
 Abstract—To reduce NOx (Nitrogen Oxide) emissions from 

fossil fuel and biomass fired power plants, online prediction of NOx 

emissions is important in the plant operation. Data-driven models 

have been developed to predict NOx emissions from various 

combustion processes with good accuracy. However, such models 

have initially been built based on known combustion conditions, 

which are historically ‘seen’. For new conditions, which are 

‘unseen’, these models usually perform unwell. In this study, an 

ODL (Online Deep Learning) model is proposed to predict NOx 

emissions from an oxy-biomass combustion process for ‘seen’ and 

‘unseen’ combustion conditions based on source deep learning and 

condition recognition models. The ODL model is mainly built 

based on ‘unseen’ combustion conditions. A new objective 

function that consists of regression loss and distillation loss is 

introduced in the ODL model to improve the prediction accuracy. 

The ODL model is examined using boiler operation data, flame 

temperature maps and NOx data obtained under a range of oxy-

biomass combustion conditions on an Oxy-fuel Combustion Test 

Facility. Flame images acquired using a dedicated imaging system 

are used for computing the temperature distribution of the flame 

through two-colour pyrometry. The results demonstrate that the 

proposed model is capable of predicting NOx emissions under 

‘seen’ and ‘unseen’ conditions with a mean absolute percentage 

error of less than 3%, for the 1st, 2nd, and 3rd updates. 

 

Index Terms— NOx prediction, online deep learning, flame 

temperature map, condition monitoring, oxy-biomass combustion 

I. INTRODUCTION 

OSSIL fuels are being replaced by renewable energy 

resources to meet the legally binding target of ‘net-zero’ 

emission by 2050 under the Paris Agreement. Biomass, 

regarded as a carbon-neutral and dispatchable renewable fuel, 

is widely used in new and existing boilers for electric power and 

thermal energy generation [1]. Combining with the oxy-fuel 

combustion technology, oxy-biomass combustion has become 

a promising environmentally-friendly technology which can 

reduce significantly not only the CO2 (carbon dioxide) but also 

NOx emissions as the recycled NO is reburnt or reduced when 

it is re-circulated through the combustion system [2]. In the 

oxy-biomass combustion process, though the use of O2/flue gas 
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instead of air reduces the NOx emission, NOx is still one of the 

main contributors to the harmful emissions. The NOx emission 

is formed mainly from three different sources, i.e., fuel-N, 

thermal-N, and prompt-N [3], depending upon the fuel type, 

oxidiser atmosphere and temperature [4]. It is also understood 

that biomass fuel has a higher conversion of fuel-N to NOx than 

coal [5]. Therefore, the control of NOx emission in such a 

combustion process is still a concern in the power generation 

industry. Techniques for the online monitoring and prediction 

of NOx emission are thus crucial to meet increasingly stringent 

environmental regulations.  

Techniques developed for monitoring NOx emission in 

combustion processes can be categorised into three distinct 

approaches, i.e., monitoring systems, model-driven prediction, 

and data-driven machine learning models. The monitoring 

system measures the NOx by taking samples in flue gas, and 

thus a significant time delay exists between the measured and 

actual NOx emission values, resulting in inefficiency in NOx 

control. The model-driven prediction approaches such as 

Computational Fluid Dynamics predict the NOx formation 

through simulating the physical and chemical reactions 

associated with the combustion process of given fuels, which is 

a very useful tool for a theoretical understanding of the 

combustion phenomenon, but not suitable for real-time 

processes due to the complexity and computational resources 

required [6]. The data-driven models are mainly based on 

historical boiler operation data to predict the NOx emission 

through various machine learning techniques, such as ANN 

(Artificial Neural Network) [7], [8], SVM (Support Vector 

Machine) [9], [10], ELM (Extreme Learning Machine) [11], 

and DBN (Deep Brief Network) [12]. Least square support 

vector regression and deep learning models were also proposed 

for NOx prediction based on the flame radical images [13], [14]. 

The traditional machine learning and deep learning models 

have provided promising solutions to ‘black-box’ problems in 

combustion and many other industrial processes. Although 

considerable studies [7]-[14] were conducted in the last decade 

and achieved reasonable success in predicting NOx in various 

combustion systems through data-driven modelling, the 

existing techniques suffer from several drawbacks. For 
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instance, those models are offline without updates, so these 

models provide unsatisfactory performance when the new 

conditions are outside the training conditions. Hence, an online 

update (i.e., online learning) strategy is required to improve the 

model performance for new conditions.  

To build an online model, sample addition and sample 

replacement are proposed in [15], [16] to update LSSVM (least 

squares support vector machine). However, both approaches 

required access to previous conditions during the update 

process, which is infeasible if the training data from previous 

conditions are missing or unavailable. In addition, these 

approaches require a large storage space of computer system for 

storing historical datasets. Therefore, how to update the model 

with data from ‘unseen’ conditions is becoming challenging 

and crucial for online NOx prediction.  

In addition, these models rely on a large number of operation 

data obtained using conventional instruments around the boiler, 

where the flame characteristics information is missed out. 

Studies have shown that the flame characteristics are closely 

related to the combustion stability as well as NOx emissions 

[17], [18], so employing the flame data such as temperature 

maps directly into the model will increase the accuracy of NOx 

prediction and improve the efficiency of the model. Finally, 

most above-mentioned data-driven models focused on 

predicting NOx emissions based on boiler operation data from 

air-coal or biomass combustion processes. There are very few 

studies on NOx prediction for oxy-biomass combustion 

processes. It has also been suggested that a new technical 

strategy needs to be explored for an effective online deep 

learning model to predict NOx emissions. 

In recent years, ODL (online deep learning) modelling has 

been explored to solve multilabel classification problems by 

updating an initial model (often called a source model) with 

datasets from ‘unseen’ conditions  (i.e., having not been used to 

train the source DL or participated in the incremental learning 

process of ODL model), so that the updated model recognises 

all the ‘seen’ and ‘unseen’ conditions [19]. However, those 

models often suffer catastrophic forgetting problems, i.e., 

whilst the updated model recognises the ‘unseen’ condition, but 

with a degraded performance to recognise ‘seen’ conditions 

(i.e., having been used to train the source DL or participated in 

the incremental learning process of the ODL model). Various 

attempts have been made to solve this problem, such as learning 

without forgetting [19] and learning without memorising [20]. 

In those models, objective functions which determine how the 

objective loss is minimised [19], [20] are carefully considered 

to tackle the catastrophic forgetting problem. It has revealed 

that, though the catastrophic forgetting problem exists 

inherently in ODL modelling, it is possible to define an 

appropriate objective function so that the catastrophic 

forgetting problem can be minimised.  

To address the problems discussed above, the present study 

focuses on developing a flame imaging-based ODL model for 

predicting the NOx emission from an oxy-biomass combustion 

process. Being inspired by the update strategy of ODL based 

classification models, an online update strategy for an ODL 

based regression model with a new objective function that 

consists of the regression loss and distillation loss. The 

proposed ODL model is applied to predict NOx emissions from 

‘seen’ and ‘unseen’ conditions. Flame temperature maps 

derived from flame images are used as input datasets of the 

model. A convolutional neural network (CNN) acts as the 

source model which is built based on datasets from selected 

‘seen’ operation conditions. The impact of hyper-parameters, 

such as training epoch, input image size, the number of 

convolutional layers and batch size, on the model’s 

performance is examined using the grid search technique [21]. 

The ODL model is updated incrementally using datasets from 

‘unseen’ conditions. A new objective function is proposed to 

ensure that the ODL model performs well under both the ‘seen’ 

and ‘unseen’ conditions. A stochastic gradient descent method 

is used to minimise the objective loss by optimising the 

parameters (e.g., weights and biases) of the model and thus 

minimise the catastrophic forgetting problem in the updating 

process [22]. A condition recognition approach based on the 

cosine similarity is proposed and integrated with the ODL 

model to recognise the conditions based on boiler operation 

data. The developed ODL model is evaluated using 

experimental data (i.e., boiler operation data, flame temperature 

maps and NOx) obtained on an Air/Oxy-fuel CTF (Combustion 

Test Facility) under a range of oxy-biomass combustion 

conditions. The results obtained by the developed ODL model 

are analysed and discussed. 

II. METHODOLOGY 

A. Technical strategy 

The proposed ODL model is established based on the 

architecture of a traditional CNN, which is well-known for 

extracting ‘deep’ features of input images. Fig. 1 shows the 

block diagram of the ODL model proposed for NOx prediction. 

The flame images obtained under different operation conditions 

are deployed to calculate the temperature maps based on the 

two-colour method [23]. The temperature maps are then used 

as the input dataset of the model. The NOx emission data are 

also collected concurrently with the flame image and then used 

as ground-truth. 

The first step is to build a source DL model based on the flame 

temperature maps and ground-truth NOx emission data for 

‘seen’ conditions. The ‘seen’ conditions in this study refer to 

the historical conditions which are used to train the source DL 

model or have participated in the incremental learning process 

of the ODL model. 

The second step is to construct the ODL model. Condition 

recognition is firstly performed to determine whether the input 

dataset is from a ‘seen’ or ‘unseen’ condition. If the dataset is 

from a ‘seen’ condition, the existing ODL model is used for 

NOx prediction. Otherwise, the dataset will participate in the 

incremental learning process of the model. During the 

incremental process, the existing ODL model or source DL 

model is re-trained to form a new ODL model using the dataset 

of the ‘unseen’ condition. An objective function is then 

deployed to optimise the parameter values of the new ODL 

model.  

Once the ODL model is built, it is capable of predicting the 

NOx emissions for all the ‘seen’ and ‘unseen’ conditions. The 

following sections give a detailed description of the theoretical 

background of how the source and online DL models are built 



based on the ‘seen’ datasets and updated using the ‘unseen’ 

datasets. 

 

Fig. 1. Block diagram of the proposed ODL model for NOx prediction. 

B. Source DL model 

1) The architecture 

The source DL model is basically a conventional CNN 

model, which is built using the datasets from ‘seen’ conditions. 

The model consists of convolutional, pooling, dropout, and 

fully-connected (FC) layers, as shown in Fig. 2, where N×N is 

the input image size; m is the batch size; b is the number of 

convolution channels at the first convolutional layer; a×a is the 

feature dimension of a single input flame image at the dropout 

layer; c is the number of convolutional channels at the last 

convolutional layer; d and g represent the dimension of a single 

image feature at the first and second FC layers, respectively. 

 

Fig. 2.  Architecture of the source DL model. 

Convolutional layer- A CNN model has commonly several 

convolutional layers, each layer extracts deep features from its 

input and gives a feature map at its output [24]. To ensure that 

the dimension of the convolution output is the same as that of 

the convolution input, a ‘zero padding’ approach is deployed at 

the convolution input to get the padding output tensor 

Zϵℝ(Npa)×(Npa)×m. Convolutional kernels [25] are then used to 

filter the padding output. The convolution output, HcϵℝN×N×b×m, 

can be obtained by,  
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where WϵℝK×L×b and BϵℝN×N×b represent the convolutional 

kernel weights and biases, respectively; Npa×Npa are the 

dimensions of the 1st and 2nd orders of Z, respectively; K and L 

represent the dimensions of the 1st and 2nd orders of 

convolutional weights, respectively; i, j, h, and q are the 

subscripts of the 1st, 2nd, 3rd, and 4th orders, respectively; b 

represents the number of convolutional channels. In each 

convolutional layer, batch normalisation and activation 

operations are performed. The batch normalisation reduces the 

influence of the parameter initialisation and the risk of 

overfitting during the training process [26], and is expressed as, 
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where HbϵℝN×N×b×m
 is the batch normalisation output; ɛ is a 

constant (its default value is 10-5) to improve the numerical 

stability of Hb; E(Hc) and Var(Hc) represent the mean and 

variance of a batch convolutional output, respectively. 

In this study, the activation function, i.e., ReLU (Rectified 

Linear Unit [27]), is used along with the convolution operation 

to extract the nonlinear features of the convolution input, which 

is expressed as,  
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where Hr ϵℝN×N×b×m represents the extracted output feature after 

the ReLU operation.  

Pooling layer- The pooling layer, usually after a 

convolutional layer, is to reduce the dimension of the feature 

map [28]. The widely used max-pooling approach is employed 

to downsample the input of the pooling layer using a max-filter 

[29]. The filter size of 2×2 is chosen to reduce the dimension of 

Hr to half at each pooling layer.  

Dropout layer- Dropout is an operation that omits the hidden 

neurons of input features at a dropout layer randomly with an 

appropriate probability during the training process to reduce the 

risk of ‘overfitting’, and increase the generalisation ability and 

prediction accuracy of the model [30]. In comparison with other 

machine learning models, such as ANN and SVM, a DL model 

has generally more layers, often resulting in increased 

complexity of the model and a high risk of ‘overfitting’ in the 

training process. A dropout can be deployed to prevent the 

‘overfitting’ after either the conventional, pooling or FC layers. 

In this study, the dropout was performed before the first FC 

layer. 

Fully-connected (FC) layer- An FC layer is composed of 

many neurons, each neuron is connected to all the neurons in 

the adjacent layers [24]. Two FC layers are used in the source 

DL and ODL models in this study. The output of the first FC 

layer can be expressed as,  

f1 f1 h f1ReLU( )= +H W H B ,        (4) 

where Hf1ϵℝg×m represents the output of the first FC layer; 

Wf1ϵℝg×d and Bf1ϵℝg×m
 represent the weights and biases of the 

first FC layer, respectively. The output tensor of the dropout 

layer is reshaped to the input Hhϵℝd×m of the first FC layer. Hf1 
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is also the input of the second FC layer which operates without 

the ReLU function, i.e., 

f2 f1 f2= +Y W H B ,         (5) 

where Y is the model output in a batch; Wf2ϵℝ1×g and Bf2ϵℝ1×m
 

are the weights and biases of the second FC layer, respectively.  

2) Objective function  

   In a regression model, the objective function defines the 

difference between the estimated value and the ground-truth 

value of the model. In this study, the objective function of the 

source DL model is expressed as, 

2

0 20 0

1

m

o sJ Y Y−= ,  (6) 

where Y
o 

0 ϵℝ1×m is the model’s output vector for a batch; Y
s 

0

ϵℝ1×m
 is the scaled ground-truth (NOx) vector. To increase the 

convergence speed, the ground-truth data are scaled as follows, 
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where Y0ϵℝ1×m
 is the ground-truth vector; Ymin and Ymax 

represent the minimum and the maximum of the ground-truth 

values, respectively.  
To minimise J0, parameter values (e.g., weights and biases) 

of the model are optimised using the stochastic gradient descent 

method [22].  

C. ODL model 

The ODL model is expected to be updated incrementally only 

using the dataset from an ‘unseen’ condition, as shown in Fig. 

3. The purpose of the incremental learning process is to find the 

optimal parameter values of the ODL model and update the 

model for NOx prediction of both ‘seen’ and ‘unseen’ 

conditions. This can be done by two steps. Firstly, the output of 

the (i-1)th ODL model is obtained based on the input dataset 

(i.e., flame temperature maps) of the ith ‘unseen’ condition. 

Secondly, the ith ODL model is formed by re-training the (i-1)th 

ODL model using the dataset of the ith ‘unseen’ condition and 

the output of the (i-1)th ODL model. If i=1, the 0th ODL model 

is the source DL model.  

 

Fig. 3. Incremental learning process. 

It is also worth noting that, in the proposed ODL model, all 

the ‘unseen’ data will become the ‘seen’ data once they are used 

to update the model. They are equally important and should be 

treated fairly based on their contributions to the updating 

process of the model. This is done by proposing a dedicated 

objective function where a loss balance weight is introduced to 

‘balance’ the distillation loss (relating to all the ‘seen’ and 

previously ‘unseen’ conditions) and the regression loss (relating 

to the ‘unseen’ conditions only). A detailed description of the 

proposed objective function is given in the following section. 

1) ODL’s objective function 

When building an ODL model, say the ith ODL model, we 

intend to re-train the (i-1)th ODL model based on the dataset 

only from the ith ‘unseen’ condition. Generally, the training 

purpose is to minimise the regression loss, i.e., the difference 

between the output of the ith ODL model and its corresponding 

ground truth data, represented commonly as a mean squared 

error, so that the ith ODL model is functional for the ith ‘unseen’ 

condition. To reduce the forgetting problems and ensure that the 

ith ODL model works for ‘seen’ conditions, a distillation loss 

which is the difference (again, represented as a mean square 

error) between the outputs of the (i-1)th and ith ODL models is 

introduced in the objective function. A small distillation loss 

indicates that the parameter values are very similar between the 

ith and (i-1)th ODL models, which means that the ith ODL model 

can predict the NOx for ‘seen’ conditions as the (i-1)th ODL 

model does. Therefore, it is important to minimise the 

regression and the distillation losses of the ith ODL model. To 

achieve this goal, the following objective function is proposed,  
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where Ji is the loss which carries the information of distillation 

loss Ld  and regression loss Lr; ηi is the loss balance weight for 

the ith ODL model; Y
o 

i-1ϵℝ1×m is the output of the (i-1)th ODL 

model based on the input data of ith ‘unseen’ condition; Y
o 

i ϵℝ1×m 

is the output of the ith ODL model; Y
s 

i ϵℝ1×m
 is the scaled ground-

truth (i.e., NOx) vector from the ith ‘unseen’ condition; n is the 

number of ODL model updates.  

The regression loss, Lr, the distillation loss, Ld, and the 

output of the ith ODL model, Y
o 

i , in (8) are defined as follows, 
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where fi represents the ith ODL model; Xiϵℝa×a×m is a tensor 

representing the temperature maps from the ith ‘unseen’ 

condition; W1(i), W2(i), …, Wn(i), B1(i), B2(i), …, Bn(i), Wf1(i), 

Wf2(i), Bf1(i), Bf2(i) represent the parameters of the ith ODL model.  

To minimise Ji, all the parameter values of the ith ODL 

model are optimised using the stochastic gradient descent 

method. As can be seen from (8)-(10), the minimum objective 

loss, min(Ji), happens when Y
o 

i =ηiY
o 

i-1+(1- ηi)Y
s 

i , i.e., 
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It is clear that the minimum objective loss is related to ηi, Y
s 

i  

and Y
o 

i-1. The output Y
o 

i-1 of the (i-1)th ODL model generally 

resides in the domain of the scaled ground-truth of the ‘seen’ 

conditions. When Y
s 

i  is close to Y
o 

i-1, the parameter values of ith 

ODL model are the same as that of the (i-1)th ODL model, and 

thus the ith ODL model can predict the NOx for the previously 

‘seen’ and ith ‘unseen’ conditions. In practice, however, Y
s 

i  can 

be very different from Y
o 

i-1 , resulting in an unacceptable 

objective loss. One way to solve this problem is to scale the 

ground-truth data of the ith ‘unseen’ condition to a new domain 

which is close to that of Y
o 

i-1, i.e., 

min

max min
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i

D− +
=

−

Y Y
Y
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,         (13) 

and, 

old new( )i iD = −Y Y ,         (14) 

where Yi represents the ground-truth data of the ith ‘unseen’ 

condition; Ymin and Ymax represent the minimum and maximum 

ground-truth values of the ‘seen’ and ‘unseen’ conditions, 

respectively; Di represents the difference between the average 

ground-truth of the ‘seen’ conditions,Yold, and that of the ith 

‘unseen’ condition,Ynew.  

When testing input X is fed into the ith ODL model, the output 

Y of which can be expressed as, 
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Hence, the predicted NOx, Ypre, is calculated by, 

pre max min min( ) iD= − − +Y Y Y Y Y .          (16) 

As Di changes with the ith condition, it’s crucial to determine 

Di through a condition recognition approach to obtain Ypre. 

D. Condition recognition 

During the experiments (refer to Section III), flame images 

and corresponding boiler operation data are recorded 

simultaneously for each test condition. Three different 

operation data, i.e., O2 concentration, primary to total flow, and 

secondary-to-tertiary flow split (refer to Table I in Section III), 

are used for the condition recognition through the cosine 

similarity approach [31]. These operation data are noted as (x, 

y, z), where x, y, z represent the O2 concentration, primary to 

total flow, and secondary-to-tertiary flow split, respectively. 

The cosine similarity between the operation data of condition 

Aj (i.e., a new condition which needs to be examined) and 

previously ‘seen’ conditions Bi (i.e., the conditions which are 

used to train or re-train the source DL or ODL model) are 

calculated by, 

2 2 2 2 2 2+ + + +j

j i j i j i j i
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where Aj=(xj, yj, zj) and Bi=(xi, yi, zi) are the vectors representing 

operation data from the jth test and ith test, respectively. If S=1 

and ‖Aj‖=‖Bi‖, then i=j, i.e., condition Aj is recognised as the ith 

condition. If the criterion is not met, Aj is recognised as an 

‘unseen’ condition.  

III. COLLECTION OF EXPERIMENTAL DATA 

A. Experimental setup 

Experimental data were obtained from oxy-biomass flame 

tests carried out on the UKCCSRC PACT 250 kWth Air/Oxy-

fuel CTF [32]. The CTF has a single burner firing down in a 

cylindrical combustion chamber with an inner diameter of 0.9 

m. The burner is a purpose-designed Low-NOx biomass-fired 

burner with a primary annulus for conveying pulverised 

biomass fuels. The rest of the oxidiser is introduced through 

swirled secondary and tertiary annuli to ensure the completion 

of the combustion. The burner also has an internal flow splitting 

system to control the secondary to tertiary flow ratio. A flame 

imaging system [23] was used for flame image acquisition. Fig. 

4 is the block diagram of the CTF and the flame imaging 

system, whilst Fig. 5 shows the site installation of the system. 

The flame imaging system mainly consists of an optical probe 

with a water jacket, a digital camera, and a personal computer 

with system application software. The probe is a rigid 

endoscope with a 90 field of view and protected by a water-air 

cooled jacket. The camera is an industrial RGB CMOS camera 

with an image resolution of 1216 (H) × 1936 (V) pixels and a 

frame rate of up to 900 frames per second with reduced 

resolution. The probe was installed at the viewport on a top 

section of the furnace where the burner quarl and primary 

reaction zone of the flame was fully visualised.  

 

Fig. 4. Block diagram of the CTF and the flame imaging system. 

B. Test conditions 

A total of ten test conditions were conducted using a 

pulverised whitewood as biomass fuel under different oxy-

combustion conditions with a fixed furnace load of 150 kWth. 

The recycled flue gas was simulated by using CO2. The 

secondary and tertiary flows (CO2+O2) were used as rig 

variables to obtain different percentages of O2, primary to total 

flow, and secondary to tertiary flow ratio (split). Table I 
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summarises the test conditions and corresponding operation 

data. 

 

Fig. 5. Site installation of the flame imaging system. 

TABLE I  

SUMMARY OF TEST CONDITIONS 

Test O2  

(vol %) 

Primary 

to total 

flow (%) 

Secondary 

to tertiary 

flow split 

Mean NOx 

in flue gas 

(ppm) 

NOx 

STD 

(ppm) 

Used as ‘seen’ 

or ‘unseen’ 

dataset 

1 21 24 4 73 1 Seen 
2 23 24 4 83 2 Seen 

3 25 24 4 79 2 Seen 

4 27 24 4 78 2 Unseen 
5 27 21 4 67 2 Unseen 

6 27 27 4 81 2 Seen 

7 27 30 4 94 2 Seen 
8 27 24 1 84 4 Unseen 

9 27 24 2 73 3 Seen 

10 27 24 3 75 2 Seen 

For each test condition, a total of 150-170 flame images were 

captured by the imaging system over about four minutes when 

the condition was stable. NOx data were also taken concurrently 

by a gas analyser from the flue gas (Table I), which were then 

used as the reference NOx (ground-truth) for the model 

construction. Fig. 6 illustrates the typical flame images and 

corresponding temperature maps under different test 

conditions. The flame temperature distributions were computed 

based on the two-colour method [23]. It should be mentioned 

that flame images from some tests were taken under different 

camera settings to avoid possible image saturation. Previous 

studies reveal that the two-colour method-based flame imaging 

system appears to be linear [23]. This means that the camera 

settings, such as the exposure time, iris, and objective distance, 

have no or a very limited impact on the temperature 

measurement. In addition, it is found that the temperature of the 

furnace wall (shown as the light blue in the flame temperature 

maps in Fig. 6), was consistent throughout the tests, and thus 

should have no or limited influence on the accuracy of the 

proposed model. It is for this reason, the temperature maps of 

the complete field of view were used to form the input datasets. 

The flame and NOx emission data from Tests 1-3, 6, 7, 9 and 

10 were used to build the source DL model whilst those from 

Tests 4, 5 and 8 (Table I) were used to train, validate and test 

the ODL model. Each dataset was randomly split as a training 

dataset (75%), a validation dataset (12.5%), and a testing 

dataset (12.5%). The Python language was deployed for 

programming. The source DL and ODL models were trained, 

validated, and tested on a personal computer with an intel i9-

10900K processor, 32GB RAM and 8GB GPU. 

 
Fig. 6. Example flame images and corresponding temperature maps under 

different test conditions. 

IV. MODEL CONSTRUCTION 

A. Evaluation criteria 

MAPE (Mean Absolute Percentage Error), σ (Standard 

Deviation of Absolute Percentage Error) and APEmax 

(Maximum Absolute Percentage Error), are deployed to 

evaluate the model performance, and they are defined as,  
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whereYtrue(i) andYpre(i) are the average reference and predicted 

NOx values for the ith combustion condition, respectively, n is 

the number of combustion conditions. In addition, the training 

time is considered as it is also an important criterion, 

particularly for the online model construction and practical 

uses. 

It is worth mentioning that, in comparison to other commonly 

used scale-dependent evaluation metrics, the MAPE is one of 

the most accepted criteria for evaluating the model’s 

performance in regression modelling. This is due to its 

advantages of scale-independency and intuitive interpretation 

in terms of relative error [33]. Meanwhile, the APEmax is very 

effective to evaluate the worst case of the proposed model, as it 

provides the maximum absolute percentage error among all the 

conditions. 

B. Determination of hyper-parameters 

The determination of optimum hyper-parameters such as 

training epoch, input image size, batch size, and the number of 

convolutional layers of the source DL model is crucial for 
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achieving satisfactory performance of the proposed in teams of 

the prediction accuracy, computational time and the usage of 

system resources. In this study, a grid search based trial-and-

error method was deployed to determine the optimum hyper-

parameters. 

1) Training epoch 

The training epoch needs to be defined to control the stop 

point of the training process. Fig. 7 shows the MAPEs of the 

training and validation losses when the source DL model is 

trained under different training epochs, with the input image 

size of 144×144, batch size of 64, and convolutional layers of 

4. The validation loss is slightly higher than the training loss, 

which is expected as the validation dataset is not used to train 

the model. It can be seen that the training and validation losses 

decrease with the epochs and tend to be unchanged (around 

0.37% and 0.59% MAPEs for the training and validation, 

respectively) after 7500. It was therefore decided to set a 

training epoch of 7500 throughout the construction process of 

the model.  

 
Fig. 7. Variation of MAPE for the training and validation losses against 

different epochs. 

2) Input image size 

The original flame image size is 719×719, which was scaled 

down to 288×288, 144×144, and 72×72, respectively. The 

scaled images were then used as the inputs of the source DL 

model with the batch size of 64, convolutional layers of 4, and 

training epoch 7500. Due to the influence of dropout, the model 

output slightly changes when the model was tested using the 

same Validation dataset, at different times. Hence, the model 

was tested 5 times for each Validation dataset, and their average 

output was used as the model output. Table II shows the 

variations of the MAPE and training time of the model for the 

different hyper-parameters. It is clear that the larger the input 

image size, the smaller the MAPE, and thus the higher the 

prediction accuracy, but the longer the training time. The results 

suggest that the input image size of 144×144 is a trade-off 

between the prediction accuracy (MAPE of 0.57%) and the 

training time.  

3) Batch size 

The batch size is the number of samples that are considered 

in each iteration during the model training process. The optimal 

batch size can lead to a better performance of the model and 

also reduce the training time. Thus, the batch size needs to be 

defined. As can be seen in Table Ⅱ, the MAPE increases slightly 

with the batch size but remains almost unchanged when the 

batch size is 64 or greater. However, the larger the batch size is, 

the greater GPU capacity is required [34]. In practical uses, the 

model with less demanding computational resources is 

preferable. It is hence decided to use the batch size of 64 in the 

model construction. 

4) The number of convolutional layers 

The number of convolutional layers is an important hyper-

parameter in the construction of the source DL model. 

Generally, the more convolutional layers, the deeper features 

can be extracted, while it could lead to longer training time and 

overfitting problems. Therefore, it is crucial to determine the 

optimum convolutional layers for the model. As can be seen in 

Table II, the MAPE is almost unchanged for the different 

numbers of convolutional layers. However, the more 

convolutional layers resulted in increased training time 

considerably. It is therefore 4 convolutional layers were chosen 

in this study. 

 
TABLE II 

MAPES AND TRAINING TIMES AGAINST DIFFERENT HYPER-PARAMETERS 

  MAPE 
(%) 

Training 
time (h) 

Input image size (Batch size: 64, 

Convolutional layer: 4) 

72×72 0.72 1.20 

144×144 0.57 4.93 

288×288 0.31 19.50 

Batch size (Input image size: 

144×144, Convolutional layer: 4) 

32 0.42 5.15 

64 0.57 4.93 

Number of convolutional layers (Input 
image size: 144×144, Batch size: 64) 

4 0.57 4.93 

8 0.56 11.58 

12 0.63 17.66 

V. RESULTS AND DISCUSSION 

A.  Source DL model  

Following the determination of the hyper-parameters, the 

source DL model was evaluated using the testing datasets from 

all 10 test conditions as given in Table I. Fig. 8 illustrates the 

predicted NOx based on the source DL model against the 

reference NOx (ground-truth) for the ‘seen’ and ‘unseen’ 

conditions. Note that, in the figure, dash lines ‘y=x-4’ and 

‘y=x+4’ represent the ideal line y=x plus and minus the 

maximum standard deviation (STD=4 ppm, Test 8) of the 

reference NOx. As can be seen, the predicted NOx values for the 

‘seen’ conditions are mostly within the STD of ±4 ppm. The 

MAPE of the predicted NOx is 0.60% for all the ‘seen’ 

conditions, suggesting that the source DL model can predict 

NOx accurately if the conditions have been ‘seen’. The source 

DL model gives higher prediction accuracy for the testing 

dataset from ‘unseen’ condition 1 (Test 4 as given in Table I), 

as the reference NOx value under Test 4 is close to that under 

the ‘seen’ condition Test 3. However, the MAPE increases 

dramatically up to 15.49%, 14.01% for the testing dataset from 

‘unseen’ condition 2 (Test 5) and ‘unseen’ condition 3 (Test 8), 

respectively. The results suggest that the source DL model 

provides poor prediction accuracy for the ‘unseen’ conditions, 

and thus an updated model is required. 



 

Fig. 8. Predicted and reference NOx values based on the source DL model. 

B. ODL model  

As the ODL model is constructed based on the source DL 

model, the hyper-parameters are kept the same as that of the 

source model, i.e., the input image size of 144×144, the batch 

size of 64, and the convolutional layers of 4. However, the 

training epoch applied is 100, which is determined after a 

careful examination of the training process to ensure its 

convergence after the selected training epoch. It is worth noting 

that the epoch of 100 is much smaller than that used in the 

source model training (7500). This is due to the fact that, in the 

updating process, only the training dataset from one ‘unseen’ 

condition is used to maintain a high computational efficiency.  

In this study, the 1st update is performed based on the source 

DL model and the training dataset from the 1st ‘unseen’ 

condition (Test 4); the 2nd update is based on the 1st ODL model 

and the training dataset from the 2nd ‘unseen’ condition (Test 

5); the 3rd update is based on the 2nd ODL model and the training 

dataset from the 3rd ‘unseen’ condition (Test 8). The validation 

datasets from ‘seen’ and ‘unseen’ conditions were applied to 

examine the performance of the updated model. It is worth 

mentioning that, in this study, the model is updated 

continuously for three ‘unseen’ conditions due to the 

availability of ‘unseen’ conditions. However, the model can be 

updated continuously if more ‘unseen’ conditions are available. 

1) Impact of loss balance weight on the model’s performance 

As described in Section Ⅱ, the loss balance weight is 

introduced to the objective function of the ODL model to 

‘balance’ the performance of the ODL model between the 

‘seen’ and ‘unseen’ conditions. A larger ηi tunes the ith ODL 

model to the (i-1)th ODL model, leading to a better performance 

of the ith ODL model for the ‘seen’ conditions. On the other 

hand, a smaller ηi tunes the (i-1)th ODL model to the ith ODL 

model, leading to a better performance of the ith ODL model for 

the ‘unseen’ conditions.  

To determine the appropriate value of ηi in each update, a 

grid search technique is applied, where ηi is set between 0 to 1 

with an interval of 0.1. The training and validation datasets are 

then applied to the model for the different values of ηi. Fig. 9 

illustrates the MAPEs of the ODL model for different values of 

ηi when the model was updated by the training and validation 

datasets from three ‘unseen’ conditions incrementally. Note 

that the number of the ‘seen’ conditions varies depending upon 

the number of updates as the ‘unseen’ condition which is used 

to update the ODL model becomes one of the ‘seen’ conditions 

in the next updated ODL model. Thus, the ‘seen’ conditions 

shown in Fig. 9 (a) are Tests 1-4, 6, 7, 9-10, in Fig. 9 (b) are 

Tests 1-7, 9-10, and in Fig. 9 (c) are Tests 1-10.  

 

                (a)                (b)                  (c) 

Fig. 9. Variation of MAPE with ηi for the ith updates (i=1, 2, 3). (a) the 1st update, (b) the 2nd update, (c) the 3rd update.

As can be seen, a larger ηi leads to higher validation’s 

MAPEs for the ‘unseen’ condition and lower validation’s 

MAPEs for the ‘seen’ conditions. It is found that the appropriate 

value of ηi would be in a range between 0.6 and 0.8. Fig. 10 

shows the variation of the APEmax with ηi for three updates 

using the validation datasets from the ‘seen’ and ‘unseen’ 

conditions. The APEmax decreases with ηi in the 1st and 2nd 

updates. This is because, as ηi increases, the contribution of the 

regression loss is reduced, and the distillation loss dominates 

the total loss of the model (refer to 8). It also means that the 

performance of the ith ODL model is close to that of the (i-1)th 

ODL model (or the source model). When ηi reaches 1, the 

contribution of the regression loss is ‘zero’, and only the 

distillation loss exists. In other words, the model remains 

unchanged. It is also noted that the mean ground truth (NOx) of 

the 2nd ‘unseen’ condition (Test 5) is significantly different 

from other ‘seen’ conditions (maybe due to the reduced primary 

to total flow). This explains that the APEmax of the 2nd update is 



higher than that of the 1st update. The APEmax of the 3rd update 

is consistently higher than that of the 1st and 2nd updates because 

the 3rd ‘unseen’ condition (Test 8) is very different from the 

‘seen’ conditions (refer to Table I). However, it does not show 

a monotonically decreasing trend. This is believed to attribute a 

greater standard deviation in comparison with the ‘seen’ and the 

1st and 2nd ‘unseen’ conditions. Therefore, a loss balance weight 

of 0.7 is considered to be a trade-off among the ‘unseen’ 

conditions examined.  

 
Fig. 10. Variation of APEmax with ηi for the ith updates (i=1, 2, 3). 

2) Performance of ODL model  

Figs. 11 illustrates the NOx emissions predicted using the 

ODL model for three updates, respectively (η1=η2=η3=0.7). It 

can be seen that the predicted NOx emissions for ‘seen’ and 

‘unseen’ conditions are around the reference line ‘y=x’ for the 

three updates. Comparing to the results in Fig. 8, it is evident 

that the prediction accuracy of the ODL model was significantly 

improved through the incremental updating.  

Table III summarises the prediction errors of the source DL 

and ODL models for the ‘seen’ and ‘unseen’ testing datasets. 

As can been seen, although the prediction errors of the models 

have increased due to the updating, they remain small, e.g., the 

MAPE is 2.56% with a standard deviation of 1.45%, and the 

APEmax is no greater than 5%, after three updates. The results 

have revealed that the proposed technical approach is effective 

to allow the ODL model to be learnt incrementally based on the 

datasets only from ‘unseen’ conditions. In addition, the updated 

model enables to predict the NOx emissions under ‘seen’ and 

‘unseen’ conditions with acceptable errors. Furthermore, the 

ODL model can be updated by an ‘unseen’ condition dataset in 

a very short period (0.01 hours). Note that the training time for 

each update varies slightly, but is rounded to 0.01 hours. In 

comparison, it will take more than 4.93 hours when more and 

more stream data from ‘unseen’ conditions are combined with 

the data from ‘seen’ conditions to train a DL model. This has 

shown great potentials of the proposed ODL approach for the 

online NOx prediction in practical combustion systems with 

variable operation conditions.  

TABLE III 

PREDICTION ERRORS OF THE SOURCE DL AND ODL MODELS  

FOR THE ‘SEEN’ AND ‘UNSEEN’ TESTING DATASETS 

 
Source 

DL 
1st updated 

ODL 
2nd updated 

ODL 
3rd updated 

ODL 

Test 

 

1-3, 6, 

7, 9, 10 

1-4, 6, 7,   

9, 10 

1-7, 9, 10 

 

1-10 

 

MAPE (%) 0.60 1.05 1.46 2.56 

APEmax (%) 1.47 2.42 3.84 4.87 

σ (%) 0.59 0.77 1.25 1.45 

Training time 
(hour) 4.93 0.01 0.01 0.01 

       
(a)                  (b)                  (c) 

Fig. 11. Predicted and reference NOx values based on the 1st, 2nd and 3rd updated ODL models. (a) the 1st updated ODL model, (b) the 2nd updated ODL model, (c) 
the 3rd updated ODL model.  

 

It is also worth mentioning that, at the training stage, the 

input (flame temperature maps) and ground truth (NOx values) 

at each batch are randomly sampled (by the model being 

trained) from a ‘seen’ or ‘unseen’ training dataset. There is no 

particular input order among the different ‘seen’ and ‘unseen’ 

training datasets during the training process. At the testing 

stage, on the other hand, the model was tested by the testing 

datasets from ‘seen’ and ‘unseen’ conditions. The testing data 

were fed into the model one by one with no particular order. 

Thus, the input order of different ‘seen’ and ‘unseen’ testing 

datasets to the model has no influence on the model’s 

performance. 

It is thought that the problem of increased error with the 

number of updates could be minimised by introducing a small 

portion of the dataset from ‘seen’ conditions to the updating 

process, which would be a trade-off between the accuracy and 



efficiency of the ODL model. It has been recognised, however, 

that further work needs to be done to examine the performance 

of the ODL model for a greater number of updates.  

VI. CONCLUSION 

A flame imaging based ODL model has been developed for 

predicting NOx emissions from an oxy-biomass combustion 

process. Flame temperature maps obtained under a range of 

operation conditions on an Air/Oxy-fuel Combustion Test 

Facility were used as the input datasets. The ODL model has 

been constructed based on CNN (the source model) by updating 

the model incrementally only using ‘unseen’ datasets to reach 

improved accuracy and efficiency. This has also been achieved 

by introducing a loss balance weight into the objective function. 

The criteria for choosing the loss balance weight have carefully 

been set to ensure that the ODL model would not lose 

information from ‘seen’ and ‘unseen’ conditions. The test 

results have revealed that the proposed ODL model is capable 

of predicting NOx emissions for ‘seen’ and ‘unseen’ conditions 

with a mean absolute percentage error less than 3% even after 

three updates. In comparison with the conventional CNN, the 

ODL model has an incremental learning ability which has given 

a great potential of the proposed ODL model for the online NOx 

prediction in practical combustion systems under variable 

operation conditions with improved accuracy and efficiency. 

Further work will focus on examining the performance of the 

ODL model for more updates so that the accuracy, reliability, 

and practicability of the model can be further assessed. Finally, 

the proposed ODL approach has potentials not only for the NOx 

prediction of combustion processes, but also other engineering 

applications where online condition monitoring and prediction 

are required.  
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