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Auditory Evoked Potential Detection During Pure-Tone
Audiometry

George Langroudi1, Ramaswamy Palaniappan1, and Ian McLoughlin2

Abstract— Modern audiometry is largely a behavioural
task, with the pure-tone audiogram (PTA) being the
gold standard for evaluating frequency-specific hearing
thresholds in adults. The nature of behavioural audiometry
makes estimating accurate hearing thresholds difficult
in infants and people with disabilities, where following
instructions or interacting with the test may be difficult
or impossible. We propose a method in which Auditory
Evoked Potentials (AEPs) are used as an alternative to
behavioural audiometry for detecting frequency-specific
thresholds. Specifically, P300 responses elicited by the tones
of a PTA are automatically detected from electroencephalo-
gram (EEG) data, to evaluate hearing acuity. To assess
the effectiveness of this method, we created a dataset
of EEG recordings from participants presented with a
series of pure tones at 6 different frequencies with steadily
decreasing volumes, during a PTA test. This dataset was
used to train a support vector machine (SVM) to identify
when a participant was played a tone, whether they
perceived it or not using their EEG. Results demonstrate
that detecting hearing events can be very accurate for
participants for whom the classifier has been trained a-
priori. However, accuracy drops significantly for unseen
participants – when the classifier has not been trained on
any prior data from a given participant before classifying
their EEG. However, by establishing that AEP response-
based audiometry is viable for detecting tones, future work
will explore the ability of more powerful deep neural
networks to accurately estimate for unseen participants.

I. INTRODUCTION

Over nearly 100 years of use, the Pure Tone Au-
diogram has remained the most reliable and trusted
method of obtaining hearing thresholds [1]. The PTA
is a behavioural test where patients are presented a
series of tones at steadily decreasing volumes, and are
asked to respond when they perceive a tone by pressing
a response button. The tones presented are typically
pure sine waves, and as such can be presented at any
frequency; in practice, the tones presented typically
range from 250Hz to 8kHz, and the intermediate octave
in between [2]. Frequencies between these octaves can
also be used, as well as frequencies as low as 125Hz
and as high as 16kHz. The high frequency specificity
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2Ian McLoughlin is with the ICT Cluster, Singapore
Institute of Technology, 10 Dover Drive, Singapore
ian.mcloughlin@singaporetech.edu.sg

and speed of the PTA has made it indispensable for the
assessment of hearing loss.

However, the PTA suffers from some limitations that
can make it either inconvenient, unreliable, or unus-
able. Notably, PTA requires patient interaction, which
excludes certain minority groups such as the young
or disabled. Additionally the PTA relies on patient
honesty, with no way for audiologists to detect inaccu-
racies caused by any dishonesty. While some alternative
methods for behavioural audiometry in infants exist [3,
Chapter 12], they are mostly used to diagnose hearing
loss as opposed to assessing the severity of such loss.

While the clinical or audiometric application of AEP
is mostly in the form or Auditory Brainstem Re-
sponse [4], AEP has been the target of research in other
domains. For example, in Brain Computer Interface
(BCI) design [5], [6]. The visual P300 response has
generated a great deal of interest in this realm, often
as a method of spelling out characters [7].

While the use of P300 in response to auditory events
is less documented, there has been research into auditory
P300 use for BCI scenarios. An adapted auditory version
of the P300 speller has shown promise [8], [9], although
it has a lower throughput and higher peak latency than
the visual paradigm.

II. EXPERIMENTAL METHODOLOGY

To ensure applicability to clinical audiometry, our
experiment was designed to closely mimic the operation
of a PTA with no modifications made to the tones
being presented or the interaction of the participant. We
recruited participants to undertake an audiometric test.
We then simultaneously recorded their EEG data while
they undertook a PTA test. EEG and auditory data was
recorded for offline analysis.

A. Pseudo-audiometer design

As noted above, we designed our experiment to
closely mimic the methodology of a PTA. While we
acknowledge that limiting the paradigm to that of a PTA
will result likely in weaker potentials than would be
possible with unconstrained test design (see Section IV),
our intention was to: (a) ensure the method is compatible
with use in real-world audiometry settings, (b) change
as little as feasibly possible, to ensure that any results
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Analysis

Data filtered from 1 - 30Hz
and downsampled to 125Hz

Data separated into
epochs based on tone timing

Baseline corrected
using -0.5 to 0.2s data mean

Epochs passed
into classifier

Experiment

Tone presented to each ear

Next tone presented

Participant presented
a tone

Participant
respond

Participant does
not respond

Fig. 1. An overview of our experimental methodology

would not compromise the frequency specificity and
integrity of the PTA. With this in mind, we designed and
implemented a pseudo-Pure Tone Audiometer (P PTA)
that could be used to perform a rudimentary PTA-style
hearing test while recording the necessary timing mark-
ers alongside EEG data for post-experimental analysis.

Participants were presented with tones at 6 frequen-
cies in the following order: 1000Hz, 2000Hz, 4000Hz,
8000Hz, 250Hz, and 500Hz. Each tone was played at 10
different volumes, starting at 40dB HL and descending
in 5dB increments to −5dB HL. Starting with the left
ear, participants were played 10 tones at 1000Hz, and
then 10 tones at 2000Hz, and so on before repeating the
sequence in the right ear.

Tones were spaced at random intervals of between 4
and 8 seconds, and had a random duration between 1
and 3 seconds. Additionally, the duration of the tones
was random, between 1 and 3 seconds. The tones were
generated using MATLAB at a sample rate of 48kHz
and presented to participants using Sennheiser HD 380
pro circumaural headphones.

B. Participants

Participants were recruited once we had received
ethics approval from the Faculty of Science Ethics
Committee at the University of Kent. Each participant
gave their informed, written consent to participate in
the experiment after having the details explained both
verbally and in writing. Nine participants, reporting no
pre-existing hearing conditions, were recruited; three
female and 6 male, aged between 22 and 51, with a
median age of 32. Each participant completed 2 sessions
with a 5 minute break between sessions.

Each participant was tested individually, while sitting
comfortably in a low-noise test room without external
distraction. Prior to the experiment, participants were
fitted with an EEG device (described in section II-C) and
asked to keep their eyes closed during the experiment
to reduce visual artefacts in the resultant data.

C. Data Collection

Simultaneous to the participant listening to tones
during the experiment, we recorded their EEG data using

a 32 channel Starstim tES 32 with a 500Hz sampling rate
and configured in a 10-10 montage. Each EEG epoch in
the dataset represents 1 second of data, starting when
the participant is presented the tone; this was chosen
since most documented evoked potentials occur within
the first second of stimulus onset. Recorded EEG data
was bandpass filtered between 1-30Hz and downsampled
to 125Hz prior to analysis. Baseline correction was
done using the data 500ms to 200ms preceding the
onset of the each tone, and EEG data recorded from
every participant was individually normalised. With 9
participants recording 2 sessions, and 60 tones presented
in each ear per trial, we had 2160 epochs to use.

D. Auditory Evoked Responses

As discussed previously in section I our intention was
to elicit AEPs that could be detected by a classifier, and
specifically we expected to elicit an auditory P300 re-
sponse. Whilst the P300 response is strong, it is expected
that it would elicit other auditory responses (N1, P1, etc.)
that can be detected. We were able to elicit a response on
the centre-line electrodes as expected, especially when
the participants were presented the higher volume tones,
with a weaker response when epochs were averaged
across positive epochs at all volumes. It is also worth
noting that the highest volume tone is also the first
tone presented at each frequency, so the novelty of
the stimulus is higher and thus the response would be
expected to be better defined.

E. Data analysis

When training our classifier we experimented with
three different forms of cross-validation to emulate three
possible usage scenarios:

• K-Folds - A simple baseline, best-case scenario
for comparison. We used stratified 10-fold cross
validation (CV).

• Leave-One-Trial-Out (LOTO) - The classifier was
trained on epochs from all other participants plus
one of the trials for a given participant, and is
tested against the remaining trial. This emulates a
scenario in which a participant has had a recording
performed previously, and a classifier was trained
to include their recorded data.

• Leave-One-Participant-Out (LOPO) - The classifier
is trained on all available epochs except for those
belonging to a single participant and is tested on
that remaining participant, emulating a scenario in
which a participant has not contributed any pre-
existing data, so the classifier has never seen data
from this participant before.

We chose these three arrangements as they are most
applicable to real-world contexts. After processing, we
interpret each instance of data into one of three classes:
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• Positive participant response - The participant per-
ceived the tone, responded by pressing the response
button while the tone was presented, released it
after the tone finished.

• Negative participant response - The participant did
not respond during the tone.

• No sound presented - The participant was not
presented with any sound.

When training we used the positive response epochs,
and those where the participant was not presented with a
sound. As one of the future directions of this work is to
detect ambiguous epochs, it was necessary that the train-
ing data only contained epochs that we have confidence
in. Epochs where the participant was presented a sound
but did not respond can be considered ambiguous, as
patients are prone to making mistakes at these volumes
close to their hearing threshold1.

F. Support Vector Machines

When classifying our data we used exclusively Sup-
port Vector Machines with polynomial kernels. Each
classification involved training multiple SVM’s with a
combination of parameters to find the optimal settings
for that data. Each SVM was trained on a single channel:
125 time samples were given to the classifier for each
epoch, and will output either a Positive or a Negative;
whether the classifier believes the participant has per-
ceived a tone or not. Rather than having a single set
of parameters for all channels, we chose to allow the
classifier to select unique parameters for each individual
channel. This allows the classifier to specifically adjust
to the unique responses that occur across the scalp.

All SVM’s were created using libsvm and Scikit-
learn, and all used a Radial Bias Function kernel. These
SVMs take 2 parameters: γ and C. To find the optimal
parameters for each channel, hundreds of SVMs were
trained using every valid combination of γ and C on
the training sets and then tested against the testing set,
with the testing and training sets being defined by the
cross validation method used. Results were compared
and measured using the resultant receiver operating
characteristic area under curve (AUC) score, and then
the parameters yielding the optimal AUC were selected.

III. RESULTS

When optimising the parameters for training an SVM
on each channel we achieved accuracies as high as
95.34% with 10-fold CV. This high accuracy is not
unexpected, since there are multiple trials from each
participant represented in the training set. While testing

1We recognise that this leads to a situation where the classifier
does not see ambiguous epochs during training, but encounters them
during inference. However, identifying which ambiguous epochs were
positive and which were negative is itself a goal of this work.

Fig. 2. The average accuracy across folds for each channel with
optimised parameters, and the confidence intervals for each channel.

data never appears in the training set, participants in the
testing dataset have also contributed data to the training
dataset. Thus k-folds does not accurately reflect one
likely real-world situation in which test participants did
not contribute to the enrolled training dataset.

When using Leave-One-Trial-Out cross validation we
achieved even higher accuracy across a majority of
channels than with 10-fold CV. While it is likely that
the higher accuracy is a result of the classifier being
trained on more data due to the higher number of folds,
it also demonstrates that the classifier can perform re-
markably well when presented with only a small amount
of a participant’s data beforehand (i.e. a single EEG
recording). This lends itself well to a paradigm in which
patient data is stored between audiometric evaluations;
if a patient can participate in even a single behavioural
test as baseline, their future tests could be expected to
achieve high accuracy.

The classifiers trained with Leave-One-Participant-
Out CV achieved notably lower accuracy than either k-
fold or LOTO CV, with some channels having accuracy
no higher than chance. This suggests that, at least
with the number of participants currently involved, the
tested classifier cannot generalise to unseen participants.
Further work is needed to identify a method of accu-
rately detecting events on unseen participants, as this is
especially useful in audiometry.

IV. DISCUSSION

As discussed in Section II-A our P PTA was designed
to mimic a standard PTA, but this constrains us in terms
of methods of eliciting stronger potentials. One such
obvious method would be to use a “distractor” stimulus
[10], where the participant is frequently presented a
stimulus they are informed of before and asked not to
respond to. If a suitably differentiable tone could be iten-
tified for use as a distractor stimulus, it may be possible
to elicit stronger potentials during a PTA. However, an
improvement could be made without a distractor is using
a suitably large inter-stimulus interval [11]. The novelty
could also be increased by randomising the frequency
order of tones.
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Our results show that while the generalisation accu-
racy using an SVM was poor with our current dataset,
we have demonstrated that the use of even a single train-
ing recording from a participant enables the resulting
model to provide high classification accuracy on sub-
sequent trials. These results, while highly encouraging,
however reveal that the current P PTA + classifier design
is unsuitable for classification of unseen participants,
which would clearly limit its application as noted above.
Further work will be needed to identify a more gener-
alisable approach for widespread clinical application.

Some novel approaches to auditory P300 detection
have shown promise by combining the Auditory Steady-
State response (ASSR) [12], another auditory AEP, with
the P300 speller paradigm to improve the throughput
[13]. Whilst the difference between ASSR and PTA
thresholds has been demonstrated to be stable, ASSR has
the strongest effect on frequencies between 500Hz and
4000Hz. Due to the nature of ASSR tone modulation
it is yet to be seen whether this technique can be
applied for use in audiometry, however it represents a
possible avenue to achieve more generalisable hearing
event detection in audiometry.

Future practical implementations of this work would
ideally work with a reduced number of electrodes,
however improved generalisation is likely to be more
achievable if a classifier is able to view more electrodes,
or has some understanding of the electrode layout. This
avenue is something we intend to explore in the future,
since a classifier with some awareness of electrode
layout may be able to make better use of the higher
number of electrodes.

V. CONCLUSION

Whilst clinical usage of EEG in audiology is already
established for diagnosis of total hearing loss in infants,
this paper has investigated the use of EEG for the
diagnosis of frequency specific hearing loss. We have
demonstrated that even a relatively simple classifier
such as SVM can be used to detect the presence or
absence of pure tone hearing events from EEG data.
The results show that, when the classifier has ‘seen’
previous trials from a participant during training, it
is capable of classifying future hearing events from
that participant with very high accuracy, but does not
generalise well to classifying unseen participants. The
need to baseline a participant with prior data enables
certain potential application scenarios, but unfortunately
not application as a drop-in replacement for PTA testing.
A drop-in replacement for PTA will need to overcome
this limitation either though more complex classifiers,
or by training with a larger dataset.

Now that this paper has demonstrated the potential
viability of auditory tone detection from EEG, it is

expected that future research will tackle the issue of
generalisation, use of more channels, different classifiers
and alternative approaches to P300.
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