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The Quantum Potential in Time-Dependent Supersymmetric Quantum Mechanics.

P. Strange

School of Physical Sciences, University of Kent, Canterbury, Kent, CT2 7NH, UK.
(Dated: December 4, 2021)

Abstract

If a wavefunction is written in polar form it becomes possible to write the Schrödinger equation of non-relativistic quantum
mechanics in a form analogous to the classical Hamilton-Jacobi equation with an extra term known as the quantum potential.
Time-Dependent Supersymmetry is a procedure for finding new solutions of the Schrödinger equation if one solution is known. In
this paper a time-dependent supersymmetry transformation is applied to a wavefunction in this polar form and it is shown that
the classical potential plus the quantum potential is a conserved quantity under this transformation under certain circumstances.
This leads to a modification of our view of the role of the quantum potential and also to a deeper appreciation of the function
of a supersymmetry transformation.
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I. INTRODUCTION

In the Madelung-Bohm representation of quantum mechanics[1–4] the wavefunction is written in a particular polar
form and the Schrödinger equation can then be rewritten as two coupled equations. One describes the conservation of
probability and the other is in a form analogous to the Hamilton-Jacobi equation of classical mechanics. This analogy
led Bohm to a generalisation of the pilot-wave interpretation of quantum theory initially put forward by De-Broglie
(see references [5–7] and references in [4]). While this interpretation is open to debate, the mathematics underlying it
is not. This quantum version of the Hamilton-Jacobi equation contains the standard classical potential we normally
come across in both classical and quantum mechanics plus a self-generated term which can be viewed as giving the
particle its quantum nature. This new term has been named the ‘quantum potential’. In recent times there has been
considerable interest in the quantum potential, and it has been found to have physical significance in a number of
different areas of physics. Of particular interest are the space-time points where it is zero, these are where the particle
being studied should be behaving at its most classical. Among the key examples of this are the work of Rogers et.
al. who have found applications in non-linear optics [8], Espindola-Ramos et. al. [9] have shown that wavefunctions
with fold caustics are the most classical because the zeros of the quantum potential coincide with the caustic and
the evolution of the caustic is governed by the Hamilton-Jacobi equation. Berry [10] has shown that, for quantum
wavepackets, the Bohm potential vanishes on the boundaries of regions where the oscillations become superoscillatory.
In a connection with relativistic quantum theory Salesi et. al. showed that the quantum potential arises naturally
as the kinetic energy associated with the internal ”trembling” motion of spin-1/2 particles known as zitterbewegung
[11, 12]. The quantum potential is defined in terms of the amplitude of the wavefunction and recently Hojman and
Asenjo [13] have taken these ideas further and looked for examples where the particle experiences a classical potential,
but where this is cancelled by the quantum potential, so the particle behaves as if it is free.

The Schrödinger equation forms the foundation of non-relativistic quantum mechanics. It has only very few phys-
ically meaningful exact solutions. Most of the familiar models in quantum theory are steady-state solutions which
means that the space and time dependence of the problem can be separated. These, such as the harmonic oscillator
and the one-electron atom, form the basis of much of our understanding of the physics of nature. There are a few
known solutions that are not steady state and which have some unusual properties such as being self-accelerating
[14–18].

Non-stationary supersymmetric quantum theory has been derived [19–21] and extended [22] and provides a strategy
for finding new solutions of the time-dependent Schrödinger equation if we know one solution. This work is a natural
extension of the time independent supersymmetric methods discussed in very readable form by Cooper et. al. [23].

In this paper we will look at what happens when we apply non-stationary supersymmetry theory to wavefunctions
in polar form. While this theory defines a new potential and eigenfunctions for the Schrödinger equation we find
that, under certain circumstances, the sum of the classical potential and the quantum potential is conserved by
such a supersymmetry transformation. This paper is laid out as follows. In section II we describe the origin of the
quantum potential. The mathematical details of non-stationary supersymmetric quantum theory have been written
down several times before [19–21] so in section III we discuss this procedure only in sufficient mathematical detail
for the new work presented here to be appreciated. Next, in section IV we show that, during a supersymmetric
transformation the same quantity is subtracted from the classical potential as is added to the quantum potential, so
the sum of these two quantities is conserved. We then go on to illustrate this with several examples in section V.
Finally in section VI we discuss the meaning of the results and what conclusions can be drawn from them. Throughout
this paper constants are retained in equations, but diagrams are drawn in units where m = 1/2 and h̄ = 1 and we
will work in one-dimension although the theory generalises straightforwardly to higher dimensions.

II. THE QUANTUM POTENTIAL

Following Bohm’s original paper [2], we start by writing the single particle quantum mechanical wavefunction in
the form

ψ(x, t) = R(x, t)eiS(x,t)/h̄ (1)

where both S(x, t) and R(x, t) are real. Substitution into the general time dependent Schrödinger equation shows
that R(x, t) and S(x, t) satisfy

∂R(x, t)

∂t
= − 1

2m

(
R(x, t)

∂2S(x, t)

∂x2
+ 2

∂R(x, t)

∂x

∂S(x, t)

∂x

)
∂S(x, t)

∂t
= −

(
1

2m

(
∂S(x, t)

∂x

)2

+ V (x, t) + VB(x, t)

)
(2)
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Care must be taken in the application of these equations because at a node in the wavefunction R(x, t) = 0, but then
S(x, t) is undefined and may be discontinuous. The first of equations (2) can easily be shown to be equivalent to the
conservation of probability provided we make the following identification for the velocity

v =
dx

dt
=

1

m

∂S(x, t)

∂x
. (3)

So, it is S(x, t) which determines the dynamics of the particle. We simply have to define the initial conditions to solve
for x(t). For consistency with the postulates of quantum mechanics we require that the probability that a particle lies
between the points x and x+dx at time t is P (x, t)dx = R2(x, t)dx which means R(x, t) plays the role of a probability
amplitude.

In the second of equations (2) we have defined

VB(R(x, t)) = − h̄2

2m

1

R(x, t)

∂2R(x, t)

∂x2
(4)

which is known as the quantum potential[1, 2, 24]. If we omit the quantum potential from the second of equations
(2) it is simply the Hamilton-Jacobi equation of classical mechanics with a familiar interpretation in terms of massive
point particles. The Hamilton-Jacobi equation is a way of writing the equations of motion for a system of particles
which is an alternative to Newton’s laws. It is clearly completely classical. The quantum potential would be zero if
the universe were classical (i.e. if h̄ = 0). However Planck’s constant is very small, but not zero, and this term can be
regarded as an additional self-generated potential that the classical particle experiences to give it its quantum nature.
Furthermore, a number of authors have argued that a quantum particle behaves at its most classical in places where
the quantum potential is zero [8–10]. From the point of view of the current work, the key thing to note from this
formalism can be seen in the second of equations (2). If we have two wavefunctions with the same value of S(x, t)
then the sum V (x, t) + VB(x, t) must also be the same for both of them.

III. NON-STATIONARY SUPERSYMMETRIC QUANTUM MECHANICS

Non-stationary supersymmetric quantum mechanics essentially involves employing a time-dependent Darboux trans-
formation to reconstruct the Schrödinger equation. In this procedure we start with a potential and eigenfunctions that
satisfy the Schrödinger equation and from these we generate a new potential and eigenfunctions of the Schrödinger
equation. This approach defines a hierarchy of solutions. Once we have found the new potential and wavefunction we
can use them as the input to a subsequent transformation. Here we outline the method, but refer the reader to the
original literature for the calculational details [19–23]. Non-stationary supersymmetry is a powerful technique but its
implementation has been limited so far. Bagrov et. al. performed a number of examples in their papers [19–21] deriv-
ing the method, although these contain little physical interpretation of the results. Both Zelaya and Rosas-Ortiz [25]
and Contreras-Astorga [26] have found interesting new potentials starting from the harmonic oscillator. Rasinskaitė
and Strange [27] have recently used the technique to describe surfing on a quantum level. The method has recently
been extended to nonlinear equations by Hayward and Biancalana[28].

Consider two different time-dependent one-dimensional Schrödinger equations(
ih̄
∂

∂t
− Ĥ0

)
ψ(x, t) = 0(

ih̄
∂

∂t
− Ĥ1

)
φ(x, t) = 0 (5)

with

Ĥi = − h̄2

2m

∂2

∂x2
+ Vi(x, t) (6)

with i = 0 or 1. Let us postulate that there exists an operator Â such that

Â

(
ih̄
∂

∂t
− Ĥ0

)
ψ(x, t) =

(
ih̄
∂

∂t
− Ĥ1

)
Âψ(x, t) (7)

From equation (5) the left hand side of this is zero and so the right hand side must also be zero, which implies

φ(x, t) = Âψ(x, t) (8)
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It has been shown that such an operator does exist and it is written as a function of x and t as

Â = Â0(x, t) + Â1(t)
∂

∂x
(9)

Here we find that Â1(t) has units of distance (although it is only a function of time, not x), while A0(x, t) is
dimensionless and is given by

Â0(x, t) = − 1

u(x, t)

∂u(x, t)

∂x
Â1(t). (10)

Here u(x, t) is known as a transfer function and is a distinct solution of the same Schrödinger equation as ψ(x, t). So
for the new wavefunction we have

φ(x, t) = Â1(t)

(
∂

∂x
− 1

u(x, t)

∂u(x, t)

∂x

)
ψ(x, t) (11)

and the new potential is given by

V1(x, t) = V0(x, t) + ih̄
1

Â1(t)

∂Â1(t)

∂t
− h̄2

m

∂2

∂x2
(log u). (12)

Â1(t) is essentially arbitrary, but can be chosen to find the representation in which V1(x, t) is real if such a represen-
tation exists. Then

V1(x, t) = V0(x, t)− h̄2

2m

∂2

∂x2
(log |u(x, t)|2) (13)

This clearly contains only real terms. We now have all we need to calculate new solutions of the Schrödinger equation
from known solutions. The procedure is as follows. We choose two known solutions of the upper of equations (5) as
ψ(x, t) and the transfer function u(x, t), and we also know the corresponding potential V0(x, t). First we calculate

V1(x, t) from equation (12) with A1(t) = 1 and if it is not real we choose an expression for Â1(t) to make it real.
The details of how to do this are given in the original literature. If this is not possible the calculation may be
mathematically interesting, but there is very unlikely to be any physical applications of the results. Next we calculate
Â0(x, t) from equation (10) and then Â(x, t) from equation (9). Finally we find φ(x, t) from equation (8) or (11) and
that is the wavefunction corresponding to the potential V1(x, t). This completes the calculation because that V1(x, t)
and φ(x, t) are the potential and solutions of the lower of equations (5).

IV. POLAR REPRESENTATIONS OF WAVEFUNCTIONS AND SUPERSYMMETRIC QUANTUM ME-
CHANICS

In this section we will use wavefunctions in the form of equation (1) in an implementation of the time-dependent
supersymmetry method. To this end we write the transfer function , the initial wavefunction and the final wavefunction
respectively as

u(x, t) = Ru(x, t)eiSu(x,t)/h̄ ψ(x, t) = Rψ(x, t)eiSψ(x,t)/h̄ φ(x, t) = Rφ(x, t)eiSφ(x,t)/h̄ (14)

Henceforth in this section we will drop the explicit x and t dependence of these quantities for clarity. Next we
substitute these forms into equation (11). It turns out that if we insist that

∂Sψ
∂x

=
∂Su
∂x

(15)

then Sφ = Sψ, and

Rφ = Â(t)

(
∂Rψ
∂x
− Rψ
Ru

∂Ru
∂x

)
(16)

As it is the expression for S that determines the dynamics of the particle, this means that the new solution of the
Schrödinger equation obeys the same dynamical equations as the old solution (up to a constant of integration). Now
let us put the first of equations (14) into equation (13). After some manipulation this yields

V1 = V0 −
h̄2

m

(
1

Ru

∂2Ru
∂x2

− 1

R2
u

(
∂Ru
∂x

)2
)

(17)
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Prior to the first transformation the quantum potential is given by

VB(Rψ(x, t)) = − h̄2

2m

1

Rψ(x, t)

∂2Rψ(x, t)

∂x2
(18)

and after the first transformation it is given by

VB(Rφ(x, t)) = − h̄2

2m

1

Rφ(x, t)

∂2Rφ(x, t)

∂x2
(19)

Building equation (19) from equation (16) and making use of both (15) and (2) it can be shown that

VB(Rφ) = VB(Rψ) +
h̄2

m

(
1

Ru

∂2Ru
∂x2

− 1

R2
u

(
∂Ru
∂x

)2
)

(20)

Now adding equations (17) and (20) yields our key result that

V1 + VB(Rφ) = V0 + VB(Rψ) (21)

i.e. the sum of the usual classical potential and the quantum potential is conserved by a supersymmetry transformation
provided equation (15) is satisfied. This is just what we observed at the end of section II, that V (x, t) + VB(x, t)
is conserved if S(x, t) is the same for the initial and final wavefunction. In Equations (17) and (20) we have shown
mathematically that the same quantity is subtracted from V0 as is added to VB(Rψ) and provided an explicit expression
for that quantity. Equation (21) should be regarded as a mathematical condition on the wavefunctions and potentials.
That this can be written in terms of the quantum potential enables us to discuss this result in terms of the De-Broglie-
Bohm model.

In fact when we have an initial wavefunction for which the value of S satisfies equation (15) we can perform any
number of supersymmetry transformations on it and each wavefunction will have the same expression for S. The
classical and quantum potentials are not conserved individually by a time dependent supersymmetry transformation
(there would be no point in it if they were), so an interesting way of regarding such a transformation is as transferring
potential between the classical potential and the quantum potential. In the following section we illustrate this with
a number of examples.

V. EXAMPLES

In this section we display a number of examples of transferring weight between the classical and quantum potentials.
As part of this we calculate some expectation values. Because of the symmetry these are all zero if calculated in the
usual manner. Here the wavefunctions displayed are equal to zero at x = 0 at all times, so it is legitimate to calculate
the expectation value over just one half of the space, which we have done.

A. The Free-Particle Hermite Wavefunction.

In this first example we consider a known free particle wavefunction. This will form the starting point for subsequent
examples where it is used to initiate a number of supersymmetry transformations. A solution of the time-dependent
free particle Schrödinger equation with a form suitable for illustrating the above theory is:

Ψ(x, t) =

√
1

n!

( m

h̄τπ

)1/4 2−n/2

(1 + t2/τ2)1/4
e

(
− mτx2

(2h̄(t2+τ2)

)
e(−i(n+1/2) arctan( tτ ))e

(
imx2t

2h̄(t2+τ2)

)
Hn

((
mτ

h̄(t2 + τ2)

)1/2

x

)
.

(22)
Here the symbols have their usual meanings. τ is a positive constant with the dimensions of time. τ = 1 has been
chosen throughout this paper unless otherwise stated. Hn is a Hermite polynomial and n is a non-negative integer
quantum number. To our knowledge this wavefunction was first found by Miller [15]. It has a number of interesting
properties which have been discussed since by Bagrov et. al [20], Guerrero et. al. [16, 17] and Strange [18] for
example. The probability density associated with this wavefunction is displayed in Figure 1. For this case

S(x, t) =
mx2t

2(t2 + τ2)
− (n+ 1/2)h̄ arctan

(
t

τ

)
(23)
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and

R(x, t) =

√
1

n!

( m

h̄τπ

)1/4 2−n/2

(1 + t2/τ2)1/4
e

(
− mτx2

(2h̄(t2+τ2)

)
Hn

((
mτ

h̄(t2 + τ2)

)1/2

x

)
. (24)

Then equation (3) yields

dx

dt
=

xt

t2 + τ2
(25)

which can be solved trivially to give

x = x0

√
t2 + τ2

τ
(26)

where x0 is a constant of integration. The division by τ here is not necessary, but is done to give x0 units of distance.
This result has also been obtained using semiclassical methods in reference [18]. For the values of the parameters used
we find the expectation value of position 〈x̂〉 has x0 = 2.394. We can use equation (24) in (4) to find the quantum
potential for this wavefunction:

VB(R(x, t)) =
τ((n+ 1/2)(t2 + τ2)h̄−mx2τ)

2(t2 + τ2)2
(27)

The wavefunction (22) is one member of a family of wavefunctions that all have the S(x, t) given by equation (23) for
any particular value of n. This wavefunction is in some sense maximally quantal because the entirety of the potential
it experiences is the quantum potential. In figure 1 we plot this potential for several times for n = 3. We note that
this potential depends on t2 as opposed to t. meaning that Figure 1 would look the same if we replaced the values of
t by −t. Furthermore any properties of a particle experiencing this potential should be of identical magnitude at ±t.
The potential is an inverted parabola at all times, but it becomes flatter very rapidly. As this corresponds to zero

,

FIG. 1: Left: The quantum potential of equation (27) as a function of position at several different times for n = 3
and τ = 1. Right A space time map for the probability density associated with the wavefunction of equation (22)

with n = 3

conventional potential this is also V + VB which is constant for all wavefunctions found from equation (22) using a
supersymmetry transformation.

B. A Wavefunction generated from a single supersymmetry transformation

In this example we have chosen a simple case u(x, t) = Ψ(x, t) above with n = 1, and ψ(x, t) = Ψ(x, t) with n = 3.
V0 = 0 of course and then after one supersymmetry procedure

V1(x, t) = h̄

(
τ

t2 + τ2
+

h̄

mx2

)
(28)
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and

VB(x, t) = − mx2τ2

2(t2 + τ2)2
+

5τ h̄

2(t2 + τ2)
− h̄2

mx2
(29)

V1(x, t) and VB(x, t) at t = 0 are shown as the blue dashed and red dotted lines respectively on the left hand side of
Figure 2. Clearly the supersymmetry transformation has introduced an infinity into the potential. This comes about
because Ru passes through zero at the origin. The wavefunction is given by

φ(x, t) =
(m
h̄

)7/4 4x2τ5/4

√
3 (π + πt2/τ2)

1/4
(t2 + τ2)

e
i
2

(
mx2t

h̄(t2+τ2)
−7 arctan( tτ )

)
e
− mx2τ

2h̄(t2+τ2) (30)

and so

R(x, t) =
(m
h̄

)7/4 4x2τ5/4

√
3 (π + πt2/τ2)

1/4
(t2 + τ2)

e
− mx2τ

2h̄(t2+τ2) (31)

and

S(x, t) =
mx2t

2(t2 + τ2)
− 7

2
h̄ arctan

(
t

τ

)
(32)

S(x, t) here is in the same form as equation (23) which implies that the dynamics is also the same (to within a
constant). It is straightforward to verify that the expectation value 〈x̂〉 obeys equation (26) with x0 = 2.128. In

,

FIG. 2: Left: The potentials of equation (28) (blue, dashed) and (29) (red, dotted) and the sum V (x, t) + VB(x, t)
(black, full) as a function of position at t = 0. The black full line is identical to the blue t = 0 line in Figure 1.
Right: A space-time map of the probability density for this wavefunction. (blue (dark) = a very low probability

density and yellow/white = a high probability density.)

this case it is easy to see why the two branches of the probability density are separate, the classical potential has an
infinity at the origin meaning that any particle experiencing this potential will be unable to pass through it and hence
will be trapped on one side of the potential for all times.

C. Quantum Surfing Wavefunction.

As a further example we perform the two successive supersymmetry transformations described by Strange and
Rasinskaitė [27] to obtain a solution of the Schrödinger equation where the particle appears to ‘surf’ on the time-
dependent potential.

For this example we have taken the wavefunction from equation (30) above as ψ(x, t) for a second supersymmetry
transformation. Then we have performed another supersymmetry calculation analogous to that of example B, starting
from the same eigenfunction Ψ(x, t), but with n = 1 for u(x, t) and n = 2 for ψ(x, t) to get a new u(x, t) for input

7



to the second supersymmetry transformation. Note that we have used the same quantum number for u(x, t) in both
our first round of supersymmetry transformations. This is because they then both generate the same new potential.
Using this potential generated from the first transformation as V0 in the second transformation we end up with the
following output potential

V1(x, t) =
2τ h̄(4m2x4τ2 + 8mx2τ(t2 + τ2)h̄− (t2 + τ2)2h̄2)

(t2 + τ2)(2mx2τ + (t2 + τ2)h̄)2
. (33)

and the quantum potential is

VB(x, t) =
τ
(
−4m3x6τ3 + 8m2x4τ2(t2 + τ2)h̄− 5mx2τ(t2 + τ2)2h̄2 + 11(t2 + τ2)3h̄3

)
2(t2 + τ2)2(2mx2τ + (t2 + τ2)h̄)2

(34)

The classical potential at t = 0 is shown as the blue dashed line on the left diagram of Figure 3. It retains that

,

FIG. 3: Left: The potentials of equation (33) (blue, dashed) and (34) (red, dotted) and the sum V (x, t) + VB(x, t)
(black) as a function of position at t = 0. The black full line is identical to the blue t = 0 line in Figure 1. Right: A
space-time map of the probability density for this wavefunction. (blue (dark) = a very low probability density and

yellow/white = a high probability density.)

shape for all times, but for t << 0 it is very stretched and shallow. As time increases from t = −∞ the potential
contracts towards zero, the maxima of the potential get closer to zero, and the central potential well deepens until it
takes on the form shown in Figure 3. For t > 0 the motion of the potential reverses and it becomes very stretched
and shallow again. The quantum potential is given by the red dotted line on the left of Figure 3. For t << 0 and
t >> 0 it is close to an inverted parabola. Around t = 0 a more well-defined peak appears symmetric about x = 0
and the rest of the parabola decreases in size. This peak is an exact ’counterbalance’ to the potential well formed
in the classical potential. The right hand side of Figure 3 is a space-time map of the probability density determined
from the wavefunction that is output from the supersymmetry transformation. This is a single particle wavefunction
and, although there are two branches to the probability density, the particle will only inhabit one of them at any
one time. This is determined by the boundary conditions, Clearly the particle is fairly well localised at t = 0 but
the probability density spreads out rapidly either side of t = 0. If we evaluate the expectation value of position as a
function of time we find it obeys equation (26) with x0 ≈ 1.305. There is a region between the two peaks at t = 0
where the probability density is close to zero, so there is very little probability of the particle being there. However
different values of the free quantum number associated with ψ yield eigenfunctions where the probability density is
high at the bottom of the well. Comparing the right hand sides of figures 2 and 3 we see that the quantum surfing
probability density has superficially the same shape the that shown in figure 2, but it broadens considerably more
rapidly.

D. A highly localised wavefunction.

We present this example because, while in some ways apparently unphysical, it also exhibits some noteworthy
properties. Here we have repeated the calculation in example B with n = 1 for u(x, t) and n = 4 for ψ(x, t). The
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output wavefunction from this calculation is our new u(x, t). We have repeated this procedure with n = 1 and n = 2
respectively and the output from that calculation is our new ψ(x, t). We then perform the further supersymmetry
transformation that results in the more complicated resultant classical potential

V1(x, t) =
2τ h̄(16m4x8τ4 − 8m2x4τ2h̄2(t2 + τ2)2 + 48mx2τ h̄3(t2 + τ2)3 − 3h̄4(t2 + τ2)4

(t2 + τ2)(−4m2x4τ2 + 4mx2τ h̄(t2 + τ2) + h̄2(t2 + τ2)2)2
(35)

and a quantum potential given by

VB(x, t) =
τ(−16m5x10τ5 + 80m4x8τ4h̄(t2 + τ2)− 232m3x6τ3h̄2(t2 + τ2)2 + 80m2x4τ2h̄3(t2 + τ2)3)

2(t2 + τ2)2(−4m2x4τ2 + 4mx2τ h̄(t2 + τ2) + h̄2(t2 + τ2)2)2

+
τ(−137mx2τ h̄4(t2 + τ2)4 + 19(h̄5(t2 + τ2)5)

2(t2 + τ2)2(−4m2x4τ2 + 4mx2τ h̄(t2 + τ2) + h̄2(t2 + τ2)2)2
. (36)

,

FIG. 4: Left: The potentials of equation (35) (blue, dashed) and (36) (red, dotted) and the sum V (x, t) + VB(x, t)
(black, full) as a function of position at t = 0. The black full line is identical to the blue t = 0 line in Figure 1.
Right: A space-time map of the probability density for this wavefunction. (blue (dark) = a very low probability

density and yellow/white = a high probability density.)

These potentials are shown at t = 0 in left picture in Figure 4 along with their total which is the black full line
and is identical to the equivalent lines in the previous figures. The potential here has a new characteristic in that it
contains a pair of infinities and these move symmetrically towards the origin for t < 0 and away from the origin for
t > 0. The origin of these infinities is easy to see. In equations (17) and (18) we see that an infinity will arise in the
classical potential and in the quantum potential if Ru = 0 and that is indeed the case here. Furthermore, a zero in Ru
will arise from a zero in u(x, t). As can be seen from equation (11) a zero in u(x, t) will lead to an infinity in the new
wavefunction φ(x, t). This means that infinities in both the potential and probability density will coincide in space
and time. This is shown in the right hand picture in Figure 4, where the infinity dominates the probability density,
which makes it very highly localised. Unusually, we have here a localised wavefunction that does not broaden. It
is tied to a particular position by the zero in u(x, t). The expectation value 〈x̂〉 cannot be determined numerically
because of the infinities in the probability density. However the probability density peak must correspond with the
expectation value of position and so the right hand picture in Figure 4 also shows the expectation value of position
as a function of time. We can estimate graphically that for this case x0 = 1.554. The non-spreading nature of the
probability density continues indefinitely in both time and space. While the picture this solution gives us, of a particle
trapped at an infinite potential peak, is unphysical, the lack of broadening it produces is worth noting.

E. A Final Wavefunction

We have seen that there exists families of potentials and solutions of the Schrödinger equation that have identical
values of the quantum number n and identical values of S(x, t), but differing potentials and values of R(x, t), such
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that V (x, t) + VB(x, t) is always the same. One ‘end’ of this series is the example in section A where the classical
potential is zero and the quantum potential takes on the value of equation (27). At the other end of the scale is the
case where the classical potential is given by equation (27)

V (x, t) =
( 7

2 (t2 + τ2)h̄−mx2τ)τ

2(t2 + τ2)2
(37)

for n = 3, and the quantum potential is zero. A solution to the time-dependent Schrödinger equation for this potential
can be found by inspection as

ψ(x, t) =
B

(t2 + τ2)1/4
exp

[
i

(
mx2t

2h̄(t2 + τ2)
− 7

2
arctan

(
t

τ

))]
(38)

where B is a constant. Clearly this eigenfunction is a member of the same family as the previous examples because it
has the same expression for S(x, t). It is easy to verify that the quantum potential associated with this wavefunction
is zero. This potential and wavefunction represent two things. Firstly the action

S(x, t) =
mx2t

2(t2 + τ2)
− 7h̄

2
arctan

(
t

τ

)
(39)

is a solution of equation (2) with the quantum potential equal to zero, i.e. the classical Hamiltonian-Jacobi equation.
Standard classical mechanics leads to this action describing motion of a classical particle according to equation (26).
So, in one sense the result of Equation (38) describes a fairly simple classical particle. On the other hand, the
potential of equation (37) is the potential that gives the solution in example A its ‘quantumness’. The wavefunction
it generates, shown in equation (38), is unnormalizable. and the probability density it produces is independent of x,
so constant over all space. We can calculate the probability and probability current density easily using the standard
prescriptions giving

ρ(x, t) =
B2

(t2 + τ2)1/2
, J(x, t) =

t

τ

B2x0t

t2 + τ2
(40)

and if we define velocity as current density divided by probability density we find

v =
J

ρ
=
x0

τ

t

(t2 + τ2)1/2
(41)

which, with x = x0

√
t2 + τ2)/τ is equivalent to equation (25), hence showing that a particle described by this

wavefunction does obey the same dynamical equations as the other examples.

VI. DISCUSSION

This work leads to a new perspective on both supersymmetric quantum mechanics and on the Madelung-Bohm
representation of the Schrödinger equation.

We have seen that one way of viewing a supersymmetry transformation is as a procedure to transfer potential
between the quantum potential and the classical potential function provided simple restrictions are placed on the
quantum mechanical action. This enables us to create families of wavefunctions which have differing values of R(x, t)
but the same S(x, t). Members of these families all have the same basic dynamics, but differing initial probability
distributions. The transfer function u(x, t) is required by the method to be a solution of the same Schrödinger
equation as the wavefunction before the supersymmetry transformation ψ(x, t), but within that limitation we still
have some freedom to choose the nature of the transferred potential. In turn this gives us the capability to influence
the properties of the resulting wavefunction. The formalism generalises straightforwardly to higher dimensions.

This has been illustrated in a set of examples where we have found several members of the same family of wave-
functions, each of which has the same basic dynamics (apart from an arbitrary constant of integration), but have
very different probability densities. One noteworthy case is where we can add infinities to the classical potential and
subtract them from the quantum potential which leads to particles whose position is localised and does not broaden
with time.

Equations (2) are an alternative, less general, form of the Schrödinger equation. Because they are a pair of coupled
equations for R(x, t) and S(x, t) it is often stated that these two quantities determine each other. In this work we
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have shown that, rigorously, this is not the case. There is a potentially infinite set of different expressions for the
probability amplitude R(x, t) for a given S(x, t). This is consistent with the interpretation that of all the possible
dynamics defined by equation (3) we are choosing those that are compatible with the initial probability distribution
R2(x, 0) [4]. In some sense the quantum potential contains the quantum nature of the particle. Therefore we can
regard the supersymmetry procedure as adding or subtracting ‘quantumness’ to the wavefunction. The examples
used to illustrate the theory are all members of the same family. Example A has zero classical potential and non-zero
quantum potential and so may be regarded as the most quantum mechanical case. Example E is the most classical in
the same sense because the particle experiences the full classical potential, but zero quantum potential. The example
that actually behaves most classically is example D as it does not broaden.

We conclude by pointing out that the procedure described here provides a means of investigating the effects of the
quantum potential in many more cases and provides a route to a deeper understanding of the relationship between
classical and quantum mechanics.
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