,2, ... } change

monotonously, either increasing or decreasing
A

Infant mortality wear-out
failure period . period
_____________ > P R— .

random failure period

failure rate
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[ Geometric Process (GP) ]
|

X ~F((aa®=1 + (@ ™MZy, My <0 < My}
forms a renewal process

(Chan, et. al., 2006)
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= Given a sequence of non-negative random variables {X,, k = 1,2, ...}, if they are
independent and the cdf of X}, is given by F(a*"1x"") for k = 1,2, ..., where a is a
positive constant, then {X;, k = 1,2, --- } is called a doubly geometric process (GP)
(Wu, 2018).

[ Geometric Process (GP) ]

JV

{Doubly geometric process (DGP)J

Xi~F (ak~1xh ()
h(k) is a function of k
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Figure 1: DGPs with different parameter settings: the Y-axes are E[X}]| and the X axes are k,

F(z)=1—e" %" h(k) = (1 + log(k)).
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= [f X; follows the exponential distribution and

— if{X,, k =1,2,...} follows the GP, then X}, (for k = 2,3, ...) follows the exponential distribution
with different rate parameters from that of X3,

— if{X,, k =1,2,...} follows the DGP, then X, (for k = 2,3, ...) follows the Weibull distribution,

= If {X}, k = 1,2, ...} follows the DGP and X; follows the Weibull distribution, then X, (for
k > 1) follows the Weibull distribution with different shape and scale parameters from
those of X;

= Suppose that {X,,, k = 1,2, ...} is a DGP, then the coefficient of variation (CV) of X,
changes over k's.



University of

Parameter estimation Ken

= The least square method

Ny

o N2
(ﬂ, a. b) = arg min E (Ik _ (#al—k)(1+log(k)) b)
Ha.b —

= The maximum likelihood method

L(a,b,0) = H { [1 — F(ai ()N, ) (L+Hlog(N;+1))" } ﬁ }



Data analysis

Table 1: Time between warranty claims of 22 identical items (unit: day).
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Shipments |\ 9 g 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20| CV
Months
1 0 8 13 7 8 16 9 6 7 15 11 9 13 7 9 6 13 10 9 5 |0323
2 7 4 8 6 9 6 1 8 8 9O 11 10 10 9 7 8 1 3 9 12]0417
3 i1 7 15 3 4 3 3 139 13 6 4 3 5 5 6 3 2 8 50607
1 S 3 12 6 7 6 11 9 9 7 10 7 & 11 6 5 8 5 6 17]0.385
5 4 3 4 2 8 6 7 157 9 10 5 2 6 4 14 3 7 10 130559
6 11 8 5 10 4 5 7 8 1 6 11 1 3 4 3 0 4 5 16 13059
7 7 7 22 3 5 14 12 5 4 7 9 4 4 6 17 4 13 3 6 5 | 0658
8 11 8 4 5 4 12 6 10 3 4 8 3 5 12 9 10 3 11 4 4 |0.486
8 £ 3 16 7 1 8 3 6 1 5 6 4 4 12 5 2 4 5 5 60660
10 2 5 9 4 3 10 11 8 1 12 8 6 10 7 2 3 9 10 6 00497
11 5 4 8 4 7 12 1 9 5 8 4 7 3 2 3 5 13 8 7 60513
12 £ 5 2 6 1 7 6 10 4 3 12 2 2 17 4 13 6 1 9 50724

= The AICc of DGP is 630.090 and that of GP is 630.242
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Reliability data:
Time between

failure data

Reliability data

The least squares
method

The maximum
likelihood method

Table 2: The datasets, including TBF(Time between failures).

No. Dataset Ny References
1 Hydraulic system (LHD3) 25 | Kumar and Klefsjo (1992)
2 | Propulsion diesel engine failure data | 71 | Ascher and Feingold (1984)

Table 3 Comparison of the performance of the GP and the DGP based on the least squares method

No. Parameters of the DGP Parameters of the GP RMSEpcp RMSEcp
a b f a 2
1 (0.944 0.499 531.406 1.0382 209.841 111.729 144.431
(0.0559) (0.174) (109.390) (0.0315) (67.652)
2 0.909 0.488 147.624 0.972 56.702 65.670 69.810
(0.0607) (0.280) (62.664) (0.0181) (20.486)
Table 4 Comparison of the performance of the GP and the DGP based on the maximum likelihood method
No. Estimated parameters of the DGP Estimated parameters of the GP AlCepcp AlCceqp AlCcpL
1 0.884 0.638 449.165 0.789 1.0147 168.807 1.0287 301.376 304.182 311.851
(0.0938) (0.352) (337.92) (0.227) (0.0230) (58.139) (0.159)
2 0.899 0.502 147.636 0.964 0.983 73.070 1.295 318.030 319.445 323.094
(0.0714) (0.349) (103.569) (0.281) (0.0151) (19.461) (0.182)
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= There are GP-like models that can describe non-monotonic trends

[ Geometric Process (GP) ]

[ Xk~F((aak—1 + J[{a?—Mizn, M; <n< Mi+1}J[Xk~F(a—bkxh(k)) J
forms a renewal process '
l (Chan, et. al, 2006) (Wu, 2018) s
' 2 parameters,

Flexible, but the shape

many parameters parameters
changes over k

4 parameters

= Invariance of the shape parameter: S

F(g(
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= We require a model satisfying three conditions
— A parsimonious model: with fewer parameters

— Be able to describe non-monotonic trends

— If X, follows the Weibull distribution, the distributions of X;, (for k = 2,3, ...) have the same
shape parameter as that of X;

= DRGP: Given a sequence of non-negative random variables {Z,?, k =1,2,..}, if they are
independent and the cdf of Z2 is given by FP (t) = 1 — exp{— fot bih(a,u)du} for k =
1,2, ..., where a; and by, are positive parameters (or ratios) and a; = b; = 1. {Z§ , k =
1,2, ...} is called the double-ratio geometric process (DRGP) (Wu, 2021)
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« Lemma: Given a sequence of non-negative random variables {Z{, k = 1,2, ...}, if they are
bk

independent and the cdf of a;* Z2 is given by FP(t) = 1 — (1 — FP (akt))a_" for k =

1,2, ..., where a; and b,, are positive parameters (or ratios), and a; = b; = 1. Then
{Z,’{), k = 1,2, ...} is a double-ratio geometric process.

= [Monotonicity] Suppose h(t) is a monotonously increasing function in t, {Z¢, k =
1,2, ...} is a DRGP, then

= [f both a; and b, are increasing in k, then the DRGP is stochastically decreasing;
= [f both a; and b, are decreasing in k, then the DRGP is stochastically increasing; and

= [f both a; (or by ) is increasing in k and by, (or a;) is decreasing, then the DRGP may not
be stochastically monotonic.
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by

PO =1~ (1-FP(@ D)™,

= Assume Z? follows the exponential distribution with hazard function h(u) = 4, then
FP(t) = 1 — e7Px* Thatis, a; does not play a role in DRGP. Below are two special
cases.
— If by, = b*71, regardless of the form of a, then {Z2, k = 1,2, ...} is a GP with the cdf of X,
being FP (t) = 1 — exp(—b*~11t), and

— If b, = k%, regardless of the form of a;, then {Z,?, k =1,2,...}is an a-series process with the
cdf of X, being FP (t) = 1 — exp(—k%At).
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D . - s . D agt 01
= Let Z{ follow the Weibull distribution F;"(t) = 1 — exp{— (9—) }, where a;, = k%t and
2

b, = B¥~1 for model DRGP-III, and a; = S5~ ! and b, = k%2 for model DRGP-IV. Denote
the maximum log-likelihood estimates for model DRGP-III and model DRGP-IV by [,
and [,, respectively. Then the two models DRGP-III and DRGP-IV are equivalent with
respect of modelling a given dataset based on the maximum likelihood estimation from
the following perspectives.

-1 =1,

— 6, and 0, from model DRGP-III equal §; and 8, from model DRGP-1V, respectively; and

- ﬂl = 21 and a, = 2

6,-1
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.Are '

f% {X1, X5, ... Xy}
..._____inl_:_llepEI'IdEfl'l_t?--"'""-

Yes

- Are Uy and -
T Upidd?

[ No
X

= "~ Are
XX Xn)

T No

Use Models 3, 5, &7
shown in Table 1, DRGP Ill,

or DRGP IV

Nn’< Use other models |
~ such as NHPP

Y
es.{ Use the GP process |

~Use DRGP I, DRGP
Yes | II, DRGP Ill, DRGP
IV, or the a-series
process
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No. Dataset n  Description Reference
1 LHD3 25 failures of a load-haul-dump (LHD) machine Kumar and Klefsjé (1992)
deployed at Kiruna mine, Sweden
2 LHDI11 28 failures of a load-haul-dump (LHD) machine Kumar and Klefsjo (1992)
deployed at Kiruna mine, Sweden
3 Calvert Cliffs 23 diesel generator failure data from power plant Kvam et al. (2002)
“Calvert Cliffs”
4 Pump D 30 reliability data collected from a main pump Percy and Alkali (2007)
(A) at an oil refinery
Test for non-monotonic trend.
No. p-value from the Ljung-Box test p-value from V} p-value from Vj
1 0.886 0.00866 0.0216
2 0.899 0.0159 0.0114
3 0.509 0.0194 0.0276
4 0.107 0.00874 0.00180

©Dr Shaomin Wu
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Table 5: AICc values of the models

No. EGP DGP DRGP-I DRGP-1II  DRGP-1II  DRGP-IV
1 310198 301.345 S07.040 305.281 300.228
2 328790 323.T11 325.802 324.983 321.312
3 224545 221.461 221.490 222.209 219.632
4 297.200  300.939 306.622 308.924 2095.031

Table 6: Parameters
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DRGP-III (d; = k%

and by, = Ef-l}

DRGP-1IV (a; =

and by = k%2)

& By b 8 a5 B,
65.942 (.84% 1.231 553.510 1.603 0.490
(5.502) (0.0621)  (0.200)  (308.283) (0.671) (0.287) (340.652)
14.233 (.891 1.085 347.046 1.205 0.254
(27.230) (0.0555)  (0.166)  (251.771) (0.617) (0.660) (251.777)
-29.898 0.855 0.960 02.937 1.192 al).442
(144.543)  (0.0861)  (0.182)  (106.597) (0.935)  (920.240) (106.516)
-8.996 1.281 1.297 4.629 -2.673 2.304
(4.827) (0.0787)  (0.185) (2.985) (0.689) (1.0352)

©Dr StaSiim
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= Contributions

— the DGP can model a stochastic process with varying CV

— the DGP can model recurrent event processes where F; (x)'s have different shape parameters over k's,
which can be done by neither the GP-like models nor other repair models such as reduction of age models

— the DGP and DRGP can model not only monotonously increasing or decreasing stochastic processes, but
also processes with complicated failure intensity functions such as the bathtub shaped curves and the
upside-down bathtub shaped curves

» Further research

— Both the DGP and DRGP have the limitation that they are parametric models, a Bayesian nonparametric
method is under development



= Lam, Y., 2007. The geometric process and its applications. World Scientific.
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