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Repairable systems: failures, repair,

= Analysis of recurrent event data:

+: failed

% repaired

t,: time when the kth failure occurred
t, + z;: time when the kth failure is fixed

X1 X3 X3

X} : the kth working time, or gap time
Y. time duration of the kth repair,



Questions & Applications

= Recurrent event analysis! Below are some applications
— modelling times between failures of technical systems (software or hardware)
— modelling the number of insurance/warranty claims

— modelling the numbers of patient visits to their doctors

= We are interested in the following questions:
A. How can we estimate the length of working times/gap times, i.e., X, (k = 1,2,...)?

B. How many occurrences are there within a given time period?



Questions A & B

= Recurrent events:

X X3

e

We are interested in

= Notations:

1. What are the distributions of the gap times? (Question A)

n
S = Z X 2. How many events occurred within a given time?
T4 (Question B)

Zp = z x{Sn <t} =sup{n: S, <t}
n=1

m(t) = E[Z,]

Equivalently,

1. What are the distributions of X;?
2. How can we estimate m(t)?

The estimation becomes more complicated for
a multi-component system!



The challenge

= Consider a system composed of n sockets in series, there is a component in each socket
4 1 H 2 [----- n

= Superposition of renewal processes:

— If a component fails, it is replaced with a new, identical one

— The failure process of the system is a superimposed renewal process (SRP)
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The challenge—cont’d

= In the real world
— The total number of failures of the SRP can be obtained if the reliability of each component is given;

— Nevertheless, if the times between failures of the system are available, but the components that cause the
system to fail are unknown, then the failure data are masked failure data

= However, the SRP requires a model of the failure process of each individual component. In practice,
— We may not have historical data of which component causes the system to fail
— We do not have many failure data

Component 1

Component 2

Component 3

Component 4
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b ts ta ts te t;  ts ts bt tu ¢
= Question: how can we build a model merely based on times-between-failures of the system,
without knowing the failure process model of each individual component?



Literature review

= Cox and Smith (1954) prove that the observed failure times of an SRP tend to be distributed with a
homogeneous Poisson process when the number of components goes to infinity and the time is far
from the origin;

= Khinchin (1956) further clarifies that the SRP tends to be a non-homogeneous
Poisson process (NHPP);

= Drenick (1960) proves the same property as that of Cox and Smith (1954) even if the failure
processes of the multi-sources follow heterogeneous renewal processes;

= Recent publications considers methods to approximate the SRP, considering different scenarios
(see Wu (2019 b) for a review)

= Conclusion: when the number of components goes to infinity and the time is far from the origin,
the SRP can be approximated by NHPP



Effectiveness of a repair

Scenario 1: Perfect repair, i.e., as good as new (AGAN)

Scenario 2: Minimal repair, i.e., as bad as old (ABAO)

Scenario 3: Imperfect repair, between AGAN and ABAO

Scenario 4: Better than new repair;
Scenario 5: Worse than old repair

' }
new failed

ﬂ

' +
new falled

| T

4
new failed

To estimate the distribution of X, one can use different methods of modelling the gap times,

including renewal processes, NHPP, etc



Existing modelling methods

= Differs from life data analysis, where events are assumed to be iid

= Non-parametric methods

= Parametric methods, for example

— Renewal process (RP)

— Nonhomogeneous Poisson process (NHPP)

— Geometric process

— Cox process (DPP)

A ---- As good as new

— T~
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B ---- As bad as old
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failed



Renewal process: The model for perfect repair | B

X, X, X, X,

bt

-

= Given a sequence of random variables {X, k = 1,2, ... }, if they are independent and the
cdf of X}, is given by F(x) for k = 1,2, ..., then {X;,, k = 1,2,--- } is called a renewal
process (RP)

= The expected number of jumps observed up to some time ¢, i.e., renewal function, is

m(t) = F(t) + j m(t —u)f(uw)du
0



Il
‘lJl

NHPP: The model for minimal repair |

falled

= Nonhomogeneous Poisson process (NHPP). Below are the assumptions
— N(0) = 0 (where N(t) is the number of failures and is a random variable)
— The number of events in disjoint intervals are independent

— No events happen simultaneously
= Probabilities of a given number of failures for the NHPP model are calculated by
A(t)ke=A®
k!
where A(t) is the cumulative failure intensity, i.e., A(¢t) = [ (f Alu)du
— If A(t) = A,t, then the NHPP reduces to the HPP

— The most widely used failure intensity function is the power law

At) = ath

P(N(t) =k) =



Models for imperfect repair new f;ﬁed

= Age-modification methods. Let V}, be the virtual age after the kth maintenance
= Vg = Vi1 + A Xy, or Vig = Ap (Vi1 + X))

= Intensity-modification methods. Let A, (t) be the failure intensity of the kth
maintenance (A4,_; is the effectiveness of repair)

- () = Ap_1 1 ()

= A hybrid method*

— Given a sequence of non-negative random variables {X,, k = 1,2, ...}, if they are independent
and the cdf of X, is given by F(a¥~1x"¥)) for k = 1,2, ..., where a is a positive constant, h(k)
is a function of k and the likelihood of the parameters in h(k) has a known closed form, and
h(k) > 0fork € N*, then {X;, k = 1,2, ...} is called a doubly geometric process (DGP)

— (@) = a1, (a* 1) ifh(k) = 1



Model I

= Consider a series system with three components with hazard functions 0.4t,
0.45t, and 0.5¢, respectively. If a component fails and then is replaced, at least a
failure intensity of inf{0.4¢, 0.45¢, 0.5t} = ¢, (t) is retained. As such, we may
assume the intensity function of the system is the sum of two sub-functions

— Sub-function 1: this part, or¢, (t), does not change if a failed component is repaired

= We may use the non-homogeneous Poisson process to model this part

— Sub-function 2: this part, or ¢, (t), models the changing intensity function upon
repair



Sub-function 2: Modelling the changing intensity function

= Assume
— the number of components in a system is m, which is known
— the failure rate function of each componentis %Az(t)
= Modelling the changing intensity function ¢, (t). If the components are

identical at time t = 0, a convenient method is to assume that the components
fail in turn
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The 1st failure cycle The 2nd failure cycle The 3rd failure cycle
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The model

= Mathematically, the failure intensity of the two parts can be expressed by

¢1(t|He-) = A1(D)

and
[ L N, = 0
b, (tIH,-) = { mZis" A2(t-Th )+ m=Npao®) i 1< N <m
1 oN—1 _
\ Y=o 2 (t - TNt—k) if N, >m

respectively



Simple moving average method

= Given a time series xq, X», ..., X¢, you are asked to provide a forecast value at time
t+1,ie., X;y1, Where X;,, denotes a forecast of x;, 4

A 1 _1 A ] = ] ]
= LetXi,q = ;Zfzo x:_i, then X, is a forecast with the simple moving average

method



Numerical examples: settings

= Settings: Assume
— There are M identical systems

— Each system may experience M; failures (times-between-failures of different systems may be
different)

— Each system is composed of m components, the lifetime distribution of each component
follows F(t) = 1 — exp (— (é)ﬁ) , where «a is randomly chosen from (12,60) (i.e., a € (12,60))
and f is randomly chosen from (0.5, 4), (i.e., f € (0.5,4))
= RP: renewal process;
= GP: geometric process;
= NHPP-PL: NHPP with the power law;
= GRP: Kijima model I



Numerical examples

AIC values
M M; m RP GP MHPP-PL GRP Model | -
3 855.73 B56.42 556.48 553.53 B51.81 240.95
(77.25) (74.92) (73.45) (75.20) (75.33) (74.83)
15 10 670.60 67239 bh3.45 663.22 bBb2.98 659.31
(50.69) (50.68) (48.25) (48.13) (47.91) (47.88)
15 562 87 56477 553.70 554.04 553.75 551.34
(36.72) (36.79) (34.74) (35.33) (35.18) (34.96)
10 3 1126.03 1125.65 1125.50 1121.52 1119.72 1109.49
(107.52) (103.85) (102.58) (105.03) (104.70) (105.42)
20 10 B7i.23 B77.36 268.31 867.52 567.649 86278
(68.15) (65.43) (64.89) (64.72) (64.32) (65.03)
15 T11.76 T11.08 699.44 70016 J00.09 695.76
(57.32) (58.90) (57.95) (57.82) (58.04) (57.09)
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Simple exponential method

= Given a time series xq, X», ..., X¢, you are asked to provide a forecast value at time
t+1,ie., X;y1, Where X;,, denotes a forecast of x;, 4

= Let X1 = Zfz_ol at~ix,_;, then %, is a forecast with the simple exponential
smoothing method



Assumptions

= Suppose the failure process of a real series system of multiple components. Once
the system fails, the failed component can be immediately identified and replaced
with a new identical one;

I Assume that there are m components Which have failure rate functions %/10 (1),
— p/lo (t),= pz/lo (t), ...,=p™ 224 (t), and = pm 120(0), respectively;

= The effectiveness of repair is: once a repair is conducted, the component with
intensity function — Ao (t) is replaced, and the intensity function of other

component changes from %pm‘klo (t) to %pm‘k‘l/lo (t)



Model II: failure process model with the exponential smoothing of intensity functions

= The model
[ 1 m—1
— Y pFIN(0), if N, =0,
m
k=0
1 Ni—1 m—1
Mtls#Z ) = _ m—k—1 b . m—k—1 : . : < N m.
(tlA-) = — (Zp Mot —Tn,—k) + D _ p Xo() if 1 <N, <m
k=l k=N;
1 m—1
— N7 RN (E = Tv—s), if N, > m.
mt
\ k=0

= ESI: Exponential Smoothing of Intensity
= MAI: Moving Average of Intensity for the model with p =1



Experimental results on simulated data

The means and standard deviations of {—log(L}} from 30 repetitions.

n m Estimated values of (—log(L))
Mine existing maodels Mew models
=2 g=3 ge=d g=3 =12
KF NHFP-PL LGP Kijima | Kijima Il Al ARA BBIF Model Il Esl Al
5 45.33 d4240 4308 4165 4117 qE2? 41.20 LR 4060 4082 4100
[5.07) (4.47] (d.21) [4.25] {4.35] (4.21) {2 (4.21) [4.23) (4.25) (4. 28)
15 15 2B.73 24.79 FELT2 2408 F396 2415 2425 2432 2304 2384 S 02
[4.21) (3.38) (3.23) [3.57) {3.68] (3.72) (3.72) (3.23) [3.65) (3.77) (3.67)
25 2316 14935 Py Iy 1832 18.33 18 36 18.31 18.96 1753 1540 TE_ 24
[3.95) (3.58) (3.04] [3.54] (3.74) (3.83) ([ 3.60) (3.47) [3.96) (3.89) (3.E7)
5 9180 BE67 BE1S 2602 BS.46 85.30 8551 BE.34 8509 8522 B533
[9.10] (8.13) (B.10) [B.08] (7.99) (8.33) (E.16) (8.10) (8.10) (B.06) (B.17)
30 15 5769 5053 5360 49.96 4934 S0.02 4992 4998 48.42 49.06 4903
[7.70] (6.03) [5.99] [6.19) (G.14) (6.15) (E.12) (5.98) [6.23) (6.13) (E.18)
25 4503 3695 4176 3646 3597 36.26 3626 36.52 3522 3567 3584
[7.32) (5.57] (5.45] [5.66) {5.B1] (5.92) {5.79) (5.44) [5.83) (5.93) (5.95)
5 136.12 12752 13007 126.61 125.76 125.60 12571 127.20 12515 12541 125.56
[(1387) ([1LE2) (1219)  [1.69) {1L63) (1.73) (1LBE)} (11.B4) (11.31) (1168) ([1LEZ)
45 15 5494 7 Fam 7365 7312 7394 7352 7349 7215 7275 T296
[1.668) ([TET) (B.7T7) [7.95) (B.75] (8.24) (T93] (7.BG) [7.73) (B.06) (B.02)
25 G492 5224 2085 1 1.3 S5LE4 5162 5168 5057 S04 2130
[(1203) ([677) (9.13) [6.94] (7.07] (7.0 (711} (6.71) [ 7000} (7.02) (T09)

26



Experimental results on real datasets

= The model outperforms many other existing models on real-world datasets and does
not need to assume “a failure component is replaced /renewed”

The real-world datasets.

Mo, Dataset n Dara sowrce Moaodel

1 Hydraulic systern (LHD 1) 23 Kumnar and Elefsps (1992)  NHPP-PL
2 Hydraulic systern (LHD 3) 25  Kumar and Elefsjd (1992)  NHPP-PL
3 Hydraulic system (LHD 9) 2T Kumar and Elefspd (1993)  NHPP-PL
4 Hydraulic systern (LHD 11) 2B Kumar and Elefspd (1992)  NHPP-PL
5 Hydraulic system (LHD 17) 26  Kumar and Elefspd (1993)  MHPP-PL
& Hydraulic system (LHD 20) 23 Kumar and Elefsjd (1992)  NHPP-PL
7 Air conditioner (TEF 79049) 24  Proschan [ 1963) HPF

B Air conditioner (TEF 7912} 30  Proschan [ 1963) HFF

g Alr conditioner (TEF 7913) T Proschan [1963) HFP

[} Air conditioner (TEF 7914) 23 Proschan [ 1963) HPF

1 COmpressor Pt | Yanez et al_ (200X Kijima 1
12 Main propulsion rmotor 24 Yanez et al (2002) Kijima 1
13 Powertrain System 510 35 Guida and Pulcim (2009 ) BELP

14 Powertrain System 514 15 Cnida and Puleani {20049 ) BELF

15 Diesel engine 5B Liwe | 19810 MHPP-W¥WLL

* In datasei 15, there & a value O, which is replaced with 0.5 in this paper.



Comparison on 15 real-world failure datasets

=loe{l} of each model on the real-world datasets.

M. Estirmated value of {—loz{L})

HNine existing models Hew models

g=2 g=3 q=4 =3 g=2

EFP MHHPFF oGP Kijima | Kijima i1 Afllm ARA BEIP Model Il EXL MAL
1 Traay 12850 10950 e A0 12850 12844 e i 129.089 12B.0L 12832 124938
£ T4E.T2 146.96 146.72 14696 145.47 14531 14532 146,12 144 5] Ll 20 1404 5
3 166.55 163.64 165.3% 15352 163.65 16348 la3.4% 16436 163 Seix 16345 163.97
4 138105 157.09 15799 157.09 15589 155.54 15586 156.23 153521 134491 155.44
5 151220 144833 150 Sw 145932 14512 14838 148 36 149581 148 5E: 14887 14504
b 13727 136.86 1312 136.73 135.65 135.55 135.65 136.61 1377 13529 135.80
) 12537 12630 144 4B 12537 12537 125.05 12537 12596 12537 12537 12537
B 15194 150.43 15114 154041 15042 150,37 15042 15064 1540 20H 150.24 15133
a T4 356 144.22 14300 143.96 14310 14119 14275 H3E 141.50 14207 14215
o 114960 119.66 11821 1452 11956 118.6B 114,57 11947 11148 11858 119,55
11 19108 189.30 19095 185932 188.90 1BE. 70 15782 18012 18878 18812 1838.85
12 183 88 18244 1820 18163 18245 181.55 18185 18329 18237 18245 182.91
13 54326 54357 34319 S4228 241858 332 54358 Sil2 52 54235 342.35 54X BT
14 35618 35005 356.06 355.E8 355.07 35455 35706 353,77 354.74 35398 335,04
15 369.29 368.31 364914 368.31 368.00 36706 36768 IBLT0 367.89 36775 368.07
= lo{L} 205.09 A0a_24 2l bl 20392 20353 A3 14 203.55 H5.491 203.16 203.06 20365
AlC* 41417 d1L£ 48 41529 41383 413.07 41225 A13. 10 41583 414.32 41213 41131
Al 415.20 413.50 417.07 41362 414.EB3 41408 414.BE 418064 41713 413.91 41233
BIC* 416.89 41519 419,36 41790 41714 41636 41716 4125 419.74 416.20 414,02

4 The walue with © on its right upper corner represents the mean of the value.
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Performance on the real world datasets

Resulis of the performance comparison from Table 7.

Mo ]| Al
= log(L) -logiL) of the g = 3" models  AIC AlC, & BIC

1 Model 11 ESI MHPP-PL MNHP-FL
2 Bl ESI MAl Al

3 | ESl MHPP-PFL MNHF-PL
4 Bl ESI MAl Al

5 ARAG ARA Al Al

L] Model 11 ESl MAl KAl

F LGP L MAl KAl

] Model 11 ESl MHPP-FL MHPFL
9 ARy ARl MAl KAl

10 Model 11 ESl MAl Al

11 ARA, AR A MAl hiAl

12 ARy ARl MHPP-FL MNHP-FL
13 Kjirma II Kijima 1l BAAl nAL

144 BEIP ESI ESl Al

15 Al ARl Al NAL
Frequency d x Model 1l T | 10 = MAL 1 = KAl

= [f comparing the values of the AICc and BIC of the 15 models, then one can find that the
MALI has the smallest values of the AICc and BIC in 11 out of the 15 cases. That is, the
MAI outperforms the other models in terms of both AICc and BIC



Performance on a real-world dataset

= Cumulative air-conditioning failures and estimated mean cumulative functions
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Conclusion and further development

= Conclusions

— Development of methods to estimate the failure process of a series system with masked
failure data can find applications in practice

— Sample size is usually small; there is a need to develop models with a small number of
parameters

— Real datasets are needed to validate any proposed methods

= Further development

— The above developments were on approaches to approximating the SRP (superposition of
renew processes)

— One may extend the above methods to the situation in which a failed component is
maintained with imperfect repair
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