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Abstract

In this thesis we study the representation theory of the quiver Hecke algebras of
type A. In particular we consider specific quotients which play an important role
both in Schur-Weyl dualities and in other areas of mathematics such as statistical

mechanics, Lie theory and knot theory.

The thesis is organised in four chapters. Chapter 1 is the introductory chapter
and includes an overview of the concept of Schur-Weyl in addition to the basic
theory of cellular algebras, which will be central throughout the thesis. Moreover,
this is the chapter where we first introduce the quiver Hecke algebras of type A
and the quotients of interest, that is the largest possible quasi-hereditary quotients
with non-singular Kazhdan-Lusztig theory, denoted by 7 and the Temperley—
Lieb algebra of type B also known as “blob algebra”, denoted by B?. Finally, we
introduce the main combinatorial objects of the thesis, accompanied by examples

which enhance reader’s understanding.

Chapter 2 is devoted in the construction of a cellular basis for the quotients 7
different from the well-known results of Hu—Mathas [HM10], as it uses a less fa-
miliar order relation. The first section provides combinatorial analogues for the
action of the dot-generators of the algebra, which will be essential in the sequel.
The second section contains the technical element of this chapter which proves
that there exists a chain of two-sided ideals for the algebra J#. The last section

utilises that chain of ideals and constructs a cellular basis for JZ7.

In chapter 3 we encounter the Temperley—Lieb algebra of type B or blob algebra
and we endeavour to construct bases for the simple modules of the algebra over
a field of characteristic zero. These bases will be indexed by paths in an alcove
geometry of type A,. We start by defining the concept of alcove geometry which
will be important in the chapter’s proofs. We also recall known results on the blob
algebra and we make appropriate references in the literature. In the third section
we construct homomorphisms between cell modules and we calculate the images of

these homomorphisms. Over a field of characteristic zero the union of the images



is equal to the radical of the module, hence we have a basis for the (simple) head

of the module.

In chapter 4 we construct BGG resolutions associated to any simple module of
the blob algebra over a field of characteristic zero. BGG resolutions are very
fruitful objects in mathematics with several applications in different areas. In the
first section we give a formula for the composition of one-column homomorphisms

between cell modules of the blob algebra.
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Chapter 1

Introduction and background

In this chapter we include historical background on the study of the symmetric
group and its related algebras. We also fix the notation of the combinatorial and
algebraic notions used during the thesis. More precisely we start by an overview
of Schur-Weyl duality which can be considered as a standard source of inspiration
for studying different algebras. We continue with a section with the basic elements
of cellular algebras. This section is slightly “dry” but it will provide the structural
framework of the thesis, as all the algebras we consider will be (or be proven to be)
cellular algebras. Subsequently, we define our main algebras and their quotients
of interest. Finally, we state the basic definitions, followed by relevant examples,

for the combinatorial objects which we shall use throughout the thesis.

Note that most of these combinatorial objects are standard tools that can be found
in several papers and manuscripts in the area of combinatorial representation

theory. As a reference we include [Mic21, BCHM20).

1.1 Schur-Weyl duality overview

We start our story by a brief discussion on the concept of Schur-Weyl duality. This
is one of the most well-known results in representation theory and it has motivated

the study of various groups and algebras. Let C be the field of complex numbers

3



and we consider the vector space V = C". The symmetric group &,, acts naturally
on the n-fold tensor power V" by permuting the tensor positions. We consider
the obvious action of the general linear group GL; := GL;,(C), namely the matrix
multiplication in each tensor position and let CGL;,, CG,, be the group algebras
of the groups GLj, G,, respectively. By observing that the aforementioned actions
commute, we equip the vector space V®" with CGLj,-CS,-bimodule structure.
We recall the classic result by Schur [Sch27], indicating that the image of each
group algebra under its representation equals the full centraliser algebra of the
other representation. In more detail, if we name the representations as described

in [Dot04], namely
CGL, —~2—— End(V®") +—2—C6&,
we have the following equalities
p(CGLy) = Endg, (V")

7(C&,) = Endgy, (VE).

Later Carter-Lusztig [CL74] and Green [Gre80] have shown that identical results

hold over any infinite field k.

Some of the readers might find the presence of the letter h for denoting the rows
and the columns surprising. However, the choice has its origins in Lie theory and
it is used to denote the Coxeter number of a Coxeter group. This notion will turn
up later in the thesis when we shall discuss the structure and representation theory
of certain quotients of the Hecke algebras, which will be governed by this number
h. This number will also impose restrictions on the characteristic of the field k
and this is crucial because the combinatorial algorithms we have built depend very

much on this condition.

Schur-Weyl duality is a centerpiece in modern Lie theory. These dualities interre-
late reflection and algebraic groups with the symmetric groups, (walled) Brauer,

Temperley-Lieb, blob and partition algebras. The aforementioned algebras all form



towers of “diagram algebras” which we study in a uniform fashion using ideas from
categorical Lie theory. The rest of this section is devoted to the basics on Hecke
algebras (quantised deformations of the symmetric groups) and Temperley-Lieb
algebras. For the later, we focus our interest on the Temperley-Lieb algebra of
type B, which is originally defined in [MS94]. The Temperley-Lieb algebras (of
type A and B) are quotients of the Hecke algebras (of type A and B respectively).
In modern representation theory, the Khovanov-Lauda—Rouquier (KLR) algebras
provide, via the Brundan—Kleschev isomorphism [BK09], a common framework for

the study of those algebras.

1.2 Cellular algebras

This section is devoted to cellular algebras. These algebras are of great importance

in this thesis as all the algebras we shall consider in the future are cellular.

Cellular algebras have been introduced by Graham and Lehrer [GL96] and they
form a class of finite-dimensional algebras with extreme importance in represen-
tation theory. Roughly speaking, cellular algebras are algebras with a cellular
basis, that is a basis which makes them suitable for doing representation theory.
One main advantage of cellular algebras is that they provide a framework for
constructing the simple modules in terms of certain cellular bilinear forms. The
simple modules of an algebra are of great importance and their study is crucial in
understanding the structure of the algebra. In addition, analysis of these cellular
bilinear forms provides criterion for the algebra to be semisimple. In this section,
for the sake of completeness, we present the basic and well-known theory of cellular

algebras. We base our presentation on classic textbook [Mat99] by Mathas.

Let k a commutative integral domain with unitary element and A be an associative

finite-dimensional algebra which is free as k-module.

Definition 1.1. [Mat99, Definition 2.1] Suppose that (A, >) is a (finite) poset

and for each A\ € A there is a finite indexing set 7 ()\) and elements ¢}, € A for all



s,t € T(A) such that
¢ ={ch | e AandstecT(\)} (1.1)

is a (free) basis of A. For each A € A let A>* be the k-submodule of A with basis
{c, | me A;ju>Xand u,v e T(u)}. The pair (¢, A) is a cellular basis of A if

(i) the k-linear map *: A — A determined by (c)* = ¢, for all A € A and all

s,t € T(A), is an algebra anti-isomorphism of A; and,

(ii) for any A € A, t € T(\) and a € A there exists 7, € k such that for all
seT(N
ca= Z ryc), mod A™*, (1.2)
veT (M)
If A has a cellular basis we say that A is a cellular algebra. If in addition there is

a function

deg: U TN —Z

AEA
such that if we define deg(c) = deg(s) + deg(t), for A € A and s,t € T(\) then A
is a graded algebra, we say that A is a graded cellular algebra (see [HM10]).

Remark 1.2. We remark that a cellular algebra can have many different cellular
bases, where the poset A and the indexing sets 7 (\) can be completely different.
For instance, the size of the poset A can be different for different cellular bases of

A (see [KX99b]).

Throughout this section we fix a cellular basis (¢, A) of A and we denote by A=
the k-module with basis {c¥, | p € A, > X and u,v € T(p)}. It is clear that
A>* € A=* and the quotient A=*/A>* has basis

{A+ A7 s, te TV} (1.3)



By the classical theory of cellular algebras, for each A € A there exists a module
A(X) with k-basis
{c [teTO)}

and where for each a € A

A A
cra = E TyCy

veT (M)
where 7, € k is determined by (1.2). The module A(X) with the basis above is
called cell module. There is also a unique bilinear form (-,-): A(X) x A(A) — k
such that (c,c}), for s,t € T(N), is determined by
(e, e@)el = cuscy, mod A7
where u and v are any elements of 7(A\). By [Mat99, Proposition 2.10] we have

that the bilinear form is symmetric and associative. We define the radical of the

cell module A(X) to be the A-submodule of A()) defined as
rad A(N) ={z € A(\) | (z,y) =0 for all y € A(N)}. (1.4)

Subsequently, for any A € A, we define the quotient module L(A) = A(X)/rad A())
and let Ag = {u € A | L(u) # 0}. We have that p € Ag if and only if the bilinear
form (-,-) on A(u) is non-zero. As we mentioned earlier in this section, one of the
advantages of cellular algebras is that we can characterise the their simple modules
in a concrete way. The following theorem describes precisely the simple modules

of a finite dimensional cellular algebra A.

Theorem 1.3 (Graham-Lehrer). Suppose that k is a field and A is finite. Then
{L(p) | € Ao} is a complete set of pairwise inequivalent irreducible A-modules.
Proof. See [Mat99, Theorem 2.16]. O

Remark 1.4. Tt is worth noting that A is semisimple if and only if Ag = A and
L(p) = A(p), for all u € Ag. Also, A is quasi-hereditary if and only if Ay = A.



1.3 Algebras of interest

In this section we give a more detailed description of the algebras we study in
this thesis. We present the basic definitions but we mostly emphasise on the
connections among them and how these are connected with breakthroughs in dif-
ferent (seemingly unrelated) areas of mathematics. More precisely, this section
will include elements of Hecke, Temperley—Lieb and Khovanov-Lauda—Rouquier

algebras.

1.3.1 Hecke algebras

In the previous section it has been made clear that Schur-Weyl duality tells us
that there are connections between the representation theories of different groups
and algebras. Information on the representation theory of certain structures gives
useful information about the representation theory of their Schur-Weyl dual. More-
over, the concept of Schur-Weyl dualities has initiated studies on the structure of

algebras arising as deformations of other algebras.

Let k be a (commutative) integral domain. The Hecke algebras are deformations
of the group algebras of Coxeter groups and they form families of algebras which
depend on a quantum parameter ¢ € k*. Namely, we recover the group algebra

of the Coxeter group when ¢ = 1.

One of the most classic and well studied instances of such algebra is the Hecke
algebra of the symmetric group &,, or Hecke algebra of type A. In the literature,
for example in [Mat99], the Hecke algebra Hy ,(S,,) of &,, is defined as the unital

associative k-algebra with generators {7}, Ts,- - ,T,,_1} and relations
(T; —q)(T; +1) =0 fori=1,2,--- ,n—1 (1.5)
T.T; =TT, forl1<i<j—1<n-2 (1.6)

TTon T = Tin T fori=1,2-,n—2. (1.7)



For ¢ = 1, relation (1.5) can be written as T = 1. Hence, we recover the group

algebra of the symmetric group k&,, when g = 1.

At this point we shall introduce the Ariki-Koike algebra of the complex reflection
groups (Z/(Z) 1 S,, (alternatively the groups of type G(¢,1,n) in the Shephard—
Todd classification [ST54]). Let q,Q1, -+, Q¢ € k and Q := {Q1,--- ,Q¢}. Ariki
and Koike [AK94| defined the Ariki-Koike algebra to be the unital associative
k-algebra Hy 4 o((Z/(Z) 1 &,) with generators {Tp,- -+, T, 1} and relations

(To = Q1)+ (To— Q) =1 (1.8)
T TyT, = Ty TyTV T (1.9)

(T, +1)(T; —q) =1 for1<i<n-—-1 (1.10)

T.T; = T/T, for0<i<j—1l<n-2 (111

Ti Tl =TT 1T for 1 <i<n-—2 (1.12)

Note that for £ = 1 we get the Hecke algebra of type A. Another instance of Hecke
algebra which will be of particular interest in the thesis, is the Hecke algebra of
the complex reflection group (Z/27Z)1 S, or Hecke algebra of type B. It is easily
understood from the notation that the Hecke algebra of type B can be recovered
from the Ariki-Koike algebra for £ = 2. Note that the type B case was defined prior
to the Ariki-Koike algebras and in fact was one of the motivations for defining these
generalised algebras. In particular, Dipper and James [DJ92], defined the Hecke
algebra Hy ,0((Z/2Z)1S,,) to be the unital associative k-algebra with generators
{Ty, Ty, -+ ,T,,_1} and relations

(Th+1)(Th—Q)=0

TO T1 TO T1 = T1 TO Tl TO

(1.13)

(1.14)
(T;+1)(T; —q) =0 for1<i<n-—1 (1.15)
T,T; = T;T, for0<i<j—1<n-—2 (1.16)
(1.17)

T TiTi =TT, for1<i<n-—2.
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For ¢ = @ = 1, we recover the group algebra of the complex reflection group

k((Z/22)16,).

1.3.2 Khovanov-Lauda-Rouquier algebras

The Khovanov-Lauda-Rouquier algebras, most commonly known as KLR algebras,
were introduced by Khovanov and Lauda [KL09] and independently by Rouquier
[Rou]. In their pioneering work, Brundan and Kleshchev [BK09] proved that the
Hecke algebras from above, are isomorphic to the KLR algebras. This discovery
opened brand new routes in the study of Hecke algebras, since it gives the option
of utilising more advanced combinatorics and the diagrammatic presentation of

the KLR algebras.

Recall that we denote by &, the symmetric group in n letters and let e €
{2,3,---}. Given ¢ = (iy,i9, " ,in) € (Z/eZ)" and s, = (r,r +1) € S, we
set ST(Z) - (Z'la e 7ir—17 7:7"4-17 i’l’; 7:7"—1-27 e 77/1’L>

Definition 1.5. [BK09] Fix e > 2. The quiver Hecke algebra or Khovanov-Lauda-

Rouquier (KLR) algebra #,,, is defined to be the associative Z-algebra with gener-

ators

{ei | i=(in, - yin) € (Z/eZ)"y U{yr, -+ Ynf U{W1, - s},

subject to the relations

€i€j = 0i€; Z e; =1y,  Yrei=es, )¢y (R1)
i€(Z/eZ)™
Yrli = €ilYr  YrlYs = YsYr (R2)

for all r,s,4,j and

7prys = ysqbv" for s 7é T+ 1 ¢r¢s = ¢s¢r for |T - S| > 1 (RS)

Yrore; = (UrYri1 — Giyipys )i Yri1res = (Ve + 0y ivey )€ (R4)
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;

(wr+1¢r¢r+1 + 1)61 if 4, = 4,01,
e; if 4,00 # iy, 0 £ 1,
Ylei=1q (R5)
(yr+1 - yr)eg if 7:7“—4—1 =1, + ]-7
| (W = Yri1)e if Gy =i, — 1
(
(¢r+1¢7‘¢r+1 - 1)63 if ly = ir+2 = i’/‘—l—l + ]-)
¢rwr+1¢rei = (%H%%H + 1)61 if i, =410 =141 — 1 (RG)
Yrp1Prtbryre; otherwise
\

for all permitted r, s,z, j. We identify such elements with decorated permutations
and the multiplication with vertical concatenation, o, of these diagrams in the
standard fashion of [BK09, Section 1]. We let * denote the anti-involution which
fixes the generators (this can be visualised as a flip through the horizontal axis of

the diagram).
The cyclotomic quiver Hecke algebra is defined as quotient of the quiver Hecke
algebra. Let £ > 1 be an integer and o = (09,01, ,00_1) € Z* be an (-tuple.

Definition 1.6. Fix e > 2 and o € Z’. The cyclotomic quiver Hecke algebra, H,
is defined to be the quotient of H,, by the relation

yilomlom=ntmed)0sm<tiy, — o for € (Z/eZ)". (1.18)
We refer to relation (1.18) as cyclotomic relation.

We remark that the algebra of Definition 1.5 is isomorphic to the affine Hecke
algebra. The extra relation of Definition 1.6 gives a family of quotient algebras,

which are isomorphic to the cyclotomic Hecke algebra.

Given p < q we set

p_ _
W = 8pSpi1- .. Sq-1, Wi =541...8p115p (1.19)

7?5 = 7vbpprrl e 'wqfla Yﬂg = %71 te %H% (1'20>
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and given an expression w = s;, ---s;, € &, we set P, = ;- € H,. We
note that the element 1, depends on the expression s;, - - - s;,, not just on w € &,

Finally, we define the degree function on H¢ as follows.

Definition 1.7. We define the function deg: H? — Z determined by

—2 ifiy =g

deg(e;) =0 deg(yre;) =2 deg(vse;) =<1 if iy = dgpq £ 1 (1.21)

0 otherwise
\

for 1 <r <nand1l<s <n-—1. This is a degree function on HZ, hence the

cyclotomic quiver Hecke algebra is a Z-graded algebra with degree function deg.

One of the biggest advantages with KLLR algebras is that we have a diagrammatic
presentation and we can view the generators and the elements as planar diagrams
of decorated strands. For a more detailed description of the diagrammatic pre-
sentation, the reader may refer to [LP] and [HMP18]. Each KLR diagram of the
quiver Hecke algebra H,, consists of n strings and each string carries an integer
i € Z/eZ. The bottom and the top of the KLR diagram are sequences of inte-
gers. The product of two KLR diagrams is given by vertical concatenation. If
i = (1,19, -+ ,iq) € (Z/eZ)™ the correspondence between the generators of the

KLR algebra and the diagrammatic presentation can be seen in Figure 1.1.

e; = '(/]SeZ: Yr€; =
7:1 iQ in ’il ’is 7:5—‘,-1 in il ’ir in

FIGURE 1.1: The correspondence between the algebraic and diagrammatic gen-
erators of the quiver Hecke algerba.

There are also some rules and conventions which must satisfied by the KLR dia-
grams. These conventions are listed in [HMP18] and we outline them at this point

for the sake of completeness. In particular, in a KLR diagram:

e all intersections are transversal;
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e there are no triple intersections;

e the strings can be decorated with a finite number of dots at non-intersection

points.

As we see in Figure 1.1, the idempotent e; labelled by the sequence i € (Z/eZ)" is
visualised as straight strands with each one carrying the integers iy,--- ,i,. The
1, elements can be seen as a single crossing of the strands labelled by the integers
is,is41 € Z/eZ. We refer to them as KLR crossings or simply crossings. Finally,
the v, elements are visualised as dots on strands; we hence refer to them as KLR

dots or simply dots.

In Figure 1.1 we can see a KLR diagram with KLR dots and crossings. Note that
the element ¢? is the element defined in (1.20) and the bottom of the diagram is
labelled by @ = (iy,- -+ ,i,) € (Z/eZ)".

i1 Z'1071 ip ip+1 Z‘qf2 iqfl Z'q iq+1 in

FIGURE 1.2: The element yy1}e; for 1 < p < g < n.

We mentioned above that the product of two or more KLR diagrams can be
thought of as vertical concatenation. We denote the vertical concatenation by o

and in the following example we visualise vertical concatenation of diagrams.

Example 1.8. Consider the elements y1¢ie(0717273), y1y2¢36(0’37172) € Hy. The KLR
diagrams of these elements are depicted in the left-hand side of the equation of
Figure 1.53. The vertical concatenation of the diagrams is depicted in the right-
hand side of Figure 1.5. We also remark that the diagram on the right-hand side
of Figure 1.3 can be simplified further, as it is not reduced. The simplifications
can be performed by applying the appropriate relations of Definitions 1.5, 1.6.

We denote by X the horizontal concatenation of both KLR diagrams and residue

sequences. In the following example we describe a horizontal concatenation of
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B
G BN (I

FiGure 1.3: The vertical concatenation of the KLR diagrams of
Y193€(0.1,2,3)> Y1Y205€(0,3,1,2) € Ha-

KLR diagrams and their residue sequences. Note that the result of the horizontal
concatenation will be 0 unless the residues are compatible. To see that the reader

can refer to the first relation of (R1).

Example 1.9. Consider the elements y103e012:3), Y103€(0.1,2,3,4) and y11)5€(0,1,2,3)-
The KLR diagrams of those elements are the ones displayed in Figure 1.4. The

horizontal concatenation is the element of His illustrated in Figure 1.5.

FIGURE 1.4: The elements y1¢ie(07172,3), y1w§€(071727374), y1¢%€(0717273).

DY GNrYED

0 1 2 3 0 1 2 3 4 0 1 2 3

FIGURE 1.5: The element y1¢z€(071’273) X y1w§€(071727374) X ylwge(oylz,g).

The concept of vertical concatenation of KLR diagrams will be widely utilised
throughout the proofs of chapter 3, as it simplifies our calculations massively.
Horizontal concatenation will be a useful tool throughout chapter 2 and it will
provide a useful language which makes our notation simpler and easier for the

reader.
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1.3.3 Quasi-hereditary quotients of quiver Hecke algebras

The symmetric group lies at the intersection of two great categorical theories:
Khovanov—-Lauda and Rouquier’s categorification of quantum groups and their
knot invariants [KL09, Rou] and Elias—Williamson’s diagrammatic categorification
in terms of endomorphisms of Bott—Samelson bimodules. The objects of this
section are the main objects of the two companion papers [BCHM20, BCH]. The
purpose of those papers is to construct an explicit isomorphism between these
two diagrammatic worlds. The backbone of this isomorphism is provided by the

“light-leaves” bases of these algebras.

The light leaves bases of diagrammatic Bott—Samelson endomorphism algebras
were crucial in the calculation of counterexamples to the expected bounds of
Lusztig’s and James’ conjectures [Will7]. These bases are structurally far richer
than any known basis of the quiver Hecke algebra — they vary with respect to
each possible choice of reduced word/path-vector in the alcove geometry — this
richer structure is necessary in order to construct a basis in terms of the “Soergel
2-generators” of these algebras. We note that for these algebras, the path-theoretic
light-leaves basis is out of the scope of this thesis and the interested reader may
refer to [BCHM20, Section 2| for more details. In particular, we shall construct a
“classical-type” cellular basis for specific quasi-hereditary quotients of the cyclo-

tomic quiver Hecke algebra of Definition 1.6.

A long-standing belief in modular Lie theory is that we should (first) restrict our
attention to fields whose characteristic, p, is greater than the Coxeter number, h,
of the algebraic group we are studying. This allows one to consider a “regular” or
“principal block” of the algebraic group in question. For p > h + 1 we consider

the idempotent

=Y Clpin (1.22)
i1 =t +1
1<k<h

modulo “more dominant terms”. We recall Definitions 1.5, 1.6 of quiver Hecke

algebras H,, and their cyclotomic quotients H?, for o € Z*. In order to define
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the quasi-hereditary quotients of interest, we need a few definitions along with an

important long-standing convention.

Definition 1.10. Fix integers h,¢ € Z-o and e > (h + 1){. An {-tuple o € Z*
such that h < |o; —0;| <e—hfor 0 <i # j <{—1,is called (h,e)-admissible

charge.

Using the work and definitions from above, we define another algebra of interest.

Definition 1.11. For an (h, e)-admissible charge o € Z¢, we define the following
quotient of the cyclotomic quiver Hecke algebra 27 := H7 /HTe,HS.

For ease of notation, we assume that the (h,e)-admissible charge o € Z* is in-
creasing. This assumption does not restrict the definition of the algebra as it is
independent of the ordering. It is only a convention which will make our combi-

natorics easier throughout the thesis.

Convention. Throughout this section and the second chapter of the thesis, when
we refer to the e-charge or charge o € Z* we will assume that it is (h, e)-admissible

and increasing.

Constructing a cellular basis for the algebra of Definition 1.11 will be one of the
main results of this thesis. More details on the motivation and the applications

using such cellular basis can be found in the introduction of the related chapter.

1.3.4 Blob algebra

We will now discuss the “blob algebra”, one of the algebras that can be regarded as
a special case of the quasi-hereditary quotients of the Hecke algebra. Despite being
just a special case of the above, the definition of the blob algebras was motivated

by studies in physics and in particular in statistical mechanics.

Statistical mechanics aims to understand the large-scale observables (temperature,

pressure) of physical systems in terms of microscopic fluctuations of the system:
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water in a kettle, gas within a container, or the atomic structure of magnets. The
Temperley—Lieb algebras of type A and B (the latter of which is also known as
the “blob” algebra) first arose in the context of the 2-dimensional ferromagnetic
Ising and Potts models. The Temperley—Lieb of type A played central role for
Vaughan Jones in the discovery of new polynomial invariant of knots and links
[Jon97]. Jones had an algebraic approach and in his work the Temperley—Lieb
algebra was presented in terms of generators and relations. This presentation is
rather restrictive and later Louis Kauffman [Kau90] gave a handy description as
planar diagram algebra. The characters of simple modules of the Temperley—Lieb
algebras of type A, over a field of arbitrary characteristic, were computed by de

Boeck, Evseev, Lyle and Speyer in [dBELS18].

The Temperley—Lieb algebra of type B was defined by Martin and Saleur [MS94]
as a two parameter generalisation of the Temperley—Lieb algebra of type A. In
fact, they originally named this algebra “blob algebra” due to the fact that the
planar diagrams generating it are the planar diagrams for the Temperley—Lieb
algebra of type A decorated with blobs. The presentation of the blob algebra in
terms of planar diagrams, is out of the scope of this thesis. The interested reader
can refer to [MS94|, where there is a recap on the diagrammatic presentation
of the Temperley—Lieb algebra of type A and the “blob generalisation” with the

aforementioned decorated diagrams.

One might raise the question, why the Temperley—Lieb algebras are characterised
by their type. The answer is hidden in the connection of the Temperley—Lieb
algebras of type A and B with the Hecke algebras of type A and B respectively.
The isomorphism between the Hecke algebra of type B and the blob algebra was
constructed by Martin and Woodcock in [MWO03, Proposition 4.4]. The reader can
find further information -closer to our notation- on the connection between these

algebras in [PRH14].

We shall now give the exact definition of the blob algebra, as a quotient of the

cyclotomic quiver Hecke algebra of level 2. Recall that level 2 implies that in
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Definition 1.6, £ = 2 and we our quotient depends on an e-bicharge o = (0, 01) €

Z2. Moreover let k be a field of any characteristic.

Definition 1.12. [PRH14, Corollary 3.6] Fix e > 2 and o = (09, 01) an e-bicharge.

The blob algebra B is the k-algebra with generators

{ei 2= (i, in) € (Z/€Z)"} Udyr, - sy} UL, - o}

subject to the relations of the cyclotomic quiver Hecke algebra of Definition 1.6,
modulo the additional relation

e; =0, if iy =iy + 1. (1.23)

We refer to relation (1.23) as the blob relation.

Note that the original definition of the blob algebra was in terms of generators and
relations similar to the ones of the Temperley—Lieb algebras. The presentation of
Definition 1.12, which we will be using throughout the thesis, was proven to exist

in the work of Plaza and Ryom-Hansen [PRH14].

Remark 1.13. In order to further connect the blob algebra with the quasi-hereditary
quotients of the Hecke algebra, we shall re-write the blob relation (1.23) in terms
of the idempotent (1.22). In particular, the blob relation gives a quotient by the

idempotent

€ = E 6(2‘17...7%).

io=11+1

As a direct consequence of Definition 1.12, the blob algebra has the structure of
a graded algebra. The result that the blob algebra admits a Z-grading is due to
Plaza and Ryom—Hansen [PRH14] and the definition if its degree function follows.

Definition 1.14. We define the function deg: B — Z determined by

(

—2 if iy =g

deg(e;) =0, deg(yre;) =2, deg(vsei) =1 ifiy =iz 1

0 ifiy#igq £1

\
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for 1 <r <mnand1<s<n—1. This is a degree function on B?, hence the blob

algebra is a Z-graded algebra with degree function deg.

Note that the equations which determine the degree function are those of relation
(1.21) in Definition 1.7, i.e. the equations determining the degree function of
the cyclotomic Hecke algebras. The grading of the blob algebra has opened new
horizons in its study and some of the most recent results are due to this grading.
Plaza in [Plal3] calculated the graded decomposition numbers of the blob algebra
over a field of characteristic 0. Moreover, Hazi, Martin and Parker [HMP1§]
determined the structure of the indecomposable tilting modules of the blob algebra

over C, again by using the graded structure.

In the chapter dedicated to the blob algebra, we shall state some of the aforemen-
tioned results as they will be essential for our proofs and findings. Hence, more
details on the structure and combinatorics of the blob algebra can be found in
chapter 3. This section serves as an overview of the work that has been done on
the blob algebra and is mainly used in order to fix the notation that we shall use

later on in the thesis.

1.4 Combinatorics

In this section we present the basic combinatorial concepts which will be useful in
formalising our ideas towards the study of the algebras defined in previous sections.
Note that the main purpose of the first subsections is to give a general flavour of
the combinatorics and also fix some notation. The particularities, assumptions and
constrains of each combinatorial theory will be included in the last two subsections.
In particular, we shall summarise the combinatorics appearing in the study of the
quasi-hereditary quotients of the Hecke algebra and the combinatorics appearing
in the blob algebras. The key idea in both combinatorial theories is that we restrict
the number of columns and/or the number of components of the partitions and

compositions.
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1.4.1 Partitions and residues
We define a box-configuration to be a subset of
{i,g,m] |0 <m < €,1<i,j<n}

and we let B,(n) denote the set of all box-configurations with n boxes. We refer to a
box [i, j, m| € By(n) as being in the ith row and jth column of the mth component
of the configuration. Given a box, [i,j,m], we define the content of this box to
be ctli, j,m] = o, + j — ¢ and we define its residue to be res[i, j, m| = ctli, j, m]
(mod e). We refer to a box of residue r € Z/eZ as an r-box. We define a
composition, A, of n to be a finite sequence of non-negative integers (Aj, Az, .. .)
whose sum, |A\| = A\;+ X2+ - -, equals n. We say that A is a partition if, in addition,
this sequence is weakly decreasing. An ¢-composition (respectively ¢-partition) A =
(MA@ . XEDY of nis an f-tuple of compositions (respectively partitions) such
that |AQ] + ... + ]AD| = n. We denote by Cy(n) and Z,(n) the set of (-
compositions and (-partitions of n, respectively. Given A = (A@ XD A=) ¢

Zi(n), the Young diagram of A is defined to be the box configuration,
{[i,7,m] |1 <5 <A™ 0<m< ¢}

We do not distinguish between the ¢-partition and its Young diagram.

Given A € Z(n), we let Rem(\) (respectively Add())) denote the set of all
removable (respectively addable) boxes of the Young diagram of A so that the
resulting diagram is the Young diagram of an ¢-partition. We let Rem,(\) C
Rem(\) and Add,(\) € Add()) denote the subsets of boxes of residue r € Z/eZ.

Example 1.15. Let n = 25, { = 3, 0 = (0,2,4) € Z* and e = 5. Con-
sider the box configurations X = ((4,3,1),(3,1?),(4,32%,2)) € P5(25) and p =
((2,3%,2),(4%,3,1)) € Co(25). The box configurations corresponding to A\ and u
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are the following

We notice that all three components of A are partitions, whereas the first component
of  is a composition. We consider the bozxes [2,1,0], [3,2, 1] and we calculate their

content and residue. We have that

t2,1,00=0+1—-2=—1

ct3,2,1] =24+2-3=4

and

res[2,1,0] =res[3,2,1] =4

as we consider the contents modulo e = 5. We focus on the 3-partition \ and
one can easily observe that the residues of the boxes are the same in the diagonals
of the boz-configurations. We colour the boxes of the same residue with the same

colour and then our partition looks as follows.

—_
[\

3]

Y

3[4]

?

N I<] [

S
I
BNE
o
—_

[S]=]

— Do o~
\V] [GL] IIEN] fam)

The numbers in the boxes are the residues of each box.

1.4.2 Tableaux

The combinatorial objects arising naturally from partitions, compositions and their

Young diagrams are tableaux. They have been in the centre of the representation
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theory of the symmetric groups and their related algebras from the early days of
their study by James [Jam77]. Ever since tableaux (and indeed the special case
of standard tableaux) are of extreme importance in combinatorial representation
theory and they are used to encode useful information for the structure of the

algebra.

Given A € Z(n), we define a A\-tableau to be a filling of the boxes of [A] with the
numbers {1,--- ,n} without repeated entries. A tableau is called row-standard if
the entries increase along the rows in each component, and column-standard if the
entries increase down the columns in each component. A tableau is called standard
if it is both row and column standard. We denote the set of all tableau of shape
A by Tab(\). We denote by RStd()), CStd(\), Std(A) € Tab(A) the subsets of
row-standard, column-standard and standard tableau, respectively. Moreover, for

n € Z we define Std(n) = Uycz,(,) Std(A).

One can view a A-tableau as a bijection t: [\] — {1, -+ ,n} and we say that
the tableau t has shape A and we write Shape(t) = A\. We denote by t™!(k) the
box occupied by the integer k € {1,--- ,n} and by t[r, ¢, m] the integer occupying
the box [r,c,m] € [A]. For a tableau t we write t};, t]; for the subtableaux
of t containing the entries {1,--- k}, {k,---,n}, for 1 < k < n respectively.
Sometimes, for ease of notation we shall denote the above subtableaux simply by

tgk and tZk‘

Definition 1.16. Given two A-tableaux s,t € Tab(\), we let w; € &, be the

permutation such that wi(s) = t.

Remark 1.17. The symmetric group &, acts in a natural way on the set of
tableaux. In particular if t is a tableau and s; is a simple transposition, the

tableau s;t obtained by interchanging the entries ¢, ¢ + 1.

In the following example we shall see examples of standard, row-standard, column-

standard and non-standard tableaux.
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Example 1.18. Let n = 14, e = 5 and A = ((3,2%,1),(2%,1%)) € P5(14). The

tableaux
1[2[3] [4]5 1]2[4] [3]5
A 8]9 < | 16]7 8[12
A 1011 12 ’ 1011 9]
13} [14] [14] 13}
are standard A-tableauzr. On the other hand the A-tableaux
1[2[3] [4]5 112[3] [4]5 1[2[3] [4]5
. 819 w— | 617 819 s | [6L 819
7 [fio] 0ofig ©2 o] 0 [12) o7 (1)
13} 12| 13} [14] 13} [14]

are non-standard. In particular, uy is column-standard but not row-standard, while
uy is row-standard but not column-standard and us is neither row nor column

standard.

Remark 1.19. We remark that tableau t, of the Example 1.18 is a special tableau
which will be of huge importance later in the thesis. Sometimes it can be found

in the literature as superstandard or initial tableau.

Example 1.20. We continue from Ezample 1.18 and we have that wi = (3,4)(9,12)
(13,14) € &4y is the permutation defined above. We can give the corresponding
permutation for any pair of tableauz, but the permutations related to the tableau
ty are of particular interest, since they help to index specific elements which form

bases of our algebras.

Definition 1.21. Let A € Z%(n) and t be a A-tableau. We define the residue

sequence of t to be the n-tuple:
res(t) := (res(t (1)), -- ,res(t ! (n))) € I"™.
Moreover, we set e, := €e5t) € S,

We shall now define the degree of a tableau in the usual fashion, in terms of the
number of addable and removable nodes of a certain residue. For this we will first

need to define an order relation on the set of boxes.
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Definition 1.22. We define the reverse lexicographic order on boxes as follows. Let

1 <i,i,5,7 <nmand 1 <m,m' < (. We write [i,j,m| = [/, 7/, m'] if

(1) i <4, or
(77) i =14 and m < m/, or

(17) i =4 and m =m' and j < j'.
For a A-tableau t we denote by Add.(k) and Rem;(k) the following sets:

Add, (k) := {A € Add(Shape(t<z)) | A <t ' (k),res(A) = res(t ' (k))}  (1.24)
and

Rem,(k) := {A € Rem(Shape(t<;)) | A <t~ '(k),res(A) = res(t ' (k))} (1.25)

for all 1 <k <n. By using (1.24), (1.25) we define the degree of the tableau t.

Definition 1.23. Let t € Std(n) be a standard tableau. We define the degree of
the node t~'(k) to be

deg(t1(k)) == |Adde(k)] — [Remq (k).

The degree of the tableau t is the sum of the degrees of its nodes, namely

deg(t) = > deg(t (1))

1.4.3 Combinatorics of quasi-hereditary quotients

We fix two positive integers h, £ € Zwg, e > (h+1)¢ and let 0 = (09, -+ ,04_1) € Z*
be a (h, e)-admissible charge. The order relations we shall use later in the thesis,
arise from the aforementioned charge. Note that these charges are of different

flavour compared to the ones used by Dipper—James-Mathas [DJM98]. Recall



25

from previous subsections that we denote by Z(n) the set of ¢-partitions of n.
We denote by 2 (n) C Zi(n) the subset of ¢-partitions of n with at most h-
columns in each component. By using the usual conventions, we shall denote by
Tabp,(n) C Tab(n) the set of tableaux of shape with at most h columns in each
component. For A € Taby(n), we denote by Std, (), RStd,(A) and CStd,(A) the
set of standard, row-standard and column-standard tableaux of shape with at most
h columns in each component. Moreover, we set by Stdy,(n) := Ue, ,(n) Stdn(A)-

Note that when the subscript h is clear from the context we will omit it.

At this point we shall introduce the order relation, which will be used in the
construction of a filtration for the quasi-hereditary quotients of the cyclotomic
Hecke algebras. Recall that we have already defined the reverse lexicographic
order on the set of boxes/nodes (see Definition 1.22) and we, naturally, define the

reverse lexicographic order on the set of box-configurations.

Definition 1.24. We define the reverse lexicographic order on 5,(n) as follows.
Given A\, p € By(n), A # p, we write A > p if the lexicographically minimal box
Oe (Aup)\ (AN ) belongs to p.

In the following example, we see how the reverse lexicographic order can be viewed
in terms of the lexicographic order of the symmetric group, as the reader might

be more familiar with that one.

Example 1.25. For the symmetric group, the reverse lexicographic ordering is
equal to the transpose of the usual lexicographic ordering. In other words \ = 1 if

there exists some t > 1 such that

o< > ul amd Y N =4

1<i<t 1<i<t 1<i<k 1<i<k

for all 1 < k < t where T denotes the transpose partition. More generally, >
is a total refinement of the so-called “FLOTW” dominance order on & e(n) in

[Bow, BC18, LP].
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Definition 1.26. Let A € Z(n) be an (-partition. We define the standard
tableau ty, € Std(A) to be the tableaux in which we place the entry n in the

minimal >-node of A, then continue in this fashion inductively.

Example 1.27. Let A = (3,2%,1%) € P5,(13) and p = (3,2,17) U {[2,6,1]} €
21(13). Note that the node [3,2,0] is least in the lexicographic order and [3,2,0] ¢
AN and furthermore we have that [3,2,0] € X\. Hence, according to the definition
of the reverse lexicographic order on box-configurations, we have that p > . The

box configurations of the example can be seen in Figure 1.6.

FIGURE 1.6: The left-hand side box-configuration (partition) is A = (3,22, 1)
and the right-hand side box-configuration is x4 = (3,2,17) U [2,6,1]. The node
[3,2,0] € A\, which results to p > A, is highlighted in the first box-configuration.

Example 1.28. Letn =14, { =2, h =3 and A = ((3,2%,1), (2%,1?)) € P5,(14).
Note that the parameters in this example are similar to those in Example 1.18.
However, in order to be consistent with the assumptions and conventions of this
section we have picked the integer h = 3 and now e = 9, so that e > (h + 1)L.
Below we have two examples of standard tableauz of shape X. Note that the tableau

ta is the tableau of Definition 1.26.

112[3] [4]5 1[2[4] [3]5
A 819 < | [6]7 812
AT o] 0 12 » 2| (o] v [9]
13 14 14 13

We shall now give the definition of the Garnir tableaux associated to a node of a

(-partition of the set &2, o(n). We note that the definition can be extended to any
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partition of the set Z(n), but we choose to present it here as it will only be used
in the combinatorics of the principal block of the Hecke algebra. For the study
of the blob algebra we shall introduce Garnir tableaux of different combinatorial

flavour, which will be defined later in the thesis.

Definition 1.29. Given any node A = [r,c,m] € X\ with r # 1, we define the

associated Garnir belt B4 to be the collection of boxes

{r.kl|j>11<k<m}u{r,jml|1<;j<cU

U{[T_lvjam] | CSj}U{[T—l,j,k’] |j217k>m}

Remark 1.30. We emphasise that, by definition, we don’t obtain Garnir belts for
the boxes in the first row of each component. This happens because we use Garnir
belts because of our need to have a useful language for describing the movement

of a box in positions higher in the >-order.
Example 1.31. Let n = 35, 0 = (0,5,10) € Z> and e = 16. We consider the
3-partition X\ = ((3%,22), (4%,3,2), (4%,3,1)) € P, 5(35) and the node [3,3,1]. The

associated Garnir belt is given by

01 5[6]7]8] [to[ii]i2[13

v | [sloft 4[5]6]7 9 [to[11]12
sl [3[4]s5] [8]9]w0
1314 2]3 7]

where here we have coloured the Garnir belt in yellow. We note that this is of a dif-
ferent combinatorial flavour to the Garnir belts of [Mat99] as we are working with
a different weighting on our Hecke algebra, or equivalently a “twisted” Fock-Uglov-

space ordering, or equivalently a Cherednik algebra which is not Morita equivalent

to the cyclotomic q-Schur algebra. See [BC18, LP, LPRH] for more details.

We also note that the Garnir belt is independent of the parameters e, o, however
in this example we use them since we want to show how the residue pattern works

within the Garnir belt.

Remark 1.32. Note that the Garnir belt is independent of e, o. The only reason

we mention them in Example 1.31 is because we want to provide another example
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of how the residues look like. In particular, we want the reader to observe that

within the Garnir belt, each residue appears with multiplicity at most 1.

1.4.4 Blob-type combinatorics

For the study of the blob algebra we use combinatorics that can be viewed as
special cases of the combinatorics described earlier in this chapter. For a positive
integer n € Z-o we shall work with /-partitions of n consisting of two components,
with at most one column in each component. We refer to those partitions as
one-column bipartitions or simply bipartitions of n and we denote the set consisting
of those bipartitions by Bip,(n). Note that such bipartitions are of the form
A = ((1*), (172)) while the nodes of such bipartitions are of the form [i, 1, m]

Remark 1.33. In order to become clear that the combinatorial objects (partitions,
tableaux) that we use in the case of the blob algebra are special cases of the com-
binatorics defined previously, we remark that the set Bip,(n) is another notation
for the set & 5(n). We keep the former because we choose to be aligned with the

notation in [Mic21].

Remark 1.34. Consider the set A, = {—n,—n +2,--- ,n — 2,n}. There is an
obvious bijective map between A,, and the set Bip,(n) of bipartitions of n, given
by

Bip,(n) — Ay, (1), (1)) — A — As.

In other words we can identify each bipartition with an integer in the set A,,. Using
the above bijection we freely identify a bipartition ((1*),(1*2)) and the integer
A1 — Ao

The following remark will adjust the reverse lexicographic order on box-configurations
(see Definition 1.24) in the context of one-column bipartitions. This will provide
an easy criterion about determining the order between one-column bipartitions.
Based on that adjustment, we shall define an order on the set of standard tableaux

which are of shape A € Bip,(n).
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Definition 1.35. Let A = ((1*), (1*2)), u = ((1#1), (1#2)) € Bipy(n) with X # p

be two bipartitions of n. Then

A= o if and only if |Ay — Ao| < |p1 — gzl

If Ay — Ao| = |p1 — p2| and X # p then A and p are incomparable. We say that
A is more dominant than p and we write A > p, if additionally A, u have the same

multiset of residues.

Remark 1.36. We note that in Definition 1.35 the only case that the equality in
the order relation holds is when we compare a bipartition with itself. This is the
only difference of the above partial order with the order of Definition 1.24. For
consistency, we shall keep the same notation as it will be clear from the context

when we refer to the blob algebra.

Definition 1.37. Let t,s € Std()\). We write t < s if and only if

Shape(t<x) =< Shape(s<y)

for 1 < k < n. In addition if res(t) = res(s), we write t <'s and we say that t is

less dominant than s.

Note that if t € Std(n) is a standard tableau, we denote by t* the transpose of t.

For ease of notation we will often use the transpose tableau.

Example 1.38. Let A = ((1),(1%)) € Bip,(10), ¢ = (0,2) and e = 4 and we

consider the standard \-tableauz

¢ = ([0, (12[31A[516]7Is10])

and

' = (8], (2345161719110 )
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We remark that res(t) # res(s) and Shape(t<y) = Shape(s<i), for 1 < k < 7.
However we have that

Shape(t<) = Shape(s<i)

for 8 < k < 10, hence t precedes s in the order of Definition 1.37 and we write

t <s. Now we consider the standard \-tableau

o' = (7). (2121415165191 )

and we note that res(u) = res(s). Since Shape(s<x) = Shape(u<y), for 1 <k <6,
and

Shape(s<j) < Shape(u<g)
for 7 < k <10, we have that s < u, i.e s is less dominant than u.

Definition 1.39. [Plal3, Section 3] Let A = ((1*),(1*2)) € Bip,(n) and m =
min{\;, \2}. We define the initial tableau t* € Std(\) to be the tableau obtained

by filling the nodes increasingly down to columns as follows:

1. even numbers less than or equal to 2m in the first component,
2. odd numbers less than 2m in the second component,

3. numbers greater than 2m in the remaining nodes.

For a given bipartition A = ((1*),(1*?)) € Bip;(n) the standard tableau t* €
Std(A) is maximal under the order of Definition 1.37. Note that the tableau ty of
Definition 1.26 is also maximal but for historic reasons and in order to be aligned
with [Mic21], in the context of the blob algebra we shall use t*. In order to
simplify the notation, in later sections we shall write i* = (i?,--- ,i}) € I" instead

of res(t}) for the residue sequence of the tableau t*.

Remark 1.40. For any A-tableau t we define w; := wEA € G, in the sense of
Definition 1.16. We refer to wy = s;, ---s;,, where s;,.1 < j < k are simple

transpositions, as the reduced expression of t.
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The following remark is of particular importance, as many of the results of the

blob algebra are based on this fact.

Remark 1.41. Let A € Bipy(n) be a bipartition of n and r,r + 1,7+ 2, 1 <r <
n — 2, be three successive positive integers. There are eight different cases for a
standard A-tableau and four of them are depicted in Figure 1.7 and we denote them
(T1)-(T4) respectively. The rest four standard tableaux are the ones obtained by
interchanging the numbers between the components and we denote them (T1)
- (T4’). For instance the tableau (T1’) is the tableau with r 4+ 2 in the first

component and 7,7 + 1 in the second component.

-+ 2|, r , r 4+ 1 and r+1

FIGURE 1.7: We depict the four out of eight different cases of standard tableaux
for three successive integers 7,7 + 1,7 4+ 2 and we denote them (T1)-(T4).

The subword s,.s,115, cannot appear in the reduced expression of any of the above
tableaux, as if we apply it to any standard tableau we get a non-standard tableau.
In particular if t € Std()\) is the initial tableau, the non-standard tableau would be
the one coming from the interchange of the nodes occupied by the entries r, r + 2,
which can be denoted by t,.,,+2. Hence the reduced expression for each tableau is

unique up to the commuting relations of the symmetric group.

Definition 1.42. Let n,n’ € Z be two positive integers with n’ < n. If A € Bip,(n)
and v € Bip,(n') with [v] C [A], we define the skew bipartition A \ v to be the

bipartition with diagram the set difference [A\] — [v].

Definition 1.43. Let n,n’ € Z with n’ < n, A € Bipy(n), v € Bip,(n’) and let
A\ v be the skew bipartition. If t € Std(r) and s € Std(\ \ v) then the A-tableau
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with entries {1,2,--- ,n} in the nodes
(1), ), s (1), s (= )
respectively, is the composition t o s € Std(\) of the tableaux t and s.

The following example will clarify the notions of skew bipartitions and composition

of tableaux.

Example 1.44. Let n = 10 and n' = 4 and consider the bipartitions A =
((1%),(17)) € Bipy(10), v = ((1),(1%)) € Bip,(4). The skew bipartition \ \ v

1s the box-configuration consisting of the following nodes
A\ v]={[2,1,0],[3,1,0], [4,1,1],[5,1,1],[6, 1, 1], [7, 1, 1]}.

Now, we consider the tableau

t= | [3], [2]

4]

in Std(X) and let s € Std(\\ v) be the tableau with

s[2,1,00=2  s[5,1,1] =4
s[3,1,00=3  s[6,1,1]=5

s[4,1,1] =1 s[7,1,1] =6.

The composition tos € Std(\) is the standard tableau

tos=

S

[S[eloofer]e[ro] ]
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We shall now define the concept of Garnir tableaux in the setting of one-column bi-
partitions. As per usual the concept of defining Garnir tableaux starts by defining
Garnir nodes and Garnir belts. Note that previously in this chapter we have spo-
ken about Garnir belts in the context of quasi-hereditary quotients of the quiver

Hecke algebra. In the context of the blob algebra there will be slight differences.

Recall that in Definition 1.29, the only restriction on the node [r,c,m| is that
r # 1. In the context of one-column bipartitions we have the following definition
of a Garnir node. In turn this gives us the definition of a Garnir belt associated

to a Garnir node.

Definition 1.45. Let A € Bip,(n) and A = [r,1,m| € [\] be a node of the diagram

of A\. The node A is called Garnir node if it is not removable.

Suppose that A = [r,1,m] € [\ is a Garnir node and let u := t*[r,1,m] and
v:=1tr+1,1,m]. It is clear from the definition of t* that- for [r, 1, m] be Garnir
node- there are two distinct cases for u and v. In particular it will either be
v=u+1orv=u+2 and recall that [u,v] :={t € Z | u <t < v}. The Garnir
belt B4 is a set consisting of the nodes (t*)~1(k) for k € [u,v].

Remark 1.46. We remark that the Garnir belts for the blob algebra are essentially

the same as in Definition 1.29 up to reindexing.

Definition 1.47. For a Garnir node A = [r, 1,m] € [A] we define a Garnir tableau
G# associated to A to be the M-tableau which:

e coincides with t* outside the Garnir belt B4:

e has the numbers of the set [u,v] in the remaining nodes according to the

following rules.

1. If v = u + 1, then G* has the numbers u, u + 1 from the bottom to the

top in the mth column;

2. if v = u+ 2, then G# has the entries u, u + 1, u + 2 from the bottom to
the top in both components, first by filling one of the components and

then by filling the other.
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Note that we define a Garnir tableau associated to A rather that the Garnir
tableau, as the above definition does not always give a unique tableau. In the
following remark we will clarify this point and we shall give a more concrete

description of the Garnir tableaux.

Remark 1.48. Let A = [r,1,m] be a Garnir node and B# be the Garnir belt
associated to A. When v = u + 1 there is a unique Garnir tableau G*, since there
is a unique way of placing the numbers u,u + 1. In particular, the tableau G4 is
the tableau

G = s,th (1.26)

When v = u + 2 there are two choices of Garnir tableaux. The first choice comes
from filling the first component first and then the second component, while the
second choice comes from filling the second component first and then the first

component. In particular, the two different Garnir tableaux are

A
SuSu+1t

GA = (1.27)

A
Su+1Sut”.

The following example aims to clear the concept of the Garnir tableaux discussed

in Definition 1.47 and Remark 1.48.

Example 1.49. Let n = 12, 0 = (0,2) and e = 4. We consider the bipartition
A = ((1%),(1%)) € Bipy(12) and the nodes A = [2,1,0], B = [6,1,1] € [\] which
are Garnir nodes (i.e removable). The Garnir tableauz associated to A and B are

the following non-standard tableaux

G = and GP =

()
=
|
RS
EEEEREEE

BEEN

HEHEREIESE
HEEREESE
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where the nodes shaded in blue are the Garnir belts of each Garnir tableau. As
expected, there are two distinct Garnir tableaux associated to the node A and one
unique Garnir tableau associated to B. One can easily check that G = s s5t7,

G = s5sut* and GP = sot*, as described in Remark 1.48.

In order to make the notation simpler we introduce the notion of the left and right

A

exposed transposition. Let t € Std(n) with reduced expression wy = s;, - - - s;, .
simple transposition s, is called left exposed (resp. right exposed) if s, = s;, for
some j € {1,---,k} and s, commutes with s;, for all [ < j (resp. [ > j). We also

define the length function of the symmetric group S,,.

Definition 1.50. We define the length L(c) of a permutation o € &,, to be the

least number of simple permutations needed to form o.

Lemma 1.51. Let A € Bip,(n) and t & Std()) is a non-standard tableau of shape
A. Suppose that A = [r,1,m] € X is a node such that t(r,1,m) > t(r + 1,1, m).
Then there exists w € &, such that t = wGY for some Garnir node A’ € \ and
some Garnir tableau G*' and L(w,) = L(w) + L(wgar). Conversely, if t = wG*

with L(wy) = L(w) 4+ L(wgar) then t & Std(N).

Proof. Let u :=t r,1,m|, v =t r+1,1,m|, a :=t[r,1,m] and b := t[r + 1,1, m].
First we consider the case that v = v+ 1. From our discussion in Remark 1.48 we
have that G4 = s,t* and without loss of generality we may assume that [r, 1,m] is
the node with t[r, 1,m] > t[r + 1,1, m]. If t = G* we have nothing to prove, so let
t # GA. If a = v and b = u the result is straightforward. Assume that a # v and
b=a—1 and let s = s,_1t, that is t = s,_1s. Then the word s,_15,5,_1 appears
as subword of w; and by successively applying the braid Coxeter relations we end

up with a subword of the form s,s,_1s, with s, being right exposed. Note that if
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b # a — 1 then t will be of the form

for some 2 < k < a — 1 and we simply have the subword s,_j - - - s4_2 on the left

of $,5,_154.

In any case we have that
t = w'sySy_ 155t = W'sySy_1G* (1.28)

for some permutation w’ € &, and we have factorised the non-standard tableau t

through the unique Garnir tableau associated to A.

Now we consider the case that v = u + 2 and recall that the Garnir tableau
associated to A are the tableaux G’f‘ ‘= 5,585,411 and G‘Z“ = 5,415,t". Same as in
the case v = u + 1, if t = G{! or t = G4 the result is straightforward. Hence we
may assume that t # G{*, G{'. If the entries u, u + 1, u + 2 occupy the nodes in B4
in t then the result is straightforward, that is t = s,,1G{! = 5,G2'. Now suppose
that the numbers u,u + 1,u + 2 do not occupy the nodes of B4, but those nodes
contain consecutive numbers a,a + 1,a + 2. Then if a < v we have that on of
the subwords S,435412 OF Sq125,+3 Will appear in w; and it will be right exposed,
hence

t = wG?, where B := (t")!(a + 2) (1.29)

for some w € &,, and some Garnir tableau G? associated to B. If a > u then

either s, 95,1 ir s,_15,_2 Will appear as subword of w; and it will be right exposed,
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hence

t = wGY, where C := (t")!(a — 2) (1.30)

for some w € &, and some Garnir tableau G associated to C. From (1.28), (1.29)

and (1.30) we have the desired result.

For the converse argument we refer to [APS19, Lemma 1.12]. O



Chapter 2

Cellularity of quasi-hereditary

quotients of Hecke algebras

In this chapter we present one of the main results of this thesis concerning the
quasi-hereditary quotients 527, o € Z*, of cyclotomic quiver Hecke algebras. In
particular, we construct a “classical-type” tableaux-theoretic cellular basis for the
aforementioned quotients. These bases might look familiar to the reader and
remind them the Murphy’s bases for Hecke algebras. However, in this case the
underlying combinatorics are different, as they rely on the non-standard order of
Definition 1.24 for the cellular structure. The results of this chapter form the first
section of the preprint [BCHM20] and they are personal work of the author.

The motivation for the construction of the above cellular basis comes from the
representation theory of the symmetric group. The representation theory of the
symmetric group lies in the intersection of two great categorical theories. The first
is Khovanov-Lauda and Rouquier’s categorification of quantum groups and their
knot invariants [KL09, Rou] and Elias-Williamson’s diagrammatic categorifica-
tion in terms of endomorphisms of Bott—Samelson bimodules. Bowman—Hazi—Cox
[BCH] construct explicit isomorphisms between these two diagrammatic worlds.

For this construction, the “light-leaves” bases of these algebras play crucial role.

38
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In [BCHM20] Bowman—Hazi—-Cox and the author construct such bases for the

quasi-hereditary quotients 7, o € Z*, of cyclotomic quiver Hecke algebras.

The backbone for the construction of the light-leaves basis for the quiver Hecke
algebras is the construction of the tableaux-theoretic cellular basis we mentioned
above, with respect to that order relation. The first section of this chapter is
devoted in defining technicalities and combinatorial analogues of the action of the
dot generators of the algebras. In particular, these analogues will be considered
as maps on the set of box-configurations. Prior to that we define some essential
combinatorial language accompanied with examples, in order to make it easier
for the reader to understand the new concepts. The second section is the most
fruitful section of this chapter and it contains the technical proof that enables
us to construct a chain of two-sided ideals for the quotients 7, o € Z*, with
respect to the order relation of Definition 1.24. The proof massively depends on
the maps defined in the previous section and the order of Definition 2.2 (which is a
coarsening of >). Throughout this section we use a running example which makes
the technical load easier for the reader to digest. Finally, in the last section we
utilise that chain of two-sided ideals and we prove that the algebras /7, o € Z,

are cellular and indeed (over a field k) quasi-hereditary.

2.1 Maps on box-configurations

Let h,{ € Z~g, e > (h+1){ and o € Z* be an (h, e)-admissible charge, as defined
in Definition 1.10. Recall that

) =M [ Hoen HY

is the quotient of the cyclotomic quiver Hecke algebra of Definition 1.11. In order
to construct a tableaux-theoretic basis for the aforementioned quasi-hereditary
quotients, we first need to construct a stratification of J#7 in which each layer
is generated by an idempotent corresponding to some f-partition. Hence we need

to understand the effect of multiplying a generator of a given cell-stratification
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by a KLR dot. Towards that direction, in this section, we define combinatorial

analogues of the dot generators as maps on the set of box-configurations.

Definition 2.1. Let A € By(n) and let [i, j, m] € X be an r-box for some r € Z/eZ.
We say that [i, 7, m] is left-justified if either j < e or there exists some [i, j—p, m] € A

for 1 <p<e.

Recall the reverse lexicographic order > on the set of box configurations as defined
in Definition 1.24. The next definition is crucial for the remainder of this chapter.
It defines a new order relation (which will be a coarsening of ) which will be

mainly used in the proof of Proposition 2.12.

Definition 2.2. Let A\ € By(n), r € Z/eZ. For an r-box a € A, we define
Yo(A) :=A—aUp
where 8 ¢ X is the box with § > « satisfying the following properties:

(7) has residue r;
(17) is left-justified; and

(¢44) is minimal to the order relation > with respect to these properties.

If such box does not exist, we say that Y,(\) is undefined. We write A\ » pu if
A = Y,(u) for some a € p and we then extend » to a partial order on B,(n) by
taking the transitive closure. Suppose that {[ig, jk, mx] | 0 < k < p} is a set of
r-boxes and that Y}, j, m (AU [ig, jk, mi]) = AU [igg1, Jrg1, M) for &> 1. We
define

}/[flyjhml]()\ U [Z‘lajlaml}) = (>\ U [ip’jp’mp])'

Note that the only case that Y, (A) is undefined, is when ¢ = 1 and m = 0.

Remark 2.3. We remark that A » p implies that A > pu. Hence the order » of

Definition 2.2 is a coarsening of >.
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Example 2.4. Let A = (3,2%,1%) € %5,(13) and e = 5 and 0 = 0 € Z.
The residue of the node [3,2,0] is res[3,2,0] = 4. We have that Y320(\) =
(3,22,15) U [2,6,0] € ,(13), since the 4-node [2,6,0] is minimal in the lexico-
graphic order such that [2,6,0] = [3,2,0] and [2,6,0] is left-justified. Note that the
lexicographically least 4-node satisfying the first condition of Definition 2.2, is the
node [2,11,0]. However, the node [2,11,0] is not left-justified, hence we pick the
node [2,6,0] which is also left-justified. The above are depicted in Figure 2.1.

1]2] 1]2]
0 0
4

|w|oo|4>|o|»—|w|oo o

|w|o;>|q>|o|»—|w wlelo

FIGURE 2.1: The pair of box-configurations is the same as in Example 1.27.
Here we also record the residues of each node of the configuration. The left
hand side partition is A and the right hand side box-configuration is ¥[3 2 0)(A).

Example 2.5. Leth=3,(=1,e=5,0 =0 and A = (3,22,1°) € £5,(13) as in
Ezample 2.4. We have that Y, o(A) = (3,2%,1°) U [3,5,0] — [4,1,0], Y, 4(A) =
(3,22,1°)U[2,4,0]—[4,1,0] and Y3, (A) = (3,2%,1°)U[L,8,0]—[4,1,0]. The above
boz-configurations in %1(13) can be found in Figure 2.2. Note that in Y[i@,o]()‘) the
node [4,1,0] does not pass through any node with adjacent residue, as it belongs in

the first column of the row and { = 1.

Given an idempotent indexed by an n-tuple j € (Z/eZ)", we wish to identify in
which layer of the stratification this idempotent belongs to. To this end we make

the following definition.

Definition 2.6. Associated to any n-tuple j = (ji, -, jn) € (Z/eZ)" we define
the tableau J € Std(n) to be the tableau given by placing the entry k =1,2,--- . n
in the lexicographically least addable jip-node of the partition Shape(J<x_;) or

formally setting J = 0 and Shape(J) = @ if no such node exists for some 1 < k < n.
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w
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[+<]
w
1N

[o]es]]o]~]
[o]es]]o]~]
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FIGURE 2.2: The box configurations Y[éll,l,o]()‘)’ [421,1,0]()‘) and Y[i,l,O}(/\) respec-
tively. The partition A is depicted in Figure 2.1.

Example 2.7. Let h = 3, { = 1, e = 5, 0 = 0 and consider the tuple j =
(0,1,4,0,3,4,2,1,0,4,3,2,2) € (Z/5Z)'3. The tableau J € Std(13) described in
Definition 2.6 is depicted in Figure 2.3.

0l1]2] 1]2]13]
410 34
314 5(6
2 | 7]
1] 8]
0] 9 |
4] L0]
3 ] L]
2] 12]

FIGURE 2.3: In the left hand side we have a residue pattern same as the vector
J- In the right hand side we present the tableau J € Std(13), constructed
according to Definition 2.6.
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2.2 Chain of two-sided ideals

We are now ready to construct the chain of two-sided ideals for the quotients 27,
o € Z*. This chain of ideals is the central technical result of this section and will
be used for constructing the tableaux-theoretic cellular basis. In the section we
include some further combinatorial concepts and definitions which are important

in the statement and proof of the main result.

Lemma 2.8. Let A\ € 2,4(n) and o € (Z/eZ)" be (h,e)-admissible. For any box
[i,7,m] € X\ we have that the multiset of residues of boxes in A N BW™ where
BUim™l s the Garnir belt of [i,j,m], is multiplicity-free (i.e. no residue appears

more than once).

Proof. This follows immediately from the definitions, since o € (Z/eZ)" is (h, e)-
admissible. ]

Remark 2.9. Let [i,7,m] € A and suppose [/, ', m'] € B N X is such that
res([7', 7', m']) = res([i, j,m]) — 1.

The most common case of such a box is [¢/,j,m/] = [i,7 — 1,m]. Whenever
Om — Om—1 = h, for m > 0, we also have a case where j = 1 and [, j/,m/] =
[i,h,m —1]. If 0,1 — 09 = e — h, we also have a case where j =1 and m = 0 and
[i',5',m'] = [i — 1, h,£ — 1]. However, we note that the aforementioned cases will

not appear due to restrictions on the charge o.

Definition 2.10. Let A € #), ,(n). We define the Garnir adjacency set of a node
a = [i,j,m], with res(a) = r € Z/eZ, to the set of boxes v € AN B such that
lres(y) — res(a)| < 1 and denote this set by Adj — Gar(a). We also set

res(B®) = {res(v) | v € Adj — Gar(«)}.

Note that for any node v € A, the set Adj — Gar(«) has at most one node of each

possible residue, by Lemma 2.8. We also define the following elements, which will
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be needed for the construction of the chain of two-sided ideals and the cellular

basis.

Definition 2.11. Given s,t € Std(\) we define the element

w: = €s¢wet € %LU

where w € G,, any fixed reduced expression for w; € &,,.

We define 2 1= 7 (e, | v > \)H#° for > any order on P, 4(n); we formally
set 2% = 0 to be the zero ideal.

The next proposition is the technical element of the main result of this chapter.

[

FIGURE 2.4: For n = 13 and A = (23,15), we illustrate how the idempotent,
€(0,1,4,0,3,4,2,1,0,4,3,2,2), labelled by J in Figure 2.3, is rewritten in the form of
equation (2.4). The box moves through each row until it comes to rest at the
point J=1(13) = [1, 3,0]. This involves 8 applications of (2.1) to deduce (2.4) in
this example. For the purposes of later referencing, we label the 9 boxes from
bottom-to-top by a; = [9,6,0],2 = [8,5,0]...,a9 = [1,3,0]

Proposition 2.12. Let A € P (n — 1) and o = [i,5,m] & X with res(a) = r.
We set 3 to be the box determined by

Y (AUa), if Adj — Gar(a) = {r — 1};

Yo(AU @), otherwise.
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Moreover, 3 is undefined if Adj — Gar(a) = 0 and r = 1. We set a = tyua(a) and
b=typ(B). We define

%L(»)\)Uﬁ — Z %Uetuuﬁ%lg S t}fﬂ}}()\uﬁ)
{HE P o (n=1)|u=\,BEu}

and we also define

N Yaltr,., If there exists 1 € Add(trlc, 1) with as-T;
ytAUa -

€ty otherwise.

o IfAUa & Ph(n), then we have that

a [
N TURYL Yo+ AN or
Yiroa € (2.1)
Vo @ a FxuB
i(ya—lwbyguﬁ¢2 - byg\uﬁ 2%) +

if B is defined (the two possible cases are detailed in the proof). If B is undefined,

then e, , = 0.

o IfAUa € Pyy(n), then we have that
Yalir,. € FURYL b + ATV (2.2)

if B is defined. If B is undefined, then yqey, , = 0.

Remark 2.13. By Lemma 2.8, if \Ua € Zp(n) then y; =e

— “tave

Before we proceed to the proof of Proposition 2.12 we shall try to emphasise its
importance by intuitively describing the motivation behind the need of having
such a technical result. The motivation is its immediate Corollary 2.15. We aim
to construct a chain of two-sided ideals for the algebra 7, with respect to the
order >, in which each two-sided ideal is generated by an idempotent e, for
A € Py (n). By using equations (2.1) and (2.2) of Proposition 2.12 , we are able

rewrite any element of

Vo= {e,yr | i€ (Z/eZ)",1 < k <n) (2.3)
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in the required form by moving a given box a through the partition A € &, 4(n),
one row at a time until it comes to rest at some point . We include a running
example of this procedure for the tableau of Figure 2.3. The eight steps (indexed

by nine tableaux) of this procedure are illustrated in Figure 2.4.

Remark 2.14. We remark that in the proof of Proposition 2.12 we often relate
ideals and elements in algebras of smaller and larger rank by using horizontal
concatenation of diagrams, in the sense of the first chapter of the thesis (see Figures
1.4, 1.5). The reason we can do that is by the definition of the reverse lexicographic
order. In more detail, the order > distinguishes between box configurations based

on the first discrepancy upon reading a pair of box configurations backwards.

Proof of Proposition 2.12. We assume the equation (2.1) holds for all \Ua = v ¢
P4(k) and equation (2.2) holds for all A\Ua =v € P (k) for all 1 < k < n.
(The k = 1 base case is trivial.) By repeated applications of equations (2.1) and
(2.2) we know that the algebra %7 has a chain of 2-sided ideals 7" indexed
by v € Py (k) for 1 < k < n. In particular, for any j = (ji,...,jx) € (Z/eZ),

1 <k < n, we have that

e; € TUL Y + 7 if Shape()) = v € Py (k) 0

e; =0 if Shape(J) = @

where zZtJV, "@j” are obtained by zptjy, ' respectively, by possibly adding dot dec-
orations along the strands. Also for v € &, 4(k), 1 < k < n, the element y,e,

belongs to c%’jf_” for any 1 <a < n.

We can now further assume that the result has been proven for all v of the form
pUa=ve Pp(n) for some pi- A in P, (n — 1), thus leaving us to prove the
result for all v = AU« for A € &, 4(n — 1). By Definition 2.2, res(a)) = res(/5)

and we set this residue equal to r € Z/eZ for the remainder of the proof.

Proof of equation (2.1) for a given A and «. We include a running example

of our algorithm for ¢ = 5 and ¢ = 1 and A = (23,1°%). There are four cases to
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consider, depending on the residue of the final node in the column (i.e. the residue

of the strand labelled by o/ =t} (a — 1)).

(4)

(i7)

Suppose o’ =ty (a — 1) has residue r € Z/eZ and so Yiow = €t BY
application of relations R4 and R5, we have that
Ctaua — wa—lya—letAanaya—l - yawa—lya—let)\u(lwa—l- (25)

An example of the visualisation of the idempotents on the righthand-side of
equation (2.5) is given in the first step of Figure 2.4; the corresponding righthand-
side of equation (2.5) is depicted in Figure 2.5. Now, we have that

Ya—1Cty o = (ya—letAUaigaﬂ) Xe, X Ctyuad>a

and so by our inductive assumption for equation (2.2) for rank a — 1 < n, we

have that

-1 b A
yaflet)\Ua S ,l/}Z yguﬁiga_lwafl IE et/\UBJzza + %’L( )Ug
-1 b A
= l()l y;uﬁ a—1 + '%071( Jop
where we have implicitly used the following facts: (i) Yj,“ (AUa) = A\UaUp—do
(%) trauadsq = taupds, and (7ii) once we have moved o/ to position 3, the a box
is free to move into the newly unoccupied position. Substituting this back into

equation (2.5), we obtain

Ctrua € wl?ytiuﬂwgya—l - ya¢gyguﬁ¢g + %(»A)UB (26)

as required. An example is depicted in Figure 2.5 (although we remark that the

up

error terms belonging to e%”nOH) are actually all zero in this case).

Now suppose ty',(a — 1) = [z,9, 2] has residue r + 1 € Z/eZ. Here we need
to consider two separate cases. We first consider the case in which [z,y, 2] =

[i,1,m], which will be the easier one. By Lemma 2.8 and relation R5 we have
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thua, 0140342104322 0140342104322
t)\UOCQ é - é
Buas 0140342104322 0140342104322

FIGURE 2.5: We continue with the example in Figure 2.4 for A\ = (2¢,13). This
is the righthand-side of equation (2.5) for yizet,,,,, -
that
ytiuQ = Yaltyva = Ya—1Cta0a — et)\Ualpa_let)\UBw(l—letAuQ (2'7>

were the former term belongs to the required ideal by equation (2.1) for rank

a — 1 < n. Note that in this case we simply have that b = a — 1.

The second case is the one in which y > 1. Then the (a — 2)th, (a — 1)th and

ath strands have residues r, r 4+ 1, and r respectively. We have that

y:;\Ua = Ctava = etAana—2¢a—1¢a—2€tAUa - etAana—l,@Da—Z@ba—l@t,\ua

= —€t, wa—Qwa—lya—lwa—lwa—26t>\Ua

+ etxu(x¢a—1wa—2ya—2¢)a—2¢a—1@t,\u(¥~ (28)

where the first equality follows from relation R6 and the second follows from
relations R4 and R5. We set £ = Shape(ta.,_5). The two terms in equation
(2.8) factor through the elements

Cinloy o Ner1 Myre,, Meg o e, , Xyre,Mep 1 Meyy o (2.9)
—_— —_—
£U[m,y,z] EU[.CE,y—LZ}
respectively.

e We first consider the latter term on the righthand-side of equation (2.8) (which
we will see, is the required non-zero term). We note that [z,y — 1, z] and «
have the same residue and so Yj, y—1.)(§U [z, y —1,2]) =§U S — [z,y — 1, 2].

By our inductive assumption that (2.2) holds for rank a — 2 < n, we have

t)\Ual
t/\UOéQ

t)\UOq
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that
Ctylcqr K Y16 = Yo 2t y1,2) € (o 2y1:U5 a2t % 3 (2.10)
Substituting this back into the second term of equation (2.9) we obtain
o Qy';uﬁ b Ren, X'etxu,lin €Y~ Zytiu,a b+ (%ﬂ(%/\)UB

and then substituting into the second term of equation (2.8) we obtain

etAUadja 1¢a 2Ya— 2¢a 2¢a 1€taua € wa 1’¢a 2¢a 2yt>;\uﬁ a— 2,¢a Q@ZJQ— ‘I'%(}})\)Uﬁ

=y ytwﬁlpb + %pn(%\

as required.

We now consider the former term of equation (2.8) (which, we will see, is zero
modulo the ideal). We have that Y] [xyz (€U [z, y,2]) = Uy »=E U [z,y,2] for
v a box of residue r + 1 € Z/eZ. We set ¢ = tgw(fy) and We have that

B -2 2 (6)uy
€t£ IE €T+1 — €tw[ - wz 6t£U’y . —2 € wa yt§U C—Q + %—2

z,y,2]

by our inductive assumption that the equation (2.1) holds for rank a —2 < n.
We now consider the concatenation with y,e,. We have that Y, ;1 (Vs (§U
@, y,2]) Ulz,y — 1,2]) = Ypy1E Uy U[z,y —1,2]) = U~y U S for
v = B » [r,y — 1,z with v a box of residue r + 1 € Z/eZ. We have
that

a—1, > (FE)urUs
Cteuy X Y1€r = Ya—1Cte 0 00,y-1,2] S w ytgu'yué a-17 jiﬂ

by induction for rank a — 1 < n and (2.4). Finally, we concatenate again to

obtain

Ctytey o, Ner1 Wyre,, Bey 1, €90 Yy~ 0 Vo 1Vaot %f» B

Ytsomus- [,y,2]
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and we note that the idempotent on the righthand-side is labelled by (AU~ —
[z,y,2]) UB where AU~y — [z,y, z] > \. Therefore this element belongs to the

ideal %(}H)UB as required.

(i43) Now suppose o/ = t,} (a — 1) has residue d € Z/eZ such that |d —r| > 1. We
set & = Shape(ty.,_;). By case 2 of relation R5, we have that

y]l;,:et/\Ua = ¢a—1 ( etA\L<g‘—1 IX y]fe'f &ed IX et)\UomL>a)q/}a—1 <211)
~—_——

EUa

for k € {0,1}. By the inductive assumption for rank a < n of equation (2.1),

we have that

k -1 b ~E)UB
Ctyleq_1 Nyie. € 77/1(? etguﬁwa—l + ‘%(—1 )

and so, as in the case (ii) above, we concatenate to deduce the result. Two
examples of the visualisation of the righthand-side of equation (2.11) are given
in the third and fourth steps of Figure 2.4; the corresponding elements are

depicted in Figure 2.6.

taUas 0140342104232 0140342102432
t/\UCM4 é é
Eruas 0140342104232 0140342102432

FIGURE 2.6: The righthand-side of (2.11) for A = (2¢,13) and a = a3 and oy
respectively. Note that this is the case of (2.11) where & = 0, as there is no
addable box of residue 2.

(iv) Supposety'(a—1) = [z,y, 2] has residue r—1 € Z/eZ (thus [z, y, x] = [i, j—1,m]
by residue considerations). We also note that [i —1, j, m] € X. To see this, if [i —
1, j,m] € A, this implies that A\Ua € &7, ¢(n) and so the process would terminate.

Let vy = [i — 1,5 — 1,m] and we set ¢ = t(7) and let £ = Shape(ty).,_1) (see

t)\UOz4
t)\Ua5

t)\Ua4
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Figure 2.8 for an example). Then y; = e, and we have that

Ctrin = Ctra Va2Vl ety (2.12)
= €ty a1V U0 P16ty — o Ve 1Pie (2.13)
= et 0 Vet ¥s — ch—l(etg—fy Xe, 1, X etwa@awﬁ (2.14)
=~ Vel — Vo (er_ Wer g Wey 1 )Ue (2.15)
= — U5, Ve — Vi (ere, Mer iy Meg 0 Y0 (2.16)

where the first and third equalities follow from the commuting case 2 of rela-
tion R5 and Lemma 2.8; the second equality follows from case 1 of relation R6;
the fourth equality follows from relation R4; and the fifth equality is either
trivial or follows from the case 3 of relation R5 (in the latter case, the error
term is zero by our inductive assumption for rank ¢ — 1 < n of equation (2.1)).
For our continuing example, the righthand-side of equation (2.16) is depicted
in Figure 2.7; the box-configurations labelling the idempotents on the left and
righthand-sides of (2.16) are depicted in Figure 2.8.

0140342120432 0140342120432

tAUa5

e 0140342120432 0140342120432

FIGURE 2.7: The righthand-side of (2.14) for A = (2%,13) and @ = a5 is the
respective box in Figure (2.4).

We now consider the second term on the righthand-side of equation (2.16), and
we have that

Cte_, X Er—1orr = etg—'yu[i,j—l,m]UaU[i,j+e,m]'

We will prove that this term is zero modulo the ideal e%’iz(%‘)uﬁ . By our inductive

assumption for ranks @ —2,a — 1 < n for equation (2.1), we have that:

= >

p)U
€ A5 = e, € P

Cte ulij—1,m) a [i,j—1,m]Ua

tAUa5

tAUas
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0]1 01 01
4 4 4]0
3]4 3]4 3|4
2 H
1]2] “ 1]2] — 1
0 0 0
4 4 4
3 3 3
2] 2] 2]

FIGURE 2.8: Let e = 5 and ¢ = 1. The left hand-side is A U a5 as in Figure 2.4
(with £ shaded grey). The righthand-side labels the idempotents obtained from
applying equation (2.16).

for p = Y[fﬁlm](f —~yUli,j —1,m]). Given m# (pU~), we can left justify
wU[i, j+e,m] to obtain TUa. We note that B*N7 contains no nodes of residue
r or r = 1. Therefore

€ i%’fl(buwuﬁ = e, Wep 1 Mey .., € %L(»A)Uﬁ

€te_Uli,j—1,mlUavlij+e,m]

as required. (Note that v, 8 € m by Lemma 2.8.) See Figure 2.9 for an example.

0]1 0]1
4]0 4]o]1]
3]4 3]4
z
1]2 © .
0 0
4] 4
B B
2] 2]

FIGURE 2.9: Rewriting the first term after the equality in equation (2.16). We
have moved the 1-box using case (ii7) and this leaves us free to move the 2-boxes
up their corresponding diagonals.

Proof of equation (2.2) for a given A and a. We assume that (2.2) holds for
all A € Zp(n—1). Weset v = AUa and we have that y; = e, .. Recall that
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a is a box of residue r € Z/eZ. Let 1 < k < a < n, we know that
Ui, € FURYL Wb + ATV (2.17)

by our inductive assumption on rank £ < a < n and the definition of »= It remains

to compute the product y,e;, . We have that

Ya—1C€t50q + et/\anlchet,\uﬂwtbzetAUa ifr—1e reS(Adj - Gar(a));
Yalirva = \ Yslros if r — 1 & res(Adj — Gar(«v)) # 0;

0 if res(Adj — Gar(a)) = 0.

\

(2.18)

In the first case, the statement follows from case 3 of relation R5 and the commuta-
tivity relations. To see this note that the (a—1)th strand has residue r—1 € Z/eZ.
In the second case, this follows from case 4 of relation R5 and the commutativity
relations. To see this note that b + 1 < a is maximal such that the correspond-
ing strand is of adjacent residue (namely, r + 1 € Z/eZ), by Lemma 2.8. In the
third case, this follows from from the commutativity and cyclotomic relations. By
equation (2.17), the dotted terms on the righthand-side of equation (2.18) belong

to the required ideal. O

We let A0 = AU ... XM denote the complete set of elements of 22, ,(n)
enumerated according to the total ordering >. Note that we use square brackets
in order not to confuse the enumeration of the /-partitions with the notation for

components of a given (-partition.

Corollary 2.15. For j € (Z/eZ)", we have that

ej € iIZtJJZJU + 7" if Shape(J) = v € P (n) (2.19)

e; =0 if Shape(J) = @

where QZtJV, Aj” are obtained by thV, v, respectively, by possibly adding dot decora-

tions along the strands. For v € P, 4(n), the element yqe,, belongs to F7 for
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any 1 < a <n. In particular, the Z-algebra €7 has a chain of two-sided ideals

m

a0 = Al0] = Al SAm
O=s¢, CcxH "~ CH " C-- CIH = .

Proof. This follows from repeated applications of Proposition 2.12 and the defini-
tion of the reverse lexicographic ordering (and the fact that - is a coarsening of

>). O

2.3 A tableaux-theoretic basis

In this last section of the second chapter we construct the cellular basis for our
quotients of the quiver Hecke algebras. We start the section by preparing the

ground for the proof of the main theorem, which is Theorem 2.17.

Recall that the set ), defined in (2.3), contains elements in s which are poly-
nomials on the generators yq,--- ,y,. The following technical result is an amal-
gamation of Lemma 2.4 and Proposition 2.5 of [BKW11] and it is crucial towards

constructing a basis for our algebra.

Proposition 2.16. Let w € &,,. We let w, w' be any two choices of reduced

expression for w and let v be any non-reduced expression for w. We have that

eithwe; = eithwe; + Z eithufu(y)e; (2.20)
r<w,w’
eithye; = Z ez%eigg(y) (2.21)
z<v
YkeiPuwe; = ejPuweiYu(r) + Z eize; (2.22)
z<w

for some f.(y), 9:(y) € V.

The following theorem is the basic result of this chapter and provides a graded
cellular basis for the algebra 7. In order to prove this theorem we shall utilise
all the technical work we did previously and in particular Proposition 2.12, hence

Corollary 2.15.
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Theorem 2.17. Let k be an integral domain. The k-algebra 7 is a graded

cellular algebra with basis
{vi ¥ | st € Std(A), A € Phe(n)}. (2.23)
We let 7> be the k-submodule of S£° with basis

{Ur, oy | u,v € Std(p), pp € Pyp(n), = A}

Under the anti-involution x: 7 — 7 we have (Y5 )" = ©f . The
degree function deg: 7 — Z inherited from Definition 1.7. Fork a field, 7

1S quasi-hereditary.

Proof. Let d € ;7,7 ¢; be an arbitrary element of the algebra. By equation (2.19)

we can rewrite e; (or equivalently e;) so that

d= Z €z Er, Ay€;
z,ye6n
for some a,, a, € 7 which are linear combinations of KLR elements tracing out
some bijections z,y € &,, respectively (but possibly decorated with dots and need
not be reduced) and A = Shape(J) (see Definition 2.6). It remains to show that
ag,ay € 7 can be assumed to be reduced and undecorated. We establish this

by induction along the Bruhat order, by working modulo the span of elements
spany {1 e, ¥y | u < 2 or v < y} 4+ . (2.24)

If the word z is not reduced, then the element e, a, is zero modulo (2.24) by
equation (2.21). Given two choices z, 2’ of reduced expression for x € &,, we have
that (¢, — 1w )er,a, belongs to equation (2.24) by equation (2.20). Finally, if a,
is obtained from v, by adding a linear combination of dot decorations (at any

points within the expression 1, = ¢, ..., ) then ¢,er,a, is zero modulo (2.24)
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by equation (2.22). Thus 5=/ is spanned by elements of the form
{@Dzetﬂ/}g | for x,y € &, } + %;)\' (2.25)

Note that z,y are arbitrary choices of fixed reduced expressions of x,y € &,,. It
remains to show that a spanning set is given by the elements = wy, , y = we for
s,t € Std(A). In order to prove this, we need show that when the tableaux indexing
these words are non-standard, then the elements belong to the ideal #~*. More
precisely we will proceed by assuming that t is either column or row standard, but

non-standard. We will then prove that the element e; belongs to 5.

We first consider the case that t is column-standard and not row-standard, that
is t € CStd(A\) \ Std(A\). Then we have that w* has a pair of crossing strands
from 1 <i < j <ntol <w?(j) < w(i) < n such that t; (i) = [r,c,m] and
t,'(j) = [r,c + 1,m] are in the same row and in particular so that i = j — 1. It
suffices to show that 1,er, 1, belongs to the ideal H7* for a preferred choice of
y; we choose y = s;w (for some w € &,, such that s;w = y). Thus it remains to
show that e, 15, belongs to 7. However, this immediately follows from (2.1)

because e, Vs, = 15, €5,(ty) and we have that e, ,) € S~ for a = Yot (A) = A

We now consider the case that t is row-standard but not column-standard, that
is t € RStd(A) \ Std(A). We let & be minimal such that t}_, € Std(u) for some
p € Pry(k —1) and Shape(tl;) = v, for some v € Cpo(k) \ Phe(k). We have
that e = ey, Mey_,, and since v € Cpe(k) \ Pe(k), by equation (2.1), we have
that e;_, € J#". Then by concatenation and the definition of the order -, we

have that e € ., *. This implies that e, 1f = e, € A7, as required.
In addition, we notice that there is no tableau s € Std(X), A € &, ¢(n), with
res(s) = (41,91 + 1,41 + 2,...,91 + h).

Hence, any idempotent of the form e, ... ;, +) annihilates the cell modules and the
algebra JZ7 is of rank at least > \c 5 |Std(\)|2. Therefore, the spanning set

is linearly independent (and hence a basis) as required.
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Finally, we note that each layer of the cell chain contains an idempotent e;,. Hence

when k is a field, by [KX99a], the algebra is quasi-hereditary as required. O

Remark 2.18. A nice property of the quasi-hereditary algebras is that their simple
modules are generated by an idempotent hence they have the same number of cell

and simple modules.



Chapter 3

Simple modules of the blob
algebra

In this chapter we present the basic results of our research on the blob algebra. The
main algebraic and combinatorial concepts have been defined in the first chapter
and the notation will follow from there. The first section of this chapter is devoted
to the alcove geometry of type Ay. Alcove geometries will play central role in the
proofs of this study as they provide a way of visualising our arguments. In the
second section we shall briefly present basic results on the blob algebra, proven by
other researchers, which form the building blocks for our proofs. The third section
is devoted in the construction of homomorphisms between cell modules of the blob
algebra (regardless the characteristic of the field). We also construct the images
of these homomorphisms which will be crucial in the calculation of the radical of
the cell modules. In section 4, by utilising the images of the homomorphisms we
construct bases for the simple modules of the blob algebra over a field of character-
istic zero. In order to do that we construct a BY-module with bar-invariant graded
dimension and we prove it to be equal to the simple head of the corresponding

simple module.

One of the main reasons we initiated our study is [dBELS18], where de Boeck,

58
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Evseev, Lyle and Speyer constructed bases for the simple modules of Temperley—
Lieb algebras of type A. Our ambition was to construct such bases for simple
modules of Temperley—Lieb algebras of type B over a field of characteristic zero.
The blob algebra has a very rich and fruitful combinatorial theory arising from

the fact that we need to consider partitions with 2 components.

The work presented in this chapter is based on the author’s work in [Mic21].

3.1 Alcove geometry of type A

Let {e1,e2} be formal symbols. We consider the 2-dimensional Euclidean space

V.= @Rei

i=1,2

with basis {e1,£2} and let Vz., be the Z>q-span of {€1,e2}. To any bipartition
A = ((1M),(1*)) € Bip;(n) we attach a point of the Euclidean space V via
the embedding ((1*), (1)) — >7,_; , Aig;. We consider the affine Weyl group
Wag = ég of type fll with ay = g1 — €9 the corresponding simple real root. Note
that the affine Weyl group is generated by the reflection s,, _1/2 and the reflection
Say,1/2, Where the later corresponds to translation of the former by eay. Let (-,-)
be a symmetric bilinear form on V' determined by (e;,¢;) = 9, j, where 0, ; is the

Kronecker delta. For a given e-bicharge o = (09, 01) we set p := (01 — 0p)e;.

Definition 3.1. For any m € Z we define the hyperplane

Hy oy ={v eV [ (v+p ar) =me}. (3.1)

and we sometimes refer such a hyperplane as a wall.
For any m € Z there exists a unique reflection s,, ,—1/2 such that

Sal,mf% U=V ((U + P, al) - me)al
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for any v € V. In other words s4, ;,—1/2 acts on V' by reflection with respect to the
hyperplane H,, y,—1/2. From now on, since we have only one simple real root ay,
we shall write simply H,,_1/2, Sm—1/2 for the wall and the reflection corresponding

to the integer m € Z, respectively.

For any two integers r, s € Z we denote by [r, s] the set [r,s] ={t € Z | r <t < s}.

For n € Z~, we define Path(n) to be the set of maps 7: [0,n] — V7_, such that
7(0) =0 and w(k + 1) — 7w(k) € {e1,€2}

for all k € [0,n — 1] and we call its elements paths from 0 to n. Given a standard

tableau t € Std(n) we define the point (k) in the space Vz_, by the formula
Wt(k) = Ck’l(t)zfil + Ck72(t)€2 (32)

where ¢ ;(t) is the number of nodes of the tableau t<j in the ith component.
Using the aforementioned notation we shall define the path in V7 attached to a

standard tableau t € Std(\).

Definition 3.2. Let t € Std(n) be a standard tableau. We define the path 7

corresponding to the tableau t given by the sequence of points

in the sense of relation (3.2). There is a bijection between the set Std(d) of

standard tableaux and the set of paths Path(d), given by t — .

Definition 3.3. Let t € Std(d) and suppose that m(a) € H,,_1/2 is the ith
intersection point of 7, with the hyperplane H,, /5. We define the path s | jo T

as follows

e (k fo<k<a
) (k) = (k)

G

N|=

Sme1/2 - Te(k) ifa<k<n

We refer to the path s’ Jo - Tt @S the reflected path through the ith intersection

point of m with the hyperplane H,, 1 /s.
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Remark 3.4. Note that if the path m; intersects the hyperplane H,,_;/, at a unique
point, then we shall denote the reflected path simply by s,,_1/2 - 7.

FIGURE 3.1: The path T and the reflected path 52_1/2 - T.

In Figure 3.1 we visualise the last definition. We consider a Pascal triangle with
points corresponding to integers and the top of the triangle corresponds to 0. We
can represent the paths in V' as paths in the Pascal triangle starting from the
top and moving downwards. Let A = ((1*), (1*2)) € Bip;(n) and t € Std()\) be
a standard tableau. The path 7 is a path starting from the top of the Pascal
triangle and ending at a point corresponding to the integer \; — Ay at the level
n of the triangle. We draw a path with endpoint the bipartition A and we also
draw the reflected path through its second intersection point with the hyperplane
H_y),.

Let u,v € Vz_, such that u —v = ¢g;, 1 = 1,2. Then we define the degree of the
pair (u,v) as follows

)
1 ifueH, 1 and |(v+ p,aq)| < |me| for some m € Z;

deg(u,v) :==q —1 ifve H,, 1 and |(u+ p,a1)| > |me] for some m € Z; (3.3)

0 otherwise.
\

By using relation (3.3) we are able to give a reinterpretation of the degree of a

tableau in terms of paths.
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Definition 3.5. Let t € Std(n) and 7, € Path(n) be the path corresponding to t.

The integer

n—1
deg(m) == » _ deg(me(k), m(k + 1))
k=0
is the degree of the path 7.

Remark 3.6. By [Plal3, Corrolary 4.6] we have that the degree of the path

coincides with the degree of the tableau t.

Using the aforementioned notions we are able to describe an alcove geometry on

the Euclidean space V. We say that for any m € Z, the set of points
an:={veV | me<(v+pay) <(m+1l)e}

forms an alcove. By the definition of the hyperplane as presented in (3.1), we can
deduce that the origin, namely the point (0,0), will always lie in an alcove and

not on a hyperplane.

Notation. From now on we shall not distinguish between the standard tableau
and the corresponding path. Namely, we will denote the path corresponding to
the tableau t by

T =(T(0),---,T(n)) € Path(n).

Moreover, let A € Bip,(n) and p € Bip,(n’) with n’ < n. We denote by Path(y —
A) the set of paths starting from the bipartition p and ending at the bipartition
A. We also let Path(\) := Path(@ — \). Namely the paths of Path(\) are paths
starting from the top of the Pascal triangle and they have the bipartition A as

endpoint. By using the above notation we have that

Path(n) = | J Path()).

A€EBIip; (n)

In the following example we shall summarise most of the facts we discussed above.

Recall that we denote by t* the transpose of a tableau t € Std(n).
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Example 3.7. Suppose n = 9, e = 4, 0 = (0,2) and let X = ((12),(17)), u =
((1%), (1%)) € Bip,(9). We consider the A\-tableau

¢ = ([A17), O12[31516]519]).

By following the description above we can construct the path corresponding to the
tableau t as in the left picture in Figure 3.1. We observe that the path T intersects
the hyperplane H_y,5 at two points which correspond to the steps t1_1/2 and t2_1/2
of the path. Then we obtain the reflected paths 351/2 - T, 531/2 - T and the later is
also pictured in Figure 3.1. The endpoint of the reflected paths is the bipartition

L.

Moreover one can easily calculate the degree of the path T to be equal to —1. To

see this note that deg(T(3),T(4)) = —1 and degree is zero otherwise. This is
something we expect since deg(t™1(4)) = —1 and the rest nodes of the tableau t are
of degree 0.

The residue sequence of the tableau t is
res(t) = (2,1,0,0,3,2,3,1,0)
and we observe that res(sQ_l/2 -t) = res(t).

More generally, from [Plal3, Lemma 4.7] we have that given any two tableaux

t,s € Std(n) we have that

res(t) =res(s) <= T = sjll_l/Q e 352—1/2 -S (3.4)

7

for some simple reflections s;,_1/2, 1 <1 < a. Given two bipartitions A, 1 € Bip,(n)
and T € Path(\), we define the set of p-paths which can be obtained by T by a

series of reflections as follows:

Path(p, T) := {S € Path(u) | S = 3511_1/2 e 522_1/2 - T, for some s;, 15 € Sy}
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Now we equip our alcove geometry with a length function

] m if )\151 + )\282 € a,
0 Bipy(n) — 12, A= (1), (1)) s

m—% if Ajeq1 + Ageg € Hm—é

We will also give a useful geometric interpretation of the dominance order on
tableaux, mentioned in Definition 1.37 in terms of the alcove geometry. Given
two tableau t,s € Std(n) with res(t) = res(s) we say that the node t~1(k) is less
dominant that the node s™'(k) in the sense of Definition 1.35 if and only if

|£(Shape(t<k)| > |¢(Shape(s<)]-

The tableau t is less dominant than s if and only if t7'(k) < s7'(k), 1 < k < n,
and there is at least one node of t strictly less dominant than the corresponding

node of s.

Example 3.8. We continue on the Example 3.7 and we have that {(\) = —1
while £(pn) = 0. The paths S1,Ss drawn in the following figure are the elements of
Path(u, T).

«v X
AN
[ ]

|
I

I

N

| S
v
K |

! I
. .
! |
! '

F1cURE 3.2: The paths S; and So are solid. The path T is dotted.
In particular we have that S; = 31_1/2 - T and Se = 32_1/2 - T. Moreover we observe

that 51 [Z 52 [Z T.

Recall that to each bipartition A = ((1*),(1*?)) € Bip;(n) we can attach the

integer \; — \y. Hence the action of the affine Weyl group W,g on the set of
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bipartitions of d can be described in terms of the action of W4 on Z. In particular,
reflection s,,_1 /2 corresponds to reflection about the integers (ag - 01) + me, for
all m € Z. Note that the integer obtained by reflecting as above corresponds to
a bipartition of d. We say that two bipartitions A, u are linked with respect to
the alcove geometry of type Ay and we write A ~ w1 if they belong to the same
Wag-orbit, i.e A € Weg - p. If T € Path(\) then the paths linked with T are the
paths of Path(u, T), defined above, for ;1 ~ A. The paths linked with the path
T* will be of particular interest when we construct homomorphisms of the blob
algebra. We define
Path_()) := | J Path(u, T).

u=A
Remark 3.9. If A\, u € Bip,(n) are two bipartitions, we note that A is less dominant
than p if and only if A ~ p and [¢(N\)| > [€(n)], i.e. A is further away from the

origin of the Pascal triangle than pu.

Let us see an example regarding the notions we discussed above.

Example 3.10. Letn =9,e = 4,0 = (0,2) as in Example 3.7 and A = ((1), (18)) €
Bip,(9). Then

' = (2} OBHIEIEIIE0))

and the paths linked with T* are drawn in the following diagram

FIGURE 3.3: The red path is the path T* and the black ones are those linked
with T

The new linked paths correspond to the tableauz

i = ([219) (I3[4I5]6I7I8] )
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s, = ([2IEI0I7Ts] [IT31419])

and

s, = ([ZEIeITIs10) (11314

Thus Path(\) = {T*,S1,S,,S3} and one can easily see that for a given bipartition
w € Bip,(9), Path(u,t*) # 0 implies p > .

3.2 Algebraic structure of the blob algebra

In this section we shall briefly present some the basic properties of the blob algebra.
This will include the adjustment of the general algebraic properties of Chapter 1,
in the context of the blob algebra. These properties are essential for our work and
have been proven by various researchers in the past. This is the reason we shall

not provide detailed proofs and we shall refer to the relevant literature instead.

If w=s;-s, €6, is a reduced expression of an element of the symmetric
group, recall that
77ij :¢i1"'¢iz S B(TTL

Also, recall that for any tableau t € Std(\), A € Bip,(n), we have defined the
reduced expression wy = s;, - -+ 5;, € 6, such that t = wet*. Recall from Remark
1.41 that the reduced expression of t is unique up to the commuting relations of

the symmetric group. We define the element

wt = wh Tt ,l/}ilez'A7

and again by Remark 1.41 and (3.2) we have that the product v, - - - 1, is unique
up to the commuting KLR relation (i.e. the second relation of (R3)). Suppose
that A € Bip,(n) and t,s € Std(\). We set

77Dst = @steg)‘@bt* S BZ
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Remark 3.11. In order to connect the element 1) € B? above with the elements

¢ of Definition 2.11, we remark that

Pee = YF UL

For ease of notation, in the remainder of the thesis we shall carry on using the

symbol 1.

The following theorem summarises the fact that the blob algebra is cellular in the
sense of Graham—Lehrer [GLI6|, as presented in the first chapter of the thesis.

Moreover, it has the structure of a graded cellular algebra in the sense of [HM10]

Theorem 3.12 ([PRH14, Theorem 6.10]). The blob algebra B is a graded k-
algebra with basis

{ts | s,t € Std(\) for X € Bip,(n)}.

We let B?

n,>A

be the k-submodule of BY with basis

{Yu | u,v € Std(p) for p € Bip(n), u> A}

Under the anti-involution x: BS — BY, we have ¢}, = s. For any X € Bip,(n),

n’

t € Std(\) and a € BY there exists o, € k such that for all s € Std(\)

s = Z aythye mod B .

uesStd(A)

In particular the blob algebra BY is a graded cellular algebra.

Again by the classical theory of cellular algebras as presented in the first chapter,

we know that there exists a family of modules {A(\) | A € Bip,(\)} with k-basis

{¢e [ t € Std(MN)}
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called cell or standard modules and there is a unique bilinear form (-,-): A(X\) x

A(N) — k such that (s, 1) for s, t € Std()\), is given by

<¢sa %WW = wus¢tv mod BZ,DA'

The radical of a cell module A()\) is given by
rad A(N) :=={x € A(\) | (z,y) =0 for all y € A(\)}

and let L(A) := A(N)/rad A(X). By [MWO0O0, Section 9], the bilinear form is
non-degenerate and so BY is quasi-hereditary with simples {L()\) | A € Bip,(n)}.

In this thesis we focus our interest in the graded version of the blob algebra. Many
of the proofs of the known results for the graded case, use results for the ungraded
case. Moreover, the results in the ungraded case are motivation for similar results

when we add the graded structure.

Let M be a finite dimensional graded Bf-module and let M = €p,_, M; be its

decomposition into direct sum of homogeneous components.

Definition 3.13. We define the graded dimension of M to be the polynomial
dim, (M) == > (dimM;)t' € Z[t, ¢ ']
1€EL

where ¢ is an indeterminate.

Moreover if L(A) is a simple graded BZ-module, we denote by L(\)(k) the graded
B?-module obtained by shifting the grading on L(A) up by k, namely

LN (k) =P LK), = D L),y

1€EZ €7

The following theorem summarises the work of Plaza and Ryom-Hansen using
the Hu and Mathas’ work on graded cellular structure of KLR algebras, [PRH14,
HM10].
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Theorem 3.14. Let L(\), A € Bip,(n) be a simple module. Then
{L(N){k) | A € Bipy(n) and k € Z}
s a complete set of pairwise non-isomorphic simple graded BY-modules.

We also have the following useful proposition from [HM10] regarding the graded

dimension of a simple module.

Proposition 3.15. For any A € Bip,(n) the graded dimension of the simple

module L(X\) is bar-invariant (i.e., fived under interchanging t and t=1).
Proof. See [HM10, Proposition 1.8]. O

It is also important to know the block structure of the blob algebra. In our case
of study the block structure is controlled by a linkage property with respect to the
affine Weyl group W,g of type A

Proposition 3.16 ([MWO00, Theorem 9.3]). Let A\, € Bipy(n). Two simple
modules L(X\), L(u) are in the same block of BZ if and only if X\ and p are in the

same orbit, i.e X € Wag - 1.

For a graded BZ-module M we denote by [M: L(\)(k)] the graded multiplicity of
the simple module L(A)(k) as a graded composition factor of M. Then the graded

decomposition number is

[M: L\ = [M: LK) € Z[t, t7].

In particular we are interested in the decomposition matrix D = (d,x)ureBip, (n),

that is the decomposition numbers
dux = [A(u): LA e

which were computed, over a field k of characteristic zero, by Plaza [Plal3]. The

closed formula for the graded decomposition number [A(u): L(N)]; depends on
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whether the bipartition A lies in an alcove or on a hyperplane. However using the
length function we defined before we can amalgamate the two distinct formulas
into one. In what follows we assume that p > A, since this is the only case we can
have a non-zero decomposition number, by Theorem 3.12. The following theorem

gives the graded decomposition numbers of the blob algebra.

Theorem 3.17 ([Plal3, Theorem 5.11, 5.15]). Let k be a field of characteristic
zero and let A\, i € Bipy(d) be two linked bipartitions with A < p. Then

[A(p): L(N)]y = ¢l

Remark 3.18. We remark that by the construction of our alcove geometry the

difference |[¢(X)| — [¢(w)| is strictly positive for A < p.

Example 3.19. We continue with the Ezample 3.10 and let N, = ((1%),(17)),
Ao = ((19), (1), A3 = ((1°),(13)). According to Theorem 3.17, the (non-zero)

graded decomposition numbers are the following:

AN : L) =1, [AO): L] =1, [A): L] = 2 and [A(\): LV)] = .

3.3 Omne column homomorphisms between cell

modules

In this section we shall construct homomorphisms between certain cell modules of
the blob algebra. By using the fact that BY is quasi-hereditary, we know that for
a given bipartition v € Bip,(n) we have Homg, (A('), A(v)) # 0 only if v/ < v.
For the purposes of the thesis we need to construct homomorphisms between cell
modules indexed by linked bipartitions which also have lengths with absolute value

differing by one.

Let p € Bip,(n) be a bipartition with ¢(x) = m or {(u) = m—1/2 for some integer

m € Z. Equivalently p lies in the alcove a,, or in the hyperplane H,,_; .
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1. Suppose that ¢(u) = m, m € Z. There exist at most two bipartitions A, A’
with A\, A" ~ pu satisfying [¢(N)| = [£(N)| = [€(u)| + 1. We wish to distinguish
between these bipartitions (when they exist).

e If m < 0 is a non-positive integer then we let £(\) < 0 and £(\) > 0;

e if m > 0 is a positive integer then we let £(A) > 0 and ¢(\') < 0.

In this case we shall construct maps in the sets Homgs (A(N), A(x)) and
Homes (A(\), A(s))

2. Suppose that ¢(u) = m — 1/2, m € Z. In this case we fix the unique
bipartition X\ with A" ~ g and [¢(X)| = |€(n)| + 1, such that

e if m < 0 is a non-positive integer then £(\') > 0;

e if m > 0 is a positive integer then ¢(\") < 0.
In this case we shall construct map in the set Homgs (A(N), A(u)).

Notation. From now on we will make the following abuse of notation. We shall
not distinguish between the tableau t and the attached path T and both will be
denoted by T. Moreover we shall denote by t! /2 the ith intersection point of

the path T with the hyperplane H,,_; /.

In what follows we shall restrict ourselves in the case that m < 0 and we shall
construct the maps we discussed above. Note that the results are not affected by
whether m < 0 or m > 0. This is just a convention in order to save space since

everything is analogous for m > 0.

Definition 3.20. Let u € Bip,(n) be a bipartition.

1. If ¢(n) = m, m < 0, we define the maps ¢4 : A(X) — A(u) and ¢, : A(N) —
A(p) as follows:
P\ (Y1) = ¢sm_1/2~T>‘ (3.5)

and

Py (thrar) 1= Uy, v (3.6)
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where the paths s,,_1/2 - T* and 51/2 T are the reflections of the paths T,
T through the hyperplanes H,,_; /2, Hi /2 respectively.

2. If {(p) = m —1/2, m <0, then we define the map ¢¥,: A(N) — A(p) on
the same way as in equation (3.6).
Remark 3.21. Note that each of the paths T* and TV intersects the hyperplanes
H,,_1/2 and H,/y at precisely one point and we have dropped the superscripts.

Remark 3.22. In the case that m > 0, we can define the maps ¢ and ¢4, in an

analogous way. In particular, if /(x) = m > 0, then

W’;WTA) = ¢sm+1/2~T)‘ and SOI;/ (¢TA’) = ¢5,1/2-T>"

where sp,41/2 - T* and s_,4 /2 T are the reflections of the paths T?, T™ through
the hyperplanes H,, 12, H_1/2 respectively. If £(;1) = m — 1/2 then the desired

map is Q) (Vrv) =, | 1.

In the next proposition we shall prove that the maps of Definition 3.20 are indeed
B?-module homomorphisms. We cover the m < 0 case, since the other case works

analogously.

At this point we shall prove that the relations of Proposition 3.23 hold in a cell
module. In addition, we shall prove that the relations below form a presentation
for the cell modules of the blob algebra. Both results are essential for proving that

the maps of Definition 3.20 are module homomorphisms.

Proposition 3.23 (Relations for cell modules). Let A = ((1*), (1*?)) € Bip,(n).

Then
e(i)brr = 0 tbrr, 6,0 the Kronecker delta, (3.7)
yshra = 0 (3.8)
UV X if r,r + 1 are in different components
R (3.9)
0 otherwise
Vephpra = 0 (3.10)

Vb = 0 (311)
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foralll<r<n-—1,1<s<nand1<t<2min{\;, Ao} —2. We refer to the

relations (3.9)-(3.11) as Garnir relations.

Proof. Let e;, © € I" be a KLR idempotent of B. By the orthogonality relation

we have that

Y if i =i
ePa = €jepn =
0 otherwise.

The element ¢, corresponds to a tableau with residue sequence

A A A A
(Z1>"' s g1y byttt 7Zn)'
We use the fact that for any standard tableau T the element v, is unique up to
the second KLR relation of (R3) by Remark 1.41. If the nodes of T* occupied
by the entries r, r 4+ 1 are in the same component, then any tableau with such
residue sequence indexes elements in the ideal B ), hence ¢.e;,» = 0 modulo more
dominant terms. If they are in different components then the only choice for a
tableau with the above residue sequence and corresponding permutation consisting
of the generator 1), is the tableau T, , hence Yrep = @/JT?HTH. The element
yse;» corresponds to a tableau with residue sequence i* € I"™. The unique tableau

with that residue sequence is T*. However

deg(yse;») = 2 # 0 = deg(e;n)

thus y,e,n. Regarding relation (3.10), if ¢,£+1 are in the same component then the
result follows from (3.9). If ¢, ¢ + 1 are in different components then the element

Yer190¢e,n corresponds to a tableau with residue sequence
A A A A A
(Zh AR RIS TR 7Zn)‘

But such standard A-tableau does not exist hence t;19:e;x = 0 modulo terms

in the ideal By ., (we note that there are p-tableaux of this residue sequence, for

w>A). Similarly we prove relation (3.11). O
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Proposition 3.24. Let A € Bip,(n). The generator ¥ and relations of Propo-
sition 3.23 form a presentation for the cell module A(N).

Proof. By Proposition 3.23 we have that the desired relations are satisfied. By
Lemma 1.51 and the fact that we know a basis for the cell modules, we deduce
that this list of relations is complete. Hence this is enough for proving that the

relations, together with the generator ¥1x, form a presentation for the cell module

A(N). O

Proposition 3.25. Let 1 € Bip,(n) with ((u) = m, m < 0. The maps ¢ : A(X) —
A(p) and ¢, - A(N) — A(p) of Definition 3.20 are homomorphisms of B -

modules.

Proof. We shall prove the result for the map ¢ and then similar arguments apply
for the map ¢%,. By Proposition 3.24 we need to show that the relations (3.9)-
(3.11) of Theorem 3.23 are satisfied. Recall that ¢} (is) =1 | 7 and let us
denote S := s,,_1/2 - T*. Also let S(q) = T*(q) € Hy—1/2, for some 1 < ¢ <n—1,
be the unique reflection point of the path T* through the hyperplane H,,_; /2-
Then

i (Y ) =eiths
:’(/]ws e(wg ll) el‘M
:51’,res(5) ¢w5 Ein

:51,res(<pi(¢TA))90l)f(wT>‘) (312>

for any idempotent e; and so relation (3.7) holds. Now consider the generator y,

for some 1 < s < n. We claim

Ysoh () = ysths = 0. (3.13)

To see the claim we note that deg(T*) = 0, deg(S) = 1 and the degree of the

element ys1s is equal to 3. By residue considerations we can see that there does
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not exist a path of degree 3 terminating at o with residue sequence res(S). Hence

relation (3.8) holds.

Consider the element 1,¢% (1)12), for some 1 <r # ¢ < n. then

QWPK(?#TA) - 1/17«%
(
Ys, ..., it r,r+1 arein different components

0 otherwise

(
ON(W1r), pyq  if 77+ 1 are in different components

| 0 otherwise.

In order to prove that relation (3.9) holds we need to consider the case r = q. By
construction, the simple transposition s, exists in ws and it is left exposed. Hence
s = gy, -y em. Since res(S7(q)) = res(S7H(g + 1)) + 1 (since we reflected

through a hyperplane at this point) we have that

s = Vitss

= (yq+1 - yq)w%s'

But both summands are zero and we can see that by using the same arguments

as in the proof of relation (3.13). Thus 1,1)s = 0 and so relation (3.9) holds.

Consider the product ¥,419,@4 (¢12), for 7 = T*(A) where A is a Garnir node as
in the statement of Theorem 3.23. Then

%H%@ﬁ(lﬁﬂ) = %HM% = errlwsr(S)

and we deduce that the product is zero (modulo terms in the ideal BZ ), since

n,>u
there does not exist standard p-tableau with residue sequence res(s,.1s,.S); this
we use an argument identical to the proof of relation (3.12). Hence relation (3.10)

is satisfied. Similarly we prove that relation (3.11) is also satisfied. O
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FIGURE 3.4: The black path is a length increasing path whereas the red path
is non-length-increasing.

The proof is identical in the case that p € Bip,(n) lies on a hyperplane. We

present the result without repeating the proof.

Proposition 3.26. Let p € Bipy(n) with ¢(u) = m — 1/2, m < 0. The map
oh s A(N) — A(p) of Definition 3.20 is a homomorphism of BS-modules.

Proof. The proof is identical to the proof of Proposition 3.25. O]

In the last part of this section, we shall discuss a specific type of paths which will

be the building blocks of the main proofs of this chapter.

Definition 3.27. Let T € Std(n) be a standard tableau. The path T is called

length increasing if
|¢(Shape(T<x))| < [((Shape(T<p+1))l
foralll1 <k <n.

An example of a length increasing path along with a non-length-increasing path

can be seen in Figure 3.4.
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An alternative criterion to be a length increasing path of shape p is that for a given
bipartition p € Bip,(n) with £(u) = m < 0 (resp. ¢(u) = m > 0) every length in-
creasing path in Path(u) intersects with the hyperplanes H_; /9, - -, Hyyp1/2 (resp.
Hyjg, - ,Hm_1/2> at exactly one point and it does not intersect Hy, 132, Hpys/2, -
(resp. Hp—3/2, Hi—5/2,--+). In the exceptional case that ¢(u) = 0 we have that
a length increasing path is a path that does not leave the fundamental alcove at

any point. This criterion can be also visualised in Figure 3.4.

The following lemma shows that the generators of the cell modules indexed by

length increasing paths belong to the simple head.

Lemma 3.28. Let v € Bip,(n) and T € Path(v) be a length increasing path. Then
the element 11 belongs to the simple module L(v).

Proof. Let res(T) € I™ be the residue sequence of T. Since T is length increasing,
the set Path(v/, T”) is non-empty only if #/ &> v. Hence we have that e,esm)A(V') =
0, for any bipartition v/ <v. Thus ety L(v') = 0, for any bipartition v’ <v. This
shows that the element 1 belongs to a composition factor of A(u) not of the form

L(V), v/ <, so it belongs to the simple head L(v). O

3.4 Image of the homomorphisms

In this section we shall construct the image of the homomorphisms ¢4, and ¢}
of Definition 3.20. This will be the decisive step for constructing the radical of a
cell module A(u) since the images of the homomorphisms are closely related with

that, as we will see in the next section of this chapter.

Same as in last section we cover the case that m < 0, since all the arguments
work equally in the case m > 0 up to relabelling hyperplanes. In the alcove case
we compute the image of both ¢, ¢4, whereas in the hyperplane case it is only

necessary to consider the homomorphism ¢¥.
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Suppose that T; € Path()\’) is a length increasing path. The image of the element

Y1, under the homomorphism ¢¥, is

SOI[)J:’ (le) = w81/2‘T1

since the path s1/5 - Ty is the unique path with residue sequence equal to res(T)
terminating at the bipartition p. For the same reason, if {(u) = m, m < 0 and
T, € Path()\) is a length increasing path then the image of the element 1, under

the homomorphism ¢} is

%0;)1: (sz) = w5m71/2'—r2 °

The following proposition is one of the main results of the section and describes a
spanning set for the image of the homomorphism ¢%,. Note that the result holds

for both ¢(p) = m and ¢(u) = m —1/2, m <O0.

Proposition 3.29. The homomorphism ¢4, : A(N) — A(u) of Definition 3.20

15 an injective homomorphism. Moreover
1. ifm <0

Imyhy, = span {¢y | U € Path(p), U intersects Hy o},

2. ifm >0
Imeh, = span {¢py | U € Path(p), U intersects H_/}.

Proof. We cover the case m < 0 as the other one works similarly. Take any path
U € Path(u) and suppose that it intersects the hyperplane H;/; at n-many points
and let Uiy be the final one. Then we notice that the reflection Siyo U through
the final point that U intersects the hyperplane H,/, gives a path terminating at
X. This shows that there is a bijection between the paths in Path(u) intersecting
Hy/, and the paths in Path()\). We will prove that any path intersecting the
hyperplane Hj/, belongs indeed to the image of 4, and thus the result will follow
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from the fact that the dimension of A()’) is equal to the dimension of the image

of ¢h,.

We consider the path T# and we fix integer a € Z, 1 <a <n—1. Let T € Path(u)
be the maximal path, under the lexicographic order, with the property T(a) € Hy/o
(see Figures 3.5, 3.6). We proceed by considering each value, a, one at a time.
Since T must intersect H; /5 at some point by assumption, this allows us to consider

all such paths.

Note that the reflection sy/; - T of the path T through the hyperplane H,/; is a
length increasing path in Path()\). Hence the element 11 belongs to the image
of the homomorphism ¢f,. Let U € Path(x) be any path which intersects the
hyperplane H;, at the point U(a) = T(a), with wy = s;, - - - 55, € &,, its reduced
expression. Since T is the maximal path, under the lexicographic order, with

T(a) € Hy/o we have that wy is a subword of wy.

*—— e ——9——9——9o— — -
.
—— e ——9®—-——9®——o— — -

- — 9o — — 90— — -
- — 9o —— 90— — -

-— - °-

..)’\,
FIGURE 3.5: For n = 20, p = ((17), (1*)), £(n) = =3/2, e = 4, 0 = (0,2) and
a = 4 the red path is the path T. The shaded area corresponds to all the paths

that can be obtained from T and the elements corresponding to them belong to
the image of gof(. Any path within the shaded region has s4s3s5 as a subword.

|
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Note that the subword wr will be right exposed, as otherwise the condition U(a) €

H;/, would not hold. We can rewrite the reduced expression wy as

wy = 8, - spwr, 1<IU<E

71
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hence U =s;, ---5;, T, 1 <1 < k.

‘e

I\

- — 9o — — 90— — -
.

- — 8- — 08— — 46— — - — - — 0— — —o—

*— -0 - -9 - — 92— —9—— -

*—— 9 ——9o— — -

.- — -
.- — -

FIGURE 3.6: For n = 20, p = ((19), (1'%)), £(n) = =2, e = 4, 0 = (0,2) and
a = 4 the blue path is the path T. The shaded area corresponds to all the paths
that can be obtained from T and the elements corresponding to them belong to
the image of gp’; . Any path within the shaded region has s4s3s5 as a subword.

Then the basis element ¢y corresponding to the path U can be written as

Yy =Yy YT

and it belongs to the image of ¢4, since 1)1 does. By repeating the same procedure
for all admissible integers a € Z, 1 < a < n, we prove that all paths in Path(u)
which intersect the hyperplane H;/, correspond to elements in the image of the

homomorphism ¢¥. O

Example 3.30. Let n =20, e =4, 0 = (0,2) and p = ((17), (1'?)) € Bip,(20). If
T = 548385 TH then we observe that the path

S= 815814816S188138158178385312814816328486811513815818385878108128141-”
can be written as

S = S15814816818813815817833581281481682868118138158187810812814(8483851_“)

= 515514516518513515517535551251451652565115135155157510512514 |
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by using the Coxeter relations of the symmetric group (see Figure 3.7).

13 +513
514 ¢514 1514

*— — - — - — - — - — 80— — o — —o—
—— e ——9®—-——9®——e— — -

- — 9 — — 90— — -
*—— e ——9e——9e——9o— — -

*——9e——9o— — -

.- — -
.- — -

ILL . . . . . X,

FIGURE 3.7: The red path is the path T intersecting the hyperplane Hy 5 at the
point T(4). The blue path is the path S which intersects H; /o at S(4) = T(4)
and it belongs to the image of the homomorphism <p‘/<,.

Hence the basis element s can be written as

s = P15¥1a16Y18V130 150170305 V1000141602V V131501 Y02 atlT € A(p)

and since the element 1 belongs to the image of ¢’,, we have that s also belongs

to the image of ¢,

Recall that the homomorphism ¢4: A(X) — A(p) only exists when £(p) = m,
that is the bipartition p lies in the alcove a,,. The construction of the spanning set
for the image of the homomorphism ¢4 is the next important result of the thesis
towards our aim to construct bases for the irreducible representations of BJ. For

completeness we give the spanning sets for both m < 0 and m > 0.

Proposition 3.31. The homomorphism ©5: A(X) — A(u) of Definition 3.20 is

an njective homomorphism. Moreover

1. ifm <0

UePath(u), U last intersects Hy, 1,5 or
wo__ 5 m
Imp) = spany {IDU | intersects Hyo after intersecting H_ 1,5 |7
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2. ifm >0

UePath(u), U last intersects H, or
mwo_ ) m+1/2
Impy = spany {¢U | intersects H_y 9 after intersecting Hy 15 (-

Before presenting the proof, we shall give an example which illustrates which paths

we are referring to in the statement of Proposition 3.31.

Example 3.32. Let n = 20, e = 4, 0 = (0,2) and consider the bipartition
po= ((1%), (1)) with £(u) = m = —2. Then X = ((1*), (1'%)) is the bipartition
linked with p with ¢(\) = —3 (see Figure 3.8). The hyperplanes that we shall be
interested in are H_y /5, Hyso which are the hyperplanes of the fundamental alcove

and the hyperplane H,,_ /o = H_5/5 which is the left hyperplane of the alcove a_;.

*— — 82— — 09— — - — 06— — - — 90— — —o—
e - — e ——9e—— 9o ——9— — -
- —9e——9o— — -

- — 9o — — 90— — -
-— - -

.- — -

A

FiGure 3.8: The blue and the black path label elements which belong in the
image of gpéf whereas the red path labels an element not in the image of gpéf .

The black path is a path which intersects the hyperplane Hy o after intersecting the
hyperplane H_, 5. The blue path is a path last intersecting the hyperplane H_s /5.
Both paths belong to the image of the homomorphism ¢X. On the other hand the
red path does intersect the hyperplane H_s5/5, but it last intersects H_gz/ and it

does not belong to the image of ©h.

Let = ((1#1),(1#2)) € Bipy(n) with {(u) = m < 0, i.e. p3 < pe. We shall con-
struct a path T € Path(y) which intersects hyperplanes H_y 9, -, Hyi3/2, Hin—1/2
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at exactly one point, hyperplane H,, i/, at exactly two points and it does not
intersect hyperplane H, )y, as follows. Let j € Z, 1 < j < n — 1 be such
that T(i) = T#(i), for any 1 < i < j + 1, and recall from relation (3.2) that
T(j5) = ¢;1(T)er + ¢;2(T)eg. Also let g > j such that T(q) € H_y/5 and T(q) =
cq1(T)e1+cqga(T)eg with ¢, 1(T) = ¢;1(T) and ¢, 2(T) = ¢;2(T) +n—j. We denote
by a € Z the integer with the property T(a) € Hp,_1/2 and c,1(T) = ¢;1(T),
Ca2(T) = cn2(T) + [€(p)|e. Finally, let T(b) € Hp,1/2 be the second intersection
point of T with H,,,,/». Note that the integers j, ¢, a, b determine the path T. The

diagram corresponding to the basis element 7 is presented in Figure 3.9.

AMIE e

Pq

21

FIGURE 3.9: The general form of the diagram corresponding to the element
1. Here the crossing marked with red is the crossing ¢,_1 and the colouring
has nothing to do with the residues adjacent to it.

Notation. Let v € Bip;(n) and T € Path(v) be a path. We denote by tf”_“l/2 the
last intersection point of the path T with the hyperplane H,_,/,, for some ¢ € Z.
Also we denote by s;aftl /2 the reflection through that point with respect to the

hyperplane H,_; 5.

Proof of Proposition 3.31. Same as in the proof of Proposition 3.29 we cover the
case m < 0. Let a € Z, 1 < a < n be a fixed integer such that if « = ((1*1), (1*2))
is a bipartition of a, then oy —ay € H,,—1/2. Also let T* € Std(«) be the a-tableau
which is maximal with respect to the order of Definition 1.37. Consider the skew
bipartition A\« and let S;S" € Path(av — A) be length increasing paths which are
highest and lowest in the lexicographic order respectively (see Figure 3.10). Recall
that the elements of the set Path(aw — ) are paths starting from the bipartition
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a € Hp,_1/; and endpoint the bipartition A. All the remaining length increasing
A\a-paths placed between S and S’ can be obtained by multiplying with a product
of transpositions on the tableau S and we focus on S, S’ for the ease of notation.
We define the standard A-tableaux T := T oS (in the sense of Definition 1.43)
and T :=T%0S and let T := Sm—1/2 - T and T = Sm—1/2 - 1" be the reflection of
those paths through the unique point they intersect the hyperplane H,,_; /. Note
that since the paths T, T’ are length increasing paths, the basis elements 1+, 14,
corresponding to the paths 'i', T belong the image of the homomorphism 4.

We shall prove that if the generators ¢,, a < r < n act on ¥4 then ¥,19; is a
non-zero element and it corresponds to a path which either last intersects H,,_1 /2
or intersects Hy o after intersecting H_y /5. Since ,¢+ belongs to the image of ¢,
the new element will also belong to the image of ¢. For any a < r < d such that
s, T does not intersect Hp,_1/2, Hyyq1/2, it is straightforward that ¢4 = wsﬁ
because s, T is the unique tableau with the desired residue sequence. Let b € 7Z,

a < b < n,such that (s,T)(b) € Hpy1/2. Since sy T =< T we also have that

Uphs = Y ¢

and the element 1,1+ is a non zero element which belongs to the image of the
homomorphism ¢}. We also need to prove that ¢,1+, 1 < r < n is a non zero
element which belongs to the radical. Consider the element 3, and let b € Z
be such that (s,T")(b) € H,,—3/2. This is the only interesting case as for the rest
cases the result is straightforward. The transposition s, will appear in the reduced

expression of T’ and it will be left exposed. Hence
Vpibs, = Vi, - Ay Py e

with ¢ 3 =y, - -wAb -+ -1, e;n, Where by 1@, we mean that the generator 1, does
not appear in the product. Since res((s,T')~'(0)) = res((s,T')"'(b + 1)) + 1, by
applying the KLR relation (R5) we have that

Vg = (Yor1 — Yo) ¥y, -
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Step 1: We shall prove that yy419, ¢ = 0. Let (s,T')(n) € H_ 5, for some ¢ € Z,
be the unique intersection point of the path s, T’ with the hyperplane H_, /2-

|
*
|
|
]
|
|
]
|
|
]
!
|
¢
|
|
*
|
|
]
|
!
.

e —— e ——9——9—— 90— — -

.
|
l
.
I
' |
.
| |
| |
[} [}
| |
| |
[} [}
I I
I I
[} .

*—— 9 —— 90— — -

.- — -

'
.
A H
FIGURE 3.10: Let n = 20, e = 4 and 0 = (0,2). For a = 14 and b = 18 the
paths T (red), T’ (blue) and s18T’ (black) are depicted above. The paths S and

S’ are the bits of the T and T starting from the hyperplane H_; /2 all the way
down to A. In this case ¢ = 6.

In order to compute the product yy11%, + it is easier to consider the diagrammatic
presentation of our algebra. In particular the diagram of the element sy1)3, is of

the form of Figure 3.9.

Note that the diagram consists of strands moving towards up to the right (UR-
strands) and strands moving towards up to the left (UL-strands). If the I*" UR-
strand (resp. UL-strand) carries the residue i € Z/eZ then the (I+xe)™, z € Z,,
UR-strand (resp. UL-strand) also carries the residue i € Z/eZ. We colour strands

carrying the same residue with the same colour.

We apply the generator yy41 on the element ¢, 4 and we obtain the element

corresponding to the following diagram.
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By applying the KLR-relation (R4) in the case that the residues coincide we get

the following combination of diagrams:

(3.14)

We take the first summand of (3.14) and by reapplying the KLR relation (R4) we

obtain two more summands.

Those new summands are both equal to zero. The first one by the Garnir relation
(3.8) and the second one because it corresponds to a non standard tableau. We
now consider the second summand of (3.14) and we apply the KLR relation (R6).

We obtain the element

which is equal to zero because of the Garnir relations. Finally we get that

yb-i,-l’(/)sb-i-/ - 0

Step 2: Now we shall consider the product yy1, 4 and we shall distinguish be-
tween two cases according to the length of p. If [¢(u)| > 1, then the unique
clement of Path(u, s,T') with degree equal to deg(s,T’) + 2 is the path V; :=
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Smt1/25m+3/251/25—1/2 - (53 T'), hence
¢b¢'i” = OZV1¢V1

with av, € k. If [¢(z1)] = 1, then the unique path in Path(s, s, T') with the desired
property is the path Vy 1= 33/23%/2 - (s, T'), hence

Upthy, 71 = v, v,

with ay, € k. In order to prove that the homomorphism ¢4 is injective it suffices
to prove that the scalars ay,, ay, € k are non-zero. We prove it for the scalar
ay, € k since the proof for ay, € k will be a subcase. The element yyi, 4

corresponds to the diagram

By the KLR relation (R4) we have that the above element is equal to the following

combination of diagrams:

s

By using similar arguments as above, the first summand is zero. We now consider
the second summand and we apply the KLR-relation (R6), hence we obtain the

diagram
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s

We apply the KLR-relation (R5) for the case that the residues are not equal and
the do not differ by one. The we obtain the diagram

e

in which we can apply the KLR relation (R5) for the case that the residues differ

by one. Then we get the following sum of diagrams.

I

where strands with different colours carry different residues which differ by one.
We apply the KLR relations (R4) and (R6) appropriately until we obtain reduced

diagrams. Then the only non-zero summand is of the form

Hence we have proven that the scalar ay, € k is equal to £1 and we shall not
be interested in keeping track of its value. As a result the homomorphism ¢ is

injective homomorphism.

In any case the element 114, corresponds to the path Vi := s,,11/28m43/251/25-1/2°

(sb'i" ) which intersects the hyperplane H; /» after intersecting the hyperplane H_j /.
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By repeating the same procedure for all admissible integers a € Z we prove that
the paths which either last intersect H,, i/, or intersect H, , after intersecting

H_ )5, correspond to elements in the image of ¢¥.

Dimension count: In order to complete the proof we need to prove that any
element in the image of ¢ either last intersects H,,_q /2 or intersects Hyy after

intersecting H_; /5. For that purpose it suffices to show that the map
¢ : Path(\) — Path(u)
defined by

slast LU, if U last intersects H,,_1/o
B(U) = m—1/2 /

last last last :
Sip1/251725 072 " U, otherwise

is an injective map of degree one, with image containing the paths in Path(u)
which either last intersect H,,_;/, or intersect Hy/, after intersecting H_;,5. Let
U € Path(n) be a path which last intersects the hyperplane H,,_ 1/ at the point
uffjl/? Then we have that

(I)(Sisjl/z -U)=U

hence U belongs to the image of the map ®. Consider an arbitrary path V €

Path(x) which intersects both hyperplanes H_,/, and H,/,. Suppose that if vlla/szt =

V(ny) is the last intersection point with the hyperplane Hj/,, then there exists an

intersection point v 12 = V(ny) with ny < ng and assume that n; is the greatest
last

integer with that property. Moreover let v,2%, , = V(n3) be the last intersection

point of V with H,,;1/2. Then
@(321/23113/85312%/2 V)=V

hence V belongs to the image of ®. Since both those types of paths belong to the
image of ¢\ we have proven that any element in the image corresponds to a path of

that form. The fact that ® is of degree 1 is straightforward by its construction. [J
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3.5 Bases of simple modules

This is the last section of this chapter. We shall use all the work done in the
previous sections and we shall construct the bases for the simple modules of the

blob algebra over a field of characteristic zero.

From now on let k be a field of characteristic 0. Recall from Section 3.2 that for a
given bipartition p € Bip,(n) with ¢(x) < 0 we fix two bipartitions A, A" and con-
sider the homomorphisms ¢4, ¢4, of Definition 3.20. Note that everything works
on the same way if ¢(u) > 0, so we restrict ourselves to the previous case. Let us
denote by Ime¥, and Img) the images of the above homomorphisms, constructed

in Propositions 3.29 and 3.31 respectively. We denote by E(u) the quotient module

E(p) = A(p)/(Im @4, 4 Tm ¢h),

i.e. the cell module A(x) modulo the sum of the images of the homomorphisms.
From the results of the previous section we have that when p belongs to an alcove,
E(p) is spanned by elements corresponding to paths which do not intersect the
hyperplane H;/, and they do not last intersect the hyperplane H,,_ ;. In the
hyperplane case we have that the module F(u) is spanned by elements 11 where

T is a path which does not intersect the hyperplane Hj .

A key step towards constructing our bases for the simple modules is the fact
that the graded dimension of E(u) is bar invariant. For this reason the following

construction is of particular importance.

Construction 3.33. For any path T € Path(u) with Y+ € E(u) we shall con-
struct a path T € Path(u) with ¥1 € E(u) and deg(T) = —deg(T). We denote by
t;71/2>t§71/27 -+« the intersection points of T with the hyperplane H,_, /5 for some
q < 0. For the construction of T we focus our attention on the intersection points
of T with the hyperplanes. Let Tf;—1/2 be an intersection point of T with the hyper-

1+1
q—1/2

then for all point between T271/2 and Ti:ll/Q (which belong to an alcove) we have

plane H,_y/5. If the next point that T intersects any hyperplane is the point t

that T(a) := (52_1/2 -T)(a). We need to consider the case that the next intersection
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FIGURE 3.11: The black path is the path T and the red path is the path T.
The numbers in black and red are the integers contributing to the degree of T
and T respectively.

point is tg_3/2, for some 3, or t2—1/2 15 the last intersection point of T with any
hyperplane. In these cases, for the points between tf]q/z and t273/2 or the points

from tf;—l/2 until the end of the path respectively, we have that T(a) := T(a).

Note that the above construction does not depend on whether the bipartition u

lies in an alcove or on a hyperplane.

Example 3.34. Suppose that n = 24, e = 4 and 0 = (0,2). We consider the
bipartition u = ((1%), (1'%)) € Bip;(24) and let T € Path(u) be the black path in
Figure 3.11 which corresponds to the basis element 1 € E(((1%),(1%))). The
path T has degree deg(T) = —2. The path T € Path(u) obtained by the procedure
we described before, is the red path in Figure 3.11. One can readily check that
deg(T) =2 = — deg(T).

Remark 3.35. Suppose that o € Bipy(n) with ¢(u) = m > 0. Then the elements
spanning the module E(u) are of the form 1 where T is a path which does not

intersect H_;, and does not last intersect the hyperplane H,, /.
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Using the notions we defined above we can state and prove the following theorems.
Those theorems are two of the main results of our paper and gives a precise
description of the basis of an irreducible representation of the blob algebra over a

field of characteristic 0, in the alcove and hyperplane cases.

Theorem 3.36. Let u € Bip,(n) with ((11) = m. The module E(u) is equal to the

simple head L(u), hence

1. ifm <0

B TePath(u), T does not intersect Hyp
L(p) = spany {¢T | and does not last intersect Hy, 19 ’

2. ifm >0

B TePath(u), T does not intersect H_y
L(p) = spany, {wT | and does not last intersect Hy, 11 /9 )

Proof. We consider the quotient module E(u). For any path T € Path(u) with
1 € E(u) we have already shown (see Construction 3.33) that there exists a path
T € Path(u) with deg(T) = —deg(T) and therefore dim,(E(p)) is bar-invariant.
Suppose that F(u) is not simple. Then it will have a simple constituent L(«), with
o < p, with multiplicity equal to the decomposition number d,,(t) = ¢ € tNy(t),
by Theorem 3.17 (note that this holds because we are working over a field of
characteristic zero). Moreover, by Theorem 3.15 we know that the simple modules
have bar-invariant characters. Considering the above, the graded dimension of
E(u) is not bar-invariant, as strictly positive shifts of bar-invariant polynomials
are not bar-invariant polynomials, which is a contradiction. Hence, we have proven

that E(u) = L(p). O

The following theorem is the analogous of Theorem 3.36 in the hyperplane case.

Theorem 3.37. Let p € Bip,(n) with {(n) = m —1/2. The module E(u) is equal
to the simple head L(u), hence
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1. ifm <0

L(p) = spany {11 | T € Path(u), T does not intersect Hy o},

2. ifm >0

L(p) = spany {1 | T € Path(u), T does not intersect H_1/5}.

Proof. The proof is identical to the proof of Theorem 3.36.



Chapter 4

BGG resolutions

In 1975 Bernstein, Gelfand and Gelfand [BGGT75] constructed resolutions for finite
Weyl groups in the context of finite dimensional Lie algebras. In more detail they
constructed resolutions of simple modules by Verma modules. These resolutions
are known after their names as Bernstein-Gelfand-Gelfand (BGG) resolutions.
Parabolic BGG resolutions were constructed by Lepowsky [Lep77] and have gone
on to have applications in the study of the Laplacian space [Eas05]. Kac-Kazhdan
conjectured that these BGG resolutions would generalise to all Kac-Moody Lie
algebras, [KK79]. Their conjecture was proven in several cases, such as for the
affine Weyl group S, by Wakimoto [Wak86], in the classical type by Hayashi
[Hay88] and in the general case by Feigin, Frenkel, and Ku [FF92, Ku89]. The
result was extended arbitrary fields by Mathieu [Mat96]. Bowman-Hazi-Norton
[BHN20] constructed BGG resolutions in the context of affine symmetric groups
and a maximal finite parabolic subgroup over C. In the context of the modular
representation theory of the symmetric group and Hecke algebras, BGG resolu-
tions were first used by Bowman—Norton—Simental [BNS| with applications in the

calculation of Betti numbers and Castelnuovo-Mumford regularity.

In this chapter we generalise the findings of [BNS] in the case of S,. Namely, we
prove that all simple modules of the blob algebra admit BGG resolutions over a
field of characteristic zero. More precisely we shall construct resolutions of cell
modules for each simple B?-module indexed by a bipartition which belongs to an

94
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alcove. BGG resolutions of simple modules indexed by bipartitions on a hyper-
plane are simpler to construct and they are used in the proof of the more general
case. In the first section we calculate the composition of one-column homomor-
phisms between cell modules of the blob algebra. Knowing these compositions
will allow us to ensure that the diagrams of modules that we construct are indeed
chain complexes. In the second section we construct the BGG resolutions in the
hyperplane case. Finally, in the third section we present the main result of this
chapter which is the construction of BGG resolutions for all simple modules of the

blob algebra in the alcove case.

The results of this chapter are the author’s work in the last section of [Mic21].

4.1 Composition of one-column homomorphisms

In this section we shall compute the composition of certain one-column homomor-
phisms. We consider two bipartitions «, v € Bip;(n) such that [{(«)| = [£(7)] + 2
and without loss of generality we may assume that /() < 0. Then we can ei-
ther have ¢(a)) < 0 or ¢(ar) > 0 and let 5,3 € Bip,(d) be the bipartitions with
16(B)| = |€(B")] = |€(7)| + 1 for which we have constructed the homomorphisms
cpg, gog, of Chapter 3. In a case as above we can consider the following “diamond”

diagram:

) -

~
A(B')

)4

The aim of this section is to compute the compositions of the homomorphisms in

g Al
s
NG
PN
A(

such diamonds and prove that those are commutative or anti-commutative.
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In the next proposition we shall assume that ¢(a) < 0, as everything works simi-

larly when ¢(a) > 0.

Proposition 4.1. Let o,y € Bip,(n) with [{(a)] = |€(y)| + 2. Then

l
(@E © ¢§)(¢T“> - <_1)| (7)|w85(7)+1/251/2571/28e<ﬂ)—1/2'Ta

and

(90%/ © gpg )(Wra) = w31/2571/2'T°“

In particular the diamond will either be commutative or anti-commutative, depend-

ing on the number [£(7)].

Proof. Let a = ((121), (12)), B = ((1%1),(1%2)) and v = ((1"), (172)). The com-
position A(a) — A(S) — A(7y) is harder to compute than the composition
A(a) — A(B') — A(y) and we shall start by computing it. Consider the
generator ¥ra of the cell module A(«). Then

(0L owl)(Wra) = @h(eh(tra))

= ng (wszm)—uz'Ta )

Let T := sy)-1/2 - T* € Path(3) and T = wyTA. Then we have that

gDg(wk"’f(ﬁ)—l/z‘—ra) = SOZa(%TwT@)
= Yurps(vrs)

¢MT¢Se(3)+1/2~TB :

The element ¢t € A(f) corresponds to a diagram of the form

Y2042 Pap,
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while the element 1, ( s € A(7) corresponds to a diagram of the form

g)+1/2°T

==

@21«1

For the multiplication ,,, 15 we concatenate the above diagrams. Hence

wsé(6)+1/2'

we obtain the diagram

=

and by applying the KLR-relation (R6) in the case the middle residue is less by

one that the adjacent residues we get the diagram

=

Then we apply the KLR relation (R5) in the case that the residues are not equal
and they do not differ by one and we get the diagram

=

Since the strands we have marked in red and blue carry the different but adjacent

residues, we apply the KLR-relation (R5) and we reduce our computation to a
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computation similar to the one in the proof of Proposition 3.31 where we compute

the effect of y-generators. Hence, we have that

(SOZOSDQ)WTQ) = ¢U’T¢51<H)+1/2-T[3

_ 1\l
(=1) wse<w>+1/281/28—1/2Se<za>—1/2'T“'

Now we shall compute the composition A(a) — A(S') — A(7) on the generator

o of the cell module A(«). We have that

(o) ool ) (Wre) = @L(&5 (1hra))

= (Pg'(ws,l/z-'ro‘)

Let S:=s_y/5- T® € Path(8') and S = wsT?. Then we have that

¢g/(¢s_1/2-Ta) = 9023/ (¢S) = SO,BY/ (77Z)w5¢T/3’) = ¢ws¢g/(¢w')-

By Definition 3.20 we have that ¢} (¢rs) = Yy, 1o and let U= sy, - T €
Path(vy). Then

ng’/ (ws_l/z-Ta) = %szsl/?.w' = wwswawT’Y-

The final equality gives the desired result because the product of generators ¢, ¥,
corresponds to reduced transposition, hence 9y, 1+ € Path(y) is equal to the

element v, _, Jas1 ) Te S required. ]

4.2 BGG resolution for the hyperplane case

Let k be a field of characteristic zero. In this section we attach to any biparti-
tion A € Bipy(n) a complex C4(\) called the BGG resolution for the irreducible

representation L(\).
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In the case that the simple representation is indexed by a bipartition A € Bip,(n)
with X € Hy_1/5, ¢ € Z, the BGG resolution has an easy form. In the next
proposition we construct a BGG resolution for the irreducible representation L(\),

A€ Hy_y/3, for some g € Z.

Proposition 4.2. Let A\ € Bip,(n) with A € Hy_y/2, for some q € Z. We have a

short exact sequence

en

Co(A): 0 —— A ()] = [EN])

A(N) L(A\)——0
where p € Bipy(n) with [€(p)] = [€(N)| + 1 and £(pn) = —(€(X) + 1).

Proof. The result is straightforward by using the fact that Coker(gpﬁ) =L(\). O

4.3 BGG resolutions for the alcove case

In this section we construct BGG resolutions for the simple modules indexed by
bipartitions which belong to an alcove. Let A € Bip,(n) be a bipartition such that
A € a4, ¢ € Z and let us denote by v;, v/ the bipartitions -in the same linkage class

as A- such that [0(v;)] = |€(v)] = |[€(N)| + i. We set

where

and

G = D AW (ew)l — e

— . /
v=v;,V;

for © > 0. We define the maps

5i: Cia () — Ci(N)
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between those components. For i = 0 we have that

doi= () @) (4.1)

For i > 0 we shall distinguish between two cases on the number [/(\)| +i. In
particular if [¢(\)| 4 ¢ is even, we set
—QOZ:H 9053

5, = o (4.2)

l/z{ Vl{
()&V‘ sc !
i+1 Vil

whereas if it is odd, we set

P TP
b; = o A I (4.3)

—SOZ§+1 ‘pzz_‘_l
Note that there is the possibility that not both the rightmost and leftmost alcove
contain bipartitions linked with A. In that case let vy, 1/, -+ v, € Bipy(d) be the
bipartitions linked with A\. Then we define the maps §;: C;11(A) — C;(\) are
defined exactly like the maps (4.1), (4.2) and (4.3) for 0 <i < k—1. Fori =k

we define
Vi—1

Op = ¢Zf . (4.4)
k-1

Prp
Proposition 4.3. Let A € Bip,(n) be a bipartition such that X\ € a,, ¢ € Z. For
the pair (Ce(N), (6;)i>0) we have that

Im(d;41) C Ker(6;).
for any i > 0, in other words the pair (Ce(N), (8;)icz) is a (chain) complex.

Proof. The result is straightforward from Proposition 4.1. m

Definition 4.4. Recall that I = Z/eZ and let r € I be a given residue. The

r-restriction functor

r—res; ;:mod — B — mod — B, _;
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is defined by
M — Z eiM

i=(i1,i2, in—1,7)€l? 1 x{r}

and we have that

res, , = E r—res; .

rel

The following remark discusses the way we can restrict from modules in an algebra
of a given rank n, to modules in algebras of lower rank. It also introduces for the
first time the notation E,, for r € Z/eZ which will be used later in the proofs of

this section.

Remark 4.5. Suppose that A € Bip;(n) and A € a4, ¢ € Z. If r € I then we have
that A has either 0 or 1 removable r-nodes. We shall denote by E,(\) the unique

bipartition which differs from A by removing an r-node. Consider the cell module

A, (A) € mod — BZ. We have that

An_1(E,(N)), if Rem,(\) # 0
r—res: (A,(N) = (E- (V) () #

0, otherwise

where A, _1(E.()\)) is a cell module in mod — B%_;.

Definition 4.6. Let A € Bip;(n). The complex (C¢(N), (6;)i>0) is called BGG
resolution of L(A) if

L(\), ifi=0
Hi(Co(N) =

0, otherwise.
Theorem 4.7 is the basic result of the thesis on BGG resolutions associated to
simple modules of the blob algebra. We follow the same tactics as in the previous
chapters of the thesis and we include an example prior to the main proof. This
will help the reader to absorb the technicalities and will make the flow of the proof

easier. We first state Theorem 4.7 and the example follows.

Theorem 4.7. Let A € Bip,(n) be a bipartition such that X\ € a,, ¢ € Z. The
BY-complex

Ca(N) = P AW = L))

v<A
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with differentials 6;: Cij11(N) — C;(\) the maps defined above is a BGG resolution

for the simple representation L(X\). Moreover we have that

res; (Lu(\) = @ Lna(r—D).
DeRem())
Remark 4.8. Note that the subscript in L, ()) is used to emphasise that L()) is a
module of the algebra B?. This is used when we need to distinguish from modules

in algebras in other ranks, such as B?_;.

Example 4.9. Letn =9, ¢ =4 and o = (0,2) € Z*. We consider the bipartitions
A= ((12),(17),u = ((13),(15)) € Bipy(9) and let r € {0,1,2,3} = Z/AZ. We
shall calculate the images of the bipartitions \, u under the restriction E,., r €

Z7.]AZ, which will belong to Bip,(8). For the bipartition \ we have that

Eo(A) = ((1),(1%)
Es(A) = ((1).(17))

while for p we have that

The bipartitions \, u as well as their restrictions are depicted in Figure 4.1. We
remark that the restrictions can either keep belonging to an alcove or a hyperplane

(in lower rank).

Proof of Theorem 4.7. Let A € Bip,(n) with A € a,, for some ¢ < 0. Note that
everything works analogously when ¢ > 0. In order to prove that our BY-complex

is a BGG resolution for the simple representation L(\) we need to show that

La(X), ifi=0
Hi(OO()‘)> =

0, otherwise.



103

<N\ YA
. . . .
tooe e tooe
. : . . : . . : . . : .
. L] . L] L] . L) . L) .
. ) : . . : . ) . . : . . : . .
T S S S T S
L] : . L] : L] . : L] . L] . : . . : . L] : L] . L]
. L . . . . . . ) . ] ) ] . . .
. . : . o ! o ) 1 . ) . . . . : . . 1 . . 1 . . . .
A H

FIGURE 4.1: The bipartitions A = ((12), (17)), u = ((13), (1%)) and their restric-
tions under E,, r € Z/4Z. The points in the alcove geometry corresponding to
the restrictions can be distinguished by different colours.

Recall that BGG resolutions and bases for the hyperplane case are already con-
structed in Proposition 4.2. We shall proceed by induction on the rank n of the
blob algebra. We assume that the theorem holds for any bipartition A € Bip,(n—1)

where A belongs to an alcove. We also have that

res;,_1(Ca(V) = D Cu(E- (V).

rel

We shall consider one residue at a time. The bipartition A belongs to an alcove,
hence as we mentioned in Remark 4.5 there will be either 0 or 1 removable r-nodes.

For each residue we have 3 different cases.

e Suppose that the bipartition E,()\) belongs to the hyperplane H, /5. In
terms of the alcove geometry, one can think of it as the hyperplane of the
alcove a, which is further away from the origin than X\. As an example we
refer to the restriction F3(\) in Figure 4.1. Note that since the r-restriction
functor is exact, we have that r — res!'_;(C¢(\)) is a complex. Consider
a bipartition p € Bip,(n) such that p is less dominant that A and E,(u)
is a bipartition. In the case we examine, all the bipartitions of n with the
aforementioned property come into pairs (v*,v7) with vT<ar™ and |[¢(vT)| =

|¢(v7)| + 1. They also have the additional property
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where v is linked with E,(\). Then we have that
r—res! (A, (vT))=r—res! (A, (v7)) = A, 1(v).

Now consider the homomorphism ¢¥, € Homgs (A, (v"), A,(r™)) for some

bipartition v <E,(A). Under the r-restriction functor we have that

r—res,_i(¢vy) =1, € Endgs (An_1(v)).

In other words the identity morphism appears into all the differentials of

n
n—1

the r-restricted complex r — res!’_;(Cs(A)), hence the complex is exact. In

particular the homology
Hi(r —res; 1 (Ce(X))) =0

for any ¢ > 0.

e Suppose that the bipartition E,(A) belongs to the hyperplane Hyyq /s, that
is the hyperplane closer to the origin (see E;(p) in Figure 4.1). Recall that
we denote by v; € Bip;(n) the bipartition such that |¢(v])] = [¢(N)] + 1
with v belonging to the positive alcoves. The pair of bipartitions E,()\),
E.(v1) € Bip;(n — 1) form a BGG resolution of the simple L,_1(E,())) as
in Proposition 4.2. Apart form those bipartitions, all the rest bipartitions
i € Bipy(n) which are strictly less dominant than A and E.(u) € Bip,(n),
pair up in the exact same way as in the previous case when restricted under

the r-restriction functor. Hence

Hi(r —res; 1 (Ce(N))) =0

for ¢ > 0. From Proposition 4.2 we have that

e Suppose that the bipartition E,.(\) remains to the alcove a,. Examples of
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such case are the restrictions Eg(\), Ea(p) in Figure 4.1. Then the complex

r —res!_,(Ce(N)) is given by

r—res! (@ An(V)w(V)))

v<\

with differentials given by
r—res, 1(6;):r—res;_(Ciy1(N) —> 1 —res, _(Ci(N)).
Note that if Rem,.(v) # (), we have that
r—res;  (An(¥)({(¥)) = Bna (B (#){E(v))
since ((v) = ((E,(v)), otherwise we have that
r—res: (A,(v)) =0.

Let v,/ € Bip,(n) be bipartitions such that Rem,(v), Rem, (/) # (. Then

m
I

=
t\

r—res;_(¢}) = QOET(V))

Hence we get that
r—res; 1 (Co(A) = Co(Ex(N))

and by the induction hypothesis we have that Hy(C,(E-(\))) = L,—1(E.(N)),
while H;(C4(E,(N))) = 0, for all ¢ > 0. Thus r — res}_,(Ho(Ce(N))) =
Ho(Co(Er(N)) = Lp—1(E-(N)) and 7 — res!”_;(H;(Ce(N))) = 0, for all i > 0.

n—1
Using the work we have done above we have proven that

@D, c; Loi(E.(N), ifi=0

0, otherwise.
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Moreover we have that the cokernel of the differential dy projects onto the simple

representation L(A). The above argument gives us

resi_; (La(N) € @ L1 (E-(N)).

rel

In addition, by Theorem 3.36, we have that the cardinality of the basis of the
simple representation L, () is equal to the sum of the cardinalities of the bases

for the simple representations L,_1(E.())), for all r € I. Thus
res,_1(Ln(A)) = @ Ly-1(E- ().
rel

and we conclude that

res’_,(Ln(N), ifi=0

0, otherwise

(L,(v)) # 0, for any v < A, despite the fact that r—res]_(L,(v)) = 0,

3 n
Since res n—1

n—1

for some r € I, we have that

L.(\), ifi=0
H;(Ce(N)) =

0, otherwise.

and the proof is complete. O]
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