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Abstract
This study uses the winner determination problem (WDP) to integrate auction trans-
portation procurement with decisions related to production scheduling. The basic
problem arises when a manufacturer has to clear a combinatorial auction to decide
whether to cover transportation needs by using the in-house fleet or to procure
transportation through auction. Thus, the manufacturer should include an additional
decision level by integrating the WDP with production scheduling to gain efficiency
and achieve savings in the logistics system. To the best of our knowledge, this is
the first time production and transportation procurement problems are being solved
simultaneously in an integrated manner. The study proposes a mathematical for-
mulation and develops two heuristic approaches for solving the integrated problem.
Extensive computational experiments and sensitivity analyses are reported to val-
idate the model, assess the performance of the heuristics, and show the effect of
integration on total cost.

KEYWORDS
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1 INTRODUCTION AND LITERATURE REVIEW

Production and transportation are foundational tasks in designing and operating logistics systems. The costs of these tasks
represent a considerable share of any manufacturer’s budget and have a direct effect on service level and competitiveness.
Usually, companies choose from three transportation alternatives to deliver goods: either through in-house transportation or by
outsourcing [9]. First, companies may decide to operate a private fleet of trucks, ensuring high-quality transportation service.
Second, companies can outsource to external carriers by establishing bilateral forward contracts. Third, companies can use
recent procurement paradigms, employing auctions to fulfill transportation needs. A combination of these three alternatives is
a feasible solution and the most efficient method to reduce transportation costs. However, the company has the challenge of
designing a transportation network. The appropriate alternative to meet transportation needs depends on several factors [56].
The problem becomes more challenging when transportation procurement must be coordinated with production scheduling
to increase supply chain efficiency. Previous academic research and professional experiences have shown encouraging results
(significant savings) of simultaneous planning of production and transportation activities [21]. Research studies focused on
planning transportation in terms of freight distribution by solving either fleet management or vehicle routing problems [6]. Li
et al. [39] analyzed different factors influencing outsourcing decisions within a production-transportation framework. Nagurney
and Li [46] designed a supply chain that allows outsourcing for production and distribution in a competitive manufacturing
context. However, to the best of our knowledge, no research has considered the integration of production scheduling with
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FIGURE 1 Problem description [Color figure can be viewed at wileyonlinelibrary.com]

transportation procurement while using the auction paradigm. The main contribution of this study fills this gap in the scientific
literature.

Specifically, this study deals with extending the winner determination problem (WDP) to integrate production schedul-
ing with transportation procurement and planning at the operational level (see Figure 1). We consider combinatorial auction
(CA), in which carriers submit bids including a set of orders they are willing to serve and the corresponding price. The
clearing process (i.e., the WDP) ensures that all orders submitted for each auction are allocated to the winning carrier; oth-
erwise nothing at all. The winner is based on lowest price to serve the orders (first price). Carriers do not have access to
competitors’ bid information (sealed-bid) nor the chance to rectify submitted prices (single-round). Common in other stud-
ies, we assume a bidding language based on the “XOR” operator, so that a carrier can submit multiple bids but may be
awarded only one. Therefore, the manufacturer diversifies transportation providers and does not rely on only a few carriers.
The auction process gains efficiency and rapidity through Internet technology, which allows bi-weekly or even daily auctions
to suit the timing of the production schedules, which is similar to what happens in the deregulated power systems market
[8,45,59].

The problem being examined has its foundation in two research streams. The first is the use of auctions for transportation
procurement, which have great potential for up to 15% savings for shippers [52]. This stream consists of solving three main
optimization problems, as introduced by Caplice and Sheffi [11] (see Figure 2):

• LSP (lane selection problem): The manufacturer attempts to cover each transportation commitment (called a lane) by
selecting the appropriate procurement alternative [27,61].

• BGP (bid generation problem): The company must decide which deliveries to include in bids submitted to the auction
[4,10,14,35,37,49,55,58,60].

• WDP (winner determination problem): The auctioneer (manufacturer) clears the auction and identifies the winning
carriers [11,30,42,50,51].

The WDP selects winners and assigns successful bids to carriers using cost minimization criteria. While this problem
has been extensively investigated in different contexts, it has received limited attention in the transportation sector [19]. In
deterministic settings, Caplice and Sheffi [11] proposed different optimization models for the WDP for truckload transportation
auctions. Ignatius et al. [30] proposed three multi-objective optimization models for the WDP. This study considers cost, market
fairness, and market confidence as criteria for deciding winning bids. Moreover, specialized models have been developed for
real-life applications [22,36]. Research on the WDP has been directed toward stochastic and fuzzy settings. Ma et al. [42]
suggested a recourse stochastic model that incorporates volumes of transported goods. Remli and Rekik [50] and Zhang et al.
[66] used the recourse robust paradigm to incorporate the stochastic nature of shipment quantities into the auction clearing
process. To solve the resulting stochastic WDP, Remli and Rekik [50] suggested a constraint generation algorithm, and Zhang
et al. [66] used a data-driven approach. Sampling-based methods combined with Monte Carlo simulation have been used to
solve the WDP in uncertainty [7,65]. Beyond shipping volumes, Ben Amor et al. [7] considered carriers’ capacity and lead
time stochasticity. Recently, Yan et al. [64] solved a WDP to ensure clearing price feedback from the shipper within the bi-level
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FIGURE 2 Bidding phases and problems in combinatorial auctions [Color figure can be viewed at wileyonlinelibrary.com]

procurement framework. They solve the problem from the carrier’s perspective, and their BGP uses fuzzy parameters to describe
the random lane cost.

The second research stream related to this study is the production-transportation coordination in logistics systems. It defines
detailed schedules for both production and distribution tasks, as surveyed by Chen [15], Ullrich [62], and Reimann et al. [48],
and more recently, Moons et al. [44]. Ullrich categorized production-transportation coordination problems into two classes:
transportation with direct deliveries and multidelivery consolidation. Given its complexity, the latter had limited attention in the
literature, as it includes one of the routing problems variants. Our study belongs to this category of production-transportation
problems and extends previous research to include the procurement aspect. Few studies belong to this category [28,34]. Some
studies tackled different variants of the standard production-transportation problem with routing delivery [16,23,25,38,41,62];
some studies focused on developing approaches for its solution [2,5,32,33,43]; and some studies incorporated additional
features within the problem, such as multi-objective optimization [31], uncertainty and robustness [17,53], and financial
planning [3].

The above analysis highlights how the problem under examination has not been addressed in an integrated form in the
literature. Our contribution attempts to merge two research streams that have flourished as different pathways separately without
integration.

The remainder of this paper is organized as follows: Section 2 is devoted to formally describing the integrated problem, its
advantage, and its corresponding mathematical formulation. Section 3 describes the approaches to solve this problem. Two meth-
ods are developed: one based on the memetic algorithm and one based on a decomposition iterative heuristic. The computational
results and concluding remarks follow in Sections 4 and 5, respectively.

2 PROBLEM DEFINITION AND MODELING

This section introduces characteristics and notations of the problem addressed in this study, and describes the optimization
formulation proposed for the solution.

2.1 Problem definition
Companies consider a set of orders N = {1, …, n} from customers that must be processed on one production line. A
sequence-dependent setup time sij occurs when production changes from order i ∈ {0} ∪ N to another order j ∈ N. We introduce
a fictive order 0 and a corresponding customer 0. Let Cj denote the completion time of order j ∈ N and pj denote processing
time (with C0 = p0 = 0).

Once order j ∈ N is processed, it must be delivered to the customer by due date dj. We consider two transportation options
for delivery: delivered by the manufacturer’s fleet V = {1, …, v} or outsourced to third-party carriers selected through auction.
(The model extension to cover forward contracts for the transportation can be straightforward.) We assume the manufacturer
has a homogenous fleet, with vehicle capacity Q. Each vehicle can be used iteratively, performing a new trip after the previous
shipment is completed [13,40,47]. Let M = {1, …, m} represent shipments set for the manufacturer’s fleet and qj represent
units of fleet capacity needed to fulfill order j ∈ N by vehicle. Additionally, let cij represent the transportation cost of direct
delivery from customer location of order i ∈ {0} ∪ N to customer location of order j ∈ {0} ∪ N and tij represent transportation
time. The transportation times respect the triangle rule: tj1j2 + tj2j3 ≥ tj1j3, ∀ j1, j2, j3 ∈ {0} ∪ N. Each vehicle needs a stopover
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TABLE 1 Job profile

Order (i)
Processing time
(time unit)

Quantity
(unit)

Due date
(time unit)

1 2 70 558

2 3 60 425

3 5 50 648

TABLE 2 Machine set up time with sequence
dependent set-up

Job (i)

Job (j) 0 1 2 3

1 30 0 40 40

2 25 30 0 30

3 40 20 20 0

TABLE 3 Transportation distance

Job (i)

Job (j) 0 1 2 3

1 160 0 50 180

2 180 50 0 160

3 270 180 160 0

time Sj at the customer’s location to serve order j ∈ N. The total transportation cost of each vehicle is the sum of all shipments
performed, whereas transportation time of one shipment is the sum of each order’s transportation time and service time at
customer’s location. When the delivery is outsourced to carriers, we assume a set of L carriers compete for the business. Each
carrier l ∈ L submits a set of Bl bids to auction, but only a single carrier is successful (XOR bidding language). Let c′bl denote
the price suggested by carrier l to serve bid b (a bid typically includes several orders, and it is an all-or-nothing bid) and t′j
denote transportation time needed for the delivery of each order j included in bid b. Moreover, let Rjbl be a constant indicator
equal to 1 if bid b by carrier l includes order j, and 0 otherwise. Let Dj represent actual delivery time of order j ∈ N by either
manufacturer’s fleet or external carrier. Then, Tj = max{0, Dj − dj} is the delivery tardiness of order j ∈ N. We consider a
penalty cost wj associated with each tardiness unit of order j ∈ N. Delivery tardiness can be caused by the chosen production
schedule, the transportation alternative selected for each order, or the resulting production-transportation coordination. The
production schedule is affected by the identified production sequence that can provoke additional costs of sequence-dependent
set-up time. Consequently, the objective of the integrated production-distribution problem is to minimize routing costs, delivery
auction costs, and delivery tardiness costs.

2.2 Illustrative example: Effect of production-transportation integration
To illustrate the effect of integrated production scheduling and transportation problems, we consider the following example.

Number of jobs per customer: 3
Number of machines: 1
Number of vehicles: 2 (V1: manufacturer’s fleet; V2: external carrier)
Vehicle capacity: Homogenous with loading capacity of 120 units each
Delivery tardiness cost: $12/unit time
Transportation cost: $17/unit distance (manufacturer’s fleet) and $21 (external carrier).

For the example, the job can be released at time zero and job preemption is not allowed. Of the available vehicles, one
belongs to the manufacturer and the other is from the auction clearing. Additional details are shown in Tables 1 to 3.

In the example, we compare total production and transportation costs of the proposed method to two well-known methods.
These two methods do not consider the integration of production and transportation delivery in the decision process.
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TABLE 4 Cost components for the three methods

Method Production sequence Tardy time Tardy cost Delivery cost Delivery sequence Total cost

Method 1 O2-O1-O3 384 4608 17 536 Separately 22 144

Method 2 O1-O2-O3 729 8748 12 800 (O1-O3); O2 21 548

Method 3 O2-O1-O3 564 6768 12 800 (O1-O3); O2 19 568

• Method 1: Earliest due date (EDD) without integration: In the context of production planning and scheduling problems,
EDD is widely used if minimizing tardiness is the objective [20]. Jobs are scheduled for production and delivery according
to due dates.

• Method 2: Minimum tardy delivery (MTD) without integration: Jobs are scheduled for production based on production
sequence. Delivery to customer is based on the delivery sequence, which minimizes transportation cost.

• Method 3: Our proposed method with integration: Our method integrates production function with delivery schedule.
Jobs are schedule for production and delivery based on the minimum total cost, which consists of delivery tardiness cost
and transportation cost.

Table 4 and Figure 3 show the results for the three methods. The tardy time and corresponding tardy costs are lowest for
EDD; however, delivery cost is the highest. In EDD, jobs are delivered separately. Job 2 has the EDD and will be delivered
first. The next delivery will be Job 1. Two jobs cannot be combined for delivery due to vehicle capacity constraint. Therefore,
either Job 2 is delivered alone or Jobs 2 and 3 are combined for delivery; however, the tardy cost of Job 2 will be high, making
individual job delivery better. Therefore, the manufacturer’s fleet (V1) must perform two trips for Jobs 2 and 3. Job 1 will be
delivered by an external carrier.

For MTD, jobs are processed in the sequence O1-O2-O3. Job 1 and Job 3 will be delivered by vehicle 1 in the delivery
sequence of O1-O3, and job 2 will be delivered by vehicle 2. The total cost of MTD is the highest among the three methods,
because high tardiness delivery cost. As Figure 3B shows, all MTD jobs will be delivered tardy.

As shown in Figure 3C, the production sequence of the proposed method is similar to the EDD method: O2-O1-O3. The
delivery planning and sequence are similar to MTD. Even though the tardy cost of the proposed method is higher than EDD,
total cost of production and delivery is lower. Even for this small illustrative example, improvement in total cost by the proposed
method is approximately 13% and 10% compared to EDD and MTD, respectively. Therefore, by integrating production planning
and delivery scheduling in the decision process, the proposed method outperforms the other methods.

2.3 Mathematical model
Besides the continuous variables Dj and Tj related to the actual delivery time of order j ∈ N and its tardiness, the mathematical
formulation is based on introducing the following three sets of binary variables:

• Decision variables related to the production sequence:

Xij = 1, if order i is the direct predecessor of order j on the production line (i, j∈ {0}∪N, i≠ j)
= 0, otherwise

• Variables related to transportation routing of the private manufacturer’s fleet:

Ym
ijv = 1, if order i is delivered just before order j in the shipment m with manufacturer’s vehicle v (i, j∈ {0}∪N, i≠ j,

v∈V , m∈M)

= 0, otherwise

• Decision variables related to procurement of transportation needs through the auction:

Zbl = 1,if carrier l wins his bid b through auction (l∈ L, b∈Bl)

= 0, otherwise

Our formulation is a mixed-integer linear problem (MILP), expressed as:

Minimize ∶
∑

i∈{0}∪N

∑
j∈{0}∪N,j≠i

∑
v∈V

∑
m∈M

cijYm
ijv +

∑
b∈Bl

∑
l∈L

c′blZbl +
∑
j∈N

wjTj (1)

Subject to: ∑
j∈{0}∪N,j≠i

Xij = 1, i ∈ {0} ∪ N (2)
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FIGURE 3 Production and delivery sequences generated by the three methods [Color figure can be viewed at wileyonlinelibrary.com]

∑
i∈{0}∪N,i≠j

Xij = 1, j ∈ N (3)

Ci + sij + pj − Cj ≤ (1 − Xij)A1, i ∈ N, j ∈ N, i ≠ j (4)

∑
j∈{0}∪N,j≠i

∑
v∈V

∑
m∈M

Ym
ijv = 1 −

∑
b∈Bl

∑
l∈L

RiblZbl, i ∈ N (5)

∑
i∈{0}∪N,i≠j

∑
v∈V

∑
m∈M

Ym
ijv = 1 −

∑
b∈Bl

∑
l∈L

RjblZbl, j ∈ N (6)

∑
i∈{0}∪N,i≠j

Ym
ijv −

∑
h∈{0}∪N,h≠j

Ym
jhv = 0, j ∈ N, v ∈ V ,m ∈ M (7)

∑
j∈N

Ym
0jv ≤ 1, v ∈ V ,m ∈ M (8)

http://wileyonlinelibrary.com
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Di + Si + tij − Dj ≤ (1 − Ym
ijv)A2, i ∈ N, j ∈ N, i ≠ j, v ∈ V ,m ∈ M (9)

Di + Si + ti0 + t0j − Dj ≤ (2 − Ym−1
i0v − Ym

0jv)A2, i ∈ N, j ∈ N, i ≠ j, v ∈ V ,m ∈ M\{1}

Cj + t0j

(
1 −

∑
b∈Bl

∑
l∈L

RiblZbl

)
+ t′j

∑
b∈Bl

∑
l∈L

RiblZbl ≤ Dj, j ∈ N (10)

Cj + t0i +

(∑
k∈N

Ym
ikv +

∑
k∈N

Ym
kjv − 2

)
A3 ≤ Di, i ∈ N, j ∈ N, v ∈ V ,m ∈ M (11)

∑
i∈{0}∪N

∑
j∈N,j≠i

qj Ym
ijv ≤ Q, v ∈ V ,m ∈ M (12)

∑
b∈Bl

Zbl ≤ 1, l ∈ L. (13)

0 ≤ Tj, j ∈ N (14)

Dj − 𝑑j ≤ Tj, j ∈ N (15)

Xij ∈ {0, 1}, i, j ∈ {0} ∪ N, i ≠ j (16)

Ym
ijv ∈ {0, 1}, i, j ∈ {0} ∪ N, i ≠ j, v ∈ V ,m ∈ M (17)

Zbl ∈ {0, 1}, b ∈ B, l ∈ L (18)

The objective function (1) minimizes total cost of producing and delivering all orders. It consists of transportation costs,
either by the manufacturer’s fleet or by the winning carrier, and the possible delivery-tardiness costs. Constraint (2) ensures
that each order i has only one successor on the production line. Similarly, constraint (3) ensures that each order j has only one
predecessor on the production line. Constraint (4) establishes the relationship between completion time of order i and order
j whenever order i is the direct predecessor of order j on the production line (if Xij = 1). In Equation (4), A1 represents a
large enough number. Constraints (5) and (6) ensure that each order is served once, either by the manufacturer’s fleet or by a
third-party carrier through auction. Constraint (7) ensures the flow balance at each customer location. Constraint (8) prohibits
any vehicle to depart more than once with the same shipment m. Constraint (9) establishes the delivery time restriction between
order i and order j when order j is delivered directly after order i with vehicle v on shipment m (if Ym

ijv = 1). Conversely, constraint
(10) establishes the delivery time restriction between order i and order j when order j is delivered directly after order i with
vehicle v but on different consecutive shipments m− 1 and m. In this case, both variables Ym−1

i0v and Ym
0jv assume value 1 and the

right side of each constraint (10) will be zero. The resulting constraint Di + Si + ti0 + t0j ≤ Dj ensures that vehicle v has enough
time, before serving order j, to stop at customer’s i location, return to the depot, and begin shipment m toward order j’s location.
However, if Ym−1

i0v or Ym
0jv is zero, then the large number A2 prevails, and the corresponding constraint (10) becomes redundant. In

Equations (9) and (10), A2 is a large enough number. Constraint (11) establishes the relationship between completion time and
delivery time for order j, irrespective of whether the order is shipped by manufacturer fleet or external carrier. If the manufacturer
fleet is used (Zbl = 0) and order j is served directly from the depot, Cj + t0j ≤Dj is active. If order j is not served directly from
the depot, the relationship is still valid, as the transportation time respects the triangle rule. However, if an external carrier is
used (Zbl = 1), Cj + t′j ≤Dj is also active. Constraint (12) ensures that the vehicle departs only after completion of all orders
for the assigned shipment. Each constraint is active only if i and j belong to the same shipment m with vehicle v. Otherwise,
one or both summations (over index k) are equal to zero, and the resulting negative value multiplied by the large number A3
makes the constraint redundant. Constraint (13) imposes a capacity constraint on each manufacturer’s vehicle v. Constraint (14)
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expresses the XOR bidding language chosen during the auction design. Constraints (15) and (16) define delivery tardiness Tj
and, constraints (17) to (19) define the binary nature of other decision variables.

In the above model, the WDP is embedded within the production-transportation model to be solved by the manufacturer.
The WDP is known to be NP-complete in combinatorial auction mechanisms. Its complexity is due to not being able to iden-
tify the price of serving a single job, because carriers bid on delivering bundles of jobs rather than on a single job (because of
the combinatorial nature of the auction). Moreover, the price c’bl is not the sum of prices for serving single jobs combined in
a bundle because of the synergy effect [58]. Synergy plays a crucial role in the transportation industry and cannot be ignored
in framework optimization. In combinatorial auction context, the all-or-nothing bundling mechanism, together with the sin-
gle pricing technique associated with each bundle, ensures synergy in the carrier’s network and protects against the so-called
“exposure problem” [18].

3 SOLUTION APPROACHES

The mathematical model above is a mixed-integer linear program whose complexity increases quickly with number of ship-
ments, vehicles, carriers, bids, and orders. The problem is NP-hard, because it is an extended variant of the problem proposed
by Fu et al. [23], which is NP-hard (see also [24]). Moreover, the complexity is exacerbated by inclusion of an additional deci-
sional level related to transportation auction clearing. Solving the problem using the mathematical model is not compatible
with real-life application requirements. The results reported in Section 5 show that the MILP exact method (coded with MAT-
LAB) succeeded in solving instances with limited size. Therefore, heuristic algorithms are proposed in the sequel to overcome
difficulties and solve large-scale instances of the problem.

3.1 Memetic algorithm

Memetic algorithms (MA) are evolutionary optimization approaches that utilize a population of solutions identify the opti-
mal solution. Since MA can adapt to different situations, it is used extensively to solve combinatorial optimization problems in
several scientific disciplines. This study takes advantage of MAs to address the complexity characterizing the problem under
consideration. Insights are from algorithmic frameworks proposed by Vidal et al. [63] and Cattaruzza et al. [12].

3.1.1 Chromosome representation
Memetic algorithms require genetic representation of the studied problem [26,29]. Rather than binary representation, permuta-
tion representation is used in this study. The individual chromosome consists of three sequences. The first sequence represents
the production schedule with sequence of orders. The second sequence represents the bidding result, which is characterized by
the winning bid index for each carrier. The third sequence represents the distribution schedule of the manufacturer’s fleet, which
is characterized by a set of trips A1,. .., Ak, where Ai = ai1, ..., aim denotes the trip i of the manufacturer’s fleet, and aij is the
jth order delivered in the trip. The chromosome representations are shown in Figure 4.

As shown in Figure 4A, order 3 has the first priority in the production schedule, and order 4 has the last priority. The bidding
chromosome shows that there are two bidders or carriers. Assume that carrier 1 bids to deliver orders (6) and (6, 2). Carrier
2 bids to deliver orders (5) and (5, 7). In the bidding chromosome, index 1 represents that carrier 1 wins the bid for order 6.
Index 2 represents that carrier 2 wins the bid for orders (5, 7). The delivery chromosome shows that the manufacturer’s fleet
will deliver orders (1, 2, 3, 4) in two trips. In the first trip, the fleet will deliver orders (2, 4) in the delivery sequence of 4-2, and
in the second trip, it will deliver orders (1, 3) in the sequence of 1-3.
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FIGURE 4 An illustration of production, bidding, and delivery chromosomes

FIGURE 5 Offspring generation for production chromosome

FIGURE 6 Offspring generation for production chromosome

3.1.2 Initial population generation
The initial population is typically generated randomly or by a construction heuristic. In the proposed MA, the random method is
applied to generate the initial population. In each generated individual, a random sequence of orders is assigned to the production
schedule, as shown in Figure 4. Further, some orders are randomly assigned as winning bids to carriers who participate in the
bidding process. During order assignment to the carrier, we ensure that winning bids of two different carriers do not contain
identical orders. The remaining orders are delivered by randomly generated trips with the manufacturer’s fleet. In this step,
if the total shipped orders exceed vehicle capacity, 0 must be inserted in the subsequence; otherwise, 0 can be inserted with
probability. In the generated individual, production schedule and bidding results are feasible, and vehicle capacity constraint
ensures feasibility of the distribution schedule.

3.1.3 Crossover operator
The classic roulette wheel technique is used to select a pair of parent chromosomes to generate offspring. In this technique, the
election is based on the selection probability, which is the ratio of individual fitness to summation of the fitness function of all
chromosomes in the current generation. We propose a crossover method as follows (Figure 5):

Step 1: Offspring generation for the production sequence

A crossover point is generated randomly in the production schedule. The offspring inherits the subsequence of the first
parent chromosome production schedule before the crossover point and the remaining orders according to occurrence in the
second parent chromosome production schedule.

Step 2: Offspring generation for bidding by carrier.

A crossover point is generated randomly in the bidding result. The offspring inherits the bidding result of the first parent
chromosome before the crossover point and of the second parent chromosome after the crossover point. According to Figure 6
and based on the example in Section 3.1.3, offspring 1 shows that carrier 1 and carrier 2 win the delivery for order 6 and order
5, respectively. Additionally, offspring 2 shows that carrier 1 and carrier 2 win the delivery for order (6,2) and order (5,7),
respectively. The bidding result of the offspring is adjusted to ensure that winning bids of different carriers do not contain
identical orders.

Step 3: Offspring generation for delivery by the manufacturer’s fleet

A crossover point is generated randomly in the distribution schedule of the manufacturer’s fleet. The offspring inherits the
subsequence of the distribution schedule of the first parent chromosome before the crossover point, and the remaining schedule
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FIGURE 7 Offspring generation for the delivery schedule

according to occurrence in the distribution schedule of the second parent chromosome. The orders delivered by carriers are
eliminated and remaining orders are added at the end of the distribution schedule.

As shown in Figure 7, in the chromosome of offspring 1, order 1 is inserted at the end of delivery sequence in the repair
phase, because this order is eliminated during crossover and is not available in the bidding phase in Step 2. Similarly, in the
chromosome of offspring 2, order 2 is eliminated, as it is included in the bidding result in Step 2.

As discussed, the production schedule, bidding result, and delivery sequence are feasible in the generated offspring. Further,
the vehicle capacity constraint ensures the feasibility of the manufacturer’s distribution schedule.

3.1.4 Education
We apply the following three neighborhood search methods to educate and improve the generated initial individuals and
offspring.

• Insertion: In this mutation, two positions in the chromosome sequence are chosen randomly. The order in one position is
inserted after the other position.

• Swapping: In this mutation, two positions in the chromosome sequence are chosen randomly. The order corresponding
to these positions are swapped.

• Inversion: In this mutation, two positions in the chromosome sequence are chosen randomly, which determines a
substring. This substring is inverted, and the original is replaced with inverted substrings.

The pseudocode for the education phase is shown below (Algorithm 2).

3.1.5 Surviving and diversification
When the size of population is 2𝛼, the surviving operator is applied by selecting the best 𝛼 survivors. If the nonimproved
iteration attends the limit, the population is diversified by adding new individuals and applying the surviving operator.
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3.2 Two-phase iterative heuristic
Decomposition methods are powerful tools for solving complex integrated problems by reducing complexity [57]. A two-phase
iterative heuristic (2-PIH) method was first proposed by Absi et al. [1] to solve an integrated production planning and vehicle
routing problem. The problem they considered did not have the option of delivery by external carriers selected through the
auction mechanism. This study proposes a 2-PIH method by decomposing the integrated problem into production and WDP
distribution phases. The production phase determines production sequence, which affects order completion time. This will
further impact delivery tardiness. The machine setup time is sequence dependent. The distribution phase determines whether
the delivery will be by the manufacturer’s fleet or by the external carrier. This phase determines the distribution sequence of
the orders delivered by the manufacturer’s fleet. These two phases are solved iteratively to ensure adequate integration between
production and transportation solutions.

Initially, the heuristic generates a production schedule characterized by the earliest due date (EDD) sequence. Using the
EDD method helps minimize total tardiness, which is an objective of the optimization problem. Thereafter, using the result of
this phase as an input, the transportation procurement problem is solved by a purposely developed MA method (a similar but
simplified version of the one discussed in Section 4.1). The 2-PIH heuristic generates, at each iteration, a neighborhood pro-
duction schedule by randomly using three methods (insertion, swapping, and inversion) and determines a distribution schedule
using the ad-hoc MA. The algorithm stops when a specified maximum number of iterations is reached.

4 COMPUTATIONAL ANALYSIS

The computational analysis aims to validate the optimization model and to ascertain the efficiency of the proposed heuristic
algorithms and the advantage of integration. Additionally, a sensitivity analysis is conducted to check the effect of various
problem parameters on the proposed heuristic algorithms. Both the MILP model and the heuristic algorithms are coded in
MATLAB R2015b and executed on a DELL 2.50 GHz personal computer with 8 GB RAM.

For order deliveries, the instances developed by Solomon [54] are suitably modified for the problem under study. The
customer location coordinates and the fleet size and capacities are maintained as originally defined in the Solomon instances.
The number of customers for any given instance is randomly selected with the demand information and due dates unaltered.
The manufacturer’s location is positioned as a depot, located at the origin of the axes with coordinates (0, 0). The Euclidean
distances between each pair of locations are rounded to the nearest integer. Since Solomon instances consider only distribution
parameters, production parameters such as order processing time, sequence-dependent setup time, and delivery penalty are
generated randomly in the interval [0,10]. Furthermore, the order transportation time j is selected as t′j = 0.8t0j and bidding costs
for procuring transportation through auction c′bl belong to the range [

∑
j0.8c0j,

∑
j1.2c0j], where j represents orders composing

bids b by carrier l. Parameter values for the heuristic algorithms considered in the computational analysis are listed in Table 5.
Parameter selection is based mainly on complexity of space (e.g., population size) and time (e.g., maximum number of iterations,
education probability) and is based on preliminary computational experiments conducted to ensure an efficient tuning phase of
the governing parameters.

Apart from the maximum number of iterations, if the solution does not improve in 20 consecutive iterations, the population
will diversify. The stopping criterion for diversification is fixed at 20 iterations if the solution does not improve.
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TABLE 5 Parameter values considered in our
heuristic algorithms

Parameter Value

Population size in each iteration 20

Maximum number of iterations 500

Education probability 0.2

TABLE 6 Performance of the heuristics with respect to the exact solution

Exact method MA 2-PIH

Cost CPU time (s) Cost Gap (%) CPU time (s) Cost Gap (%) CPU time (s)

5 885.25 1.27 895.61 1.17 6.57 897.45 1.38 13.25

6 984.92 6.00 1005.34 2.07 11.65 1004.87 2.03 24.47

7 1110.15 207.12 1161.15 4.59 15.54 1152.52 3.82 34.63

8 1285.67 1007.4 1370.63 6.61 18.85 1357.72 5.60 45.74

4.1 Exact method vs heuristic algorithms comparison
First, the problem is analyzed using the exact MILP method compared to the heuristic algorithms while considering a limited
number of orders and a single vehicle for manufacturer’s deliveries. The objective the analysis is 2-fold: (a) to understand the
extent to which the exact method can find an optimal solution to the problem, and (b) to assess the performance of heuristic
algorithms with respect to the exact solution. Table 6 reports the results obtained for four problem instances with an increasing
number of customer orders n ∈ {5, 6, 7, 8}. The table shows computational results of the exact method, the MA, and the 2-PIH
in terms of average cost, optimality gap, and average CPU time (averaged over 56 runs in the case of the heuristics). The gap is
measured as the percentage difference of cost between the considered heuristics and the exact method.

Table 6 illustrates that the average gap in the solution cost of both heuristics with respect to the exact method range from
1.17% to 6.61%. These small gap values show that both the MA and 2-PIH succeed in finding near-optimal solutions in the
case of limited-sized instances. Only in the case of five-order instance, the MA finds better solutions with respect to 2-PIH,
where the 2-PIH outperforms the MA in all other cases. As expected, the average CPU time of the exact algorithm increases
exponentially with the number of orders and reaches nearly 22 minutes when n = 8. However, the average CPU times of MA and
2-PIH vary slightly for different instances. The average CPU timing of the MA is approximately half that of 2-PIH. Therefore,
the results confirm that the proposed heuristic approaches can find near-optimal solutions within an acceptable amount of time
for all small instances. When the number of orders exceeds eight, the exact algorithm cannot find an optimal solution within a
reasonable time.

4.2 MA vs 2-PIH comparison
Tables 7 to 9 show computational results of the proposed heuristic algorithms for the cases when the instances are characterized
by a high number of orders (i.e., n ∈ {50, 100, 200}). The performance of the MA and 2-PIH algorithms are evaluated in terms
of average cost and CPU time for six different Solomon instances C1, C2, R1, R2, RC1, and RC2. To obtain maximum insights
from the experiment in this study, six instances are categorized to include different characteristics:

• In instances R1 and R2, customer positions are selected randomly in the geographical area.
• In instances C1 and C2, customers are positioned in groups (clusters of customers spread over the geographical area).
• In instances RC1 and RC2, some customers are placed randomly, and others are clustered.
• Instances R1, C1, and RC1 have orders with shorter due dates and low vehicle capacity.
• Instances R2, C2, and RC2 have orders with longer due dates and high vehicle capacity.

Therefore, R2, C2, and RC2 can serve more customers per shipment compared to the problems R1, C1, and RC1.
For the objective function, Tables 7 to 9 show that MA performs better than 2-PIH for all instances and problem sizes.

Specifically, when n = 200, MA obtains better solutions at roughly half the 2-PIH solution cost. For large-sized problems
(n = 100, 200), the execution time of 2-PIH is high. Therefore, the expectation is that the 2-PIH algorithm cannot compete with
the MA for large-scale problems characterized by a high number of orders (i.e., n> 200).
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TABLE 7 Results when n = 50

Problem MA cost 2-PIH cost MA time 2-PIH time

C1 8023.46 10013.29 148.78 617.85

C2 6560.69 7034.71 155.93 608.14

R1 19743.12 34151.44 148.70 605.82

R2 8885.61 9787.51 158.45 628.97

RC1 24199.39 35972.75 155.34 596.61

RC2 12207.10 13646.44 142.39 572.66

TABLE 8 Results when n = 100

Problem MA cost 2-PIH cost MA time 2-PIH time

C1 22622.91 26915.72 745.41 3387.50

C2 16294.56 17075.12 707.19 3310.56

R1 76174.76 112485.39 633.92 2368.94

R2 17202.86 20550.99 629.70 3026.59

RC1 85107.01 107051.89 603.17 2226.61

RC2 21738.89 27828.35 705.08 3351.64

TABLE 9 Results when n = 200

Problem MA cost 2-PIH cost MA time 2-PIH time

C1 117270.37 256793.35 1844.75 7807.37

C2 62635.51 90690.13 2876.44 11169.13

R1 245588.82 411772.74 1829.41 5480.58

R2 66205.75 145296.91 2336.52 10031.03

RC1 291549.33 483345.16 2995.68 5666.35

RC2 70476.70 104313.83 2598.91 10629.65

4.3 Comparison of MA with available methods
As a further experiment for validating the performance of our MA algorithm, we compared its results with the algorithm
proposed by Johar et al. [32] in terms of total cost (we will refer to their algorithm as JNP, following the authors’ abbreviated
names). The problem addressed by Johar et al. [32] is not exactly the same as the one we addressed, but it is the closest we
could find in the literature. Moreover, Johar et al. [32] have solved their production-distribution problem by considering the
same Solomon instances (only for n= 100) but by using different cost parameters. For this reason, performing this comparison
required slight adaptation of the input parameters in order to ensure, up to some extent, homogeneity of the costs to be compared.
The results reported in Table 10 show that MA performs remarkably better than JNP for most of the instances. For the problem
instances C2, R2 and RC2, the cost of MA is less than half the cost of Johar’s et al. [32] algorithm. However, MA does not
perform well for R1 and RC1 and its cost is almost double that of JNP. Thus, even though our MA has good performance
for most of the problems, it is not perfectly suitable to solve a specific class of problems: those characterized by unclustered
customers having short due dates and served by low manufacturer’s vehicle capacity.

Finally, it is to be noted that despite our efforts to make the results comparable, a remarkable difference between the two
solved problems still persists. While Johar et al. [32] have considered the pure production-distribution problem, our MA was
designed to solve the problem involving the additional variables/constraints related to the procurement through auctions. We
shall expect that our MA performs even better and gain more advantage with respect to JNP whenever the two problems are
made completely homogeneous.

4.4 Integrated vs nonintegrated methods comparison
To demonstrate the effect of integrating production planning and delivery decisions, the results of MA are compared with
the solution obtained without integrating the two decision problems. The results of the nonintegrated method are obtained by
solving the two problems separately, as follows:
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TABLE 10 Cost comparison of MA and JNP algorithms (for
n = 100)

Problem MA JNP MA/JNP

C1 22 622.91 40 855.50 0.55

C2 16 294.56 42 032.00 0.39

R1 76 174.76 47 527.00 1.60

R2 17 202.86 46 866.50 0.37

RC1 85 107.01 44 359.50 1.92

RC2 21 738.89 45 167.00 0.48

TABLE 11 Cost comparison between integrated and nonintegrated methods

n = 50 n = 100 n = 200 Average cost

Prob. MA NI MA NI MA NI MA NI % age diff

C1 8023.46 11 442.59 22 622.91 31 105.66 117 270.37 278 026.00 49 305.58 106 858.08 116.73

C2 6560.69 7283.90 16 294.56 19 322.00 62 635.51 97 021.74 28 496.92 41 209.21 44.61

R1 19 743.12 44 667.60 76 174.76 142 545.90 245 588.82 346 458.92 113 835.56 177 890.81 56.27

R2 8885.61 12 170.45 17 202.86 25 975.13 66 205.75 156 082.58 30 764.74 64 742.72 110.44

RC1 24 199.39 57 331.26 85 107.01 115 917.56 291 549.33 516 952.98 133 618.58 230 067.26 72.18

RC2 12 207.10 17 522.03 21 738.89 32 083.58 70 476.70 121 062.26 34 807.56 56 889.29 63.44

TABLE 12 Effect of clustering customers on total cost

Problem Manufacturer fleet cost Carriers auction cost Penalty cost Total cost

C1 4597.71 3765.17 2.58 8365.45

C2 3719.19 3206.20 0.00 6925.38

R1 6844.14 5125.01 6920.59 18 889.74

R2 3990.31 5303.73 0.00 9294.04

RC1 7856.17 7730.39 9841.64 25 428.20

RC2 4289.88 8237.86 17.78 12 545.52

Step 1: Generate the production schedule using the EDD rule.
Step 2: Apply a simplified version of MA subject to the previous fixed production schedule.

Table 11 shows the comparison results between MA and the nonintegrated (NI) method in terms of total cost for different
values of n. The MA production-delivery costs are lower for all instances compared to when the two decision problems are
carried out separately. On average, total cost of the NI method is from 44.61% to 116.73% higher than that of MA.

4.5 Sensitivity analysis
As observed in Section 4.2, the MA performs better than the 2-PIH in terms of cost and execution time in all instances. Therefore,
the MA approach is examined, and a sensitivity analysis is performed for the same test problems with n = 50. The effect of
varying the delivery due dates, vehicle capacity, and customer distribution on the MA solution is emphasized.

4.5.1 Effect of customer clustering
First, the effect of customer clustering on the total cost while considering different problem instances is checked. Each problem
instance has its own characteristic, as discussed in Section 4.2. Table 12 illustrates the different cost components, as defined in
the problem’s objective function. The results point to important conclusions: the case characterized by fully clustered customers
(i.e., C1 and C2) exhibit smaller total costs compared to the nonclustered cases (R1 and R2) and the partially clustered cases
(RC1 and RC2). By clustering customers, batch delivery is possible by consolidating several orders within a shipment, resulting
in significant transportation cost savings.
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TABLE 13 Effect of due date and vehicle capacity on total cost

Due date Capacity Manufacturer fleet cost Carriers auction cost Penalty cost Total cost

PRES due 0.8×PRES cap 5482.59 5206.01 3023.38 13 711.97

PRES cap 5306.06 5513.92 3038.24 13 858.22

1.2×PRES cap 5243.20 5799.88 3082.32 14 125.40

0.8×PRES due 0.8×PRES cap 5715.98 5287.32 4484.45 15 487.74

PRES cap 5411.62 5821.44 4603.96 15 837.03

1.2×PRES cap 5445.29 5918.04 4427.45 15 790.77

1.2×PRES due 0.8×PRES cap 5263.10 4786.07 2091.20 12 140.37

PRES cap 5001.79 5575.29 1925.56 12 502.63

1.2×PRES cap 4953.16 5729.21 1963.94 12 646.32

4.5.2 Effect of due date and vehicle capacity
The second set of analyses consists of checking the effect of varying the due date and fleet capacity (PRES due and PRES cap,
respectively) with respect to the originally considered values.

Table 13 shows cost components averaged for 56 runs, including all problem instances when n = 50. For problems charac-
terized by orders with longer due dates and large vehicle capacities, the manufacturer’s fleet can serve more orders in the same
shipment. However, it does not guarantee a cheaper total cost. At a constant due date, the total cost is lowest when the manu-
facturer’s fleet capacity is lower. However, the lowest cost occurs when the due date is the longest and the manufacturer’s fleet
capacity is 80% of the capacity originally considered. Further, at constant capacity with a decrease in the flexibility of the due
date (i.e., shorter due dates), all cost components increase. Therefore, the total cost is higher when the due date is shorter than
that of the counterpart.

5 CONCLUSIONS

Researchers and practitioners worldwide are oriented toward integrating several aspects of the logistics system within a com-
mon solution framework to increase savings and competitiveness. However, the problem of integrating production scheduling
with transportation procurement, while using the auction paradigm, has not been solved in the literature. This study’s main
contribution fills this gap by extending the WDP to include an additional decision level related to the production schedul-
ing. This study uses a mixed-integer mathematical formulation, incorporating production and transportation procurement
components. We suggest two heuristic approaches, one based on the memetic algorithm and the other based on the decom-
position technique. The performance of our approaches was evaluated with respect to the exact solution as well as the closest
production-routing method available in the literature. The results collected and the sensitivity analysis study performed con-
firm the efficiency of both methods and elect the memetic-based algorithm to achieve better performance in solving large-scale
instances. The advantage of integration is assessed with respect to solving production and transportation procurement problems
separately.

For further developments, this work can be extended along several directions. It would be interesting to develop exact
methods and bounds not only on Solomon’s instances but even to solve problems related to real-life applications. Moreover,
it may be useful for some manufacturers to extend the planning horizon to include a multi-period environment. Finally, future
investigation could consider the stochasticity related to the volume of shipment in each order by using the chance-constrained
paradigm.
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