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Abstract 

Over the last fifteen years, next-generation sequencing has overcome time and cost 

constraints to be widely used to generate a plethora of biological data. Around 200 

million sequences are currently stored in one of the biggest protein databases, UniProt. 

However, less than 1% of UniProt sequences have functions supported by experimental 

evidence. This thesis focuses on increasing knowledge about protein functions and 

demonstrating why it is essential to do so.  

The first aim is fulfilled by a project that used computational approaches to assign 

functions to the proteins of unknown function within the minimal bacterial genome. 

Synthesising the minimal cell was completed in 2016, and it revealed that 149 genes out 

of 473 had unknown functions. Our study demonstrated that using several protein 

function prediction methods that each explores different protein properties is an 

effective way to annotate unknown genes of the minimal cell. As a result, 133 out of 149 

genes were assigned a function. This included 66 proteins, for which we identified more 

informative functions than predicted by Hutchison et al. in the initial study from 2016 

(Hutchison et al., 2016). 

This thesis's second goal is to show how important it is to expand our knowledge about 

protein functions and have access to good protein function prediction methods to apply 

them where there is not experimental functional information. This thesis focuses 

specifically on applying protein function prediction methods to study the impact of DNA 

mutations on the proteins, which would hopefully lead to a better understanding of 

acquired resistance to anti-cancer therapies, which remains one of the biggest obstacles 

in treating cancer patients. Acquired drug resistance is developed through alterations in 

different molecular mechanisms such as drug efflux or binding of a drug to the target, 

which can sometimes be caused by a mutation in a single protein.  

Here, whole-exome sequencing data of the acute myeloid leukaemia cell lines Molm13 

and four Molm13 sub-lines adapted to nutlin-3 was studied to identify potential drivers of 

resistance.  Additionally, 41 UKF-NB-3 (a neuroblastoma cell line) sub-lines adapted to 

tubulin-binding agents were analysed with a focus on the clonal composition of cancer 

cells and its impact on developing different resistance mechanisms. The analysis of de 
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novo variants in the Molm13 sub-lines adapted to nutlin-3 revealed that three out of four 

sub-lines acquired loss-of-function mutations in TP53 commonly associated with 

resistance to MDM2 inhibitors. Additionally, all four Molm13 sub-lines demonstrated an 

increased sensitivity to cytarabine that may be connected to likely deleterious de novo 

mutations identified in three out of four sub-lines in SAMHD1, which cleaves the 

triphosphorylated active form of cytarabine, causing its deactivation, while its natural 

function is to cleave deoxynucleoside triphosphates (dNTPs) into deoxyribonucleosides 

and inorganic triphosphate with the main goal of restricting viral infections by reducing 

dNTPs’ cellular levels. These results identify SAMHD1 mutations as a candidate biomarker 

for cytarabine sensitivity after the failure of MDM2 targeted therapies, which is 

consistent with studies demonstrating that low SAMHD1 activity, likely caused by lower 

SAMHD1 expression or deleterious mutations, generally tends to be associated with an 

increased cytarabine sensitivity in AML cells (Schneider et al., 2017). Subsequently, the 

analysis of de novo variants in the UKF-NB-3 sub-lines adapted to tubulin-binding-agents 

demonstrated that different sub-lines adapted to the same drug can share many of the 

same de novo variants, which shows that they may have come from a similar clone. 

However, this is not always the case. The results revealed that different subpopulations 

could be selected upon the repeated adaptation of the same cancer cell line to the same 

drug. This emphasises the heterogeneity of processes underlying acquired resistance to 

anti-cancer therapies and demonstrates the need to identify these processes' biomarkers. 
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 Introduction 

The Human Genome Project took 13 years to complete and cost between $500 million to 

$1 billion (The Cost of Sequencing a Human Genome, 2020; Wetterstrand KA., 2020). 

Since its completion in 2000, the time dropped to about a day and the cost to $1000 

(Figure 1.1), thus making sequencing available for high-throughput experiments (DNA 

Sequencing, 2018). The ease with which we can perform sequencing resulted in many 

sequences deposited in databases such as GenBank (Benson et al., 2013).  In April 2017, 

the number of sequences released by GenBank was over 200 million (200,877,884) and it 

has been growing steadily (see Figure 1.2). By August 2020 GenBank contained, 

218,642,238 sequences, which also influences the number of available protein sequences, 

as 95% of the sequences in UniProt (Bateman, 2019) come from translated coding 

sequences deposited in ENA (European Nucleotide Archive), GenBank, and the DDBJ (DNA 

Data Bank of Japan) (Karsch-Mizrachi, Takagi and Cochrane, 2018). We observe 

exponential growth of the number of sequences in the UniProtKB database, with 

195,104,019 sequence entries in the latest (7th October 2020) release of 

UniProtKB/TrEMBL (Bateman, 2019; Current Release Statistics < Uniprot < EMBL-EBI, 

2020; UniProtKB/Swiss-Prot 2020_05, 2020) and 563,552 in the latest release of 

UniProtKB/SwissProt.  
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Figure 1.1 Cost of the sequencing of a human genome from 2001 to 2020. Figure extracted from (The Cost of 

Sequencing a Human Genome, 2020). 

 

Figure 1.2 Number of sequence records deposited in GenBank (Benson et al., 2013) since the release in 

December 1982 until August 2020. The figure is based on data provided in (GenBank and WGS Statistics, 

2020). 

Unfortunately, experimentally verified knowledge about the roles of the genes and 

proteins they express, lags far behind. In fact, more than 99% of functions assigned to the 

proteins in the UniProtKB database come from electronic annotation methods and less 

than 1% come from curators extracting information from papers which may incorporate 

functions that are experimentally confirmed (Huntley et al., 2015; About GOA | European 

Bioinformatics Institute, 2020). 

Many human diseases are caused by mutations of genes which in turn alter the encoded 

protein sequence, which may impact its function. Expanding the coverage of known 

protein functions is crucial for understanding the cause of disease and opening new 

possibilities such as identifying diagnostic tests, new targets for drugs, and also 

development of new medications (Bork et al., 1998; Rost et al., 2003; Bernardes and 

Pedreira, 2013).  

The two research fields presented in this thesis have blossomed as a consequence of the 

abundance of DNA and protein sequences. The goal of protein function prediction is to fill 
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the gap between the number of available protein sequences and those that are 

experimentally annotated. In turn, cancer genomics sequences and analyses cancer 

genomes to identify variants driving tumorigenesis and resistance to cancer therapies.  

These two domains of computational biology are heavily connected. It is necessary to 

know the function of the gene to predict the impact of mutations it harbours and how 

this may relate to cancer. In exchange, the information about how different variants alter 

the ability of the encoded proteins to perform their roles becomes an essential part of 

their functional annotations. Additionally, it also helps to build better function prediction 

tools. 

1.1 Protein function prediction 

The function of a protein can be determined experimentally through studying different 

properties of the protein. Firstly, identifying protein’s subcellular location or tissue where 

the protein is being expressed can minimise the set of its potential functions (Punta and 

Ofran, 2008). Secondly, determining protein’s interacting partners can shed more light on 

the pathway within which these proteins act. Thirdly, knocking out the gene allows 

comparing cell’s behaviour with and without the gene present (Droit, Poirier and Hunter, 

2005). This is complemented with in vitro assays which can test a diverse range of 

function. However, whether it is a single experiment like co-immunoprecipitation or a 

high-throughput experiment such as microarray analysis, wet-lab experiments are costly 

and time-consuming. Automated protein function prediction provides tools to build 

hypotheses about the functions that can be verified in the lab. 

1.1.1 Definition of protein function 

Protein function is a complex concept described through various aspects of proteins (Bork 

et al., 1998; Rost et al., 2003; Punta and Ofran, 2008).  A function can be understood as a 

specific enzymatic activity, e.g. a kinase. It may also imply a pathway within which the 

protein and all the interacting partners perform their activity.  It may represent the 

subcellular location, and it depends on the tissue where it is being expressed. Protein 

function can also be described through a malfunction caused by an alteration in its 
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sequence and any diseases that this malfunction may induce. As summarised by Rost et 

al. in 2003: “Function is everything that happens to or through a protein”. The protein 

function definition alone is such a complex concept that it poses a challenge for 

prediction. 

While the structure of a protein can be described by a set of coordinates for the atoms 

present in the protein, the concept of protein is less distinct, and function may be 

described in many ways. To ensure consistency in annotations and to enable 

computational methods to be able to utilise functional information, it is important that 

protein function is described using standardised and machine-readable vocabularies 

(Friedberg, 2006; Bernardes and Pedreira, 2013). It is also necessary that such 

vocabularies represent the relationships between different functions, e.g. DNA synthesis 

is a DNA biosynthetic process that is also a part of DNA replication.  Additionally, such 

vocabularies need to describe functions with diverse information depth, e.g. protein 

binding and p53 binding (Ashburner et al., 2000; Bernardes and Pedreira, 2013). Finally, 

protein functions need to be comparable to measure how similar they are (Punta and 

Ofran, 2008).  

Many schemes have been developed for protein functional classification. Some of them 

were designed decades ago and remain popular today (Ouzounis et al., 2003). They 

include hierarchical classification of enzymes by the Nomenclature Committee of the 

International Union of Biochemistry (Enzyme Commission hierarchical classification) 

(IUBMB, 1992; Tipton and Mcdonald, 2018), a database of genes and pathways named 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa, Sato and Kawashima, 

2021), a database of molecular interactions contained within MINT and IntAct (Orchard et 

al., 2014) or Gene Ontology terms that describe function in three categories: Molecular 

Function, Biological Process and Cellular Component (Carbon et al., 2019).  

1.1.1.1 Gene Ontology 

The Gene Ontology (Ashburner et al., 2000) is widely used to annotate protein function. 

Sequencing genomes of more and more organisms revealed that the core of biological 

processes is shared between them making it important that a single vocabulary was used 

to annotate the protein function for all species (Ashburner et al., 2000). Functions such as 

DNA replication or transcription are conserved and performed by proteins in all 
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prokaryotic and eukaryotic cells. The Gene Ontology was created to standardise the 

vocabulary describing those functions and assign them from proteins from well-studied 

species to their orthologues in newly sequenced organisms. Over the past twenty years, 

the Gene Ontology has been widely used for automated protein annotation (Carbon et 

al., 2019).  

The Gene Ontology consists of three ontologies, each representing a different aspect of 

protein function by answering a different question (Ashburner et al., 2000). The Biological 

Process Ontology provides an answer to the question: “Why does the protein perform its 

function?”. For example, Trypsin is a protease that participates in protein digestion 

(Kayode et al., 2016), and AKT kinase is a serine/threonine kinase that phosphorylates 

many proteins in a plethora of pathways related to cell proliferation (Nicholson and 

Anderson, 2002). Meanwhile, the Molecular Function Ontology (MFO) is a response to: 

“What does a protein do?”. It describes protein biochemical activity, e.g. a protease, 

kinase, or DNA binding. The Biological Process Ontology captures the higher-level 

processes that the molecular function of the protein is part of. Finally, the Cellular 

Component Ontology (CCO) answers the question: “Where in a cell does the protein 

performs its function?”, for example, DNA polymerase acts in the nucleus (Nagasawa et 

al., 2000), while the glycoprotein Fibronectin performs its activity in the extracellular 

matrix (Lee et al., 2017).  

Each of the ontologies is organised in a directed acyclic graph where the nodes represent 

terms defining the functions, and the relationships between them are denoted by the 

edges (Ashburner et al., 2000). A Gene Ontology term (GO term) can have multiple 

parents and zero or more children terms. The Gene Ontology captures multiple 

relationships between different functions. ‘Is a’ and ‘part of’ are the most widely used. 

The ‘Is a’ relationship enables a definition of protein function from the general to specific. 

For example, the Gene Ontology term DNA polymerase activity forms the ‘is a’ 

relationship with the term catalytic activity, acting on DNA, which in turn forms the ‘is a’ 

relationship with the term catalytic activity. The ‘part of’ relationship captures 

relationships where a given function forms part of a larger process or complex. For 

example, DNA polymerase activity is a part of DNA biosynthetic process (Figure 1.3). Over 

time more relationship types have been added to the Gene Ontology, that now enable 
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other relationships to be captured, e.g. regulation (three relationships ‘regulates’, 

‘positively regulates’, ‘negatively regulates’).  

 

Figure 1.3 Gene Ontology sub-graph demonstrating partial ancestry of the MFO term “DNA polymerase 

activity” (Binns et al., 2009; QuickGO::Term GO:0034061, 2020) 

Each Gene Ontology annotation assigned to a gene/protein is associated with an evidence 

code demonstrating how the annotation was inferred (Carbon et al., 2019). Evidence 

codes used for Gene Ontology are organised into six general classes: experimental, 

phylogenetic or computational evidence, author statements, curational statements and 

automatically generated annotations (Guide to GO evidence codes, 2020). Experimental 

evidence codes are used when the annotation is supported by an experiment such as, for 

example, a direct assay (evidence code: IDA) or high-throughput expression profiling 

(HEP), while phylogenetic evidence means that GO terms were inferred through 

determining evolutionary relationships between the genes.  

In contrast, computational analysis evidence codes can be assigned when annotations are 

predicted through an in silico analysis of, for example, sequence similarity (ISS - Inferred 

from Sequence or structural Similarity) or genomic context data (IGC - Inferred from 

Genomic Context). However, annotations that were performed through homology-based 

transfer or other sequence information, but have not been manually reviewed are 

assigned the Inferred by Electronic Annotation (IEA) evidence code. Finally, if the GO term 

is assigned by either an author of the paper or by a curator, the evidence codes used in 
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these cases belong to author statements class and the curational statements class 

respectively. 

1.1.1.2 Enzyme Commission hierarchical classification 

The Enzyme Commission (EC) hierarchical classification groups reactions catalysed by 

enzymes (IUBMB, 1992; Cornish-Bowden, 2014). Each EC number consists of four digits. 

The first digit represents the class of reaction the enzyme catalyses. The second digit 

represents the type of compound involved, while the third and fourth digits further 

specify details of the substrate (Tipton and Mcdonald, 2018). For example, Sterile alpha 

motif and histidine/aspartic acid domain-containing protein 1 SAMHD1 (investigated in 

Chapter 3 as a biomarker of sensitivity to anti-cancer drug cytarabine) is described by the 

following EC number in The BRENDA database of enzymes (Schomburg, Chang and 

Schomburg, 2002): EC 3.1.5.B1 which signifies a hydrolase (3) acting on ester bonds (3.1) 

further characterised as a triphosphoric-monoester hydrolase (3.1.5) and a dNTPase 

(3.1.5.B1). The current recommendations (2018) include seven main categories of 

enzymes based on the first component of the EC number (class of reaction) (Tipton and 

Mcdonald, 2018). These are oxidoreductases, transferases, hydrolases, lyases, 

isomerases, ligases and translocases. 

The EC classification resembles part of the Molecular Function Ontology, which describes 

molecular activities performed by proteins, including catalytic activities (see above in 

1.1.1.1). In fact, “catalytic activity” is a direct child of “molecular function” term among 

GO terms such as “binding”, “transporter activity”, “protein folding chaperone”, and 

many others (QuickGO::Term GO:0003674, 2021). Moreover, according to two 

publications from 2017, 70% of the catalytic activities described by EC numbers are also 

covered by Molecular Function Ontology (Furnham, 2017; Holliday et al., 2017).  

However, the EC classification, which contains only four levels of functional specification, 

is simpler than Gene Ontology which is represented by a directed acyclic graph where one 

term can have multiple parents and GO does not omit any steps when specifying a 

function. For example, there is one additional level of specification in GO describing 

“dGTPase activity” of SAMHD1 starting from “hydrolase activity” (corresponding to EC 3). 

“dGTPase activity” is a “triphosphoric monoester hydrolase activity” (EC 3.1.5), which in 
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turn is a “phosphoric ester hydrolase activity” (not having a corresponding EC number), 

which is a “hydrolase activity, acting on ester bonds” (EC 3.1). 

1.1.2 The Critical Assessment of Function Annotation 

The Critical Assessment of Function Annotation (CAFA) was designed to evaluate state-of-

the-art protein function prediction methods. The first edition, CAFA1, took place in 2011 

(Radivojac et al., 2013). Since then, the assessment has been repeated every three years 

resulting, with CAFA4 taking place in 2019/2020. The evaluation consists of several steps 

(Figure 1.4). First, proteins that do not have experimental annotations are released to the 

participants as targets. Secondly, the teams have a specific amount of time (usually four 

months) to predict the function of the proteins as GO terms together with confidence 

scores associated with each predicted term. Finally, after almost a year, the organisers 

collect the proteins that gained experimental functions throughout the period and use 

these to assess the predictions made by the participating teams. 

In the first edition of CAFA, two ontologies were assessed: Molecular Function (MFO) and 

Biological Process (BPO). From CAFA2 (Jiang et al., 2016) onwards, the performance in 

predicting Gene Ontology terms from the Cellular Component category (CCO) was also 

evaluated. The second edition also assessed how well the methods predicted terms from 

Human Phenotype Ontology (HPO) related to disease. However, this evaluation was not 

performed in CAFA3 (Zhou et al., 2019) or CAFA4.  

CAFA evaluates the methods on how well they can answer two very different questions. 

The first question asks: “given an amino acid sequence of a protein, what is the function 

of this protein?” and is protein-centric, while the second question asks: “given a function 

(in the form of Gene Ontology or Human Phenotype Ontology term), what are the 

proteins that perform this function?”. This second question is term-centric. The first 

problem requires predicting a subgraph of an acyclic directed graph that forms each 

ontology. The second task consists of deciding if a given term is associated with the 

protein, making it a binary classification problem.  

To assess how well the methods answer these two questions, two types of metrics are 

calculated for each method. Protein-centric evaluation is conducted using precision (pr) 

and recall (rc) calculated for a given target protein and a confidence score threshold. To 



Introduction 

33 
 

obtain only one measure for a method and thus to be able to compare the methods, 

precision and recall needed to be, first, averaged over all the assessed proteins to have 

one measure of each, precision and recall, per threshold. The next step is to calculate the 

harmonic mean of precision and recall with a goal of one metric per threshold. Finally, the 

maximum of all harmonic means of precision and recall over all the thresholds is taken to 

obtain a single score, F-max, for each method:  

𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = max
τ

�
2 ⋅  𝑝𝑝𝑝𝑝(τ) ⋅ rc(τ)

𝑝𝑝𝑝𝑝(τ) + rc(τ)
�, 
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𝑖𝑖=1 , 𝑃𝑃𝑖𝑖(τ) - the set of terms predicted for the protein 

sequence i with a score greater than or equal to τ, 

𝑇𝑇𝑖𝑖 - the set of experimentally validated terms for the protein sequence, 

𝑓𝑓 - function (Gene Ontology term), 

𝑚𝑚(𝜏𝜏) - the number of sequences for which terms were predicted with at least one score 

greater than or equal to τ, 

𝟙𝟙 (⋅) - an indicator function, 

𝑛𝑛 - the number of target sequences used for the evaluation. 

The second edition of CAFA introduced a further metric for assessing the performance of 

the methods. The new metric, S-min, is complementary to F-max, which focuses on terms 

predicted correctly. S-min is a minimum semantic distance between misinformation (mi) 

and remaining uncertainty (ru) measures over different confidence scores thresholds:  
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𝑆𝑆𝑚𝑚𝑖𝑖𝑛𝑛 = min
τ

��𝑝𝑝𝑟𝑟(τ)2 + 𝑚𝑚𝑖𝑖(τ)2�, 

where: 

𝑃𝑃𝑖𝑖(τ) - the set of terms predicted for the protein sequence i with a score greater than or 

equal to τ, 

𝑇𝑇𝑖𝑖 - the set of experimentally validated terms for the protein sequence, 

𝑓𝑓 - function (Gene Ontology term), 

𝟙𝟙 (⋅) - an indicator function, 

𝑛𝑛 - the number of target sequences used for the evaluation, 

𝑖𝑖𝑟𝑟(𝑓𝑓) - the information content of the Gene Ontology term. 

Remaining uncertainty represents terms that were not predicted but should have been, 

and misinformation focuses on false-positive terms. Additionally, these two metrics 

included a measure of information content, which means that the deeper the terms that 

were incorrectly predicted or omitted, the higher misinformation and uncertainty, and 

consequently, S-min. Ultimately, an exemplary method should have a high F-max score 

and a low S-min score.  

Term-centric assessment begins by calculating sensitivity and specificity for each given 

term and threshold.  A Receiver Operating Characteristic (ROC) curve is created for each 

term by plotting all (1 – specificity, sensitivity) points for all the confidence scores 

thresholds.  To obtain one measure per term, the area under the ROC curve (AUC) is 

computed. Averaging AUC values over all the terms for each method enables comparison 

of different methods. Additionally, averaging AUC values over all the methods for each 

term allows assessing how well the terms could be predicted by all the assessment 

participants. 

During the first edition of CAFA (Radivojac et al., 2013), 30 teams submitted predictions 

made using 59 methods. The number of algorithms increased to 129 in CAFA2 (Jiang et 

al., 2016) and 144 in CAFA3 (Zhou et al., 2019). Over time, participation in CAFA has 

grown – the preliminary results of CAFA4 presented at the Intelligent Systems in 

Molecular Biology conference in July 2020 reported 148 participating methods. However, 

not only the number of submitted methods increased from edition to edition but also 
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their performance. The top methods in CAFA2 (Jiang et al., 2016) outperformed the top 

methods in CAFA1 (Radivojac et al., 2013), and the top methods in CAFA3 (Zhou et al., 

2019) outperformed the ones in CAFA2 (Jiang et al., 2016). However, the improvement 

was not as significant as from the first to the second edition.  This increase in the number 

of methods and the performance does not infer the increase in their diversity. The 

methods submitted during the first edition were far more diverse than in the second and 

third editions. This might be a consequence of teams designing their methods based on 

the top-performing methods in CAFA1 (Radivojac et al., 2013). Higher performance of 

methods from edition to edition may be caused by better training data due to updated 

protein databases and improvement of the methods themselves. 

 

Figure 1.4 Timeline of the second edition of CAFA. Figure extracted from (Jiang et al., 2016). 

The Critical Assessment of Functional Annotation provides scientists with a review of the 

current state of the art of protein function methods and partially drives the development 

and improvement of tools. It does, however, possess some limitations.  

Certain limitations were described in the paper published after the first edition of CAFA 

(Radivojac et al., 2013). As mentioned above, in CAFA1, protein function methods in the 

protein-centric evaluation were assessed only using one metric - Fmax. This measure is 

based on precision and recall and indicates how well a method performs. However, it 

does not take into consideration the specificity of the predicted terms. For example, 

predicting the Gene Ontology term ‘regulation of cellular process’ is rewarded the same 

as ‘negative regulation of cell growth’ even though the latter is more specific. The 

organisers addressed this issue by creating a new measure Smin that considers the 

information content of the predicted function. However, it only assesses the methods in 

terms of missing information and remaining uncertainty. It would be beneficial to 

incorporate weights based on how deep the predicted function is placed in the directed-

acyclic graph representing each ontology into precision and recall. The other limitation 
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shared by organisers after the first CAFA edition was penalising methods that annotated 

fewer proteins but with more accurate functions over methods that predicted less 

accurate functions but for all the proteins. This issue was addressed in the second edition 

by introducing a partial evaluation mode where the method could be assessed only on a 

subset of target proteins (Jiang et al., 2016). 

Another limitation of CAFA concerns bias towards identifying experimental functions in a 

small number of widely studied model organisms. Makrodimitris et al. state that ten to 

fifteen organisms usually accumulate experimental annotations during the CAFA 

challenge. Examples include H. sapiens, M. musculus, A. thaliana, E. coli or R. norvegicus 

(Makrodimitris, Van Ham and Reinders, 2020). This implies that methods are usually 

evaluated only on predictions for those model organisms and there is a need for 

initiatives that will encourage experimentalists to study more niche organisms for which 

we have very limited knowledge. In addition, groups that participate in the CAFA 

challenges are required to predict functions for many more proteins than the number 

that will be evaluated (due to constraints of experimental validation). For example, the 

number of released targets during CAFA1 and CAFA2 was 48 298 and 100 816. However, 

the number of proteins that gained experimental annotations and were used to evaluate 

protein function prediction methods at the end of the challenge were 866 and 3 681 for 

CAFA1 and CAFA2, respectively, representing 2-4% of the protein targets that groups 

were required to annotate. The CAFA challenge in the current form requires a lot of effort 

and resources as functional annotation of around 100 000 of proteins need considerable 

computational resources. It would be helpful if the target proteins could be limited to 

those more likely to gain experimental functions at the end of the challenge. 

In addition, the fact that experiments have not validated a certain function does not 

necessarily mean that the protein does not possess this function. Instead, it may simply 

indicate that it was not a target of any experiments collecting benchmark functions. This 

way, a method that predicted a GO term that may be a true function of the protein but 

has not been experimentally validated yet will be penalised (Vesztrocy and Dessimoz, 

2021). The same happens if the predicted functional term is more specific than the 

validated term (Radivojac et al., 2013). As a solution, Vesztrocy & Dessimoz propose that 

methods should be evaluated on negative annotations, i.e. the knowledge is a protein 

does not perform or is not involved in certain roles (Vesztrocy and Dessimoz, 2021).  
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Finally, many of the submitted methods are not publicly available or are very difficult to 

set up. This contradicts the purpose of CAFA as the point of evaluating methods and 

presenting the state of the art of automated protein function prediction loses its value if 

the tools are not accessible. Thus, sharing easy to deploy code should be encouraged by 

the organisers. 

1.1.3 Principles behind inferring protein function 

Since the Basic Local Alignment Search Tool (BLAST) was first published in 1990, 

computational biologists have been designing new and improving already well-

established methods for protein function prediction.  Various approaches have been 

explored since then. They apply multiple hypotheses about proteins and their 

mechanisms of action, and they utilise the advancement of machine learning. 

Protein function can be predicted either “de novo” or through the homology-based 

inference that transfers function to the query protein from experimentally annotated 

homologues. Methods can also be based solely on the sequence or structure of the 

protein, or they can go beyond that and explore genomic context data, protein-protein 

interactions or co-expression data. They can also use various machine learning 

algorithms, which often combine multiple different types of data to infer protein function 

(Aerts et al., 2006; Sokolov and Ben-Hur, 2010; Kourmpetis et al., 2011; Wass, Barton and 

Sternberg, 2012; Cozzetto et al., 2016). 

After every edition of the Critical Assessment of Functional Annotation (CAFA), which 

aims to evaluate how well the protein function prediction methods can infer Gene 

Ontology terms for a set of target proteins (see 1.1.1 for details), the organisers of the 

assessment publish a paper summarising the results. Publications from CAFA1 (Radivojac 

et al., 2013) and CAFA2 (Jiang et al., 2016) include the list of all the submitted methods 

and keywords, such as gene expression, protein structure, machine learning or literature, 

that describe best their algorithm and protein properties that are used to predict the 

function (summarised in Table 1.1). The paper from CAFA3 (Zhou et al., 2019) does not 

contain the list of methods with associated keywords. It does, however, provide the 

insights into the frequency with which they were used (see Figure 1.5, Figure 1.6, Figure 

1.7). These approaches are explored in the next section of the introduction. 
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Code Keyword 

Number 
of 
method
s from 
CAFA1 

Percentag
e of 
methods 
from 
CAFA1 (%) 

Number 
of 
method
s from 
CAFA2 

Percentag
e of 
methods 
from 
CAFA2 (%) 

cd clinical data 0 0 0 0 
cm comparative model 3 6 5 4 

dp 
de novo prediction (CAFA2), 
derived/predicted (CAFA1) 8 15 8 6 

gc genomic context 4 7 7 6 
gd genetic data 0 0 2 2 
ge gene expression 9 17 20 16 
gi genetic interactions 1 2 7 6 
gne genome environment 0 0 0 0 
hmm hidden Markov model 0 0 24 19 
ho homolog 0 0 31 25 
lt literature 11 20 11 9 
ml machine learning 24 44 51 40 
ms mass spectrometry 0 0 0 0 
nlp natural language processing 0 0 4 3 
ofi other functional information 5 9 16 13 
op operon 0 0 0 0 
or ortholog 12 22 25 20 
pa paralog 2 4 19 15 
ph phylogeny 2 4 16 13 
php physicochemical properties 0 0 8 6 
pi protein interactions 9 17 33 26 
pp predicted properties 0 0 20 16 
ppa profile-profile alignment 13 24 25 20 
pps predicted protein structure 7 13 13 10 
ps protein structure 6 11 4 3 
sa sequence alignment 25 46 71 56 
sp sequence properties 10 19 27 21 
spa sequence-profile alignment 17 31 40 32 
sta structure alignment 0 0 2 2 
sy synteny 0 0 0 0 

Table 1.1 Number and percentage of methods associated with specific keywords. Data extracted from 

supplementary files of (Radivojac et al., 2013) and (Jiang et al., 2016). 
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Figure 1.5 Frequencies of the keywords across Molecular Function predictors participating in CAFA3. Figure 

extracted from  (Zhou et al., 2019). 
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Figure 1.6 Frequencies of the keywords across Biological Process predictors participating in CAFA3. Figure 

extracted from  (Zhou et al., 2019). 

 

Figure 1.7 Frequencies of the keywords across Cellular Component predictors participating in CAFA3. Figure 

extracted from  (Zhou et al., 2019). 

1.1.3.1 Homology-based function transfer 

In the first two editions of CAFA, sequence alignment was the most popular technique 

used to predict protein function (46% of the methods in CAFA1 (Radivojac et al., 2013) 

and 56% of the methods in CAFA2 (Jiang et al., 2016) were associated with the keyword 

“sequence alignment”) (see Table 1.1). Machine learning was the second most popular 

technique, with 44% methods using it in CAFA1 and 40% in CAFA2. However, in CAFA3 

(Zhou et al., 2019) it was “machine learning” that was most frequently used (50-60% of 

the methods in all three categories, MFO, BPO, CCO) with “sequence alignment” right 

behind it (40-50%) (Figure 1.5, Figure 1.6, Figure 1.7).  

Methods that explore sequence and profile alignments include, for example, methods 

that transfer functions to uncharacterised from characterised proteins with known 

annotations if the two sequences are highly similar (Shehu, Barbará and Molloy, 2016). 
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The simplest form of annotation transfer is to simply assign the function of the top BLAST 

hit to the query sequence. The idea behind it is that two proteins with similar sequences 

are likely to evolve from a common ancestor and share the same function. It is part of the 

commonly applied sequence-structure-function paradigm: the amino acid sequence 

determines protein structure, and the structure determines the function (Serçinoǧlu and 

Ozbek, 2020).  

While this concept may be effective when two proteins have very high sequence identity 

(e.g. >80% identical), it should be applied with caution when a protein to be annotated is 

divergent from the proteins with known functions (Pearson, 2013), particularly as 

changes to a small number of functional residues (e.g. residues in an enzyme active site) 

can be sufficient to alter protein function. Proteins sharing 60% or less sequence identity 

are considered to be “difficult” in the world of automated function prediction using 

sequence homology (Bernardes and Pedreira, 2013; You et al., 2018). However, it has 

been shown that in the case of protein structure, 20% sequence similarity is enough for 

the structural characteristics such as the secondary structure or side-chain conformations 

to be preserved (Flores et al., 1993), the implication being that proteins with low 

sequence identity can share similar structure and function (more on the structure-

function relationship in ‘Principles behind inferring protein function’/’Protein structure’).  

In addition, various studies conducted within a decade after BLAST was first published in 

1990 reported that the correctness of homology-based transfer depends not only on the 

percentage of sequence identity itself but also on other factors (Friedberg, 2006; Punta 

and Ofran, 2008). These are exemplified by the aspect of function to be predicted, such as 

a binding substrate or a type of Gene Ontology, or by the ability to perform a catalytic 

activity.  

It has been demonstrated that proteins with highly similar sequences may not share the 

same structure or play the same role in a cell (Punta and Ofran, 2008; Clark and 

Radivojac, 2011). Firstly, despite the same amino acid sequence, the usage of codons may 

slow down or speed up folding and impact the final structure (Zhou et al., 2013). 

Secondly, two proteins with identical sequences may have a different structure due to 

being exposed to different solvents or ligands (Gan et al., 2002). In addition, sometimes 

the function is determined by a small number of functional residues with specific 
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physicochemical properties, like in the case of ATP or DNA binding residues or an enzyme 

active site (Punta and Ofran, 2008). Therefore, the overall sequence or structural 

similarity may not matter if those residues are not conserved. Finally, a protein may be 

simply ‘recruited’ by several mechanisms, such as point mutations, to perform a new 

function in the cell that will be more advantageous for the organism (Schulenburg and 

Miller, 2014).  

Homology-based function transfer can result in functions being assigned incorrectly. If 

consequently used to annotate newly sequenced genes, it will propagate erroneous 

annotations throughout the database (Friedberg, 2006). In fact, in 2018, Mahlich et al. 

published a study in which they analysed the correctness of annotations in the SwissProt 

database (Mahlich et al., 2018; Bateman, 2019) in which they revealed protein 

annotations might have been assigned incorrectly in a sixth of the proteins considered. 

Despite all the drawbacks, homology-based inference using BLAST is still a widely used 

and competitive method. Methods have developed annotation transfer by considering 

the annotations of multiple hits from a BLAST search. For example, the method Protein 

Function Prediction (PFP), combines the annotations of proteins from a PSI-BLAST 

(Position-Specific Iterative) search with the structure of the Gene Ontology (Hawkins et 

al., 2009). Additionally, the results from the 3rd CAFA edition revealed that the F-max 

metric, used to evaluate methods in CAFA (see1.1.2), for BLAST calculated for Molecular 

Function of proteins without any previous annotations was equal to 0.42 while F-max for 

the top 10 methods ranged from 0.51-0.62 (Zhou et al., 2019). For Biological Process and 

Cellular Component, the difference between F-max of the top method and BLAST is even 

smaller. While F-max for Biological Process is 0.40 and 0.26 for the best method and 

BLAST respectively, it is equal to 0.61 and 0.46 in Cellular Component.  

1.1.3.2 Sequence motifs 

It is also possible to use a smaller part of the protein, called a pattern, signature or motif, 

which may be more likely to determine a function and thus be conserved during evolution 

(Bernardes and Pedreira, 2013; Shehu, Barbará and Molloy, 2016). These signatures can 

be a part of a domain, and they can form a functional region such as a catalytic or binding 

site (Bernardes and Pedreira, 2013). They can be recognised using techniques such as 

hidden Markov models (HMMs) or regular expressions (Friedberg, 2006).  
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Many methods have been developed to identify protein domains (or families), which can 

be thought of as evolutionary units within a protein (Kelley and Sternberg, 2015). InterPro 

provides access to the most widely used databases of domain and protein families and 

sequence motifs within one server. In 2019, it combined results from fourteen resources 

which allows for better coverage and more extensive exploration of signatures identified 

in the query sequence (Mitchell et al., 2019). While protein domains are not determined 

by protein function, they can be used to infer function.  The InterPro database is one of 

the methods used to identify unknown functions in the minimal bacterial genome 

described in Chapter 2. Sequence patterns, and protein and domain families were 

extracted using eleven resources out of the fourteen currently forming InterPro.  

1.1.3.3 Machine learning 

There are two major groups of machine learning methods – supervised and unsupervised. 

In supervised learning methods, also called classification algorithms, a model is built using 

a set of inputs (features) and known outcomes (labels) (Bernardes and Pedreira, 2013). In 

protein function prediction, while the functional annotations represent the labels, e.g. GO 

terms, the features may be created from various protein (and gene) properties. The 

model explains and learns correlations between the inputs derived from properties of the 

proteins and their known functional annotations. The resulting model can then be applied 

to query proteins to infer their function.  

The protein properties or features used in machine learning approaches can be diverse. 

They can use homology-based transfer, and for example, features may then include 

properties such as sequence identity or e-values for matches to proteins of known 

function (Friedberg, 2006). Alternatively, if the function is predicted “de novo”, the inputs 

may consist of physicochemical properties of amino acids, such as the number of 

hydrophobic amino acids (Rentzsch and Orengo, 2009). They also may involve predictions 

of secondary structure, including the number of transmembrane helices, or prediction of 

glycosylation sites or post-translation modifications (Punta and Ofran, 2008). The 

possibility of using information about the protein that does not require identifying its 

homologues in other species makes algorithms of supervised machine learning very 

popular for the task of “de novo” function prediction (Rentzsch and Orengo, 2009).  
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Examples of specific algorithms of supervised machine learning include Support Vector 

Machines (SVMs), neural networks or logistic regression (Bernardes and Pedreira, 2013). 

FFPred is a “de novo” protein function prediction method that uses SVMs to build models 

based on inputs designed from biophysical properties of the proteins and GO terms as 

outputs (see 1.1.4.4 for details). It demonstrated to be indispensable for the inference of 

functional annotations of the proteins in the minimal bacterial genome that do not have 

many homologues in other species (see Chapter 2). Additionally, the Jones group 

methods submitted to CAFA incorporate FFPred and have frequently been among the top 

performing methods. 

Unsupervised machine learning differs from supervised learning as it lacks provided 

outputs, functional annotations in the case of protein function prediction, that could help 

identify the correlations and build a model (Bernardes and Pedreira, 2013). Instead, it 

tries to identify patterns within the input data and clusters it. Unsupervised machine 

learning is helpful when the labels (classes) are yet to be discovered. Hierarchical 

clustering is a widely used clustering algorithm which was used in the work presented in 

Chapter 4 to identify clusters among sub-lines of the UKF-NB-3 cell line that are adapted 

to tubulin-binding agents (TBAs). 

1.1.3.4 Orthologues 

Around 20% of the submitted methods in CAFA1 (22%) and CAFA2 (20%) used 

orthologues to predict protein function according to the keywords assigned to methods 

from both CAFA papers (see Table 1.1). Fewer methods were associated with keywords 

such as “paralogue” or “phylogeny” in general in the first two editions of CAFA. In CAFA3, 

10-20% of the methods predicting all three categories: MFO, BPO and CCO, were 

associated with the “orthologue” keyword, and less than 10% with each “paralogue” and 

“phylogeny” (Figure 1.5, Figure 1.6, Figure 1.7). Protein function tends to be more 

conserved within orthologues rather than paralogues (Punta and Ofran, 2008). However, 

this has recently been a matter of debate with some research (Nehrt et al., 2011; 

Stamboulian et al., 2020) proposing that the opposite was the case and further studies 

supporting the orthologue conjecture and/or suggesting that the Gene Ontology was not 

suitable to test this (Thomas et al., 2012). Given this general concept, some methods use 

this to improve homology-based transfer. This can be done by building a phylogenetic 
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tree from the homologues of the query protein and assessing the specific type of the 

relationships they share (Friedberg, 2006; Rentzsch and Orengo, 2009). As a result, the 

function is inferred from the closest orthologue and not homologue.  

1.1.3.5 Protein structure 

Only 13% of methods in CAFA1 (Radivojac et al., 2013) were associated with the keyword 

“predicted protein structure” and 11% with the keyword “protein structure”. In CAFA2 

(Jiang et al., 2016) these numbers were 10% for “predicted protein structure” and 3% for 

“protein structure” respectively. That means that five times fewer methods used 

information derived from the structure than from the sequence even though the former 

provides more insights into the function of the protein (Friedberg, 2006). This is because 

knowing the structure permits identifying the biochemical mechanism in which the 

function is performed. 

Molecular functions are associated with specific structural folds, and hence the homology 

on the structure level is more preserved than the homology on the sequence level (Hou et 

al., 2005). This results in the possibility of identifying distant homologous relationships 

using structures, even though no sequence homologues were found (Punta and Ofran, 

2008).  

However, just as in the case of sequence motifs that can be used to infer function if the 

global sequence similarity to other proteins is not detected, structural motifs can also be 

applied. They consist of smaller spatial regions that can be associated with a specific 

function (Friedberg, 2006). The rationale is that functional residues, responsible for 

binding DNA, RNA or ligands, or performing catalytic activities, tend to cluster together in 

the 3D structure (Punta and Ofran, 2008).  

1.1.3.6 Genomic context 

The function of the protein can also be inferred using gene neighbourhood analysis, gene 

fusion analysis and phylogenetic profiling.  These three approaches fall under the 

umbrella of genomic context methods. Gene neighbourhood methods explore the 

hypothesis that genes sharing a function may be located close to each other on the 

chromosome, and this location would be conserved in multiple species (Bernardes and 

Pedreira, 2013). Gene fusion methods consider that two genes in one species are likely to 
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share function if they are fused as a single gene in another species. Finally, a phylogenetic 

profile of a gene is a vector that indicates if a gene has a homologue or not in a given 

genome (Friedberg, 2006). Genes that share phylogenetic profiles are expected to evolve 

together and carry similar roles in the cell. All three of these methods are more likely to 

be useful for inferring function relating to biological processes. Analysing keywords 

associated with methods participating in the three CAFA editions, revealed that less than 

10% of the methods from each CAFA applied genomic context in their solution to the 

function prediction task (see Table 1.1, Figure 1.5, Figure 1.6, Figure 1.7). 

1.1.3.7 Protein interactions  

The rationale behind using protein-protein interactions data to predict protein function is 

that proteins do not perform their roles in solitude but instead in collaboration with other 

molecules (Bernardes and Pedreira, 2013). Hence the principle of “guilt by association” 

can be applied to annotate the proteins that interact with each other (Loewenstein et al., 

2009). The interaction data can be represented as a network where nodes are formed by 

proteins and the edges – the relationships between them (Rentzsch and Orengo, 2009). 

The hypothesis that is explored for the network-based function inference is that the 

closer the two proteins are in the network, the more similar role they share. 17% of the 

methods evaluated in CAFA1 (Radivojac et al., 2013) used protein interactions, increasing 

to 26%  in CAFA2 (Jiang et al., 2016), but down to 10-20% in CAFA3 (see Table 1.1, Figure 

1.5, Figure 1.6, Figure 1.7). 

1.1.3.8 Gene expression  

Similarly to protein interactions data, in the case of gene expression data, the “guilt by 

association” principle could also be applied when annotating a gene with unknown 

function that is co-expressed with a gene of known function (Friedberg, 2006).  

1.1.3.9 Aggregate methods 

As protein function is a complex concept that covers many different aspects, it has 

motivated scientists to develop methods for predicting function that incorporate multiple 

sources of data. In fact, most of the top-performing methods in all the editions of CAFA 

were based on machine learning algorithms and the combination of various features, e.g. 

protein structure, protein-protein interactions, expression data, or evolutionary 
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relationships. The method from CAFA3 (Zhou et al., 2019) that outperformed significantly 

all the other methods and all top methods from CAFA2 (Jiang et al., 2016) and CAFA1 

(Radivojac et al., 2013), GOLabeler (You et al., 2018),  used information from the 

frequency of GO terms, sequence alignment, protein domains, motifs and biophysical 

properties, and amino acid trigrams.  

1.1.3.10 Ligands 

Proteins do not perform their function alone (Zhao, Cao and Zhang, 2020). Instead, they 

often interact with small molecules called ligands. Some of these interactions are very 

specific and vital for the function to be performed correctly (Gallo Cassarino, Bordoli and 

Schwede, 2014). They may serve either as a substrate (e.g. kinase and ADP), signalling 

molecules (e.g. estrogen receptors activated by estradiol) or cofactors (e.g. 

dehydrogenase and NAD). Therefore, identifying ligands that interact with a protein is a 

vital step in establishing the role of the protein in the cell.  

A plethora of methods predicting ligands and ligand-binding sites have been developed 

over the years. For example, in Chapter 2, we applied Firestar (Lopez et al., 2011) and 

3DLigandSite (Wass, Kelley and Sternberg, 2010) to identify the ligands bound by the 

proteins of the minimal genome. Some other examples can be found in the following 

publications: (Roche, Brackenridge and McGuffin, 2015; Xie and Hwang, 2015; Cui et al., 

2019; Zhao, Cao and Zhang, 2020). In addition to the predicted protein-ligand 

interactions, some tools offer functional annotations such as Gene Ontology terms.  For 

example, to identify ligands and ligand-binding sites, FunFold3 superimposes templates 

with biologically relevant ligands established by the BioLip database (Yang, Roy and 

Zhang, 2013) onto the structural model of the target protein (Roche and McGuffin, 2016). 

BioLip is a database created from the information on protein-ligand interactions 

contained in the PDB (Berman et al., 2000). It also stores functional annotations such as 

GO terms associated with PDB structures which are then transferred to FunFold3 results. 

Another ligand-binding site predicting tool incorporating such functional information is 

Firestar (Lopez et al., 2011). However, in contrast to FunFold3, Firestar uses FireDB 

(Maietta et al., 2014) instead of BioLip.  

Associating GO terms with protein-ligand interactions is possible due to GO terms 

assigned to PDB structures within projects such as SIFTS (Dana et al., 2019) and UniProt-
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GOA (Huntley et al., 2015). Other ligand predicting methods, such as 3DLigandSite (Wass, 

Kelley and Sternberg, 2010), could also benefit from extracting GO terms associated with 

known PDB structures used to identify ligands and provide such functional information in 

addition to the clusters of residues and the ligands they bind. 

1.1.4 Description of selected Gene Ontology terms predictors 

The following four tools were used to predict Gene Ontology terms aiming to identify 

unknown functions in the minimal bacterial genome described in Chapter 2. They were 

selected based on their good performance in CAFA2 (Jiang et al., 2016) and the ability to 

access their code/web-servers. 

1.1.4.1 CombFunc 

CombFunc integrates information from multiple sources to predict Molecular Function 

and Biological Process GO terms for proteins (Wass, Barton and Sternberg, 2012). It 

incorporates homology-based annotation transfer, domain and structural information, 

conserved residues, protein-protein interactions, and gene expression data. Features 

from these different data sources are used in a Support Vector Machine (SVM) model. For 

example, for homology-based transfer, e-value with which the top homologue annotated 

with the function is identified, the sequence identity between that homologue and the 

query protein, and a percentage expressing the coverage of the query by the top 

homologue are input into the model. On the other hand, features representing gene 

expression data include a fraction of proteins that are co-expressed and annotated with 

the function or the correlation coefficients for the co-expressed proteins. Features 

related to information about domains include the lowest e-value of a domain annotated 

with the function. CombFunc uses BLAST and PSI-BLAST (Altschul et al., 1997) to collect 

data from the top homologues, ConFunc (Wass and Sternberg, 2008) for analysis of 

conserved residues, InterPro (Mitchell et al., 2019) and Pfam (El-Gebali et al., 2019) for 

the domain, and Phyre2 (Kelley et al., 2015) for protein structural information. It extracts 

protein-protein interactions data from IntAct (Orchard et al., 2014) and MINT (Licata et 

al., 2012), and gene expression data from COXPRESdb database (Obayashi et al., 2019).  
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1.1.4.2 Argot2 

Argot2 predicts GO terms using refined homology-based inference (Falda et al., 2012). 

The refinement step is done to select the most accurate GO terms for the protein 

sequence, and clusters GO terms based on their semantic similarities and a weighting 

scheme. Firstly, homologues of the query proteins are obtained through scanning 

databases with annotated sequences which results in a list of hits with scores 

representing how evolutionary close they are to the query. Specifically, Argot2 is based 

on hits from running BLAST (Altschul et al., 1997) against UniProtKB (Bateman, 2019) and 

HMMER (Finn, Clements and Eddy, 2011) against Pfam (El-Gebali et al., 2019). GO terms 

annotated to homologues of the target protein are taken to downstream analysis 

together with the corresponding confidence scores. The first step is to reconstruct various 

paths to the root node that these GO terms create and discard those not belonging to the 

reconstructed paths. The nodes are then weighted using e-values from BLAST and 

HMMER, and the most probable paths are selected. The remaining GO terms in these 

paths are clustered according to their semantic similarity, which reduces the number of 

similar GO terms by choosing those with the best scores, weights and the highest 

information content.  

1.1.4.3 LocTree 

LocTree3 predicts protein subcellular localisation (Goldberg et al., 2014). When possible, 

it uses homology-based transfer, and alternatively, it applies a machine learning model. 

Inference from close homologues is performed using PSI-BLAST (Altschul et al., 1997). 

First, a profile is created for a sequence by executing two iterations of PSI-BLAST against 

the combination of UniProt (Bateman, 2019) and the Protein Databank (PDB) (Berman et 

al., 2000) databases. This step is followed by the profile being scanned against proteins 

from SwissProt (Bateman, 2019) that have a single experimental annotation of subcellular 

localisation (to provide non-ambiguity). If the hits are identified with an e-value less than 

0.001, they are used to infer the subcellular localisation. However, where this is not the 

case, the protein sequence is processed through a decision tree where the decision in 

each step is made based on the result from a separate SVM model. This mimics the 

mechanism of protein targeting. 
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1.1.4.4 FFPred 

FFPred was designed as an alternative for homology-based inference of protein function 

(Lobley et al., 2008), and it has been successfully applied to annotate proteins with 

distant or no homologues in other species. FFPred3 can predict 868 GO terms from all 

three Gene Ontologies and includes an SVM model per GO term (Cozzetto et al., 2016). 

Features used for the SVMs are based on various biophysical properties of protein such as 

secondary structure, transmembrane helices, intrinsically disordered regions, signal 

peptides, subcellular localisation, amino acid composition, low complexity regions, coiled 

coils or post-translational modification patterns. FFPred3 has been trained on annotated 

human proteins from UniProt-GOA (Huntley et al., 2015) and UniProtKB (Bateman, 2019). 

However, its performance was also measured on various eukaryotic species.  

1.2 Cancer genomics 

1.2.1 Types of mutations 

Mutations are defined as alterations in the genetic sequence. They may be caused by 

various environmental factors (e.g. UV light), chemicals such as free radicals (e.g. 

benzo[a]pyrene contained in the cigarette smoke) or errors made during DNA replication 

(Clancy, 2008).  

Mutations can be germline or somatic. Germline mutations occur in gametes and can be 

passed onto the next generation. Meanwhile, somatic mutations will ever only affect the 

organism in which they occur (Griffiths et al., 2000).  

There are multiple types of mutation. The most common is a substitution of a single base 

(single nucleotide variants; SNVs). There are also insertions and deletions where less than 

1000 bases may be inserted or deleted (INDELs). Larger insertions and deletions are 

referred to as structural variants (Feuk, Carson and Scherer, 2006; Clancy, 2008).  

In Chapters 3 and 4, investigating potential genetic mechanisms of acquired drug 

resistance in cancer cell lines, we called and analysed somatic point mutations and short 

INDELs (insertions and deletions). Each mutation was classified according to its effect on 
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the expressed protein using terms from Sequence Ontology (Eilbeck et al., 2005) 

(described in more detail in 1.2.4). When SNVs occur within the protein-coding region of a 

gene they can have different consequences on the encoded proteins. They can cause a 

substitution of the amino acid, introduction of a premature STOP codon (a nonsense or 

stop-gain mutation), or they can be synonymous – not changing the amino acid. Where 

the length of indel is not divisible by three (codon length), it results in a frameshift 

mutation – resulting in a shifted reading frame, and many more (see Variant calling 

section of Chapter 3 or 4 for the full list). 

Structural variants are not a focus of this thesis as currently, there are no methods to call 

such variants from whole-exome sequencing data with high confidence. Structural 

variants include copy-number alterations (CNAs), translocations and inversions (Feuk, 

Carson and Scherer, 2006). A copy-number alteration occurs when a DNA segment is 

present at a different number of copies than in the reference genome due to its 

duplication, deletion or insertion. A translocation is characterised by a change of position 

of a DNA segment without changing its sequence. Finally, an inversion happens when a 

DNA segment is reversed (in direction with regard to the rest of the chromosome) and 

reinserted. 

1.2.2 Nature of cancer 

Cancer primarily constitutes a genetic disease (Senft et al., 2017). It is caused by 

mutations in DNA (see above in 1.2.1) that bypassed the cell’s natural DNA repair 

mechanisms such as base excision repair, nucleotide excision repair, mismatch repair, 

homologous recombination and non-homologous end-joining (Chatterjee and Walker, 

2017). However, not all mutations lead to carcinogenesis. Those that do are called 

“drivers”. They occur in specific signalling pathways called “cancer hallmarks” (preventing 

apoptosis and senescence, promoting cell division without any extracellular signals, 

initiating metastasis and angiogenesis, deregulating energy metabolism or circumventing 

immune response (Gonzalez-Perez, Mustonen, et al., 2013; Martínez-Jiménez, Muiños, 

Sentís, et al., 2020)), and in addition, they have a damaging impact on the proteins. The 

latter can be checked through investigating mechanisms in which the mutations alter 

protein functions. This may include verifying if the mutation is present in a domain that is 
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responsible for performing a specific function, if it will affect how the sequence is folded 

into a structure, or if it will interrupt interactions with ligands and other proteins.    

We have a plethora of anti-cancer drugs at our disposition, and new ones are invented all 

the time. However, cancer is not one disease, as each tumour contains a unique set of 

mutations. Precision oncology relies on selecting the best treatment (drug and dose) for a 

specific patient and focusses on understanding how mutations present in the tumour will 

affect drug sensitivity. We distinguish inter-tumour heterogeneity, which signifies that 

cancer’s genotype and phenotype differ between patients, but this is not all there is to 

heterogeneity in cancer. Each cancer consists of a population of cells, and as they are 

constantly dividing, new mutations are acquired, leading to intra-tumour heterogeneity 

(Senft et al., 2017). We addressed the problem of intra-tumour heterogeneity and how it 

influences a response to treatment in Chapter 4.  

Precision oncology is important for use of targeted therapies, which are usually small 

molecules that inhibit the function of a specific protein (Senft et al., 2017). This is in 

contrast to cytotoxic therapies, which widely cause cellular damage without having a 

specific protein target. Sorafenib is an example of a BRAF inhibitor used to treat advanced 

melanoma with the V600E BRAF mutation (Tanda et al., 2020). Another example is nutlin-

3 – a drug targeting MDM2-p53 interaction in cancer patients with wild-type p53 

(Khurana and Shafer, 2019). However, this type of treatment is not free of the possibility 

of acquiring resistance – it usually develops within 6-12 months (Senft et al., 2017). 

Resistance acquired to nutlin-3 in acute myeloid leukaemia cell line MOLM13 was 

investigated in Chapter 3.  

1.2.3 Next-generation sequencing in the service of precision oncology  

The development of next-generation sequencing (NGS) constitutes a milestone in cancer 

genomics. Due to the ability to sequence millions of short reads simultaneously, NGS has 

provided a cost and time-efficient method to sequence even whole genomes since the 

mid-2000s (Behjati and Tarpey, 2013; Goodwin, McPherson and McCombie, 2016). Rapid 

and relatively inexpensive high-throughput sequencing opened the door to the 

characterisation of exomes (whole-exome sequencing), genomes (whole-genome 

sequencing), transcriptomes (RNA-sequencing) and epigenomes (ChIP-seq) of cancer 

patients (Liang and Kim, 2013; Berger and Mardis, 2018). Together with advanced 
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computational algorithms and tools that piece the short reads together by comparing 

them to the reference genome, and analyse detected variation, NGS led to an increasing 

understanding of the biological mechanisms causing cancer (Behjati and Tarpey, 2013). 

This, in turn, facilitated diagnosing tumours in the clinic and selecting the most suitable 

treatment (Zhao, Jones and Jones, 2019). In this thesis, whole-exome sequencing data of 

cancer cell lines are used to analyse mechanisms of acquired drug resistance and intra-

tumour heterogeneity (Chapter 3 and Chapter 4, respectively). 

The advancement of our knowledge of cancer as a disease driven by genetic alterations 

has been primarily achieved through large-scale genomic research projects which can 

sequence thousands of tumours. The rationale behind these programmes is that 

statistical analysis of mutations in a cohort of patients can reveal the same patterns in 

specific genes suggesting a similar positive selection process leading to cancer 

development (Martínez-Jiménez, Muiños, Sentís, et al., 2020).  

Large-scale sequencing efforts include projects such The Cancer Genome Atlas (TCGA) 

(Weinstein et al., 2013), Therapeutically Applicable Research to Generate Effective 

Treatments (TARGET) (Ma et al., 2018) and those under the umbrella of the International 

Cancer Genome Consortium (ICGC) (International Cancer Genome Consortium et al., 

2010; Zhao, Jones and Jones, 2019). They generate data primarily based on whole-exome 

sequencing but on a smaller scale, they also analyse whole genomes, transcriptomes and 

epigenomes of cancer patients (Nakagawa and Fujita, 2018). Such large-effort 

programmes have revealed many events that could be driving cancer. They have 

identified differentially expressed genes, gene fusions or aberrations in gene splicing 

through RNA-sequencing and chemical modifications of DNA and histones through ChIP-

seq (Berger and Mardis, 2018). Finally, they identified a plethora of single nucleotide 

variants (SNVs), small deletions and insertions, copy number and structural variants in 

DNA sequences. Due to the domination of whole-exome sequencing, mutations in 

protein-coding regions have been primarily studied. Some variants in the promoter, 

intronic or untranslated regions have also been recognised although the information 

about such mutations is still very limited (Nakagawa and Fujita, 2018; Zhao, Jones and 

Jones, 2019). 
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Despite the possibilities offered by whole-genome sequencing for precision oncology, 

there has so far been limited use of it in the clinical setting given the time required to 

generate and analyse data (Goodwin, McPherson and McCombie, 2016). Thus the clinical 

applications of NGS currently consist primarily of targeted sequencing that detects 

biomarkers using cancer gene panels (Zhao, Jones and Jones, 2019). Sequencing only a 

discrete number of genes that have been well characterised and whose role in cancer 

progression has been demonstrated has the advantage of cost, simplicity of analysing 

data and hence also the time over whole-exome or whole-genome sequencing (Kamps et 

al., 2017).  

1.2.4 The Cancer Genome Atlas 

The Cancer Genome Atlas (TCGA) was used to identify mutations potentially relevant to 

carcinogenesis and drug resistance while prioritising candidates for drivers of acquired 

drug resistance in cancer cell lines in Chapter 3 and Chapter 4  (see Methods: Variant 

calling section). The project was launched in December 2005 by the National Cancer 

Institute (NCI) and the National Human Genome Research Institute (Weinstein et al., 

2013).  The programme aimed to characterise changes in DNA, RNA, protein and 

epigenetic profiles that drive human cancer (Weinstein et al., 2013). Samples from over 

11,000 cancer patients were collected over a period of ten years to achieve this goal (Liu 

et al., 2018). As of November 2020, The Cancer Genome Atlas Research Network has 

published 36 papers analysing molecular profiles of 32 cancer types (The Cancer Genome 

Atlas - Cancers Selected for Study - National Cancer Institute, 2020). Samples were 

collected from cases associated with poor prognosis, high impact on public health, and 

they had to fulfil requirements of high quality. Data that was integrated and analysed by 

the TCGA project included data such as exome sequence, gene expression, copy-number 

variation, transcript splice variation and DNA methylation (Weinstein et al., 2013).  

Aside from the studies performed separately for each type of cancer, the Pan-Cancer 

initiative was launched to identify commonalities and differences across multiple cancer 

types (Weinstein et al., 2013). It started in 2012 intending to analyse 12 tumour types 

already characterised by the TCGA using their genomic, epigenomic, transcriptional and 

proteomic profiles. According to the GDC (Genomic Data Commons) website, by  August 
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2018, 58 papers were published within the TCGA programme, including 21 within the 

Pan-Cancer Atlas project (Publications | NCI Genomic Data Commons, 2020).  

The original Pan-Cancer project focused on the analysis of the coding regions. However, 

the ICGC and TCGA joined-up their efforts within the Pan-Cancer Analysis of Whole 

Genomes (PCAWG) Consortium to study whole-cancer genomes to identify variation in 

both coding and non-coding regions across 38 tumour types (Campbell et al., 2020). The 

analysis includes characteristics such as non-coding driver mutations, mutational 

signatures, tumour evolution or fusion genes. According to a special feature in Nature, 

there are 22 papers published up until September 2020 describing the results from 

PCAWG (Campbell et al., 2020).  

TCGA changed the way we look at cancer (Weinstein et al., 2013). The analysis of 

collected data has demonstrated that we should assess the disease prognosis and select 

the appropriate therapy for a cancer patient through a molecular profile based on 

genomic changes instead of basing decisions on cancer histology. It has shown that 

cancers having the same origin tissue do not always behave in the same way, and 

different cancer types may be more similar if they share genomic alterations. TCGA has 

also driven looking at affected pathways rather than genes. When the project started, 

scientists expected to find cancer-driving mutations in only a few genes. They quickly 

realised this is not the case, and a plethora of genes can be mutated to cause 

carcinogenesis. However, these mutations often affect genes acting within the same 

pathways (Outcomes & Impact of The Cancer Genome Atlas - National Cancer Institute, 

2019). 

TCGA is one of the first projects impacting precision medicine for cancer. One of the early 

studies that provided a better prognostic tool and an insight into a better selection of 

treatment for cancer patients studied 293 lower-grade gliomas from adults (The Cancer 

Genome Atlas Research Network, 2015). The analysis revealed that there are three 

distinct molecular classes of lower-grade gliomas and patients should be stratified not 

based on histopathology but rather on mutations in genes such as IDH and TP53, and the 

status of 1p/19q chromosomal regions. The most favourable outcome was observed in 

patients with an IDH mutation and 1p/19q codeletion. However, most lower-grade 

gliomas without an IDH mutation resembled glioblastoma both molecularly and clinically.  
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TCGA also contributed to the development of technologies that benefit disciplines outside 

of cancer research. This includes, for example, reducing costs of DNA and RNA sequencing 

(Outcomes & Impact of The Cancer Genome Atlas - National Cancer Institute, 2019). 

The Cancer Genome Atlas is one of the cancer genomic datasets maintained by the 

Genomic Data Commons (GDC) – a research programme of the National Cancer Institute. 

GDC is a knowledgebase and data-sharing platform. It aims to promote precision 

medicine in cancer treatment. TARGET is the other big GDC programme that collects, 

analyses and shares data related to paediatric cancers (About the GDC | NCI Genomic 

Data Commons, 2020).  

1.2.5 Sequence Ontology 

The Sequence Ontology (SO) is a sister project of the Gene Ontology (Ashburner et al., 

2000). It was established in the early 2000s to “facilitate the exchange, analysis and 

management of genomic data” (Eilbeck et al., 2005). It was an answer to the ambiguous 

vocabulary used to describe “the features and properties of biological sequence” and the 

impossibility of comparing data from different databases and research groups. Like the 

Gene Ontology, the Sequence Ontology is based on a set of standardised terms and the 

relationships between them, and it is also organised in a directed acyclic graph. The terms 

are often derived from annotations that are commonly used when describing genomic 

data. However, they are modified to be computer-friendly.   

The current release of the Sequence Ontology consists of four sub-graphs relating to 

sequence attributes, collection, features and variants.  Examples of the SO terms include 

“forward” describing the feature from 5’ to 3’ direction (belonging to 

“sequence_attribute” category), “chromosomally_aberrant_genome” used for features 

coming from genomes containing an abnormal amount of chromosomes 

(“sequence_collection”),  “gene”, “transcript_region”, “polypeptide”, “amino_acid” 

(“sequence_feature”), “missense_variant” or “5_prime_UTR_variant” 

(“sequence_variant”) (The MISO Sequence Ontology Browser, 2016). We used children 

terms of the “sequence_variant” sub-graph to describe mutations (e.g. missense variants, 

see Figure 1.8) identified in the drug-adapted sub-lines in Chapter 3 and Chapter 4.  
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Figure 1.8 Sequence Ontology sub-graph representing ancestry of the term “missense_variant”. Figure 

adapted from (Eilbeck et al., 2005; The MISO Sequence Ontology Browser - MISSENSE_VARIANT, 2016). 

1.2.6 Identification of cancer driver mutations: the holy grail of cancer 

genomics 

Cancer is driven by genetic mutations such as single nucleotide variants (SNVs), small 

insertions and deletions (INDELs), copy-number alterations (CNAs) or structural variants 

(Cheng, Zhao and Zhao, 2016). They may have many different effects, including amino 

acid substitutions, change the reading frame, truncation of the encoded protein or 

changes to gene expression.  This, in turn, may lead to loss or gain of protein function 

(Rajendran and Deng, 2017). However, not all mutations result in tumorigenesis. The 

majority of them do not provide tumour cells with a selective growth advantage, and they 

have minimal phenotypic effects (Liang and Kim, 2013; Cheng, Zhao and Zhao, 2016). 

These are called “passengers”. To induce or progress carcinogenesis, the mutations need 

to impact certain essential functions called “cancer hallmarks”. Mutations that cause 

carcinogenesis do it through, for example, preventing apoptosis and senescence, 

promoting cell division without any extracellular signals, initiating metastasis and 

angiogenesis, deregulating energy metabolism or circumventing immune response 
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(Gonzalez-Perez, Mustonen, et al., 2013; Martínez-Jiménez, Muiños, Sentís, et al., 2020). 

Mutations that contribute to cancer progression in the tumour cells are called “drivers” 

(Zhang et al., 2014). Distinguishing between driver and passenger mutations is to this day, 

one of the biggest challenges of cancer genomics.  

Advancement in this task is crucial for understanding how cancer is induced and how it 

progresses. It is also required for the development of prognostic and diagnostic 

biomarkers to be able to classify patients into cohorts that could benefit from a specific 

treatment (Jordan et al., 2019). Finally, it is necessary for developing new drugs and 

providing patients with new treatment options tailored to their genetic profiles rather 

than the tissue of origin (Zhang et al., 2014; Nussinov et al., 2019).  

Computational approaches offer a relatively inexpensive and fast way to identify potential 

cancer drivers and prioritise them for experimental validation and clinical application 

(Cheng, Zhao and Zhao, 2016), and a plethora of methods have been developed over the 

years. A few examples include SIFT (Sim et al., 2012), PolyPhen-2 (Adzhubei et al., 2010), 

Condel (González-Pérez and López-Bigas, 2011), FATHMM (Shihab et al., 2013), dNdScv 

(Martincorena et al., 2017), OncodriveFML (Mularoni et al., 2016), OncodriveCLUSTL 

(Arnedo-Pac et al., 2019), cBaSE (Weghorn and Sunyaev, 2017), Mutpanning (Dietlein et 

al., 2020), HotMaps3D (Tokheim et al., 2016), smRegions (Martínez-Jiménez, Muiños, 

López-Arribillaga, et al., 2020), MutationAssessor (Reva, Antipin and Sander, 2007), MAPP 

(Stone and Sidow, 2005; Binkley et al., 2010) and Logre (Clifford et al., 2004). These tools 

explore many different aspects that characterise driver mutations over passengers.  

Some methods assess the deleterious effect of a single nucleotide variation based on the 

assumption that higher functional impact implies a higher probability of being a driver 

(Zhang et al., 2014; Nussinov et al., 2019). Examples of such tools include SIFT (Sim et al., 

2012), PolyPhen-2 (Adzhubei et al., 2010) and Condel (González-Pérez and López-Bigas, 

2011) (described in details in sections 1.2.4.3, 1.2.4.4 and 1.2.4.5 respectively). They 

calculate amino acid conservation at the mutated position, compare amino acid 

properties or perform molecular dynamics simulations to assess changes in protein 

conformation and their impact on protein structure, stability and interactions with drugs 

(Cheng, Zhao and Zhao, 2016; Zhao et al., 2018; Jordan et al., 2019). The methods may 

also verify if the mutation occurs at the protein-protein or protein-nucleic acid interface 
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(Zhao et al., 2018). It has been demonstrated that often approaches which integrate 

multiple sources of data perform better than individual tools (González-Pérez and López-

Bigas, 2011; Cheng, Zhao and Zhao, 2016). The reason for that is that different methods 

explore different biological hypotheses and combining tools based on complementary 

premises can improve the accuracy of predictions. Some tools integrate various sources 

of information within machine learning algorithms and use them as features. They build a 

classifier based on the properties of already known passenger and driver mutations  

(Zhang et al., 2014). 

In Chapter 3 and Chapter 4, we applied SIFT and PolyPhen-2 to assess if the mutations 

that are candidate drivers of acquired drug resistance will have a damaging impact on the 

protein (see Methods: Variant calling section of both chapters). 

 

Figure 1.9 Signals of positive selection that are used to identify cancer driver genes across a cohort of cancer 

patients. Figure adapted from (Martínez-Jiménez, Muiños, Sentís, et al., 2020). 

Another approach of identifying cancer gene drivers is to analyse the enrichment of 

mutations in specific pathways and networks (Zhang et al., 2014). Many other methods 

identify cancer driver genes by detecting genes positively selected during tumour 
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evolution (Martínez-Jiménez, Muiños, Sentís, et al., 2020). They do that through analysing 

data from a cohort of cancer patients. Some tools explore accumulation in a gene of 

mutations with high functional impact (Figure 1.9). Other algorithms are based on the 

frequency of mutations across a cohort of tumour samples, and they identify genes that 

develop more mutations than expected. Since driver mutations provide tumour cells with 

a growth advantage and they are positively selected during cancer progression, given that 

a similar selective pressure act on different patients, the same mutation(s) should be 

selected and traced with the frequency rate across the patients’ cohort (Gonzalez-Perez, 

Mustonen, et al., 2013). The background mutation rate is calculated based on, for 

example, silent mutations in coding regions taking into account gene size and the 

composition of the nucleotides (Zhang et al., 2014; Cheng, Zhao and Zhao, 2016). Another 

sign of positive selection that is commonly used to identify cancer driver genes is the 

clustering of mutations in a specific functional domain within the protein sequence or 

structure across patients’ samples (Gonzalez-Perez, Mustonen, et al., 2013; Hudson et al., 

2015; Nussinov et al., 2019). Finally, some methods also verify the bias of acquiring 

mutations in a specific trinucleotide context (Martínez-Jiménez, Muiños, Sentís, et al., 

2020).  

1.2.6.1 Catalogue of Somatic Mutations in Cancer 

Similarly to The Cancer Genome Atlas, The Catalogue of Somatic Mutations in Cancer 

(COSMIC) was used to identify mutations potentially relevant to carcinogenesis and drug 

resistance while prioritising candidates for drivers of acquired drug resistance in cancer 

cell lines in Chapter 3 and Chapter 4  (see Methods: Variant calling section). It is an 

initiative undertaken by Wellcome Trust Sanger Institute. Somatic mutation data has 

been stored in the COSMIC database for over 15 years now. The project started with data 

collected for only four genes, HRAS, KRAS2, NRAS and BRAF, known to be somatically 

mutated in cancer (Bamford et al., 2004). One thousand four hundred eighty-three 

papers were reviewed to identify a total of 10,647 mutations across tumours with 

mutations in these four genes. The project has expanded from this initial study, and the 

most recent publication (Tate et al., 2019) reported COSMIC release v86 (August 2018) 

containing 5,977,977 coding mutations from over 26,251 publications. COSMIC also 

includes mutations in non-coding regions, gene fusions, copy-number alterations and 

mutations associated with drug resistance. There are two ways in which data is collected 
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into COSMIC. One of them has always been manual literature curation. However, with the 

advent of next-generation sequencing, COSMIC started incorporating information from 

large-scale systematic screens and cancer data portals such as TCGA (Weinstein et al., 

2013).   

There are now four other datasets available that are part of the COSMIC project and 

complement the expert-curated database somatic mutations in cancer. These are the 

Cancer Gene Census, Cell Lines Project, COSMIC-3D and, available from August 2020 

(COSMIC v92), the Cancer Mutation Census (Tate et al., 2019; NEW PRODUCT: Discover 

the Cancer Mutation Census, 2020). The Cell Lines Project incorporates data from over 

1,000 cell lines (1,015 as of COSMIC v86), specifically their exome sequences and 

molecular profiles (Tate et al., 2019). In contrast, Cancer Gene Census contains 

information about 719 genes that drive human cancer through somatic and germline 

mutations (as of COSMIC v86). It classifies genes as oncogenes, tumour suppressor genes, 

or both. It also assigns genes into two tiers based on the confidence of the role they have 

in cancer. COSMIC-3D maps COSMIC mutations to protein sequence and structure to 

provide a better way of understanding what impact the mutation may have on protein 

function and also for exploring potential drug targets (Tate et al., 2019). Finally, the 

Cancer Mutation Census was developed to facilitate the selection of driver mutations 

over the passenger mutations. It comprises metrics such as ClinVar (Landrum et al., 2018) 

significance or variant frequency in the gnomAD (Karczewski et al., 2020) database (NEW 

PRODUCT: Discover the Cancer Mutation Census, 2020).  

1.2.6.2 The Integrative OncoGenomics pipeline 

The Integrative OncoGenomics (IntOGen) pipeline aims to identify cancer driver 

mutations systematically (Martínez-Jiménez, Muiños, Sentís, et al., 2020). It was designed 

as a tool complementary to literature curation. IntOGen combines somatic SNVs and 

short indels from multiple studies and uses seven tools that identify drivers to create a 

compendium of cancer driver genes. The current version of IntOGen uses data from 

28,076 tumour samples. The majority of them come from large sequencing programmes 

such as the ICGC (International Cancer Genome Consortium et al., 2010), TCGA 

(Weinstein et al., 2013), PCAWG (Campbell et al., 2020), Hartwig Medical Foundation 

(Priestley et al., 2019) and TARGET (Ma et al., 2018).  
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The IntOGen pipeline consists of three steps: pre-processing of the samples, identification 

of cancer driver genes and lastly post-processing of the drivers. Pre-processing includes 

mapping all the bases to the GRCh38 human genome version to be consistent across all 

datasets, removing mutations that have ‘N’ as the reference or the alternative allele or in 

which the reference allele is the same as an alternative. Other steps undertaken within 

the pre-processing stage comprise of actions such as removing mutations that have a high 

chance of being mapped somewhere else in the genome, filtering out multiple samples 

from the same donor, removing hypermutated samples, or discarding datasets without 

synonymous variants as they are necessary to build the background mutation model.  

The second step of the pipeline, detection of cancer driver genes, is performed using 

seven tools: dNdScv (Martincorena et al., 2017), OncodriveFML (Mularoni et al., 2016), 

OncodriveCLUSTL (Arnedo-Pac et al., 2019), cBaSE (Weghorn and Sunyaev, 2017), 

Mutpanning (Dietlein et al., 2020), HotMaps3D (Tokheim et al., 2016) and smRegions 

(Martínez-Jiménez, Muiños, López-Arribillaga, et al., 2020). Their mode of action is based 

on finding genes that undergo positive selection across a cohort of tumours. This is done 

by identifying mutational patterns different from those expected as a result of neutral 

mutagenesis model. These patterns cover clustering of mutations within the sequence, 

structure or a particular domain, excess numbers of mutations in general and the number 

of non-synonymous versus synonymous variants. Finally, they also involve biases towards 

mutations with highly damaging functional impact and in specific tri-nucleotide contexts 

(Figure 1.9).  

The last step of the IntOGen pipeline consists of post-processing of the identified cancer 

driver genes. This includes genes that are not expressed based on TCGA data, highly 

tolerant to developing Single Nucleotide Polymorphisms (SNPs) in the human population 

or those that could be potentially mutated as a result of a local hypermutation activity.  

Finally, in addition to predicting potential cancer driver genes, IntOGen also determines 

their mode of action as either activating (oncogene), loss-of-function (tumour suppressor) 

or ambiguous. This classification is based on the enrichment of missense versus nonsense 

mutations (oncogene) and vice versa (tumour suppressor).   

IntOGen was used to identify drivers of acquired drug resistance in cancer cell lines in 

Chapter 3. 
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1.2.6.3 Sorting Intolerant substitutions From Tolerant (SIFT)  

Sorting Intolerant substitutions From Tolerant (SIFT) predicts how amino acid 

substitutions may affect the protein (Ng and Henikoff, 2001). Introduced in 2001, it is one 

of the earliest tools developed to assess variant pathogenicity, and it has been commonly 

used ever since (Sim et al., 2012). It is solely based on sequence homology and the 

assumption that functional residues are conserved within protein families. Thus it does 

not need any information about protein structure or function.  However, due to the same 

reason, SIFT requires that homologous sequences are available for the query protein, and 

it has the best accuracy when accurate alignments of orthologues are used. SIFT first 

identifies homologues of the query sequence using PSI-BLAST (Altschul et al., 1997) and 

retains only the consensus sequences for the groups of proteins with more than 90% 

identity. A seed profile is created from the query sequence and the consensus sequences 

with the similarity of over 90%. The profile is used to search similar sequences using PSI-

BLAST, and they are added to the initial profile as long as the conservation of the new 

profile does not drop below the user-defined threshold (Ng and Henikoff, 2002). The 

sequences collected in the previous step are aligned, and the final step is to calculate the 

probability of each amino acid appearing at each position. Finally, a cut-off threshold is 

applied to decide if the substitution is deleterious or tolerant.    

SIFT was applied in Chapter 3 and Chapter 4 to assess if the mutations that are candidate 

drivers of acquired drug resistance will have a damaging impact on the protein (see 

Methods: Variant calling section of both chapters). 

1.2.6.4 PolyPhen 

Similarly to SIFT (Sim et al., 2012), PolyPhen-2 predicts the effect of amino acid 

substitutions on protein structure and function (Adzhubei et al., 2010). The method 

consists of a Naïve Bayes classifier making predictions based on eleven features related to 

the properties relating to protein sequence and structure. The multiple-sequence 

alignment (MSA) of homologous sequences is used to extract some of these features. 

MSAs are generated by first using BLAST+ (Camacho et al., 2009) to search UniRef100 

(Bateman, 2019), then aligning the query sequence homologues using MAFFT (Katoh et 

al., 2002) with a refinement step done with LEON (Thompson, Prigent and Poch, 2004). 

Some features are based on Pfam (El-Gebali et al., 2019) domains, alignment depth and 



Introduction 

64 
 

CpG context. Others refer to accessible surface area and conformational mobility of the 

amino acid residue, change in the volume of its side chain, and identity of the query 

sequence to the closest homologue mutated at the queried position. Finally, the 

algorithm also uses Position-Specific Independent Counts (PSIC) (Sunyaev et al., 1999) 

which are scores demonstrating the likelihood of a certain amino acid being present at a 

specific position and a score representing consistency of the mutated sequence with the 

MSA.  

PolyPhen-2 was trained on two datasets. One of them combined alleles known to cause 

Mendelian diseases with non-damaging differences between human proteins and their 

homologues in mammals. The other dataset consisted of all human disease-causing 

mutations and human non-damaging non-synonymous SNPs. Each of them is suited 

better for a different task – one in diagnosing Mendelian diseases and the other for 

identifying complex phenotypes or cases where even mildly deleterious mutations have 

to be considered damaging. 

PolyPhen-2 was applied in Chapter 3 and Chapter 4 to assess if the mutations that are 

candidate drivers of acquired drug resistance will have a damaging impact on the protein 

(see Methods: Variant calling section of both chapters). 

1.2.6.5 Condel 

Condel was developed to benefit from the complementary performance of tools 

predicting the impact of non-synonymous Single Nucleotide Variants on protein function 

(González-Pérez and López-Bigas, 2011; Condel — FannsDB 2.0-dev documentation, 

2014). Initially, it incorporated output from five methods: SIFT (Sim et al., 2012), 

PolyPhen-2 (Adzhubei et al., 2010), MutationAssessor (Reva, Antipin and Sander, 2007), 

MAPP (Stone and Sidow, 2005; Binkley et al., 2010) and Logre (Clifford et al., 2004). Each 

of the tools returns a value that represents the tolerance of the specific mutation at the 

specific position. The final result, called CONsensus DELeteriousness score, is calculated 

from normalised scores multiplied by a weight. The scores are obtained from all five tools, 

and the weights are based on the probability that a predicted deleterious mutation is 

truly deleterious, and a neutral mutation is truly neutral.  

The comparison of the tool combining the outputs of the five methods using such 

weighted average scores and the five tools separately revealed that Condel outperformed 
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each of the individual algorithms. The current version of Condel incorporates only results 

from FATHMM (Shihab et al., 2013) and MutationAssessor. The initial aim was to include 

also the outputs from SIFT and PolyPhen-2. However, adding them tended to decrease 

Condel’s performance, and thus they were both omitted. 

1.3 Scope and outline of this thesis 

This thesis reports research from three manuscripts, one that investigates the essential 

functions of life in the minimal bacterial genome and two that explore mutations 

identified in drug adapted cancer cell lines to examine drivers of acquired drug resistance.  

 

Chapter 2 – Environmental Conditions shape the nature of a minimal bacterial genome. 

This chapter was published in July 2019 – Antczak M, Michaelis M, Wass MN Nature 

Commun 10:3100.  

 

Chapter 3 – Acquired MDM2 inhibitor resistance is associated with collateral sensitivity to 

cytarabine in acute myeloid leukaemia cells. 

This chapter reports the analysis of variants acquired by four sub-lines of the Molm13 cell 

line in the process of adaptation to nutlin-3 and their impact on resistance.  

 

Chapter 4 – Selection of different clones upon repeated adaptation of neuroblastoma cell 

lines to tubulin-binding agents. 

This chapter reports the analysis of variants acquired by 41 sub-lines of the UKF-NB-3 cell 

line in the process of adaptation to four tubulin-binding agents (eribulin, vincristine, 2-

methoxyestradiol and epothilone b) and their impact on the resistance.  
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Chapter 5 – Discussion. This chapter discusses the research presented in chapters 2-5 and 

future work. 

 

Appendix 1 – Supplementary figures and tables for Chapter 2. 

 

Appendix 2 – Supplementary data files for Chapter 2. 

 

Appendix 3 – Supplementary figures and tables for Chapter 3. 

 

Appendix 4 – Supplementary tables for Chapter 3. 

 

Appendix 5 – Supplementary figures and tables for Chapter 4. 

 

Appendix 6 – Supplementary tables for Chapter 4. 

 

Appendix 7 – Participation in the third edition of the Critical Assessment of Functional 

Annotation: the Gene Ontology Annotation Tool (GOAT). 

. 
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 Environmental conditions shape the nature of a 

minimal bacterial genome 

 

Antczak, M., Michaelis, M. & Wass, M.N. Environmental conditions shape the nature of a 

minimal bacterial genome. Nat Commun 10, 3100 (2019). 

https://doi.org/10.1038/s41467-019-10837-2 

2.1 My contribution 

I performed all of the analysis in the study and generated all the figures. I wrote the 

paper's first draft, which I then worked on with Mark Wass and Martin Michaelis. 

2.2 Abstract 

Of the 473 genes in the genome of the bacterium with the smallest genome generated to 

date, 149 genes have unknown function, emphasising a universal problem; less than 1% 

of proteins have experimentally determined annotations. Here, we combine the results 

from state-of-the-art in silico methods for functional annotation and assign functions to 

66 of the 149 proteins. Proteins that are still not annotated lack orthologues, lack protein 

domains, and/ or are membrane proteins. Twenty-four likely transporter proteins are 

identified indicating the importance of nutrient uptake into and waste disposal out of the 

minimal bacterial cell in a nutrient-rich environment after removal of metabolic enzymes. 

Hence, the environment shapes the nature of a minimal genome. Our findings also show 

that the combination of multiple different state-of-the-art in silico methods for 

annotating proteins is able to predict functions, even for difficult to characterise proteins 

and identify crucial gaps for further development. 
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2.3 Introduction 

A long-term goal of synthetic biology has been the identification of the minimal genome, 

i.e., the smallest set of genes required to support a living organism. The bacterium with 

the smallest genome generated to date is based on Mycoplasma mycoides (Hutchison et 

al., 2016). Its minimal bacterial genome consists of 473 genes including essential genes 

and a set of genes associated with growth, termed ‘quasi-essential’ (Hutchison et al., 

2016). The minimal genome study assigned function to proteins encoded by the minimal 

genome by considering matches to existing protein families in the TIGRFAM (Haft et al., 

2013) database, genome context and structural modelling (Hutchison et al., 2016). 

Proteins were annotated with molecular functions and grouped into 30 biological process 

categories (including an unclear category, where the biological process was not known). 

The proteins were further assigned to five classes according to the specificity and 

confidence of the molecular function annotations that they had been assigned: Equivalog 

(confident hits to TIGRFAM families), Probable (low confidence match to TIGRFAM 

families supported by genome context or threading), Putative (multiple sources of 

evidence but lower confidence), Generic (general functional information identifiable, e.g., 

DNA binding or membrane protein, but specific function unknown) and Unknown (unable 

to infer even a general function). The final two confidence classes, Unknown (65 genes) 

and Generic (84 genes) form the group of genes whose function is unknown. Hence, 

almost a third (149) of the encoded 473 proteins are of unknown function, which 

emphasises our limited understanding of biological systems (Hutchison et al., 2016). 

This lack of functional annotation is not restricted to the minimal bacterial genome. One-

third of protein-coding genes from bacterial genomes lack functional annotations (Chang 

et al., 2016). Recent experimental approaches have begun to identify the function of 

‘hypothetical’ proteins of unknown function (Price et al., 2018). However, the continual 

improvement of high-throughput sequencing methods has resulted in a rapid increase in 

the number of organisms for which genome sequences are available and the functional 

annotation of the encoded gene products lags behind (Price et al., 2018). Less than 1% of 

the 148 million protein sequences in UniProt (Bateman et al., 2017) are annotated with 

experimentally confirmed functions in the Gene Ontology (GO) (Carbon et al., 2017) (April 

2019). To address this gap, computational methods for protein function prediction have 
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been developed and significantly advanced over the past 15 years as demonstrated by the 

recent Critical Assessment of Functional Annotation (CAFA) challenges (Radivojac et al., 

2013), (Jiang et al., 2016). 

Here, we perform an extensive in silico analysis of the proteins of unknown function 

encoded by the minimal bacterial genome using an approach that combines 22 different 

computational methods ranging from identification of basic properties (e.g., protein 

domains, disorder and transmembrane helices) to state-of-the-art protein structural 

modelling and methods that infer GO-based protein functions, including those that have 

performed well in CAFA experiments. 

2.4 Methods 

2.4.1 Identifying basic protein properties 

Protein domains were determined by running PfamScan against the library of Pfam 30.0 

HMMs (Finn et al., 2016). GO terms associated with Pfam domains were extracted using 

the pfam2go file (Finn et al., 2016) (version 11 February 2017). The e-value of the domain 

matches were used to indicate the confidence of a GO term describing the function of the 

query protein. To test if the probability of minimal genome proteins having more domains 

identified increases with the increasing confidence of the annotation in the particular 

functional class, we performed the Mann–Whitney–Wilcoxon test. We cross-compared all 

the functional classes (438 proteins in total) and tested the null hypothesis that samples 

have the same distribution against the alternative hypothesis that there is a >0 shift in the 

distribution. 

InterProScan was run with default settings to determine matches against InterPro 

databases of protein signatures (Mitchell et al., 2019). Results from the following 

resources were included in the analysis: CDD (Marchler-Bauer et al., 2017), Gene3D 

(Lewis et al., 2018), HAMAP (Pedruzzi et al., 2015), PIRSF (Wu et al., 2004), PRINTS 

(Attwood, 2012), ProDom (Servant et al., 2002), ProSitePatterns (Sigrist et al., 2013), 

ProSiteProfiles (Sigrist et al., 2013), SFLD (Akiva et al., 2014), SMART (Letunic and Bork, 

2018) and SUPERFAMILY (Oates et al., 2015). 
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Orthologues were identified using eggNOG-Mapper (Huerta-Cepas et al., 2017) against 

HMM databases for the three kingdoms of life. Additionally, precision of predictions was 

prioritised by restricting results to only one-to-one orthologues. The eggNOG-Mapper API 

was used to predict the orthologous groups in eggNOG that the minimal genome proteins 

belonged to. The proteins present in these orthologous groups were extracted and the 

species associated with the sequences were mapped to the NCBI Taxonomy to group 

them into phyla and used to identify the phyla where orthologues were present. 

Predicted features including GO terms, KEGG pathways and functional categories of 

Cluster of Orthologous Groups were also obtained from eggNOG-Mapper. 

2.4.2 Identifying membrane transporters and lipoproteins 

Proteins were classified as lipoproteins (SPaseI-cleaved proteins), SPaseI-cleaved proteins, 

cytoplasmic and transmembrane proteins using LipoP (Juncker et al., 2003). Similarly, 

proteins were distinguished between membrane transporters and non-transporters using 

TrSSP (Mishra, Chang and Zhao, 2014). TrSSP predicted substrates of the proteins from 

seven groups: amino acid, anion, cation, electron, protein/mRNA, sugar and other. The 

functions of membrane transporters and lipoproteins were further supported by 

identifying transmembrane helices, signal peptides and protein topology using TMHMM 

(Krogh et al., 2001). 

2.4.3 Inferring gene ontology-based protein function 

GO terms were predicted using FFPred3 (Cozzetto et al., 2016), Argot2.5 (Falda et al., 

2012), GOAT (only Molecular Function terms; check Appendix 7 for details) and LocTree3 

(Goldberg et al., 2014) (only Celullar Component terms). As the FFPred3 SVMs were 

trained only on human proteins from UniProtKB, predicted GO terms were additionally 

filtered using the frequency of terms in UniProtKB-GOA (version 5 June 2017). Predicted 

GO terms that were not annotated to any bacterial proteins in UniProtKB-GOA were 

removed from the set of FFPred3 predicted functions as they were likely to be functions 

that are not present in prokaryotes. 

Argot2.5 was run with the taxonomic constraints option. As scores returned by Argot2.5 

have a minimum score of zero and no upper bound, the linear spline function 
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recommended by the method developers (personal communication) was applied to 

rescale them to the range of 0 to 1.  

2.4.4 Structural analysis 

The CATH FunFHMMer webserver was used to identify the functional families of 

structural domains, CATH FunFams (Sillitoe et al., 2013; Das et al., 2015). 

Protein disorder was predicted using DISOPRED3 (Jones and Cozzetto, 2015). For each of 

the proteins, the percentage of disordered regions was calculated based on the 

DISOPRED3 results. To verify if there is a statistically significant difference between 438 

minimal genome proteins in five different functional classes, we performed a Chi-Square 

test for categorical data with a null hypothesis that the functional class of a protein and 

its disorder ratio level (0%, (0%, 10%], (10%, 20%], (20%, 30%], >30%) are independent. 

Firestar (Lopez et al., 2011) and 3DLigandSite (Wass, Kelley and Sternberg, 2010) were 

used to predict ligands binding to the proteins. For Firestar only results marked as 

cognate were considered. Phyre2 (Kelley et al., 2015) was run using standard mode to 

model the structure of the minimal genome proteins. Information provided by the name 

and description of the best matching models was used in the process of inferring function 

of the proteins. To make sure that each residue was covered with the highest possible 

confidence, the matches were firstly sorted by e-value and then selected gradually if they 

covered residues that were not covered before by a match with lower e-value. 

2.4.5 Identifying operons 

Genes in the synthetic M. mycoides (JCVI-syn1.0) were grouped into operons based on 

the predictions made for both M. mycoides subsp capri LC str 95010 and M. mycoides 

subsp mycoides SC str PG1 by two methods DOOR2 (Mao et al., 2014) and 

MicrobesOnline (Alm et al., 2005). The proteins of the synthetic M. mycoides were first 

mapped to the proteins of M. mycoides subsp capri LC str 95010 and M. mycoides subsp 

mycoides SC str PG1 downloaded from GenBank (Benson et al., 2017). This was done by 

using BLAST to search against databases constructed from proteomes of these two 

species and extracting the best hit. A protein from M. mycoides subsp capri LC str 95010 

or M. mycoides subsp mycoides SC str PG1 was considered a corresponding homologue of 
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a protein from synthetic M. mycoides if the coverage and identity were greater than or 

equal to 80%. Via the corresponding homologues, operons predicted for these two 

species by DOOR2 and MicrobesOnline were mapped to the proteins of the synthetic M. 

mycoides. 

2.4.6 Combined protein function prediction 

The results from the following methods were removed from the analysis if their e-value 

was above 0.001: TIGRFAM, Pfam, eggNOG-Mapper, CATH FunFams and domains. Models 

predicted by Phyre2 were kept if the probability of the match was above 80% and e-value 

was below 0.001. Only results from Firestar with a reliability score above 70% and marked 

as cognate were retained. Ligands predicted by 3DLigandSite were kept if they were 

included in at least three homologous models. The best BLAST hit from UniProt 

(maximum e-value of 0.001) was used to identify the closest homologue of the protein 

and the information accessible in UniProt was taken into account in the annotation. 

Additionally, all the predictions of Gene Ontology terms were combined together and the 

probability of particular terms being predicted by any of the methods were calculated 

using the following formula: P(GO) = 1 – (1 – P (GOFFPred3))* (1 – P(GOArgot2.5))* (1 –

 P(GOGOAT)* (1 – P(GOLocTree3)), where P(GO) is the combined probability of a given GO 

term and where subscripts are included this indicates the probability of that term from 

the named individual method. Only high probability ( > 0.65) Gene Ontology terms were 

considered for each of the proteins. For the final prediction of protein function, results 

from all the methods were manually reviewed. The initial proposition of protein function 

was based on combining the results from TIGRFAM equivalog families, Pfam domains, 

InterPro families and domains, eggNOG orthologous groups, CATH functional families, the 

best BLAST hit from UniProt and the Phyre2 model of the structure. In considering the 

results from these methods, we looked for agreement between methods, particularly 

with highly confident results. This initial function was then verified using the predicted 

Gene Ontology terms and information on predicted ligands (Firestar (Lopez et al., 2011), 

3DLigandSite (Wass, Kelley and Sternberg, 2010)) and transmembrane helices (TMHMM). 

Where information was not available from the first group of methods, the second group 

of methods were used as a starting point to infer functions. Transporters and lipoproteins 

were predicted using membrane transporter (TrSSP) and lipoprotein signal sequences 
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(LipoP) respectively. Finally, it was considered if the predicted function was consistent 

within a group of genes in the same operon. Where methods made predictions that 

conflicted with the final predicted function, this was noted, but it did not affect the 

confidence as we recorded the number of methods supporting a function and the average 

score associated with these predictions (see below). 

Confidence of predicted functions was considered for each protein by counting the 

results that support the final function and calculating the average score from these 

methods. Results used to calculate the average score come from the methods applied in 

the first step of function prediction (Figure 2.4), i.e., TIGRFAM, Pfam, InterPro resources 

(all but ProSitePatterns), eggNog-Mapper, BLAST, CATH FunFams, Phyre2, and also the 

overall GO term-based prediction (which already combined Argot2.5, GOAT, FFPred3 and 

LocTree3) resulting in 17 methods in total. Methods that concern a very specific element 

of a function, such as transmembrane helices or ligands were not included in the average 

score calculation. For all methods, scores were normalised to the range 0–100. Most of 

the methods use e-values as a measure of confidence (e.g., TIGRFAM, Pfam), for these 

methods –log10(e-value) was used capping the value at 100. Where probabilities were 

provided these were multiplied by 100. HAMAP and ProSiteProfiles use scores that are 

not probabilities or e-values and do not appear to have an upper bound. Considering the 

scores of these methods for the proteins of known function in the minimal genome 

indicated that scores were typically in the range 0–100 (Figure S7 and Figure S8), so 

scores above 100 were capped at 100. 

2.5 Results 

2.5.1 Orthologues for the proteins in the minimal genome 

Hutchison et al. (Hutchison et al., 2016) used BLAST to identify homologues of the 

minimal genome proteins in a set of 14 species ranging from non-mycoides mycoplasmas 

to archaea. They found that while many of the proteins from the Equivalog, Probable, 

Putative and Generic classes have homologues in all 14 species, very few of the 
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sequences in the Unknown class had homologues outside of M. mycoides, with none in 

M. tuberculosis, A. thaliana, S. cerevisiae and M. jannaschii. 

Here, eggNOG-Mapper (Huerta-Cepas et al., 2017) (see methods) was used to identify 

orthologues for the minimal genome proteins across the three kingdoms of life. Overall 

the analysis showed that very few of the Unknown class of proteins (7%) have related 

sequences in eukaryotes or archaea (6%) while just over half (55%) have orthologues in 

other bacterial species, primarily in terrabacteria, the clade that M. mycoides belongs to 

(Figure 2.1a, Figure S1 and Appendix 2 Supplementary Data File 1). In contrast, many of 

the proteins in the other confidence classes have orthologues across the three kingdoms 

(Figure 2.1a and Figure S1). For example, 63%, 59% and 95% of the proteins in the 

Generic class have orthologues in eukaryotes, archaea and bacteria, respectively (Figure 

2.1a and Figure S1), rising to 91%, 70% and 99% for the Equivalog class. Only two proteins 

from the Unknown class had many orthologues in both eukaryotes and archaea. These 

proteins MMSYN1_0298 and MMSYN1_0302 were classified by Hutchison et al. into the 

Unclear and Cofactor transport and salvage functional categories, respectively. Our 

analysis determined confident functions for both of these proteins (see below). 

 

Figure 2.1 Basic characterisation of proteins encoded by the minimal bacterial genome. a Orthologues 

identified in bacteria. Results for each functional class are represented by a different colour: gold for the 

Unknown class, yellow–Generic, light turquoise–Putative, turquoise–Probable and dark turquoise–
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Equivalog. b The domain architecture for proteins in each of the five functional confidence classes is plotted 

(Unknown [Un], Generic [Gn], Putative [Pt], Probable [Pr] and Equivalog [Eq]). It is represented as a number 

of matches to domains present in Pfam (Finn et al., 2016). “No domains” signifies that no Pfam domains 

were detected in the protein. Proteins with no domains are displayed in yellow, grey represents single 

domain proteins and dark blue multi-domain proteins. c Predicted protein disorder in the minimal genome 

proteins. The results are shown for the five confidence classes from b and coloured according to the 

percentage of disorder present. Proteins with a percentage disorder >30% are represented by yellow, 20–

30% disorder by green, 10–20%-turquoise and 0–10%-blue. Purple indicates proteins without disordered 

regions. d The percentage of protein structure that can be confidently modelled by Phyre2. Functional class 

colouring as for a. 

2.5.2 Domain architecture of minimal genome proteins 

Domain analysis, using Pfam (Finn et al., 2016) (Appendix 2 Supplementary Data File 2), 

showed that few (22%) of the proteins in the Unknown class contain known domains, 

significantly less than for the other four classes (Figure 2.1b; p < 8.3e-12; Mann–Whitney–

Wilcoxon test). In contrast, all proteins in the Equivalog class contain at least one domain 

and nearly half of them (44%) have a multi-domain architecture (Figure 2.1b), whereas 

multiple domains are present in 21% of the proteins in the Generic class and only a single 

protein in the Unknown class (Figure 2.1b). The proteins in the Unknown class are also 

clearly different to those in the Generic class, where a domain is present in 86% of the 

proteins. Further, the proteins in the Unknown class also have more disordered regions 

than the other groups (Figure 2.1c), although this does not reach statistical significance 

(X-squared = 19.304, df = 16, p = 0.2532; Chi-Square test for categorical data). 

2.5.3 Structural modelling of the minimal genome 

Hutchison et al. (Hutchison et al., 2016) used threading (an approach for modelling 

protein structure) to support functional assignment from TIGRFAM matches. Here, the 

Phyre2 (Kelley et al., 2015) protein structure prediction server was used to model the 

structures of the minimal genome proteins. With the exception of the Unknown class, 

high confidence structural templates were identified for the vast majority of proteins for 

at least part of the sequence (Figure S2 and Appendix 2 Supplementary Data File 3). The 

proportion of proteins in each confidence class that could be accurately modelled was 

considered by identifying those for which at least 75% of the protein sequence could be 

modelled with a structural model confidence score (from Phyre2) of at least 90%. In the 
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Unknown class this applied to only nine proteins, whereas nearly all proteins in the four 

other confidence groups were successfully modelled (Figure 2.1d). 

 

Figure 2.2 Transmembrane proteins encoded by the minimal bacterial genome. a The number of proteins 

predicted by TMHMM to have transmembrane helices. Brown indicates proteins with one or more 

transmembrane helix. Yellow for those without transmembrane helices. b The number of transmembrane 

helices present in each of the proteins in the minimal genome that is predicted to have one or more 

transmembrane helix. Results for each functional class are represented by a different colour: gold for the 

Unknown class, yellow–Generic, light turquoise–Putative, turquoise–Probable and dark turquoise–Equivalog 

class 

2.5.4 Transmembrane proteins 

Proteins in the Unknown and Generic classes are enriched with transmembrane proteins 

with 49% and 35%, respectively, of their proteins predicted to have transmembrane 

helices (Figure 2.2a and Appendix 2 Supplementary Data File 4). In contrast, very few 

transmembrane proteins were identified in the Equivalog and Probable classes (6% and 

12% respectively), while 32% of the proteins in the Putative class are transmembrane 

proteins (Figure 2.2a). 

These results suggest that many of the proteins that have unassigned functions may be 

associated with membranes. For example, 24 proteins in the Generic class are predicted 
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to contain six or more transmembrane helices (Figure 2.2b), many of which are likely to 

be transporters of essential nutrients from the media (see below). 

2.5.5 Prediction classification for specificity and confidence 

To infer functions for the proteins of unknown function, we introduced a different way to 

classify our results, which separates function specificity and prediction confidence. This 

enabled a more nuanced interpretation of the results than the five classes (Unknown to 

Equivalog) used by Hutchison et al., which combined both specificity and confidence. Our 

specificity classes include ‘hypothetical’, where the function is completely unknown, 

‘general’, where we have some basic functional information (e.g., DNA binding or 

transporter), ‘specific’, where we have identified a specific function (e.g., transcription 

factor, ABC transporter) and ‘highly specific’, where a high level of detail is known (e.g., 

ABC transporter with known substrate; further examples are given in Table S1). 
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Figure 2.3 Predictions for proteins of known function encoded by the minimal genome. a Assessment of the 

specificity of functions predicted by Hutchison et al. across all five initial functional classes (Unknown to 

Equivalog). Functions from different initial specificity classes are represented by a different colour: beige for 

the Hypothetical specificity class, orange–General, light brown–Specific and dark brown–Highly specific. b 

Comparison of our predictions with the functions predicted by Hutchison et al. for proteins of known 

function, i.e., from the Putative, Probable and Equivalog functional classes. Colouring indicates the level of 

agreement between the initial functions and the predictions made here. Dark blue where the functions 

exactly match, medium blue where the predictions made here were less specific than the initial ones, light 

blue where our predictions were more specific, dark purple where there were minor differences between the 

functions and light purple where the function did not agree. c Number of methods supporting the function 

and the average score of those methods. Each point represents a protein. Methods include those used in the 

first step of function prediction. Specificity class colouring as for a 

We use the number of methods that support a function and the average score associated 

with this function as indicators of the confidence of the annotation (see methods). The 

average score for each predicted function was calculated by normalising the scores from 

the individual methods (e.g., e-value or probability) to the range of 0–100, with 100 

indicating a highly confident score (e.g., a highly significant e-value from Pfam or Gene3D; 

see methods). Further, each protein was assigned to a larger functional category that 

represents biological process using the 30 different functional categories proposed by 

Hutchison et al. 

Before predicting protein functions, we re-analysed the annotations by Hutchison et al. 

and assigned the functions to our new specificity classes. Confidence levels of these initial 

functional annotations could not be compared, since the outputs of the individual 

methods from the Hutchison et al. study were not available. Our assignment to specificity 

classes shows that most of the proteins in the Putative, Probable and Equivalog classes 

had previously been assigned highly specific functions, highlighting how the classification 

combined both functional specificity and confidence (Figure 2.3a). Further, this analysis 

suggested that for some of the proteins classed as of unknown function (particularly the 

Generic class), there had been some suggestion of function, but with very low confidence 

(Figure 2.3a), i.e., these were long shots based on the results from the three methods 

used in the Hutchison et al. study. Most of the proteins in the Unknown class were 

considered to be ‘hypothetical’ according to our criteria (Figure 2.3a). 
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2.5.6 Benchmarking our approach using proteins of known function 

In contrast to Hutchison et al. (Hutchison et al., 2016), who used TIGRFAM, genome 

context and threading to functionally characterise the proteins encoded by the minimal 

genome, we applied a wider range of approaches to infer their functions. Many methods 

have been developed to predict protein function using properties ranging from protein 

sequence to interaction data and predicting features ranging from subcellular localisation 

to Gene Ontology (GO) terms and protein structure (Friedberg and Radivojac, 2017). 

Here, we applied the top performing methods from the recent CAFA (Radivojac et al., 

2013; Jiang et al., 2016) assessments, which were available as either a webserver or for 

download in combination with other established methods to assign functions to the 

proteins encoded by the minimal bacterial genome (see methods and Figure 2.4). Overall 

functional inferences were made by manually investigating and combining the predictions 

and their consistency with genes from the same operon. 

 

Figure 2.4 Assigning function to proteins in the minimal genome. The flowchart outlines how functions were 

assigned to the proteins using MMSYN1_0879 as an example. The process is described in details in the 

section Methods / Combined protein function prediction. Briefly, the top row of methods are used to identify 

a likely function. The methods in the three groups of boxes (predicted GO terms, ligand binding predictions 
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and membrane protein predictions) are then used to see if they support the function identified by the first 

group. Where the first group does not predict a function then this second group was used. The figure shows 

the results obtained for MMSYN1_0879, which was annotated as the gene mgtA, a magnesium importing P-

type ATPase 

To test the performance of our approach, we applied it to the proteins of known function 

belonging to the Hutchison classes Putative, Probable and Equivalog. For 92% (266 of 289) 

of the proteins, the functions predicted by our approach agreed with the annotation 

assigned by Hutchison et al. (Figure 2.3b). Our approach has increased the confidence of 

these annotations, with an average of 13 methods making predictions that supported the 

functional annotations, compared to a maximum of three methods used in the previous 

study (Figure 2.3c). 

For nine proteins there were minimal differences in the annotations, for example 

MMSYN1_0637 was previously annotated as the gene rpsI, which encodes the 30S 

ribosomal protein S9, whereas our predictions suggest it to be rpsN, which encodes the 

30S ribosomal protein S5 (Appendix 2 Supplementary Data File 5), which is probably due 

to them both belonging to the ribosomal protein S5 domain 2-like superfamily. For 12 

proteins, our annotations were less specific than the original ones. These proteins were 

solely in the Hutchison et al. Putative class and the existing annotations were highly 

specific (Appendix 2 Supplementary Data File 5), such as for MMSYN1_0787, our 

annotation of RelA/SpoT family protein, is more general that than the original relA gene 

annotation. For a single protein (MMSYN1_0154) our predicted function of leucyl 

aminopeptidase was more specific than the initial cytosol aminopeptidase family, 

catalytic domain protein. Further, only for a single protein (MMSYN1_0908) was our 

predicted function (yidC; inner membrane protein translocase component) completely 

different to the existing annotation (misC-polyketide synthase). Overall, this 

demonstrates that for proteins with known function our approach is able to assign 

functions that agree with the existing annotations although in some cases, our 

assignment may be less specific than the existing annotations. We did not assign 

functions that disagreed with the known function. Further, with many methods now 

supporting these functions, there is greater confidence in them. 
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2.5.7 Annotating proteins of previously unknown function 

We assigned a function to 133 of the 149 proteins of unknown function. For nearly half of 

them (66 of 149), new functional information was provided. This included more specific 

functions (25), assigning a functional category (5) or both of these (26). For the remaining 

ten proteins, greater functional information was added but the specificity class or 

functional category remained the same. For example, MMSYN1_0133 was initially 

annotated as a peptidase of the S8/S53 family, while we proposed a Subtilisin-like 1 

serine protease function. While our annotation is more detailed, it is not highly specific 

and so the protein remained in the Specific class and Proteolysis functional category. 

For 51 proteins, a more specific function was assigned (Figure 2.5a and Appendix 2 

Supplementary Data File 5). This included 33 proteins initially classified as Hypothetical, 

ten classified as General and eight as Specific. An example of such protein may be an 

MMSYN1_0305 protein initially annotated as a metallopeptidase from the family M24 

(Specific class), which we predicted to be a Xaa-Pro dipeptidase; pepQ (Highly specific 

class). For 33 proteins that had initially been annotated as hypothetical, a function was 

now assigned. Twenty-five of these annotations were classified as General, seven as 

Specific and one as Highly specific (Figure 2.5a and Appendix 2 Supplementary Data File 

5). Eight proteins moved from a General to a Specific function (seven Specific, one Highly 

specific), and 10 proteins were assigned Highly specific functions having previously been 

assigned a Specific function (Figure 2.5a). These predictions vary in their level of 

confidence. Some of them are supported by many methods, while some have highly 

confident predictions from a smaller number of methods (Figure 2.5b, c). 
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Figure 2.5 Proteins assigned new functions. This figure shows the 51 proteins where the specificity class was 

increased. Results for each final specificity class are represented by a different colour: orange for the 

General specificity class, light brown–Specific and dark brown–Highly specific. a Each column represents a 

protein in the minimal genome and the squares show the methods that made predictions (darker colours 

indicate support of the final prediction), grey squares indicate predictions that did not support the function, 

light squares indicate that a method did not make a prediction. Proteins are grouped by their initial 

specificity class (Hypothetical, General, Specific and Highly specific) and then by their final specificity class. b 

Boxplot demonstrating the distribution of the scores across proteins. Proteins grouped by their initial 
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specificity class and then by their final specificity class. Horizontal lines represent the median, the lower and 

upper hinge show respectively first quartile and third quartile, and lower and upper whisker include scores 

from first quartile to (distance between the first and third quartile) × 1.5 (for lower whisker) and from third 

quartile to (distance between the first and third quartile) × 1.5 (for upper whisker). Any scores outside of 

these intervals are shown as points. c The number of methods supporting the function and the average 

score. Each point represents a protein 

For most proteins that were assigned a general function, we see that they were often 

supported by fewer methods but those methods predicted them with high confidence 

scores (Figure 2.5a). For example, the group of proteins in the bottom right corner of 

Figure 2.5c were all predicted to be transporters but only assigned a general function as 

further details such as substrate specificity could not be inferred. Where Specific and 

Highly specific functions were assigned, typically more methods supported the function 

but there was a greater range in the scores associated from the individual methods 

(Figure 2.5). For example, MMSYN1_0298 and MMSYN1_0302 were both initially classed 

as hypothetical and we have assigned them Specific and Highly specific functions 

respectively, based on data available from 10 (MMSYN1_0298) and 12 (MMSYN1_0302) 

methods (Figure 2.5 and Appendix 2 Supplementary Data Files 1–6, 8). Based on these 

data sources we propose that MMSYN1_0298 is a ribosomal protein from the family 

L7AE/L30e (Figure 2.6a) and that MMSYN1_0302 is an oxygen-insensitive NAD(P)H 

nitroreductase (Figure 2.6b), both of which are functions widespread across the kingdoms 

of life. 

Our analysis suggests that the combination of methods improves the reliability of 

function annotation. For some proteins, there appeared to be evidence for a given 

function from multiple sources, but on closer inspection it was difficult to assign more 

confident annotations (Figure S3). For example, MMSYN1_0138 is homologous to the 

ATP-binding region of ABC transporters but the ATP-binding site is not conserved, which 

casts some doubt on this function (Figure S3A). For MMSYN1_0615, matches from four 

methods suggest a Phenylalanine-tRNA ligase function (Figure S3B). However, 

MMSYN1_0615 only contains 202 residues and the beta chain of bacterial Phenylalanine-

tRNA ligases contain nearly 800 residues, making it unlikely that MMSYN1_0615 performs 

this function (Figure S3B). 
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Figure 2.6 Confident predictions of protein function in the minimal genome. Both a MMSYN1_0298 and b 

MMSYN1_0302 were previously classified as hypothetical proteins. The results from prediction methods and 

the function assigned are shown 

Overall, we found that the diversity of different methods used was required for inferring 

function, with no individual method able to predict the most detailed function assigned to 

more than one-third of the proteins of unknown function (Table S2). The top five 

methods to assign the most detailed functions each used different approaches, including 

a method that identifies orthologous groups (eggNOG-Mapper (Huerta-Cepas et al., 

2017)), the group of methods that predict GO terms (FFPred3 (Cozzetto et al., 2016), 

Argot2.5 (Falda et al., 2012), GOAT (see Appendix 7) and LocTree3 (Goldberg et al., 

2014)), a method that predicts protein three-dimensional structure (Phyre2 (Kelley et al., 

2015)), identification of protein domains from Pfam and finally the best BLAST match 

from UniProt. Further, any combination of the top five performing methods only obtained 

the final annotation for a maximum of 25% of the proteins, further highlighting the 
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contribution of multiple different methods to assign functions (Table S3). Two methods 

(GO terms and TMHMM) were able to widely provide more generic functions supporting 

the overall assigned function (54% for GO terms and 82% for TMHMM), although 

TMHMM only predicts if the protein contains transmembrane helices (Table S2). 

For the remaining 83 proteins, our predictions supported the existing annotation. 

Importantly for many of these proteins, multiple methods have now made predictions 

that support the annotation, thus increasing their confidence. Figure 2.7 shows that many 

of the proteins (28 out of 83) have predicted functions that are supported by 10 or more 

methods, rising to 61 supported by 5 or more methods, often with high confidence scores 

(or e-values) from the individual methods. 

 

Figure 2.7 Multiple methods supporting existing annotations. For all proteins where the predicted function 

agreed with the existing annotation (i.e., the specificity class was not changed), the number of methods that 

predicted the function is plotted against the average score from these methods. Points for each of the final 

specificity classes are represented by a different colour: beige for the Hypothetical specificity class, orange–

General, light brown–Specific and dark brown–Highly specific 

2.5.8 Understanding biological processes in the minimal genome 

Functional categories were assigned to 31 proteins that had previously been classified 

with Unclear biological process. The majority of the proteins with a newly assigned 

functional category were predicted to have transporter functions, with 24 proteins added 

to the 84 already assigned to this functional category (Figure 2.8a). Further, one protein 

(MMSYN1_0033) was assigned to the cytosolic metabolism category, three to the 

preservation of genetic information category (MMSYN1_0005, MMSYN1_0239, 

MMSYN1_0353), and three to the expression of genetic information category 

(MMSYN1_0615, MMSYN1_0730, MMSYN1_0873) (Figure 2.8a). 
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Figure 2.8 Functional annotations of the minimal bacterial genome. The number of proteins in each of the a 

protein biological process categories (light and dark purple indicate initial and final categories, respectively). 

b Specificity classes is shown with the original minimal genome annotation and the annotations identified 

here. c Shows the change in specificity classes, coloured based on the original specificity class. Results for 

each initial specificity class are represented by a different colour: beige for the Hypothetical specificity class, 

orange–General, light brown–Specific and dark brown–Highly specific 
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Overall, while functional annotations have been inferred for a considerable proportion of 

the proteins of unknown function, the biological process for 48 proteins remains 

unknown (i.e., in the Unclear category; Figure 2.8a). For 32 of these proteins, a molecular 

function was assigned such as Cof-like hydrolase, ATPase AAA family, or DNA-binding 

protein HU, but there was insufficient information to assign a functional category. The 

remaining sixteen proteins lack functional information and are classified as hypothetical. 

These proteins do not contain any known domains or transmembrane helices, none have 

orthologues in other kingdoms of life and only a few within bacteria. Either these are 

species-specific proteins that perform an important function within Mycobacteria or they 

have diverged significantly such that sequence relationships are not detected. 

2.5.9 Newly assigned functions indicate transporters 

Transmembrane helices were identified in 41% (61) of the proteins of unknown function 

(Figure 2.2 and Appendix 2 Supplementary Data File 4). Fifteen transmembrane proteins, 

which were not categorised as transporters, were annotated with functions in cell division 

(1), chromosome segregation (1) and proteolysis (4), while the biological process 

remained unknown for nine. Our analysis suggests that 46 of the 61 predicted 

transmembrane proteins are likely to be responsible for membrane transport (Appendix 2 

Supplementary Data File 4, Figure S6). Of the 46, 23 were previously annotated by 

Hutchison et al. with a range of transporter functions (e.g., ABC transporters, S 

component of ECF transporters), all of which were further supported by our analysis. A 

further 15 proteins that lack transmembrane domains were also associated with 

transport functions, e.g., ATP-binding units of ABC transporters, 14 of them were 

identified by Hutchison et al. (Hutchison et al., 2016). 

Of the 24 newly proposed transporters (previously hypothetical or with minimal 

information, e.g., membrane protein), six gained specific transporter functions. All six 

were previously classed as membrane proteins and have now been annotated as 

transporters; one hexose phosphate transport protein (MMSYN1_0881), one ABC 

transporter (MMSYN1_0411), one S component of an ECF transporter (MMSYN1_0877), 

and three belonging to the Major facilitator superfamily (MMSYN1_0235, 

MMSYN1_0325, MMSYN1_0478) (Appendix 2 Supplementary Data Files 1–6, 8). The 

remaining 18 proteins annotated as transporters (general specificity level) had previously 
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either been annotated as membrane or hypothetical proteins. Results from a few 

methods (with high scores–Figure 2.9) indicate that they are transporters but it was not 

possible to assign them to a specific family/type of transporter or to identify a substrate. 

 

Figure 2.9 Prediction of membrane related functions. Each point represents a protein with initially unknown 

function for which we assigned cell membrane related functions (e.g., transmembrane, transporter). The 

number of methods that supported the prediction is plotted against the average score from these methods. 

Points for each of the final specificity classes are represented by a different colour: orange for the General 

specificity class, light brown–Specific and dark brown–Highly specific 

More specific annotations could be made for proteins already annotated with transport-

related functions, including four proteins (MMSYN1_0034, MMSYN1_0399, 

MMSYN1_0531, MMSYN1_0639) that were classed as FtsX-like permeases having 

previously been given generic transport-related annotations (e.g., permease). For most of 

these proteins, we have greater confidence in the assigned function, given that many 

different methods support them (Figure 2.9). This extends their initial annotations that 

had been assigned by only three methods. For example, one operon encodes proteins 

that transport oligopeptides (AmiABCDE MMSYN1_0165 - MMSYN1_0169) and another 

operon encodes a spermidine/putrescine transporter (PotABCD MMSYN1_0195 - 

MMSYN1_0197) (Appendix 2 Supplementary Data File 5, Figure S4 and Figure S5). 

One of the three proteins newly proposed to be members of the Major facilitator 

superfamily, MMSYN1_0325, was previously classified as a membrane protein (Figure 

2.10). In agreement, the transmembrane helix prediction tool TMHMM (Krogh et al., 

2001) predicted 13 transmembrane helices in the protein. Further, the structure was 

confidently modelled by Phyre2, with > 98% confidence for 26 independent structural 

templates, all of which had transporter functions (including members of the MFS 

superfamily). InterPro (Mitchell et al., 2019) assigned it into the MFS transporter 

superfamily. Supporting this function, further methods predicted a range of transporter-



Environmental conditions shape the nature of a minimal bacterial genome 

89 
 

related functions, including symporter activity (GO:0015293) and substrate-specific 

transmembrane transporter activity (GO:0022891) with probabilities >90% (Figure 2.10 

and Appendix 2 Supplementary Data File 6). 

 

Figure 2.10 MMSYN1_0325 is predicted to be a transporter and member of the Major facilitator 

Superfamily. The results from Phyre2, TMHMM, the combination of GO term prediction methods (numbers 

shown are probability associated with each function) and InterPro are shown. All of these methods 

supported a transporter function with Phyre2 and InterPro confidently identifying association with the Major 

facilitator superfamily 

2.5.10 Comparison of predictions made by Danchin and Fang 

Recently Danchin and Fang (Danchin and Fang, 2016) used what they referred to as an 

engineering-based approach to investigate the unknown functions within the minimal 

bacterial genome and provided annotations for 71 of the 149 proteins of unknown 

function. They set out to identify functions that would be expected to be in a minimal 

genome but were missing from the existing annotation and to then identify proteins that 

could perform these functions (although it is not clear how these candidates were 

identified as no methods were provided (Danchin and Fang, 2016)). 

Comparison of the results from both studies revealed considerable overlaps (Appendix 2 

Supplementary Data File 7). Using our approach, only sixteen proteins remained 

hypothetical without any assigned function, while Danchin and Fang did not provide any 

annotations for 78 of the proteins with unknown function. Thus, we leave only 10% of the 
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previously unannotated proteins without any assigned function, while 52% remain 

completely uncharacterised by Danchin and Fang. This demonstrates the breadth of 

function that our approach is able to assign. The predictions showed complete agreement 

for 36 proteins and minor differences for 18 proteins (Appendix 2 Supplementary Data 

File 7). For a further 13 proteins the predictions were more detailed in one study than the 

other (Appendix 2 Supplementary Data File 7). For example, Danchin and Fang proposed 

that MMSYN1_0822, is an S component of an ECF transporter and is part of a folate 

transporter, whereas we identified three possible folate transporters (MMSYN1_0314, 

MMSYN1_0822, MMSYN1_0836) and could not confidently assign substrates to any of 

them. 

Four of the predictions differed considerably (Appendix 2 Supplementary Data File 7). 

They are represented by proteins such as MMSYN1_0388 which here was annotated as a 

transmembrane protein, possibly a cation transporter, while Danchin and Fang suggested 

that it has a role in double-strand break repair. For three of the proteins, Danchin and 

Fang inferred more functional characteristics. They annotated MMSYN1_0853 

MMSYN1_0530, MMSYN1_0511 with the functions energy-sensing regulator of 

translation, promiscuous phosphatase and double-strand break repair protein, 

respectively, while here they were retained as hypothetical since there was little 

agreement between the multiple methods used to be able to infer protein function. 

2.6 Discussion 

The genome size of Mycoplasma mycoides used to create the minimal cell is 1079 

kilobase pairs (kbp). Surprisingly, it is not the smallest genome across all bacteria 

(Hutchison et al., 2016). That title belongs to the 160 kbp-genome of Carsonella ruddii – 

an endosymbiont living in phloem sap-feeding insects (Nakabachi et al., 2006). However, 

its genome lacks many genes essential for bacterial life, including those responsible for 

the biogenesis of cell envelope or metabolism of lipids and nucleotides. Because of that, it 

cannot fulfil the main condition for creating the minimal synthetic cell: it must be capable 

of autonomous growth, and as a result, mycoplasmas were selected for this task as they 

are the simplest organisms that can grow autonomously (Hutchison et al., 2016). The 
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smallest known genome of all mycoplasmas belongs to Mycoplasma genitalium (580 

kbp). However, Hutchison et al. decided to minimise the genome of Mycoplasma 

mycoides because of its faster growth.  

It is important to know that Mycoplasma mycoides is a parasitic bacterium - if aside from 

the independent growth, a “free-living” condition was to be added to the selection 

criteria of the smallest bacteria, a marine bacterium Pelagibacter ubique would be chosen 

as the model organism. This is because it is the smallest known self-replicating and free-

living bacteria – it has all the pathways necessary to synthesise all necessary amino acids 

and almost all cofactors with a genome size of no more than 1309 kbp (Giovannoni et al., 

2005). 

The synthesis of the bacterium with the smallest genome (to date), resulted in an 

astounding number (149 of 473) of proteins of unknown function and emphasised the 

gaps in our understanding of the basic principles of life. Our results demonstrate that the 

combined use of a range of complementary advanced methods for protein function 

inference is superior to the use of individual approaches. Using a combination of results 

from 22 different methods, we were able to assign new functional information to 66 of 

the 149 proteins that were originally classed as having unknown function. Further, given 

the use of many different methods, we have increased the confidence in existing 

annotations that our approach also supported. For some proteins, more detailed 

functions were predicted by some of the methods. However, in manually combining the 

predictions, there was insufficient evidence to assign them to more specific functional 

classes. Nevertheless, these functions should be sufficient to direct further research and 

experimental characterisation. Our analysis shows that the combination of many methods 

was essential with no single method able to identify the highest detailed function 

assigned to more than one-third of the proteins (Table S2). 

Most of the proteins of unknown function were homologous to few other proteins with 

known functions and they also lacked orthologues. Thus, for many of the proteins where 

functions have been assigned, methods that are not dependent on homology were 

prevalent (e.g., FFPred3 (Cozzetto et al., 2016), Figure 2.5 and Figure S6). This highlights 

the importance of developing further methods that do not rely on homology. Moreover, 

many of the difficult to characterise proteins do not contain known protein domains and 
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are enriched for transmembrane proteins (Figure 2.1). Hence, additional approaches to 

predict the function of such proteins are required. 

With our expanded functional assignments, 50% of the proteins encoded by the minimal 

genome perform functions associated with two fundamental life processes; preserving 

and expressing genetic information (Figure 2.8a). Most notably, many proteins were 

assigned transporter functions, and these proteins now represent 22% of the minimal 

genome. In generating the minimal genome, 32 M. mycoides genes with membrane 

transport functions were removed (Hutchison et al., 2016). Additionally, many proteins 

with metabolic functions were removed. Hence, the minimal genome bacterium is reliant 

on obtaining many nutrients from the medium and also needs to remove (toxic) 

metabolites from the cell. Thus, it may not be surprising that transporters are essential 

for the bacterium. It was not possible to assign substrates for these transporters. The 

reason for this may be at least in part due to the promiscuity of mycoplasmal transport 

systems (S Razin, 1998). Additionally, transporters may transport low-affinity substrates 

in a nutrient-rich environment in which nutrients are highly abundant. 

The identification of many transporters also highlights the dependence of the minimal 

bacterial genome cells on the medium in which they grow. Hence, we postulate that there 

is no such thing as a generic minimal genome. Instead, the genes that shape the minimal 

genome partly depend on its environment. Consequently, we propose that a minimal 

genome consists of two sets of genes (Figure 2.11). The first set encodes functions that 

are an essential prerequisite for all bacteria and probably all forms of life, which on its 

own is not sufficient to enable life. This gene set needs to be complemented with an 

additional set of genes that enables life in a particular environment. In a nutrient-rich 

environment, these additional genes may largely have functions associated with 

compound uptake and efflux in agreement with our current results presented here 

(Figure 2.12). Under other circumstances, where nutrients are not so abundant, metabolic 

functions are likely to be of greater importance. 
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Figure 2.11 Two sets of genes that constitute a minimal bacterial genome. They represent genes that are 

essential for all bacteria and genes that enable life in a particular environment. 
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Figure 2.12 Change in the number of genes responsible for metabolism and biosynthesis versus the 

number of genes responsible for transport depending on the richness of nutrients in the environment. The 

Petri dish represents the environment in which minimal cells are grown. Grey circles show minimal cells, and 

the examples of nutrients include amino acids (AA), nucleotides (A, C, G, T) and vitamins (Vit). 

In summary, we have successfully applied a combined bioinformatics approach to 

characterise proteins with unknown function from the minimal genome that had not 

been annotated by previous approaches. Currently, only about 1% of all known proteins 

are annotated with experimentally confirmed functions. Since the experimental analysis 

of protein function will for the foreseeable future remain restricted to a small subset of 

proteins due to physical and financial limitations, optimised bioinformatics approaches 

will be critical for the assignment of functions to proteins and, in turn, our understanding 

of the essential functions of life. Proteins that are difficult to classify typically (i) do not 

contain known protein domains (ii) lack homology to proteins with known structure and 

(iii) are enriched for transmembrane proteins. Further, most of the hypothetical proteins 

appear to be bacteria- and clade-specific. Hence, further complementary approaches are 

needed that enable the assignment of functions to such proteins. Importantly, a 

considerable proportion of the newly annotated proteins probably have transporter 

functions. These transporters are likely to be involved in the uptake of nutrients and 

efflux of waste products in a minimal genome organism that lacks many metabolic 

enzymes and is cultivated in a nutrient-rich environment. Additionally, our findings 

indicate the existence of a core set of genes that is essential for all forms of life but not 

sufficient to enable life on its own. This essential gene set needs to be complemented by 

a second enabling gene set that facilitates life under particular environmental conditions. 

Thus, the concept of a minimal genome is context/environment specific. 

2.6.1 The current state-of-the-art in protein structure prediction 

In this work, we used Phyre2 (Kelley et al., 2015) in the normal mode to predict structures 

of the minimal genome proteins. This method first builds a hidden Markov model (HMM) 

for the target protein sequence homologs detected by PSI-BLAST (Altschul et al., 1997) 

and secondary structure is predicted by PSI-PRED (Jones, 1999). The HMM is then 

scanned against a library of HMMs of known structures, and a query-template alignment 

is generated to model the backbone of the 3D structure. Finally, the procedure ends with 



Environmental conditions shape the nature of a minimal bacterial genome 

95 
 

modelling of INDELs and side chains. In normal mode, Phyre2 creates a model of the 3D 

structure based on a single template.  

Single-template structure prediction methods are highly reliable when a template has 50-

60% identity compared to the target sequence (Buenavista, Roche and McGuffin, 2012). 

However, in case of a lower level of sequence–template similarity, other methods are 

recommended to increase the quality and coverage of predicted models.  

IntFOLD-TS builds a 3D model of the protein structure based on multiple templates 

(Mcguffin et al., 2019). The model is created iteratively using fourteen single-template 

and eight threading methods.  The multiple target-template alignments are then scored 

using the ModFOLD method (McGuffin et al., 2021) to minimise local errors. IntFOLD-TS 

has been continuously evaluated in the Critical Assessment of Structure Prediction since 

the 9th edition, and its performance has been competitive (for example, in CASP14 

IntFOLD6 was ranked as 91 out 146 in ‘Regular Targets’ category and 99 out of 136 in 

‘Inter-domain prediction’) (Kryshtafovych, Fidelis and Moult, 2011; Mcguffin et al., 2019; 

Home - CASP14, 2021).  

However, the first and second place in the latest CASP edition belongs to AlphaFold2 

(Jumper et al., 2021) and trRosetta-based methods (Yang et al., 2020), respectively, 

among the methods that do not have to be fully automated (‘Human group’). In addition, 

while I-TASSER (Yang et al., 2015) and C-QUARK (Mortuza et al., 2021) were ranked as the 

best fully automated methods (‘Server’ group), it has to be noted that AlphaFold2 

achieved far better results than any other method (Pearce and Zhang, 2021b). 

In I-TASSER, structural templates are identified using LOMETS (Zheng et al., 2019) – a 

multiple threading method (Yang et al., 2015). The sequence is then divided into 

threading-aligned and threading-unaligned regions. Finally, Monte Carlo simulations 

(Thachuk, Shmygelska and Hoos, 2007) are applied to perform iterative template-based 

fragments assembly and build the full-length model. 

Similarly to I-TASSER, C-QUARK and Rosetta are based on the fragment assembly, and 

they perform Monte Carlo simulations to construct the full-length model (Rohl et al., 

2004; C-QUARK: Contact Assisted Ab Initio Protein Structure Prediction, 2021; Mortuza et 

al., 2021). However, in contrast to I-TASSER, C-QUARK and Rosetta are de novo protein 

structure prediction methods. In addition, C-QUARK uses structure fragments collected 
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from unrelated PDB structures, and simulations are conducted under the direction of a 

complex force field consisting of knowledge-based energy terms, inter-residue contacts 

and contact-map predictions.  

Finally, trRosetta and AlphaFold are deep learning-based methods (Yang et al., 2020; 

Jumper et al., 2021). trRosetta applies deep learning to predict the interresidue distances 

and orientations, which are then converted into smooth restraints used in Rosetta (Rohl 

et al., 2004) to build the full-length 3D structure model under the guidance of energy 

minimisation. AlphaFold also incorporates novel neural networks to predict the 

distribution of interresidue distances and angles between the bonds that the residues 

form (Senior et al., 2019; Jumper et al., 2021). The first iteration of AlphaFold used 

fragment assembly to model the full protein structure. However, AlphaFold2 applies a 

gradient descent-based folding technique which allows for faster predictions. Created by 

Google’s DeepMind, AlphaFold was evaluated for the first time in CASP13 in 2018, where 

it showed unprecedented accuracy in protein structure prediction (Pearce and Zhang, 

2021a).  

In addition to using novel algorithms of protein structure prediction capable of modelling 

structures with high accuracy and coverage, it is also recommended to use tools that 

assess the quality of predicted models. Examples of such tools include ProQ3 (Uziela et 

al., 2016) and ModFold8 (McGuffin et al., 2021). ProQ3 is a Support Vector Machine-

based method that uses energy terms from Rosetta as features (Uziela et al., 2016). 

Meanwhile, ModFold8 uses neural networks to combine scores from thirteen different 

methods (Uziela et al., 2016).    

Our usage of a single-template (normal) mode of Phyre2 to model 3D structures of the 

minimal genome proteins was justified at the time. Using this technique, we predicted 

confident structures with good coverage for most of the proteins from Equivalog, 

Probable, Putative and Generic groups. However, we found confident templates (at least 

90%) that covered at least 75% of the proteins only for nine proteins from the Unknown 

functional class, which lacked orthologs in other species. Using newer tools such as deep 

learning-based methods trRosetta or AlphaFold2, complemented by methods estimating 

the quality of the entire model, could improve the confidence and coverage of predicted 

structures (Uziela et al., 2016; Yang et al., 2020; Jumper et al., 2021; McGuffin et al., 
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2021). For example, DMPfold (a deep learning-based method for protein structure 

prediction) has recently been applied to the minimal bacterial genome and has been able 

to obtain close to complete structural coverage (Greener et al., 2020). 

 
Our method of protein function prediction was not successful for sixteen proteins of the 

minimal genome. For those proteins, we could not conclude any functional information, 

and they remained annotated as hypothetical. Knowing the 3D structure of those proteins 

could help identifying their function. We could model protein’s interactions with other 

proteins or ligands by applying molecular docking (Northey, Barešić and Martin, 2018; 

Salmaso and Moro, 2018) and then apply molecular dynamics simulations to examine the 

nature of those interactions (Hospital et al., 2015).  
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3.1 My contribution 

I performed all analysis of the exome sequencing data for these cell lines, including 

setting up the computational pipeline that was used and generating the figures. This 

covers sections' Variant calling' and 'Mutational signatures' from 'Materials and Methods'. 

I wrote the paper's first draft, which I then worked on with Mark Wass and Martin 

Michaelis. This manuscript is being prepared to go through the peer-review process for 

publication in a journal. 

3.2 Abstract 

The standard of treatment for acute myeloid leukaemia (AML) has remained unchanged 

for many years despite high mortality rates. Drugs commonly used to treat AML include 

cytarabine (a nucleoside analogue whose active form – cytarabine triphosphate - is 

incorporated into a growing DNA chain preventing DNA from extending) and 

daunorubicin (an anthracycline that inhibits the DNA over- and under-winding activity of 

topoisomerase II resulting in DNA damage). In addition, in recent years the FDA has 

approved multiple new drugs targeting molecular drivers of AML, including a combination 

therapy of cytarabine and daunorubicin (Vyxeos®). However, despite this progress, the 5-

year survival rate has not increased, remaining at 25%-30%; hence more efficient drugs 

are required.  

A new promising class of drugs are small molecule inhibitors that target MDM2 – a 

ubiquitin ligase that is a key negative regulator of p53. MDM2 inhibitors are currently 

under clinical investigation for acute myeloid leukaemia (AML), and patients with wild-

type p53 are good candidates for clinical trials. We here investigated four nutlin-3-

adapted sublines of the AML cell line MOLM13 to anticipate acquired MDM2 inhibitor 

resistance mechanisms. Whole exome sequencing identified complex mutation patterns 

associated with nutlin-3 resistance formation. The sublines MOLM13rNutlin20µMI, 

MOLM13rNutlin20µMII, and MOLM13rNutlin20µMIII harboured loss-of-function TP53 

mutations. Surprisingly, nutlin-3 resistant sublines (MOLM13rNutlin20µMII, 

MOLM13rNutlin20µMIII, and MOLM13rNutlin20µMIV) also displayed mutations in SAMHD1, 
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which cleaves the triphosphorylated active form of cytarabine, causing its deactivation as 

its natural function is to cleave deoxynucleoside triphosphates (dNTPs) into 

deoxyribonucleosides and inorganic triphosphate. All four nutlin-3-adapted MOLM13 

sublines displayed cross-resistance to daunorubicin, probably associated with TP53 

mutations and other impairments of p53 signalling in nutlin-3-resistant cells. In contrast, 

all four sublines displayed increased cytarabine sensitivity, probably caused by loss-of-

triphosphohydrolase-function SAMHD1 mutations in three sublines that could prohibit 

cleaving the cytarabine triphosphate and thus allowing its active form to be retained in 

the cell. High cytarabine triphosphate levels indicated increased cytarabine 

activation in SAMHD1 wild-type MOLM13rNutlin20µMI cells. In addition, SAMHD1 point 

mutations cause changes in cellular nucleotide levels that promote mutations and cancer 

cell evolution. Hence, SAMHD1 mutations and other mechanisms that affect 

deoxynucleoside phosphorylation may support evolutionary processes underlying AML 

cell adaptation to MDM2 inhibitors. Among 29 nutlin-3-adapted sublines of the AML cell 

lines MOLM-13, MV4-11, and SIG-M5, 18 (62%) displayed increased cytarabine sensitivity, 

9 (31%) unchanged cytarabine response, and two (7%) cytarabine resistance. In 

conclusion, nutlin-3-adapted MOLM13 sublines displayed cross-resistance to 

daunorubicin, probably caused by nutlin-3-induced TP53 mutations and other 

impairments of p53 signalling, whereas they showed increased cytarabine sensitivity, 

probably caused by SAMHD1 mutations and other mechanisms affecting cytarabine 

phosphorylation. SAMHD1 mutations are candidate biomarkers indicating cytarabine-

sensitive AML after the failure of MDM2 therapies. AML patients treated with MDM2 

inhibitors should be continuously monitored for TP53 mutations indicating an increasing 

chance of resistance to this therapy. Then, provided they display loss-of-function 

mutations in SAMHD1, cytarabine may be prescribed as a second-line treatment. 

 

Keywords: MDM2 inhibitor, nutlin-3, acute myeloid leukaemia, AML, acquired resistance, 

drug resistance 
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3.3 Introduction 

MDM2 inhibitors are a novel class of anti-cancer drugs, which are being clinically 

developed for TP53 wild-type cancers from different entities including acute myeloid 

leukaemia (Erba et al., 2019; Khurana and Shafer, 2019; Pi et al., 2019; Konopleva et al., 

2020). They exert their anti-cancer effects by activating p53, which is arguably the most 

important tumour suppressor protein. In agreement with the crucial role of p53 as 

tumour suppressor, TP53, the gene that encodes p53, is the most commonly mutated 

gene in cancer. About 50% of cancers harbour cells without functional p53 due to loss-of-

function mutations or TP53 gene deletions. When p53 becomes activated, it induces as 

transcription factor the expression of a large number of target genes, which in cancer 

cells typically results in cell death (Huang, 2020; Levine, 2020). 

MDM2 is one of the p53 target genes and encodes for an endogenous inhibitor of p53. 

The MDM2 protein physically interacts with p53 and mediates its ubiquitinylation and 

proteasomal degradation. Hence, MDM2 inhibitors are candidate drugs for the activation 

of p53 and induction of cell death in TP53 wild-type cancer cells (Wade, Li and Wahl, 

2013; Tisato et al., 2017; Huang, 2020; Levine, 2020).  

Various MDM2 inhibitors have been shown to exert anti-cancer effects in pre-clinical 

models of AML including patient-derived xenografts, alone or in combination with other 

drugs (Kojima et al., 2005; Secchiero et al., 2007; Long et al., 2010; Samudio et al., 2010; 

McCormack et al., 2012; Weisberg et al., 2015; Kojima, Ishizawa and Andreeff, 2016; 

Lehmann et al., 2016; Cassier et al., 2017; Pan et al., 2017; Seipel et al., 2018; Maganti et 

al., 2018) and subsequently been introduced into clinical trials (Erba et al., 2019; Khurana 

and Shafer, 2019; Pi et al., 2019; Konopleva et al., 2020). 

Drug-adapted cancer cell lines can indicate clinically relevant resistance mechanisms 

(Engelman et al., 2007; Nazarian et al., 2010; Poulikakos et al., 2011; Domingo-Domenech 

et al., 2012; Joseph et al., 2013; Korpal et al., 2013; Crystal et al., 2014; Göllner et al., 

2017; Schneider et al., 2017; Michaelis, Wass and Cinatl, 2019). Pre-clinical studies using 

cancer cell lines adapted to MDM2 inhibitors indicated that the treatment of TP53 wild-

type cancer cells results in the formation of TP53 mutations as resistance mechanism 

(Aziz, Shen and Maki, 2011; Michaelis et al., 2011, 2012; Jones et al., 2012; Cinatl et al., 
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2014; Gianna Hoffman-Luca et al., 2015; Drummond et al., 2016), which was clinically 

confirmed in liposarcoma patients (Jung et al., 2016; Marcellino et al., 2020). 

To further investigate acquired resistance to MDM2 inhibitors, we here used exome 

sequencing to characterise four sublines of the acute myeloid leukaemia cell line 

MOLM13 adapted to nutlin-3, an MDM2 inhibitor closely related to idasanutlin, which is 

currently undergoing clinical trials (Vassilev et al., 2004; Cinatl et al., 2014; Khurana and 

Shafer, 2019; Pi et al., 2019; Konopleva et al., 2020).  

3.4 Materials and Methods 

3.4.1 Cells 

The AML cell lines MOLM13, MV4-11, and SIG-M5 were obtained from DSMZ 

(Braunschweig, Germany). The nutlin-3-resistant sub-lines were established by adaption 

to growth in the presence of increasing drug concentrations as previously described 

(Michaelis et al., 2011)  and derived from the resistant cancer cell line (RCCL) collection 

(www.kent.ac.uk/stms/cmp/RCCL/RCCLabout.html) (Michaelis, Wass and Cinatl, 2019). 

All cells were propagated in IMDM supplemented with 10 % FBS, 100 IU/ml penicillin and 

100 mg/ml streptomycin at 37°C. Cells were routinely tested for mycoplasma 

contamination and authenticated by short tandem repeat profiling. 

3.4.2 Whole-exome sequencing 

Whole-exome sequencing was performed with Illumina HiSeq2000 using paired-end 

reads of a length of 100 base pairs. Exome enrichment was conducted using Nextera 

Exome Enrichment Kit. 

3.4.3 Variant calling 

The variant calling pipeline is summarised in Figure S9. After initial quality control using 

FastQC (Andrews, 2010), reads were trimmed with Trimmomatic-0.38 (default 

parameters) (Bolger, Lohse and Usadel, 2014) and mapped onto the reference genome 

http://www.kent.ac.uk/stms/cmp/RCCL/RCCLabout.html
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(version hg19) using the Burrows-Wheeler Alignment Tool with the algorithm bwa-0.7.17-

mem (Li and Durbin, 2009). Duplicate PCR reads were marked and .bam files built using 

Picard-2.17.10 (Picard Tools - By Broad Institute, 2019). GenomeAnalysisTK-3.7.0 

(McKenna et al., 2010) was used to realign sequences around insertions/ deletions and to 

recalibrate base scores. The machine learning model of covariation was built using dbSNP 

database (Sherry et al., 2001) (downloaded on 23rd of April 2018) as known sites. Variants 

were called with samtools-1.7 mpileup (Li, 2011) using default parameters. Phred quality 

score filters were set to 30 with bcftools-1.6 (Li et al., 2009) and variants with base call 

coverage below ten and variant call coverage below three were removed. Variants that 

affected protein sequences were identified with VEP (release 96) (McLaren et al., 2016) 

and categorised following the Sequence Ontology nomenclature (Eilbeck et al., 2005). We 

considered frameshift, stop-gained, splice acceptor, splice donor, incomplete terminal 

codon, stop-lost, start-lost, missense, inframe insertion, and inframe deletion variants. 

Germline-like variants with a frequency ≥0.001% in gnomAD (Lek et al., 2016) were only 

included if at least three sequences were recorded in TCGA and at least ten in COSMIC 

(Tate et al., 2019). The potential impact on protein structure/ function was estimated by 

SIFT (Kumar, Henikoff and Ng, 2009) and PolyPhen-2 (Adzhubei et al., 2010).  

3.4.4 Mutational signatures 

Mutational signatures were analysed with MuSiCa (Díaz-Gay et al., 2018) for Whole 

Exome Sequencing using reference genome version hg19. Additional mutational 

signatures were reconstructed from thirty current COSMIC mutational signatures. 

3.4.5 Viability assay 

Cell viability was tested by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) dye reduction assay after 120 h incubation modified after Mosmann 

(Mosmann, 1983) as described previously (Onafuye et al., 2019). Results are expressed as 

mean ± S.D. of at least three experiments.  
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3.4.6 Quantification of cytarabine triphosphate levels by LC-MS/MS 

analysis 

Cells were incubated with 13C3-cytarabine (SC-217994, Santa Cruz) at 37 °C in a humidified 

5% CO2 incubator (Sanyo MCO-18AIC) for six h. Subsequently, cells were washed twice in 

1 ml PBS, pelleted and stored at −20 °C until measurement. The concentration of 13C3-

cytarabine triphosphate was analysed by liquid chromatography-electrospray ionisation-

tandem mass spectrometry as previously described (Thomas et al., 2015; Schneider et al., 

2017). Briefly, the analytes were extracted by protein precipitation with methanol. An 

anion exchange HPLC column (BioBasic AX, 150 × 2.1 mm, Thermo) was used for the 

chromatographic separation, and a 5500 QTrap (Sciex) instrument was used to analyse 

the samples, operating as triple quadrupole in positive multiple reaction monitoring 

(MRM) mode. The precursor-to-product ion transitions used as quantifiers was m/z 487.0 

→ 115.1 for 13C3-cytarabine triphosphate. Due to the lack of a commercially available 

standard of 13C3-cytarabine triphosphate, relative quantification was performed using 

cytidine-13C9,15N3-5′-triphosphate as internal standard. 

3.5 Results 

3.5.1 Number of sequence variants in MOLM13 and its nutlin-3-adapted 

sublines 

MOLM13 cells were adapted to growth in the presence of nutlin-3 20µM by continuous 

exposure to stepwise increasing drug concentrations as previously described (Michaelis et 

al., 2011). All sublines displayed substantially decreased sensitivity to nutlin-3 relative to 

MOLM13 as indicated by the concentrations that inhibit cell viability by 50% (IC50, 

MOLM13: 0.68 ± 0.22µM, MOLM13rNutlin20µMI: 12.9 ± 2.5µM, MOLM13rNutlin20µMII: 11.3 

± 0.7µM, MOLM13rNutlin20µMIII: 12.3 ± 1.8µM, MOLM13rNutlin20µMIV: 10.6 ± 2.3µM). 

Exome sequencing analysis of MOLM13 and its nutlin-3-adapted sublines showed that all 

cell lines display similar numbers of variants. In total, between 219,602 (MOLM13) and 

249,532 (MOLM13rNutlin20µMI) variants were called per cell line. The number of high-
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quality variants (Phred score ≥ 30) ranged from 122,818 (MOLM13) to 138,114 

(MOLM13rNutlin20µMI), the number of high-quality/ high-coverage variants (Phred score ≥ 

30, ≥ 10 alleles covered, variant covered by ≥ three reads) from 58,469 to 68,084, and the 

number of high-quality/ high-coverage/ somatic-like variants (like high quality/ high-

coverage plus either frequency in gnomAD below 0.001% or at least 10 samples with this 

variant in COSMIC (Tate et al., 2019) and three in the TCGA 

(https://www.cancer.gov/tcga)) from 23,193 (Molm13rNutlin20µMI) to 29,033 

(MOLM13rNutlin20µMIII). Among the high-quality/ high-coverage/ somatic-like variants, 

371 (MOLM13rNutlin20µMIII) to 422 (MOLM13rNutlin20µMI) variants were considered to be 

most likely to have a functional impact because of their nature (frameshift variant, stop-

gained, splice acceptor variant, splice donor variant, incomplete terminal codon variant, 

stop-lost, start-lost, missense variant, inframe insertion inframe deletion) (Eilbeck et al., 

2005) (Figure 3.1).   
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Figure 3.1 The number of variants per each filtering stage in the pipeline. All – all the variants that were 

called; high quality – only variants with a base quality score (Phred score) of minimum 30; high quality and 

coverage variants – high-quality variants where the position is covered by at least ten reads and the variant 

allele itself is covered by at least three reads; high quality and coverage, somatic – high-quality and high-

coverage variants that are considered to be rare with the criterium of at least ten samples carrying this 

variant in COSMIC (Tate et al., 2019) and 3 in TCGA (Weinstein et al., 2013) database; high quality and 

coverage, somatic, most damaging – high-quality, high-coverage, somatic-like variants with the most 

damaging consequences that are in the scope of sequencing (frameshift variant, stop-gained, splice 

acceptor variant, splice donor variant, incomplete terminal codon variant, stop-lost, start-lost, missense 

variant, inframe insertion and inframe deletion). 
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Figure 3.2 Mutational signatures. a Mutational profile of high-quality, high-coverage, somatic-like variants 

in the scope of sequencing calculated by MuSiCa (Díaz-Gay et al., 2018) for the parental cell lines and all the 

drug-adapted sub-lines. The X-axis represents 3’ base and Y-axis – 5’ base. Each column is a different 

substitution type, e.g. the top left corner is a mutation from ACA to AAA in the Molm13 parental cell line. 

The coloured heatmap represents the frequency of the mutation type in the cell line – white when the 
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frequency equals to 0, yellow for 0.1 and red for 0.17. b Contribution of the current thirty COSMIC (Tate et 

al., 2019) mutational signatures into the reconstructed mutational signature of high-quality, high-coverage, 

somatic-like variants in the protein-coding regions created by MuSiCa for the parental cell line and all the 

drug-adapted sub-lines. 

3.6 Mutational signatures 

The combination of mutation types can be categorised in mutational signatures 

(Alexandrov and Stratton, 2014; Helleday, Eshtad and Nik-Zainal, 2014). Mutational 

signatures of the MOLM13 parental and drug-adapted sub-lines were calculated for high-

quality, high-coverage, somatic-like variants from the protein-coding regions using 

MuSiCa (Díaz-Gay et al., 2018). The mutational signatures were very similar across 

MOLM13 and its nutlin-3-adapted sublines (Figure 3.2a) and resembled the mutational 

MOLM13 signature from the COSMIC database (Tate et al., 2019) (Figure S10). All the cell 

lines are enriched in the X[C>T]X and X[T>C]X substitutions, especially in the context of 

X[C>T]G and A[T>C]G or C[T>C]G. Reconstruction of the mutational signatures using the 

COSMIC database (Tate et al., 2019) also revealed very similar patterns (Figure 3.2b). 

Eleven of the 30 mutations signatures contributed to the mutational signature of the 

MOLM13 cell lines, with signatures 1, 3, 7, 12, 17, 20, 24, and 30 contributing to all of 

them and signature 12 having the highest impact in all five cell lines (Figure 3.2b). Taken 

together, nutlin-3 adaptation did not substantially affect the mutational signatures of the 

investigated MOLM13 cell lines. 

3.7 Sequence changes between parental and drug-adapted cells 

Next, we analysed the changes in the nutlin-3-resistant sublines relative to the parental 

MOLM13 cell line. We categorised changes into gained (present but not called in 

MOLM13, called in a subline), de novo (no read in MOLM13, called in a subline), not 

called (called in MOLM13, present but not called in subline), and lost (called in MOLM13, 

no read in a subline). Moreover, we considered significant changes in the allele 
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frequencies of variants that were called in MOLM13 and its sublines (Table S4, Figure 

S11). 

The majority of the high-quality/ high-coverage/ somatic-like most-likely damaging 

variants (from 68% in MOLM13rNutlin20µMI to 72% in MOLM13rNutlin20µMII and 

MOLM13rNutlin20µMIII) were shared between MOLM13 and either of its sublines (Figure 

3.3, Table S5). The nutlin-3-adapted MOLM-13 sublines harboured similar proportions of 

de novo (13-17%), gained (13-16%), increased (0.2-1.6%), and unchanged (68-72%). In 

addition, 9-18% of the high-quality/ high-coverage/ somatic-like and most-likely damaging 

variants in MOLM13 cell line were present but not called in the sublines, and 16-18% 

were lost (no reads identified in the sublines) (Figure 3.3, Table S5). 

 

Figure 3.3 The number of variants per drug-adapted sub-line and class. High-quality, high-coverage, 

somatic-like and most-damaging variants in each drug-adapted and parental cell line were classified as de 

novo, gained, higher allelic ratio, same, lower allelic ratio, not called and lost and then counted in each of 

the drug-adapted sub-line – Molm13I, Molm13II, Molm13III and Molm13IV. 
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Figure 3.4 Common high-quality, high-coverage, somatic-like and most-damaging variants. The number of 

high-quality, high-coverage, somatic-like and most-damaging variants that are shared between the drug-

adapted sub-lines. The following variant types were considered: a acquired (de novo, gained, higher allelic 

ratio) b de novo. 
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Figure 3.5 Common genes with high-quality, high-coverage, somatic-like and most-damaging variants. 

The number of genes with high-quality, high-coverage, somatic-like and most-damaging variants shared 

between the drug-adapted sub-lines, i.e. genes do not have to carry the same variant in two different drug-

adapted sub-lines to be considered shared between those cell lines. Genes with the following variant types 

were considered: a acquired (de novo, gained, higher allelic ratio) b not retained (lost, not called, lower 

allelic ratio). 

Only 14 of the high-quality, high-coverage, somatic-like, most-damaging variants that 

were acquired in the drug-adapted sub-lines were shared between all four drug-adapted 

sub-lines (Appendix 4 Supplementary Tables 1 - 8). One of the 14 variants, an inframe 
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deletion in MUC2 Mucin-2, is a de novo variant (Figure 3.4a, Figure 3.4b, Appendix 4 

Supplementary Tables 1 - 8). Since it is unlikely that exactly the same mutation 

independently occurred four times, it is more likely that it is present in MOLM13, but was 

not detected. This may indicate that all four sublines may be derived from a relatively 

rare subpopulation. Generally, shared de novo mutations probably rather indicate a 

shared clonal origin than the independent occurrence of identical mutations.  

When considering genes with mutations (but not necessarily the same variant), 17 genes 

were found to harbour mutations in all four sublines. The numbers of genes that were 

only mutated in two or three sublines were lower (Figure 3.5a, Appendix 4 

Supplementary Tables 1 - 8). A higher overlap was found among variants that were called 

in the MOLM13 but not in the sublines. Mutations disappeared in 76 genes across all four 

sublines (Figure 3.5b, Appendix 4 Supplementary Tables 1 - 8), while substantially lower 

numbers (0-5) of additional non-retained mutations were only shared between two and 

three cell lines. 

3.8 Identification of potential driver variants 

For the identification of potential driver variants, we focused on high-quality/ high-

coverage/ somatic-like variants/ likely damaging variants. The nutlin-3-adapted MOLM13 

cell lines harboured between one (MOLM13rNutlin20µMIII) and four (MOLM13rNutlin20µMI) 

de novo mutations that have been reported as cancer drivers in the COSMIC (Tate et al., 

2019) and Intogen (Gonzalez-Perez, Perez-Llamas, et al., 2013) (Appendix 4 

Supplementary Tables 9 - 12). This includes TP53 mutations in MOLM13rNutlin20µMI, 

MOLM13rNutlin20µMII, and MOLM13rNutlin20µMIII (Figure 3.6a, Appendix 4 Supplementary 

Tables 9 - 12). Moreover, MOLM13rNutlin20µMI harboured de novo mutations in TMED8 

and PPM1D, MOLM13rNutlin20µMII in ATP13A4, and MOLM13rNutlin20µMIV in GNAQ 

(Appendix 4 Supplementary Tables 9 - 12). Two gained mutations were shared by at least 

three sublines: PER3 (shared by all four sublines) and PABPC1 (MOLM13rNutlin20µMI, 

MOLM13rNutlin20µMII, MOLM13rNutlin20µMIII) (Appendix 4 Supplementary Tables 9 - 12). 
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Figure 3.6 a Variants acquired in TP53 in the drug-adapted sub-lines, mapped to the domains of p53 protein 

(screenshot from InterPro (Mitchell et al., 2019)). b Domains of SAMHD1 (screenshot from InterPro). 

Moreover, we used the bioinformatics tools SIFT and PolyPhen-2 to analyse the potential 

impact of mutations on protein structure and function. SIFT predicts the effects of amino 

acid substitutions on protein function based on their conservation status (Kumar, 

Henikoff and Ng, 2009). PolyPhen-2 predicts the effects of amino acid substitutions on 

protein function using a machine-learning classification based on mapping of the 

underlying single nucleotide variants to gene transcripts, protein sequence annotations, 

structural attributes, and conservation profiles (Adzhubei et al., 2010). 

SAMHD1 was the only gene that displayed de novo mutations predicted to affect protein 

function by SIFT and PolyPhen-2 in at least three sublines (MOLM13rNutlin20µMII, 

MOLM13rNutlin20µMIII, MOLM13rNutlin20µMIV). Moreover, mutations in MT-ND5 and MT-

ND6 were gained in all four sublines, and SLC25A5 had gained mutations in three sublines 

(MOLM13rNutlin20µMI, MOLM13rNutlin20µMII, MOLM13rNutlin20µMIV) (Appendix 4 

Supplementary Tables 9 - 12). 

We did not find an obvious potential role for TMED8, ATP13A4, and SLC25A5 in nutlin-3 

resistance in AML. GNAQ mutations have been identified as driver mutations in uveal 

melanoma, and the T96S amino acid substitution identified here was detected in 
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angiomatosis and natural killer/ T-cell lymphoma (Li et al., 2019; Gaeta et al., 2020; 

Gaffal, 2020). PABPC1 activity has been described as oncogenic event in hepatocellular 

carcinoma and as mediator of trastuzumab resistance in breast cancer (Dong et al., 2018; 

Zhang et al., 2020). Moreover, PABPC1 mutations have been described in colorectal 

cancer (Yu et al., 2014). PPMD1 is a regulator of the cellular response to DNA damage 

(Nahta and Castellino, 2020). Decreased PER3 levels have been associated with 

unfavourable outcome in breast cancer and hepatocellular carcinoma, and PER3 deletion 

with recurrence of oestrogen-positive breast cancer (Chen et al., 2005; Lin et al., 2008; 

Climent et al., 2010). MT-ND5 and MT-ND6 mutations affect mitochondrial function and 

are detected in different cancers (Kloss-Brandstätter et al., 2010; Järviaho et al., 2018; 

Nguyen, Kim and Jo, 2020). Hence, mutations in GNAQ, PABPC1, PPMD1, PER3, MT-ND5, 

and MT-ND6 may contribute to acquired nutlin-3 resistance, but detail remains to be 

investigated. 

3.8.1 Mutations in TP53 and SAMHD1  

The MOLM13 cell line is known to encode functional p53 harbouring a well-known (67% 

frequency in gnomAD database (Lek et al., 2016) (Table S6) p.P72R polymorphism (Tate et 

al., 2019), which was confirmed in our analysis (Table S7). Acquired resistance to MDM2 

inhibitors is known to be associated with the formation of TP53 mutations (Aziz, Shen and 

Maki, 2011; Michaelis et al., 2011, 2012; Jones et al., 2012; Cinatl et al., 2014; Gianna 

Hoffman-Luca et al., 2015; Drummond et al., 2016; Jung et al., 2016), and TP53 mutations 

are associated with a poor prognosis in AML (Döhner et al., 2017). As described above 

and in agreement with previous findings, three of the four nutlin-3-resistant MOLM13 

sublines harboured TP53 mutations (Figure 3.6a, Appendix 4 Supplementary Tables 9 - 

12).  

MOLM13rNutlin20µMI harbours two TP53 mutations in the DNA-binding domain (p.R175H, 

p.S127F) (Figure 3.6a, Table S7). MOLM13rNutlin20µMII and MOLM13rNutlin20µMIII both 

acquired homozygous stop mutations, MOLM13rNutlin20µMII at position 91 (truncates p53 

before the DNA-binding domain) and MOLM13rNutlin20µMIII at position 213 (truncates 

p53 roughly in the middle of the DNA-binding domain) (Figure 3.6a, Table S7). Only, 

MOLM13rNutlin20µMIV retained wild-type TP53. This reflects previous findings showing 

that, while adaptation of TP53 wild-type to MDM2 inhibitors commonly results in TP53 
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mutations, some MDM2 inhibitor-adapted cell lines maintain wild-type TP53 (Michaelis et 

al., 2011). 

Sterile alpha motif and histidine/aspartic acid domain containing protein 1 (SAMHD1) is a 

triphosphohydrolase that cleaves and inactivates cytarabine triphosphate, the active form 

of cytarabine, a nucleoside analogue commonly used for the treatment of AML (Schneider 

et al., 2017). In AML cells, high SAMHD1 activity is associated with cytarabine resistance 

and low SAMHD1 activity is associated with cytarabine sensitivity (Schneider et al., 2017). 

While MOLM13 cells harbour wild-type SAMHD1, potentially deleterious SAMHD1 

mutations were detected in three of the sublines (Figure 3.6b, Table S8).  

MOLM13rNutlin20µMII and MOLM13rNutlin20µMIII both display a p.Y553C amino acid 

substitution. As described above, SIFT classed the p.Y553C amino acid substitution in 

SAMHD1 as ‘deleterious’, PolyPhen-2 as ‘probably damaging’ (Table S9). 

MOLM13rNutlin20µMIV harbours a p.S121L amino acid substitution, which is also classified 

as ‘deleterious’ by SIFT and ‘probably damaging’ by PolyPhen-2 (Table S9). 

3.8.2 Nutlin-3 resistance is associated with collateral cytarabine sensitivity 

in MOLM13 cells 

Since TP53 mutations are associated with a poor outcome in AML (Döhner et al., 2017) 

and SAMHD1 is a critical determinant of AML sensitivity to the nucleoside cytarabine 

(Schneider et al., 2017), we investigated whether the nutlin-3-resistant MOLM13 sublines 

displayed altered sensitivity to cytarabine and anthracyclines that are commonly used for 

AML treatment (Cheung et al., 2019). The drug concentrations that reduce cell viability by 

50% (IC50) shown in Figure 3.7a are much higher for MOLM13 nutlin-3 resistant sublines 

than the parental cell line when cells are treated with daunorubicin. However, by 

contrast, the MOLM13 nutlin-3 adapted sublines are much more sensitive to cytarabine 

than the MOLM13 parental cell line. This means that all four nutlin-3-resistant MOLM13 

sublines displayed increased sensitivity to cytarabine but increased resistance to the 

anthracycline daunorubicin (Figure 3.7a, Table S10). Thus, acquired nutlin-3 resistance 

seems to be associated with collateral sensitivity to cytarabine but not to other anti-

cancer drugs such as daunorubicin. 
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Figure 3.7 Drug sensitivity profiles and cytarabine triphosphate formation in MOLM13 cell lines. a Drug 

concentrations that reduce cell viability by 50% (IC50) after 120h incubation as indicated by MTT assay. b 

Cytarabine triphosphate levels in MOLM13 and MOLM13rNutlin20µMI cells in response to different cytarabine 

concentrations. 

The increased cytarabine sensitivity of MOLM13rNutlin20µMII, MOLM13rNutlin20µMIII, and 

MOLM13rNutlin20µMIV seems to confirm the SIFT and PolyPhen-2 predictions indicating 

that the observed SAMHD1 mutations are associated with a loss of function. However, 

the reasons underlying the collateral cytarabine sensitivity of MOLM13rNutlin20µMI are 

less obvious. To see whether cytarabine activation may differ between MOLM13 and 

MOLM13rNutlin20µMI, we determined cytarabine triphosphate levels in these cell lines in 

response to cytarabine treatment. Results demonstrated substantially higher cytarabine 

triphosphate levels in MOLM13rNutlin20µMI than in MOLM13 (Figure 3.7b), suggesting that 

resistance formation to MDM2 inhibitors may commonly be associated with changes in 

the processes underlying nucleoside analogue activation. 
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Figure 3.8 Nutlin-3 and cytarabine concentrations that reduce the viability of parental AML cell lines and 

their nutlin-3-adapted sublines by 50% (IC50) after 120h incubation as indicated by MTT assay. 

Finally, we determined cytarabine sensitivity in a wider range of nutlin-3-adapted AML 

cell lines, including two additional MOLM13 sublines, 15 MV4-11 sublines, and eight SIG-

M5 sublines (Figure 3.8, Table S11). Similarly to the four MOLM13 resistant sublines, a 

lower concentration of cytarabine is needed to reduce cell viability by 50% in the majority 

of the nutlin-3 adapted AML cell lines (compared to IC50 values for their parental cell 

lines). Among the in total 29 nutlin-3-adapted sublines of MOLM-13, MV4-11, and SIG-
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M5, 18 (62%) displayed increased cytarabine sensitivity relative to the respective parental 

cell line (IC50 subline/ IC50 parental cell line ≤ 0.5), 9 (31%) displayed similar cytarabine 

sensitivity as the respective parental cell line (IC50 subline/ IC50 parental cell line > 0.5 

and < 2), and two (7%), increased cytarabine resistance than the respective parental cell 

line (IC50 subline/ IC50 parental cell line ≥ 2). This demonstrates that acquired MDM2 

resistance is regularly but not always associated with collateral sensitivity to cytarabine in 

AML cells. 

3.9 Discussion 

MDM2 inhibitors are under pre-clinical and clinical investigation for the treatment of AML 

(Kojima et al., 2005; Secchiero et al., 2007; Samudio et al., 2010; Long et al., 2010; 

McCormack et al., 2012; Weisberg et al., 2015; Kojima, Ishizawa and Andreeff, 2016; 

Lehmann et al., 2016; Cassier et al., 2017; Pan et al., 2017; Seipel et al., 2018; Maganti et 

al., 2018; Erba et al., 2019; Pi et al., 2019; Khurana and Shafer, 2019; Konopleva et al., 

2020). The clinical efficacy of anti-cancer drugs is often affected by the formation of 

acquired resistance, at least in fraction of patients. Drug-adapted cancer cell lines can be 

used to investigate acquired resistance mechanisms, because they reflect clinically 

relevant resistance mechanisms (Engelman et al., 2007; Nazarian et al., 2010; Poulikakos 

et al., 2011; Domingo-Domenech et al., 2012; Joseph et al., 2013; Korpal et al., 2013; 

Crystal et al., 2014; Göllner et al., 2017; Schneider et al., 2017; Michaelis, Wass and Cinatl, 

2019). Here, we introduce the first AML models of acquired MDM2 inhibitor resistance, 

four sublines of the AML cell line adapted to nutlin-3. 

To identify mutations with the potential to drive MDM2 inhibitor resistance, we analysed 

MOLM13 and its sublines by whole-exome sequencing and identified high-quality (Phred 

score ≥ 30)/ high-coverage (≥ 10 alleles covered, variant covered by ≥ three reads)/ 

somatic-like (frequency in gnomAD below 0.001% or at least ten samples with this variant 

in COSMIC (Tate et al., 2019) and three in the TCGA (https://www.cancer.gov/tcga)) 

variants likely to have a functional impact due to their nature (frameshift variant, stop-

gained, splice acceptor variant, splice donor variant, incomplete terminal codon variant, 

stop-lost, start-lost, missense variant, inframe insertion inframe deletion). This resulted in 

https://www.cancer.gov/tcga)
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371 (MOLM13rNutlin20µMIII) to 422 (MOLM13rNutlin20µMI) high-quality/ high-coverage/ 

somatic-like/ potentially damaging variants per cell line.  

Among these mutations, we focused on de novo mutations, which were called in at least 

one nutlin-3-adapted subline but not detected in MOLM13, and gained mutations 

(detectable but not called in MOLM13) that were detected in at least three sublines. 

Further criteria for candidate driver mutations included either annotation as cancer 

drivers in COSMIC or Intogen or being predicted to affect protein structure/ function by 

SIFT and PolyPhen-2.  

Both SIFT and PolyPhen-2 apply similar principles behind protein function that we used in 

Chapter 2 to annotate proteins of the minimal bacterial genome. SIFT creates an 

evolutionary profile of the protein using PSI-BLAST and calculates amino acid position 

conservation which we applied to predict Gene Ontology terms using GOAT (see 2.4.3). 

PolyPhen-2, being an SVM classifier, uses features based on, among all, matching 

domains and sequence identity to the closest homologues. In Chapter 2, we also 

predicted protein domains and homologues to identify the unknown functions in the 

minimal genome. 

Following the criteria of mutations being predicted to be damaging by SIFT and PolyPhen-

2, and being present in databases of cancer drivers, we assembled a list of eleven genes 

of interest: TP53, TMED8, PPM1D, ATP13A4, GNAQ (de novo, annotated in COSMIC or 

Intogen), PER3, PABPC1 (gained, annotated in COSMIC or Intogen), SAMHD1 (de novo, 

predicted to affect protein function by SIFT and PolyPhen-2), MT-ND5, MT-ND6, and 

SLC25A5 (gained, predicted to affect protein function by SIFT and PolyPhen-2). 

For the mutations in GNAQ, PABPC1, PPMD1, PER3, MT-ND5, and MT-ND6, we found 

evidence supporting a potential role in nutlin-3 resistance (Table 3.1), but details remain 

to be investigated. 

 
Mutated gene Evidence 

GNAQ GNAQ driver mutations in uveal melanoma, T96S amino acid 

substitution in angiomatosis and natural killer/ T-cell lymphoma (Li et 

al., 2019; Gaeta et al., 2020; Gaffal, 2020). 
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PABPC1 PABPC1 driver in hepatocellular carcinoma, and mediator of 

trastuzumab resistance in breast cancer, PABPC1 mutations in 

colorectal cancer (Yu et al., 2014; Dong et al., 2018; Zhang et al., 

2020). 

PPMD1 DNA damage regulator (Nahta and Castellino, 2020). 

PER3 Low PER3 levels associated with poor breast cancer/ hepatocellular 

carcinoma outcome, PER3 deletion associated with recurrence of 

oestrogen-positive breast cancer (Chen et al., 2005; Lin et al., 2008; 

Climent et al., 2010). 

MT-ND5 MT-ND5 mutations affect mitochondrial function and are detected in 

different cancers (Nguyen, Kim and Jo, 2020). 

MT-ND6 MT-ND6 mutations affect mitochondrial function and are detected in 

different cancers (Kloss-Brandstätter et al., 2010; Järviaho et al., 

2018). 

 
Table 3.1 Evidence supporting a potential role of selected mutations in nutlin-3 resistance in MOLM13 

sublines. 

 
The mutations with the most obvious potential relevance for AML therapies were 

detected in TP53 and SAMHD1. To analyse the impact of these mutations on protein 

structure and function, we predicted Pfam (El-Gebali et al., 2019) domains using the same 

methodology as applied in Chapter 2 to identify the functions of the minimal genome 

proteins. Future studies should include structural modelling using state-of-the-art protein 

structure prediction tools, e.g. AlphaFold2 (Jumper et al., 2021) (see 2.6.1) and assessing 

the effect of these mutations could have on the structure and ligand binding. 

MOLM13rNutlin20µMI harboured two TP53 mutations missense in the DNA-binding domain 

(p.R175H, p.S127F), while MOLM13rNutlin20µMII and MOLM13rNutlin20µMIII both acquired 

homozygous stop mutations. MOLM13rNutlin20µMIV retained wild-type TP53. These 

findings are in agreement with previous findings showing that resistance acquisition to 

MDM2 inhibitors is commonly but not always associated with the formation of TP53 

mutations (Aziz, Shen and Maki, 2011; Michaelis et al., 2011, 2012; Jones et al., 2012; 
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Cinatl et al., 2014; Gianna Hoffman-Luca et al., 2015; Drummond et al., 2016; Jung et al., 

2016; Marcellino et al., 2020). Notably, TP53 mutations are associated with therapy 

resistance and poor prognosis in AML patients (Döhner et al., 2017). Thus, TP53 

mutations associated with acquired MDM2 inhibitor resistance formation may affect the 

prospects of potential next-line therapies. 

Similarly, SAMHD1 mutations detected in MOLM13rNutlin20µMII (p.Y553C), 

MOLM13rNutlin20µMIII (p.Y553C), and MOLM13rNutlin20µMIV (p.S121L) may impact follow-

on treatments. The triphosphohydrolase SAMHD1 cleaves the triphosphorylated active 

form of cytarabine, a nucleoside analogue that is part of standard AML therapies, and is a 

biomarker indicating cytarabine sensitivity of AML cells (Schneider et al., 2017; Cheung et 

al., 2019).  

All four nutlin-3-adapted MOLM13 sublines displayed cross-resistance to daunorubicin, 

which is commonly used in combination with cytarabine for AML (Cheung et al., 2019). 

This is in agreement with the anticipated role of TP53 mutations in treatment resistance 

in AML (Döhner et al., 2017) and with the assumption that p53 signalling is also affected 

in MDM2 inhibitor-resistant cells that do not develop TP53 mutations (Michaelis et al., 

2011). 

In contrast to the increased daunorubicin resistance observed in nutlin-3-adapted 

MOLM13 cells, all four sublines displayed increased sensitivity to cytarabine. This 

suggests that the SAMHD1 mutations observed in MOLM13rNutlin20µMII, 

MOLM13rNutlin20µMIII, and MOLM13rNutlin20µMIV are associated with a loss of its 

triphosphohydrolase function, which agrees with previous findings indicating that this 

function can be affected by various SAMHD1 point mutations (Rentoft et al., 2016). 

Interestingly, MOLM13rNutlin20µMI also displayed increased cytarabine sensitivity, 

although it did not harbour a SAMHD1 mutation. The determination of cellular cytarabine 

triphosphate levels in this cell line indicated reduced cytarabine activation levels in this 

cell line, suggesting that this process is impaired by a mechanism different from a 

SAMHD1 mutation in this cell line. Notably, SAMHD1 point mutations are associated with 

changes in cellular nucleotide levels that themselves can promote mutations and cancer 

cell evolution (Rentoft et al., 2016). Hence, SAMHD1 mutations and other mechanisms 
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that affect deoxynucleoside phosphorylation may support evolutionary processes 

underlying AML cell adaptation to MDM2 inhibitors and other drugs. 

The analysis of in total 29 nutlin-3-adapted sublines of the AML cell lines MOLM-13, MV4-

11, and SIG-M5, indicated that AML cell resistance formation to MDM2 inhibitors is 

commonly but not always associated with collateral cytarabine sensitivity. 18 (62%) of the 

sublines displayed increased cytarabine, in 9 (31%) sublines cytarabine sensitivity was not 

changed, and two (7%) sublines showed increased cytarabine resistance. 

In conclusion, AML resistance formation against MDM2 inhibitors is associated with 

complex mutation patterns. Most interestingly, nutlin-3-adapted MOLM13 sublines 

displayed cross-resistance to daunorubicin, which probably is associated with nutlin-3-

induced TP53 mutations and other impairments of p53 signalling, whereas they show 

increased sensitivity to cytarabine, which is associated with SAMHD1 mutations resulting 

in a loss of triphosphohydrolase activity or other mechanisms affecting nucleoside 

phosphorylation. Hence, SAMHD1 mutations are candidate biomarkers indicating 

cytarabine sensitivity after the failure of MDM2 therapies. Collateral cytarabine was 

detected in 18 (62%) out of 29 nutlin-3-adapted AML sublines and, thus, appears to be a 

common phenomenon. 
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I performed all analysis of the exome sequencing data for these cell lines, including 

setting up the computational pipeline that was used and generating the figures. This 
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being prepared to go through the peer-review process for publication in a journal. 
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4.2 Abstract 

Here, we characterised a unique panel of 41 sublines of the neuroblastoma cell line UKF-

NB-3 adapted to four tubulin-binding agents, vincristine (10 sublines), eribulin (12 

sublines), 2-methoxyestradiol (10 sublines), or epothilone B (9 sublines), by whole-exome 

sequencing. These drugs bind tubulin and either prevent polymerisation (destabilising 

agents) or depolymerisation (stabilising agents) of microtubules. This results in failing the 

mitotic spindle assembly checkpoint and cell cycle arrest. We looked at sequence variants 

that were called in the resistant sublines but not detectable in UKF-NB-3 sublines to gain 

insights into the clonal relatedness of the individual sublines, as same variants are unlikely 

to occur repeatedly by chance and are more likely to indicate the presence of alleles that 

are very rare in the parental cell line and, hence, a common clonal origin. Our findings 

indicate that drugs do not consistently select a certain pre-existing clone during the 

resistance formation process. Sublines adapted to the same drug did not always cluster 

together with regard to the rare variants. The epothilone B-adapted UKF-NB-3 subline 

UKF-NB-3rEPOB2nMIII was more closely related to three vincristine-adapted UKF-NB-3 

sublines than to other epothilone B resistant sublines, although epothilone B is a 

stabilising agent that interacts with the taxoid domain of tubulin and vincristine a 

destabilising agent targeting the vinca domain. Similarly, the 2-methoxyestradiol-adapted 

UKF-NB-3 subline UKF-NB-3r2ME2µMVIII was closely related to all epothilone-adapted 

sublines but UKF-NB-3rEPOB2nMIII, although 2-methoxyestradiol is a destabilising agent 

that binds to the colchicine domain. In conclusion, our study provides initial evidence that 

different subpopulations in a cancer cell line can be selected upon repeated adaptation of 

the same cancer cell line to the same drug, illustrating the unpredictability of resistance 

formation processes. Adapting the same cancer cell line to four tubulin-binding agents in 

around ten independent experiments generated forty-one different responses to the 

drugs. This analysis offers a unique insight into acquired drug resistance as it could never 

be performed in a clinical setting – one patient cannot be treated forty-one times. Our 

analysis also could not be reproduced by applying the same treatment to forty-one 

patients as the heterogeneity of responses, in this case, would be a sum of intra- and 

inter-tumour heterogeneity. A better understanding of these processes will be a 

prerequisite for the development of rationally designed, individualised cancer therapies. 
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This knowledge could be utilised in designing new biomarkers and continuous monitoring 

of patients through liquid biopsies. 

4.3 Introduction 

Cure rates remain low for most cancers that are diagnosed at an advanced stage such as 

metastatic disease and require systemic treatment. The main reason for this is the 

formation of resistance (Harbeck and Gnant, 2017; Iacobucci and Mullighan, 2017; Litwin 

and Tan, 2017; Fenton et al., 2018; Herbst, Morgensztern and Boshoff, 2018; Michaelis, 

Wass and Cinatl, 2019). Resistance can be 'intrinsic', i.e. a cancer does not respond to a 

therapy from the outset. However, cancer diseases often respond initially well to therapy, 

but eventually 'acquired' resistance emerges (DeVita and Chu, 2008; Holohan et al., 2013; 

Fenton et al., 2018; Soverini et al., 2018; Michaelis, Wass and Cinatl, 2019). The 

mechanisms underlying intrinsic and acquired resistance differ (Esposito et al., 2013; 

Arena et al., 2015; Miklos et al., 2015; Carter et al., 2017; Onafuye et al., 2019). 

Preclinical model systems are needed to study acquired resistance, because they enable 

the acquisition of data that cannot be derived from clinical samples. For example, the 

repeated adaptation of a given cancer cell population is not possible in a clinical setting, 

where every patient can only be treated once (Michaelis, Wass and Cinatl, 2019). Drug-

adapted cancer cell lines enabled the discovery of major drug resistance mechanisms 

such as ABCB1 (also known as MDR1 or P-glycoprotein) and ABCC1 (also known as MRP1) 

(Juliano and Ling, 1976; Cole et al., 1992) and have been shown to reflect clinical 

resistance mechanisms on many further occasions (Michaelis, Wass and Cinatl, 2019). 

It is anticipated that the processes underlying acquired resistance formation are subject 

to a heterogeneity at a similar scale (Sequist et al., 2011; Basile et al., 2013; Kemper et al., 

2015; Soucheray et al., 2015; Hata et al., 2016; Michaelis, Wass and Cinatl, 2019) as that 

is generally observed in cancer (McGranahan and Swanton, 2017). Recent findings 

indicated that the repeated adaptation of the same neuroblastoma cell line to the same 

drugs results in phenotypically different sublines (Michaelis, Wass, et al., 2020). Even 

long-term treatment of acute myeloid leukaemia cells with an ineffective concentration 

of the MDM2 inhibitor nutlin-3 resulted in modified drug sensitivity profiles in the 
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resulting sublines, although it did not result in increased nutlin-3 resistance (Michaelis, 

Rothweiler, et al., 2020). 

To further investigate the variability of the resistance formation process, we here 

established 41 sublines of the neuroblastoma cell line UKF-NB-3 (Kotchetkov et al., 2005) 

with acquired resistance to the tubulin-binding agents vincristine (10 sublines), eribulin 

(12 sublines), 2-methoxyestradiol (10 sublines), and epothilone B (9 sublines).   

The four selected tubulin-binding agents represent the major subgroups of this drug class 

whose members interfere with tubulin dynamics by different mechanisms (Dumontet and 

Jordan, 2010; Kavallaris, 2010). Vincristine and eribulin are so-called destabilising agents 

that bind to the vinca domain of tubulin and inhibit at high concentrations microtubule 

polymerisation (Dumontet and Jordan, 2010; Kavallaris, 2010). 2-methoxyestradiol is 

another destabilising agent, but it binds to an alternative tubulin domain, the colchicine 

domain. Epothilone B belongs to the stabilising tubulin-binding agents that enhance 

microtubule polymerisation by binding to the taxoid domain (Dumontet and Jordan, 

2010; Kavallaris, 2010). 

The project cell lines were characterised by whole-exome sequencing to gain further 

insights into the processes underlying resistance formation. 

4.4 Materials and Methods 

4.4.1 Cells 

The MYCN-amplified neuroblastoma cell line UKF-NB-3 and its tubulin-binding agent-

adapted sublines were derived from the resistant cancer cell line (RCCL) collection 

(www.kent.ac.uk/stms/cmp/RCCL/RCCLabout.html) (Michaelis, Wass and Cinatl, 2019). 

The resistant sublines were established by adaption to growth in the presence of stepwise 

increasing drug concentrations as previously described (Kotchetkov et al., 2005; Michaelis 

et al., 2011). 

http://www.kent.ac.uk/stms/cmp/RCCL/RCCLabout.html
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All cells were propagated in IMDM supplemented with 10 % FBS, 100 IU/ml penicillin and 

100 mg/ml streptomycin at 37°C. Cells were routinely tested for mycoplasma 

contamination and authenticated by short tandem repeat profiling. 

4.4.2 Viability assay 

Cell viability was tested by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) dye reduction assay after 120 h incubation modified after Mosmann 

(Mosmann, 1983) as described previously (Onafuye et al., 2019). Results are expressed as 

mean ± S.D. of at least three experiments. 

4.4.3 Whole-exome sequencing 

Whole-exome sequencing was performed with Illumina HiSeq2000 using paired-end 

reads of a length of 100 base pairs. Exome enrichment was conducted using Nextera 

Exome Enrichment Kit. 

4.4.4 Variant calling 

Our pipeline for the calling of variants from whole-exome sequencing data was based on 

GATK best practices for discovering short nucleotide variants (SNVs) and INDELs (Van der 

Auwera et al., 2013; Germline short variant discovery (SNPs + Indels) – GATK, 2019) and is 

summarised in Figure S12. After initial quality control using FastQC (Andrews, 2010), 

reads were trimmed with Trimmomatic-0.38 (default parameters) (Bolger, Lohse and 

Usadel, 2014) and mapped onto the reference genome (version hg19) using the Burrows-

Wheeler Alignment Tool with the algorithm bwa-0.7.17-mem (Li and Durbin, 2009). 

Duplicate PCR reads were marked and .bam files built using Picard-2.17.10 (Picard Tools - 

By Broad Institute, 2019). GenomeAnalysisTK-3.7.0 (McKenna et al., 2010) was used to 

realign sequences around insertions/ deletions and to recalibrate base scores. The 

machine learning model of covariation was built using dbSNP database (Sherry et al., 

2001) (downloaded on 23rd of April 2018) as known sites. Variants were called with 

samtools-1.7 mpileup (Li, 2011) using default parameters. Phred quality score filters were 

set to 30 with bcftools-1.6 (Li and Durbin, 2009) and variants with base call coverage 

below 10 and variant call coverage below 3 were removed. Variants that affected protein 

sequences were identified with VEP (release 96) (McLaren et al., 2016) and categorised 
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following the Sequence Ontology nomenclature (Eilbeck et al., 2005). We considered 

frameshift, stop-gained, splice acceptor, splice donor, incomplete terminal codon, stop-

lost, start-lost, missense, inframe insertion, and inframe deletion variants. Germline-like 

variants with a frequency ≥0.001% in gnomAD (Lek et al., 2016) were only included if at 

least three sequences were recorded in TCGA and at least ten in COSMIC (Tate et al., 

2019). The potential impact on protein structure/ function was estimated by SIFT (Kumar, 

Henikoff and Ng, 2009) and PolyPhen-2 (Adzhubei et al., 2010).  

4.5 Results 

4.5.1 Resistance status of investigated cell line 

First, we confirmed the resistance status of the investigated cell lines (Table S12). The 

vincristine-adapted UKF-NB-3 sublines were between 6.3 and 45 times more resistant to 

vincristine than UKF-NB-3. The eribulin-adapted sublines displayed resistance factors 

between 222 and 1900, the 2-methoxyestradiol-adapted sublines between 7.6 and 12.7, 

and the epothilone-adapted sublines between 4.3 and 6.8 (Table S12). 

4.5.2 Number of sequence variants with potential impact per cell line  

For our analysis, we considered variants that are likely to have an impact using the 

following criteria: high-quality (Phred score ≥ 30), high-coverage (≥ 10 alleles covered, 

variant covered by ≥ three reads), somatic-like (either frequency in gnomAD below 

0.001% or at least 10 samples with this variant in COSMIC (Tate et al., 2019) and three in 

the TCGA (https://www.cancer.gov/tcga)), and most-likely damaging variants (Sequence 

Ontology (Eilbeck et al., 2005) terms frameshift variant, stop-gained, splice acceptor 

variant, splice donor variant, incomplete terminal codon variant, stop-lost, start-lost, 

missense variant, inframe insertion inframe deletion were included). 
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Figure 4.1 Number of high-quality, high-coverage, somatic-like variants with most-likely damaging 

impact on the protein structure per the same drug type. The results plotted in the form of a a scatterplot b 

a boxplot. Epo = UKF-NB-3 sub-lines adapted to epothilone b; Erib = eribulin; Met = 2-methoxyestradiol; VCR 

= vincristine; par = UKF-NB-3 parental cell line. 

Using these criteria, we identified 2529 variants that are present in at least one of the 41 

UKF-NB-3 sublines adapted to tubulin-binding agents. The cell line with the lowest 

number of variants was UKF-NB-3rEPOB2nMIII (272), the one with the highest number was 

UKF-NB-3r2ME2µMV (508) (Figure 4.1).  

4.5.3 Hierarchical clustering analysis 

Hierarchical clustering analysis based on the shared variants indicated that clusters 

consist of sublines adapted to different drugs, although there is a tendency that sublines 
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adapted to the same drug cluster together, in particular the 2-methoxyestradiol-resistant 

sublines (Figure 4.2a). 

4.5.4 Variants not present in UKF-NB-3 

We only considered variants as de novo variants, if the alignment of the exome 

sequencing data from UKF-NB-3 against the reference genome did not harbour any reads 

with the respective variant. According to this criterion, 1873 out of the 2529 variants 

were identified as de novo variants (Appendix 6 Supplementary Table 1). 1274 of these 

variants were only present in one subline, indicating that they newly occurred during 

resistance formation, whereas variants that are shared between different sublines 

probably represent variants that were already present in the UKF-NB-3 at a low frequency 

(Figure 4.2b). 

Overlaps of unique de novo mutations between sublines adapted to the same drugs are 

shown in Figure 4.3. They revealed a particularly close relationship between UKF-NB-

3rERI10I and UKF-NB-3rERI10IV (Figure 4.3a), but only few overlaps between UKF-NB-

3rEPOB2nMIII and the other epothilone B-resistant sublines (Figure 4.3c) and between UKF-

NB-3r2ME2µMVIII and the other 2-methoxyestradiol-resistant sublines (Figure 4.3d). 
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Figure 4.2 a Drug-adapted sub-lines hierarchically clustered by the number of shared high-quality, high-

coverage, somatic-like, most-likely damaging variants. b Number of de novo variants shared between the 

drug-adapted sub-lines per number of drug-adapted sub-lines. 1274 de novo variants are present in only one 

unique drug-adapted sub-line, only 1 de novo variant is shared by 40 drug-adapted sub-lines, there are no de 

novo variants shared by all 41 drug-adapted sub-lines. 

The analysis of the overlaps of de novo mutations across all sublines showed that UKF-NB-

3rEPOB2nMIII is much more closely related to UKF-NB-3rVCR0.5V, UKF-NB-3rVCR0.5VI, and 

UKF-NB-3rVCR0.5VII suggesting that these sublines are derived from a similar clone (Figure 

4.3e).  
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Figure 4.3 Number of de novo variants shared by UKF-NB-3 sub-lines adapted to a eribulin b vincristine c 

epothilone b d 2-methoxyestradiol e all four tubulin-binding agents. 

UKF-NB-3r2ME2µMVIII is derived from a clone similar to those that all epothilone-adapted 

sublines are derived from, apart from UKF-NB-3rEPOB2nMIII, the outlier in this group 
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(Figure 4.3e). This indicates that different subclones in the same cell line can give rise to a 

subpopulation resistant to a certain drug. Notably, repeated adaptation of a cell line to 

the same drug can result in the selection of different clones. 

4.6 Discussion 

Here, we performed an analysis of the changes associated with acquired resistance 

formation to tubulin-binding agents by investigating a unique panel of 41 sublines of the 

neuroblastoma cell line UKF-NB-3 adapted to vincristine (10 sublines), eribulin (12 

sublines), 2-methoxyestradiol (10 sublines), or epothilone B (9 sublines). 

We looked at variants that were called in the resistant sublines but were not detectable in 

the parental UKF-NB-3 sublines to see whether the sublines are derived from similar or 

distant clones. This approach is based on the assumption that exactly the same variant is 

unlikely to occur independently in different adaptation experiments. Hence, overlaps are 

more likely to indicate a common clonal origin. Since these variants are not detected in 

the parental cell line, they are anticipated to be rare and to provide a good indication of 

the clonal relatedness of sublines. 

Interestingly, this analysis indicated that drugs do not consistently select a certain pre-

existing clone during the resistance formation process. Although, there was a tendency 

that sublines adapted to the same drug share more rare variants than sublines adapted to 

different drugs, but this was not always the case. In particular, the vincristine-resistant 

sublines did not consistently cluster together, when we looked at rare variants not 

detectable in the parental cell line UKF-NB-3. This may be an example of convergent 

evolution, where different sublines acquired the same phenotype – resistance to 

vincristine – in a distinct way (Fortunato et al., 2017; Konieczkowski, Johannessen and 

Garraway, 2018; Pienta et al., 2020). 

Sublines adapted to tubulin-binding agents with different modes of action also clustered 

together. The epothilone B-adapted UKF-NB-3 subline UKF-NB-3rEPOB2nMIII was more 

closely related to the vincristine-adapted sublines UKF-NB-3rVCR0.5V, UKF-NB-3rVCR0.5VI, 

and UKF-NB-3rVCR0.5VII. This suggests that these sublines are derived from related clones 
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although epothilone B is a stabilising agent that interacts with the taxoid domain on 

tubulin and vincristine a destabilising agent targeting the vinca domain (Dumontet and 

Jordan, 2010; Kavallaris, 2010).  

Similarly, the 2-methoxyestradiol-adapted UKF-NB-3 subline UKF-NB-3r2ME2µMVIII is 

derived from a clone similar to all epothilone-adapted sublines but the previously 

mentioned UKF-NB-3rEPOB2nMIII subline. Again, 2-methoxyestradiol and epothilone B 

target different tubulin structures, 2-methoxyestradiol as destabilising agent the 

colchicine domain and epothilone B as stabilising agent the taxoid domain (Dumontet and 

Jordan, 2010; Kavallaris, 2010). 

The processes underlying resistance acquisition in cancer had previously been anticipated 

to be complex. It is anticipated that the processes underlying acquired resistance 

formation are subject to a heterogeneity at a similar scale (Sequist et al., 2011; Basile et 

al., 2013; Kemper et al., 2015; Soucheray et al., 2015; Hata et al., 2016; Michaelis, Wass 

and Cinatl, 2019; Michaelis, Wass, et al., 2020) as commonly observed in cancer 

(McGranahan and Swanton, 2017). However, the observation that the repeated 

adaptation of a cell line to the same drug, which is still relatively homogeneous compared 

to a patient tumour, results in the selection of different clones adds additional layer of 

complexity to this picture and stresses the need for biomarkers and effective monitoring 

methods for drug-induced evolution in cancer cell lines such as liquid biopsies (Heidrich et 

al., 2020) for the development of more effective, individualised therapies. 

In conclusion, our study provides initial evidence that different subpopulations in a cancer 

cell line can be selected upon repeated adaptation of the same cancer cell line to the 

same drug. A better understanding of these processes will be a prerequisite for the 

development of rationally designed, individualised cancer therapies. 

Future studies should be focused on functional analysis of the mutations, resembling the 

analysis of the mutations acquired due to treatment of acute myeloid leukaemia cells 

presented in Chapter 3. This should include selecting candidates for TBAs-resistance 

drivers using criteria such as the presence of the mutations in databases of cancer drivers 

such as IntOGen and COSMIC and automated prediction of the variants’ impact on the 

protein structure and function. Literature mining should then be performed to find 

further evidence supporting a potential role of the selected mutations in resistance to TBAs 
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in UKF-NB-3 sublines. Future analysis should also include a manual assessment of the effect of 

the mutations. This could involve tools used to identify the functions of the minimal 

genome proteins in Chapter 2. Pfam domains should be predicted to verify if the mutations 

could have a damaging impact on the function of the domains. Similarly, the analysis should 

include structural modelling using state-of-the-art protein structure prediction tools, e.g. 

AlphaFold2 (Jumper et al., 2021) (see 2.6.1) and assessing the effect that these mutations 

could have on the structure and ligand binding. Special focus should be put on any 

mutations acquired in tubulin as the four tubulin-binding agents studied here interact 

with beta-tubulin, and mutations in this protein have been known to be associated with 

resistance to this group of anti-cancer drugs (Huzil et al., 2007; Kavallaris, 2010). This 

should include modelling changes in tubulin structures and verifying how that affects 

tubulin-binding drug interactions. 
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 General discussion 

5.1 Understanding the functions of proteins 

The power of relatively inexpensive and fast next-generation sequencing has flooded us 

with more protein sequences than we can handle. At the start of the work described in 

Chapter 2 (June 2017), the UniProt-GOA database (Huntley et al., 2015), which provides 

manual and electronic Gene Ontology annotations for the proteins from the UniProtKB 

database, contained GO annotations for over 60 million protein sequences. However, 

only 0.2% of them were annotated with at least one GO term assigned with an 

experimental evidence code (see (Guide to GO evidence codes, 2020) for the full list of 

experimental evidence codes currently available in the UniProt-GOA project). In April 

2019, the number of sequences was higher than in June 2017 by 64% (over 99 million), 

but the percentage of sequences with experimental annotations dropped to 0.13%. 

Finally, in October 2020, a year and a half later, the number of sequences in the UniProt-

GOA database crossed 133 million, with only 0.1% of them being experimentally 

annotated.  

One of the aims of creating a minimal bacterial cell is to expand knowledge of protein 

function by identifying functions essential to sustain life. Computational annotations of 

the genes in the minimal bacterial cell performed by Hutchison et al. (2016) combined 

with our predictions presented in Chapter 2 revealed that the most fundamental life 

processes are preserving and expressing genetic information (nearly 50% of the genes 

perform these functions).  We also identified 24 transporters among the proteins that 

were previously labelled membrane or hypothetical. This resulted in proteins involved in 

membrane-related processes comprising 22% of the minimal bacterial genome. The 

remaining proteins were either responsible for cell metabolism, or the biological process 

that they were involved in could not be predicted confidently.  

The sixteen proteins for which we could not predict a function and which remained 

annotated as hypothetical lacked homologues in other species. As a result, the majority of 

the methods, relying largely on homology-based annotation transfer, failed to return any 
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functional information. In such difficult cases, we relied on the results from TMHMM (a 

hidden Markov model representing a membrane protein topology) (Krogh et al., 2001) 

and FFPred (a machine learning method with features based on protein biophysical 

properties, see Chapter 2 for details) (Cozzetto et al., 2016). However, for these sixteen 

proteins, even these two methods were not helpful as they did not provide consistent 

results. Our efforts to predict functions of the proteins in the minimal genome that do not 

have homologues in other species and the lack of satisfying results in this matter (Chapter 

2) demonstrate an urgent need to focus the protein function prediction field on bridging 

this gap. The current possibilities for predicting functions of proteins not having confident 

homologues in other species are very limited. This is represented by the methods 

submitted in the second edition of CAFA (Jiang et al., 2016): only 6% of them were 

assigned a keyword “de novo” as a description. This poses quite a conundrum for the 

orphan genes in newly studied species. We do not know anything about them, and at the 

same time, we do not possess good-enough tools to guide experiments to change that. 

5.2 Predicting essential functions required for life within the 

minimal bacterial genome 

According to (Martínez-García and de Lorenzo, 2016), quite a few bacterial genomes have 

been subjected to the attempts to reduce them. The list starts, as expected, with the 

most studied bacterium, Escherichia coli (Kolisnychenko et al., 2002; Hashimoto et al., 

2005; Xue et al., 2015; Zhou et al., 2016), followed by two Mycoplasma species: 

Mycoplasma genitalium (Gibson et al., 2010) and Mycoplasma mycoides (Hutchison et al., 

2016), and then Bacillus subtillis (Westers et al., 2003; Li et al., 2016), Corynebacterium 

glutamicum (Unthan et al., 2015), Pseudomonas putida (Leprince et al., 2012; Lieder et 

al., 2015), Streptomyces avermitilis (Komatsu et al., 2010; Ikeda, Shin-Ya and Omura, 

2014) and Vibrio natriegens (Weinstock et al., 2016). Scientists have been working on 

techniques to reduce bacterial genomes to fulfil two primary goals (Martínez-García and 

de Lorenzo, 2016). The first one is to minimise the genes to only those that are essential 

for life. This way, fundamental life processes can be identified and studied. The second 

aim of reducing bacterial genomes comes from synthetic biology. It is to create a 
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bacterium that will be easy to engineer and use for biotherapy, biofuels or biomaterials 

(Wang and Zhang, 2019). Following that aim, some of the non-essential genes, for 

example, those related to faster growth, may be retained.  

Our efforts to identify the unknown functions of the life-essential genes in Mycoplasma 

mycoides were described in Chapter 2 of this thesis. The genome of Mycoplasma 

mycoides was minimised and synthesised by J. Craig Venter Institute (Hutchison et al., 

2016) and resulted in 473 genes. Hutchison et al. used TIGRFAM families (Haft et al., 

2013), threading to known structures and genomic context methods to annotate the 

genes, and they discovered that 149 could not be confidently annotated using these 

methods and they remain of unknown function (Hutchison et al., 2016). In our analysis, 

we expanded the scope of the computational tools to 22, including methods modelling 

protein structure, identifying domains, transmembrane regions, predicting orthologues, 

ligand binding and also Gene Ontology terms (Antczak, Michaelis and Wass, 2019).  

Our method has demonstrated to be effective in predicting genes of unknown functions, 

including those with minimal information such as a lack of orthologues in other species, 

matches to known domains or structural models. This is consistent with the results of 

CAFA where many of the best-performing methods are those integrating multiple 

resources and various aspects of protein function as an input for prediction (Zhou et al., 

2019).  

By combining all the results and their manual curation, we made confident predictions for 

133 out of 149 genes with previously unknown functions, including 66 that were more 

informative than those inferred by Hutchison et al. (2016). However, for the remaining 

sixteen proteins, we either did not obtain any confident or, in some cases, any results 

from the tools, or the results were not consistent enough to make predictions.   

5.3 Development of drug resistance 

Despite increasing knowledge about cancer and with many anti-cancer therapies available 

to treat patients, developing resistance to drugs that initially caused an improvement 

remains a significant obstacle on the way to recovery. There are multiple molecular 
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mechanisms whose alterations contribute to the development of the resistance. ABC 

transporters such as MDR1 (coding for Multidrug resistance protein 1/P-glycoprotein 1), 

MRP1 (Multidrug resistance-associated protein 1) or BCRP (Broad substrate specificity 

ATP-binding cassette transporter ABCG2) are responsible, for example, for removing 

toxins from the cell. However, they have broad substrate specificity, and their high 

expression may result in the efflux of multiple drugs, such as vinca alkaloids or taxanes, 

out of the cell (Housman et al., 2014).  

Another mechanism causing cells to acquire tolerance to an anti-cancer drug is a decrease 

in the activation of the drug. For example, cytarabine is activated through multiple 

phosphorylation events. If the phosphorylation pathway is altered, it may result in the 

reduced activation of cytarabine (Housman et al., 2014).  Resistance may also develop 

through targets of the drugs acquiring mutations in them; for example, a mutation in 

beta-tubulin may alter the response to taxanes or vinca alkaloids (Housman et al., 2014). 

Finally, tolerance to anti-cancer drugs may be caused by a modification of expression 

levels of specific genes related to DNA damage response or apoptosis. For example, while 

over-expression of DNA excision repair protein ERCC-1 is associated with higher tolerance 

to the treatment of non-small-cell lung cancer with cisplatin (Ceppi et al., 2006), up-

regulation of apoptosis regulator Bcl-2 may result in an increase in suppressing of 

apoptosis and hence also cause a higher tolerance to the anti-cancer treatment 

(Mansoori et al., 2017). 

Studies have suggested that these molecular mechanisms promoting drug resistance are 

not likely to be a result of specific activities of a drug but instead may be rooted in genetic 

instability and intra-tumour heterogeneity  (Mansoori et al., 2017; Nikolaou et al., 2018).  

Anti-cancer treatments kill only the cells that are sensitive to it, leaving the resistant cells 

with a possibility to grow and expand into a dominating clone (Housman et al., 2014). Our 

results from Chapter 3 and Chapter 4 show the process in which Molm13 and UKF-NB-3 

were adapted to nutlin-3 (Chapter 3) and four TBAs (Chapter 4), respectively. All four 

Molm13 sub-lines adapted to nutlin-3 harboured the same exact mutation in MUC2 for 

which no supporting reads were identified in the Molm13 parental cell line. It is unlikely 

that this mutation developed independently in all four sub-lines, and it rather suggests 

that the sub-lines were derived from a relatively rare subpopulation of cells from the 

Molm13 parental cell line.  
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This result is even more apparent in the UKF-NB-3 sub-lines adapted to tubulin-binding 

agents (Chapter 4). Our studies of 1873 de novo variants identified in at least one of the 

41 UKF-NB-3 sub-lines adapted to eribulin (12), vincristine (10), 2-methoxyestradiol (10) 

and epothilone b (9) revealed that 1274 of the variants developed uniquely in one sub-

line while 599 were shared by at least two sub-lines. These 599 variants are more likely to 

be variants present in the UKF-NB-3 parental cell line with low frequency than to have 

occurred independently in more than one sub-line. Our results also show that sub-lines 

adapted to the same drug often share a lot of variants, however this is not always the 

case.  

This was exemplified by one of the sub-lines adapted to 2-methoxyestradiol, UKF-NB-

3r2ME2µMVIII, sharing more variants with the epothilone-adapted sub-lines (expect UKF-

NB-3rEPOB2nMIII) than the other 2-methoxyestradiol-adapted sub-lines. In addition, the 

fact that epothilone b and 2-methoxyestradiol have a different mechanism of action 

(epothilone b is a stabilising agent targeting the taxoid domain of in beta-tubulin and 2-

methoxyestradiol is a destabilisng agent targeting the colchicine domain) emphasises that 

the variants developed during the drug adaptation process do not always depend on the 

drug but also the development of the same variants cannot be expected based on the 

drug type. Our results demonstrate that different subpopulations can be selected upon 

repeated adaptation of the same cancer cell line to the same drug. They also emphasise 

the heterogeneity and complexity of processes underlying acquired resistance and stress 

the need for biomarkers to monitor patients. 

Additionally, we applied various principles and tools of protein function prediction 

explored in Chapter 2 to study the acquired variants’ impact on protein structure and 

function. This allowed us to identify potential loss-of-function mutations that could 

contribute to cancer cells developing decreased sensitivity to the treatment. In Chapter 3 

and Chapter 4, we used SIFT (Sim et al., 2012) and PolyPhen-2 (Adzhubei et al., 2010) that 

classify missense variants into neutral and likely damaging. They do that by applying 

similar principles of protein function prediction that we used in Chapter 2 to annotate 

proteins of the minimal bacterial genome. Further, by combining the results from SIFT 

and PolyPhen-2 with the information we collected from IntOGen (Martínez-Jiménez, 

Muiños, Sentís, et al., 2020) and COSMIC (Tate et al., 2019), we identified cancer drivers 

among genes with SNVs and established several potential drug resistance mechanisms. To 
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further analyse the impact of these mutations, we predicted Pfam (El-Gebali et al., 2019) 

domains using the same methodology as applied in Chapter 2.  

Several mutations reported to have a role in tumorigenesis of various cancer types were 

identified among de novo and gained variants of nutlin-3 adapted sub-lines and may 

contribute to acquired resistance to nutlin-3 (Chapter 3). This includes mutations in genes 

such as GNAQ, PABPC1, PPMD1, PER3, MT-ND5, MT-ND6, and most importantly, TP53 

and SAMHD1. While the mechanisms of resistance involving GNAQ, PABPC1, PPMD1, 

PER3, MT-ND5 and MT-ND6 are yet to be investigated, our studies confirm the previously 

suggested impact that acquired TP53 mutations have on resistance to MDM2 inhibitors 

(Aziz, Shen and Maki, 2011; Michaelis et al., 2011; Jones et al., 2012; Cinatl et al., 2014; 

Gianna Hoffman-Luca et al., 2015; Drummond et al., 2016; Jung et al., 2016).  

In addition, likely deleterious mutations identified in SAMHD1 and increased sensitivity to 

cytarabine demonstrate a potential correlation between these two events. This further 

supports the already suggested correlation between the low activity of SAMHD1 and 

sensitivity to cytarabine (Schneider et al., 2017). However, even in the Molm13 sub-line 

which did not develop SAMHD1 mutations increased sensitivity to cytarabine was 

observed. These results indicate the possibility of prescribing cytarabine to patients that 

develop resistance to nutlin-3, especially in the case of detected loss of activity of 

SAMHD1.   

Our findings can be used as a base for further research to verify novel biomarkers of 

resistance. Cancer patients treated with nutlin-3 and the four TBAs that we studied in 

Chapter 3 and Chapter 4 could then be monitored regularly for developing mutations in 

the suggested genes using gene panels. The increase of understanding of the drug 

adaptation process and the mechanisms of resistance described in Chapter 3 and Chapter 

4 could also help in designing effective drug combinations.  

Our results are limited by using only whole-exome sequencing data and thus reliable 

variant identification primarily in protein-coding regions. While whole-exome sequencing 

is informative, whole-genome sequencing would provide a fuller picture of the variation 

that occurs as part of the adaptation process, although such non-coding variation is 

typically much harder to interpret. Further, this research would be strengthened by the 
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use of multiple ‘omics methods such as transcriptomics (e.g. RNA sequencing) to measure 

gene expression levels and epigenomics to study DNA methylation patterns. 

Our studies using whole-exome sequencing data and cancer cell lines as a cancer model 

allow cost-effective identification of potential drug resistance mechanisms before the 

drug is given to patients. In the future, this research could be expanded by monitoring the 

drug adaptation process by sequencing cell lines at different time points during the 

adaptation process. That would enable determining how the resistant sub-clones emerge 

and possibly pinpoint sub-clones that initiated resistance. The knowledge gained from 

these studies could then be applied in the clinic. The patient’s genetic profile could be 

assessed at first so that anti-cancer drugs associated with the smallest probability of 

resistance for that genetic profile could be prescribed. Then regular monitoring of any 

changes in the mutations (acquiring new alterations and an increase or decrease in the 

variant allele frequency of the already existing ones) could be monitored to predict the 

next cancer move and make any adjustments necessary to retain the effectiveness of the 

anti-cancer therapy. With the development of liquid biopsies, it could be possible to 

monitor mutations through analysis of circulating tumour cells and DNA. 

Finally, our studies from Chapter 3 and Chapter 4 demonstrate how important it is to 

continue increasing the knowledge about the functions of the proteins. For example, from 

all the genes carrying somatic-like mutations that have possibly damaging impact on the 

protein function in the Molm13 parental cell line and its nutlin3-adapted sub-lines 

(overall 423 genes), for three of them, no functional information is present neither in the 

Ensembl (Yates et al., 2020) nor UniProt database. Two additional genes have protein 

sequence entries in UniProt that are annotated with a few Gene Ontology terms. 

However, this information has not been reviewed by a curator. Finally, the functions of six 

additional proteins that have been curated and are available in SwissProt do not say more 

than “uncharacterised protein”. Drug-adapted sub-lines have potentially deleterious 

mutations in those eleven genes, but we do not know what they do. This exemplifies the 

urgency of developing accurate protein function prediction methods that will guide 

experimental work and will allow uncovering the remaining functional mysteries. This 

knowledge will help understand diseases, including cancer and drug resistance, better 

and let design more suitable treatment. 



General discussion 

143 
 

5.4 Future work 

The research in this thesis could be complemented by applying current state-of-the-art 

methods of protein structure prediction such as AlphaFold2 (Jumper et al., 2021) (see 

2.6.1) - a template-free method that explores deep learning and achieved unprecedented 

quality and coverage of structural modelling in the last edition of Critical Assessment of 

Protein Structure Prediction (Home - CASP14, 2021). AlphaFold2 could hopefully improve 

solving the structures of the minimal genome proteins which lacked orthologs in other 

species and thus could not be modelled using the single-template method that we 

applied to identify unknown functions of the minimal genome in Chapter 2. For those 

proteins, we could not conclude any functional information, and they remained 

annotated as hypothetical. Knowing their 3D structure could contribute to identifying 

their function. We could model protein-protein and protein-ligand interactions by 

applying molecular docking (Northey, Barešić and Martin, 2018; Salmaso and Moro, 2018) 

and then apply molecular dynamics simulations to examine the nature of those 

interactions (Hospital et al., 2015).  

Future analysis should also include applying AlphaFold2 to perform structural modelling of 

proteins that are candidates for drivers of resistance in cancer cell lines adapted to nutlin-

3 and tubulin-binding agents that we studied in Chapter 3 and Chapter 4. Structural 

models could be used to assess the effect that the mutations would have on the structure 

and function. This would facilitate identifying loss-of-function mutations that could be 

prioritised for experimental validation. 

Finally, the protein function prediction method that we designed and used in Chapter 2 to 

identify unknown functions in the minimal genome is only partially automated. Even 

though the information about proteins could be collected from separate tools through 

web servers or desktop applications, predictions were made by manual curation of all the 

results. Thus, the method would have to be automated to be suitable for annotating a 

larger number of genes. This could be done by selecting features from the 22 sources of 

data that we used and training a machine or deep learning algorithm to make predictions 

instead of relying on the expertise of a researcher. The automated method could be used 

to annotate proteins in other minimal genomes and identify the common set of essential 

functions, which would expand our knowledge of what is necessary to sustain life. 
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List of supplementary figures and tables 

Appendix 1 

Figure S1 Orthologs of proteins in the minimal bacterial genome. The number of 

orthologs for each protein identified in A) archaea and B) eukaryota. Results for 

each functional class are represented by a different colour: golden for the 

Unknown functional class, yellow – Generic, light turquoise – Putative, turquoise – 

Probable, dark turquoise – Equivalog. C) Summary of the total number of 

orthologs identified across different phyla for each of the functional confidence 

groups. The names of phyla from eukaryota are displayed in black, bacteria in red 

and archaea in grey. 

Figure S2 Confidence of the top structural template identified by Phyre2. The 

confidence score (0-100) is shown for the top scoring template identified for each 

of the proteins in the minimal genome. The score indicates the confidence that the 

template protein sequence and the minimal genome protein sequence are 

homologs. Results for each functional class are represented by a different colour: 

golden for the Unknown functional class, yellow – Generic, light turquoise – 

Putative, turquoise – Probable, dark turquoise – Equivalog. 

Figure S3 Examples of proteins in the minimal bacterial genome that where it was 

difficult to predict their function. A) Protein MMSYN_0138 was previously 

completely uncharacterised and listed as a hypothetical protein. Predictions for 

MMSYN_0138 by multiple methods identify a relationship to ATP binding domains 

of ABC transporters but the functional residues involved in ATP binding are not 

conserved making this function less likely. B) Protein MMSYN_0615 was previously 

classified as a tRNA binding protein in the Generic confidence class. Multiple 

predictions suggest that it could be a Phenylalanine- tRNA ligase β subunit, 

however the β subunit in other bacteria typically contains around 800 residues, 

whereas MMSYN_0615 is only 202 residues. It therefore seems that tRNA binding is 

likely but the role of this function is not known. 

Figure S4 Transporter function prediction for the OppABCDF operon. Multiple 

sources made confident prediction for the proteins of the oligopeptide 

transporter system OppABCDF (AmiABCDE). These proteins form an operon in the 
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original M. mycoides subsp. capri and in the minimal genome. A) Permease OppB 

(AmiC) B) Permease OppC (AmiD) C) ATP-binding protein OppD (AmiE) D) ATP-

binding protein OppF (AmiF) E) Oligopeptide binding protein OppA (AmiA). 

Figure S5 Transporter function prediction for the potABCD operon. Multiple 

sources made confident prediction for the of the spermidine/putrescine 

transporter system potABCD were moved to the Putative class based on function 

predicted using confident results from multiple sources. These proteins form an 

operon in the original M. mycoides subsp. capri and in the minimal genome. A) 

Permease subunit potCD B) Permease subunit potB C) ATP-binding subunit potA. 

Figure S6 Functional annotations where confidence was increased. This figure 

shows the proteins of unknown function that remained in the same specificity 

class. Results for each specificity class are represented by a different colour: beige 

for the Hypothetical specificity class, orange – General, light brown – Specific and 

dark brown – Highly specific. A) Each column represents a protein in the minimal 

genome and the squares show the methods that made predictions (darker colours 

indicate support of the final prediction), grey squares indicate predictions that did 

not support the function, light squares indicate that a method did not make a 

prediction. Proteins are grouped by their initial specificity class (Hypothetical, 

General, Specific and Highly specific) B) Boxplot showing the distribution of scores 

associated with the annotated functions. Proteins are grouped by their initial 

specificity class. Horizontal lines represent the median, the lower and upper hinge 

show respectively first quartile and third quartile, and lower and upper whisker 

include scores from first quartile to (distance between the first and third 

quartile)*1.5 (for lower whisker) and from third quartile to (distance between the 

first and third quartile)*1.5 (for upper whisker). Any scores outside of these 

intervals are shown as points (outliers). C) Number of methods supporting the 

function and the average score. Each point represents a protein. Note that the 

point at 0,0 represents multiple proteins classed as Hypothetical where it was not 

possible to assign any function. 

Figure S7 Distribution of scores for matches to HAMAP. This the scores for HAMAP 

results for the minimal genome proteins of known function (Putative, Probable 

and Equivalog functional classes) are plotted. Results for each functional class are 
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represented by a different colour: light turquoise – Putative, turquoise – Probable, 

dark turquoise – Equivalog. 

Figure S8 Distribution of scores from ProSiteProfiles results. This figure plots the 

scores for ProSiteProfiles results for the minimal genome proteins of known 

function (Putative, Probable and Equivalog functional classes). Results for each 

functional class are represented by a different colour: light turquoise – Putative, 

turquoise – Probable, dark turquoise – Equivalog. 

Table S1 Examples of protein functions for the specificity classes. 

Table S2 Comparison of the predictions made by individual methods and the final 

annotation assigned by the combination of methods. For each individual method 

we counted the predictions that agreed with the final annotation assigned to the 

protein (column yes – final) and if they more generally agreed with the assigned 

function (yes – general). 

Table S3 Common predictions made by the five methods with greatest agreement 

with the final annotation. For each pair of methods the number of proteins where 

both methods make the same prediction as the final annotation is shown. 

 

Appendix 2 

Supplementary Data File 1: Orthologues of the minimal genome proteins 

identified using eggNOG-Mapper. 

Supplementary Data File 2: Domains identified in the minimal genome proteins. 

Results are shown for search against the Pfam and TIGRFAM databases of protein 

families.  

Supplementary Data File 3: Structural modelling of the minimal genome proteins. 

Results for modelling of the proteins using the Phyre2 server.  

Supplementary Data File 4: Membrane protein predictions for the minimal 

genome proteins.  

Supplementary Data File 5: Inferred functions of the proteins encoded by the 

minimal bacterial genome. The original annotation and the predicted functions 

from the analysis performed here are shown.  

Supplementary Data File 6: Gene Ontology-based function predictions for the 

proteins encoded by the minimal genome. 
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Supplementary Data File 7: Comparison of the predicted functions of the minimal 

genome proteins with predictions made by Danchin and Fang. 

Supplementary Data File 8: Interpro predictions for the proteins encoded by the 

minimal bacterial genome. 

 

Appendix 3 

Figure S1 Orthologs of proteins in the minimal bacterial genome. The number of 

orthologs for each protein identified in A) archaea and B) eukaryota. Results for 

each functional class are represented by a different colour: golden for the 

Unknown functional class, yellow – Generic, light turquoise – Putative, turquoise – 

Probable, dark turquoise – Equivalog. C) Summary of the total number of 

orthologs identified across different phyla for each of the functional confidence 

groups. The names of phyla from eukaryota are displayed in black, bacteria in red 

and archaea in grey. 

Figure S2 Confidence of the top structural template identified by Phyre2. The 

confidence score (0-100) is shown for the top scoring template identified for each 

of the proteins in the minimal genome. The score indicates the confidence that the 

template protein sequence and the minimal genome protein sequence are 

homologs. Results for each functional class are represented by a different colour: 

golden for the Unknown functional class, yellow – Generic, light turquoise – 

Putative, turquoise – Probable, dark turquoise – Equivalog. 

Figure S3 Examples of proteins in the minimal bacterial genome that where it was 

difficult to predict their function. A) Protein MMSYN_0138 was previously 

completely uncharacterised and listed as a hypothetical protein. Predictions for 

MMSYN_0138 by multiple methods identify a relationship to ATP binding domains 

of ABC transporters but the functional residues involved in ATP binding are not 

conserved making this function less likely. B) Protein MMSYN_0615 was previously 

classified as a tRNA binding protein in the Generic confidence class. Multiple 

predictions suggest that it could be a Phenylalanine- tRNA ligase β subunit, 

however the β subunit in other bacteria typically contains around 800 residues, 

whereas MMSYN_0615 is only 202 residues. It therefore seems that tRNA binding is 

likely but the role of this function is not known. 
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Figure S4 Transporter function prediction for the OppABCDF operon. Multiple 

sources made confident prediction for the proteins of the oligopeptide 

transporter system OppABCDF (AmiABCDE). These proteins form an operon in the 

original M. mycoides subsp. capri and in the minimal genome. A) Permease OppB 

(AmiC) B) Permease OppC (AmiD) C) ATP-binding protein OppD (AmiE) D) ATP-

binding protein OppF (AmiF) E) Oligopeptide binding protein OppA (AmiA). 

Figure S5 Transporter function prediction for the potABCD operon. Multiple 

sources made confident prediction for the of the spermidine/putrescine 

transporter system potABCD were moved to the Putative class based on function 

predicted using confident results from multiple sources. These proteins form an 

operon in the original M. mycoides subsp. capri and in the minimal genome. A) 

Permease subunit potCD B) Permease subunit potB C) ATP-binding subunit potA. 

Figure S6 Functional annotations where confidence was increased. This figure 

shows the proteins of unknown function that remained in the same specificity 

class. Results for each specificity class are represented by a different colour: beige 

for the Hypothetical specificity class, orange – General, light brown – Specific and 

dark brown – Highly specific. A) Each column represents a protein in the minimal 

genome and the squares show the methods that made predictions (darker colours 

indicate support of the final prediction), grey squares indicate predictions that did 

not support the function, light squares indicate that a method did not make a 

prediction. Proteins are grouped by their initial specificity class (Hypothetical, 

General, Specific and Highly specific) B) Boxplot showing the distribution of scores 

associated with the annotated functions. Proteins are grouped by their initial 

specificity class. Horizontal lines represent the median, the lower and upper hinge 

show respectively first quartile and third quartile, and lower and upper whisker 

include scores from first quartile to (distance between the first and third 

quartile)*1.5 (for lower whisker) and from third quartile to (distance between the 

first and third quartile)*1.5 (for upper whisker). Any scores outside of these 

intervals are shown as points (outliers). C) Number of methods supporting the 

function and the average score. Each point represents a protein. Note that the 

point at 0,0 represents multiple proteins classed as Hypothetical where it was not 

possible to assign any function. 
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Figure S7 Distribution of scores for matches to HAMAP. This the scores for HAMAP 

results for the minimal genome proteins of known function (Putative, Probable 

and Equivalog functional classes) are plotted. Results for each functional class are 

represented by a different colour: light turquoise – Putative, turquoise – Probable, 

dark turquoise – Equivalog. 

Figure S8 Distribution of scores from ProSiteProfiles results. This figure plots the 

scores for ProSiteProfiles results for the minimal genome proteins of known 

function (Putative, Probable and Equivalog functional classes). Results for each 

functional class are represented by a different colour: light turquoise – Putative, 

turquoise – Probable, dark turquoise – Equivalog. 

Figure S9 Pipeline for calling and analysing Single Nucleotide Variants. 

Figure S10 Mutational profile of the Molm13 parental cell - screenshot from 

COSMIC’s Cell Lines Project (Sample overview for 1330947, 2020) 

Figure S11 Selection of candidates for drivers. Classification of the variants into 

de novo, gained, higher allelic ratio, same, lower allelic ratio, not called and lost. 

Figure S12 Scheme representing our in-house pipeline for calling and filtering of 

SNVs and INDELs. 

 

Appendix 4 

Supplementary Table 1: Acquired (de novo, gained, higher allelic ratio) high-

quality, high-coverage, somatic-like, most-likely damaging variants shared 

between Molm13 sub-lines adapted to nutlin-3. 

Supplementary Table 2: De novo high-quality, high-coverage, somatic-like, most-

likely damaging variants shared between Molm13 sub-lines adapted to nutlin-3.  

Supplementary Table 3: High-quality, high-coverage, somatic-like, most-likely 

damaging variants from Molm13 parental cell line that are not retained (lost, not 

called, lower allelic ratio) in nutlin-3-adapted sub-lines. 

Supplementary Table 4: High-quality, high-coverage, somatic-like, most-likely 

damaging variants shared between Molm13 sub-lines adapted to nutlin-3. 
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Supplementary Table 5: Shared genes carrying acquired (de novo, gained, higher 

allelic ratio) high-quality, high-coverage, somatic-like, most-likely damaging 

variants. 

Supplementary Table 6: Shared genes carrying de novo high-quality, high-

coverage, somatic-like, most-likely damaging variants. 

Supplementary Table 7: Shared genes carrying high-quality, high-coverage, 

somatic-like, most-likely damaging variants from Molm13 parental cell line that 

are not retained (lost, not called, lower allelic ratio) in nutlin-3-adapted sub-lines. 

Supplementary Table 8: Shared genes carrying high-quality, high-coverage, 

somatic-like, most-likely damaging variants.  

Supplementary Table 9: Characterisation of high-quality, high-coverage, somatic-

like, most-likely damaging variants acquired in Molm13I sub-line and high-quality, 

high-coverage, somatic-like, most-likely damaging variants called in Molm13 

parental cell line that are not retained in Molm13I sub-line. 

Supplementary Table 10: Characterisation of high-quality, high-coverage, somatic-

like, most-likely damaging variants acquired in Molm13II sub-line and high-quality, 

high-coverage, somatic-like, most-likely damaging variants called in Molm13 

parental cell line that are not retained in Molm13II sub-line. 

Supplementary Table 11: Characterisation of high-quality, high-coverage, somatic-

like, most-likely damaging variants acquired in Molm13III sub-line and high-

quality, high-coverage, somatic-like, most-likely damaging variants called in 

Molm13 parental cell line that are not retained in Molm13III sub-line. 

Supplementary Table 12: Characterisation of high-quality, high-coverage, somatic-

like, most-likely damaging variants acquired in Molm13IV sub-line and high-

quality, high-coverage, somatic-like, most-likely damaging variants called in 

Molm13 parental cell line that are not retained in Molm13IV sub-line. 

 

Appendix 5 

Figure S12 Scheme representing our in-house pipeline for calling and filtering of 

SNVs and INDELs. 

Table S12 Drug concentrations that reduce cell viability by 50% (IC50) after 120h 

incubation as indicated by MTT assay (values are presented as mean ± S.D.). 
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Appendix 6 

Supplementary Table 1: Characterisation of de novo high-quality, high-coverage, 

somatic-like, most-likely damaging variants identified in UKF-NB-3 sub-lines 

adapted to eribulin, vincristine, epothilone b and 2-methoxyestradiol.  
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Figure S1 Orthologs of proteins in the minimal bacterial genome. The number of orthologs for each protein 

identified in A) archaea and B) eukaryota. Results for each functional class are represented by a different 

colour: golden for the Unknown functional class, yellow – Generic, light turquoise – Putative, turquoise – 

Probable, dark turquoise – Equivalog. C) Summary of the total number of orthologs identified across 

different phyla for each of the functional confidence groups. The names of phyla from eukaryota are 

displayed in black, bacteria in red and archaea in grey. 
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Figure S2 Confidence of the top structural template identified by Phyre2. The confidence score (0-100) is 

shown for the top scoring template identified for each of the proteins in the minimal genome. The score 

indicates the confidence that the template protein sequence and the minimal genome protein sequence are 

homologs. Results for each functional class are represented by a different colour: golden for the Unknown 

functional class, yellow – Generic, light turquoise – Putative, turquoise – Probable, dark turquoise – 

Equivalog. 

 

Figure S3 Examples of proteins in the minimal bacterial genome that where it was difficult to predict their 

function. A) Protein MMSYN_0138 was previously completely uncharacterised and listed as a hypothetical 
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protein. Predictions for MMSYN_0138 by multiple methods identify a relationship to ATP binding domains of 

ABC transporters but the functional residues involved in ATP binding are not conserved making this function 

less likely. B) Protein MMSYN_0615 was previously classified as a tRNA binding protein in the Generic 

confidence class. Multiple predictions suggest that it could be a Phenylalanine- tRNA ligase β subunit, 

however the β subunit in other bacteria typically contains around 800 residues, whereas MMSYN_0615 is only 

202 residues. It therefore seems that tRNA binding is likely but the role of this function is not known. 
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Figure S4 Transporter function prediction for the OppABCDF operon. Multiple sources made confident 

prediction for the proteins of the oligopeptide transporter system OppABCDF (AmiABCDE). These proteins 

form an operon in the original M. mycoides subsp. capri and in the minimal genome. A) Permease OppB (AmiC) 

B) Permease OppC (AmiD) C) ATP-binding protein OppD (AmiE) D) ATP-binding protein OppF (AmiF) E) 

Oligopeptide binding protein OppA (AmiA). 
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Figure S5 Transporter function prediction for the potABCD operon. Multiple sources made confident 

prediction for the of the spermidine/putrescine transporter system potABCD were moved to the Putative 

class based on function predicted using confident results from multiple sources. These proteins form an 
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operon in the original M. mycoides subsp. capri and in the minimal genome. A) Permease subunit potCD B) 

Permease subunit potB C) ATP-binding subunit potA. 

 

Figure S6 Functional annotations where confidence was increased. This figure shows the proteins of 

unknown function that remained in the same specificity class. Results for each specificity class are 

represented by a different colour: beige for the Hypothetical specificity class, orange – General, light brown 

– Specific and dark brown – Highly specific. A) Each column represents a protein in the minimal genome and 

the squares show the methods that made predictions (darker colours indicate support of the final 

prediction), grey squares indicate predictions that did not support the function, light squares indicate that a 
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method did not make a prediction. Proteins are grouped by their initial specificity class (Hypothetical, 

General, Specific and Highly specific) B) Boxplot showing the distribution of scores associated with the 

annotated functions. Proteins are grouped by their initial specificity class. Horizontal lines represent the 

median, the lower and upper hinge show respectively first quartile and third quartile, and lower and upper 

whisker include scores from first quartile to (distance between the first and third quartile)*1.5 (for lower 

whisker) and from third quartile to (distance between the first and third quartile)*1.5 (for upper whisker). 

Any scores outside of these intervals are shown as points (outliers). C) Number of methods supporting the 

function and the average score. Each point represents a protein. Note that the point at 0,0 represents 

multiple proteins classed as Hypothetical where it was not possible to assign any function.  

 

Figure S7 Distribution of scores for matches to HAMAP. This the scores for HAMAP results for the minimal 

genome proteins of known function (Putative, Probable and Equivalog functional classes) are plotted. 

Results for each functional class are represented by a different colour: light turquoise – Putative, turquoise – 

Probable, dark turquoise – Equivalog. 
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Figure S8 Distribution of scores from ProSiteProfiles results. This figure plots the scores for ProSiteProfiles 

results for the minimal genome proteins of known function (Putative, Probable and Equivalog functional 

classes). Results for each functional class are represented by a different colour: light turquoise – Putative, 

turquoise – Probable, dark turquoise – Equivalog. 

General Specific Highly specific 
 

Transcription factor 
Transcriptional regulator, 
RpiR family 

whiA; Sporulation 
transcription regulator 
WhiA 

 
Ribosomal protein 

Ribosomal protein 
L7Ae/L30e family 

rpmH; 50S ribosomal 
protein L34 

Transmembrane 
protein, likely a 
transporter 

 
ABC transporter, ATP-
binding protein 

oppD; Oligopeptide 
ABC transporter, 
ATP-binding protein 

Membrane 
metallopeptidase 

Transmembrane 
peptidase, C39 family 

 
pepQ; Xaa-Pro dipeptidase 

 
DNA-binding protein 

 
ATP-dependent DNA helicase 

 
polA; DNA polymerase I 

 

Table S1 Examples of protein functions for the specificity classes. 

Methods Number of proteins Percentage 
Yes 
(final) 

Yes 
(general) 

No No 
prediction 

Yes 
(final) 

Yes 
(general) 

No No 
prediction 
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eggNOG- 
Mapper 

55 22 1 71 37% 15% 1% 48% 

GO Terms 53 80 0 16 36% 54% 0% 11% 

Phyre2 53 32 0 64 36% 21% 0% 43% 
BLAST 
against 
UniProt 
top 
match 

51 20 1 77 34% 13% 1% 52% 

Pfam 49 34 0 66 33% 23% 0% 44% 
CATH 
FunFams 

45 16 2 86 30% 11% 1% 58% 

TIGRFAM 41 24 1 83 28% 16% 1% 56% 

InterPro 
ProSiteProf
ile s 

21 12 0 116 14% 8% 0% 78% 

InterPro 
CDD 

21 21 0 107 14% 14% 0% 72% 

InterPro 
SUPERFAMI
L Y 

21 40 0 88 14% 27% 0% 59% 

TrSSP 14 71 48 16 9% 48% 32% 11% 
InterP
ro 
Gene3
D 

14 28 1 106 9% 19% 1% 71% 

InterP
ro 
PIRSF 

7 4 0 138 5% 3% 0% 93% 

InterP
ro 
HAM
AP 

7 1 0 141 5% 1% 0% 95% 

InterP
ro 
SMAR
T 

7 11 0 131 5% 7% 0% 88% 

TMHMM 6 122 5 16 4% 82% 3% 11% 
InterPro 
ProSitePat
ter ns 

4 12 0 133 3% 8% 0% 89% 

InterP
ro 
PRINT
S 

3 4 0 142 2% 3% 0% 95% 
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InterPro 
SFLD 

2 1 0 146 1% 1% 0% 98% 

3DLigandSit
e 

0 44 20 85 0% 30% 13% 57% 

Firestar 0 35 2 112 0% 23% 1% 75% 
InterP
ro 
ProDo
m 

0 1 0 148 0% 1% 0% 99% 

Table S2 Comparison of the predictions made by individual methods and the final annotation assigned by 

the combination of methods. For each individual method we counted the predictions that agreed with the 

final annotation assigned to the protein (column yes – final) and if they more generally agreed with the 

assigned function (yes – general). 

 
Method 1 

 
Method 2 

Number of 
common 
proteins 

 
Percentage 

 
EggNOG 

 
BLAST - UniProt 

 
38 

 
25.5 

 
EggNOG 

 
Pfam 

 
31 

 
20.81 

 
EggNOG 

 
Phyre2 

 
30 

 
20.13 

 
Phyre2 

 
Pfam 

 
28 

 
18.79 

 
Phyre2 

 
BLAST - UniProt 

 
26 

 
17.45 

 
BLAST - UniProt 

 
Pfam 

 
24 

 
16.11 

 
EggNOG 

 
GO Terms 

 
14 

 
9.4 

 
GO Terms 

 
Phyre2 

 
13 

 
8.72 

 
GO Terms 

 
BLAST - UniProt 

 
12 

 
8.05 

 
GO Terms 

 
Pfam 

 
9 

 
6.04 

Table S3 Common predictions made by the five methods with greatest agreement with the final annotation. 

For each pair of methods the number of proteins where both methods make the same prediction as the final 

annotation is shown. 
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Figure S9 Pipeline for calling and analysing Single Nucleotide Variants. 

 

 

Figure S10 Mutational profile of the Molm13 parental cell - screenshot from COSMIC’s Cell Lines Project 

(Sample overview for 1330947, 2020) 
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.  

Figure S11 Selection of candidates for drivers. Classification of the variants into de novo, gained, higher 

allelic ratio, same, lower allelic ratio, not called and lost. 

 

Parental \ Drug-adapted High-quality 

and high-

coverage 

Present but either not 

called at all, or called 

with low-quality or low-

coverage 

Not present (no 

supporting 

reads) 

High-quality and high-

coverage 

same not called lost 

Present but either not 

called at all, or called 

with low-quality or low-

coverage 

gained    

Not present (no 

supporting reads) 

de novo    

Table S4 Selection of candidates for drivers of resistance to Nutlin-3. Classification of the variants into de 

novo, gained, same, not called and lost. Variants categorised as de novo, gained, not called and lost were 

then considered as candidates for drivers. 
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Sample Molm13I Molm13II Molm13III Molm13IV 

de_novo 72 55 47 53 

gained 57 53 58 54 

higher_allelic_ratio 1 3 6 2 

same 288 296 258 288 

lower_allelic_ratio 4 5 2 3 

not_called 53 39 73 56 

lost 68 71 75 65 

Table S5 The number of variants per drug-adapted sub-line and class. High-quality, high-coverage, 

somatic-like and most-damaging variants in each drug-adapted and parental cell line were classified as de 

novo, gained, higher allelic ratio, same, lower allelic ratio, not called and lost and then counted in each of 

the drug-adapted sub-line – Molm13I, Molm13II, Molm13III and Molm13IV.  

 

 P72R 

17g.7579472

G>C 

R175H 

17g.7578406

C>T 

S127F 

17g.7578550

G>A 

W91* 

17g.7579414

C>T 

R213* 

17g.7578212

G>A 

Frequency in 

the 

population 

(gnomAD 

frequency) 

6.68165e-01 

 

3.97969e-06  - - 0 

Consequenc

e for the 

protein 

Change of an 

amino acid: 

from non-

polar, 

hydrophobic 

to positively 

charged, 

polar, 

hydrophilic 

Change of an 

amino acid: 

both are 

positively 

charged, 

polar, 

hydrophilic  

Change of an 

amino acid: 

from no 

charge, 

polar, 

hydrophilic 

to non-polar, 

hydrophobic 

Truncated 

protein 

Truncated 

protein 
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SIFT/PolyPh

en 

tolerated/be

nign 

tolerated/be

nign 

deleterious/

probably_da

maging 

- - 

Known 

variant? 

validated 

polymorphis

m (IARC) 

present in 

dbSNP, 

COSMIC, 

gnomAD, 

ClinVar 

validated 

polymorphis

m (IARC) 

present in 

dbSNP, 

COSMIC, 

gnomAD, 

ClinVar 

present in 

dbSNP 

(730881999)

, COSMIC 

(44226), 

ClinVar 

(182928) 

present in 
dbSNP 
(876660548)
, COSMIC 
(44492), 
ClinVar 
(233650) 

present in 

dbSNP 

(397516436)

, COSMIC 

(10654), 

ClinVar 

(43590) 

Associated 

with 

diseases 

e.g. Li-

Fraumeni 

syndrome, H

ereditary 

cancer-

predisposing 

syndrome, C

ODON 72 

POLYMORPH

ISM, 

cisplatin 

response 

(ClinVar) 

e.g. Li-

Fraumeni 

syndrome, H

ereditary 

cancer-

predisposing 

syndrome, C

ODON 72 

POLYMORPH

ISM, 

cisplatin 

response 

(ClinVar) 

Li-Fraumeni 

syndrome 

(ClinVar) 

 

Li-Fraumeni 

syndrome, 

Hereditary 

cancer-

predisposing 

syndrome 

(ClinVar) 

e.g. Li-

Fraumeni 

syndrome, 

Hereditary 

cancer-

predisposing 

syndrome 

(ClinVar) 

Clinical 

significance 

uncertain_si

gnificance&b

enign&drug_

response; 

drug 

response 

(ClinVar) 

uncertain_si

gnificance&b

enign&drug_

response; 

drug 

response 

(ClinVar) 

uncertain_si

gnificance&li

kely_pathog

enic; 

Conflicting 

interpretatio

ns of 

pathogenic; 

Pathogenic 

(ClinVar) 

likely_patho

genic&patho

genic; 

Pathogenic 

(ClinVar) 
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pathogenicit

y (ClinVar) 

Table S6 Additional information about the variants acquired in TP53 in the drug-adapted sub-lines. The 

information about the gnomAD (Karczewski et al., 2020) frequency and the assessment of SIFT (Kumar, 

Henikoff and Ng, 2009) and PolyPhen-2 (Adzhubei et al., 2010) was taken from VEP (McLaren et al., 2016) 

results. The presence of the variants in the databases of cancer mutations was extracted from IARC 

(Bouaoun et al., 2016) database (version from July 2019). Clinical significance and association with diseases 

is based on the ClinVar (Landrum et al., 2018) entries for the variants. 

 

Sample File Value P72R 

17g.75794

72G>C 

R175H 

17g.75784

06C>T 

S127F 

17g.75785

50G>A 

W91* 

17g.75794

14C>T 

R213* 

17g.75782

12G>A  
Molm13P Variants Phred score 209 - - - - 

Coverage 21 - - - - 

VAF 0.381 - - - - 

Alignment Coverage 30 31 39 14 141 

VAF 0.4 0 0 0 0 

Molm13I Variants Phred score 222 201 160 - - 

Coverage 32 35 31 - - 

VAF 0.563 0.457 0.323 - - 

Alignment Coverage 39 39 41 24 135 

 VAF 0.564 0.436 0.293 0 0 (1 x C) 

Molm13II Variants Phred score - - - 225 - 

Coverage - - - 18 - 

VAF - - - 1 - 

Alignment Coverage 27 38 42 20 128 

VAF 0 0 0 1 0 

Molm13III Variants Phred score - - - - 225 

Coverage - - - - 48 

VAF - - - - 1 

Alignment Coverage 26 30 17 22 70 

VAF 0 0 0 0 1 

Molm13IV Variants Phred score 192 - - - - 
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Coverage 19 - - - - 

VAF 0.47 - - - - 

Alignment Coverage 28 50 25 19 135 

VAF 0.464 0 0 0 0 

Table S7 Variant allele frequency, base coverage and Phred score for each of the TP53 variants. Coverage 

of the base and variant allele frequency was calculated for each of the high-quality, high-coverage, somatic-

like, most-damaging variants in TP53. Two sets of data were taken into account – the file with called 

variants and the alignment file where there might be additional low-quality reads that were not considered 

when variant was called (hence base coverage might be higher in the alignment file). Additionally, base 

quality score (Phred score) from the file with called variants is shown.  

 

Sample File Value p.Y553C 

20g.35526313T>C 

p.P121L 

20g.35563579G>A 

Molm13P Variants Phred score - - 

Coverage - - 

VAF - - 

Alignment Coverage 225 124 

VAF 0 0 

Molm13I Variants Phred score - - 

Coverage - - 

VAF - - 

Alignment Coverage 268 133 

VAF 0 0 

Molm13II Variants Phred score 228 - 

Coverage 141 - 

VAF 0.993 - 

Alignment Coverage 213 67 

VAF 0.981 0 

Molm13III Variants Phred score 225 - 

Coverage 102 - 

VAF 1 - 

Alignment Coverage 150 61 

VAF 1 0 

Molm13IV Variants Phred score - 222 
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Coverage - 66 

VAF - 0.545 

Alignment Coverage 269 90 

VAF 0 0.578 

Table S8 Variant allele frequency, base coverage and Phred score for each of the SAMHD1 variants. 

Coverage of the base and variant allele frequency was calculated for each of the high-quality, high-

coverage, somatic-like, most-damaging variants in SAMHD1. Two sets of data were taken into account – the 

file with called variants and the alignment file where there might be additional low-quality reads that were 

not considered when variant was called (hence base coverage might be higher in the alignment file). 

Additionally, base quality score (Phred score) from the file with called variants is shown. 

 

 p.Y553C 

20g.35526313T>C 

p.P121L 

20g.35563579G>A 

Frequency in 

the 

population 

(gnomAD 

frequency) 

- 3.97674e-06 

Consequence 

for the protein 

Change of an amino acid: both 

polar, Tyrosine has an aromatic 

ring, Cysteine forms disulfide 

bridges 

Change of an amino acid: both 

hydrophobic, Proline has an 

aromatic ring 

SIFT/PolyPhen deleterious/probably damaging deleterious/probably damaging 

Known 

variant? 

- present dbSNP (rs1188635417) 

Associated 

with diseases 

Not in ClinVar Not in ClinVar 

 

Clinical 

significance 

Not in ClinVar Not in ClinVar 

 

Table S9 Additional information about the variants acquired in SAMHD1 in the drug-adapted sub-lines. 

The information about the gnomAD (Karczewski et al., 2020) frequency and the assessment of SIFT (Kumar, 

Henikoff and Ng, 2009) and PolyPhen-2 (Adzhubei et al., 2010) was taken from VEP (McLaren et al., 2016) 
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results. Clinical significance and association with diseases is based on the lack of ClinVar (Landrum et al., 

2018) entries for the variants. 

 

 Nutlin-3 Cytarabine Daunorubicin 

Cell line IC50 (µM) (ng/mL) (ng/mL) 

MOLM13 0.68 ± 0.22 17.4 ± 5.5 2.73 ± 0.75 

MOLM13rNutlin20µMI 12.9 ± 2.5 (19.0)1 2.15 ± 0.42 (0.12) 14.9 ± 3.9 (5.4) 

MOLM13rNutlin20µMII 11.3 ± 0.7 (16.6) 2.09 ± 0.56 (0.12) 13.4 ± 6.4 (4.9) 

MOLM13rNutlin20µMIII 12.3 ± 1.8 (18.1) 2.45 ± 0.62 (0.14) 11.9 ± 2.3 (4.4) 

MOLM13rNutlin20µMIV 10.6 ± 2.3 (15.6) 5.41 ± 1.08 (0.31) 6.16 ± 2.44 (2.3) 
1 relative sensitivity (IC50 resistant subline/ IC50 respective parental cell line) 

Table S10 Drug concentrations that reduce cell viability by 50% (IC50) after 120h incubation as indicated by 

MTT assay. 

 

 Nutlin-3 Cytarabine 

Cell line IC50 (µM) (ng/mL) 

MOLM13 0.68 ± 0.22 17.4 ± 5.5 

MOLM13rNutlin20µMV 11.7 ± 2.2 (17.2)1 2.23 ± 1.02 (0.13) 

MOLM13rNutlin20µMVI 11.9 ± 2.2 (17.5) 49.6 ± 25.2 (2.9) 

   

 Nutlin-3 Cytarabine 

Cell line IC50 (µM) (µg/mL) 

MV4-11 2.33 ± 0.35 0.79 ± 0.12 

MV4-11rNutlin20µMI 15.2 ± 2.8 (6.5) 0.82 ± 0.12 (1.04) 

MV4-11rNutlin20µMII 22.6 ± 1.5 (9.7) 0.38 ± 0.03 (0.48) 

MV4-11rNutlin20µMIII 15.5 ± 1.6 (6.7) 0.96 ± 0.09 (1.22) 

MV4-11rNutlin20µMIV 18.4 ± 2.1 (7.9) 0.52 ± 0.03 (0.66) 

MV4-11rNutlin20µMV 16.6 ± 1.5 (7.1) 0.23 ± 0.08 (0.29) 

MV4-11rNutlin20µMVI 16.1 ± 0.3 (6.9) 0.26 ± 0.04 (0.33) 

MV4-11rNutlin20µMVII 20.3 ± 2.2 (8.7) 0.34 ± 0.06 (0.43) 

MV4-11rNutlin20µMVIII 17.0 ± 2.4 (7.3) 0.32 ± 0.05 (0.41) 
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MV4-11rNutlin20µMIX 14.1 ± 0.7 (6.1) 0.13 ± 0.02 (0.16) 

MV4-11rNutlin20µMX 14.2 ± 1.7 (6.1) 0.15 ± 0.01 (0.19) 

MV4-11rNutlin20µMXI 17.4 ± 2.0 (7.5) 0.15 ± 0.02 (0.19) 

MV4-11rNutlin20µMXII 13.3 ± 1.2 (5.7) 0.53 ± 0.06 (0.67) 

MV4-11rNutlin20µMXIII 15.4 ± 0.9 (6.6) 1.30 ± 0.25 (1.65) 

MV4-11rNutlin20µMXIV 13.9 ± 1.8 (6.0) 1.00 ± 0.18 (1.27) 

MV4-11rNutlin20µMXV 17.0 ± 2.3 (7.3) 0.44 ± 0.07 (0.56) 

   

 Nutlin-3 Cytarabine 

Cell line IC50 (µM) (ng/mL) 

SIG-M5 1.27 ± 0.16 150 ± 37 

SIG-M5rNutlin20µMIII 11.2 ± 1.9 (8.8) 36.9 ± 13.7 (0.25) 

SIG-M5rNutlin20µMIV 23.0 ± 3.8 (18.1) 325 ± 32 (2.17) 

SIG-M5rNutlin20µMVI 15.2 ± 3.2 (12.0) 195 ± 7 (1.30) 

SIG-M5rNutlin20µMVIII 11.4 ± 3.5 (9.0) 63.0 ± 8.5 (0.42) 

SIG-M5rNutlin20µMIX 10.1 ± 0.3 (8.0) 42.5 ± 9.3 (0.28) 

SIG-M5rNutlin20µMXI 23.5 ± 0.7 (18.5) 43.1 ± 6.6 (0.29) 

SIG-M5rNutlin20µMXV 3.64 ± 0.29 (2.9) 73.7 ± 3.4 (0.49) 

SIG-M5rNutlin20µMXX 15.3 ± 3.8 (12.0) 80.7 ± 11.1 (0.54) 
1 relative sensitivity (IC50 resistant subline/ IC50 respective parental cell line) 

Table S11 Drug concentrations that reduce cell viability by 50% (IC50) after 120h incubation as indicated by 

MTT assay. 
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Figure S12 Scheme representing our in-house pipeline for calling and filtering of SNVs and INDELs. 

 Vincristine 

Cell line IC50 (ng/mL) 

UKF-NB-3 0.04 ± 0.02 

UKF-NB-3rVCR0.5I 1.8 ± 0.4 (45.0)1 

UKF-NB-3rVCR0.5II 0.58 ± 0.06 (14.5) 

UKF-NB-3rVCR0.5III 0.60 ± 0.21 (15.0) 

UKF-NB-3rVCR0.5IV 0.27 ± 0.11 (6.8) 

UKF-NB-3rVCR0.5V 0.35 ± 0.11 (8.8) 
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UKF-NB-3rVCR0.5VI 0.84 ± 0.21 (21.0) 

UKF-NB-3rVCR0.5VII 0.33 ± 0.04 (8.3) 

UKF-NB-3rVCR0.5IX 1.47 ± 0.51 (36.8) 

UKF-NB-3rVCR0.5XI 0.25 ± 0.01 (6.3) 

UKF-NB-3rVCR0.5XII 0.35 ± 0.10 (8.8) 

  

 Eribulin 

Cell line IC50 (ng/mL) 

UKF-NB-3 0.13 ± 0.04 

UKF-NB-3rERI10I 247 ± 61 (1900) 

UKF-NB-3rERI10II 69 ± 18 (531) 

UKF-NB-3rERI10III 52 ± 14 (400) 

UKF-NB-3rERI10IV 210 ± 58 (1615) 

UKF-NB-3rERI10V 115 ± 42 (885) 

UKF-NB-3rERI10VI 159 ± 31 (1223) 

UKF-NB-3rERI10VII 117 ± 25 (900) 

UKF-NB-3rERI10VIII 112 ± 21 (862) 

UKF-NB-3rERI10IX 150 ± 37 (1154) 

UKF-NB-3rERI10X 124 ± 26 (954) 

UKF-NB-3rERI10XI 118 ± 22 (908) 

UKF-NB-3rERI10XII 28.9 ± 4.8 (222) 

  

 2-Methoxyestradiol 

Cell line IC50 (nM) 

UKF-NB-3 109 ± 16 

UKF-NB-3r2ME2µMI 1271 ± 360 (11.7) 

UKF-NB-3r2ME2µMII 1384 ± 26 (12.7) 

UKF-NB-3r2ME2µMIII 957 ± 495 (8.8) 

UKF-NB-3r2ME2µMIV 1154 ± 176 (10.6) 

UKF-NB-3r2ME2µMV 884 ± 329 (8.1) 

UKF-NB-3r2ME2µMVI 1072 ± 294 (9.8) 
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UKF-NB-3r2ME2µMVII 1378 ± 155 (12.6) 

UKF-NB-3r2ME2µMVIII 911 ± 183 (8.4) 

UKF-NB-3r2ME2µMIX 1359 ± 61 (12.5) 

UKF-NB-3r2ME2µMX 832 ± 51 (7.6) 

  

 Epothilone B 

Cell line IC50 (nM) 

UKF-NB-3 0.27 ± 0.08 

UKF-NB-3rEPOB2nMI 1.82 ± 0.35 (6.7) 

UKF-NB-3rEPOB2nMII 1.82 ± 0.17 (6.7) 

UKF-NB-3rEPOB2nMIII 1.16 ± 0.22 (4.3) 

UKF-NB-3rEPOB2nMIV 1.72 ± 0.09 (6.4) 

UKF-NB-3rEPOB2nMV 1.56 ± 0.31 (5.8) 

UKF-NB-3rEPOB2nMVI 1.65 ± 0.24 (6.1) 

UKF-NB-3rEPOB2nMVII 1.62 ± 0.29 (6.0) 

UKF-NB-3rEPOB2nMIX 1.83 ± 0.36 (6.8) 

UKF-NB-3rEPOB2nMX 1.38 ± 0.23 (5.1) 
1 relative resistance (IC50 resistant subline/ IC50 respective parental cell line) 

Table S12 Drug concentrations that reduce cell viability by 50% (IC50) after 120h incubation as indicated by 

MTT assay (values are presented as mean ± S.D.). 
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Participation in the third edition of the Critical Assessment 

of Functional Annotation: the Gene Ontology Annotation 

Tool (GOAT) 

As part of my PhD research, I participated with my supervisor in the third round of the 

Critical Assessment of Functional Annotation (CAFA3). As a result, I am a co-author on the 

CAFA3 paper – (Zhou et al., 2019) in Genome Biology. I developed the Gene Ontology 

Annotation Tool (GOAT), which was ranked in the top 10 performing methods for 

Molecular Function ontology (see Gene Ontology) according to Fmax and Smin scores (see 

The Critical Assessment of Function Annotation) calculated for proteins where no prior 

experimental functions were available (refer to Fig S4 and Fig S5 in (Zhou et al., 2019)). 

GOAT is a simplified version of CombFunc (Wass, Barton and Sternberg, 2012). It predicts 

Gene Ontology terms using the same SVM model as CombFunc (presented in detail in 

CombFunc); however, the features used to describe target proteins are based only on 

matches to Pfam domains (El-Gebali et al., 2019), BLAST and PSI-BLAST hits (Altschul et 

al., 1997) and ConFunc (Wass and Sternberg, 2008). GOAT predicts Gene Ontology terms 

solely from Molecular Function ontology. No other settings of CombFunc were changed.  

GOAT is an automated protein function prediction method however it is currently not 

publicly available. 

 

 


