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Abstract: As a powerful tool for data streams processing, the vast majority of existing evolving intelligent systems 

(EISs) learn prediction models from data in a supervised manner. However, high-quality labelled data can be 

difficult to obtain in many real-world classification applications concerning data streams, though unlabelled data 

is plentiful. To overcome the labelling bottleneck and construct a stronger classification model, a novel semi-

supervised EIS is proposed in this paper. After being primed with a small amount of labelled data, the proposed 

method is capable of continuously self-developing its system structure and self-updating the meta-parameters 

from unlabelled data streams chunk-by-chunk in a non-iterative, exploratory manner by exploiting a novel pseudo-

labelling strategy. Thanks to its transparent prototype-based structure and human-understandable reasoning 

process, the proposed method can provide users high explainability and interpretability while achieving great 

classification precision. Experimental investigation demonstrates the superior performance of the proposed 

method. 

Keywords: data stream classification; evolving intelligent system; semi-supervised learning; pseudo-labelling; 

1. Introduction 
Evolving intelligent systems (EISs) [1], [2] are a class of fuzzy systems designed to self-develop and self-evolve 

from data streams online to dynamically model nonstationary problems in real time. EISs are capable of 

continuously learning from streaming data “on the fly” in a single-pass manner and transforming newly learned 

knowledge into human-interpretable IF-THEN fuzzy rules. They can capture the concept shifts and drifts in data 

streams by self-evolving both the system structure and parameters in accordance with changing data patterns [3]. 

Thanks to the highly transparent system structure and explainable fuzzy reasoning scheme, EISs are widely 

recognized as a powerful tool for streaming data processing, by offering both great prediction precision and high 

model interpretability. Hence, EISs have become increasingly popular since the underlying concept was firstly 

introduced two decades ago [1], [2]. To date, there have been a variety of successful EISs proposed for solving 

data stream classification and regression problems. The most representative EISs include, but are not limited to, 

eTS [1], DENFIS [2], SOFNN [4], eClass [5], SAFIS [6], GENEFIS [7], FLEXFIS [8], PANFIS [9], SOFIS [10], 

ALMMo [11], and LEOA [12]. Interested readers are referred to the recent survey papers [13]–[15] for more 

details about the latest developments of EISs and their applications. 

Despite that different evolving schemes for structure learning and parameter updating may be employed, the vast 

majority of existing EISs assemble the prediction models from streaming data in a fully supervised manner. 

However, in many real-world classification problems, high-quality labelled data is scarce and can be very 

expensive to acquire due to the high cost of manual labelling [16]. On the other hand, unlabelled data is plentiful, 

but supervised learning methods, including conventional EISs and mainstream classifiers, such as support vector 

machine (SVM) [17], k-nearest neighbour (kNN) [18], decision tree (DT) [19], artificial neural network (ANN) 

[20], etc., cannot utilize them in training. It is well known that synthetic data augmentation techniques [21], [22] 

can be employed to greatly increase the amount of labelled data and, hence, improve the generalization ability of 

the classification models. However, the statistical characterization given by limited data is usually poor. 

Oversampling a small set of labelled samples for training often makes the learned models more vulnerable to 

uncertainties and less robust [23]. 

Semi-supervised learning technique is a hybridization between supervised learning and unsupervised learning 

[16]. It overcomes the labelling bottleneck by utilizing a great amount of unlabelled data together with labelled 

ones to build more precise classification models. Existing semi-supervised learning methods can be broadly 

categorized into two major groups: 1) inductive methods and 2) transductive methods [16]. The primary goal of 

inductive methods, e.g., semi-supervised SVM (S3VM) [24], safe semi-supervised SVM (S4VM) [25], self-

training [26], [27], co-training [28], etc., is to construct classification models from both labelled and unlabelled 

samples that can be used for classifying any data samples in the data space. Transductive methods, which include 
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local and global consistency (LGC) [29], Laplacian SVM (LapSVM) [30] and anchor graph regularization (AGR) 

[31], etc., aim to classify only these unlabelled samples presented during training without constructing 

classification models.  

Self-training [26], [27] is a simple, yet effective inductive semi-supervised learning method enjoying the most 

popularity among alternative ones. The core idea behind self-training is the so-called “pseudo labelling” [32]. A 

standard self-training approach firstly builds a classification model, which usually can be kNN [33], SVM [34], 

DT [35] or other mainstream classifiers, with labelled data. Then, the classification model is re-trained iteratively 

by selecting these unlabelled samples with the highest classification confidence to augment the labelled training 

set together with their respective predicted labels, namely, pseudo labels. Although self-training offers an easy-

to-implement solution to construct a strong classifier with minimum human supervision, conventional self-

training methods as well as alternative semi-supervised learning methods are limited to offline applications due 

to the requirement of iterative computation. Iterative computation inevitably causes the propagation of pseudo-

labelling errors, deteriorating classification performance. It also unfavourably impairs the interpretability of the 

self-training process and the transparency of the learned model. 

There have been a few self-training methods proposed more recently that are designed to self-construct a highly 

transparent classification model from streaming data. For example, in [36], a self-training EIS called semi-

supervised deep rule-based (SSDRB) classifier is proposed for image stream classification. SSDRB is capable of 

self-learning a precise classifier from unlabelled streaming images sample-by-sample after being primed with a 

small amount of labelled images. SSDRB is also able to recognize images with unfamiliar data patterns that are 

unseen before. The self-training mechanism of SSDRB is further improved in [26], where the classification model 

learns from unlabelled images on a chunk-by-chunk basis, leading to higher computational efficiency and greater 

precision. A weakly-supervised self-evolving deep neural network for data stream classification named 

parsimonious network (ParsNet) is introduced in [37]. A key feature of ParsNet is the so-called self-labelling with 

hedge method. This method helps the network to address the accumulation of pseudo-labelling errors through a 

regularization strategy that controls the amount of information to be accepted from pseudo labels. In [38], a skip-

connected evolving recurrent network (SERN) is proposed for self-training from unlabelled streaming data. SERN 

uses an auto-learned mapping function to assign pseudo labels to unlabelled data. Upon availability of true data 

labels, SERN will compare the produced pseudo labels with the true labels and penalizes the model by resetting 

its parameters to an earlier point if label mismatches are observed. A self-evolving mutually-operative recurrent 

network-based model (SERMON) is proposed in [39] for online machine fault monitoring in label delay scenarios. 

SERMON is a hybrid model composed of i) a label mapping unit (MU), ii) SERN, and iii) a multilayer evolving 

recurrent network (MERN). During operation, MU supervises SERN to self-learn from unlabelled data by 

providing pseudo labels, while MERN only learns from labelled data. Different from [38], the regularization 

strategy used by SERN in [39] allows the model to reset its parameters to the point where the pseudo-labelling 

error firstly occurs. A generic online semi-supervised learning method, which provides a high level of 

transparency and human-interpretability, named self-training hierarchical prototype-based (STHP) classifier, is 

proposed in [27]. STHP can initialize its multi-layered prototype-based structure with a small set of labelled data 

from scratch and then continuously self-develop with new unlabelled samples. A weakly supervised scalable 

teacher forcing network for large-scale data streams (WeScatterNet) is presented in [40]. WeScatterNet features 

an ensemble framework with its base learners dynamically added and pruned via drift detection. WeScatterNet 

further extends the conventional fuzzily weighted generalized recursive least square (FWGRLS) algorithm by 

incorporating a novel regularization strategy that hinders important rules from accepting noisy pseudo labels. 

However, the key issue with these approaches is that they require externally controlled parameters to be predefined 

for pseudo-labelling and regularization. Such requirement brings subjective factors into the self-training process, 

and directly influences the structure and meta-parameters of the learned classification models. Without proper 

settings for these externally controlled parameters, the classification models may not be able to achieve 

satisfactory performance.  

In this paper, a novel self-training EIS named semi-supervised self-organizing fuzzy inference system (S3OFIS+) 

is proposed for semi-supervised learning from streaming data in indefinite delay environments [40]. The proposed 

S3OFIS+ uses the simplified self-organizing fuzzy inference system (SOFIS+) [41] as its implementation basis. 

SOFIS+ is a recently introduced zero-order EIS capable of constructing precise classification boundaries from 

labelled data streams. By exploiting the pseudo labelling technique, S3OFIS+ is capable of continuously self-

calibrating more precise classification boundaries from unlabelled streaming data chunk-by-chunk in a non-

iterative, exploratory manner after being primed. Utilizing the novel “𝐶 nearest prototypes (CNP)” strategy (where 
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𝐶 represents the number of different classes in data) for pseudo labelling, S3OFIS+ can assign pseudo labels to 

the most suitable candidates from each data chunk in a fully explainable manner and use them to self-expand its 

own knowledge base. The knowledge base of S3OFIS+ is composed of human-interpretable prototypes, which 

represent the knowledge learned from data and are always meaningful. Thanks to its prototype-based nature, the 

system structure of S3OFIS+ is highly transparent. Its reasoning and decision-making processes are based on the 

distances between data samples and the learned prototypes and, hence, are understandable and traceable to/by 

human. Very importantly, its semi-supervised learning scheme is free from externally controlled parameters but 

is entirely determined by the nature of data. To summarize, key contributions of this paper include: 

1) a novel self-training EIS capable of continuously self-evolving from unlabelled streaming data “on the fly” 

with minimum human input; 

2) a novel parameter-free pseudo-labelling strategy that can identity the most suitable unlabelled data samples for 

system updating in an objective and explainable manner. 

The remainder of this paper is organized as follows. Section 2 summarizes the technical details of SOFIS+ as 

theoretical background. The self-training mechanism of S3OFIS+ is described in Section 3 with the computational 

complexity analysis given by Section 4. Numerical examples are presented in Section 5 as the proof of concept, 

and this paper is concluded by Section 6. 

2. Preliminaries: SOFIS+ 
In this section, technical details of SOFIS+ are recalled briefly to make this paper self-contained [41]. It is worth 

noting that SOFIS+ is a supervised EIS that learns its system structure and meta-parameters from labelled data. It 

is used as the implementation basis of the proposed S3OFIS+.  

2.1. Key Notations 

First of all, let {𝒙} = {𝒙1, 𝒙2, … , 𝒙𝑛 , … } (𝒙𝑛 = [𝑥𝑛,1, 𝑥𝑛,2, … , 𝑥𝑛,𝑀]
𝑇
∈ {𝒙}) be a particular data stream in a 𝑀 

dimensional real space, 𝕽𝑀, where the subscript 𝑛 denotes the time instance at which the nth data sample 𝒙𝑛, is 

observed. Samples of the data stream {𝒙} continuously arrive in chunks, namely, {𝒙}𝑘 = {𝒙𝑘,1, 𝒙𝑘,2, … , 𝒙𝑘,𝐿𝑘 } 

(𝑘 = 1,2, … ,𝐾,…; 𝐿𝑘 is the chunk size of {𝒙}𝑘). It is also assumed that {𝒙} is composed of data samples of 𝐶 

different classes with {𝑦} = {𝑦1, 𝑦2, … , 𝑦𝑛 , … } being the corresponding labels, namely, 𝑦𝑛 is the class label of 𝒙𝑛 

and there is 𝑦𝑛 ∈ {1,2,… , 𝐶}. During the supervised learning process, the class labels of each labelled data chunk 

{𝒙}𝑘 , denoted as {𝑦}𝑘, are assumed to be available. Accordingly, {𝒙}𝑘 can be further divided into 𝐶 non-

overlapping subsets denoted as {𝒙}𝑘
𝑐 = {𝒙𝑘,1

𝑐 , 𝒙𝑘,2
𝑐 , … , 𝒙𝑘,𝐿𝑘

𝑐
𝑐 } , where {𝑦}𝑘

𝑐 = {𝑐, 𝑐, … , 𝑐⏞    

𝐿𝑘
𝑐

} is the corresponding class 

labels of {𝒙}𝑘
𝑐 ; 𝐿𝑘

𝑐  is the cardinality of  {𝒙}𝑘
𝑐  and {𝑦}𝑘

𝑐 , and; there is ∑ 𝐿𝑘
𝑗𝐶

𝑗=1 = 𝐿𝑘. Note that different data chunks 

are not necessarily to be of the same size. For the purpose of generality, the most widely used Euclidean distance 

is employed as the default distance measure in this paper. However, other types of distance measure, i.e., 

Mahalanobis distance, cosine dissimilarity, can be considered as well depending on the nature of problems.  

For readability purposes, key notations used in this paper and their definitions are summarized in Table 1. 

Table 1. List of key notations and their definitions 

Notation Definition 

{𝒙} Data stream 

{𝑦} Labels of {𝒙} 
𝕽𝑀 Real data space 

𝑀 Dimensionality of 𝕽𝑀 

𝒙𝑛 The nth data sample 

𝑦𝑛 Label of 𝒙𝑛 

𝐶 Number of classes 

{𝒙}𝑘  The kth data chunk 

{𝑦}𝑘 Labels of {𝒙}𝑘  

𝐿𝑘 Chunk size of {𝒙}𝑘  

{𝒙}𝑘
𝑐  Data samples of the cth class within {𝒙}𝑘  

{𝑦}𝑘
𝑐  Labels of {𝒙}𝑘

𝑐  
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𝐿𝑘
𝑐  Cardinality of {𝒙}𝑘

𝑐  

𝒙𝑘,𝑖
𝑐  The ith data sample of {𝒙}𝑘

𝑐  

𝐑𝑐 The cth fuzzy rule 

𝐏𝑐  Collection of prototypes of the cth class 

𝑃𝑐 Cardinality of 𝐏𝑐  
𝛾𝑘,𝑔
𝑐  Data-driven distance threshold derived from {𝒙}𝑘

𝑐  at the gth level of granularity 

𝝁𝐿𝑘
𝑐
𝑐  Arithmetic mean of {𝒙}𝑘

𝑐  

𝑋𝐿𝑘
𝑐
𝑐  Arithmetic mean of {‖𝒙‖2}𝑘

𝑐  

𝐩𝑘
𝑐  Collection of prototypes of the cth class identified from {𝒙}𝑘

𝑐  

𝑃𝑘
𝑐 Cardinality of 𝐩𝑘

𝑐  

𝒑𝑗
𝑐 The jth prototype of 𝐑𝑐 

𝑆𝑗
𝑐  Number of data samples associated with 𝒑𝑗

𝑐 

2.2. General Architecture 
General architecture of SOFIS+ is depicted in Fig. 1.  

 

Fig. 1. General architecture of SOFIS+ [41] 

It can be seen from Fig. 1 that SOFIS+ consists of 𝐶 parallel processors, one fusion centre, 𝐶 massively parallel 

IF-THEN fuzzy rules and one decision maker [41]. In this study, all the components of SOFIS+ are implemented 

on a single computation node. However, for large-scale data stream processing, parallel processors of SOFIS+ 

can be implemented on distributed nodes separately to facilitate computation.  

During the learning stage, the parallel processors work simultaneously to extract knowledge from individual data 

chunks in the form of prototypes. The fusion centre then aggregates prototypes extracted from successive data 

chunks together to construct a compact knowledge base and build precise decision boundaries. The knowledge 

base is the key component of SOFIS+. It is composed of 𝐶 massively parallel IF-THEN rules (one rule per class) 

formulated in the following form [10]: 

𝐑𝑐 :
𝐼𝐹 (𝒙~𝒑1

𝑐) 𝑂𝑅 (𝒙~𝒑2
𝑐) 𝑂𝑅…𝑂𝑅 (𝒙~𝒑𝑃𝑐

𝑐 )

𝑇𝐻𝐸𝑁 (𝑐𝑙𝑎𝑠𝑠 𝑐)
                                                                      (1) 

where “∼” denotes similarity; 𝒑𝑖
𝑐 ∈ 𝐏𝑐  is the ith prototype of 𝐑𝑐, 𝑖 = 1,2,… , 𝑃𝑐 ; 𝑃𝑐 is the number of prototypes 

identified from data samples of the cth class; 𝐏𝑐  is the collection of prototypes of the cth class; 𝑐 = 1,2,… , 𝐶. 

It is worth noting that SOFIS+ will discard historical data chunks to maintain high-level of computation- and 

memory- efficiency. In the next two subsections, the learning and decision-making protocols of SOFIS+ are 

presented. 

2.3. Learning Protocol 
The learning procedure of SOFIS+ is described as follows. By default, the externally controlled level of 

granularity is set as 𝐺.  

Stage 1. Identifying prototypes  

Given a new data chunk {𝒙}𝑘  with class labels {𝑦}𝑘, SOFIS+ firstly divides {𝒙}𝑘  into 𝐶 different subsets according 

to {𝑦}𝑘, namely, {𝒙}𝑘
1 , {𝒙}𝑘

2 ,…, {𝒙}𝑘
𝐶, and passes the 𝐶 subsets to the corresponding parallel processors (one 

processor per class).  

After the 𝑐th processor has received {𝒙}𝑘
𝑐 , it estimates the data-driven distance threshold based on the mutual 

distances between samples of {𝒙}𝑘
𝑐  and the level of granularity using Eqn. (2): 
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  𝛾𝑘,𝑔
𝑐 =

1

𝑁𝑘,𝑔
𝑐 ∑ ‖𝒙 − 𝒚‖2𝒙,𝒚∈{𝒙}𝑘

𝑐 ;𝒙≠𝒚;

‖𝒙−𝒚‖2≤𝛾𝑘,𝑔−1
𝑐

 

                                                                                             (2) 

where 𝑔 = 1,2,… , 𝐺; 𝛾𝑘,0
𝑐 = 2(𝑋𝐿𝑘

𝑐
𝑐 − ‖𝝁𝐿𝑘

𝑐
𝑐 ‖

2

); 𝝁𝐿𝑘
𝑐
𝑐  and 𝑋𝐿𝑘

𝑐
𝑐  are the respective arithmetic means of {𝒙}𝑘

𝑐  and 

{‖𝒙‖2}𝑘
𝑐 ; ‖𝒙‖ is the Euclidean norm of 𝒙, namely, ‖𝒙‖ = √𝒙𝑇𝒙; 𝑁𝑘,𝑔

𝑐  is the number of sample pairs in {𝒙}𝑘
𝑐  

between which the squared Euclidean distance is no greater than 𝛾𝑘,𝑔−1
𝑐 .  

Then, the cth processor initializes the first prototype of the cth class with the first sample, 𝒙𝑘,1
𝑐  of {𝒙}𝑘

𝑐 : 

𝑃𝑘
𝑐 ← 1; 𝒑1

𝑐 ← 𝒙𝑘,1
𝑐 ; 𝑆1

𝑐 ← 1; 𝐩𝑘
𝑐 ← {𝒑1

𝑐}                                                                                             (3) 

where 𝐩𝑘
𝑐  is the collection of prototypes of the cth class identified at the current learning cycle; 𝒑𝑗

𝑐 denotes the jth 

prototype identified from {𝒙}𝑘
𝑐 , 𝑗 = 1,2,… , 𝑃𝑘

𝑐; 𝑃𝑘
𝑐 is the cardinality of 𝐩𝑘

𝑐 ;  𝑆𝑗
𝑐  is the support of 𝒑𝑗

𝑐, namely, the 

number of data samples associated with 𝒑𝑗
𝑐. 

Next, each individual data sample remaining in {𝒙}𝑘
𝑐  is examined by Condition 1 (Eqn. (4)), sequentially (𝑖 =

2,3,… , 𝐿𝑘
𝑐 )  [41]: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1:
𝑖𝑓 (min

𝒑∈𝐩𝑘
𝑐
(‖𝒑− 𝒙𝑘,𝑖

𝑐 ‖
2
) > 𝛾̅𝐺

𝑐)

𝑡ℎ𝑒𝑛 (𝒙𝑘,𝑖
𝑐  𝑏𝑒𝑐𝑜𝑚𝑒𝑠 𝑎 𝑛𝑒𝑤 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒)

                                                                   (4) 

where 𝛾̅𝐺
𝑐 =

1

∑ 𝐿𝑗
𝑐𝑘

𝑗=1

∑ 𝐿𝑖
𝑐𝛾𝑖,𝐺
𝑐𝑘

𝑖=1 . If 𝒙𝑘,𝑖
𝑐  satisfies Condition 1, 𝒙𝑘,𝑖

𝑐  represents an unfamiliar data pattern different 

from all existing prototypes within 𝐩𝑘
𝑐 . In this case, 𝒙𝑘,𝑖

𝑐  will be recognized as a new prototype: 

 𝑃𝑘
𝑐 ← 𝑃𝑘

𝑐 + 1; 𝒑𝑃𝑘
𝑐
𝑐 ← 𝒙𝑘,𝑖

𝑐 ; 𝑆𝑃𝑘
𝑐
𝑐 ← 1; 𝐩𝑘

𝑐 ← 𝐩𝑘
𝑐 ∪ {𝒑𝑃𝑘

𝑐
𝑐 }                                                          (5) 

Otherwise, 𝒙𝑘,𝑖
𝑐  is used for updating the nearest prototype [10]: 

𝒑𝑛∗
𝑐 ←

𝑆
𝑛∗
𝑐 𝒑

𝑛∗
𝑐 +𝒙𝑘,𝑖

𝑐

𝑆𝑛∗
𝑐 +1

; 𝑆𝑛∗
𝑐 ← 𝑆𝑛∗

𝑐 + 1                                                                                                 (6) 

where  𝒑𝑛∗
𝑐 = argmin

𝒑∈𝐩𝑘
𝑐
(‖𝒑− 𝒙𝑘,𝑖

𝑐 ‖
2
). 

After the prototype identification process has been completed, the newly identified prototypes, 𝐩𝑘
𝑐 , 𝐩𝑘

𝑐 , …, 𝐩𝑘
𝑐  are 

passed to the fusion centre, and SOFIS+ enters the next learning stage. 

Stage 2. Self-calibrating classification boundaries  

After the fusion centre has received 𝐩𝑘
𝑐 , 𝐩𝑘

𝑐 , …, 𝐩𝑘
𝑐 , the knowledge base in the form of IF-THEN rules (Eqn. (1)) 

will be initialized (𝐏𝑐 ← 𝐩𝑘
𝑐 ; 𝑐 = 1,2,… , 𝐶) if {𝒙}𝑘  is the very first data chunk (namely, 𝑘 = 1). Otherwise 

(namely, 𝑘 > 1), the fusion centre will firstly compare 𝐩𝑘
𝑐  with all prototypes of the same class identified from 

historical data chunks, denoted as 𝐏𝑐  (𝑐 = 1,2,… , 𝐶; 𝑃𝑐 is the cardinality of 𝐏𝑐). Condition 2 will be used to 

identify these more distinctive prototypes within 𝐩𝑘
𝑐  to join 𝐏𝑐  (𝑗 = 1,2,… , 𝑃𝑘

𝑐) [41]: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2:
𝑖𝑓 (min

𝒑∈𝐏𝑐
(‖𝒑 − 𝒑𝑗

𝑐‖
2
) > 𝛾̅𝐺

𝑐)

𝑡ℎ𝑒𝑛 (𝐏𝑐 ← 𝐏𝑐 ∪ {𝒑𝑗
𝑐})

                                                                                  (7) 

Then, Condition 3 is utilized to identify candidate prototypes that are spatially close to the prototypes of other 

classes from the remaining members of 𝐩𝑘
𝑐  to join 𝐏𝑐  [41]. These prototypes help SOFIS+ build more precise 

classification boundaries. 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 3:
𝑖𝑓 (min

𝒑∈𝐩𝑘
𝑖
(‖𝒑− 𝒑𝑗

𝑐‖
2
) ≤ 2𝛾̅𝐺

𝑖  ∀𝑖 ≠ 𝑐)

𝑡ℎ𝑒𝑛 (𝐏𝑐 ← 𝐏𝑐 ∪ {𝒑𝑗
𝑐})

                                                                              (8) 

 

where 𝒑𝑗
𝑐 ∈ 𝐩𝑘

𝑐 ; 𝑐 = 1,2,… , 𝐶. 

After these newly identified prototypes have been aggregated into the knowledge base, the fuzzy rules are updated 

with the latest 𝐏𝑐  (𝑐 = 1,2,… , 𝐶). Then, SOFIS+ discards the current data chunk and goes back to Stage 1. A new 
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learning cycle begins with the next available data chunk (while setting 𝑘 ← 𝑘 + 1) until no more new data samples 

available or being terminated by user.  

Remark 1: The level of granularity, 𝐺 is not a problem- or user- specific parameter that requires prior knowledge 

to be defined. Its value can be determined based on the preference of users, and the resulting data-driven threshold 

is guaranteed to be meaningful. In general, a greater value of 𝐺 enables SOFIS+ (as well as S3OFIS+) to identify 

more prototypes from data and build finer decision-boundaries. This usually leads to greater classification 

performance but lower computational efficiency. The recommended value for 𝐺 is 𝐺 = 10. It is also worth noting 

that one may estimate the most appropriate value for 𝐺 directly from data using the elbow method described in 

[42]. This method only requires a regularization parameter to be determined by users. However, this estimation 

method is originally designed for offline applications, and it may not be able to make the best estimation in 

streaming environments because the underlying data patterns can change.  

The learning procedure is also summarized by the following pseudo code [41]. 

Algorithm 1 SOFIS+ Identification 

while (a new data chunk {𝒙}𝑘  with labels {𝑦}𝑘 is available) do: 

##### Stage 1. Identifying prototypes ##### 

for 𝑐 = 1 to 𝐶 do: 

calculate 𝛾𝑘,𝐺
𝑐  from {𝒙}𝑘

𝑐  by Eqn. (2); 

initialize 𝑃𝑘
𝑐, 𝒑1

𝑐 , 𝑆1
𝑐  and 𝐩𝑘

𝑐  by Eqn. (3); 

for 𝑖 = 2 to 𝐿𝑘
𝑐  do: 

if (𝒙𝑘,𝑖
𝑐  satisfies Condition 1) then 

add 𝒙𝑘,𝑖
𝑐  as a new prototype by Eqn. (5); 

else 

update 𝒑𝑛∗
𝑐  and 𝑆𝑛∗

𝑐  by Eqn. (6); 

end if 

end for 

end for 

##### Stage 2. Self-calibrating classification boundaries ##### 

for 𝑐 = 1 to 𝐶 do: 

if (𝑘 = 1) then 

𝐏𝑐 ← 𝐩𝑘
𝑐 ; 

initialize 𝐑𝑐 with 𝐏𝑐; 
else 

expand 𝐏𝑐  with 𝐩𝑘
𝑐  using Conditions 2 and 3; 

update 𝐑𝑐 with 𝐏𝑐; 
end if 

end for 

end while 

2.4. Decision-making Protocol 
During the decision-making stage, for an unlabelled sample, 𝒙, each IF-THEN rule will produce a confidence 

score based on the spatial similarity between 𝒙 and its prototypes [10], [41]: 

𝜆𝑐(𝒙) = max
𝒑∈𝐏𝑐

(𝑒
−
‖𝒙−𝒑‖2

𝑋−‖𝝁‖2)                                                                                                             (9) 

where 𝝁 and 𝑋 are the arithmetic means of {𝒙} and {‖𝒙‖2}, respectively. 

The class label of 𝒙 is determined by the decision maker based on the confidence scores produced by the 𝐶 IF-

THEN rules following the “winner takes all” principle  [10], [41]: 

𝑙𝑎𝑏𝑒𝑙(𝒙) = 𝑐∗; 𝑐∗ = argmax
𝑐=1,2,…,𝐶

(𝜆𝑐(𝒙))                                                                                       (10) 

3. The Proposed S3OFIS+ 
In this section, the semi-supervised learning protocol of the proposed S3OFIS+ model is described in detail. As 

aforementioned, S3OFIS+ uses SOFIS+ [41] as its implementation basis and exploits the idea of “pseudo 

labelling” [32] to perform self-training from unlabelled streaming data on a chunk-by-chunk basis with the aim 

of constructing a stronger prediction model. As aforementioned, this study considers the highly challenging 
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infinite delay problems [40], [43]. In such scenarios, only a reduced set of labelled data is available during the 

warming up stage [43]. This initially labelled data is necessary for defining the classification problems, i.e., 

numbers of classes, feature spaces. Note that in infinite delay problems, concept drifts may occur at any time 

regardless of the availability of labels. Typical characteristics of concept drifts can be 𝑃(𝒙)𝑡 ≠ 𝑃(𝒙)𝑡+1 and/or 

𝑃(𝑦|𝒙)𝑡 ≠ 𝑃(𝑦|𝒙)𝑡+1 [37]. 

The self-training procedure of S3OFIS+ consists of the following three stages. In Stage 0, S3OFIS+ is firstly 

primed with the labelled data chunks {𝒙}𝑘  with the corresponding class labels {𝑦}𝑘 in a supervised manner using 

Algorithm 1 (𝑘 = 1,2,… , 𝐾). In Stage 1, S3OFIS+ selects out a subset of unlabelled samples, {𝒙̂}𝑘  from the current 

unlabelled chunk, {𝒙}𝑘  with the predicted class labels, {𝑦̂}𝑘 that S3OFIS+ is highly confident with. In Stage 2, 

S3OFIS+ uses {𝒙̂}𝑘  and {𝑦̂}𝑘 to self-expand its knowledge base. After this, S3OFIS+ goes back to Stage 1 and 

continues to self-learn from the next available unlabelled data chunk (𝑘 = 𝐾 + 1,𝐾 + 2, …). The self-training 

procedure is detailed as follows, and is also visualized in Fig. 2 in the form of flowchart for clarity. 

 

Fig. 2. Flowchart of the self-training procedure of S3OFIS+ 

Stage 0. Priming classifier 

In this stage, S3OFIS+ is primed with labelled training samples on a chunk-by-chunk basis following the same 

algorithmic procedure presented in Section 2.3 (namely, Algorithm 1). Then, S3OFIS+ enters the next stage to 

self-learn from unlabelled data streams. 

Stage 1. Pseudo-labelling data 

After being primed, S3OFIS+ is ready for self-learning from unlabelled data chunks. As aforementioned, the main 

aim of Stage 1 is to assign class labels to unlabelled samples and identify these samples that can be used for 

expanding the knowledge base. S3OFIS+ identifies such samples by using a novel, fully explainable strategy 

called “𝐶 nearest prototypes (CNP)”, where 𝐶 is the number of classes.  

Conventional pseudo-labelling strategies [26], [27], [32] assign a pseudo label to a particular unlabelled sample 

based on the confidence scores produced by the classifier. For prototype-based self-training approaches [26], [27], 

[36], the confidence scores are usually calculated based on the distances between the unlabelled data sample and 

the nearest prototype of each class (one prototype per class; 𝐶 prototypes in total), and an externally controlled 

threshold is usually required to help the classifier to identify the more confident decisions. However, such 

strategies suffer from two drawbacks: 1) the user-determined threshold can influence the pseudo-labelling 

outcomes and the classification performance of the resulting model; 2) the pseudo-labelling process is more 

sensitive to noisy and unstable because only one prototype per class is considered each time.  

The proposed CNP strategy, on the other hand, overcomes the two drawbacks of conventional strategies by 

utilizing the 𝐶 nearest prototypes selected from the entire knowledge base for pseudo-labelling. This brings two 

advantages to the proposed CNP strategy. Firstly, it is free from externally controlled threshold because the pseudo 

label of an unlabelled sample is determined by majority voting. Hence, the objectiveness is guaranteed. Secondly, 

CNP is more robust to noise than conventional pseudo-labelling strategies because it selects the 𝐶 nearest 

prototypes from all existing prototypes for pseudo-labelling instead of selecting out just one nearest prototype 

from each class. Thus, the impact of noisy samples and outliers is minimized. One may also view the proposed 

CNP strategy as a variation of the well-known k-nearest neighbours (kNN) strategy [18] for determining the class 

labels. However, CNP differs from kNN in the following two aspects: 1) CNP is based on prototypes, which are 
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the most representative samples in the data space, rather than raw data samples; and 2) the number of nearest 

prototypes considered by CNP is determined by data, not by users.  

Once a new unlabelled data chunk is available, {𝒙}𝑘  (namely, {𝑦}𝑘 is not captured with {𝒙}𝑘), the current self-

training cycle starts. For each unlabelled sample, 𝒙𝑘,𝑖 ∈ {𝒙}𝑘, S3OFIS+ will firstly identify 𝐶 nearest prototypes 

from the knowledge base based on their spatial distances to 𝒙𝑘,𝑖, denoted as 𝒑1
∗ , 𝒑2

∗ , … , 𝒑𝐶
∗ ∈ 𝐏1 ∪ 𝐏2 ∪ …∪ 𝐏𝐶 .  

𝒑1
∗ , 𝒑2

∗ , … , 𝒑𝐶
∗  will vote together to determine the class label, 𝑦̂𝑘,𝑖 of 𝒙𝑘,𝑖 as follows:  

𝑣𝑜𝑡𝑒(𝑦̂𝑘,𝑖 = 𝑐) = ∑ 𝕀(𝑦𝑗
∗ = 𝑐)𝐶

𝑗=1                                                                                                     (11) 

where 𝑦𝑗
∗ is the class label of 𝒑𝑗

∗ and, 𝕀(𝑦𝑗
∗ = 𝑐) = {

1, 𝑖𝑓 𝑦𝑗
∗ = 𝑐

0, 𝑖𝑓 𝑦𝑗
∗ ≠ 𝑐

. 

The class label of 𝒙𝑘,𝑖 is determined as the class that receives the most votes, namely, 

 𝑣𝑜𝑡𝑒(𝑦̂𝑘,𝑖 = 𝑐
∗) > max

𝑗=1,2,…,𝐶;
𝑗≠𝑐∗

( 𝑣𝑜𝑡𝑒(𝑦̂𝑘,𝑖 = 𝑗))                                                                            (12) 

However, 𝒙𝑘,𝑖 will be recognized as a tricky sample without being labelled if there are two or more classes winning 

together based on Eqn. (12). Then, Condition 4 is examined to see whether this prediction is a confident decision 

or not: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 4:
𝑖𝑓 (𝑣𝑜𝑡𝑒(𝑦̂𝑘,𝑖 = 𝑐

∗) ≥ ⌊
𝐶

2
⌋ + 1)

𝑡ℎ𝑒𝑛 (𝑦̂𝑘,𝑖  𝑖𝑠 𝑎 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑡 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
                                                                              (13) 

where “⌊∙⌋” denotes the round-down operation.  

If Condition 4 is satisfied, it suggests that more than half of the 𝐶 nearest prototypes share the same class label, 

and it is highly likely that 𝒙𝑘,𝑖 also belongs to this class. In this case, 𝒙𝑘,𝑖 and 𝑦̂𝑘,𝑖 will be used by S3OFIS+ to self-

expand its knowledge base, namely,  {𝒙̂}𝑘 ← {𝒙̂}𝑘 ∪ {𝒙𝑘,𝑖} and {𝑦̂}𝑘 ← {𝑦̂}𝑘 ∪ {𝑦̂𝑘,𝑖}. 

Otherwise, the votes by the 𝐶 nearest prototypes are highly diversified. In this case, 𝒙𝑘,𝑖 could be a challenging 

sample and there is a chance that the predicted class label, 𝑦̂𝑘,𝑖 is wrong. As a result, 𝒙𝑘,𝑖 and 𝑦̂𝑘,𝑖 will not be used 

for system self-updating to avoid introducing potential pseudo-labelling errors to the system.  

After S3OFIS+ have checked every unlabelled sample in {𝒙}𝑘 and selected out a subset, {𝒙̂}𝑘  from {𝒙}𝑘 with 

pseudo labels {𝑦̂}𝑘 that it is confident with, the self-training cycle enters the second stage. The rest of {𝒙}𝑘  is 

discarded for memory efficiency. 

Remark 2: The main purpose of the CNP strategy is to identify these confidently pseudo-labelled samples for 

S3OFIS+ to self-improve its knowledge base and self-calibrate finer classification boundaries gradually. Although 

these more challenging/tricky samples may contain important information about new data patterns and can 

potentially be useful for sharpening classification boundaries, S3OFIS+ avoid utilizing them in the absence of 

ground truth and/or additional assistance (e.g., human expertise) because such samples are more likely to introduce 

potential pseudo-labelling errors to the system, leading to poor classification precision. 

To better illustrate the core idea of the proposed CNP strategy, a simple example demonstrating the pseudo 

labelling process of S3OFIS+ is presented in Fig. 3. It can be seen from the left part of Fig. 3 that in this data 

space, there are a total of 16 prototypes of four different classes (four prototypes per class) represented by blue, 

green, red and yellow dots “●”, respectively. In addition, there are four unlabelled samples represented by white 

dots “●”. For every unlabelled sample, four nearest prototypes are identified (𝐶 = 4). The nearest prototypes 

surrounding each unlabelled samples are circulated by grey dash lines in the middle part of Fig. 3, and the pseudo-

labelling results are given by the right part of Fig. 3. One can see that the unlabelled sample 1 is labelled as the 

blue class because three of its nearest prototypes belong to this class. The unlabelled samples 2 and 4 are labelled 

as the yellow class as the majority of their nearest prototypes are of the yellow class. However, the sample 2 will 

not be used for expanding the knowledge base because Condition 4 is not satisfied. The unlabelled sample 4 is 

not labelled because the blue and green classes receive the same amount of votes.  
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Fig. 3. Illustration of pseudo labelling using CNP principle 

Stage 2. Self-updating classifier 

In this stage, S3OFIS+ performs self-training with {𝒙̂}𝑘  and {𝑦̂}𝑘 to expand its knowledge base following the same 

procedure of Algorithm 1 in a supervised manner. Then, the S3OFIS+ self-training process iterates, going back to 

Stage 1 and starting the next cycle given a new data chunk (while setting 𝑘 ← 𝑘 + 1). 

Remark 3: The knowledge base of S3OFIS+ contains only these highly informative prototypes identified from 

data streams. During each self-training cycle, the newly identified prototypes will be updated by other pseudo-

labelled samples within the same chunk such that the concept drifts in data streams are handled locally. After this, 

only these new prototypes that capture the latest changes of data patterns and/or contribute to building more 

precise classification boundaries are selected to join the knowledge base. In this way, S3OFIS+ maintains a concise 

knowledge base while self-adapting to drifts in the data streams agilely. 

The self-training procedure is summarized as follows. 

Algorithm 2 S3OFIS+ Self-training 

##### Stage 0. Priming classifier ##### 

for 𝑘 = 1 to 𝐾 do: 

train the model with {𝒙}𝑘 and {𝑦}𝑘 using Algorithm 1; 

end for 

while (a new unlabelled data chunk {𝒙}𝑘  is available) do: 
##### Stage 1. Pseudo-labelling data ##### 

for 𝑖 = 1 to 𝐿𝑘  do: 

identify the nearest prototypes, 𝒑1
∗ , 𝒑2

∗ , … , 𝒑𝐶
∗  to 𝒙𝑘,𝑖; 

determine 𝑦̂𝑘,𝑖 through voting by Eqns. (11) and (12); 

if (𝑦̂𝑘,𝑖 satisfies Condition 4) then 

{𝒙̂}𝑘 ← {𝒙̂}𝑘 ∪ {𝒙𝑘,𝑖}; 
{𝑦̂}𝑘 ← {𝑦̂}𝑘 ∪ {𝑦̂𝑘,𝑖}; 

end if 

end for 

##### Stage 2. Self-updating classifier ##### 

train the model with {𝒙̂}𝑘 and {𝑦̂}𝑘 using Algorithm 1; 

end while 

Remark 4: The unique supervised learning protocol (namely, Algorithm 1) provides S3OFIS+ strong resistance 

to pseudo-labelling errors/noises by its nature. When aggregating newly identified prototypes from the current 

data chunk into the knowledge base, existing prototypes identified from historical data chunks remain intact to 

prevent error-propagation. In such way, pseudo-labelling errors at each self-training cycle are confined locally 

and distortions on the classification boundaries caused by these errors are minimized.  

Remark 5: This study mainly considers infinite delay problems. Nevertheless, S3OFIS+ is also suitable for the 

applications where labelled and unlabelled data arrived simultaneously at random. In such cases, S3OFIS+ will 

firstly learn from the labelled data within the current data chunk in a supervised manner (namely, Algorithm 1) 

and then continue to perform self-training on the remaining unlabelled samples following the algorithmic 

procedure described in this section (namely, Stages 1 and 2 in Algorithm 2). 

4. Computational Complexity Analysis 
Analysis on the computational complexity of the proposed S3OFIS+ is provided in this section. 
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4.1. Learning Procedure 
Supervised learning (Stage 0): S3OFIS+ learns from labelled data chunks to prime its knowledge base using 

Algorithm 1. In the first stage of Algorithm 1, the computational complexity of calculating data-driven thresholds, 

𝛾𝑘,𝐺
1 , 𝛾𝑘,𝐺

2 ,…, 𝛾𝑘,𝐺
𝐶  based on the mutual distances between data samples of the current data chunk {𝒙}𝑘  is 

𝑂(𝑀∑ (𝐿𝑘
𝑐 )2𝐶

𝑐=1 ). The complexity of identifying prototypes, 𝐩𝑘
1 , 𝐩𝑘

2 ,… , 𝐩𝑘
𝐶 by Condition 1 is 𝑂(∑ 𝐿𝑘

𝑐𝐶
𝑐=1 ), and that 

of updating prototypes is 𝑂(𝑀∑ 𝑃𝑘
𝑐𝐶

𝑐=1 ). Next, if {𝒙}𝑘  is not the very first data chunk, these newly identified 

prototypes will be aggregated into the knowledge base (namely, 𝐏1, 𝐏2, … , 𝐏𝐶) learned from historical data 

chunks. The computational complexity of using Conditions 2 and 3 to select candidate prototypes are 

𝑂(𝑀∑ 𝑃𝑘
𝑐𝑃𝑐𝐶

𝑐=1 ) and 𝑂(𝑀∑ ∑ 𝑃𝑘
𝑙𝑃𝑘

𝑗𝐶
𝑗=𝑙+1

𝐶−1
𝑙=1 ), respectively. Assume that there are 𝐾 labelled data chunks 

available, the computational complexity of the classifier priming process is 𝑂(𝑀∑ ∑ ((𝐿𝑘
𝑐 )2 + 𝑃𝑘

𝑐𝑃𝑐)𝐶
𝑐=1

𝐾
𝑘=1 ). 

Self-training (Stages 1 and 2): After the knowledge base has been primed with labelled data, S3OFIS+ enters the 

self-training stage. Given an unlabelled data chunk {𝒙}𝑘 , S3OFIS+ firstly identifies the 𝐶 nearest prototypes to 

each unlabelled sample for pseudo-labelling, and the computational complexity of this process is  

𝑂(𝑀𝐿𝑘 ∑ 𝑃𝑐𝐶
𝑐=1 ). The computational complexity of identifying pseudo labels with high confidence by Condition 

4 is negligible. Then, S3OFIS+ updates its knowledge base with the pseudo-labelled data {𝒙̂}𝑘 and {𝑦̂}𝑘 using 

Algorithm 1, and the computational complexity of this is 𝑂 (𝑀∑ ((𝐿̂𝑘
𝑐 )
2
+ 𝑃̂𝑘

𝑐𝑃𝑐)𝐶
𝑐=1 ), where 𝐿̂𝑘

𝑐  and 𝑃̂𝑘
𝑐 are the 

respective numbers of pseudo-labelled samples and newly identified prototypes of the cth class. Assume that there 

are 𝑈 unlabelled data chunks available, the computational complexity of the classifier self-training process is 

𝑂 (𝑀∑ ∑ ((𝐿̂𝑘
𝑐 )
2
+ 𝑃𝑐(𝑃̂𝑘

𝑐 + 𝐿𝑘))
𝐶
𝑐=1

𝑈
𝑘=1 ).  

Hence, it can be concluded from the above analysis that the overall computational complexity of the classifier 

learning process (including both supervised learning and self-training) is 𝑂(𝑀(∑ ∑ ((𝐿𝑘
𝑐 )2 + 𝑃𝑘

𝑐𝑃𝑐)𝐶
𝑐=1

𝐾
𝑘=1 +

∑ ∑ ((𝐿̂𝑘
𝑐 )
2
+ 𝑃𝑐(𝑃̂𝑘

𝑐 + 𝐿𝑘))
𝐶
𝑐=1

𝑈
𝑘=1 )) 

4.2. Decision-making Procedure 
During the decision-making process, the computational complexity of calculating the distances between a 

particular testing sample and prototypes in the knowledge base, namely, 𝐏1, 𝐏2, … , 𝐏𝐶  is 𝑂(𝑀∑ 𝑃𝑐𝐶
𝑐=1 ). For 𝐿 

testing samples, the overall computational complexity to determine their class labels is 𝑂(𝑀𝐿∑ 𝑃𝑐𝐶
𝑐=1 ). 

5. Experimental Investigation 

5.1. Configuration 
To evaluate the performance of the proposed S3OFIS+ system, numerical examples based on a wide range of 

benchmark problems from UCI Machine Learning Repository1, Keel Dataset Repository2 and Scikit-Multiflow3 

are presented. As aforementioned, all numerical examples in this paper are performed in infinite delay scenarios 

[40], [43]. The datasets used for experimental studies are as follows. 

1) Australian (AU) dataset; 

2) Banknote authentication (BA) dataset; 

3) Gesture phase segmentation (GP) dataset; 

4) Image segmentation (IS) dataset; 

5) Multiple feature (MF) dataset; 

6) Magic gamma telescope (MG) dataset; 

7) Occupancy detection (OD) dataset 

8) Optical recognition of handwritten digits (OR) dataset; 

9) Page-blocks (PB) dataset; 

10) Pen-based recognition of handwritten digits (PR) dataset; 

11) Shill bidding (SB) dataset ; 

 
1 Available at: https://archive.ics.uci.edu/ml/index.php  
2 Available at: https://sci2s.ugr.es/keel/index.php  
3 Available at: https://scikit-multiflow.github.io/  

https://archive.ics.uci.edu/ml/index.php
https://sci2s.ugr.es/keel/index.php
https://scikit-multiflow.github.io/
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12) Segment (SE) dataset; 

13) Semeion handwritten digit (SH) dataset; 

14) Texture (TE) dataset; 

15) Wilt (WI) dataset; 

16) SEA dataset4, and; 

17) Hyperplane (HYP) dataset5. 

In addition, the popular MNIST image set6 for handwritten digit recognition and its two nonstationary synthetic 

variations, namely, permuted MNIST (PMNIST) and rotated MNIST (RMNIST)7 are also used for experimental 

studies. Key information of the 20 datasets is summarized in Table 2.  

Table 2. Key information of benchmark datasets for performance evaluation 

Dataset #Classes #Samples #Attributes Characteristics Class Proportion 

AU 2 690 14  stationary 55.5;44.5 

BA 2 1372 4  stationary 55.5;44.5 

GP 5 9900 18 stationary 28.0;21.2;29.8;10.1;11.0 

IS 7 2310 19  stationary 14.3;14.3;14.3;14.3;14.3;14.3;14.3 

MF 10 2000 649 stationary 10.0;10.0;10.0;10.0;10.0;10.0;10.0;10.0;10.0;10.0 

MG 2 19020 10  stationary 64.8;35.2 

OD 2 20560 5  stationary 76.9;23.1 

OR 10 5620 64  stationary 9.9;10.2;9.9;10.2;10.1;9.9;9.9;10.1;9.9;10.0 

PB 5 5472 10 stationary 89.8;6.0;0.5;1.6;2.1 

PR 10 10992 16 stationary 10.4;10.4;10.4;9.6;10.4;9.6;9.6;10.4;9.6;9.6 

SB 2 6321 9 stationary 10.7;89.3 

SE 7 2310 19 stationary 14.3;14.3;14.3;14.3;14.3;14.3;14.3 

SH 10 1593 256 stationary 10.1;10.2;10.0;10.0;10.1;10.0;10.1;9.9;9.7;9.9 

TE 11 5500 40 stationary 9.1;9.1;9.1;9.1;9.1;9.1;9.1;9.1;9.1;9.1;9.1 

WI 2 4839 5 stationary 5.4;94.6 

SEA 2 120000 3  nonstationary 24.5;75.5 

HYP 2 25000 4  nonstationary 50.0;50.0 

MNIST 10 70000 28×28  stationary 9.9;11.3;10.0;10.2;9.7;9.0;9.8;10.4;9.8;9.9 

PMNIST 10 70000 784  nonstationary 9.9;11.3;10.0;10.2;9.7;9.0;9.8;10.4;9.8;9.9 

RMNIST 10 62000 784 nonstationary 9.9;11.2;10.0;10.2;9.8;9.0;9.8;10.4;9.8;10.0 

The numerical examples presented in this paper are conducted on a laptop with dual core i7 processer 3.60𝐺𝐻𝑧 × 

2 and 16𝐺𝐵 RAM. The algorithms are developed on MATLAB2020b platform. The reported results are obtained 

as the average of 10 Monte Carlo experiments unless specifically declared otherwise. It is worth noting that as 

S3OFIS+ is designed to learn from streaming data on a chunk-by-chunk basis, during the numerical experiments, 

only one data chunk is presented to S3OFIS+ each time to simulate the online learning environment. The 

MATLAB code of S3OFIS+ is publicly available8. 

5.2. Visual Demonstration 
In this subsection, a numerical example is presented to visualize the process of S3OFIS+ constructing a stronger 

model with higher precision and building finer classification boundaries from both labelled and unlabelled data 

on a chunk-by-chunk basis. In this example, the BA dataset is used thanks to its smaller scale and simpler structure. 

For visual clarity, principle component analysis is applied to reduce the dimensionality of data from four to two. 

The BA dataset is divided into four chunks evenly with the first chunk used as the labelled chunk and the remaining 

three as the unlabelled ones. During the experiment, S3OFIS+ is trained by the labelled chunk to prime the 

knowledge base and then self-trained with the three unlabelled chunks one-by-one to further self-improve its 

classification boundaries without human supervision. The level of granularity is set as 𝐺 = 4 in this experiment. 

The classification boundaries constructed by S3OFIS+ from the first labelled chunk are depicted in Fig. 4(a), and 

the updated classification boundaries after self-training with the first, second and third unlabelled chunks are 

depicted in Fig. 4(b)-(d), respectively. In Fig. 4, the light blue and pink points “·” represent labelled data samples 

of the two classes; the green points “·” are the data samples without labels; the blue and red dots “●” are the 

 
4 Generated by SEAGenerator API from Scikit-Multiflow 
5 Generated by HyperplaneGenerator API from Scikit-Multiflow 
6 Available at: http://yann.lecun.com/exdb/mnist/  
7 Available at: https://nlp.stanford.edu/projects/mer/  
8 Available at: https://github.com/Gu-X/Semi-Supervised-Self-Organizing-Fuzzy-Inference-System  

http://yann.lecun.com/exdb/mnist/
https://nlp.stanford.edu/projects/mer/
https://github.com/Gu-X/Semi-Supervised-Self-Organizing-Fuzzy-Inference-System
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respective prototypes of the two classes; the dash lines “--” are the boundaries of Voronoi tessellations formed 

around prototypes; the purple lines “-” are the classification boundaries. It can be observed from this example that 

after being primed with the labelled data chunk, S3OFIS+ is able to continuously self-improve its decision-

boundaries with the successive unlabelled data chunks, showing the effectiveness of the proposed self-training 

mechanism.  

 

(a) Classification boundaries constructed from the labelled chunk 

 

(b) Classification boundaries constructed with the first unlabelled chunk 
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(c) Classification boundaries constructed with the second unlabelled chunk 

 

(d) Classification boundaries constructed with the third unlabelled chunk 

Fig. 4. Illustration of constructing more precise classification boundaries with labelled and unlabelled data 

chunks 

5.3. Sensitivity Analysis 
In this subsection, sensitivity analysis is conducted to investigate the influence of 1) level of granularity, 𝐺 and 2) 

chunk size, 𝐿 on the classification performance of S3OFIS+.  

Firstly, the influence of 𝐺 on system performance is investigated. The following five benchmark datasets, OD, 

OR, PB, PR and WI are employed. During the experiments, 10% of data is randomly selected to form the labelled 

training set and the remaining data is used to build the unlabelled one. The value of 𝐺 varies from 3 to 11 and 𝐿 

is set as 𝐿 = 1000. The classification performance of S3OFIS+ in terms of classification accuracy rate (𝐴𝑐𝑐) on 

the unlabelled sets after learning from both labelled and unlabelled data are reported in Table 3. To understand 

the influence of 𝐺 on the computational efficiency of the system, the computation time consumptions (𝑡𝑒𝑥𝑒, in 

seconds) with different experimental settings are also reported in the same table. It can be seen from Table 3 that 
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the level of granularity has a direct impact on both the classification accuracy and computational efficiency of the 

system. In general, a higher level of granularity can boost the classification accuracy of S3OFIS+, but it also 

increases the computational complexity because more prototypes are identified from data, leading to higher 

computation time consumption. In the rest of this paper, 𝐺 = 10  is used as a trade-off between accuracy and 

efficiency.  

Table 3. Investigation of influence of 𝐺 on system performance (𝐿 = 1000) 

𝐺 Measure Dataset 

OD OR PB PR WI 

3 𝐴𝑐𝑐 0.9152 0.9649 0.6038 0.9439 0.6810 

𝑡𝑒𝑥𝑒 1.2808 0.5145 0.3550 1.0120 0.2309 

4 𝐴𝑐𝑐 0.9173 0.9670 0.6536 0.9599 0.7568 

𝑡𝑒𝑥𝑒 1.3195 0.5863 0.3848 0.8609 0.2674 

5 𝐴𝑐𝑐 0.9198 0.9678 0.7444 0.9717 0.8237 

𝑡𝑒𝑥𝑒 1.4560 0.6549 0.4366 0.9535 0.2894 

6 𝐴𝑐𝑐 0.9559 0.9697 0.8076 0.9762 0.8886 

𝑡𝑒𝑥𝑒 1.5049 0.7190 0.4604 1.1410 0.3231 

7 𝐴𝑐𝑐 0.9724 0.9697 0.8439 0.9792 0.9438 

𝑡𝑒𝑥𝑒 1.6036 0.7846 0.4989 1.2576 0.3430 

8 𝐴𝑐𝑐 0.9814 0.9710 0.8727 0.9805 0.9631 

𝑡𝑒𝑥𝑒 1.7909 0.8414 0.5297 1.4924 0.3655 

9 𝐴𝑐𝑐 0.9849 0.9709 0.9087 0.9806 0.9655 

𝑡𝑒𝑥𝑒 1.9465 0.8582 0.5608 1.5947 0.4023 

10 𝐴𝑐𝑐 0.9863 0.9712 0.9250 0.9810 0.9646 

𝑡𝑒𝑥𝑒 2.2997 0.8908 0.6057 1.7428 0.4282 

11 𝐴𝑐𝑐 0.9867 0.9713 0.9315 0.9810 0.9642 

𝑡𝑒𝑥𝑒 2.7262 0.9181 0.6598 1.7895 0.4578 

Next, the influence of 𝐿 on the classification performance of S3OFIS+ is investigated. In this example, the same 

experimental protocol as used in the previous example is utilized. During the experiments, the value of 𝐿 varies 

from 200 to 2000 and 𝐺 is set as 𝐺 = 10. The classification performances of S3OFIS+ in terms of 𝐴𝑐𝑐 and 𝑡𝑒𝑥𝑒 
are tabulated in Table 4. One can see form Table 4 that generally, a greater 𝐿 helps S3OFIS+ to achieve higher 

classification accuracy and, at the same time, reduces its computational efficiency. The main reason for this is 

because data chunks with a larger size enable S3OFIS+ to have a better understanding of the underlying data 

patterns, but it would require more time for S3OFIS+ to process each individual data chunk and fuse the learned 

knowledge together. In the numerical examples presented in the rest of Section 5, 𝐿 = 1000 is used unless 

specifically declared otherwise. 

Table 4. Investigation of influence of 𝐺 on system performance (𝐺 = 10) 

𝐿 Measure Dataset 

OD OR PB PR WI 

200 𝐴𝑐𝑐 0.9862 0.9660 0.9345 0.9773 0.9594 

𝑡𝑒𝑥𝑒 2.1422 0.7811 0.5720 1.3193 0.4151 

400 𝐴𝑐𝑐 0.9863 0.9687 0.9336 0.9812 0.9601 

𝑡𝑒𝑥𝑒 2.2177 0.8280 0.5365 1.6395 0.4116 

600 𝐴𝑐𝑐 0.9864 0.9711 0.9307 0.9814 0.9637 

𝑡𝑒𝑥𝑒 2.3384 0.8802 0.5540 1.7462 0.4054 

800 𝐴𝑐𝑐 0.9864 0.9719 0.9258 0.9808 0.9644 

𝑡𝑒𝑥𝑒 2.3571 0.9065 0.5678 1.7501 0.4275 

1000 𝐴𝑐𝑐 0.9863 0.9712 0.9250 0.9810 0.9646 

𝑡𝑒𝑥𝑒 2.2997 0.8908 0.6057 1.7428 0.4282 

1500 𝐴𝑐𝑐 0.9861 0.9698 0.9248 0.9809 0.9650 

𝑡𝑒𝑥𝑒 2.4737 0.9119 0.6364 1.7849 0.4806 

2000 𝐴𝑐𝑐 0.9862 0.9696 0.9236 0.9809 0.9652 

𝑡𝑒𝑥𝑒 2.6583 0.8655 0.6812 1.7959 0.5141 
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5.4. Ablation Analysis 
Ablation analysis is performed in this subsection to test the effectiveness of the proposed self-training mechanism. 

In this example, the classification performances of S3OFIS+ and SOFIS+ are compared on 14 datasets, which 

include AU, GP, IS, MG, MF, OD, OR, PB, PR, SB, SE, SH, TE and WI. During the experiments, 10% of data is 

randomly selected to build the labelled training set and the rest is used to form the unlabelled training set. For 

visual clarity, the classification error rates on the unlabelled data obtained by S3OFIS+ and SOFIS are reported in 

Table 5, and the performance improvements in percentage are also reported following the common practice [28]. 

In addition, the same experiments are repeated with 20%, 30% and 40% of data used as labelled training set. The 

classification error rates of S3OFIS+ and SOFIS under the three splitting ratios are reported in the same table. The 

performance improvements in percentage are given in Table 5 as well. For visual clarity, the average classification 

error rates of S3OFIS+ and SOFIS+ under different split ratios are also depicted in Fig. 5. 

It can be seen from Table 5 that with 10%, 20%, 30% and 40% of labelled training data, S3OFIS+ is able to reduce 

its average classification error rates by 5.40%, 6.14%, 5.13% and 3.10% across the 14 benchmark classification 

problems. The numerical results demonstrate the efficacy of the proposed semi-supervised learning mechanism 

enabling S3OFIS+ utilize unlabelled data to construct a more precise prediction model without human supervision.  

Table 5. Ablation analysis results in terms of classification error rates 

Dataset % 

Labelled 

Algorithm ∆ % % 

Labelled 

Algorithm ∆ % 

S3OFIS+ SOFIS+ S3OFIS+ SOFIS+ 

AU 10% 0.3981 0.4225 +6.13% 20% 0.3808 0.4096 +7.56% 

GP 0.2850 0.2761 -3.12% 0.2072 0.2019 -2.56% 

IS 0.1271 0.1338 +5.27% 0.0812 0.0838 +3.20% 

MF 0.1079 0.1104 +2.32% 0.0856 0.0846 -1.17% 

MG 0.2317 0.2511 +8.37% 0.2262 0.2410 +6.54% 

OD 0.0137 0.0164 +19.71% 0.0145 0.0150 +3.45% 

OR 0.0288 0.0350 +21.53% 0.0212 0.0241 +13.68% 

PB 0.0750 0.0652 -13.07% 0.0649 0.0615 -5.24% 

PR 0.0190 0.0214 +12.63% 0.0128 0.0141 +10.16% 

SB 0.0126 0.0121 -3.97% 0.0048 0.0062 +29.17% 

SE 0.1369 0.1407 +2.78% 0.0900 0.0936 +4.00% 

SH 0.2090 0.2144 +2.58% 0.1575 0.1625 +3.17% 

TE 0.0435 0.0467 +7.36% 0.0279 0.0296 +6.09% 

WI 0.0354 0.0379 +7.06% 0.0290 0.0313 +7.93% 

Average 0.1231 0.1274 +5.40% 0.1003 0.1042 +6.14% 

AU 30% 0.3870 0.4072 +5.22% 40% 0.3848 0.3986 +3.59% 

GP 0.1684 0.1611 -4.33% 0.1366 0.1324 -3.07% 

IS 0.0661 0.0698 +5.60% 0.0556 0.0562 +1.08% 

MG 0.2221 0.2366 +6.53% 0.2203 0.2311 +4.90% 

MF 0.0725 0.0723 -0.28% 0.0649 0.0637 -1.85% 

OD 0.0144 0.0153 +6.25% 0.0150 0.0155 +3.33% 

OR 0.0180 0.0191 +6.11% 0.0167 0.0170 +1.80% 

PB 0.0609 0.0588 -3.45% 0.0581 0.0574 -1.20% 

PR 0.0103 0.0107 +3.88% 0.0095 0.0101 +6.32% 

SB 0.0034 0.0044 +29.41% 0.0032 0.0037 +12.50% 

SE 0.0738 0.0753 +2.03% 0.0627 0.0657 +4.78% 

SH 0.1300 0.1330 +2.31% 0.1238 0.1238 +0.00% 

TE 0.0214 0.0228 +6.54% 0.0175 0.0180 +2.86% 

WI 0.0249 0.0264 +6.02% 0.0239 0.0259 +8.37% 

Average 0.0909 0.0938 +5.13% 0.0852 0.0871 +3.10% 
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Fig. 5. Average classification error rate comparison between S3OFIS+ and SOFIS+ 

5.5. Performance Comparison 
In this subsection, the performance of S3OFIS+ is compared with a wide variety of semi-supervised and supervised 

machine learning algorithms on the aforementioned classification problems as a benchmark comparison.  

Firstly, the classification accuracy and computational efficiency of S3OFIS+ is compared with the following semi-

supervised learning algorithms on the 14 numerical benchmark datasets (namely, AU, GP, IS, MG, MF, OD, OR, 

PB, PR, SB, SE, SH, TE and WI) used in the previous example: 

1) LGC classifier [29]; 

2) LapSVM classifier [30]; 

3) Anchor graph regularization with kernel weights (Anchor-K) classifier [31]; 

4) Anchor graph regularization with local anchor embedding weights (Anchor-L) classifier [31]  

5) Efficient anchor graph regularization (EAnchor) classifier [44]; 

6) SeRBIA classifier [26], and; 

7) STHP classifier [27]. 

Note that LGC, LapSVM, Anchor-K, Anchor-L and EAnchor are among the most popular transductive semi-

supervised learning algorithms to learn from static data in offline application scenarios. Thus, for LGC, LapSVM, 

Anchor-K, Anchor-L and EAnchor, the numerical experiments are performed in offline scenarios, namely, all the 

labelled and unlabelled data samples are available to the classifiers. SeRBIA and STHP are recently proposed 

self-training algorithms to learn from data on a chunk-by-chunk basis and can be implemented for both offline 

and online application sceneries, same as S3OFIS+. Since SeRBIA and STHP both aim to learn a set of prototypes 

from both labelled and unlabelled data for classification via pseudo labelling, the performance comparison 

between SeRBIA, STHP and S3OFIS+ is essentially equivalent to the comparison between different pseudo-

labelling mechanisms employed. The numerical experiments with SeRBIA and STHP, are performed in online 

scenarios following the same experimental protocols as S3OFIS+. 

During the experiments, LGC used the kNN graph with 𝑘 = 5 and 𝛼 is set as 𝛼 = 0.99 [29]. LapSVM uses the 

“one versus all” strategy for multi-class classification tasks and used the radial basis function kernel. As the 

performance of LapSVM is very sensitive to the predefined parameters, three different experimental settings are 

considered here, namely, i) 𝜎 =  10, 𝜇𝐼 =  1, 𝜇𝐴  =  10
−6 , 𝑘 =  15 (as suggested by [30]); ii) 𝜎 =  10, 𝜇𝐼 =

 0.5, 𝜇𝐴  =  10
−6 , 𝑘 =  15, and; iii) 𝜎 =  1, 𝜇𝐼 =  1, 𝜇𝐴  =  10

−5 , 𝑘 =  10. Thus, the LapSVM classifier with 

the three different settings are re-denoted as: LapSVM1, LapSVM2 and LapSVM3, respectively. For Anchor-K, 

Anchor-L and EAnchor, a total of 0.1𝐾 anchors will be identified from data. The number of the closest anchors, 

𝑠 is set as 𝑠 = 3. The iteration number of local anchor embedding is set to be 10 for Anchor-L [31].  

As SeRBIA is originally designed for image classification, in this paper, its image pre-processing and feature 

extraction modules are removed, only its core IF-THEN rule base and decision-maker are kept for numerical data 

classification. Its user-controlled parameters are set as 𝜑 = 1.1, 𝛾 = 0 [26]. Note that 𝛾 = 0 means SeRBIA will 

not learn new classes from unlabelled data. For STHP, its externally controlled parameters are set to be: 𝛾0 = 1.1 

and 𝐻 = 6 [27]. The chunk size is set as 1000 for both SeRBIA and STHP following the same setting as S3OFIS+.  
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In addition to the single-model comparative algorithms, the most popular semi-supervised ensemble framework, 

tri-training [28] is also involved in benchmark comparison. In this example, DT, multi-layered perceptron (MLP) 

[45] and kNN are used as base learners, respectively, resulting in three different ensemble models denoted as: 

TriDT, TriMLP and TrikNN. During the experiments, a three-layered MLP is used and the size of the hidden layer 

is set as 64 neurons. kNN uses 𝑘 = 5. The hyper-parameters of MLP are trained with the gradient descent 

algorithm. The numerical experiments are performed in offline scenarios for TriDT, TriMLP and TrikNN. 

In this numerical example, for each dataset, 10% of data is randomly selected to form the labelled training set and 

the remaining data is used to build the unlabelled training set. The average class proportion of labelled training 

sets over 10 Monte Carlo simulations are given by Table 6.  

Table 6. Class proportion of labelled training sets for performance evaluation  

Dataset Class Proportion 

AU 55.1;44.9 

GP 28.0;21.2;29.8;10.1;11.0 

IS 14.3;14.3;14.3;14.3;14.3;14.3;14.3 

MF 10.0;10.0;10.0;10.0;10.0;10.0;10.0;10.0;10.0;10.0 

MG 64.8;35.2 

OD 76.9;23.1 

OR 9.8;10.1;10.0;10.1;10.1;10.0;10.0;10.1;9.8;10.0 

PB 89.6;6.0;0.5;1.6;2.2 

PR 10.4;10.4;10.4;9.6;10.4;9.6;9.6;10.4;9.6;9.6 

SB 10.7;89.3 

SE 14.3;14.3;14.3;14.3;14.3;14.3;14.3 

SH 10.0;10.0;10.0;10.0;10.0;10.0;10.0;10.0;10.0;10.0 

TE 9.1;9.1;9.1;9.1;9.1;9.1;9.1;9.1;9.1;9.1;9.1 

WI 5.4;94.6 

The numerical results obtained by S3OFIS+ and the 12 comparative semi-supervised learning approaches on the 

14 benchmark datasets are reported in Table 7 in terms of classification accuracy, where the top three classification 

accuracy rates per dataset are in bold for visual clarity. The average classification accuracy rates (𝐴𝑐𝑐) and 

execution time costs (𝑡𝑒𝑥𝑒) of S3OFIS+ and the 12 competitors over the 14 benchmark problems are depicted in 

Figs. 6 and 7 for better demonstration.  

 

Fig. 6. Average classification accuracies of different semi-supervised classifiers on numerical benchmark 

datasets 
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Fig. 7. Average execution time consumptions of different semi-supervised classifiers on numerical benchmark 

datasets 

Table 7. Classification accuracy comparison between different semi-supervised classifiers on numerical 

benchmark datasets 

Algorithm Dataset 

AU GP IS MF MG OD OR 

S3OFIS+ 0.6019 0.7150 0.8729 0.8921 0.7683 0.9863 0.9712 

LGC 0.5556 0.7092 0.8699 0.8981 0.7415 0.7690 0.9811 

LapSVM1 0.5557 0.5337 0.8150 0.8977 0.6487 0.9767 0.9757 

LapSVM2 0.5729 0.5353 0.8217 0.8981 0.6491 0.9729 0.9753 

LapSVM3 0.5565 0.6196 0.8355 0.8977 0.6487 0.7695 0.9767 

Anchor-K 0.5808 0.6539 0.8253 0.8752 0.7048 0.9854 0.9753 

Anchor-L 0.5905 0.6286 0.8181 0.8551 0.7051 0.9859 0.9727 

EAnchor 0.5950 0.6355 0.8268 0.8873 0.7653 0.9880 0.9810 

SeRBIA 0.5977 0.5804 0.7360 0.8707 0.7043 0.9678 0.9755 

STHP 0.5977 0.5995 0.8104 0.8988 0.7181 0.9198 0.9765 

TriDT 0.8079 0.6563 0.9152 0.8831 0.8114 0.9857 0.8104 

TriMLP 0.8288 0.4739 0.6823 0.9338 0.7861 0.9655 0.7611 

TrikNN 0.5971 0.6470 0.8251 0.8593 0.7793 0.9890 0.9622 

Algorithm Dataset 

PB PR SB SE SH TE WI 

S3OFIS+ 0.9250 0.9810 0.9874 0.8631 0.7910 0.9565 0.9646 

LGC 0.8981 0.9749 0.9940 0.8548 0.8186 0.9761 0.0540 

LapSVM1 0.8981 0.9648 0.9720 0.7968 0.8135 0.7595 0.9460 

LapSVM2 0.9059 0.9602 0.9722 0.8008 0.8163 0.8104 0.9460 

LapSVM3 0.8981 0.9739 0.9928 0.8265 0.8348 0.8826 0.9460 

Anchor-K 0.6560 0.9821 0.9855 0.8205 0.7799 0.9633 0.8243 

Anchor-L 0.6905 0.9810 0.9762 0.8145 0.7706 0.9558 0.8031 

EAnchor 0.6338 0.9814 0.9364 0.8185 0.8382 0.9617 0.7171 

SeRBIA 0.9452 0.9721 0.9773 0.7312 0.8443 0.9603 0.9506 

STHP 0.9088 0.9793 0.9837 0.7939 0.8366 0.9647 0.9549 

TriDT 0.9524 0.8823 0.9883 0.8947 0.5608 0.8469 0.9682 

TriMLP 0.9023 0.4698 0.9689 0.6945 0.6484 0.4768 0.9444 

TrikNN 0.9327 0.9659 0.9784 0.8175 0.7797 0.9499 0.9596 
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To better summarize the key information of Table 7, classification accuracy rates of S3OFIS+ and alternative 

semi-supervised classifiers on each benchmark dataset are ranked in descending order and the overall ranks are 

tabulated in Table 8. In addition, the overall ranks of execution time costs of the 13 semi-supervised classifiers 

over the 14 benchmark datasets from least to most are reported in Table 8 as well.  

Table 8. Overall performance ranks of different semi-supervised classifiers from the best to poorest 

Algorithm Overall Rank 

𝐴𝑐𝑐 𝑡𝑒𝑥𝑒 
S3OFIS+ 4.25 7.36 

LGC 5.68 11.14 

LapSVM1 9.26 3.07 

LapSVM2 8.50 2.64 

LapSVM3 7.00 2.50 

Anchor-K 6.89 4.79 

Anchor-L 8.46 10.00 

EAnchor 6.21 6.21 

SeRBIA 7.39 2.36 

STHP 6.04 9.43 

TriDT 5.29 3.50 

TriMLP 9.43 11.36 

TrikNN 6.57 3.64 

It can be observed from Tables 7 and 8 that S3OFIS+ is able to achieve greater classification accuracy or at least 

on par with the best performing semi-supervised learning approaches on the majority of the benchmark problems 

considered in the experiments. Very importantly, the overall classification accuracy rank of S3OFIS+ is the 

highest, demonstrating its efficacy. Although the computational efficiency of S3OFIS+ is on the average level as 

one can see from Table 8, its average execution time cost is still below 1 second per dataset, showing that S3OFIS+ 

is a highly computationally efficient approach for semi-supervised learning.  

Next, the classification performance of S3OFIS+ is evaluated on the widely used visual dataset MNIST. During 

the experiments, 10000, 20000 and 60000 images are randomly selected to build the labelled training set and the 

rest of the images are used as the unlabelled set. Both labelled and unlabelled training images are converted to 

784×1 dimensional vectors for experiments (no feature selection or dimensionality reduction is used). The chunk 

size 𝐿 is set as 𝐿 = 10000. The classification accuracy rates of S3OFIS+ on the unlabelled images after being 

trained under different split ratios are reported in Table 9. For better evaluation, a number of semi-supervised and 

supervised classification approaches are involved in the experiments for benchmark comparison, which include: 

1) SeRBIA classifier [26]; 

2) SOFIS+ classifier [41]; 

3) SOFIS classifier [10]; 

4) Zero-order autonomous learning multi-model  (ALMMo0) classifier [11]; 

5) SVM classifier; 

6) DT classifier; 

7) kNN classifier; 

8) Sequence-dictionary-based kNN (SDkNN) classifier [46]; 

9) Sequence (SEQ) classifier [46], and; 

10) Extreme learning machine (ELM) classifier [47]; 

LGC, LapSVM, Anchor-K, Anchor-L, EAnchor, STHP, TriDT, TriMLP and TrikNN are not involved in this 

numerical example. The main reason for excluding them is due to their lower computational efficiency and higher 

requirement for system memory on large-scale, high-dimensional problems.  

During the experiments, the user-controlled parameters of SeRBIA are set as 𝜑 = 1.1, 𝛾 = 0, 𝑊 = 10000; the 

level of granularity for SOFIS is set to be 𝐺 = 12; SOFIS+ follows the same setting as S3OFIS+, namely, 𝐺 = 10 

and 𝐿 = 10000; 𝑘 = 5 is used for  kNN and SDkNN, and; the maximum number of neurons for ELM is set as 

200. As SVM, DT, kNN, SDkNN and ELM are limited to offline applications, all the labelled training data are 

presented to them at once for training. SeRBIA, SOFIS+ and ALMMo0 are designed for data streaming 

processing. Thus, training data is presented to SeRBIA and SOFIS+ chunk-by-chunk. Labelled training samples 



20 
 

are presented to ALMMo0 one-by-one due to its different operating mechanism from the other two online 

algorithms. SOFIS learns from data in a hybrid mode. During the experiment, SOFIS firstly learns from the first 

10000 labelled training samples in offline mode. Then, it continues to learn the remaining labelled training 

samples on a sample-by-sample basis, similar to ALMMo0.  

Furthermore, the same experiments are repeated with the 512×1 dimensional feature vectors extracted from the 

original handwritten digit images using the gist feature descriptor [48]. The numerical results obtained by the 11 

algorithms are reported in Table 9 as well. The average classification accuracy rates are also given in the same 

table. For visual clarity, the best results are in bold. From Table 9 one can see that S3OFIS+ outperforms the 

alternatives on this visual dataset. 

Table 9. Comparison between different classifiers on MNIST dataset 

Algorithm # Labelled Images Average 

10000 20000 60000 

Original Gist Original Gist Original Gist 

S3OFIS+ 0.9544 0.9777 0.9618 0.9801 0.9699 0.9838 0.9713 

SeRBIA 0.9480 0.9789 0.9583 0.9820 0.9696 0.9866 0.9706 

SOFIS+ 0.9483 0.9740 0.9573 0.9786 0.9686 0.9833 0.9684 

SOFIS 0.9466 0.9750 0.9557 0.9811 0.9681 0.9865 0.9688 

ALMMo0 0.9477 0.9766 0.9575 0.9808 0.9683 0.9864 0.9695 

SVM 0.9252 0.9779 0.9322 0.9816 0.9438 0.9857 0.9577 

DT 0.8114 0.8454 0.8437 0.8701 0.8779 0.9010 0.8582 

kNN 0.9470 0.9752 0.9584 0.9797 0.9684 0.9875 0.9694 

SDkNN 0.9473 0.9677 0.9571 0.9745 0.9555 0.9802 0.9637 

SEQ 0.9342 0.9646 0.9455 0.9707 0.9646 0.9762 0.9593 

ELM 0.1037 0.9046 0.1064 0.9072 0.1453 0.9122 0.5132 

Finally, the performance of S3OFIS+ is evaluate on four popular nonstationary synthetic problems (namely, SEA, 

HYP, PMNIST and RMNIST). The main purpose of this example is to examine its capability to handle concept 

drifts in data streams. Following the commonly used experimental protocol [37], 1%, 0.8%, 1.4% and 2% of data 

is randomly selected from the four datasets, respectively, to form the labelled training set and the remaining 

samples are used to build the unlabelled training set. The ratio and class proportion of labelled training samples 

of the four datasets are summarized in Table 10. The classification accuracy rates of S3OFIS+ on the four datasets 

are reported in Table 11, and are further compared with the following state-of-the-art supervised and semi-

supervised classifiers: ParsNet [37], stream classification algorithm guided by clustering (SCARGC)-kNN [49], 

SCARGC-SVM [49] and deep evolving denoising autoencoder (DEVDAN) [50]. The best results are in bold for 

visual clarity. Note that the results by ParsNet, SCARGC-kNN, SCARGC-SVM and DEVDAN are obtained 

directly from [37]. For fair comparison, during the experiments, the chunk size of S3OFIS+ is set as the size of 

the labelled training set following the experimental protocol used by [37].  

Table 10.   Ratio and class proportion of labelled training samples of four nonstationary synthetic datasets 

Dataset % Labelled Class Proportion 

SEA 1% 24.4;75.6 

Hyperplane 0.8% 52.0;48.0 

PMNIST 1.4% 10.3;11.3;9.8;10.3;9.9;8.8;9.9;10.5;9.5;9.6 

RMNIST 2% 10.3;11.4;10.4;9.9;9.6;8.8;9.1;10.7;9.5;10.3 

Table 11. Comparison on four nonstationary synthetic numerical and visual datasets 

Algorithm SEA HYP PMNIST RMNIST 

S3OFIS+ 0.9601 0.9081 0.8958 0.9024 

ParsNet [37] 0.8801 0.8682 0.4625 0.4846 

SCARGC-kNN [49] 0.7812 0.7820 0.3331 0.2381 

SCARGC -SVM [49] 0.8259 0.8189 0.3302 0.2092 

DEVDAN 0.7849 0.6256 0.3665 0.2898 

One can see from Table 11 that S3OFIS+ outperforms all competitors on the four problems with very limited 

labelled training samples available, showing its superiority for semi-supervised nonstationary data stream 

classification.  
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5.6. Further Evaluations 
Further to the above systematic evaluation, the influence of data dimensionality on the performance of S3OFIS+ 

is investigated. Nine nonstationary synthetic datasets9 with different dimensionalities varying from 4 to 512 are 

used for this investigation. The sizes of the synthetic datasets are set to be 2000 uniformly to facilitate 

computation. During the experiments, 20% of data is randomly selected to build the labelled training set and the 

remaining data forms the unlabelled training set. In addition, seven previously used semi-supervised classifiers 

including LGC, LapSVM, Anchor-K, Anchor-L, EAnchor, SeRBIA and STHP are involved for performance 

comparison under the same experimental protocol. The results by S3OFIS+ and its competitors on the nine datasets 

are reported in Table 12 in terms of classification accuracy, where the best results are in bold. 

Table 12. Comparison on nine nonstationary synthetic datasets with different dimensionalities 

Algorithm #Attributes Average 

4 8 16 32 64 128 256 512 

S3OFIS+ 0.9344 0.8506 0.7491 0.6861 0.5883 0.5744 0.6013 0.6204 0.7006 

LGC 0.9299 0.8375 0.5860 0.5551 0.5307 0.5129 0.5090 0.5137 0.6219 

LapSVM1 0.9393 0.8899 0.6858 0.6107 0.5525 0.5249 0.5181 0.5053 0.6533 

LapSVM2 0.9575 0.9207 0.7928 0.6672 0.5906 0.5447 0.5294 0.5203 0.6904 

LapSVM3 0.9475 0.8795 0.6265 0.5669 0.5417 0.5233 0.5167 0.5040 0.6383 

Anchor-K 0.9299 0.8410 0.7301 0.6545 0.5939 0.5667 0.5358 0.5215 0.6717 

Anchor-L 0.9161 0.8202 0.7071 0.6409 0.5874 0.5591 0.5371 0.5247 0.6616 

EAnchor 0.9381 0.8731 0.7740 0.7017 0.6158 0.5775 0.5452 0.5203 0.6932 

SeRBIA 0.6918 0.6885 0.6146 0.5801 0.5297 0.5177 0.5093 0.5221 0.5817 

STHP 0.6951 0.6911 0.5877 0.5627 0.5380 0.5173 0.5092 0.5221 0.5779 

It can be observed from Table 12 that when the dimensionality of the data is greater than 128, S3OFIS+ is able to 

offer the highest classification accuracy rates well above the runners-up, outperforming all its competitors. This 

shows that the data dimensionality has a smaller impact on the performance of S3OFIS+ than the alternative 

approaches involved in this example. 

Next, the robustness of S3OFIS+ is examined by adding Gaussian noise to the experimental data. In this example, 

three previously used benchmark problems, namely, IS, MF and SE are considered. During the experiments, 10dB, 

5dB and 0dB additive white Gaussian noise is added onto 20% of data samples selected randomly. Following the 

same experimental protocol used in Section 5.5, the ratio of labelled samples is set to be 10%. The classification 

accuracy rates of S3OFIS+, LGC, LapSVM, Anchor-K, Anchor-L, EAnchor, SeRBIA and STHP on the three 

datasets in noisy environments with different noise intensities are reported Table 13.  

Table 13. Comparison on benchmark datasets in noisy environments with different noise intensities 

Algorithm SNR 

10dB 5dB 0dB 

IS MF SE IS MF SE IS MF SE 

S3OFIS+ 0.8049 0.8554 0.7871 0.7884 0.8514 0.7806 0.7679 0.8346 0.7603 

LGC 0.8094 0.8649 0.7959 0.7927 0.8609 0.7840 0.7736 0.8468 0.7644 

LapSVM1 0.7240 0.7320 0.7068 0.7095 0.7137 0.6985 0.6971 0.7090 0.6862 

LapSVM2 0.7313 0.7138 0.7121 0.7101 0.7037 0.7003 0.7041 0.7031 0.6857 

LapSVM3 0.7164 0.7320 0.7072 0.7124 0.7137 0.6975 0.7032 0.7090 0.6954 

Anchor-K 0.7435 0.6821 0.7319 0.7216 0.6533 0.7159 0.6914 0.5827 0.6972 

Anchor-L 0.7271 0.6773 0.7165 0.7086 0.6448 0.6980 0.6884 0.6032 0.6826 

EAnchor 0.7629 0.7673 0.7518 0.7430 0.7419 0.7424 0.7231 0.6871 0.7140 

SeRBIA 0.6523 0.8273 0.6446 0.6503 0.8218 0.6363 0.6318 0.8002 0.6344 

STHP 0.7133 0.8693 0.7012 0.6993 0.8590 0.6962 0.6851 0.8484 0.6776 

Average classification rates of the eight semi-supervised classifiers on the three benchmark datasets in noisy 

environments are reported in Table 14. The results are further compared with the baseline results given by Table 

6 to allow an insightful understanding of the impact of noise on different semi-supervised classifiers. For the 

reader’s convenience, the average classification accuracy rates by the eight approaches on the three datasets 

without noise are given in Table 14 as baseline. It is shown by this table that the average classification accuracy 

 
9 Generated by HyperplaneGenerator API from Scikit-Multiflow 
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of S3OFIS+ drops by 6.87%, 7.90% and 10.09% with 10dB, 5dB and 0dB Gaussian noise added onto the data, 

respectively. The percentage decrease of S3OFIS+ is less than the majority of its counterparts (only greater than 

LGC). Hence, one may conclude from the results that S3OFIS+ has the strong resistance to noise. 

Table 14. Investigation of influence of noise intensity on semi-supervised classifiers 

Algorithm Baseline 

Average 

SNR 

10dB 5dB 0dB 

Average ∆ % Average ∆ % Average ∆ % 

S3OFIS+ 0.8760 0.8158 -6.87% 0.8068 -7.90% 0.7876 -10.09% 

LGC 0.8743 0.8234 -5.82% 0.8125 -7.07% 0.7949 -9.08% 

LapSVM1 0.8365 0.7209 -13.82% 0.7072 -15.46% 0.6974 -16.62% 

LapSVM2 0.8402 0.7191 -14.41% 0.7047 -16.13% 0.6976 -16.97% 

LapSVM3 0.8532 0.7185 -15.79% 0.7079 -17.03% 0.7025 -17.66% 

Anchor-K 0.8403 0.7192 -14.41% 0.6969 -17.07% 0.6571 -21.80% 

Anchor-L 0.8292 0.7070 -14.74% 0.6838 -17.54% 0.6581 -20.64% 

EAnchor 0.8442 0.7607 -9.89% 0.7424 -12.06% 0.7081 -16.13% 

SeRBIA 0.7793 0.7081 -9.17% 0.7028 -9.82% 0.6888 -11.61% 

STHP 0.8344 0.7613 -8.76% 0.7515 -9.94% 0.7370 -11.67% 

Following the numerical example given by Tables 13 and 14, to further test the robustness of S3OFIS+, the same 

experiments are repeated by adding 0dB additive white Gaussian noise onto 10%, 20% and 40% of unlabelled 

and labelled samples selected randomly. The obtained results by S3OFIS+ and the seven comparative approaches 

on the three benchmark datasets with different ratios of noisy samples are tabulated in Table 15. The average 

classification accuracy rates are given by Table 16, and a comparation with the baseline results is also presented 

in the same table. The results shown in Tables 15 and 16 further confirm the conclusion made based on Tables 13 

and 14. One may also notice from Table 16 that when the ratio of noisy samples is low, i.e., 10%, S3OFIS+ shows 

even greater resistance to Gaussian noise than LGC. This is thanks to the proposed CNP strategy for pseudo-

labelling, enabling S3OFIS+ to be more robust towards a small amount of noisy samples. 

Table 15. Comparison on benchmark datasets in noisy environments with different ratios of noisy samples 

Algorithm % Noisy Samples 

10% 20% 40% 

IS MF SE IS MF SE IS MF SE 

S3OFIS+ 0.8239 0.8638 0.8131 0.7679 0.8346 0.7603 0.6616 0.7862 0.6435 

LGC 0.8185 0.8717 0.8056 0.7736 0.8468 0.7644 0.6858 0.8024 0.6708 

LapSVM1 0.7429 0.7997 0.7357 0.6971 0.7090 0.6862 0.5995 0.6999 0.5798 

LapSVM2 0.7514 0.7961 0.7366 0.7041 0.7031 0.6857 0.5996 0.6961 0.5818 

LapSVM3 0.7795 0.7997 0.7609 0.7032 0.7090 0.6954 0.5751 0.6999 0.5623 

Anchor-K 0.7511 0.7288 0.7408 0.6914 0.5827 0.6972 0.6009 0.4679 0.5969 

Anchor-L 0.7342 0.7018 0.7246 0.6884 0.6032 0.6826 0.5903 0.5161 0.5778 

EAnchor 0.7733 0.8043 0.7631 0.7231 0.6871 0.7140 0.6414 0.5650 0.6259 

SeRBIA 0.6906 0.8328 0.6771 0.6318 0.8002 0.6344 0.5332 0.7603 0.5258 

STHP 0.7446 0.8771 0.7392 0.6851 0.8484 0.6776 0.5694 0.8017 0.5585 

Table 16. Investigation of influence of ratio of noisy samples on semi-supervised classifiers 

Algorithm Baseline 

Average 

% Noisy Samples 

10% 20% 40% 

Average ∆ % Average ∆ % Average ∆ % 

S3OFIS+ 0.8760 0.8336 -4.84% 0.7876 -10.09% 0.6971 -20.42% 

LGC 0.8743 0.8319 -4.85% 0.7949 -9.08% 0.7197 -17.68% 

LapSVM1 0.8365 0.7594 -9.22% 0.6974 -16.62% 0.6264 -25.12% 

LapSVM2 0.8402 0.7614 -9.38% 0.6976 -16.97% 0.6258 -25.52% 

LapSVM3 0.8532 0.7800 -8.58% 0.7025 -17.66% 0.6124 -28.22% 

Anchor-K 0.8403 0.7402 -11.91% 0.6571 -21.80% 0.5552 -33.93% 

Anchor-L 0.8292 0.7202 -13.15% 0.6581 -20.64% 0.5614 -32.30% 

EAnchor 0.8442 0.7802 -7.58% 0.7081 -16.13% 0.6108 -27.65% 

SeRBIA 0.7793 0.7335 -5.88% 0.6888 -11.61% 0.6064 -22.19% 

STHP 0.8344 0.7870 -5.68% 0.7370 -11.67% 0.6432 -22.91% 
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Based on the systematic numerical examples presented in this section, it can be concluded that the proposed 

S3OFIS+ is an effective semi-supervised learning approach for constructing a highly precise classification model 

from both labelled and unlabelled data. Thanks to its chunk-by-chunk self-training mechanism, S3OFIS+ can be 

implemented for both online and offline applications, providing users transparent system structure, explainable 

reasoning and great classification precision with minimum human labelling efforts. 

6. Conclusion 
This paper introduces a new self-training EIS named S3OFIS+ for data stream classification. By exploiting pseudo 

labelling via the proposed CNP strategy, S3OFIS+ can continuously self-expand its knowledge base and construct 

finer classification boundaries from unlabelled streaming data on a chunk-by-chunk basis. Numerical examples 

demonstrate the superiority of S3OFIS+ over alternative classification methods on a wide range of benchmark 

classification problems, showing the promise of the proposed method as a powerful semi-supervised learning 

technique for real-world applications. 

There are several considerations for future work. First, the optimality of the learned prototypes needs to be 

investigated. Prototypes play a key role in S3OFIS+ for constructing classification boundaries. However, since 

S3OFIS+ learns from both labelled and unlabelled data in a non-iterative, single-pass manner, the identified 

prototypes may lack optimality. It would be interesting to see how S3OFIS+ performs if its prototypes are 

optimized periodically. Second, the level of granularity needs to be determined by users in the current S3OFIS+. 

Although it is not a user- or problem-specific parameter and does not need to involve any prior knowledge, this 

parameter directly determines the level of fineness of the learned classification boundaries of S3OFIS+. It would 

be very useful to develop an automated approach, enabling the system to self-determine the most suitable 

granularity setting based on the ensemble properties of streaming data. Nevertheless, this would be highly 

challenging considering the nonstationary nature of data streams. Last, but not the least, a single-model system is 

often insufficient to handle large-scale, high-dimensional, high-frequency streaming data. Creating an ensemble 

framework composed of multiple single-model systems can be very useful for dealing with such situations. 

However, it would require more efforts to design an ensemble framework specifically for S3OFIS+ to fully exploit 

its capacity. 
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