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ABSTRACT

Prognostics and health management (PHM) has become a crucial aspect of the management of engineering sys-
tems and structures, where sensor hardware and decision support tools are deployed to detect anomalies, diag-
nose faults and predict remaining useful lifetime (RUL). Methodologies for PHM are either model-driven, data-
driven or a fusion of both approaches. Data-driven approaches make extensive use of large-scale datasets col-
lected from physical assets to identify underlying failure mechanisms and root causes. In recent years, many
data-driven PHM models have been developed to evaluate system’s health conditions using artificial intelligence
(AI) and machine learning (ML) algorithms applied to condition monitoring data. The field of Al is fast gaining
acceptance in various areas of applications such as robotics, autonomous vehicles and smart devices. With ad-
vancements in the use of Al technologies in Industry 4.0, where systems consist of multiple interconnected com-
ponents in a cyber—physical space, there is increasing pressure on industries to move towards more predictive
and proactive maintenance practices. In this paper, a thorough state-of-the-art review of the AI techniques
adopted for PHM of engineering systems is conducted. Furthermore, given that the future of inspection and
maintenance will be predominantly Al-driven, the paper discusses the soft issues relating to manpower, cyber-
security, standards and regulations under such a regime. The review concludes that the current systems and
methodologies for maintenance will inevitably become incompatible with future designs and systems; as such,
continued research into Al-driven prognostics systems is expedient as it offers the best promise of bridging the
potential gap.

DRL Deep Reinforcement Learning
Abbreviations EAD Ethically Aligned Design
ELM Extreme Learning Machine
ANFIS Adaptive network-based fuzzy inference sys- EMD Empirical Mode Decomposition
tem EN Elastic Net
ANN Artificial Neural Network GPR Gaussian Process Regression
ARNN Adaptive Recurrent Neural Network GPU Graphical Processing Unit
BNN Bayesian Neural Network GRU Gated Recurrent Unit
CART Classification and Regression Tree HAC Health-Aware Control
CBM Condition-Based Maintenance HMM Hidden Markov Model
C-MAPSS  Commercial Modular Aero-Propulsion System ICA Independent Component Analysis
Simulation KF Kalman Filter
CNC Computer Numerical Control LSTM Long Short-Term Memory
CNN Convolutional Neural Network MAE Mean Absolute Error
DBM Deep Boltzmann Machine MAPE Mean Absolute Percentage Error
DBN Deep Belief Network MIMOSA  Machinery Information Management Open Sys-
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tems Alliance

ML Machine Learning

MLP Multi-Layer Perceptron

MSE Mean Squared Error

OEE Overall Equipment Effectiveness

OSA-CBM  Open System Architecture for Condition-Based
Maintenance

PCA Principal Component Analysis

PDF Probability Density Function

PHM Prognostics and Health Management

PdM Predictive Maintenance

PM Preventive Maintenance

RBF Radial Basis Function

RBI Risk-Based Inspection

RBM Restricted Boltzmann Machine

RF Random Forest

RL Reinforcement Learning

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

RUL Remaining Useful Life

RVM Relevance Vector Machine

RVM-NDM Relevance Vector Machine New Design Matrix

RVR Relevance Vector Regression

SCADA Supervisory Control and Data Acquisition

SOM Self-Organizing Map

SQP Sequential Quadratic Optimization

SVM Support Vector Machine

SVR Support Vector Regression

TR Technical Report

WPD Wavelet Packet Decomposition

1. Introduction

The conventional maintenance practice in industries was corrective
in nature, where an equipment was repaired or replaced upon failure.
However, due to the high failure cost and downtime penalty, preventive
maintenance (PM) strategies became very popular in the early 1980s.
The PM includes performing various actions (such as replacing an oil
filter in a machine) at predetermined time or usage intervals. This strat-
egy is yet a predominant maintenance strategy in a lot of industries, in-
cluding construction, mining, chemical and petrochemical (Shafiee,
2015). However, since equipment utilization may not be optimized by
fixed-interval PM methodologies, risked-based methods are increas-
ingly being adopted in industrial facilities so that resources can be as-
signed to equipment according to their criticality rankings. Specific ref-
erence can be made to the oil and gas industry, where the American Pe-
troleum Institute (API) published recommended practices for the imple-
mentation of risk-based inspection (RBI) in oil and gas processing facili-
ties; see API (20164, b). The semi-quantitative approach offered by API
makes extensive use of inspection data (where such data is available) to
develop physics-based models for the equipment, incorporating expert
knowledge from the operators and process engineers into the analysis.
Therefore, RBI is effectively known as a hybrid of both model-driven
and data-driven methods (Shafiee and Soares, 2020).

Despite being implemented in many fields, RBI is yet to be proven
when used in the context of an ecosystem where large amounts of sen-
sor data are constantly gathered from heterogeneous systems at a very
high rate. In recent years, condition-based maintenance (CBM) has be-
come popular in an effort to minimize unplanned maintenance, in-
crease reliability and reduce operating costs. CBM recommends optimal
maintenance actions based on asset condition information (Jardine et
al., 2006). CBM involves the key tasks of diagnostics and prognostics,
which both fundamentally involve collecting sensor data, processing
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the data and constructing the system health states based on the
processed data. While the diagnostics task detects, identifies and iso-
lates faults, the prognostics task uses diagnostics information along
with past historical data to predict future health states of the equipment
as well as determine the time to perform maintenance actions (An et al.,
2015). Prognostic maintenance therefore means making maintenance
decisions based on predicted time that a component or system can oper-
ate before encountering a failure — this time is known as the remaining
useful life (RUL). The methods for predicting a system’s future health
state can be categorized into model-driven (where a physical model of
system degradation behaviour is developed to estimate RUL); data-
driven (where condition monitoring data is processed and used to esti-
mate RUL); or a fusion of both approaches.

Data-driven techniques in PHM were mostly based on statistical
methods. However, with advances in sensor technology and signal pro-
cessing, artificial intelligence (AI) techniques have become increasingly
popular. Al is the ability of a machine to display human-like intelli-
gence, especially in response to inputs from its environment. The field
of Al has received wide attention in recent years in various applica-
tions, particularly in cases where very large volumes of data are gener-
ated at a fast rate. In such cases, the conventional statistical methods
become less useful as analytical tools. With respect to the area of pre-
dictive maintenance (PdM) and prognostics and health management
(PHM), various Al algorithms have been proposed in the literature on
how to predict the state of health of engineering systems. To this end,
the RUL estimation at system, subsystem or component level is a critical
task upon which the entire prognostics endeavour is based.

This paper provides a thorough state-of-the-art review of the Al
techniques adopted for PHM of engineering systems. Most reviews cov-
ering the subject tend to focus on a specific algorithm or class of algo-
rithms, or on specific use cases; hence, ignoring actual issues around
real-life implementation of PHM in fielded systems. This review pro-
vides a broad perspective on the subject while delving into the soft is-
sues that need to be addressed to enable adoption of Al-driven PHM
technologies. The applications of various Al technologies in PHM are
identified via a systematic literature review to aid practitioners in mak-
ing well-informed decisions. Our review shows that a finite collection of
PHM datasets is continuously used for the purpose of training and test-
ing AI algorithms. These datasets have been mostly obtained from ei-
ther numerical simulations or experimental measurements from accel-
erated degradation testing in research laboratories, and there seems to
be dearth of real-life data from operational systems. So, there either is a
lack of appreciable collaboration between the industry and academia or
the actual level of collaboration is not accurately captured in the litera-
ture, perhaps due to confidentiality reasons. Our study also reveals that
‘deep learning’ algorithms are becoming very popular in recent years as
they deliver very good results while eliminating the need to pre-process
the data before feeding it into an algorithm or model. Of course, there
are other enablers for the proliferation of deep learning algorithms, like
availability of big data and high capability Graphical Processing Units
(GPUs).

The remaining part of this paper is organized as follows: Section 2
outlines the procedure for using Al in PHM, including a brief overview
of popular algorithms adopted in the literature for system prognostics.
Section 3 presents the state-of-the-art of Al-driven PHM research, iden-
tifying the various datasets used to test the algorithms. Some metrics
applied to measure the performance of the Al algorithms were also
briefly discussed. Section 4 discusses the soft issues around the real-
time implementation of Al in PHM which tends to generally be ignored
in the literature. Section 5 discusses ideas for future research and, fi-
nally, Section 6 summarizes the discussion and concludes the paper.
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2. Use of Al in PHM

There are quite a number of comprehensive reviews on data-driven
prognostics in the published literature. Jardine et al. (2006) conducted
a review of machinery diagnostics and prognostics and discussed how
the entire CBM process aids in maintenance decision-making. Primi-
tively, the tendency has been to concentrate on prognostics as a sepa-
rate area that is yet to be fully explored. However, intuition suggest that
one must be able to perform diagnostics (i.e., detect, isolate and iden-
tify faults) before attempting to perform prognostics (Schwabacher and
Goebel, 2007; Jardine et al., 2006; Sikorska et al., 2011; An et al.,
2015). This is inevitable in the case of developing data-driven PHM
techniques because the existence of actual failure data is fundamental
to the training process of Al algorithms. In general, most of the reviews
in the literature (Jardine et al., 2006; Sikorska et al., 2011; An et al.,
2015; Lei et al., 2018) delineate the procedure of deploying Al in PHM
into three broad stages: (i) data collection and processing; (ii) develop-
ment of algorithm, training and validation; and (iii) RUL prediction and
maintenance decision-making. This procedure is illustrated in Fig. 1,
and some important aspects of the three main stages are discussed in
the following subsections.

2.1. The key: good quality data

Since Al approaches are purely data-driven, the results obtained will
be only as good or as accurate as the quality of the dataset used for
training the algorithm. PHM typically involves data collection, clean-
ing, preprocessing and features extraction, analytics, RUL prediction
and, eventually, algorithm performance measurement using suitable
RUL metrics. With the advancement of internet of things (IoT) tech-
nologies, it is now cheaper and easier to obtain large amounts of data
from engineering systems (Lei et al., 2018; Zhao et al., 2019). However,
some real challenges that are still being experienced with the availabil-
ity of good quality data are outlined in below:

i. With thousands of sensors being deployed in engineering system
to measure different physical parameters, a large amount of multi-
dimensional data is generated. Several techniques for data
dimensionality reduction have been developed over the years,
including: principal component analysis (PCA), independent
component analysis (ICA), self-organizing maps (SOM) and
wavelet packet decomposition (WPD). However, the challenge in
the PHM research is the need to process the data as and when they
are collected (i.e., in real or close to real time). The operating
conditions of the sensors need to be monitored, their calibration
issues must be addressed, and noise in the data should be removed
by pre-processing the signals.

ii. As a further point regarding data quality and preprocessing, it is
important to state that not all the data collected for PHM purpose

* Pre-processing and

cleaning

+ Separation (training
set and testing set) )

| * Sensor and inspections
data

* Event (failure) data

* Environmental data

_(including noise)

Data Acquisition

'feedbac
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contain useful information for algorithm development. PHM
practitioners who use Al algorithms for data-driven prognostics
need to be aware of the relevance of feature engineering,
especially how to eliminate redundant features that are not
informative, as well as how to craft new features via computing
different statistics or parameters from the collected data. Most of
the popular libraries available for use like scikit-learn, TensorFlow
with Keras, MATLAB, PyTorch, etc., include rich packages for data
preprocessing and feature engineering.

iii. In industrial environments, it is not safe and economically
feasible to run machines until they break down. As such, most data
available for academic research are obtained from experiments,
test beds and simulations, which might not be a true
representative of real-life failure data.

iv. In real-life applications, machines are subject to varying
environmental conditions. The ability to prune the data to
discount for the attendant noise while at the same time taking
credit for environmental loading is also a major challenge. All
these issues with data reliability and quality help to emphasize the
importance of uncertainty quantification when using such data for
prognostics. Different categories of algorithms addressing
uncertainty quantification are briefly discussed in Section 2.2.5.

v. In a few cases where real-life data have been provided by
industry, as in the study by Carroll et al. (2019) on wind turbine
gearbox failures, the details of the data were not provided due to
confidentiality reasons.

The literature search conducted for this work identified some
datasets commonly used for research on the use of Al in PHM. These
datasets are briefly introduced below:

2.1.1. NASA C-MAPSS dataset

This dataset presents the NASA turbofan engine degradation prob-
lem and was first introduced for the PHM 2008 data challenge. The
dataset was generated with a MATLAB Simulink tool called the Com-
mercial Modular Aero-Propulsion System Simulation, C-MAPSS, pro-
ducing a large amount of turbofan engine data (Saxena et al., 2008).
The dataset comprises data for engine conditions under normal mode as
well as faulty modes, with the fault being introduced at a given time
and persisting till the end. The challenge is to identify the present
health state of the various engine units and subsequently, the time-to-
failure or RUL of the system. The dataset is useful for benchmarking,
enabling the comparison between different AI algorithms. This is possi-
ble as four datasets out of the five datasets available in the C-MAPSS
have a training set, test set and ground truth RUL values to measure per-
formance. In the fifth dataset, the challenge dataset, the ground truth
RUL values are not provided. Ramasso et al. (2015) provided a detailed
guidance on the appropriate use of this dataset for research.

Algorithm Selection
& Application

('« RUL estimation
+ Confidence
determination

RUL Estimation &
Maintenance
Decision-Making

Fig. 1. A flow process for the use of Al in PHM.
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2.1.2. FEMTO-ST bearings dataset on PRONOSTIA test bed

This dataset was introduced for the PHM 2012 data challenge dur-
ing the IEEE International Conference on PHM. The data, which was
provided by the Institute Franche-Comté Electronics Mechanics Ther-
mal Processing and Optics-Sciences and Technologies (FEMTO-ST In-
stitute, France), consists of 17 run-to-failure data of rolling element
bearings generated from the PRONOSTIA test bed. Six of the datasets
are full run-to-failure data, whereas the other 11 datasets are truncated.
This makes the training of Al algorithms challenging and the accurate
prediction of RUL difficult. Full details of the dataset from the PRONOS-
TIA testbed are presented by Nectoux et al. (2012).

2.1.3. Other datasets

The PHM 2010 data challenge presented data for high-speed Com-
puter Numerical Control (CNC) milling machine with cutters used until
a significant wear stage. The challenge was to accurately predict the
RUL of the cutting tools. Other milling datasets are also available and
have been used in previous publications. Another set of data for PHM
research is the NASA battery data, which has been used in about 8% of
the publications found in the literature. Most of the datasets discussed
in this work are publicly available for download (see NASA’s
Prognostics Center of Excellence, 2017).

Although the above-mentioned datasets are collected from real ac-
celerated life degradation experiments, it is remarkable that there is a
paucity of research publications that have used data from actual opera-
tional engineering assets. Nevertheless, the obvious advantage of these
common datasets is the ability for different researchers to compare the
results obtained using different algorithms on the same dataset. Also,
the researchers who experience difficulty in accessing data or designing
their own experiments to obtain data can make use of these publicly
available datasets for research. Fig. 2 shows the usage of various
datasets in data-driven PHM research.

The papers in which common PHM datasets were used are given in
Table 1.

2.2. Al algorithms for prognostics

As stated earlier, one of the reasons for the recent increase in popu-
larity of the use of Al in PHM is due to the increased availability of data
from sensors installed on engineering devices and systems. Other con-
tributory factors are successes recorded in other applications, like e-
maintenance, as well as the evolution of a rather large number of algo-
rithms on different platforms like Python, TensorFlow with Keras (us-
ing Python), PyTorch, Sci-kit Learn, MATLAB, R, Java, C+ + and Mi-
crosoft Azure Learning Studio. The availability of cross-platform li-

Experiments
MASA C-MAPSS Dataset

PRONOSTIA Bearing Dataset

MNASA Battery Data

Real Life Asset Data

MASA Bearing Dataset

Data from Simulation

PHM 2010 Data Challenge

PHM 2014 Data Challenge

Case Western Reserve University Bearing Data
Multiple Data Sources

Unipecified Source
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braries via the ability to import different libraries into different plat-
forms has also helped to accelerate adoption. Some popular algorithms
in use include Deep Learning, regular Artificial Neural Networks
(ANNSs), nearest neighbour algorithms (mostly k-NN), naive Bayes, de-
cision trees, and Support Vector Machine (SVM) (Ochella et al., 2021).
For prognostic maintenance, ANNs (and other algorithms based on
neural networks) have been used the most in the literature. Fig. 3 illus-
trates the broad categorization of common Al algorithms.

The AI algorithms used in majority of the published literature are
discussed briefly below.

2.2.1. Deep learning

The deep learning architecture originated from ANN with the
unique quality of having multiple layers stacked on each other, be-
tween the input layer and the output layer. This characteristic of deep
learning also applies to the multi-layer perceptron (MLP), which is a
neural network with multiple hidden layers trained via backward prop-
agation. In that sense, the MLP can be said to be an instance of deep
learning. However, what makes deep learning attractive, as compared
to traditional machine learning (ML) algorithms, is the ability to skip
the process of hand crafting features from the input data before being
fed into the network. With deep learning, the input can be fed directly
into the network and the network learns the features on its own. Deep
learning was first introduced for use in natural language and image pro-
cessing and recognition (LeCun et al., 2015). The deep learning algo-
rithms that have been used for PHM research include autoencoders
(and its variants), restricted Boltzmann machine with its variants being
deep belief networks (DBN) and deep Boltzmann machine (DBM), con-
volutional neural network (CNN) and recurrent neural network (RNN).
Variants of RNN, the long short-term memory (LSTM) and Gated Recur-
rent Units (GRU) have also been used in the literature for prognostics.

Different deep learning algorithms have also been combined to-
gether to solve PHM problems, exploiting the advantage of each algo-
rithm to address an aspect of the problem that is amenable to the appli-
cation of that particular algorithm. Yue et al. (2018) used CNN-LSTM to
address the issue of blade icing on wind turbines. The extraction of fea-
tures was performed using the CNN algorithm, and then LSTM was used
to make time-series predictions based on the extracted features. Chen et
al. (2018) applied a somewhat similar approach to the wind turbine
blade icing prognostic problem using deep neural networks to learn and
extract features while using k-NN to classify the learned features. The
CNN architecture has an input layer, several hidden layers and an out-
put layer. For most configurations, the hidden layers are the convolu-
tion layer, the pooling layer and a fully connected layer, beyond which
a regression or classification algorithms is used to generate the output,

28 14%

15.57%

T.78%

T19%

5.39%

4.79%
240%
180
1L.20%
1.20%

1.20%%

Fig. 2. Different datasets adopted in PHM research.
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Table 1
The papers in which common PHM datasets were used.

Number Dataset List of publications

of
papers
38 NASA C- Heimes (2008), Peysson et al. (2009), Sun et al. (2010),
MAPSS Javed et al. (2013), Khelif et al. (2014), Bluvband and
dataset Porotsky (2015), Javed et al. (2015a), Ragab et al.
(Details (2016b), Lim et al. (2016), Sateesh Babu et al. (2016),

presented in Xiong et al. (2015), Yongxiang et al. (2016), Zhang et al.

Section 2.1.1) (2016b, 2017a), Jiang and Kuo (2017), Zhao et al. (2017),
Yang et al. (2016b), Zheng et al. (2017, 2018a), Li et al.
(2018b), Hsu and Jiang (2018), Zhang et al. (2018b, a),
Lin et al. (2018), Shi et al. (2018), Mathew et al. (2018a),
Li et al. (2018a), Wu et al. (2018a, c¢), Zhou et al. (2018),
Ordéiiez et al. (2019), Li et al. (2019b), Skordilis and
Moghaddass (2020), Kozjek et al. (2020), Kraus and
Feuerriegel (2019), Peng et al. (2020), Kim and Liu
(2020), Cheng et al. (2021).

36 Experiments  Camci and Chinnam (2005), Saha et al. (2009), Camci and
(Experiments ~ Chinnam (2010), Zhang and Kang (2010), Li et al. (2012),
conducted by  Ben Ali et al. (2015), Deng et al. (2016), Guha et al.
each (2016), Hu et al. (2016), Shaban and Yacout (2016),
researcher to Thirukovalluru et al. (2016), Wu et al. (2016), Liu et al.
generate data) (2016a), Yang et al. (2016a), Zhang and Gao (2016),

Zhang et al. (2017b), Chen and Li (2017), Wu et al.
(2017b, a), Dong et al. (2017), Wang et al. (2017a, b),
Jiang et al. (2017), Laddada et al. (2017), Liao et al.
(2017), Ma et al. (2017), Mansouri et al. (2017), Razavi-
far et al. (2017), Zhang et al. (2017), Deutsch and He
(2018), Elforjani and Shanbr (2018), Ma et al. (2018),
Wang et al. (2018), Zhang et al. (2018¢), Yan et al.
(2018), Li et al. (2020).

26 FEMTO-ST Tobon-Mejia et al. (2011b, 2012a), Medjaher et al. (2012),
PRONOSTIA  Porotsky (2012), Benkedjouh et al. (2013), Mosallam et al.
bearing (2013), Zurita et al. (2014), Carino et al. (2015), Singleton
dataset et al. (2015), Liao et al. (2016), Ren and Lv (2016), Liu et

(See details in  al. (2016b), Guo et al. (2017), Liu et al. (2017a),

Section 2.1.2) Belmiloud et al. (2018), Cheng et al. (2018), Hinchi and
Tkiouat (2018), Jin et al. (2018), Mao et al. (2018), Ren et
al. (2018a), Zhao and Wang (2018), Jin et al. (2018), Patil
et al. (2019), Ren et al. (2019), Li et al. (2019a), Zhu et al.

(2019).

12 NASA battery Zhou et al. (2012), Liu et al. (2013), Zhou et al. (2013),
data Liu et al. (2015), Patil et al. (2015), Wang et al. (2016),
(Data is Ding et al. (2017), Wu et al. (2017), Qin et al. (2017),
publicly Tang et al. (2018), Ren et al. (2018b), Zheng et al.
available (2018b).
online)

11 Real life data Tran et al. (2012), Frisk and Krysander (2015), Ragab et
(Data from al. (2019), Yang and Zhang (2016), Costello et al. (2017),
real life Ren et al. (2017), Carroll et al. (2019), Chen et al. (2018),
operational Niu et al. (2018), Song et al. (2018), Yue et al. (2018).

assets — wind
turbine blades,
gearbox; gas

processing
equipment;
compressor;
bearings; and
batteries).
7 NASA bearing Tobon-Mejia et al. (2011a), Hong and Zhou (2012), Liu et
dataset al. (2017b), Ahmad et al. (2017), Li (2017), Khan and
(Data is Prosvirin (2018), Zhang et al. (2019).
publicly
available on
NASA
repository).
7 Simulation Wan and Li (2013), Xia et al. (2013), Krishnan et al.
(2017), Zhu (2018), Xanthopoulos et al. (2018), Jha et al.
(2019), Vega and Todd (2020).
5 Research lab  Saha and Goebel (2008), Morando et al. (2013), Javed et
data al. (2015b), Benkedjouh (2016), Mezzi (2018).
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Table 1 (continued)
Number Dataset
of
papers

List of publications

4 PHM 2010 Javed et al. (2012), Tobon-Mejia et al. (2012a), Zhu
data (2018), Wu et al. (2016).
challenge
(This dataset
is from a CNC
milling tool)

3 PHM 2014
Data
Challenge
(Degradation
data from
Proton
Exchange
Membrane
Fuel Cell).

2 Case Western An et al. (2017), Qi et al. (2017).
Reserve
University
bearing data

2 Using
multiple
datasets to
test algorithm

2 Exact source  Galar (2012), Fan and Tang (2013).
not specified

Qiao and Xun (2015), Xue et al. (2016), Liu et al. (2019).

Wang et al. (2017c¢), Trinh and Kwon (2018).

Review papers (~6% of papers) and a framework proposal (~0.6% of papers)
were not captured in the publications in Table 2 above.

depending on the nature of the problem being addressed. Li et al.
(2019b) and Zhu et al. (2019) used a multiscale feature extraction ap-
proach, where the CNN had several concatenated convolution and pool-
ing layers. The aim was to gain better representation of different fea-
tures of the raw data. Good results were obtained by the multiscale ap-
proach when applied to bearing data from the PRONOSTIA test bed and
they were compared with those obtained using other deep learning ap-
proaches. Even though data can be fed directly to deep learning models
without handcrafted features extraction, other approaches have in-
volved some level of pre-processing of data before feeding to deep
learning algorithms. Ren et al. (2018a) presented the spectrum-
principal-energy-vector as a feature extraction method to obtain the
eigenvector which they considered suitable for a deep CNN. Belmiloud
et al. (2018) used wavelet packet decomposition (WPD) to extract fea-
tures from bearings data and fed the extracted features to a deep CNN
for training and RUL prediction.

Fundamentally, CNN has a feed-forward neural network architec-
ture. RNN, on the other hand, is a deep learning algorithm which has
memory in the sense that output from one layer is fed as input to the
previous layer. As such, RNNs are more amenable to time-series data.
However, RNNs can only capture recent memory and are poor at ad-
dressing the issue of long-term dependencies. As a variant of RNN, the
LSTM addresses this problem by the introduction of three gates,
namely, input gate, output gate and forget gate. The input gate selects
key information to store in the internal state, the output gate deter-
mines output information and the forget gate discards redundant infor-
mation — hence keeping important information for long-term use in
the internal state of the network. Zheng et al. (2017) and Hsu and Jiang
(2018) used LSTM to estimate the RUL of turbofan engines based on the
C-MAPSS dataset. The results were compared with those obtained using
MLP, SVM and CNN and it was shown that LSTM produced better re-
sults based on the root mean square error (RMSE) metric. Zhang et al.
(2018a) used a bi-directional LSTM for the same C-MAPSS problem and
they also obtained better results compared to MLP, SVM, deep CNN and
the conventional LSTM. Other researchers, including Mao et al. (2018)
and Zhang et al. (2019) used LSTM to predict RUL for bearings while
Zhang et al. (2017) applied LSTM to RUL estimation of lithium-ion bat-
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teries. Overall, the key feature of addressing long-term dependencies
was the major reason why researchers have used LSTM as against the
standard RNN.

Other deep learning algorithms that have been used for PHM in-
clude deep coupling autoencoders, deep denoising autoencoders, re-
stricted Boltzmann machine, deep belief networks and, most recently,
probabilistic deep learning algorithms using variational inference or
Monte Carlo dropout for approximating the posterior distributions.
Most of the papers which used deep learning have been published
rather recently, from 2016 onwards. This recent adoption clearly fol-
lows from the successes recorded by its use in image processing and
recognition. Khan and Yairi (2018) and Zhao et al. (2019) conducted
detailed reviews on deep learning algorithms used in the literature for
PHM. A summary of these deep learning algorithms is shown in Fig. 4.

2.2.2. Hybrid/Fusion
Hybrid techniques involve the combination of model-driven and
data-driven methods (in the context of this paper, data-driven methods

MLP

NN — Vanilla LSTM
S < Bi-directional
RNN LSTM
GRU
Deep CNN
Learning Sparse AE
Auto-
encoders Variational AE
(AE) . ___ Stacked
Denoising AE Denoising AE
DBN
RBM <
DBM

Fig. 4. Various deep learning algorithms used in the literature for PHM.

are referred to as Al-based methods). Saha and Goebel (2008) used rele-
vance vector machine (RVM), as a Bayesian treatment of SVM, for
model identification and then provided estimates of RUL in the form of
a probability density function (PDF) based on a particle filters frame-
work built upon the RVM-trained model, statistical estimates of noise
and projected operating conditions. Yang et al. (2016b) used a selective
kernel ensemble-based RVM algorithm to obtain relevance vectors for
degradation data in lithium-ion batteries and fit the relevance vector
onto a physical model to extrapolate RUL values. When the results were
compared to feed-forward ANN and SVM, the hybrid method showed
superior performance. In another study, Zheng et al. (2018a) used a
very similar approach with RVM on battery data to train a model, but
instead they used Kalman Filters to make RUL projections. Ahmad et al.
(2017) implemented a hybrid PHM approach by training an adaptive
predictive model on the NASA bearing degradation data and then
adopting a regression-based approach to predict the RUL. Other re-
searchers such as Jin et al. (2018) used a self-organizing map (SOM) to
train the degradation model for the bearings data from the FEMTO-ST
PRONOSTIA test bed and then adopted an unscented Kalman Filters to
estimate RUL using the trained model. In general, the hybrid approach
combines the use of degradation data to train an Al algorithm to learn
the parameters of a physical model, and then uses the learned model
along with statistical or other approaches to make extrapolations or
predictions. It must however be noted that hybrid methods only lend
themselves to application areas where the underlying physics behind
the system can be modelled, so that the training process effectively
helps to approximate the model parameters. Hybrid models are there-
fore not directly applicable to complex systems where the physics of
failure cannot be somewhat explicitly modelled. Fig. 5 presents two al-
ternative routes for adopting a hybrid/fusion approach to estimate RUL
of engineering systems.
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2.2.3. Support Vector Machine (SVM)

SVM is a technique used for classification and regression analysis by
creating a hyperplane to separate data with different classes. The ex-
tracted features from the data are projected into a multi-dimensional
space using a kernel function and then a hyperplane is generated such
that there is maximum distance between the nearest training data and
the hyperplane, thus providing good generalization capabilities. In rela-
tion to PHM applications, failure data can therefore be separated from
healthy data. Benkedjouh et al. (2013) estimated the RUL of bearings
by using an isometric feature reduction mapping technique to extract
features from the PRONOSTIA bearings data. The errors obtained from
using three kernel functions, namely Gaussian, polynomial and Radial
Basis Function (RBF), were compared by projecting the features onto a
multi-dimensional hyperplane. Eventually, the Gaussian kernel func-
tion was shown to produce the least error compared to other two func-
tions. Carino et al. (2015) estimated the RUL of the same PRONOSTIA
bearings, using the features selected based on the assumption that mo-
notonically decreasing features are most likely to represent degradation
patterns. A one-class SVM was then used to characterize an incremental
degradation profile in the feature space, subsequently using the RMSE
to measure the performance of the algorithm. The key implication of
the two studies cited is that data from most physical systems are Gauss-
ian, along with Gaussian noise and that monotonically decreasing or in-
creasing features are most useful for RUL predictions. Non-Gaussian
data can usually be transformed to Gaussian space to make them
amenable to modelling, with the results going through an inverse trans-
formation after predictions using the learned model.

One challenge with all datasets available for PHM, and indeed any
dataset that may be obtained from engineering systems, is the differ-
ence in lengths of the run-to-failure data for each unit within the
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dataset. This difference reflects the fact that different equipment have
different lifetimes, either due to design, different environmental factors
or different operational or loading conditions. To address this chal-
lenge, Bluvband and Porotsky (2015) used SVM to predict the RUL for
turbofan engines in a context of suspended time series, where a number
of points in the data were missing. Shi et al. (2018) used a modified
RVM with a new design matrix, called RVR-NDM which includes an ad-
ditional column vector which represents the overall degradation pat-
tern. The performance of the algorithm was measured using mean ab-
solute percentage error (MAPE) and the RMSE. Several other studies
have used the SVM technique to estimate the RUL of lithium-ion batter-
ies, which are important components for energy storage in a wide vari-
ety of applications including consumer electronics, transportation, and
large-scale energy production. In all these studies, the common ap-
proach involves the need to separately extract the features and establish
a degradation pattern and subsequently applying the SVM algorithm. In
general, these techniques have produced good results for use in both
classification and regression problems.

2.2.4. Ensemble

Ensemble techniques combine several different configurations of
the same base learner or algorithm to make a single prediction. Hu et al.
(2012) conducted a study to demonstrate that using an ensemble of the
data-driven Al algorithms for PHM yields more accurate results when
compared to any sole algorithm within the ensemble. In the study, dif-
ferent weights were assigned for algorithms that are accuracy-based,
the ones that are diversity-based, and those that are optimization-
based. As shown in Fig. 6, ensemble methods include bagging, boosting
and stacking. Bagging, also called bootstrap aggregating, assigns equal
weights to each algorithm in the ensemble, with each algorithm trained
using a random sample from the training dataset. The training data is
sampled with replacement in the process of training each base algo-
rithm. Random Forests is an example of bagging ensemble, with deci-
sion trees as the base learners. Wu et al. (2017a) used random forests as
a bagging ensemble method for predicting the tool wear. Although the
training times achieved were slightly long, the RMSE using random
forests was much lower when compared to ANN and SVM. Cheng et al.
(2021) used an ensemble of 80 different LSTMs to make RUL predic-
tions for the C-MAPPS dataset, with each base LSTM having the same
hyperparameters. Each base LSTM was also trained on a single, unique
engine degradation data, and the results from 80 engines were aggre-
gated to obtain the optimal LSTM configuration as well as RUL distribu-
tion parameters derived from the mean and variance of the 80 predic-
tions. This approach produced a mean RUL prediction that is superior
to any single prediction from each of the 80 LSTMs, thus taking full ad-
vantage of the bagging ensemble learning approach.

Boosting involves the process of progressively improving the results
of a classifier with subsequent algorithms in the ensemble, with the sole
purpose of more accurately predicting or classifying previously misclas-
sified instances in the data. With boosting, the process is initialized
with a uniform distribution so that all instances in the data have equal
likelihood of being selected in the training dataset, while misclassified
instances are returned to the distribution to improve their chances of
correct classification with other algorithms in the ensemble. Zhang et
al. (2017a) used a multi-objective DBN for RUL prediction using the C-
MAPSS dataset. A DBN is a deep learning algorithm comprising RBMs
stacked to form multiple layers. The ensemble method used in the study
trained DBNs as base learners with two conflicting objectives, including
accuracy and diversity. Accuracy is measured in terms of the error be-
tween the predicted RUL and the ground truth RUL while diversity
checks the correlation between the output of each DBN to those of other
DBNs within the ensemble. The various DBNs are gradually evolved
through appropriate weighting to generate an optimal ensemble model
that minimizes error and maximizes diversity.
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Stacking involves the use of a heterogeneous mix of different base
learners and then combining their results to produce a single predic-
tion. The results can be combined with a classification algorithm or a
regression algorithm, depending on the problem. Stacking is different
from bagging in two ways; first, with stacking, the base learners are
necessarily a heterogeneous set of algorithms or models and, second,
each of the base learners are trained on the full set of training data un-
like in bagging where the training data is sampled with replacement. Li
et al. (2019a) used a stacking ensemble approach for RUL prediction
and tested it on the C-MAPSS dataset. The study used as base learners:
random forests (RFs), classification and regression tree (CART), recur-
rent neural networks (RNN), autoregressive (AR) model, adaptive net-
work-based fuzzy inference system (ANFIS), relevance vector machine
(RVM), and elastic net (EN). Particle swarm optimization (PSO) and se-
quential quadratic optimization (SQP) methods were then used to as-
sign optimal weights to each base learner. The final RUL was obtained
by taking the weighted sum of the RULs estimated by the base learners.
In general, ensemble methods help to produce better accuracy while en-
suring good generalization capabilities.

2.2.5. Bayeslan algorithms and uncertainty quantification

The algorithms discussed so far make deterministic or point esti-
mates of RUL, which are not necessarily near the “true” value. This is
because point estimates have a fundamental flaw of not addressing the
uncertainty in both the data and the model parameters. In practical
terms, what this means is that an equipment with a predicted RUL of
say 30 cycles, may end up failing earlier, after say 15 cycles or indeed
last longer and fail after say 40 cycles. Such a scenario does not enable
optimization of resources or efficient planning for maintenance and
end-of-life treatment. Incorporating uncertainty in RUL predictions is
the most effective way to address this flaw. Uncertainties in RUL predic-
tion are of two types, aleatoric (or data) uncertainty and epistemic (or
model parameters) uncertainty, both of which should be addressed, ide-
ally (Adedipe et al., 2020). Attempts to incorporate uncertainties in
RUL prediction have involved different approaches. Some proposals in-
volve making several RUL predictions using the same algorithm and
then calculating the mean prediction and the variance as representative
values for the RUL distribution. Deutsch and He (2018) used a resam-
pling technique by eliminating one training data for each run of a deep
learning algorithm and repeated that process until the entire training
data was covered, thereby obtaining several point estimates of RUL and
the RUL distribution parameters therefrom. Liu et al. (2010) also used a
similar approach by making 50 RUL prediction runs using an adaptive
recurrent neural network (ARNN) and obtaining the RUL distribution
parameters by computing the mean and variance of the 50 RUL point
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estimates. While this approach may capture, to some degree, the vari-
ability in the training and test data, it is however a heuristic approach
that fails to directly account for uncertainty in a repeatable and system-
atic way.

Probabilistic techniques such as particle filtering (see Miao et al.,
2013; Su et al., 2017; Chang and Fang, 2019), Kalman filtering and its
variants (see Singleton et al., 2015; Son et al., 2016; Cui et al., 2020),
and Hidden Markov Models (see Soualhi et al., 2016; Zhang et al.,
2016b; Zhu, 2018) have also been used extensively for PHM. Although
these methods are mathematically rigorous and more systematic than
running several estimates and taking the average, they do not give RUL
estimates as probability distributions with uncertainty estimates. To
close this gap, Bayesian techniques like Gaussian Process Regression,
GPR (Baraldi et al., 2015; Aye and Heyns, 2017; Richardson et al.,
2017) enable uncertainty quantification in RUL prediction by providing
probability distributions, with a mean and variance for the RUL at each
time step. However, GPR derives the prior and the posterior distribu-
tions as multivariate normal functions, which does not always conform
to data from engineering systems as they are not all multivariate nor-
mal. As such, a more contemporary approach is the use of Bayesian
Neural Networks (BNNs) for RUL prediction. BNNs can be trained using
any distribution as the prior. In addition, BNNs have gained traction re-
cently for use in RUL prediction due to their superior performance in
terms of both higher accuracies and outputs of RUL predictions that in-
corporate uncertainties in both data and model parameters. Another ad-
vantage of BNNs, and Bayesian techniques generally, is their inter-
pretability, mainly because of their mathematically rigorous founda-
tions. This helps to quell the common criticism of deep learning ap-
proaches as black-box approaches that cannot be interpreted. A few
studies have been proposed using BNNs for RUL prediction. Reference
can be made to Kraus and Feuerriegel (2019), Peng et al. (2020), Li et
al. (2020), Kim and Liu (2020), and Vega and Todd (2020) for addi-
tional insight.

2.2.6. Reinforcement learning

The literature search produced only scant evidence of publications
using reinforcement learning (RL) algorithms for PHM applications. In
this algorithm, the learning agent is trained to act based on a reward
system, depending on the outcome of the prediction. For that reason, it
has found the most application in gaming. PHM applications are either
classification (diagnostics or health state division), regression (RUL pre-
diction) or, as it is in most cases, a combination of both problems. The
main application of the RL technique is in maintenance policy formula-
tion and decision-support systems. In such case, the outcome of mainte-
nance actions taken based on the result of condition monitoring and
RUL prediction are fed back to the learning agent in the form of re-
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wards, hence aiding the agent to subsequently make better, fully inte-
grated decisions. Cheng et al. (2018) used RL strictly for health stage di-
vision by looking at highly trendable features from sensor data as multi-
ple health indicators, and then considering their change points simulta-
neously as agents. The transition between health states was then mod-
elled as a Markov Decision Process, and then an RL algorithm was used
to determine the optimal change point transitions and hence, optimal
health state division. Xanthopoulos et al. (2018) extended the use of RL
approach beyond health stage division by using Q-learning to deter-
mine production-maintenance control policies via a reward mechanism
for the algorithm that looks at system health states at different epochs
and compares one state to the previous state and to a reward threshold,
and, on that basis, makes decision as to whether to continue production
or to trigger an alert for maintenance decision to be made. The applica-
tion was strictly in the area of maintenance decision-making.

In furtherance of the application of the RL approach in PHM,
Skordilis and Moghaddass (2020) extended the use of RL by combining
Bayesian filtering and deep reinforcement learning (DRL). The Bayesian
filtering algorithm was used to observe the system’s latent degradation
or health states based on multidimensional sensor data, with continu-
ous updating. The DRL component of the algorithm made real-time
maintenance decisions based on a framework designed based on the
computed RUL value as well as costs of replacement versus that of fail-
ure. The advantages of the proposed method include dynamic and real-
time monitoring of latent system degradation states, with uncertainty
quantification due to the Bayesian approach, which also lends itself to
interpretability as it is mathematically rigorous. Another study by
Kozjek et al. (2020) used the RL approach to continuously adjust RUL
predictions based on a reward system. RUL predictions by a primary re-
gression algorithm uses the trend in system health states as input to
make RUL predictions, which are then compared to the actual RUL, and
the agent is then rewarded based on the delta between the two values,
and the RUL is thereafter adjusted accordingly. Training is performed
for different episodes, with RUL, safety, utilization level and mainte-
nance planning as the respective reward objective for each episode. An-
other interesting development and new direction in the use of RL ap-
proach for PHM is in the area of health-aware control (HAC). HAC de-
signs are now formulated around the use of results from data-driven
PHM such as the system health states and RUL values as inputs into the
cost functions to generate rewards which are then used by an RL algo-
rithm to learn optimal system control and maintenance policy in the
face of system degradation. Examples of such applications include the
study conducted by Jha et al. (2019). Overall, the use of RL algorithms
for PHM is nascent and largely unexplored.

3. Literature review process

In this Section, the results of our systematic literature review on the
state-of-the-art in the use of Al algorithms for PHM will be presented.
The methodology used in this study involves searching the indexed
databases, such as Scopus, Web of Science, IEEE Xplore Digital Library
and the American Society of Mechanical Engineers (ASME) Digital Col-
lections, since they provide the best collection of peer-reviewed jour-
nals and conference papers. The following keywords and their combina-
tions were used: “artificial intelligence”, “machine learning”, “diagnos-
tics”, “prognostics”, “remaining useful life”, and “maintenance”. The fo-
cus of the literature study was to cover peer-reviewed publications; as
such, books, book chapters, university dissertations and non-English
publications were not in the inclusion criteria. Publications in the fol-
lowing professions were also excluded: health, medicine, environmen-
tal sciences, business and management, arts and humanities, and the so-
cial sciences. The search criteria were defined as presented above to
sufficiently capture publications in the most relevant journals and con-
ferences.
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A combination of the results from all four databases initially gener-
ated a total of 342 references, which reduced to 192 after merging du-
plicates and deleting references that were not relevant to engineering
assets. This number was pruned down to 178 after reading through the
abstracts and in most cases, the full text of the papers to further estab-
lish their relevance to the study. Out of the 178 publications, 86 were
journal articles while 92 were conference papers — published predomi-
nantly by IEEE and PHM Society — spanning from 2005 to March 2021.
The results of the search were categorized to establish the distribution
of Al algorithms used, the sources of data used to demonstrate the ap-
plicability of the algorithms, and the various equipment used as case
studies.

3.1. Framework for categorization of the literature

In order to establish trends, the identified publications were catego-
rized based on types of the Al algorithms used, source of data used for
the research, the equipment or system used as a case study (where ap-
plicable) and the affiliation of the researchers.

3.1.1. Al algorithms used for PHM

The review carefully looked at the various Al algorithms or combi-
nation of algorithms used in the papers selected. When classifying the
algorithms, the following notes were taken into consideration:

i. Algorithms that were similar, like support vector machine,
support vector regression, support vector classification, relevance
vector machine, were all grouped as SVM-based algorithms.

ii. The categories of algorithms or approaches under deep learning
and ensemble methods are pretty much defined and they were
grouped as such.

iii. Conventionally, hybrid/fusion approaches in condition
monitoring and PHM combine model-based and data-driven
approaches for RUL prediction. However, in the context of Al or
ML, hybrid/fusion approaches are construed to be the
combination of model-based or statistical approaches with Al
algorithms for a single PHM purpose (i.e., to make only RUL
prediction). “Single” in this context means putting together
different algorithms to produce one RUL estimate rather than
each algorithm producing its own RUL estimate and then
choosing the ‘best’ estimate based on a performance metric (for
example, RMSE).

iv. We also noted that with ensemble and hybrid/fusion techniques,
multiple algorithms are used together to make a single prediction
of RUL. As such, for this work, ensemble and hybrid/fusion
techniques were classified differently from methods that used
several different algorithms, separately, to perform prognostics,
and then compared the results and chose the individual algorithm
with the best performance. We classified such an approach as a
comparison approach.

Upon classification, deep learning algorithms were ranked first as
the most used type of Al algorithm for PHM research (about 29% of the
publications). This is because the increased adoption of Al algorithms
for data-driven PHM coincided with the time when deep learning was
becoming the go-to algorithm for most other applications in other in-
dustries, enabled by availability of data to train the algorithms as well
as computing resources capable of handling the training process. Hy-
brid/fusion approaches were ranked second (about 14% of the publica-
tions), ensemble techniques were third (in about 10% of the publica-
tions) and SVM-based algorithms were fourth (about 8.5% of the publi-
cations). Although it can be argued that deep learning and some of the
ensemble techniques have their basis in neural networks, ANN-based
techniques in its conventional form accounted for 4.2% of the publica-
tions. The publications in which these common algorithms were used
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for PHM were introduced in more detail in Section 2.2, highlighting
what each algorithm achieved, as well as their shortcomings. Table 2
presents the various algorithms along with the references in which the
algorithms were used for research. The guidance for using Table 2 is to
mainly serve as quick pointers to publications in which specific AI algo-
rithms have been used in the literature for PHM so as to gain further in-
sight into a specific approach or to aid comparison of research results.

3.1.2. Datasets

Publications in the literature show that researchers mostly used ex-
periments data (~28%), closely followed by the NASA C-MAPSS dataset
for turbofan engines (~23%) (Saxena and Goebel, 2008) and then the
bearings dataset from FEMTO-ST PRONOSTIA test bed (~16%)
(Nectoux et al., 2012). Both the NASA C-MAPSS dataset and the
FEMTO-ST PRONOSTIA dataset are available for download at https://
ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/.
Data from real life operational assets constituted only about 7% of the
publications, revealing the need for better collaboration between indus-
try and researchers in terms of the provision of real operational asset
data for data-driven PHM research. Furthermore, these percentages can
serve as good pointers for those who need to benchmark their studies
with some of the datasets for which a lot of studies have already been
conducted.

3.1.3. Application areas

Data from rolling element bearings (~29%), turbofan engines
(~21%), batteries (~20%) and cutting tools (~8%) were the most used
in publications found in the literature. This is because most of the ex-
periments conducted by researchers to obtain data for prognostics were
conducted for bearings while the publicly available datasets were also
from bearings and the other equipment mentioned above, mostly under
test conditions or computer simulations. Wind turbine blades and wind
turbine gearboxes were used in about 2% of the publications — all the
data used for research on wind turbines were obtained from real life op-
erational wind farms, but most could not be shared by the researchers
for confidentiality reasons.

3.1.4. Epilog on algorithms

Some of the reasons for the popularity of deep learning algorithms
were discussed in Section 2.2.1. However, an additional point to note is
the aspect of hyperparameter tuning. Hyperparameters determine the
architecture of any deep learning algorithm and they include: the num-
ber of layers, the number of nodes in each layer, the optimization algo-
rithm, the learning rate for the optimization algorithm, the dropout rate
(if dropout is implemented to reduce overfitting or as a Bayesian ap-
proach), etc. Earlier approaches towards hyperparameter tuning to de-
termine the optimal values for each hyperparameter in a network in-
volved manual assignments (manual search) by the algorithm devel-
oper and logging the output from the training process for any set of as-
signments. The developer then subsequently picks the value that yields
the best results. However, tailored algorithms are now available for hy-
perparameter tuning or optimization, the most common of which are:
random search, grid search, hyperband tuner, Bayesian optimization,
gradient-based optimization, and early stopping (Bergstra and Bengio,
2012; O’Malley et al., 2019; Wu et al., 2019).

The advantages as well as the limitations of k-NN, naive Bayes,
SVM, ANN and deep learning algorithms were presented in the study by
Liu et al. (2018). Furthermore, Sikorska et al. (2011) and Khan and
Yairi (2018) both proposed a more detailed breakdown of the advan-
tages and disadvantages of Al techniques and provided guidance on the
suitability of any given algorithm. Table 3 lists some Al algorithms
along with a synthesis of the pros and cons as presented in Sikorska et
al. (2011), Khan and Yairi (2018) and Liu et al. (2018).
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Table 2
Common Al algorithms used in PHM research.

Number Dataset
of

papers

List of publications

48 Deep Learning Heimes (2008), Liu et al. (2010), Morando et al. (2013),
Deng et al. (2016), Liao et al. (2016), Thirukovalluru et
al. (2016), Zhang and Gao (2016), Zhang et al. (2016b),
Chen and Li (2017), Ding et al. (2017), Dong et al.
(2017), Zhao et al. (2016), Guo et al. (2017), Jiang et al.
(2017), Wang et al. (2017a), Jiang and Kuo (2017), Wang
et al. (2017c¢), Krishnan et al. (2017), Liao et al. (2017),
Ma et al. (2017), Qi et al. (2017), Ren et al. (2017),
Zhang et al. (2017), Zheng et al. (2017), Belmiloud et al.
(2018), Chen et al. (2018), Deutsch and He (2018),
Hinchi and Tkiouat (2018), Hsu and Jiang (2018), Zhang
et al. (2018b, a), Mao et al. (2018), Mezzi (2018),
Remadna (2018), Ren et al. (2018a, b), Li et al. (2018b),
Ma et al. (2018), Lin et al. (2018), Wu et al. (2018a),
Zhang et al. (2018c¢), Yan et al. (2018), Yue et al. (2018),
Zhao and Wang (2018), Ren et al. (2019), Li et al.
(2019b), Zhang et al. (2019), Zhu et al. (2019).

Camci and Chinnam (2005), Saha and Goebel (2008),
Wan and Li (2013), Liu et al. (2013), Qiao and Xun
(2015), Hu et al. (2016), Shaban and Yacout (2016),
Yang et al. (2016b), Yang and Zhang (2016), Liu et al.
(2016a), An et al. (2017), Ahmad et al. (2017), Wu et al.
(2017), Liu et al. (2017a), Jin et al. (2018), Niu et al.
(2018), Wang et al. (2018), Song et al. (2018), Trinh and
Kwon (2018), Zheng et al. (2018a), Zhou et al. (2018),
Liu et al. (2019), Ordodnez et al. (2019).

Sun et al. (2010), Zhang and Kang (2010, ?), Javed et al.
(2013), Ben Ali et al. (2015), Frisk and Krysander (2015),
Javed et al. (2015a, b), Wu et al. (2016, 2017b), Zhang et
al. (2017a), Wang et al. (2017b), Li (2017), Wu et al.
(2018c), Patil et al. (2019), Li et al. (2019a), Cheng et al.
(2021).

Peysson et al. (2009), Galar (2012), Tran et al. (2012),
Fan and Tang (2013), Benkedjouh et al. (2013), Zhou et
al. (2013), Bluvband and Porotsky (2015), Carino et al.
(2015), Patil et al. (2015), Wang et al. (2016), Qin et al.
(2017), Mathew et al. (2018b), Tang et al. (2018), Shi et
al. (2018).

Benkedjouh (2016), Liu et al. (2016b, 2017b), Laddada et
al. (2017), Razavi-far et al. (2017), Xue et al. (2016),
Zheng et al. (2018b).

23 Hybrid/Fusion

17 Ensemble

14 SVM-based

7 Extreme
Learning
Machine
(ELM)

7 Conventional
ANN

Javed et al. (2012), Lim et al. (2016), Sateesh Babu et al.
(2016), Zhao et al. (2017), Zhang et al. (2017b), Carroll
et al. (2019), Khan and Prosvirin (2018).

Mathew et al. (2018a), Yang et al. (2016a), Wu et al.
(2017a), Mansouri et al. (2017), Costello et al. (2017),
Elforjani and Shanbr (2018), Li et al. (2012).

Camci and Chinnam (2010), Xia et al. (2013), Wu et al.
(2018b), Soualhi et al. (2016), Zhang et al. (2016a)
Cheng et al. (2018), Xanthopoulos et al. (2018), Jha et al.
(2019), Skordilis and Moghaddass (2020), Kozjek et al.
(2020).

Kraus and Feuerriegel (2019), Peng et al. (2020), Li et al.
(2020), Kim and Liu (2020), Vega and Todd (2020).

7 Comparison of
individual
algorithms

5 HMM

5 Reinforcement
Learning

5 Bayesian
neural
networks

4 MoG-HMM Tobon-Mejia et al. (2011a, b, 2012b), Medjaher et al.

(2012).

2 Logical Ragab et al. (2016a), Ragab et al. (2019).

analysis of

data (LAD)

(continued on next page)
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Table 2 (continued)

Number Dataset
of
papers

List of publications

21 Others Cross entropy optimization (Porotsky, 2012); Dynamic
Bayesian network (Tobon-Mejia et al., 2012a); Gaussian
process regression (Hong and Zhou, 2012; Baraldi et al.,
2015; Aye and Heyns, 2017; Richardson et al., 2017);
Sparse Bayesian Learning (Zhou et al., 2012); Adaptive
neuro-fuzzy inference system - ANFIS (Zurita et al.,
2014); Instance-based learning (Khelif et al., 2014);
Kalman filter (Singleton et al., 2015; Son et al., 2016; Cui
et al., 2020); k-NN (Xiong et al., 2015); Particle filter
(Guha et al., 2016; Miao et al., 2013; Su et al., 2017;
Chang and Fang, 2019); PCA (Yongxiang et al., 2016);
Hidden semi-Markov model (Zhu, 2018); Light gradient
boosting machine (Li et al., 2018b); Sparse coding (Ren
and Lv, 2016).

Some of the algorithms appearing as being used in only one publication may ac-
tually have been used in multiple publications but have been grouped under fu-
sion, hybrid or comparison approaches. Moreover, papers based on purely ana-
lytical statistical methods were excluded from the search.

3.2. RUL metrics

The key technical endeavour in the use of Al for PHM is the accu-
rate prediction of RUL in engineering systems, sub-systems or compo-
nents. RUL, simply put, is the time from the incipient stage of degrada-
tion to the point of failure. According to Jardine et al. (2006), RUL can
be considered from two perspectives:

i. Probability that a system will operate without failure up to a
given future time.

ii. Time to failure given the present health state and past operation
profile.

RUL is random in nature and as such, RUL estimation may connote
the determination of RUL distribution or the expected value of RUL.
Whatever approach is adopted, it is important to have some measures in
place to determine the level of confidence in the predicted value. Some
of the RUL metrics used in the literature are discussed below:

(a) Root Mean Squared Error (RMSE)

n
1 ~ 2
RMSE = ;Z(y,.—y,.) ) €Y}
i=1
(b) Mean Absolute Error (MAE)
1 n
MAE = - 3" [ =i @
i=1
(c) Mean Absolute Percentage Error (MAPE)
1 c |yi _yi|
MAPE = =) =—2 X 100%. 3)
=T

where y;and 7, are the true and predicted values of the RUL and n is
the number of different models used or the number of different RUL
predictions made if only one model is used.

Ledo et al. (2008) developed a framework proposing a set of PHM
performance metrics for use with a wide group of Al algorithms. The
peculiar feature of the framework is amenability to bespoke definition
by users so as to fulfil user requirements. Some of the metrics include
prognostics hits score, false alarm rate, missed estimation rate, prog-
nostic effectivity, average bias, average absolute bias and coverage. The
definitions of these metrics and how to apply them were covered in the
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Naive Bayes

SVM

ANN

Deep
Learning

o Autoencoder

o Denoising
AE

e Variational

AE

e RBM

e DBM

e DBN

easy to implement

b. Can be used for
classification and
regression

a. Robust for missing
values situation

b. Requires little
storage space

c. Easy to explain

a. Good classification
accuracy

b. Can handle multi-
dimensional features
a. Good classification
accuracy

b. Good approximation
of complex non-linear
functions

a. Learn features and
complex structures
directly from data

b. Automatically
recognizes failure
signatures in data

a. Modifiable to learn
richer representations
b. Easy to implement
c. Good for
dimensionality
reduction

d. Easy to track
loss/cost function
during training

a. Good for denoising
(feature extraction)
because they are
deterministic

b. Implicitly designed
to form a generative
model

a. Learns what noise
distribution to insert at
code level

b. Explicitly designed
to form a generative
model

c. Can generate data
using distributions

a. Can create patterns
if there are missing
data

b. Can learn a
probability
distribution from its
set of inputs

a. Parameters of all
layers can be learnt
jointly

b. Handles uncertainty
about ambiguous data
a. Good for one-
dimensional data

b. Can extract the
global feature from
data

c. Can consistently
achieve high
performance on raw
data

Table 3
Pros and cons of common Al algorithms used in PHM.
Algorithm Pros Cons
k-NN a. Mature theory and  a. Large computation

b. Need lots of storage space
c. Selection of ‘k’ hugely influences
outcome

a. Strong prior assumptions

b. Computational challenges and
combinatorial explosion

c. Requires prior probability

a. Low efficiency for large volumes of data
b. Difficult to explain physical meaning

a. Multiple parameters and amenable to
over-fitting

b. ‘Black box’ approach and difficult to
explain

a. Need large amounts of data

b. ‘Black box’ approach and difficult to
explain

c. Training times can be long.

d. Need huge computational resources

a. Training can require lots of data and
data processing

b. Learns to capture much information
rather than much relevant information
— may not be able to determine relevant
information.

a. Randomly inserts noise at input level

a. Can be difficult to optimize
b. Can be difficult to implement

a. Can be difficult to train
b. Difficult to track the lost/cost function

a. Training can be slow, as such joint
optimization of parameters impractical for
large datasets

b. Approximate inference slow thus not
favoured for features extraction

a. Optimizing training is difficult, hence
training can be slow and inefficient

(continued on next page)
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Table 3 (continued)

Algorithm Pros Cons

o CNN a. Good for multi- a. Complicated and hence takes a long
dimensional data time to train
b. Good at local
feature extraction

® RNN, LSTM  a. Good for sequential ~ a. Can be difficult to train and implement

and GRU data

b. Can detect changes
over time

« BNN a. Mathematically a. Can be computationally expensive.
rigorous, hence a bit b. Selection of appropriate priors can be
explainable. tricky.
b. Incorporates
uncertainty
quantification.

c. Results tend to be
more realistic for
practical purposes

study in details, including a case study application. Saxena et al. (2009)
proposed four metrics to use in offline PHM performance evaluation,
particularly to help with AI algorithm development. The metrics are se-
quential with time and should necessarily be determined in order as fol-
lows: prognostic horizon, a-1 performance, relative accuracy and con-
vergence. A further addition to the discourse on prognostics perfor-
mance metrics is the review conducted by Lei et al. (2018). The review
catalogues metrics for determining the level of confidence in RUL pre-
dictions when several models are used. Some of these metrics include:
confidence interval, relative accuracy, convergence, predictability,
mean prediction error, overall average bias, overall average variability,
reproducibility, online RMSE, online coverage and online width. The
PHM data challenges by the PHM Society use scoring functions which
are basically percentage errors on the actual RUL values, to measure the
results obtained on the datasets provided. The key implication is that,
for whatever model being deployed for RUL prediction, suitable metrics
must be devised for the performance of the algorithm, and hence, the
confidence in the entire PHM methodology. This is a valuable informa-
tion for maintenance decision-making. An up-to-date and comprehen-
sive review of PHM metrics, along with the suitability of each metric for
use in different application scenarios is presented in the study by
Ochella and Shafiee (2021).

4. Key enablers for AI in PHM

As mentioned earlier, most of the early successes recorded by Al are
in the area of e-commerce (online shopping, hotel and airline reserva-
tion, social media, financial services, etc.). In terms of practical engi-
neering applications, great advances have been recorded in the automo-
tive industry, manufacturing industry and space exploration. In fact, an
Al discussion paper by McKinsey Global Institute which surveyed senior
Al executives in 3073 companies across ten countries and 14 sectors of
the economy, showed that the automotive and assembly industry was
among early leaders with high AI adoption (Bughin et al., 2017). For
the energy and utilities industry, the report posits that the use cases for
Al that potentially stand to yield the most benefits are the areas of oper-
ation and maintenance (O&M) optimization as well as prediction of
consumer behaviour and energy utilization patterns. However, to ex-
ploit the full potentials of Al-enabled systems, the right enablers must
first be in place. The authors have identified the issues of infrastructure,
standards, security, regulations, and manpower as key requirements
that must be addressed to provide the enabling platform for the applica-
tion of Al in PHM. In what follows, a brief overview of these issues is
provided.
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4.1. Infrastructure

For large, established engineering companies, the cost of adopting
Al technology may actually be huge and can serve as an initial barrier.
Major challenges are likely to be compatibility of old systems with new
ones, data storage, and the fact that each operating facility within a
company'’s collection of assets is typically unique. Thus, there may be a
need to set up unique, bespoke Al-driven PHM systems for each facility
across the company’s assets portfolio. Clearly, a way to go around this
is a phased approach to adoption and implementation. Also, the con-
cept of digital twins can be adopted, where physical assets are mimic-
ked in a digital form and sensor readings and inspection data are fed to
the digital version to observe the system’s behaviour and make predic-
tions. General Electric (GE) is already implementing the digital twin
concept for wind farms (Woyke, 2017). The studies by Werner et al.
(2019), Aivaliotis et al. (2019), He et al. (2021), and Meraghni et al.
(2021) all demonstrate the use of digital twins for PHM of engineering
systems. The concept, in terms of PHM, fundamentally provides a good
alternative to obtain run-to-failure data and to observe the results of
PHM in a simulated environment, in advance, so that proactive actions
can be taken for the real, operational system.

4.2. Standards

Engineering practice is traditionally guided by standards set by pro-
fessional bodies or national institutes. Similarly, engineering assets
built for operation in the offshore environments are also typically quali-
fied by classification bodies like Lloyds Register (LR), American Bureau
of Shipping (ABS), Det Norske Veritas Germanisher Lloyd (DNV GL),
Bureau Veritas (BV), Lloyds Register (LR), etc. A key consideration that
has come up, in the discussion about Al and its application for engineer-
ing systems is that of standardization. The most common standard usu-
ally mentioned in the PHM field is the Machinery Information Manage-
ment Open Systems Alliance (MIMOSA) which proposed the Open Sys-
tem Architecture for Condition-Based Maintenance (OSA-CBM). The
OSA-CBM defines the various stages involved in PHM for engineering
system in terms of functional layers, namely: data acquisition via sen-
sors, data manipulation or preprocessing, diagnostics (comprising
health stage detection, assessment, and division), prognostics and deci-
sion support and, finally, presentation (or machine-user interface).
These stages or functional layers were used in the IEEE standard for
PHM of electronic systems (IEEE, 2017), which referred to them as the
elements of the PHM functional reference model. Vogl et al. (2014)
comprehensively catalogued the list of International Organization for
Standardization (ISO) and International Electrotechnical Commission
(IEC) standards in relation to PHM of manufacturing systems. Other re-
cent studies covering the issue of standards include the detailed work
by Chang et al. (2018), Vogl et al. (2019) and Omri et al. (2020). Fur-
thermore, the ISO/IEC JTC 1/SC 42 is the international standards com-
mittee that deals with the standardization of Al It has published seven
standards, one of which addresses Al use cases (ISO/IEC TR 20547-2:
2018) while another addresses the assessment of the robustness of
neural networks (ISO/IEC TR 24029-1:2021). The ISO standard related
to PHM is ISO 13381-1:2015. It can be inferred from the recent studies
and above-mentioned standards that there is no standard addressing Al-
driven PHM technologies. The most common approach towards ad-
dressing the use of Al has been from the ethical perspective and the
need for explainability and interpretability. In 2015, the IEEE Stan-
dards Association proposed “The IEEE Global Initiative on Ethics of Au-
tonomous and Intelligent System” themed Ethically Allied Design
(EAD). The EAD document (IEEE, 2018) catalogues various proposals
for ethical considerations in the use of Al but does not address PHM sys-
tems. Overall, the general consensus is that such an important evolution
in the way engineering systems are designed, built, operated and main-
tained, surely requires standardization.
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4.3. Security

In an AI ecosystem where assets are interconnected in a cy-
ber-physical space, a wide range of legal and cyber-security issues are
likely to arise — incidents have actually been recorded in the power
and utilities, transportation, petroleum and manufacturing industries
(RISI, 2019). For designers of Al-based PHM systems, how to distin-
guish between real failures and failures due to cyber-attacks is a chal-
lenge to consider. A study by Tuptuk and Hailes (2018) discusses in de-
tail the security issues around existing and future industrial cy-
ber—physical systems. One of the vulnerabilities mentioned in the pa-
per, amongst several others, involves attacks on data acquisition and
storage systems which can adversely affect the accuracy of prognostics
and also the availability of the PHM module, leading to potential lack of
confidence in the entire PHM system. As such, the issue of safety, from
the perspective of cybersecurity, needs to be duly considered for full de-
ployment in fielded systems.

4.4. Regulations

There is clearly a need for governments and regulatory agencies to
develop new sets of regulations that not only provide the opportunity
for operators to obtain approval for the use of Al in PHM for safety-
critical equipment, but also provide the environment where such sys-
tems are protected by law from malicious intrusion and attacks. A study
by Ogie (2017) showed that the UK and the US appeared to have
recorded the most cyber-attacks on industrial control systems. How-
ever, the study suggests that this may be as a result of openness to re-
porting on the part of both countries. Such openness to reporting may
indeed be dictated by regulations. Therefore, regulations to be devel-
oped to guide the use of Al in PHM should as a minimum spell out re-
porting requirements whenever incidents are recorded. Moreover, regu-
lations must require demonstrable evidence that safety and reliability
of engineering systems using Al for prognostics are not compromised,
especially when compared to conventional practice. In this regard, the
issues of explainability and interpretability also re-surface as govern-
ment regulations will require clear demonstration of responsibility on
the part of asset owners regarding the safety of any system being de-
ployed.

4.5. Manpower

To successfully adopt Al-driven PHM systems, there will be a need
to re-skill engineers and operators. The McKinsey Global Institute re-
port by Bughin et al. (2017) posits that an Al-ready culture needs to be
established such that there is collaboration between operators and Al
systems. Apart from operators, mid-level managers will also need train-
ing to become Al-aware and trust the system to deliver the results upon
which safe and efficient maintenance decision-making will be made.

5. Future research

There is some degree of inertia being witnessed across different in-
dustries towards the implementation of AI in PHM. The clear gap be-
tween studies found in the literature and actual deployment in indus-
tries is the main evidence for this. This inertia may be primarily due to
the economic risks of disrupting established technological systems be-
ing added to the uncertainties that are bound to exist during a transition
phase. For instance, in the wind farms equipped with condition moni-
toring devices and Supervisory Control and Data Acquisition (SCADA)
systems, terabytes of data are gathered every day, which pose several
storage, processing and interpretation challenges. With respect to infra-
structure, a practical approach for upgrading existing plants to support
Al-enabled systems is to progressively improve on data acquisition ca-
pabilities by installing sensors and making robust plans for data storage
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and processing requirements. Also, prior considerations must be made
at the concept stage of new projects to accommodate Al-driven PHM
systems. Other challenges that will need further research are high-
lighted as follows:

i. Although attempts have been made at developing performance
metrics relevant to the use of Al in PHM, their use in the literature
is somewhat arbitrary, with researchers principally aiming at
whatever metric will give an indication of less error. However,
further research needs to be conducted to identify which
particular metric best suits any given algorithm, with the
intended PHM application in mind, so that performance measures
are fairly standardized and therefore give values that are
applicable to the real-life system being modelled.

ii. Deploying Al-driven PHM systems in new engineering assets
with no operational or failure data is an area that requires further
research. Even with prior consideration at the concept stage of
developing such assets, the unavailability of condition monitoring
data is an issue that has not yet been addressed in the literature.
The digital twin concept potentially holds the key to addressing
this challenge.

iii. Similar to the point raised in (ii) above, the context of managing
design changes or retrofitting a system using Al-driven PHM tools
needs to be addressed. Given that prior to any changes, the AI
algorithm must have been trained using data from an older
configuration, how to reconfigure and retrain the system for
optimal performance needs to be methodical. It will be interesting
to see how further research tackles the issue of seamless
convergence of old systems with new ones as regards PHM
modules running on AI algorithms.

iv. The soft issues around manpower needs and transitioning of
skills, development of standards to guide the professional
practice of using AI in PHM, as well as developing relevant
regulations to help government provide the right support and
controls are all areas that are at their nascent stages of research.

v. Another area of interest is the issue of explainability of the Al
algorithms as well as interpretability of the results obtained from
them. The black-box Al algorithms are often hard to explain
and/or the results they produce can be hardly understood by
humans. Therefore, white-box AI models are preferred over
black-box models in estimating the RUL of engineering systems.
In the same vein, the results require correct interpretation, with
the full understanding of whatever assumptions may have been
made in the training process. Mathematically rigorous
formulations of Al algorithms based on Bayesian techniques offer
very promising potentials for addressing these twin issues
because the inner workings are explained to some extent by the
mathematical background while the uncertainty quantification
they provide will help with interpretability and correct
application of results for PHM purposes.

vi. Deep reinforcement learning algorithms have achieved
remarkable feats in gaming applications, with the most notable
one being Google DeepMind’s AlphaGo. It will be interesting to
see how the concept of learning agents and reward systems are
applied in prognostics, towards perhaps achieving very accurate,
online RUL predictions for real-life applications. Such a scenario
will help engineers achieve very high overall equipment
effectiveness (OEE) for a lot of engineering systems, with potential
implications for revolutionizing asset life extension models, going
forward into the era of smart systems.

6. Conclusion

The field of artificial intelligence (AI) is no doubt poised to be at the
heart of the unfolding technological revolution, termed industry 4.0.
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The area of prognostics and health management (PHM) and its applica-
tion in engineering systems is not being left behind, as revealed by the
plethora of research publications in the literature, particularly in the
past ten years. In this paper, we reviewed over 200 publications, with
particular focus on 178 publications comprising 86 journal papers
(~48%) and 92 conference papers (~52%), highlighting different ap-
proaches for the use of AI in PHM of engineering systems. Some of the
metrics used to measure prognostics performance were also presented,
emphasizing their importance in establishing confidence levels on esti-
mated RUL values. The key considerations for the actual deployment of
Al-driven PHM in engineering systems were also discussed. Analyses of
the research publications in the literature reveals the need for increased
collaboration between industry and researchers, especially as regards
the availability of real-life data for research. Research must therefore
progress to ensure that predictive maintenance as a practice is fully pre-
pared to take on the inevitability of the smart factories and systems of
the future.
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