

Kent Academic Repository

Du, Yue, Miah, Kamram M., Habib, Omar, Meyer-Berg, Helena, Conway, Catriona C., Viegas, Mariana A., Dean, Rebecca, Satyapertiwi, Dwiantari, Zhao, Jincun, Wang, Yanqun and others (2022) *Lung directed antibody gene transfer confers protection against SARS-CoV-2 infection.* Thorax . ISSN 0040-6376.

Downloaded from <u>https://kar.kent.ac.uk/91980/</u> The University of Kent's Academic Repository KAR

The version of record is available from

This document version Author's Accepted Manuscript

DOI for this version

Licence for this version UNSPECIFIED

Additional information

Versions of research works

Versions of Record

If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in *Title of Journal*, Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact <u>ResearchSupport@kent.ac.uk</u>. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our <u>Take Down policy</u> (available from <u>https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies</u>).

Thorax

Lung directed antibody gene transfer confers protection against SARS-CoV-2 infection

Journal:	Thorax
Manuscript ID	thoraxjnl-2021-217650.R1
Article Type:	Original research
Date Submitted by the Author:	18-Oct-2021
Complete List of Authors:	Du, Yue; University of Oxford, NDCLS, Radcliffe Department of Medicine Miah, Kamran M.; University of Oxford, NDCLS, Radcliffe Department of Medicine Habib, Omar; University of Oxford, NDCLS, Radcliffe Department of Medicine Meyer-Berg, Helena; University of Oxford, NDCLS, Radcliffe Department of Medicine Conway, Catriona C.; University of Oxford, NDCLS, Radcliffe Department of Medicine Viegas, Mariana de A; University of Oxford, NDCLS, Radcliffe Department of Medicine Dean, Rebecca; University of Oxford, NDCLS, Radcliffe Department of Medicine Satyapertiwi, Dwiantari; University of Oxford, NDCLS, Radcliffe Department of Medicine Zhao, Jincun; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University Wang, Yanqun; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University Wang, Yanqun; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University Temperton, Nigel J; University of Kent, Medway School of Pharmacy Gamlen, Toby; University of Oxford, NDCLS, Radcliffe Department of Medicine Gill, Deborah; University of Oxford, NDCLS, Radcliffe Department of Medicine Hyde, Stephen; University of Oxford, NDCLS, Radcliffe Department of Medicine
Keywords:	COVID-19, Respiratory Infection, Viral infection

SCHOLARONE[™] Manuscripts

Page 1 of 41

Thorax

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

for Review Only

1	Lung directed antibody gene transfer confers protection against SARS-	
2	CoV-2 infection	
3		
4	Authors:	
5	Yue Du ¹ , Kamran M. Miah ¹ , Omar Habib ¹ , Helena Meyer-Berg ¹ , Catriona C. Conway ¹ ,	
6	Mariana A. Viegas ¹ , Rebecca Dean ¹ , Dwiantari Satyapertiwi ¹ , Jincun Zhao ² , Yanqun	
7	Wang ² , Nigel J Temperton ³ , Toby Gamlen ¹ , Deborah R. Gill ¹ and Stephen C. Hyde ^{1*}	
8		
9	Affiliations:	
10	¹ Gene Medicine Group, Nuffield Department of Clinical Laboratory Sciences,	
11	Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU. United	
12	Kingdom. ² State Key Laboratory of Respiratory Disease, Guangzhou Institute of	
13	Respiratory Health, the First Affiliated Hospital, Guangzhou 510120, China. ³ Viral	
14	Pseudotype Unit, University of Kent and Greenwich, Chatham Maritime ME4 4TB,	
15	United Kingdom.	
16	*Correspondence to: steve.hyde@ndcls.ox.ac.uk	
17		
18	Running title: COVID-19 Vectored Immunoprophylaxis	
19	Key words: COVID-19; murine model; viral-vectored immunoprophylaxis; lung;	
20	monoclonal neutralizing antibody	
21		
22	Word count: 3479	
23	Figure count: 5	

3
4
5
6
7
ç Q
0
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
26
20
3/
38
39
40
41
42
43
44
15
45 46
40
4/
48
49
50
51
52
53
54
55
55
20
5/
58
59

1 2

24 What is the key question?

Can we generate an *in vivo* model of SARS-CoV-2 infection based on standard
laboratory mice, for testing new therapeutics such as passive vaccination with antiSARS-CoV-2 antibodies?

28

29 What is the bottom line?

30 Using a mimic of SARS-CoV-2 based on recombinant lentivirus pseudotyped with
31 SARS-CoV-2 Spike protein, we created a humanised *in vivo* mouse model of SARS32 CoV-2 infection, and showed long-term, passive vaccination by gene transfer of
33 antibody sequences.

34

35 Why read on?

36 Our humanised mouse model and SARS-CoV-2 mimic offers a rapid, inexpensive, and

37 efficient method to evaluate therapeutic interventions to halt SARS-CoV-2 infection.

38 It will be of interest to researchers studying COVID-19 and other respiratory pathogens

39 and, importantly, can be implemented under standard laboratory biosafety conditions

40 without the need to breed and maintain transgenic animals.

41	Abstract (228 words)
42	
43	Background
44	The novel coronavirus disease (COVID-19) pandemic continues to be a worldwide
45	threat and effective antiviral drugs and vaccines are being developed in a joint global
46	effort. However, some elderly and immune-compromised populations are unable to
47	raise an effective immune response against traditional vaccines.
48	
49	Aims
50	We hypothesised that passive immunity engineered by the <i>in vivo</i> expression of anti-
51	SARS-CoV-2 monoclonal antibodies (mAbs), an approach termed vectored-
52	immunoprophylaxis (VIP), could offer sustained protection against COVID-19 in all
53	populations irrespective of their immune status or age.
54	
55	Methods
56	We developed three key reagents to evaluate VIP for SARS-CoV-2: (i) we engineered
57	standard laboratory mice to express human ACE2 via rAAV9 in vivo gene transfer, to
58	allow <i>in vivo</i> assessment of SARS-CoV-2 infection, (ii) to simplify <i>in vivo</i> challenge
59	studies, we generated SARS-CoV-2 Spike protein pseudotyped lentiviral vectors as a
60	simple mimic of authentic SARS-CoV-2 that could be used under standard laboratory
61	containment conditions; and (iii) we developed <i>in vivo</i> gene transfer vectors to express
62	anti-SARS-CoV-2 mAbs.
63	

Conclusions

A single intranasal dose of rAAV9 or rSIV.F/HN vectors expressing anti-SARS-CoV-2 mAbs significantly reduced SARS-CoV-2 mimic infection in the lower respiratory tract of hACE2-expressing mice. If translated, the VIP approach could potentially offer .io. .ine. The *in viv*. .protection and prevent rap. a highly effective, long-term protection against COVID-19 for highly vulnerable populations; especially immune-deficient/senescent individuals, who fail to respond to conventional SARS-CoV-2 vaccines. The in vivo expression of multiple anti-SARS-

CoV-2 mAbs could enhance protection and prevent rapid mutational escape.

72	Introd	luction

The current Coronavirus Disease 2019 (COVID-19) pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has ravaged the globe. Many of the vaccine candidates being developed have yielded positive results in clinical trials, generating high levels of antibodies ¹², and providing clinical protection ³. However, the induction of such protective immunity is entirely dependent on the treated individual's immune system to develop antigen-specific immunity, and it remains unclear whether diverse populations will respond to the antigen-based vaccine regimens to the same extent. In all likelihood, people will respond to the current vaccines to different degrees and some groups of individuals with poor immunogenicity will struggle to raise a protective immune response.

An alternative strategy is to use vector-mediated immunoprophylaxis (VIP) against SARS-CoV-2 infection, which could circumvent some limitations. VIP involves the delivery of genes encoding neutralizing antibodies into target cells via gene transfer; subsequently, the monoclonal antibody (mAb) protein is synthesised *in vivo*, secreted into the local milieu and ultimately the systemic circulation. Viral vectors can be exploited for VIP, including recombinant Adeno-Associated Virus (rAAV) vectors that provide long-term and stable transgene expression with low vector immunogenicity and high tolerability⁴. In particular, rAAV-mediated delivery of neutralizing antibodies is a promising strategy against Human Immunodeficiency Virus (HIV)⁵, Filovirus⁶, Respiratory syncytial virus (RSV)⁷, and Influenza virus (IV)⁸⁻¹⁰. More recently, recombinant Simian Immunodeficiency Virus (SIV) pseudotyped with the Fusion (F)

and Haemagglutinin-Neuraminidase (HN) surface glycoproteins from Sendai virus
(rSIV.F/HN)¹¹ has also been used to express broadly neutralizing mAbs in the airways
to protect against a supra-lethal influenza infection ⁹. To our knowledge, there have
been no published, peer-reviewed reports on the application of VIP for SARS-CoV-2.

In this study, we delivered the rAAV and rSIV.F/HN gene transfer platforms via intranasal and intramuscular administration routes to express NC0321, a prototypical SARS-CoV-2 neutralizing mAb. We then challenged the mAb-treated mice with S-LV (a SARS-CoV-2 pseudovirus created from a recombinant HIV1 lentiviral vector pseudotyped with the D614G derivative of the SARS-CoV-2 Spike (S) protein). We used S-LV infection to investigate the prophylactic efficacy of the NC0321 mAb produced by the *in vivo* gene transfer vectors. These proof-of-principle studies demonstrate that viral infection can be inhibited by vector-mediated delivery of anti-SARS-CoV-2 mAb genes. We call this strategy **'COVID-19 Vectored** Immunoprophylaxis' (COVIP). Importantly, the COVIP approach could offer potent protection against authentic SARS-CoV-2 infection in populations that fail to respond to conventional SARS-CoV-2 vaccines.

2		
3 4	112	Materials and Methods
5 6	112	Detailed methods can be found in the online supplementary information
7	115	Detaned methods can be found in the online supplementary information.
8 9	114	
10 11		
12	115	Results
13 14 15	116	S-LV as a mimic of SARS-CoV-2
16 17	117	We aimed to generate a non-replicative mimic of SARS-CoV-2 capable of a single-
18 19 20	118	cycle of infection for use under simple laboratory conditions. Importantly, cellular entry
21 22	119	of SARS-CoV-2 relies on the viral Spike protein binding to the Angiotensin-converting
23 24 25	120	enzyme 2 (ACE2) receptor, an interaction synergised by cleavage of Spike by
26 27	121	Transmembrane protease Serine 2 (TMPRSS2) ¹² . We hypothesised that a third-
28 29 30	122	generation HIV lentiviral vector pseudotyped with the SARS-CoV-2 Spike protein
31 32	123	(termed S-LV) would retain similar receptor dependencies. We found that S-LV
33 34 35	124	particles could be readily prepared and showed that, similar to SARS-CoV-2 and other
36 37	125	SARS-CoV-2 surrogates ¹² , S-LV infection of cells <i>in vitro</i> was absolutely dependent
38 39	126	on hACE2 and was significantly enhanced in the presence of hTMPRSS2 (Fig 1A).
40		
41 42	127	
43	128	r A AV vector can mediate h ACE2 expression in vive
44 45	120	TAAV vector can mediate nACE2 expression <i>m vivo</i>
46 47	129	Since S-LV pseudovirus could mimic SARS-CoV-2 infection <i>in vitro</i> , we next aimed
48 49 50	130	to create an <i>in vivo</i> infection model to evaluate potential therapeutic interventions.
51 52	131	However, laboratory mice are not naturally susceptible to Coronavirus infection due to
53 54 55	132	ACE2 receptor incompatibility ¹³ . Others have chosen to generate, breed and utilise
56 57	133	hACE2 expressing transgenic mice to overcome this limitation ¹⁴ . As a more accessible
58 59 60	134	alternative, we provided human (h)ACE2 and (in some studies) hTMPRSS2 in trans to

facilitate SARS-CoV-2 or S-LV entry, thus generating a murine model of SARS-CoV-2infection.

We used *in vivo* delivery of both rAAV9 and rAAV6.2 vectors to provide the necessary cellular receptors. Vectors carrying hACE2 or the reporter eGFP were administered to mouse lungs via intranasal instillation (I.N.) and 14 days post-delivery, we observed abundant eGFP expression with both vectors. For rAAV9, eGFP expression was largely restricted to the parenchyma of the lung, predominantly in cells with an Alveolar Type I (ATI) morphology. In contrast, rAAV6.2 directed eGFP expression in both the lung parenchyma, predominantly in cells with an Alveolar Type II (ATII) morphology, and in cells of the conducting airway (Fig 1B). The significant sequence homology between human and murine (m)ACE2 meant that distinguishing their expression by IHC was challenging ¹⁵, therefore *in situ* hybridization (ISH) was used to detect vector-derived hACE2 expression via the linked WPRE sequence. Fig 1C shows that consistent with the observed eGFP signal, hACE2 expressed from rAAV9 was rarely observed in the conducing airway and was largely restricted to the lung parenchyma, while rAAV6.2 vector expression was observed in cells of the conducting airway, terminal bronchi and alveoli.

- - 154 rAAV vector-mediated hACE2 expression facilitates S-LV infection

Having established that hACE2 and hTMPRSS2 could be provided *in trans* to the
murine airway via rAAV vectors, we then asked whether hACE2 could facilitate S-LV
transduction in murine lungs, and whether infectivity could be enhanced by hTMPRSS2

158	co-expression. To address this, mice were first treated I.N. with 7E10 genome copies
159	(GC) rAAV6.2 hACE2, 1E11 GC rAAV.hACE2, or cocktails of rAAV9.hACE2 and
160	rAAV9.hTMPRSS2 vectors where the total rAAV9 dose delivered was fixed at 1E11
161	GC. Mice were infected 14 days later with 890 ng of p24 of S-LV Luciferase (I.N.) and
162	monitored for S-LV-dependent luciferase expression kinetics (Fig 2A). Consistent with
163	the <i>in vitro</i> study findings, mouse lungs were refractory to S-LV infection in the absence
164	of hACE2 expression. In contrast, mouse lungs that were primed with hACE2 by either
165	rAAV9 or rAAV6.2 showed abundant luciferase expression after infection with S-LV.
166	Luciferase activity was detectable above background from as early as 24 hours after S-
167	LV infection with signal intensity increasing to a peak at approximately 7 days (Fig
168	2B). Consistent with the lentiviral vector heritage of S-LV, luciferase expression was
169	long-lived, though it should be noted that an early peak of signal intensity
170	(approximately 7 days post-infection) fell to plateau at around 21 days post-infection
171	(Fig 2C). The S-LV mediated luciferase expression was monitored over a 38-day time-
172	course, showing luciferase signal intensity achieved with hACE2 priming was more
173	than 200-fold greater than without priming (p<0.0001, Fig 2D). While the signal
174	intensity achieved with rAAV6.2.hACE2 priming tended to be ~2 fold lower than that
175	achieved with rAAV9 (approximately 100-fold over no priming) this difference failed
176	to reach significance (p=0.2722). Nevertheless, the higher absolute signal observed
177	using rAAV9.hACE2, together with the substantially lower production yields of
178	rAAV6.2.hACE2, which ultimately restricted the rAAV6.2 hACE2 priming dose that
179	could be delivered. Interestingly, and in contrast with our <i>in vitro</i> findings,
180	incorporation of 1E10 GC of rAAV9.hTMPRSS2 had no positive benefit on S-LV

1	
5	
6	
7	
8	
9	
10	
11	
12	
12	
17	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23	
∠+ 2⊑	
25	
26	
27	
28	
29	
30	
31	
32	
33	
31	
24	
22	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
75 76	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
60	

184

infection *in vivo* and the use of 5E10 rAAV9.hTMPRSS2 significantly reduced
(p=0.0221) the S-LV signal to only 60-fold over background (Fig 2D). Together, these
data led us to focus on rAAV9.hACE2 priming in all subsequent studies.

185 S-LV kinetics and dose-dependency in hACE2-expressing mice

186 To gain a more thorough insight into the transduction kinetics of S-LV, we performed 187 dose titration studies in hACE2-expressing mice which were infected with 0, 9.4, 94, 188 470, and 940 ng p24 of S-LV (Fig 3A). We observed a dose-dependent increase in S-189 LV mediated luciferase expression (Fig 3B). As in the previous studies, in vivo 190 bioluminescence in each hACE2-expressing mouse rose to a peak at approximately 7 191 days post-infection (Fig 3C). Notably, infection with either 470 or 940 ng p24 of S-LV 192 produced comparable lung luciferase activity (p>0.9999, Fig 3D), consistent with S-193 LV infection in this model being limited by the rAAV9-mediated hACE2 expression 194 above 470 ng of p24 of S-LV. Importantly, the 470 ng p24 dose of S-LV produced 195 significantly higher lung luciferase activity than the 0, 9.4 or 94 ng p24 dose of S-LV 196 (p<0.001, p<0.001 and p=0.0012 respectively). To avoid any limitation in S-LV signal, 197 we proceeded with the saturating S-LV challenge dose of 470 ng p24 S-LV in 198 subsequent therapeutic protection studies.

199

60

200 In vitro and In vivo IgG expression mediated by AAV and SIV.F/HN vectors

201 To establish proof-of-principle for COVIP, we wished to express *in vivo* a potent anti202 SARS-CoV-2 mAb to inhibit S-LV infection in our mouse model. The mAb NC0321
203 was originally isolated from the convalescent serum of a patient recovered from SARS-

1	
2	
3	
4	
5	
6	
7	
, 8	
0	
10	
10	
11	
12	
13	
14	
15	
10	
1/	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

204	CoV-2 infection in China (Zhao JC, in preparation). We established that the single-
205	open reading frame version of NC0321 used (Fig 4A & Supplementary Fig 1A) could
206	both potently bind the receptor binding domain (RBD) portion of SARS-CoV-2 Spike
207	protein (Fig 4B) and block S-LV infection in our <i>in vitro</i> cell model (Fig 4C). We then
208	examined the ability of alternative gene transfer vector configurations to mediate
209	expression of NC0321 IgG in vivo. Following delivery of rSIV.F/HN.NC0321 and
210	rAAV9.NC0321 vectors via the I.N. route, and rAAV8.NC0321 via intramuscular
211	injection (I.M.), we monitored NC0321 expression levels in mouse sera at 7, 14 and 28
212	days post-delivery. All groups treated with an NC0321 expressing vector contained
213	significantly more NC0321 mAb in the serum than control animals (p<0.0001; Fig 4D).
214	Delivery of rAAV8 via the I.M. route resulted in the most rapid accumulation of
215	NC0321, reaching a peak (~3.9 μ g/mL) in serum within 7 days, which was essentially
216	sustained to the end of the time-course (~2.5 μ g/mL at day 28). Vectors delivered via
217	the I.N. route had both slower kinetics (reaching a plateau after approximately 14 days
218	post-delivery) and lower, sustained serum levels (~0.8 μ g/mL and ~0.3 μ g/mL for
219	rAAV9 and rSIV.F/HN respectively). At the end of the study, 28 days after vector
220	delivery, all mice were culled and BALF collected to determine levels of NC0321 in
221	lung epithelial lining fluid (ELF). All groups treated with vector expressing NC0321
222	contained significantly more NC0321 mAb in the ELF than control animals (all p<0.05;
223	Fig 4E). Delivery via rAAV9 I.N. treatment resulted in the highest NC0321 ELF levels
224	(~65 μ g/mL), significantly higher than achieved with rSIV.F/HN, also delivered via the
225	I.N. route (~3 μ g/mL; p=0.0055). In contrast, rAAV8 I.M. delivery was associated with
226	intermediate ELF levels (~18 μ g/mL) that were not significantly different (p=0.7451)

from those achieved with rAAV9. Taken together, these observations indicate that gene transfer vectors expressing anti-SARS-CoV-2 mAb, delivered via I.N. (rAAV9 or rSIV.F/HN) or I.M. (for rAAV8) routes, results in abundant serum and ELF accumulation of mAb protein. In vivo viral vector-mediated protection against S-LV infection After confirming NC0321 mAb expression in mouse sera via three different in vivo gene transfer strategies, it was important to determine whether the expressed mAb could reduce S-LV infection. As a control, we utilised gene transfer vectors expressing anti-influenza mAb T1-3B ¹⁶ of the same IgG isotype as NC0321. Twenty-one days after hACE2 and NC0321/T1-3B expression was established in the lungs of BALB/c mice, we infected the study animals from Fig 4D/E with 470 ng p24 of S-LV (Fig 5A). Luciferase expression mediated by S-LV infection was monitored for 7 days post challenge; in vivo imaging data are presented for representative animals (Fig 5B), and all individual mice and treatment groups (Supplementary Fig 1B&C). While minor variations in the S-LV signal between the three T1-3B treatment groups were noted, most likely a consequence of the complex study design using three gene transfer vectors (Supplementary Fig 1D), these failed to reach significance suggesting no major impact on functional mAb or hACE2 levels. Crucially, over the course of the study (Fig 5C), the S-LV luciferase signal intensity achieved upon treatment with rAAV9.NC0321 was substantially reduced ($\sim 0.71 \log \text{ or } 79.6\%$ protection; p=0.004 compared with T1-3B treatment. Similarly, treatment with rSIV.F/HN NC0321 also significantly reduced the S-LV luciferase signal intensity (~ 0.25 log or 55.1% protection; p=0.0124).

Thorax

Interestingly, while the S-LV luciferase signal achieved upon treatment with rAAV8.NC0321 tended to be lower than that with negative control T1-3B mAb, indicating a modest positive treatment effect (~ 0.18 log or 31.2% protection), this was not statistically significant (p=0.2605). Together, these data suggest that the intranasal delivery of rSIV.F/HN or rAAV9.NC0321 can confer robust protection against a saturating infectious dose of a SARS-CoV-2 mimic.

Importantly, we also confirmed that NC0321 from mouse serum retained biological function in an *in vitro* neutralisation assay. As expected, sera from mice receiving the control rAAV8.T1-3B vector showed no neutralizing activity against an S-LV expressing eGFP, whereas sera from mice receiving the rAAV8.NC0321 vector demonstrated potent neutralizing activity (Supplementary Fig 1E); this confirms that rAAV8.NC0321 treatment resulted in the production of biologically active NC0321. Moreover, binding assays showed that rAAV8.NC0321 sera were able to bind to six different RBD proteins including some with mutations that appear to confer enhanced infection or the potential to escape pre-existing immunity ¹⁷. These include Wuhan strain as reference, S^{G614}, RBD^{N501Y}, RBD^{N439K}, RBD^{Y453F}, and RBD^{S477N} mutants (Fig 5D).

269 Discussion

In this study, we firstly generated S-LV, a third-generation lentiviral vector
pseudotyped with the SARS-CoV-2 Spike protein. Like native SARS-CoV-2, cellular
infection by S-LV requires hACE2. Subsequently we created an *in vivo* model of

2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
25	
22	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>4</u> 0	
77 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

273	SARS-CoV-2 infection that can be readily produced using standard laboratory animals,
274	by expressing hACE2 in trans from rAAV hACE2 vectors. Importantly, there appeared
275	to be a positive correlation between the dose of rAAV.hACE2 and the S-LV infection
276	in this humanised mouse model. Our result suggests that rAAV.hACE2 priming should
277	permit authentic SARS-CoV-2 infection. Thus our in-house humanised mouse model,
278	generated by rAAV-mediated hACE2 overexpression, should be suitable for studying
279	authentic SARS-CoV-2 infections and evaluating other prophylactic or therapeutics
280	options. A similar approach to mouse model generation was reported in the studies
281	performed by Israelow ¹⁸ , Han ¹⁹ and Sun ²⁰ where both adenoviral vector (rAd) and
282	rAAV vector approaches were utilised. Importantly, rAAV transduction is associated
283	with lower vector-mediated inflammation and immunogenicity than rAd treatment ²¹ , a
284	feature that may allow generation of a more informative mouse model. Importantly,
285	while murine models of SARS-CoV-2 infection tend not to demonstrate the full range
286	of pathology observed following human infection ²² , they can provide simple, rapid,
287	pharmacodynamic assays to evaluate interventions to modulate viral titres. One major
288	limitation of the hACE2 expressing murine model we adopted is that the biodistribution
289	of hACE2 mediated by intranasal rAAV9 transduction may not be identical to that of
290	natural hACE2 in human lungs – where expression is predominantly noted on the apical
291	surface of alveolar type II cells ²³ . Crucially, studies described here could be completed
292	in standard animal laboratories without the need for the very high levels of biological
293	containment required for utilising SARS-CoV-2, and without the cost and animal
294	wastage associated with the maintenance, breeding and supply of hACE2 transgenic
295	animals. Therefore, this unique rAAV-hACE2/S-LV model could provide a rapid and

2	
5	
4	
5	
6	
7	
/	
8	
9	
10	
11	
11	
12	
13	
1/	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
22	
23	
24	
25	
25	
20	
27	
28	
29	
20	
30	
31	
32	
22	
55	
34	
35	
36	
20	
37	
38	
39	
40	
10	
41	
42	
43	
44	
45	
45	
46	
47	
18	
40	
49	
50	
51	
50	
52	
53	
54	
55	
56	
50	
57	
58	
59	

60

efficient method to researchers interested in studying COVID-19 and other respiratory
pathogens, regardless of the limitations of biosafety level and the availability of
commercial humanised animal models.
Subsequently, using our humanised (hACE2-expressing) murine model, we evaluated
the performance of alternative VIP strategies. We chose rSIV.F/HN, rAAV9, and

rAAV8 vectors to establish NC0321 expression in vivo as we, and others, have had 302 previous positive experiences expressing a range of IgG molecules with these vectors ⁹ 303 304 ²⁴⁻²⁶. We established a significant degree of protection against infection of 470 ng p24 305 of our SARS-CoV-2 mimic at, or near, the primary site of inoculation of respiratory 306 pathogens. Both rAAV9 and rSIV.F/HN mediated NC0321 expression via I.N. delivery 307 can result in significant prophylactic efficacy against a saturating infectious inoculum 308 of S-LV. It would be reasonable to assume that this treatment effect would be even more marked against a more typical environmentally acquired (sub-saturating) SARS-309 CoV-2 infection. One caveat to these finding was the magnitude of the prophylactic 310 efficacy observed. While both rAAV9 and rSIV.F/HN mediated NC0321 expression 311 312 resulted in a significant reduction in S-LV infection, this inhibition was not total, and 313 residual S-LV infection was still observed. Any consequences of this limitation remain 314 to be elucidated in follow-on studies. Crucially, both rAAV9 and rSIV.F/HN vectors 315 have been shown to provide life-long sustained IgG expression ⁹, and the unique 316 rSIV.F/HN platform can also be effectively repeatedly administered ²⁷ ²⁸ should 317 therapeutic antibody levels need to be boosted to improve efficacy or augmented with 318 alternate mAbs to inhibit immune escape.

3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
75	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

319

320	Interestingly, despite antibody expression from rAAV8 vectors being considered for
321	treatment of a number of pathogens of importance ^{29 30} , and rAAV8 vector being
322	thought to mediate transgene expression more ubiquitously than other rAAV serotypes
323	³¹ , we found relatively poor performance with rAAV8. A number of potential mitigating
324	circumstances/explanations for these findings with rAAV8 can be postulated, such as
325	unfavourable expression kinetics (though largely discounted by the speed of NC0321
326	appearance in the serum), or unfavourable biodistribution and antibody clearance
327	(largely discounted by the accumulation of NC0321 in the ELF).
328	
329	Despite the complexity of our experimental setting, mice did not show symptoms of
330	stress (e.g. weight loss) during the experiments (Supplementary 1F); and thus all the
331	studies reported here were performed whilst imposing, at worst, only mild perturbations
332	of the animals physiology – a significant refinement over traditional approaches to
333	respiratory pathogen challenge/protection studies where humane endpoints are often
334	utilised to minimise animal suffering. Importantly, studies assessing the degree of
335	protection offered against more realistic (sub-saturating) infective S-LV doses and
336	challenge with authentic SARS-CoV-2 will be incorporated in future work. Such
337	studies may include evaluation of survival and immunological consequences.

338

Importantly, we showed that NC0321 can bind to different SARS-CoV-2 variants (Fig
5D) including: the RBD mutation N501Y present in the Alpha (B.1.1.7) lineage-SARSCoV-2 strain widely circulating in the UK at the beginning of 2021 ³²; the RBD with

Page 19 of 41

Thorax

342	mutation Y453F is found in the mink-associated CoV-2 variant in the Netherlands. The
343	binding and neutralizing activity of NC0321 with other strains is currently being
344	investigated, including the Beta lineage (B.1.351) first identified in South Africa (with
345	key mutations N501Y+E484K+K417N) and Gamma lineage (P.1) first identified in the
346	Brazilian population (with key mutations K417T+E484K+N501Y). We are also
347	investigating whether the binding activity of NC0321 is compromised with the crucial
348	E484K mutation. If not, NC0321 may be rapidly adapted in a COVIP setting for these
349	newly emerging and more infectious SARS-CoV-2 clades. Notably, our approach is not
350	limited to NC0321 antibody or to the use of a single mAb reagent. Indeed, we note that
351	serum levels of NC0321 achieved following in vivo vector delivery were lower than
352	can be achieved by optimisation of the IgG backbone sequences ⁸ . Thus, enhanced
353	derivatives of NC0321 or emerging mAbs with higher potency and more broadly
354	neutralizing activity ^{33 34} could be readily assembled in rAAV9 or rSIV.F/HN vectors.
355	Importantly, a cocktail strategy with multiple mAbs containing non-overlapping/non-
356	competing antigen binding to Spike and other SARS-CoV-2 targets could be used to
357	enhance the protection offered and prevent rapid mutational escape ³⁵ . For example, the
358	Regeneron's antibody cocktail Ronapreve (casirivimab and imdevimab) authorized by
359	US Food and Drug Administration (FDA) ³⁶ . Similarly, soluble receptor decoys
360	engineered to efficiently neutralize SARS-CoV-2 could be incorporated into the vector
361	cocktail to boost our SARS-CoV-2 inhibitory strategy ³⁷⁻³⁹ .

363 In conclusion, by using a versatile, humanised mouse model and SARS-COV-2 mimic,
364 we evaluated a VIP strategy against COVID-19. An intranasal delivery route was

simple to implement and the long duration of IgG expression observed benefited from the very slow turnover rate of lung cells. In murine studies, the lung tissue is easily accessible for localised vector administration via instillation. When translated to humans, this prophylactic approach could be delivered via nasal spray to provide protection against respiratory diseases in all recipients; these include but are not limited to vulnerable individuals who are unable to mount an effective immunological response to either SARS-CoV-2 infection or vaccination.

373 Acknowledgements

The authors would like to thank Dr. Kuan-Ying A. Huang (Chang Gung Memorial
Hospital, Taiwan), Dr. Pramila Rijal, Dr. Tiong Kit Tan and Prof. Alain R. Townsend
(WIMM, University of Oxford, UK) for assistance with control mAb reagents.

378 Author contributions

Y.D. designed and performed the majority of the experiments; K.M. designed and generated S-LV and performed S-LV in vitro activity studies; O.M. assisted with rAAV vector production and rAAV8 intramuscular injection; H.M-B assisted with in situ hybridization and rAAV vector production; O.M. and K.M. assisted with serum and BALF sample collection; C.C., R.D., M.V., D.S. and T.G. assisted with plasmid and vector production. Y.Q.W and J.C.Z provided SARS-CoV-2 monoclonal antibody NC0321 sequence; N.T. provided a Spike plasmid; D.G. and S.H. conceived and supervised the project and assisted in experimental design; Y.D. and S.H. performed

1		
3	387	data analysis; Y.D. wrote the initial draft, with K.M., D.G. and S.H. providing editorial
5 6 7	388	comments. All authors read and approved the manuscript.
, 8 9	389	
10 11	390	Funding
12 13 14	391	These studies were supported by a Wellcome Trust Portfolio grant 110579/Z/15/Z. For
15 16	202	
17	392	the purpose of open access, the author has applied a CC BY public copyright licence to
18 19 20	393	any Author Accepted Manuscript version arising from this submission.
21 22	394	
23 24	395	Competing Interests
25 26	396	DG and SH hold IP in relation to rSIV F/HN technology
27 28	570	DO and STI hold II in relation to 151 v.1711 v technology.
29		
30		
31		
32 33		
34		
35		
36		
37		
38 30		
40		
41		
42		
43		
44 45		
46		
47		
48		
49 50		
50		
52		
53		
54		
55 56		
57		
58		
59		
60		

397 Reference

- 398 1. Folegatti PM, Ewer KJ, Aley PK, et al. Safety and immunogenicity of the ChAdOx1
 399 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2,
 400 single-blind, randomised controlled trial. *Lancet* 2020;396(10249):467-78. doi:
 401 10.1016/S0140-6736(20)31604-4 [published Online First: 2020/07/24]
- 402 2. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA
 403 Covid-19 Vaccine. *N Engl J Med* 2020;383(27):2603-15. doi:
 404 10.1056/NEJMoa2034577 [published Online First: 2020/12/11]
- 3. Ramasamy MN, Minassian AM, Ewer KJ, et al. Safety and immunogenicity of
 ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young
 and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. *Lancet* 2021;396(10267):1979-93. doi: 10.1016/S0140-6736(20)32466-1
 [published Online First: 2020/11/23]
- 410 4. Colella P, Ronzitti G, Mingozzi F. Emerging Issues in AAV-Mediated In Vivo Gene
 411 Therapy. *Mol Ther Methods Clin Dev* 2018;8:87-104. doi:
 412 10.1016/j.omtm.2017.11.007 [published Online First: 2018/01/13]
- 5. Priddy FH, Lewis DJM, Gelderblom HC, et al. Adeno-associated virus vectored
 immunoprophylaxis to prevent HIV in healthy adults: a phase 1 randomised
 controlled trial. *Lancet HIV* 2019;6(4):e230-e39. doi: 10.1016/S23523018(19)30003-7 [published Online First: 2019/03/20]
- 6. Rghei AD, van Lieshout LP, Santry LA, et al. AAV Vectored Immunoprophylaxis for
 Filovirus Infections. *Trop Med Infect Dis* 2020;5(4):169(5(4):169) doi:
 10.3390/tropicalmed5040169 [published Online First: 2020/11/14]
- 420 7. Skaricic D, Traube C, De B, et al. Genetic delivery of an anti-RSV antibody to protect
 421 against pulmonary infection with RSV. *Virology* 2008;378(1):79-85. doi:
 422 10.1016/j.virol.2008.04.016 [published Online First: 2008/06/17]
- 423 8. Balazs AB, Bloom JD, Hong CM, et al. Broad protection against influenza infection
 424 by vectored immunoprophylaxis in mice. *Nat Biotechnol* 2013;31(7):647-52. doi:
 425 10.1038/nbt.2618 [published Online First: 2013/06/04]
- 426 9. Tan TK, Gamlen TPE, Rijal P, et al. Lung-targeting lentiviral vector for passive
 427 immunisation against influenza. *Thorax* 2020;75(12):1112-15. doi:
 428 10.1136/thoraxjnl-2020-214656 [published Online First: 2020/09/05]
- 429 10. Limberis MP, Racine T, Kobasa D, et al. Vectored expression of the broadly
 430 neutralizing antibody FI6 in mouse airway provides partial protection against a
 - 2¹ https://mc.manuscriptcentral.com/thorax

2		
3 4	431	new avian influenza A virus, H7N9. Clin Vaccine Immunol 2013;20(12):1836-
5	432	7. doi: 10.1128/CVI.00545-13 [published Online First: 2013/10/18]
6 7	433	11. Kobayashi M, lida A, Ueda Y, et al. Pseudotyped lentivirus vectors derived from
8 9	434	simian immunodeficiency virus SIVagm with envelope glycoproteins from
10	435	paramyxovirus. J Virol 2003;77(4):2607-14. doi: 10.1128/jvi.77.4.2607-
11 12	436	2614.2003 [published Online First: 2003/01/29]
13	437	12. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry
14 15	438	Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven
16 17	439	Protease Inhibitor. <i>Cell</i> 2020;181(2):271-80.e8. doi: 10.1016/j.cell.2020.02.052
18	440	[published Online First: 2020/03/05]
19 20	441	13. Munoz-Fontela C, Dowling WE, Funnell SGP, et al. Animal models for COVID-19.
21	442	Nature 2020;586(7830):509-15. doi: 10.1038/s41586-020-2787-6 [published
22 23	443	Online First: 2020/09/24]
24 25	444	14. Yinda CK, Port JR, Bushmaker T, et al. K18-hACE2 mice develop respiratory
25 26	445	disease resembling severe COVID-19. <i>PLoS pathogens</i> 2021;17(1):e1009195.
27 28	446	doi: 10.1371/journal.ppat.1009195 [published Online First: 2021/01/20]
29	447	15. Sun SH, Chen Q, Gu HJ, et al. A Mouse Model of SARS-CoV-2 Infection and
30 31	448	Pathogenesis. <i>Cell host & microbe</i> 2020;28(1):124-33 e4. doi:
32	449	10.1016/j.chom.2020.05.020 [published Online First: 2020/06/03]
33 34	450	16. Huang KY, Rijal P, Schimanski L, et al. Focused antibody response to influenza
35 36	451	linked to antigenic drift. <i>J Clin Invest</i> 2015;125(7):2631-45. doi:
37	452	10.1172/JCI81104 [published Online First: 2015/05/27]
38 39	453	17. Chen J, Wang R, Wang M, et al. Mutations Strengthened SARS-CoV-2 Infectivity.
40	454	J Mol Biol 2020;432(19):5212-26. doi: 10.1016/j.jmb.2020.07.009 [published
41 42	455	Online First: 2020/07/28]
43 44	456	18. Israelow B, Song E, Mao T, et al. Mouse model of SARS-CoV-2 reveals
45	457	inflammatory role of type I interferon signaling. J Exp Med 2020;217(12) doi:
46 47	458	10.1084/jem.20201241 [published Online First: 2020/08/05]
48	459	19. Han K, Blair RV, Iwanaga N, et al. Lung Expression of Human Angiotensin-
49 50	460	Converting Enzyme 2 Sensitizes the Mouse to SARS-CoV-2 Infection. Am J
51 52	461	Respir Cell Mol Biol 2021;64(1):79-88. doi: 10.1165/rcmb.2020-0354OC
52 53	462	[published Online First: 2020/09/30]
54 55	463	20. Sun J, Zhuang Z, Zheng J, et al. Generation of a Broadly Useful Model for COVID-
56	464	19 Pathogenesis, Vaccination, and Treatment. <i>Cell</i> 2020;182(3):734-43 e5. doi:
57 58	465	10.1016/j.cell.2020.06.010 [published Online First: 2020/07/10]
59 60		
00		

2		
3 4	466	21. Jooss K, Chirmule N. Immunity to adenovirus and adeno-associated viral vectors:
5	467	implications for gene therapy. <i>Gene Ther</i> 2003;10(11):955-63. doi:
6 7	468	10.1038/sj.gt.3302037 [published Online First: 2003/05/21]
8	469	22. Cleary SJ, Magnen M, Looney MR, et al. Update on animal models for COVID-19
9 10	470	research. Br J Pharmacol 2020;177(24):5679-81. doi: 10.1111/bph.15266
11 12	471	[published Online First: 2020/11/04]
13	472	23. Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the
14 15	473	functional receptor for SARS coronavirus. A first step in understanding SARS
16	474	pathogenesis. <i>J Pathol</i> 2004;203(2):631-7. doi: 10.1002/path.1570 [published
17 18	475	Online First: 2004/05/141
19	476	24. Limberis MP. Wilson JM. Adeno-associated virus serotype 9 vectors transduce
20 21	477	murine alveolar and nasal epithelia and can be readministered. Proc Natl Acad
22 23	478	Sci U S A 2006:103(35):12993-8, doi: 10.1073/pnas.0601433103 [published
23 24	479	Online First: 2006/08/301
25 26	480	25 Limberis MP Adam VS Wong G et al. Intranasal antibody gene transfer in mice
27	481	and ferrets elicits broad protection against pandemic influenza. <i>Sci Transl Med</i>
28 29	487	2013:5(187):187ra72 doi: 10.1126/scitrans/med.3006299 [published Online
30	402	First: 2013/05/311
31 32	405	26 Balazs AB Chen I Hong CM et al Antibody-based protection against HIV
33	404	infection by vectored immunoprophylaxis <i>Nature</i> 2011:481(7370):81.4 doi:
34 35	403	10 1028/nature 10660 [nublished Online First: 2011/12/06]
36 27	400	27. Devil Smith MC, Dital KM, Colines, JE, et al. The murine lung as a factory to
38	487	27. Paul-Smith MC, Pytel KM, Gellhas JF, et al. The murine lung as a factory to
39 40	488	produce secreted intrapulmonary and circulatory proteins. Gene therapy
41	489	2018;25(5):345-58. doi: 10.1038/s41434-018-0025-8 [published Online First:
42 43	490	
44	491	28. Alton EW, Beekman JM, Boyd AC, et al. Preparation for a first-in-man lentivirus
45 46	492	trial in patients with cystic fibrosis. <i>Thorax</i> 2017;72(2):137-47. doi:
47	493	10.1136/thoraxjnl-2016-208406
48 49	494	29. van Lieshout LP, Soule G, Sorensen D, et al. Intramuscular Adeno-Associated
50	495	Virus-Mediated Expression of Monoclonal Antibodies Provides 100%
52	496	Protection Against Ebola Virus Infection in Mice. J Infect Dis 2018;217(6):916-
53 54	497	25. doi: 10.1093/infdis/jix644 [published Online First: 2018/01/25]
55	498	30. Del Rosario JMM, Smith M, Zaki K, et al. Protection From Influenza by
56 57	499	Intramuscular Gene Vector Delivery of a Broadly Neutralizing Nanobody Does
58	500	Not Depend on Antibody Dependent Cellular Cytotoxicity. Front Immunol
59 60		

3 ⊿	501	2020;11:627. doi: 10.3389/fimmu.2020.00627 [published Online First:
5	502	2020/05/29]
6 7	503	31. Zincarelli C, Soltys S, Rengo G, et al. Analysis of AAV serotypes 1-9 mediated
8	504	gene expression and tropism in mice after systemic injection. <i>Molecular</i>
9 10	505	therapy : the journal of the American Society of Gene Therapy
11	506	2008:16(6):1073-80. doi: 10.1038/mt.2008.76 [published Online First:
12 13	507	2008/04/17]
14 15	508	32. Weisblum Y, Schmidt F, Zhang F, et al. Escape from neutralizing antibodies by
16	509	SARS-CoV-2 spike protein variants. <i>bioRxiv</i> 2020 doi:
17 18	510	10.1101/2020.07.21.214759 [published Online First: 2020/08/04]
19 20	511	33. Lin A, Balazs AB. Adeno-associated virus gene delivery of broadly neutralizing
20	512	antibodies as prevention and therapy against HIV-1. <i>Retrovirology</i>
22 23	513	2018;15(1):66. doi: 10.1186/s12977-018-0449-7 [published Online First:
24	514	2018/10/05]
25 26	515	34. Savage HR, Santos VS, Edwards T, et al. Prevalence of neutralising antibodies
27 28	516	against SARS-CoV-2 in acute infection and convalescence: A systematic
28 29	517	review and meta-analysis. PLoS Negl Trop Dis 2021;15(7):e0009551. doi:
30 31	518	10.1371/journal.pntd.0009551 [published Online First: 2021/07/09]
32	519	35. Baum A, Fulton BO, Wloga E, et al. Antibody cocktail to SARS-CoV-2 spike protein
33 34	520	prevents rapid mutational escape seen with individual antibodies. Science
35 36	521	(New York, NY) 2020;369(6506):1014-18. doi: 10.1126/science.abd0831
37	522	[published Online First: 2020/06/17]
38 39	523	36. Weinreich DM, Sivapalasingam S, Norton T, et al. REGN-COV2, a Neutralizing
40	524	Antibody Cocktail, in Outpatients with Covid-19. N Engl J Med
41 42	525	2021;384(3):238-51. doi: 10.1056/NEJMoa2035002 [published Online First:
43 44	526	2020/12/18]
44 45	527	37. Kim J, Mukherjee A, Nelson D, et al. Rapid generation of circulating and mucosal
46 47	528	decoy ACE2 using mRNA nanotherapeutics for the potential treatment of
48	529	SARS-CoV-2. <i>bioRxiv</i> 2020 doi: 10.1101/2020.07.24.205583 [published
49 50	530	Online First: 2020/08/04]
51	531	38. Sims JJ, Greig JA, Michalson KT, et al. Intranasal gene therapy to prevent infection
52 53	532	by SARS-CoV-2 variants. <i>PLoS pathogens</i> 2021;17(7):e1009544. doi:
54 55	533	10.1371/journal.ppat.1009544 [published Online First: 2021/07/16]
56	534	39. Linsky TW, Vergara R, Codina N, et al. De novo design of potent and resilient
57 58	535	hACE2 decoys to neutralize SARS-CoV-2. Science (New York. NY)
59	-	
60		

2		
3 4	536	2020;370(6521):1208-14. doi: 10.1126/science.abe0075 [published Online
5	537	First: 2020/11/07]
6 7	538	40. Tian X, Li C, Huang A, et al. Potent binding of 2019 novel coronavirus spike protein
8	539	by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes
9 10	540	Infect 2020;9(1):382-85. doi: 10.1080/22221751.2020.1729069 [published
11 12	541	Online First: 2020/02/18]
$\begin{array}{c} 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ 57 \\ 58 \end{array}$	542	
58		

2		
} 	543	Figure legends
)) 7	544	
3	545	Figure 1. S-LV infection requires hACE2, which can be supplied to mouse lungs by
0 1 2	546	rAAV <i>in vivo</i> gene transfer
3 4	547	A WT parental HEK293T/17 cells, and HEK293T/17 cells expressing hTMPRSS2,
5 6 7	548	hACE2, or both hACE2 & hTMPRSS2 as indicated, were infected with an S-LV
8 9	549	expressing eGFP. The percentage of S-LV transduced cells was evaluated by flow
21 22	550	cytometry. The dotted line represents the limit of quantification. One-way ANOVA,
23 24 25	551	with Dunnett's multiple comparisons test (ns and ***** represent p>0.05 and p<0.0001
26 27	552	respectively).
28 29 80	553	B Lung immunohistochemistry for eGFP was assessed in BALB/c (9-week old) mice
81 82	554	14 days after intranasal delivery of 1xD-PBS (control), 1E11 GC of rAAV9 or 7E10
33 34 35	555	GC rAAV6.2 vectors expressing eGFP (n=3/group). Scale bar = 500 μm .
86 87	556	C Lung sections were subjected to RNAscope in situ hybridization analysis 14 days
88 89 40	557	after intranasal delivery of 1xD-PBS (control), 1E11 GC of rAAV9 or 7E10 GC
1 12	558	rAAV6.2 vectors expressing hACE2 (n=3/group); hACE2 vector-specific WPRE probe
13 14 15	559	(red), alveolar type II cell specific Sftpb probe (green), DAPI stained nuclei (blue). AW,
l6 l7	560	airway; P, parenchyma. Scale bar = $125 \ \mu m$.
18 19 50	561	
1	562	Figure 2. In vivo delivery of hACE2 allows the SARS-CoV-2 mimic S-LV to infect the
53 54 55	563	lungs of standard laboratory mice
56 57	564	A Experimental design for <i>in vivo</i> investigation of hACE2/hTMPRSS2 delivery via
8 9 0	565	rAAV vectors to support S-LV infection. BALB/c mice (n=4-8/group) were transduced

566	intranasally with the indicated rAAV vector(s) or vehicle (1xD-PBS). At 14 days post
567	rAAV delivery, as indicated, lungs were infected with 890 ng p24 of an S-LV
568	expressing firefly luciferase. S-LV dependent in vivo luciferase bioluminescence was
569	monitored for each animal 1, 2, 4, 7, 14, 21 and 38 days post S-LV infection.
570	B Representative in vivo bioluminescence images of mice pre-treated 14 days
571	previously with the indicated doses of rAAV.hACE2 and hTMPRSS2 vectors and, as
572	indicated, subsequently challenged with 890 ng p24 of S-LV at day 0. Repeated
573	bioluminescence imaging of S-LV dependent luciferase expression was performed at
574	the indicated time points. Bioluminescence values (photons/sec/cm ² /sr) are presented
575	as a pseudocolour scale as indicated.
576	
577	C Time-course of bioluminescence for the indicated treatment groups after infection
578	with 890 ng p24 of S-LV. Symbols represent group mean±SD, n=4-8 per group. The
579	dotted line indicates the mean naïve background signal.
580	D Area Under Curve (AUC) of bioluminescence values (photons/sec/cm ² /sr x days) for
581	each animal in B & C was computed, symbols represent individual animals and group
582	mean±SD (ANOVA, Dunnett's multiple comparison against the unlabelled treatment
583	group (1E11 GC rAAV9.hACE2); ns, * and **** represent p>0.05, <0.05 and <0.0001
584	respectively).
585	
586	Figure 3. S-LV mouse lung infection is limited by hACE2 availability
587	A Experimental design for <i>in vivo</i> investigation of S-LV dose-response. BALB/c mice
588	(n=3/group) were dosed I.N. with 1E11 GC rAAV9.hACE2 to establish hACE2

Page 29 of 41

60

Thorax

1		
2		
3 4	589	expression. Fourteen days later, lungs were infected with 0-940 ng p24 of an S-LV
5 6 7	590	expressing firefly luciferase. S-LV dependent in vivo luciferase bioluminescence was
8 9	591	monitored for each animal 1, 2, 4 and 7 days post S-LV infection.
10 11 12	592	B Representative <i>in vivo</i> bioluminescence images of mice, treated as described in A .
13 14	593	Repeated bioluminescence imaging to monitor S-LV dependent luciferase expression
15 16 17	594	was performed at the indicated time points. Bioluminescence values
18 19	595	(photons/sec/cm ² /sr) are presented as a pseudocolour scale as indicated.
20 21 22	596	C Time-course of bioluminescence after S-LV infection for the indicated treatment
23 24	597	groups as described in A. Symbols represent group mean±SD, n=4-8 per group. The
25 26 27	598	dotted line indicates the mean naïve background signal.
28 29	599	D Area Under Curve (AUC) of bioluminescence (photons/sec/cm2/sr x days) for each
30 31 32	600	animal in C was computed, symbols represent group mean±SD (ANOVA, Dunnett's
33 34	601	multiple comparison against the unlabelled treatment group (470ng p24); ns, **, ***
36 37	602	and **** represent p>0.05, p<0.05, <0.001 and <0.0001 respectively).
38 39	603	
40 41 42	604	Figure 4. NC0321 mAb expression by rAAV and rSIV.F/HN vectors
43 44 45	605	A Schematic of a codon-optimised, single open-reading frame, human IgG mAb cDNA.
46 47	606	Regions encoded include IgG heavy and kappa light chain variable and constant regions,
48 49 50	607	with each proceeded by a human growth hormone signal sequence (hGH SS) and joined
51 52	608	by a Furin/2A (F2A) protein cleavage site.
53 54 55	609	B The SARS-CoV-2 RBD protein binding activity of the anti-SARS-CoV-2 mAbs
56 57 58 59	610	NC0321 and CR3022 single open reading frame protein expressed from an rSIV.F/HN

1	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
27	
20	
38	
39	
40	
41	
42	
43	
44	
45	
16	
40	
4/	
48	
49	
50	
51	
52	
53	
51	
54	
55	
56	
57	
58	
59	

611 vector) was examined by ELISA. Binding activity of OD at 450nm is proportional to612 the amount of antibody bound to the SARS-CoV-2 RBD protein.

613 **C** The neutralising activity of anti-SARS-CoV-2 mAb NC0321 (single open reading 614 frame protein expressed from an rSIV.F/HN vector) to block S-LV infection 615 (multiplicity of infection 1) of an hACE2-293T cell line was examined. In **B&C** a single 616 open reading frame anti-influenza mAb T1-3B acted as an isotype negative control; and 617 CR3022 an anti-SARS-CoV neutralizing mAb, that can bind but not neutralize SARS-618 CoV-2 was used as a comparator ⁴⁰.

D Serum human IgG levels in mice were determined at day 7, 14 and 28 after
transduction with the indicated doses of NC0321 expressing vector using ELISA
(ANOVA, Dunnett's multiple comparison against the unlabelled treatment group; ***
and **** represent <0.001 and <0.0001 respectively). The levels of human IgG
observed in naïve animals is indicated by the dotted line.

E BALF of mice from **D** was collected at day 28 post transduction with NC0321 expressing vector, and human IgG levels measured using ELISA; IgG levels in Epithelial Lining Fluid (ELF) were computed by comparison of urea levels in BALF and serum (Kruskal Wallis, Dunn's multiple comparison against the unlabelled treatment group; ns, **, *** and **** represent p>0.05, <0.01, <0.001, and <0.0001 respectively). Each dot represents an individual mouse and data are presented as endpoint titres (Mean±SD).

631

60

Figure 5. Vector-mediated expression of NCO321 antibody protects against S-LV
 infection

Thorax

A Experimental design to test efficacy of the COVIP strategy *in vivo*. Groups of mice were dosed as indicated (groups 1 to 7) under a single anaesthesia to establish hACE2 and NC0321 expression. Twenty-one days later, animals were infected with an S-LV expressing firefly luciferase (Day 0) and, subsequently, S-LV dependent in vivo luciferase bioluminescence monitored for each animal on days 1, 2, 4 and 7. Serum and BALF samples were taken at indicated times for determination of NC0321 IgG levels. B Vectored delivery and expression of NC0321 to mouse lungs significantly inhibits S-LV infection. Groups 1-7 of BALB/c mice (n=10/group) were treated as indicated and after 21 days infected with 470 ng p24 of an S-LV expressing firefly luciferase (Day 0). Representative images of in vivo bioluminescence are shown 7 days post S-LV infection for each of the 6 treatment groups. Bioluminescence values (photons/sec/cm²/sr) are presented as a pseudocolour scale as indicated. **C** Area Under Curve (AUC) of bioluminescence (photons/sec/cm²/sr x days) for each animal in B was computed. To aid visualisation, bioluminescence values were normalised such that T1-3B isotype control values were 100%. Control values were obtained from animals that were infected with S-LV but had not received rAAV9-

650 hACE2. Group mean±SD is indicated (ANOVA, Dunnett's multiple comparison

651 against the unlabelled treatment group; ns, **, *** and **** represent p>0.05, <0.01,

652 <0.001 and <0.0001 respectively).

D Serum from mice 28 days post receiving rAAV8.NC0321 was collected, and limiting
dilutions were made to measure the binding activity against SARS-CoV-2 Spike or
RBD proteins of newly emerging SARS-CoV-2 variants as indicated. Negative control
is binding activity observed with cell culture medium only.

Supplementary methods

Virus vectors

Viral vector genome plasmids were engineered to include for rAAV8 a muscleoptimised CASI promoter ¹, for rAAV9 the lung optimised hCEFI promoter ², or for rSIV the hCEF derivative, lacking a chimeric intron ³; all incorporated the Woodchuck Hepatitis Virus Post-transcriptional Regulatory Element (WPRE) to enhance expression ⁴, and a mirT-142-3p to improve immunologic tolerance ⁵. Vectors used included eGFP, firefly luciferase or chimeric human IgG1 cDNAs (NC0321 anti-SARS-CoV-2 or T1-3B anti-influenza); IgG heavy and light chains were co-expressed in a single open reading frame (ORF) configuration ⁶. For rAAV6.2 or rAAV9 hACE2 expression, a similar vector genome configuration with the CMV transgene promoter was used. The S-LV genome was a third-generation HIV vector including a CMV transgene promoter and an eGFP or firefly luciferase cDNA.

The production of rAAV, rSIV.F/HN and S-LV vectors was performed by cotransfection of human embryonic kidney (HEK) 293T cells with genome and packaging plasmids using (rAAV) Polyethylenimine (PEI, PolySciences) or (rSIV.F/HN and S-LV) PEIpro[®] (Polyplus). All AAV vectors included AAV2-based vector genomes. Alternate AAV serotypes were produced by use of AAV2 Rep and appropriate serotype Cap sequences. All rSIV vectors were pseudotyped with the F and HN proteins of Sendai virus as described previously ³. The S-LV (rHIV.Spike.G614+Δ19aa.CMV) vector was pseudotyped with the SARS-CoV-2 Spike protein Wuhan sequence (GenBank accession: 43740568) modified by inclusion of a D614G mutation and removal of the 19 C-terminal amino acids. Vectors were purified by (rAAV) discontinuous Iodixanol gradient ultracentrifugation ⁷ or (rSIV.F/HN, S-LV) anion exchange chromatography and tangential flow filtration.

Physical titre (genome copies/mL: GC/mL) of rAAV vectors was determined by quantitative polymerase chain reaction (qPCR) analysis with primers and a probe against WPRE⁸. Functional titre of rSIV.F/HN vectors (transducing units/mL: TU/mL) was determined using the same primer/probes on DNA extracted following transduction of HEK293F cells with dilutions of vector preparations ⁹. Physical titre (ng

p24) of S-LV particles was determined using a p24 immunoassay (SEK11695, Sino Biological).

Animal studies

All procedures involving laboratory mice were carried out in accordance with UK Home Office approved project and personal licenses under the terms of the Animals (Scientific Procedures) Act 1986 (ASPA 1986). Animals were arbitrarily assigned to study groups using an open-label randomised block approach. Overall, 134 animals were used (Fig 1: n=15, Fig 2: n=34, Fig 3: n=15, Fig 4/5: n =70).

Vector administration

Female BALB/c mice (5-8 week) were purchased from Envigo RMS UK. For all dosing procedures, mice were lightly anaesthetised by isoflurane. Where lung expression of hTMPRSS2 and/or hACE2 was required, cocktails of rAAV vectors were delivered by nasal instillation (I.N.) of a 100μ L volume onto the nares via a single and continuous droplet ¹⁰. Where mAb or control transgene expression was required, the relevant rAAV9 or rSIV.F/HN vector was included in the same cocktail. For intramuscular injection (I.M.) (AAV8), a 50 μ L volume was injected via 22-gauge needle into the gastrocnemius muscle ⁹. After the indicated period, specified animals were challenged with S-LV, which was also delivered via nasal instillation as described.

Immunohistochemistry and In Situ Hybridization

Left lung sections of BALB/c mice were isolated and fixed with 4% paraformaldehyde, embedded in sucrose 30% (w/v) at RT overnight, followed by injection of Optimal Cutting Temperature medium and 30% (w/v) sucrose mixture. The embedded left lung was cryo-sectioned at 7 μ m thickness. For immunohistochemistry (IHC) analysis, sections from each sample was stained after antigen retrieval. Slides were washed, permeabilised, blocked, followed by the incubation in 20 μ g/ml of primary antibody anti-eGFP antibody (ab6556, 1:1000, Abcam) overnight and subsequently with secondary antibody Goat Anti-Rabbit IgG H&L (Alexa Fluor 488, ab150077, at 1:500, Abcam). Sections were mounted under coverslips with DAPI pro-long antifade (P36935, InvitrogenTM) before imaging using an EVOS FL2 fluorescence microscope with an 20X long working distance objective. For *In Situ Hybridization*, slides were

probed targeting the WPRE sequence (WPRE-O1, ACD, #450261) found in all AAV expression cassettes in this study, and/or the ATII cell marker Surfactant protein B (*Sftpb*-noX-human, ACD, #539421-C2) according to the RNAscope® manufacturer's instructions (323100-USM, ACD). Opal dyes 520 and 570 (#NEL741E001KT and #NEL744E001KT, 1:1500, Perkin Elmer) were used to visualise the *Sftpb* and WPRE signal, respectively.

In Vivo Luciferase Imaging

In vivo lung luciferase activity was determined following S-LV administration using IVIS spectrum imaging system (IVIS Lumina LT, Series III, PerkinElmer). This highly sensitive and linear method to determine lung transgene expression levels ¹¹ can be achieved utilising recovery anaesthesia - allowing repeated measure in the same animal, allowing a substantial reduction in animal numbers over conventional luciferase activity measures that require lung tissue that can only be provided with a terminal procedure. Briefly, at the chosen time-points, *in vivo* lung luciferase activity was determined 10 minutes after mice were administered 100 μ l 15 mg/ml D-luciferin (Xenogen Corporation Alameda) via the I.N method described for vector administration. Average bioluminescence (photons/sec/cm²/sr) values are presented using a pseudo colour range to represent light intensity. Bioluminescence in each murine lung was measured within a standardised tissue area.

IgG expression profiling and binding activity

At indicated time points post vector delivery, serum and Broncho alveolar lavage fluid (BALF) was obtained ⁹. Human IgG expression in serum and BALF was measured by ELISA (anti-Human IgG Fc domain, Bethyl Laboratories) according to the manufacturer's instructions. Urea levels were measured in serum and BALF (ab83362, Abcam). The concentrations of IgG levels in epithelial lining fluid (ELF) were determined by correcting for BALF sample dilution via normalizing found urea levels in serum and BALF ¹².

Statistical analysis

Treatment group sizes were selected to achieve >0.8 power using G*Power 3.1.9.6 software ¹³. Post-hoc statistical analysis was performed using Prism 8.4.3 (GraphPad

 Software). Where possible, comparisons of multiple treatment groups were performed using one-way ANOVA followed by Dunnett's multiple comparisons test to a chosen comparator group or Tukey's comparison of all groups as appropriate; if necessary, data were log-normalised to assure adherence to the assumptions of ANOVA. Where the assumptions of one-way ANOVA were violated, the non-parametric Kruskal-Wallis test followed by Dunn's multiple comparisons test to a chosen comparator group was used. Where indicated, Area Under Curve (AUC) of time-course studies were computed from individual data, multiple comparisons of AUC between treatment groups were performed as described above. Errors were reported as the standard deviation of the mean (SD). In all cases, p value < 0.05 was considered statistically significant. In figures, ns, *, **, *** and **** indicate p-values of >0.05, <0.05, <0.01, <0.001 and <0.0001 respectively.

Supplementary Figure 1

A SDS-PAGE analysis reducing (left) and non-reducing (right) of produced monoclonal antibody. In reduced form, two bands were shown in 50 and 25 kDa and in non-reducing SDS-PAGE condition, only one band was seen in about 150 kDa indicating full length of IgG.

B Delivery of rAAV9 NC0321 and rSIV.F/HN.NC0321 to mouse lungs significantly inhibits S-LV infection. BALB/c mice (n=10/group) were treated with the indicated doses of rAAV9.hACE2, and rSIV.F/HN, rAAV9 or rAAV8 expressing either NC0321 or the T1-3B isotype control by the I.N. or I.M. route as indicated. 21 days later, mice were infected with 470 ng p24 of an S-LV expressing firefly luciferase. Representative *in vivo* bioluminescence images of mouse lungs 7 days post S-LV infection are shown for each treatment group. Bioluminescence values (photons/sec/cm²/sr) are presented as a pseudocolor scale as indicated. Of note: one mouse in rAAV9.T1-3B group had very low bioluminescent signal, this was likely caused by a failure to deliver S-LV. This animal's data was included in the group analysis.

C Time-course of bioluminescence imaging data for the indicated treatment groups after infection with 470 ng p24. Symbols represent group mean±SD. The dotted line indicates the mean naïve background signal.

D Area Under Curve (AUC) of bioluminescence (photons/sec/cm2/sr x days) values for each animal receiving T1-3B was computed, symbols represent individual animals and group mean \pm SD (ANOVA, Dunnett's multiple comparison against the unlabelled treatment group; ns, and **** represent *p*>0.05 and <0.0001 respectively). The dotted line indicates the mean signal from naïve mice.

E Sera from animals receiving rAAV8.NC0321 inhibit S-LV.eGFP infection of hACE2+hTMPRSS2-expressing 293T cells (representative of n=2 independent infections).

F Weights of mice treated as described in **A** (n=10/group). Box and whisker plots represent the indicated treatment groups (inter-quartile range is shown as coloured vertical bars, group median is indicated with the horizontal line, whisker represent the 5-95% range).

Reference

- Balazs AB, Chen J, Hong CM, et al. Antibody-based protection against HIV infection by vectored immunoprophylaxis. *Nature* 2011;481(7379):81-4. doi: 10.1038/nature10660 [published Online First: 2011/12/06]
- Hyde SC, Pringle IA, Abdullah S, et al. CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. *Nat Biotechnol* 2008;26(5):549-51. doi: 10.1038/nbt1399 [published Online First: 2008/04/29]
- 3. Alton EW, Beekman JM, Boyd AC, et al. Preparation for a first-in-man lentivirus trial in patients with cystic fibrosis. *Thorax* 2017;72(2):137-47. doi: 10.1136/thoraxjnl-2016-208406 [published Online First: 2016/11/16]
- Zufferey R, Donello JE, Trono D, et al. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. *J Virol* 1999;73(4):2886-92. doi: 10.1128/JVI.73.4.2886-2892.1999 [published Online First: 1999/03/12]
- Annoni A, Brown BD, Cantore A, et al. In vivo delivery of a microRNA-regulated transgene induces antigen-specific regulatory T cells and promotes immunologic tolerance. *Blood* 2009;114(25):5152-61. doi: 10.1182/blood-2009-04-214569 [published Online First: 2009/10/02]
- Balazs AB, Bloom JD, Hong CM, et al. Broad protection against influenza infection by vectored immunoprophylaxis in mice. *Nat Biotechnol* 2013;31(7):647-52. doi: 10.1038/nbt.2618 [published Online First: 2013/06/04]
- 7. Ojala DS, Amara DP, Schaffer DV. Adeno-associated virus vectors and neurological gene therapy. *Neuroscientist* 2015;21(1):84-98. doi: 10.1177/1073858414521870 [published Online First: 2014/02/22]
- Meyer-Berg H, Zhou Yang L, Pilar de Lucas M, et al. Identification of AAV serotypes for lung gene therapy in human embryonic stem cell-derived lung organoids. *Stem Cell Res Ther* 2020;11(1):448. doi: 10.1186/s13287-020-01950-x [published Online First: 2020/10/25]
- 9. Tan TK, Gamlen TPE, Rijal P, et al. Lung-targeting lentiviral vector for passive immunisation against influenza. *Thorax* 2020;75(12):1112-15. doi: 10.1136/thoraxjnl-2020-214656 [published Online First: 2020/09/05]
- 10. Rose AC, Goddard CA, Colledge WH, et al. Optimisation of real-time quantitative RT-PCR for the evaluation of non-viral mediated gene transfer to the airways. *Gene Ther* 2002;9(19):1312-20. doi: 10.1038/sj.gt.3301792 [published Online First: 2002/09/12]
- 11. Griesenbach U, Meng C, Farley R, et al. In vivo imaging of gene transfer to the respiratory tract. *Biomaterials* 2008;29(10):1533-40. doi: 10.1016/j.biomaterials.2007.11.017 [published Online First: 2007/12/25]
- Rennard SI, Basset G, Lecossier D, et al. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. *J Appl Physiol (1985)* 1986;60(2):532-8. doi: 10.1152/jappl.1986.60.2.532 [published Online First: 1986/02/01]
- 13. Faul F, Erdfelder E, Lang AG, et al. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. *Behav Res Methods* 2007;39(2):175-91. doi: 10.3758/bf03193146 [published Online First: 2007/08/19]

Supplementary Figure 1

60

https://mc.manuscriptcentral.com/thorax

https://mc.manuscriptcentral.com/thorax

O Control: Naïve
 → 1E11 GC rAAV9.hACE2
 → 9E10 GC rAAV9.hACE2 / 1E10 GC rAAV9.hTMPRSS2
 → 5E10 GC rAAV9.hACE2 / 5E10 GC rAAV9.hTMPRSS2
 → 5E10 GC rAAV9.hACE2 / 5E10 GC rAAV9.hTMPRSS2
 → bttps://mc manuscriptcentral.com/thorax

https://mc.manuscriptcentral.com/thorax

