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Abstract—In many real production systems, a system may be 

stopped due to a lack of demand or exhaustion of raw materials. 

This is known as production wait and provides a good opportunity 

for maintenance. Meanwhile, the increased complexity of the 

modern machines brings new challenges for modeling and 

analyzing their failure behaviors. To address these real-world 

problems, this research considers a single-unit system that may fail 

due to either hard failures or soft failures. The wait time of a 

system is utilized to conduct inspections and maintenance. The 

system is replaced when a defect is found during an inspection, a 

failure occurred or a pre-specified age threshold is reached, 

whichever comes first. The cost model, which is the long-run 

maintenance cost per unit of time, is derived. The optimal 

periodical inspection interval and the threshold age to minimize 

the long run maintenance cost per unit of time is then obtained. A 

case study is conducted to demonstrate the proposed maintenance 

model. The study shows using the proposed maintenance model 

can reduce the cost. Sensitivity analysis illustrates how each cost 

parameter affects the optimal inspection interval and the optimal 

age threshold. 

 
Keywords: Delay-time concept, inspection, maintenance 

decision, multiple failure modes, production wait. 

I. INTRODUCTION 

AINTENANCE is a widely used approach to reduce the 

operational cost of industrial assets in many sectors such 

as power grid systems and transportation infrastructure [1]-[4]. 

Based on how the maintenance action is triggered, we can 

categorize the strategies as corrective maintenance [5],[6], 

preventive maintenance [7]-[12], and condition-based 

maintenance [13]-[17]. The main objectives of maintenance 

management of technical systems are to minimize maintenance 

cost and to increase system reliability. 

In practice, a system may fail due to multiple types of failures 

that are independent from each other [18] -[20]. If a failure is 

instantaneous and has the characteristic of self-announcement, 

it is referred to as a hard failure. Otherwise, if a failure generates 

early warning signals or its degradation mode can be detected 

by inspection or condition monitoring, it is a soft failure [21], 
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[22]. For example, a production system may consist of several 

subsystems, including electromechanical systems composed of 

mechanical and electrical components. The mechanical 

components may be continuously monitored or periodically 

inspected for wear, while electrical components may suffer 

suddenly failures [23]. The feed subsystem of a boring machine 

is composed of the feed screw and other components. The 

manufacturing accuracy is determined by the feed screw, which 

the core component of the subsystem. When the error exceeds 

the predetermined level and cannot meet the quality 

requirements, it is considered as a soft failure. In addition, hard 

failures of other components of the subsystem can also cause 

the subsystem to stop working [24]. These two examples show 

that the practical system usually fails due to different types of 

failure modes. Thus, analyzing the different failure modes can 

provide a more accurate modeling of the system reliability.  

The progress of a soft failure may go through multiple stages, 

including perfect functioning, defects and failure [25]. For 

example, the increasing number of defective items is an 

indicative signal of defects in a production system. Inspection 

is an effective way to detect such signals so that maintenance 

actions can be taken before system failure. To characterize the 

failure process with multiple stages, the delay-time concept, is 

introduced in [26]. In the literature, a substantial amount of 

works has devoted to modeling and optimizing inspection 

policies and maintenance policies using the concept delay-time. 

For example, the two-stage failure process was extended to 

three stages to distinguish between major and minor defects 

[27]-[30]. The delay time model was also used to determine 

optimal maintenance policies in the case of postponed 

replacement [31]-[33]. Furthermore, the delay time modeling 

approach was also adopted to optimize the maintenance and 

spare part inventory jointly [34]-[36]. From the perspective of 

applications, the delay time concept has been applied to 

different types of systems such as production systems [37], 

airport runways [38], critical systems [39], and bus fleets [40]. 

In production systems, some wait time can be utilized to 

conduct inspection and maintenance to lower the cost or to 
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mitigate the interruption. Production wait, which occurs 

randomly due to a lack of demand or exhaustion of raw 

materials, provides a good opportunity for inspection and 

maintenance [41]-[44]. For example, the inspection 

maintenance opportunity arises for a machine with excessive 

buffers in a smoothing production line [45]. Thus, making full 

use of the opportunity of production wait to identify defects in 

machines can reduce the disruption time during the normal 

operation. 

However, in the literature, there is little research on analyzing 

how the production wait time can be utilized to conduct 

inspection or maintenance, especially for complex systems that 

subject to multiple failure modes. In this research, a single-unit 

system that may fail due to two independent failure modes is 

considered. Production waiting time is utilized to conduct 

inspections. Whenever a defect is found during an inspection, 

whether it is a periodical inspection or a production wait 

inspection, the system is replaced. When the system fails or 

reaches a threshold age, it is also replaced. Under these 

assumptions, the long run maintenance cost per unit of time is 

derived and is minimized to find the optimal periodical 

inspection intervals and age thresholds.  

The contribution of this article is three-fold. Firstly, it 

develops a maintenance cost model for a single-unit system 

considering two failure modes and production wait time. The 

optimal periodical inspection interval and the aged-based 

replacement time are then sought by minimizing the long run 

average maintenance cost per unit of time. Secondly, it proves 

that utilizing the production waits for inspection and 

maintenance can reduce the long run average maintenance cost 

per unit of time. Lastly, through sensitivity analysis, it provides 

useful insights for decision maker to choose the most 

appropriate maintenance model under different scenarios. 

The remainder of this article is arranged as follows. Section 

2 provides the system description and the maintenance model. 

Section 3 derives the cost model for the proposed maintenance 

policy. Section 4 provides a case study. Finally, we conclude in 

Section 5. 

 

List of Notations 

1,dX   duration of the normal state for failure mode 1 

1, fX  duration of the defect state for failure mode 1 

2X  duration of the operating state for failure mode 2 

  time at which the defective state of failure mode 1 occurs 

t  time of system failure 

wt  time at which the first production wait happens after the 

system being defective 

wT  random arrival time of the nearest production wait that 

occurs after the system becomes defective 

T  periodic inspection interval  

pT  time of the periodic inspection renewal 

,k f jT  time of the system failure renewal, where 1,2,3j   

,k wjT  
time of the production wait inspection renewal, where 

1,2,3j   

ageT  age threshold at which the system is replaced 

immediately, and is equal to nT  

( )N   number of production waits that occur during [0, ]  

( )jf   probability density function of variable 

1, 1, 2, , ,d fj j X X X  

( )jF   cumulative distribution function of variable 

1, 1, 2, , ,d fj j X X X  

( )jR   survival probability of j , and ( ) 1 ( ),j jR F   

1, 1, 2, ,d fj X X X  

p  inspection cost of the periodical inspection 

w  inspection cost of the production wait inspection 

pc  replacement cost 

fc  replacement cost in the case of the system failure 

( , )C
pE n T  expected renewal cycle cost for the periodical inspection 

renewal 

( , )C
fE n T  expected renewal cycle cost for the failure renewal 

( , )C
wE n T  expected renewal cycle cost for the production wait 

inspection renewal 

( , )C
aE n T  expected renewal cycle cost for the age-based renewal 

( , )L
pE n T  expected renewal cycle length for the periodical 

inspection renewal 

( , )L
fE n T  expected renewal cycle length for the failure renewal 

( , )L
wE n T  expected renewal cycle length for the production wait 

inspection renewal 

( , )L
aE n T  expected renewal cycle length for the age-based renewal 

( , )CE n T  average renewal cost of the system 

( , )LE n T  average renewal length of the system 

/ ( , )C LE n T

 

expected long run cost per unit of time 

 

II. PROBLEM FORMULATION 

This section first provides a description of the system, and 

then proposes a maintenance policy for this system. Finally, the 

maintenance model is developed for the proposed maintenance 

policy.  

A. System description 

Consider a single-unit system that is subject to two types of 

independent failures, both of which can cause the system to fail. 

Failure mode 1 is referred to as a soft failure. The progress of a 

soft failure includes three states: normal, defective and failed. 

The transition from the normal state to the defective state 

transits the system from new to defective and the transition 

from the defective state transits the system from defective to 

failure. Let 1,dX and 1, fX  denote the durations of the normal 

state and the defective state, respectively, with the 

corresponding distributions of sojourn times 
1,

( )
dXF   and 

1,
( )

fXF  , and the probability density functions being (PDFs) 

1,
( )

dXf   and 
1,

( )
fXf  . Failure mode 2 is referred to as a hard 

failure, which occurs without any early warning signals. The 

time of the system from new to failure in the case of a hard 

failure is described by a random variable 2X , with a CDF being 

2
( )XF   and a PDF being 

2
( )Xf  . 

When the system is defective, it can continue operating. The 

defective state of the system can only be identified through two 
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types of inspections. The first type of inspection, which is called 

periodical inspection, is conducted periodically. The other type 

of inspection, which is called production wait inspection, is 

conducted when the system stops for production wait that occur 

randomly. The production wait happens independently from the 

failure process of the system. When the system fails due to 

either failure mode, it can be observed immediately. In order to 

reduce the probability of failures that may cause a huge cost, 

the age-based replacement is considered. In this paper, 

replacement is the same as a system renewal. 

B. The maintenance policy 

We define the maintenance policy as follows. Starting from 

new, periodical inspections are conducted with an interval of 𝑇. 

The production wait inspection is also conducted when a 

production wait happens. The occurrence of production wait 

follows a Poisson process with rate 𝜆. The system is replaced if 

an inspection (either the periodical inspection or the production 

wait inspection) finds the system in a defective state, the system 

fails, or the age of the system reaches 𝑇𝑎𝑔𝑒 , whichever occurs 

first. The replacement time is negligible. The maintenance 

policy has two decision variables: the periodic inspection 

interval 𝑇 and the time for age-based replacement. In practice, 

the time for age-based replacement is usually assumed to be a 

multiple of periodical inspection interval for the convenience of 

maintenance crew. Thus, we assume the time for age-based 

replacement is  𝑛𝑇  , where 𝑛  is a positive integer. This 

assumption is also frequently used in the literature of 

maintenance [23, 33, 37, 44]. 

The novelty of this maintenance model is the consideration 

of two types of failure modes and utilizing the production wait 

time to carry out inspection and maintenance. In this way, the 

policy takes greater care of industry practice, and model the 

real-world problem more accurately.  

The cost parameters associated with the maintenance policy 

are explained as follows. The first type of cost is inspection cost. 

Let p  and w  represent the cost of a periodical inspection and 

a production wait inspection, respectively. Since the periodical 

inspection interrupts the production process, it is reasonable to 

assume that p w  . The second type of cost is the 

replacement cost. Based on the assumption that the duration of 

each production wait and the replacement time is negligible 

compared with the system lifetime, it is reasonable to assume 

that the replacement cost is the same for: (i) replacing the 

system during periodical inspection, (ii) replacing the system 

when the system reaches the age of ageT , (iii) replacing the 

system during production wait inspection. Although the 

periodical inspection replacement interrupt the production 

process, the cost associated with interruption is already 

considered in the inspection cost, where we have assumed that

p w  . Let pc  denote the replacement cost. Let fc  denote 

the replace cost when the system fails. The replacement cost 

incurred due to system failure can be much larger than pc  

because the sudden failure may bring unpredictable losses for 

the system. Note the unpredictable loss (penalty cost) for the 

system failure has already been included in fc . 

C. The maintenance model 

Note that the production wait occurs randomly according to 

a Poison process with arrival rate of  . Let wT  denote random 

arrival time of the nearest production wait that occurs 

immediately after the system becomes defective. The 

probability that the nearest production wait occurs after wt  for 

( , )wt    is 

       ( )
0 ,wt

w w wP T t P N t N e
           (1) 

where ( )wN t  and ( )N   denote the number of production 

waits during the time interval [0, ]wt  and [0, ] , respectively, 

and [ ( )]=E N   . 

 Thus, the PDF of wT  is 

 
  ( )

.w

w

w w t
T w

w

dP T t
f t e

dt

   
    (2) 

The maintenance cost model can be derived as follows. 

Let fT  be the system lifetime and ( )F t  be the survival 

probability of the system before t . Then, we can derive ( )F t  

as follows.    

       

   

       

1, 1, 2

1 2

1 2 1 2

1 1 1

,

f d fF t P T t P X X t X t

F t F t

F t F t F t F t

      
 

          

  

 (3) 

where 1( )F t  and 2( )F t  denote the probabilities that the 

system fails before t  due to failure mode 1 and failure mode 2, 

respectively.  

 The equality in Equation (3) exits since the two failure 

modes are independent. 1( )F t  can be further expressed as  

   

   

   
1, 1,

1 1, 1,

1, 1, 1,

0

    

    .
d f

d f

d f d

t

X X

F t P X X t

P X t X t X

f F t d  

  

    
 

   (4) 

Soft and hard failures are often assumed to be independent 

[21, 23, 46-48]. Based on the maintenance policy defined above, 

we study the optimal inspection policy for a single-unit system 

subject to two independent failure modes: the soft failure and 

the hard failure. Both failure modes can lead to the system 

failure. The system may be renewed under four different 

scenarios. When one of the scenarios occurs, the system will 

update immediately according to our assumptions, so the other 

three updates will not happen. Therefore, the four different 

scenarios are independent of each other. 

(a) Periodical inspection renewal. The system is renewed 

when the periodical inspection finds it in the defective 

state. 

(b) Failure renewal. The system is renewed immediately 

after failure occurs. 

(c) Production wait inspection renewal. The system is 

renewed immediately after the defective state is found 

by an inspection during production wait. 

(d) Age-based renewal. When the system reaches the age 
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of ageT , no inspections are performed, even though it is 

still in the normal, it will be renewed. The threshold age 

of system ageT  is an multiple of the periodic inspection 

interval, i.e., ageT nT , where 1n   is a positive 

integer. 

Given n  and T , let ( , )C
pE n T , ( , )C

fE n T , ( , )C
wE n T  and 

( , )C
aE n T  denote the expected renewal cycle costs for the 

periodical inspection renewal, failure renewal, production wait 

inspection renewal, age-based renewal, respectively. Let 

( , )L
pE n T , ( , )L

fE n T , ( , )L
wE n T  and ( , )L

aE n T denote the expected 

renewal cycle lengths for the periodical inspection renewal, 

failure renewal, production wait inspection renewal, age-based 

renewal, respectively. Let ( , )CE n T  and ( , )LE n T  denote the 

average renewal cost and renewal length of the system given n  

and T .  

Then, the expected long run cost per unit of time / ( , )C LE n T  

can be expressed as 

 
 

 
/ ,

,
,

( , ) ( , ) ( , ) ( , )
                 .

( , ) ( , ) ( , ) ( , )

C
C L

L

C C C C
p f w a

L L L L
p f w a

E n T
E n T

E n T

E n T E n T E n T E n T

E n T E n T E n T E n T



  


  

 (5)

 

The objective of determining the optimal the maintenance 

policy is to find the best n  and T  such that / ( , )C TE n T  can be 

minimized. This is equivalent to solving the following 

optimization problem.  

     /min , , . . 0, ,  1,2,... .C LE n T s t T n    (6) 

The difficulty associated with solving the optimization 

problem in Eq. (6) is the derivation of the explicit expression of 

the objective function / ( , )C LE n T . In the following sections, we 

aim to obtain / ( , )C LE n T  explicitly by analyzing each renewal 

scenario separately.  

III. COST MODEL FOR THE MAINTENANCE POLICY  

Based on the analysis in Section 2.3, we derive the explicit 

expressions for ( , )C
pE n T , ( , )C

fE n T , ( , )C
wE n T , ( , )C

aE n T , 

( , )L
pE n T , ( , )L

fE n T , ( , )L
wE n T  and ( , )L

aE n T  by analyzing each 

of the four types of system renewals separately.  

A. Periodical inspection renewal 

In the case of the periodical inspection renewal, it only 

happens at time kT , where 1,2,..., 1k n  . Fig. 1 provides a 

typical graphic representation for the scenario that the thk  

periodical inspection finds the system is in the defective state, 

where T  is the periodical inspection interval; 1,dX  is the 

duration of failure mode 1 in the normal state; 1, fX  is the 

duration of at the failure mode 1 defect state; and 2X  is the 

duration of failure mode 2 at the operating state. 

 
As shown in Fig. 1, the system is renewed at the thk  

periodical inspection when the following conditions are met: (i) 

the system is still in the normal state up to time ( 1)k T ; (ii) 

the system becomes defective before time kT ; (iii) no 

production wait occurs after the system being defective; and (iv) 

the system has not failed. 

Let   denote the time when the system becomes defective. 

According to the description above,   must be between 

( 1)k T  and kT . Let pT  denote the length of the periodical 

renewal. The probability that pT  is equal to kT  is 

 

     

   

     

   

     
2 1, 1,

1, 1, 2

2 1, 1,

( )

( 1)

1 0

1 0

  

,
d f

p

d f

d f

kT kT
X X Xk T

P T kT

k T kT N kT N
P

X X kT X kT

P k T kT P N kT N

P X kT P X X kT

R kT e f R kT d 

 

 

   





            
  

      

            

     
 

 

 (7)
 

where 
1. 1.

( ) 1 ( )
f fX XR F     and 

2 2
( ) 1 ( )X XR F     denote 

the survival functions. 

The last equality of Eq. (7) follows because  

     
0 ,

kT
P N kT N e

 


 
      (8) 

where the equality in Eq. (8) comes from Eq. (1) and Eq. (2).  

Given the probability function that the length of the 

periodical renewal pT  is equal to kT  in Eq. (7), the expected 

renewal cycle length for the periodical inspection renewal 

( , )L
pE n T  can be obtained by using a weighted average as 

   

       
 2 1, 1,

1

1

1

1
1

,

            .
d f

n
L
p p

k

n kT kT
X X Xk T

k

E n T kT P T kT

kT R kT e f R kT d
 

  






 




  

  



 

 (9) 

Similarly, we can derive the expected renewal cycle cost for 

the periodical inspection renewal ( , )C
pE n T  as follows. 

     

 

     
2 1, 1,

1

1

1

1

( )

( 1)

,

            

             ,
d f

n
C
p p w p p

k

n

p w p

k

kT kT
X X Xk T

E n T k N c P T kT

k N c

R kT e f R kT d 

  

  

  









 



      

    

 





  (10)

 

where p  and w  represent the inspection cost of a periodical 



1, fX

0 ( 1)k T kT

2X

1,dX

No production wait occurs Replacement at periodical inspection  
Fig. 1.  Graphic representation of periodical renewal. 
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inspection and a production wait inspection, respectively; pc  

denotes the replacement cost. 

B. Failure renewal 

In the case of the failure renewal, the system may fail due to 

either failure mode 1 or failure mode 2. If the system fails due 

to failure mode 2, it may fail before or after the system becomes 

defective. The three different scenarios are shown in Fig. 2. We 

analyze each scenario one by one as follows. 

 
Scenario 1. 

A typical case of Scenario 1 is graphically shown in Fig. 2(a). 

Under this scenario, the system fails due to failure mode 1, and 

the failure happens between the ( 1)thk   and the thk  

inspections, where 1,2,...,k n . Let t  denote the time when 

the system fails and   denote the time when the system 

becomes defective. 

Scenario 1 happens when the following conditions are met: 

(i) the system is still in the normal state up to time ( 1)k T ; (ii) 

the system becomes defective before time kT ; (iii) no 

production wait occurs during the period from being defective 

to failure, i.e., in the time interval [ , )t ; and (iv) the system 

fails after being defective due to failure mode 1 while the failure 

due to failure mode 2 does not occur.  

Based on four conditions, 𝑡 ∈ ((𝑘 − 1)𝑇, 𝑘𝑇)  and 

(( 1) , )k T t   . Let , 1k fT  be the random variable that denotes 

the failure time of the system in the case of Scenario 1. Then, 

the probability that 1fT  is between ( 1)k T  and kT  is 

  

   

 

   

2 1, 1,

, 1

1, 1,

1,

2

( 1) 0

( )

( 1) ( 1)

1

,

1

( ) ( ) 0

lim

( ) ( ) ( ) .
d f

k f

d f

d

kT

k T t

kT t t
X X X

k T k T

P k T T kT

X X t t t

P k T X t

X t N t N

dt
t

R t e f f t d dt 



  

  

 

 

  

     
  
 

     
 

   
 




   



   (11)

 

Scenario 2. 

A typical case of Scenario 2 is graphically shown in Fig. 2(b). 

Under this scenario, the system fails due to failure mode 2, and 

the failure happens between the ( 1)thk   and the thk  

inspections, where 1,2,...,k n . Let t  denote the time when 

the system fails and   denote the time when the system 

becomes defective. 

Scenario 2 happens when the following conditions are met: 

(i) the system is still in the normal state up to time ( 1)k T ; (ii) 

the system fails at time t  due to failure mode 2, where 

(( 1) , )t k T kT  ; (iii) the system becomes defective at time  , 

where (( 1) , )k T t   , and it remains defective up to t ; (iv) no 

production wait occurs during the period from being defective 

to failure, i.e., in the time interval [ , )t .  

Let , 2k fT  be the random variable that denotes the failure time 

of the system in the case of Scenario 2. Then, the probability 

that , 2k fT  is between ( 1)k T  and kT  is 

  

   

     

 

       
   2 1, 1,

, 2

2 1,

1, 1,

1 0

1 1

1

, 1

0
lim

.
d f

k f

d

d fkT

k T t

kT t t

X X Xk T k T

P k T T kT

X t t t k T X t
P

X X t N t N
dt

t

f t e f R t d dt
 



  

  

 

 

  

            
 

         




 



 
(12)

 

Scenario 3. 

A typical case of Scenario 3 is graphically shown in Fig. 2(c). 

Under this scenario, the system fails due to failure mode 2, and 

the failure happens between the ( 1)thk   and the thk  

inspections, where 1,2,...,k n . The system fails suddenly 

when it is still in the normal state. Let t  denote the time when 

the system fails, where (( 1) , )t k T kT  . Let , 3k fT  be the 

random variable that denotes the failure time of the system in 

the case of Scenario 3. Then, the probability that , 3k fT  is 

between ( 1)k T  and kT  is 

  

    

   
  1, 2

, 3

2 1,

( 1) 0

1

1

,
lim

.
d

k f

kT d

k T t

kT

X Xk T

P k T T kT

P X t t t X t
dt

t

R t f t dt

  



  

     









 (13)

 

Since the three scenarios are independent, the probability that 

a failure renewal happens between the ( 1)thk   and the thk  

inspections is the sum of the three probabilities. Let ,k fT  

denote the time of the system that fails between the ( 1)thk   

and the thk  inspections. Then,  

  

       
 

   

2 1, 1,

2 1, 1,

1, 2

,

( )

( 1) ( 1)

( 1) 1

( 1)

1

( ) ( ) ( )

 

 .

d f

d f

d

k f

kT t t
X X Xk T k T

kT t t

X X Xk T k T

kT

X Xk T

P k T T kT

R t e f f t d dt

f t e f R t d dt

R t f t dt

 

 

  

  

 

 

 

 



  

   

 



 

 


 (14)

 

( 1)k T kT0 t

2X

1, fX
1,dX

(a) 

( 1)k T kT0 t

2X

1, fX
1,dX

(b) 

( 1)k T kTt0

2X

1, fX
 1,dX

No production wait occurs Replacement at failure (c) 

Fig. 2.  Graphic representation of failure renewal. 
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The probability density function of ,k fT  can be obtained by 

differentiating Eq. (14) with respect to t . Let 
,

( )
k fTf t  denote 

this PDF. Then we have 

 

       
 

   

, 2 1, 1,

2 1, 1,

1, 2

( )

( 1)

1

( ) ( ) ( )

            

            .

k f d f

d f

d

t t
T X X Xk T

t t

X X Xk T

X X

f t R t e f f t d

f t e f R t d

R t f t

 

 

  

  

 



 



   

 







 (15) 

Then, the expected length for the failure renewal, denoted by 

( , )L
fE n T , can be obtained as 

   
  ,1

1

, .
k f

n kTL
f Tk T

k

E n T t f t dt




 
 (16) 

The expected cost for the failure renewal, denoted by 

( , )C
fE n T , can be obtained as 

 

      

      

      

, 1

1

, 2

1

, 3

1

,

1 1

1 1

1 1 .

C
f

n

p w f k f

k

n

p w f k f

k

n

p w f k f

k

E n T

k N c P k T T kT

k N c P k T T kT

k N t c P k T T kT

  

  

 







             

             

             






 (17) 

C. Production wait inspection renewal 

During the production waits, inspections are also carried out. 

If an inspection finds out that the system is at the defective state, 

the system is replaced. A production wait inspection renewal 

happens when a production wait is needed after the system 

being defective before failure. Fig. 3 shows an example of the 

production wait renewal happen between the ( 1)thk   and the 

thk  inspections. Note that the three different cases in Fig. 3(a), 

Fig. 3(b) and Fig. 3(c) can be considered together when we 

derive the analytical model. 

Suppose that a production wait inspection renewal happens 

between the ( 1)thk   and the thk  inspections. As shown in Fig. 

3, the system is still in the normal state up to time ( 1)k T . Let 

  denote the time when the system becomes defective and wt  

be the time that the first production wait happens after the 

system being defective. As shown in Fig. 3, we know that 

(( 1) , )wt k T kT   and (( 1) , )wk T t   . In order to make the 

production wait inspection renewal happens, the system must 

have not failed yet up to time wt . Let ,k wT  denote the time of 

the production wait renewal that happens between the ( 1)thk   

and the thk  inspections. Then, we can obtain the probability 

density function of ,k wT  as 

 

   

   

       
 

,

2 1, 1,

1, ,

2 1, 1,

0

1

1 ,

lim

.

k w

w

w

w d f

T w

d w k w w w w

w d f w

t
w

t

X w T w X X wk T

f t

k T X t T t t t
P

X t X X t

t

R t f t f R t d  

 



             
 

      




   (18) 

 

Thus, the probability of the production wait renewal between 

the ( 1)thk   and the thk  inspections is 

    
  ,, 1

1 .
k w

kT

k w T w wk T
P k T T kT f t dt


    

 (19) 

Then, the expected length for the production wait inspection 

renewal, denoted by ( , )L
wE n T , can be obtained as 

   
  ,1

1

, .
k w

n kTL
w w T w wk T

k

E n T t f t dt




 
 (20)

 

The expected cost for the production wait inspection renewal, 

denoted by ( , )C
wE n T , can be obtained as 

 

   

  1 ,

,

1
     .

1

C
w

n
p w w p

k k w

E n T

k N t c

P k T T kT

 



      
  

     


 (21) 

D. Age-based renewal 

When the system reaches the age of nT , the system is 

replaced without any inspection. The age-based replacement 

happens if the system is still in the normal state when it reaches 

the age of nT  or if the system becomes defective at some time 

between ( 1)n T  and nT  , and there is no production wait 

after the system being defective. The two scenarios are shown 

in Fig. 4 (a) and Fig. 4(b) respectively. 

( 1)k T kT0 t

2X

1, fX
1,dX

wt
(a) 

( 1)k T kT0 t

2X

1, fX
1,dX

wt
(b) 

( 1)k T kT0

2X

1, fX1,dX

wt

Replacement at production wait inspection (c) 

Fig. 3.  Graphic representation of production wait inspection renewal. 
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Scenario 1. 

In this scenario, the system is in the normal state at time nT . 

Thus, 1,dX  and 2X  must be larger than nT . The probability 

that the system is in the normal, denoted by ,1ageTP  is 

    
   

1, 2

,1 1, 2

        .

age

d

T d

X X

P P X nT X nT

R nT R nT

  


 (22) 

Scenario 2. 

In this scenario, the system is in the normal state at the 

( 1)thn   periodical inspection. The system becomes defective 

at time  , which is between ( 1)n T  and nT . No production 

wait happens during ( , )nT . The system has not failed up to 

nT . the probability that this scenario happens, denoted by 

,2ageTP , is 

   

     

       
 2 1, 1,

1, 1, 1,

,2

2

1

1

0

         .

age

d f

d d f

T

nT nT
X X Xn T

n T X nT X X nT
P P

X nT N nT N

R nT e f R nT d
 



  
 



             
      

 
 (23) 

Then, the expected length for the age-based renewal, denoted 

by ( , )L
aE n T , can be obtained as 

   ,1 ,2, .
age age

L
a T TE n T nT P P    (24) 

The expected cost for the age-based renewal, denoted by 

( , )C
wE n T , can be obtained as 

     

   

,1

,2

, 1

            1 ,

age

age

C
a p w p T

p w p T

E n T n N nT c P

n N c P

 

  

      

        (25) 

where  N nT  and  N   denote the number of production 

waits within time nT  and  . 

In summary, we have derived the ( , )C
pE n T , ( , )C

fE n T , 

( , )C
wE n T , ( , )C

aE n T  and ( , )L
pE n T , ( , )L

fE n T , ( , )L
wE n T , 

( , )L
wE n T  given n  and T . The optimal value of n  and T  can 

be obtained by solving the optimization model defined in Eq. 

(6).

 

 

IV. CASE STUDY 

The numerical study is adapted from the single-component 

steel convertor plant in a steel mill [37]. The production 

machine is a key plant in the process of steel making. This 

machine converts molten iron into steel by removing impurities 

from the molten iron through the oxidation process. Manual 

periodical inspections are conducted regularly. The machine 

operates 24 hours a day for 7 days a week and may stop due to 

insufficient supply of molten iron. This is referred to as the 

production wait time, which can be utilized for inspection and 

maintenance. The electromechanical system of this machine 

consists of mechanical and electrical components, which may 

suffer soft failures or hard failures. Defects of the machine such 

as fatigue cracks, pitting corrosion and the decrease of the steel 

quality can be found during inspections. Besides, the system is 

overhauled when it reaches the age of 𝑇𝑎𝑔𝑒  in order to reduce 

the probability of system failures that may cause a significant 

loss. The time of overhaul can be treated as a renewal point.  

Weibull distribution is commonly used for modeling the 

failure process of engineering systems. Since no real data are 

collected from the system, we provide a rough estimation for 

the parameters based on the two related work [23, 37]. 

Although the parameters are not collected from real systems, 

the numerical analysis provides useful insights for analyzing 

production systems with two failure modes and production wait 

time. The failure process of this system follows a Weibull 

distribution as 

 
1,

0.5 1.5(1.5 / 5.61)( / 5.61) exp( ( / 5.61) )
dXf x x x   

 
1,

0.2 1.2(1.2 / 2.02)( / 2.02) exp( ( / 2.02) )
fXf x x x   

 
2

1 2(2 /10.83)( /10.83) exp( ( /10.83) )Xf x x x   

We assume the unit cost for the periodical inspection is 800, 

the unit cost for the production wait inspection is 50, the cost 

for the inspection replacement is 10000, and the cost for the 

failure replacement is 70000. The arrival of the production wait 

follows a Poisson distribution with a rate of 0.8. 

A. The proposed maintenance model 

Fig. 5 shows the expected long run cost per unit of time under 

different values of 𝑛 and 𝑇.  

  
Fig. 5.  The expected long run cost per unit of time under different values of 𝑛 

and 𝑇. 

0

2X

( 1)n T nT

1,dX

(a) 

0

2X

( 1)n T nT

1,dX

1, fX

Replacement at the age of nT

No production wait occurs

(b) 

Fig. 4.  Graphic representation of age-based renewal. 
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From the figure we can see that finding the optimal values of 

𝑛 and 𝑇 can reduce the cost significantly. The minimized cost 

is 6599 with 𝑛 = 4  and 𝑇 = 0.98 , while the cost can reach 

nearly 14000 in the case of 𝑛 = 1  and 𝑇 = 0.8 . This 

demonstrates the benefit of finding the optimal periodical 

inspection interval and the optimal time for age-based 

replacement. 

Given that the data is not directly collected from the real 

system, it would be important for us to carry out sensitivity 

analysis on each cost parameter. We will analyze how the 

change of the cost parameters 𝜋𝑝 , 𝜋𝑤 , 𝑐𝑝  and 𝑐𝑓  affect the 

expected long run cost per unit of time.  

Fig. 6 and Fig. 7 show the effect of 𝜋𝑝 (periodical inspection 

cost) and 𝜋𝑤 (production wait inspection cost) on / * *( , )C LE n T  

(the optimal expected long run cost per unit of time). 

As shown in Fig. 6 and Fig. 7, the optimal expected long run 

cost per unit of time / * *( , )C LE n T  increases almost linearly with 

increasing cost of a periodical inspection or increasing cost of 

production inspection. This suggests that the inspection cost has 

an approximately linear relationship with / * *( , )C LE n T . 

 

 

The effects of 𝑐𝑝 (the replacement cost) on / * *( , )C LE n T  and 

*
ageT  (the optimal time for the age-based replacement) are 

shown in Fig. 8, which indicates that both / * *( , )C LE n T  and 
*

ageT  

increase with increasing pc . This conclusion suggests that the 

system should be used for a longer time if the replacement cost 

becomes higher.  

 

 
Fig. 9 shows the effect of 𝑐𝑓 (the failure replacement cost) on 

/ * *( , )C LE n T  and 
*

ageT . / * *( , )C LE n T  still increases with 

increasing 𝑐𝑓 . Different from Fig.8, 
*

ageT  decreases with 

increasing 𝑐𝑓 . Due to higher cost of failure replacement, the 

system will be used for a shorter time such that the probability 

of failure decreases. This reduces the expected cost of failure 

replacement. This suggests that high reliability system should 

be replaced more frequently.  

In this numerical study, the arrival of production is assumed 

to follow a Poisson process with a rate of 𝜆 = 0.8. The effect of 

𝜆 on / * *( , )C LE n T  and 
*

ageT  are shown in Fig. 10. Increasing the 

arrival rate can results in longer time for periodical inspection. 

This result clearly shows that utilizing the production wait time 

can reduce the long run maintenance cost per unit of time.  

 

Fig. 6.  The effect of periodic inspection cost on 
/ * *( , )C LE n T . 

 

Fig. 7.  The effect of production wait inspection cost on 
/ * *( , )C LE n T . 

 

Fig. 8.  The effect of pc  (the replacement cost) on / * *( , )C LE n T  and *
ageT . 

 

Fig. 9.  The effect of fc   (the failure replacement cost) on / * *( , )C LE n T  and 

*
ageT . 
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B. Comparison with existing models 

To further justify the effectiveness of the proposed 

maintenance model, we compare our model with some existing 

models. The four models for comparison are summarized as 

follows. 

i. Policy 1 is the proposed maintenance in this research 

that considers both the periodical inspection and 

production wait inspection. The system is also 

replaced when it reaches a threshold age.   

ii. Policy 2 is a maintenance model studied in [23], 

which considers the periodical inspection and age-

based replacement.  

iii. Policy 3 is a variant of our proposed maintenance 

model that only carries out inspections during 

production wait time. No periodical inspection is 

scheduled. The system is also replaced when it 

reaches a threshold age.  

iv. Policy 4 is a variant of our proposed maintenance 

model that does not perform age-based replacement. 

Inspection and maintenance are carried out 

periodically and during the production wait time.  

Since policy 2 is the maintenance model studied in [23], we 

can use their maintenance cost model directly. Policy 4 can be 

obtain easily using policy 1 (the proposed policy in this article) 

by letting 𝑛 be infinity. Thus, in order to avoid repetition, we 

only provide the cost model for policy 3 at Appendix A. 

To demonstrate the robustness of the proposed maintenance 

model, we perform   sensitivity analyses of each cost parameter 

through comparing the above four models. These sensitivity 

analyses include: (a) Sensitivity analysis of the periodical 

inspection cost (𝜋𝑝), (b) Sensitivity analysis of the production 

wait inspection cost ( 𝜋𝑤 ), (c) Sensitivity analysis of the 

inspection replacement cost (𝑐𝑝), and (d) Sensitivity analysis of 

the failure replacement cost (𝑐𝑓). 

 

 

 

 

 

Fig. 10.  The effect of 𝜆 (the arrival rate of production wait) on 
/ * *( , )C LE n T  

and 
*

ageT . 

 
Fig. 11.  The impact of the periodical inspection cost for different 

maintenance models. 

 
Fig. 12.  The impact of the production wait inspection cost for different 

maintenance models. 

 
Fig. 13.  The impact of the replacement cost for different maintenance models. 
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Figs. 11 – 14 show the impact of the cost parameters 𝜋𝑝, 𝜋𝑤, 

𝑐𝑝 and 𝑐𝑓 towards the long time cost per unit of time for all the 

four maintenance models. From the figures, we can see that the 

total cost per unit of time increases with the increasing of 𝜋𝑝, 

𝜋𝑤, 𝑐𝑝 or 𝑐𝑓 for each maintenance model. In all figures, policy 

1 outperforms any other maintenance models. 

In general, policy 4, which does not consider the age-based 

replacement, underperforms in most of the scenarios. This 

indicates that the age-based replacement policy is important to 

reduce the potential risk of hard failure, thereby helping to 

reduce the long run maintenance cost per unit of time. 

V. CONCLUSION 

Motivated by real-world applications, this paper considered 

two types of failures in single-unit systems: a traditional 

catastrophic failure and a two-stage delay failure. Besides 

periodical inspections, the production wait occurred due to a 

lack of demand or a shortage of materials is utilized as an 

opportunity to conduct inspection and maintenance. The system 

is replaced when any of the following conditions is met (i) the 

system fails, (ii) the age of the system reaches a pre-specified 

threshold, (iii) a defect is found during inspection. We 

developed a cost model for the proposed maintenance policy 

and analyzed the effect of each cost parameter on the expected 

long run cost per unit of time. Further, we gave some special 

cases as alternative maintenance polices, and compared the 

proposed maintenance policy with these alternative policies. 

The case study showed that the proposed maintenance policy 

reduced the expected long run maintenance cost per unit of time. 

Through the study, we also concluded that how each cost 

parameter affected the optimal periodical inspection interval 

and the optimal time for the age-based replacement.  

Although this work analyzes a production system subject to 

two failure modes, the modeling and analyzing methods can be 

easily extended to system with multiple failure modes. In future, 

the optimal inspection and maintenance policy for a multi-

component system with multiple failure modes can be studied.  

APPENDIX A. 

Before we derive the cost model for policy 3, we first define 

the following variables that are different from those used in the 

main part of this article. 

fjT   system failure renewal time of policy 3 under scenario, 

, 1,2,3j j   

( )C
f ageE T

 

expected renewal cycle cost for the failure renewal of 

policy 3 

( )C
w ageE T

 

expected renewal cycle costs for the production wait 
inspection renewal of policy 3 

( )C
a ageE T

 

expected renewal cycle costs for the age-based renewal of 

policy 3 

( )L
f ageE T  expected renewal cycle length for the failure renewal of 

policy 3 

( )L
w ageE T  expected renewal cycle length for the production wait 

inspection renewal of policy 3 

( )L
a ageE T  expected renewal cycle length for the age-based renewal 

of policy 3 

w  time of the production wait inspection renewal of policy 3 

In the case of policy 3, the system is only inspected during 

the production wait time. There is no periodical inspection. 

Thus, there exist three types of system renewal including failure 

renewal, production wait inspection renewal and age-based 

renewal.  

Failure renewal 

A typical scenario of the failure renewal for policy 3 is shown 

in Fig. A1 (a), (b) and (c). Part (a) denotes the scenario that the 

failure is caused by the first failure mode. It requires that there 

should be no production wait occurs after the system becomes 

defective at the time 𝜏. Part (b) denotes the scenario that the 

failure is caused by the second failure mode, but the system is 

already defective before failure. This scenario also requires 

there should be no production wait occurs after the system 

becomes defective at the time 𝜏. Part (c) denotes the scenario 

that the failure is caused by the second failure mode. The system 

does not become defective. 

 
Let  𝑃{0 < 𝑇𝑓𝑗 < 𝑇𝑎𝑔𝑒}  denote the probability the 𝑗th 

scenario of the failure renewal happens before the age threshold, 

where 𝑗 = 1,2,3 denotes the three scenarios in Fig. A1. Based 

on the discussion above, we have 

 
Fig. 14.  The impact of the failure replacement cost for different 

maintenance. 

0 t

2X

1, fX1,dX

ageT
(a) 

0 t

2X

1, fX1,dX

ageT
(b) 

No production wait occurs Replacement at failure 

ageTt0

2X

1, fX
 1,dX

(c) 

Fig. A1.  Graphic representation of failure renewal of the policy 3. 
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Since the three scenarios are independent, the probability that 

a failure renewal happens before the age threshold is 

 
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The probability density function of ,k fT  can be obtained by 

differentiating Eq. (A4) with respect to t . Let 
,

( )
k fTf t  denote 

this probability density function. Then we have 
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Then, the expected length for the failure renewal, denoted by 

( )L
f ageE T , can be obtained as 

   
0

.
age

f

TL
f age TE T t f t dt 

 (A6) 

The expected cost for the failure renewal, denoted by 

( )C
f ageE T , can be obtained as 
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        (A7) 

 

Production wait inspection renewal 

Fig. A2 shows the case when production wait inspection 

renewal happens for policy 3. In any of the scenarios (a) (b) (c), 

it requires a production wait occurs after the system become 

defective at time 𝜏 and this production wait occurs before the 

system fails. 

 
Let w  be the random variable that denotes the time of the 

production wait renewal 
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Thus, the probability of the production wait renewal of policy 

3 is 

   
0

0 .
age

w

T

w age w wP T f t dt    
 (A9) 

Then, the expected length for the production wait inspection 

renewal, denoted by ( , )L
wE n T , can be obtained as 

   
0

.
age

w

TL
w age w w wE T t f t dt   (A10)

 

The expected cost for the production wait inspection renewal, 

denoted by ( , )C
wE n T , can be obtained as 

     0 .C
w age w w p w ageE T N t c P T         (A11) 

Age-based renewal 

Age-based renewal happens if either the scenario (a) or 

scenario (b) of Fig. A3 occurs. Scenario (a) means the system 

is still in the normal state after it reaches the age of 𝑇𝑎𝑔𝑒 . 

Scenario (b) means the system is defective when it reaches the 

age of 𝑇𝑎𝑔𝑒 , but there is no production wait occurs after the 

system become defective. 

0 t

2X

1, fX
1,dX

wt ageT
(a) 

0 t

2X

1, fX
1,dX

wt ageT
(b) 

Replacement at production wait inspection 

0

2X

1, fX1,dX

wt ageT

(c) 
Fig. A2.  Graphic representation of production wait inspection renewal of 

policy 3. 
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Let ,1ageTP  and ,2ageTP denote the probability of Scenario (a) 

and Scenario (b) happen respectively. We have  
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Then, the expected length for the age-based renewal, denoted 

by ( )L
a ageE T , can be obtained as 

   ,1 ,2 .
age age

L
a age age T TE T T P P  

 (A14) 

The expected cost for the age-based renewal, denoted by 

( , )C
wE n T , can be obtained as 
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where  N nT  and  N   denote the number of production 

waits within time nT  and  . 

 Summarizing the three different types of system renewal, 

the long-run maintenance cost per unit of time is 

( ) ( ) ( )
.
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C C C
f age w age a age

L L L
f age w age a age
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E T E T E T

 

 
 (A16) 

 

REFERENCES 

[1] Q. Sun, Z. S. Ye, and X. Zhu, “Managing component 

degradation in series systems for balancing degradation 

through reallocation and maintenance,” IISE Trans., vol. 

52, no. 7, pp. 797–810, Jul. 2020. 

[2] Q. Sun, Z. S. Ye, and N. Chen, “Optimal inspection and 

replacement policies for multi-unit systems subject to 

degradation,” IEEE Trans. Rel., vol. 67, no. 1, pp. 401-

413, Mar. 2018. 

[3] G.  Levitin, L. Xing, and Y. Dai, “Optimal operation and 

maintenance scheduling in m-out-of-n standby systems 

with reusable elements,” Rel. Eng. Syst. Saf., vol. 211, 

107582, Jul. 2021. 

[4] B. Liu, R. H. Yeh, X. Min, and W. Kuo, “Maintenance 

scheduling for multicomponent systems with hidden 

failures,” IEEE Trans. Rel., vol. 66, no. 4, pp. 1280-1292, 

Dec. 2017. 

[5] X. Zhao, J. Sun, Q. Qiu, and K. Chen, “Optimal inspection 

and mission abort policies for systems subject to 

degradation,” Eur. J. Oper. Res., vol. 292, no. 2, pp. 610-

621, Jul. 2020. 

[6] Y. Liu, B. Zhang, T. Jiang, and T. Xiahou, “Optimization 

of multilevel inspection strategy for nonrepairable 

multistate systems,” IEEE Trans. Rel., vol. 69, no. 3, pp. 

968–985, Sep. 2020. 

[7] S. Mizutani, X. Zhao, and T. Nakagawa, “Age and 

periodic replacement policies with two failure modes in 

general replacement models,” Rel. Eng. Syst. Saf., vol. 

214,107754, Oct. 2021.  

[8] B. Liu, M. Xie, and W. Kuo, “Reliability modeling and 

preventive maintenance of load-sharing systems with 

degrading components,” IIE Trans., Vol. 48, no. 8, pp. 

699–709, Aug. 2016. 

[9] H. Dui, S. Chen, and J. Wang, “Failure-oriented 

maintenance analysis of nodes and edges in network 

systems,” Rel. Eng. Syst. Saf., vol. 215,107894, Nov. 2021 

[10] G. Levitin, M. Finkelstein, and Y. Dai, “Optimal 

preventive replacement policy for homogeneous cold 

standby systems with reusable elements,” Rel. Eng. Syst. 

Saf., vol. 204, 107135, Dec. 2020. 

[11] X. Zhao, S. Mizutani, M. Chen, and T. Nakagawa,

“Preventive replacement policies for parallel systems with 

deviation costs between replacement and failure,” Ann. 

Oper. Res., https://doi.org/10.1007/s10479-020-03791-6, 

Sep. 2020. 

[12] Z. Zhu, Y. Xiang, M. Li, W. Zhu, and K. Schneider, 

“Preventive maintenance subject to equipment 

unavailability,” IEEE Trans. Rel., vol. 68, no. 3, pp. 1009-

1020, Sep. 2019. 

[13] H. Dui, S. Li, L. Xing, and H. Liu, “System performance-

based joint importance analysis guided maintenance for 

repairable system,” Rel. Eng. Syst. Saf., vol.186, pp. 162-

175, Jun. 2019. 

[14] N. Chen, Z. S. Ye, Y. Xiang, and L. Zhang, “Condition-

based maintenance using the inverse Gaussian 

degradation model,” Eur. J. Oper. Res., vol. 243, no. 1, pp. 

190-199, May 2015. 

[15] Y. Li, S. Peng, Y. Li, and W. Jiang. A review of condition-

based maintenance: Its prognostic and operational aspects. 

Front. Eng, 2020, vol. 7, no. 3, pp.323‒334. 

[16] Y. Xiang, D. W. Coit, and Q. Feng, “Accelerated burn-in 

and condition-based maintenance for n-subpopulations 

subject to stochastic degradation,” IIE Trans., vol. 46, no. 

10, pp. 1093–1106, Oct. 2014. 

[17] H. K. Wang, H. Z. Huang, Y. F. Li, and Y. J. Yang, 

“Condition-based maintenance with scheduling threshold 

and maintenance threshold,” IEEE Trans. Rel., vol. 65, no. 

2, pp. 513-524, Jun. 2016. 

[18] X. Liu, J. Li, K. N. Al-Khalifa, A. S. Hamouda, D. W. Coit, 

and E. A. Elsayed, “Condition-based maintenance for 

0

2X

1,dX

ageT
(a) 

Replacement at the age of nT

No production wait occurs

0

2X

 nT

1,dX
1, fX

(b) 

Fig. A3.  Graphic representation of age-based renewal of policy 3. 

https://doi.org/10.1007/s10479-020-03791-6


 13 

continuously monitored degrading systems with multiple 

failure modes,” IIE Trans., vol. 45, no. 4, pp. 422-435, Apr. 

2013. 

[19] S. Wu, and I. T. Castro, “Maintenance policy for a system 

with a weighted linear combination of degradation 

processes,” Eur. J. Oper. Res., vol. 280, no. 1, pp. 124–

133, Jan. 2020. 

[20] S. Lu, D. Shi, and H. Xiao, “Reliability of sliding window 

systems with two failure modes,” Rel. Eng. Syst. Saf., 2019, 

vol. 188, pp. 366-376, Aug. 2019. 

[21] M. Mahmoudi, A. Elwany, K. Shahanaghi, and M. R. 

Gholamian, “A delay time model with multiple defect 

types and multiple inspection methods,” IEEE Trans. Rel., 

vol. 66, no. 4, pp. 1073-1084, Dec. 2017. 

[22] N. Zhang, M. Fouladirad, A. Barros, and J. Zhang, 

“Condition-based maintenance for a K-out-of-N 

deteriorating system under periodic inspection with failure 

dependence,” Eur. J. Oper. Res., vol. 287, no. 1, pp. 159–

167, Nov. 2020. 

[23] R. Peng, B. Liu, Q. Zhai, and W. Wang, “Optimal 

maintenance strategy for systems with two failure modes,” 

Rel. Eng. Syst. Saf., vol. 188, pp. 624–632, Aug. 2019. 

[24] R. Zheng, and V. Makis, “Optimal condition-based 

maintenance with general repair and two dependent failure 

modes,” Comput. Ind. Eng., vol. 141, 106322, Mar. 2020, 

[25] F. Zhang, J. Shen, H. Liao, and Y. Ma, “Optimal 

preventive maintenance policy for a system subject to 

two-phase imperfect inspections,” Rel. Eng. Syst. Saf., vol. 

205, 107254, Jan. 2021. 

[26] A. H. Christer, and W. M. Waller, “Reducing production 

downtime using delay–time analysis,” J. Oper. Res. Soc., 

vol. 35, no. 6, pp. 499-512, 1984. 

[27] W. Wang, F. Zhao, and R. Peng, “Preventive maintenance 

model with a two-level inspection policy based on a three-

stage failure process,” Rel. Eng. Syst. Saf., vol. 121, pp. 

207–220, Jan. 2014. 

[28] L. Wang, Y. Yang, H. Zhu, and G. Liu, “Optimal 

condition-based renewable warranty policy for products 

with three-stage failure process,” Qual. Technol. Quant. 

Manag., vol. 17, no. 2, pp. 216-233, 2021. 

[29] H. Wang, W. Wang, and R. Peng, “A two-phase 

inspection model for a single component system with 

three-stage degradation,” Rel. Eng. Syst. Saf., vol. 158, pp. 

31-40, Feb. 2017. 

[30] L. Yang, X. Ma, and Y. Zhao, “A condition-based 

maintenance model for a three-state system subject to 

degradation and environmental shocks,” Comput. Ind. 

Eng., vol. 105, pp. 210-222, Mar. 2017. 

[31] M. D. Berrade, P. A. Scarf, and C. A. V. Cavalcante, “A 

study of postponed replacement in a delay time model,” 

Rel. Eng. Syst. Saf., vol. 168, pp. 70-79, Dec. 2017. 

[32] C. D. V. Oosteroma, A. H. Elwany, D. Çelebi, and G. J. V. 

Houtuma, “Optimal policies for a delay time model with 

postponed replacement,” Eur. J. Oper. Res., vol. 232, no. 

1, pp. 186–197, Jan. 2014. 

[33] L. Yang, Z. S. Ye, C. G. Lee, S. F. Yang, and R. Peng, “A 

two-phase preventive maintenance policy considering 

imperfect repair and postponed replacement,” Eur. J. 

Oper. Res., vol. 274, no. 3, pp. 966–977, May 2019. 

[34] W. Wang, “A stochastic model for joint spare parts 

inventory and planned maintenance optimization,” Eur. J. 

Oper. Res., vol. 216, no. 1, pp. 127–139, Jan. 2012. 

[35] F. Zhao, X. J. Liu, R. Peng, and J. S. Kang, “Joint 

optimization of inspection and spare ordering policy for a 

four-state delay-time type system,” Comput. Ind. Eng., vol. 

139, 106205, Jan. 2020. 

[36] M. C. A. O. Keizer, R. H. Teunter, and J. Veldman, “Joint 

condition-based maintenance and inventory optimization 

for systems with multiple components,” Eur. J. Oper. Res., 

vol. 257, no. 1, pp. 209-222, Feb. 2017. 

[37] F. Zhao, W. Wang, and R. Peng, “Delay-time-based 

preventive maintenance modelling for a production plant: 

A case study in a steel mill,” J. Oper. Res. Soc., vol. 66, 

no, 12, pp. 2015–2024, Dec. 2015. 

[38] N. M. D. Souza, and A. T. D. A. Filho, “A systematic 

airport runway maintenance and inspection policy based 

on a delay time modeling approach,” Autom. Constr., vol. 

110, 103039, Feb. 2020, 

[39] P. A. Scarf, C. A. V. Cavalcante, and R. S. Lopes, “Delay-

time modelling of a critical system subject to random 

inspections,” Eur. J. Oper. Res., vol.278, vol. 3, pp. 772-

782, Nov. 2019. 

[40] M. I. Desa, and A. H. Christer, “Modelling in the absence 

of data: a case study of fleet maintenance in a developing 

country,” J. Oper. Res. Soc., vol. 52, pp. 247-260, Apr. 

2001. 

[41] Z. Zhang, and L. Yang, “State-based opportunistic 

maintenance with multifunctional maintenance windows,” 

IEEE Trans. Rel., 2020, DOI: 10.1109/TR.2020.2995277. 

[42] T. Xia, X. Jin, L. Xi, and J. Ni, “Production-driven 

opportunistic maintenance for batch production based on 

MAM–APB scheduling,” Eur. J. Oper. Res., vol. 240, no. 

3, pp. 781-790, Feb. 2015. 

[43] J. Hu, Q. Sun, and Z. Ye, “Replacement and repair 

optimization for production systems under random 

production waits,” IEEE Trans. Rel., 2021, DOI: 

10.1109/TR.2021.3111651.  

[44] P. Li, W. Wang, and R. Peng, “Age-based replacement 

policy with consideration of production wait time,” IEEE 

Trans. Rel., vol. 65, no. 1, pp. 235-247, Mar. 2016. 

[45] T. Wu, X. Ma, L. Yang, and Y. Zhao, “Proactive 

maintenance scheduling in consideration of imperfect 

repairs and production wait time,” J. Manuf. Syst., vol. 53, 

pp. 183-194, Oct. 2019. 

[46] W. Huang, and R. Askin, “Reliability analysis of 

electronic devices with multiple competing failure modes 

involving performance aging degradation,” Qual. Reliab. 

Eng. Int., vol. 19, no. 3, pp. 241-254, May. 2003. 

[47] Y. Zhu, E. Elsayed, H. Liao, and L. Chan, “Availability 

optimization of systems subject to competing risk,” Eur. J. 

Oper. Res., vol. 202, no. 3, pp. 781-788, May. 2010. 

[48] Z. Ye, M. Xie, L. Tang, and Y. Shen, “Degradation based 

burn in planning under competing risks,” Technometrics. 

vol. 54, no. 2, pp. 159-168, 2012. 


