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Abstract

In this thesis we study the representation theory of the quiver Hecke algebras of

type A. In particular we consider specific quotients which play an important role

both in Schur-Weyl dualities and in other areas of mathematics such as statistical

mechanics, Lie theory and knot theory.

The thesis is organised in four chapters. Chapter 1 is the introductory chapter

and includes an overview of the concept of Schur-Weyl in addition to the basic

theory of cellular algebras, which will be central throughout the thesis. Moreover,

this is the chapter where we first introduce the quiver Hecke algebras of type A

and the quotients of interest, that is the largest possible quasi-hereditary quotients

with non-singular Kazhdan-Lusztig theory, denoted by H σ
n and the Temperley–

Lieb algebra of type B also known as “blob algebra”, denoted by Bσ
n. Finally, we

introduce the main combinatorial objects of the thesis, accompanied by examples

which enhance reader’s understanding.

Chapter 2 is devoted in the construction of a cellular basis for the quotients H σ
n

different from the well-known results of Hu–Mathas [HM10], as it uses a less fa-

miliar order relation. The first section provides combinatorial analogues for the

action of the dot-generators of the algebra, which will be essential in the sequel.

The second section contains the technical element of this chapter which proves

that there exists a chain of two-sided ideals for the algebra H σ
n . The last section

utilises that chain of ideals and constructs a cellular basis for H σ
n .

In chapter 3 we encounter the Temperley–Lieb algebra of type B or blob algebra

and we endeavour to construct bases for the simple modules of the algebra over

a field of characteristic zero. These bases will be indexed by paths in an alcove

geometry of type Â1. We start by defining the concept of alcove geometry which

will be important in the chapter’s proofs. We also recall known results on the blob

algebra and we make appropriate references in the literature. In the third section

we construct homomorphisms between cell modules and we calculate the images of

these homomorphisms. Over a field of characteristic zero the union of the images



is equal to the radical of the module, hence we have a basis for the (simple) head

of the module.

In chapter 4 we construct BGG resolutions associated to any simple module of

the blob algebra over a field of characteristic zero. BGG resolutions are very

fruitful objects in mathematics with several applications in different areas. In the

first section we give a formula for the composition of one-column homomorphisms

between cell modules of the blob algebra.
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Chapter 1

Introduction and background

In this chapter we include historical background on the study of the symmetric

group and its related algebras. We also fix the notation of the combinatorial and

algebraic notions used during the thesis. More precisely we start by an overview

of Schur-Weyl duality which can be considered as a standard source of inspiration

for studying different algebras. We continue with a section with the basic elements

of cellular algebras. This section is slightly “dry” but it will provide the structural

framework of the thesis, as all the algebras we consider will be (or be proven to be)

cellular algebras. Subsequently, we define our main algebras and their quotients

of interest. Finally, we state the basic definitions, followed by relevant examples,

for the combinatorial objects which we shall use throughout the thesis.

Note that most of these combinatorial objects are standard tools that can be found

in several papers and manuscripts in the area of combinatorial representation

theory. As a reference we include [Mic21, BCHM20].

1.1 Schur-Weyl duality overview

We start our story by a brief discussion on the concept of Schur-Weyl duality. This

is one of the most well-known results in representation theory and it has motivated

the study of various groups and algebras. Let C be the field of complex numbers

3
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and we consider the vector space V = Ch. The symmetric group Sn acts naturally

on the n-fold tensor power V ⊗n, by permuting the tensor positions. We consider

the obvious action of the general linear group GLh := GLh(C), namely the matrix

multiplication in each tensor position and let CGLh, CSn be the group algebras

of the groups GLh, Sn respectively. By observing that the aforementioned actions

commute, we equip the vector space V ⊗n with CGLh-CSn-bimodule structure.

We recall the classic result by Schur [Sch27], indicating that the image of each

group algebra under its representation equals the full centraliser algebra of the

other representation. In more detail, if we name the representations as described

in [Dot04], namely

CGLh
ρ

// End(V ⊗n) CSn
σoo

we have the following equalities

ρ(CGLh) = EndSn(V ⊗n)

σ(CSn) = EndGLh(V ⊗n).

Later Carter-Lusztig [CL74] and Green [Gre80] have shown that identical results

hold over any infinite field k.

Some of the readers might find the presence of the letter h for denoting the rows

and the columns surprising. However, the choice has its origins in Lie theory and

it is used to denote the Coxeter number of a Coxeter group. This notion will turn

up later in the thesis when we shall discuss the structure and representation theory

of certain quotients of the Hecke algebras, which will be governed by this number

h. This number will also impose restrictions on the characteristic of the field k

and this is crucial because the combinatorial algorithms we have built depend very

much on this condition.

Schur-Weyl duality is a centerpiece in modern Lie theory. These dualities interre-

late reflection and algebraic groups with the symmetric groups, (walled) Brauer,

Temperley-Lieb, blob and partition algebras. The aforementioned algebras all form
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towers of “diagram algebras” which we study in a uniform fashion using ideas from

categorical Lie theory. The rest of this section is devoted to the basics on Hecke

algebras (quantised deformations of the symmetric groups) and Temperley-Lieb

algebras. For the later, we focus our interest on the Temperley-Lieb algebra of

type B, which is originally defined in [MS94]. The Temperley-Lieb algebras (of

type A and B) are quotients of the Hecke algebras (of type A and B respectively).

In modern representation theory, the Khovanov–Lauda–Rouquier (KLR) algebras

provide, via the Brundan–Kleschev isomorphism [BK09], a common framework for

the study of those algebras.

1.2 Cellular algebras

This section is devoted to cellular algebras. These algebras are of great importance

in this thesis as all the algebras we shall consider in the future are cellular.

Cellular algebras have been introduced by Graham and Lehrer [GL96] and they

form a class of finite-dimensional algebras with extreme importance in represen-

tation theory. Roughly speaking, cellular algebras are algebras with a cellular

basis, that is a basis which makes them suitable for doing representation theory.

One main advantage of cellular algebras is that they provide a framework for

constructing the simple modules in terms of certain cellular bilinear forms. The

simple modules of an algebra are of great importance and their study is crucial in

understanding the structure of the algebra. In addition, analysis of these cellular

bilinear forms provides criterion for the algebra to be semisimple. In this section,

for the sake of completeness, we present the basic and well-known theory of cellular

algebras. We base our presentation on classic textbook [Mat99] by Mathas.

Let k a commutative integral domain with unitary element and A be an associative

finite-dimensional algebra which is free as k-module.

Definition 1.1. [Mat99, Definition 2.1] Suppose that (Λ,≥) is a (finite) poset

and for each λ ∈ Λ there is a finite indexing set T (λ) and elements cλst ∈ A for all



6

s, t ∈ T (λ) such that

C = {cλst | λ ∈ Λ and s, t ∈ T (λ)} (1.1)

is a (free) basis of A. For each λ ∈ Λ let A>λ be the k-submodule of A with basis

{cµuv | µ ∈ Λ, µ > λ and u, v ∈ T (µ)}. The pair (C ,Λ) is a cellular basis of A if

(i) the k-linear map ∗ : A −→ A determined by (cλst)
∗ = cλts for all λ ∈ Λ and all

s, t ∈ T (λ), is an algebra anti–isomorphism of A; and,

(ii) for any λ ∈ Λ, t ∈ T (λ) and a ∈ A there exists rv ∈ k such that for all

s ∈ T (λ)

cλsta ≡
∑

v∈T (λ)

rvc
λ
sv mod A>λ. (1.2)

If A has a cellular basis we say that A is a cellular algebra. If in addition there is

a function

deg :
⋃
λ∈Λ

T (λ) −→ Z

such that if we define deg(cλst) = deg(s) + deg(t), for λ ∈ Λ and s, t ∈ T (λ) then A

is a graded algebra, we say that A is a graded cellular algebra (see [HM10]).

Remark 1.2. We remark that a cellular algebra can have many different cellular

bases, where the poset Λ and the indexing sets T (λ) can be completely different.

For instance, the size of the poset Λ can be different for different cellular bases of

A (see [KX99b]).

Throughout this section we fix a cellular basis (C ,Λ) of A and we denote by A≥λ

the k-module with basis {cµuv | µ ∈ Λ, µ ≥ λ and u, v ∈ T (µ)}. It is clear that

A>λ ⊂ A≥λ and the quotient A≥λ/A>λ has basis

{cλst + A>λ | s, t ∈ T (λ)}. (1.3)
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By the classical theory of cellular algebras, for each λ ∈ Λ there exists a module

∆(λ) with k-basis

{cλt | t ∈ T (λ)}

and where for each a ∈ A

cλt a =
∑

v∈T (λ)

rvc
λ
v

where rv ∈ k is determined by (1.2). The module ∆(λ) with the basis above is

called cell module. There is also a unique bilinear form 〈·, ·〉 : ∆(λ) ×∆(λ) −→ k

such that 〈cλs , cλt 〉, for s, t ∈ T (λ), is determined by

〈cλs , cλt 〉cλuv ≡ cλusc
λ
tv mod A>λ

where u and v are any elements of T (λ). By [Mat99, Proposition 2.10] we have

that the bilinear form is symmetric and associative. We define the radical of the

cell module ∆(λ) to be the A-submodule of ∆(λ) defined as

rad ∆(λ) = {x ∈ ∆(λ) | 〈x, y〉 = 0 for all y ∈ ∆(λ)}. (1.4)

Subsequently, for any λ ∈ Λ, we define the quotient module L(λ) = ∆(λ)/rad ∆(λ)

and let Λ0 = {µ ∈ Λ | L(µ) 6= 0}. We have that µ ∈ Λ0 if and only if the bilinear

form 〈·, ·〉 on ∆(µ) is non-zero. As we mentioned earlier in this section, one of the

advantages of cellular algebras is that we can characterise the their simple modules

in a concrete way. The following theorem describes precisely the simple modules

of a finite dimensional cellular algebra A.

Theorem 1.3 (Graham–Lehrer). Suppose that k is a field and Λ is finite. Then

{L(µ) | µ ∈ Λ0} is a complete set of pairwise inequivalent irreducible A-modules.

Proof. See [Mat99, Theorem 2.16].

Remark 1.4. It is worth noting that A is semisimple if and only if Λ0 = Λ and

L(µ) = ∆(µ), for all µ ∈ Λ0. Also, A is quasi-hereditary if and only if Λ0 = Λ.
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1.3 Algebras of interest

In this section we give a more detailed description of the algebras we study in

this thesis. We present the basic definitions but we mostly emphasise on the

connections among them and how these are connected with breakthroughs in dif-

ferent (seemingly unrelated) areas of mathematics. More precisely, this section

will include elements of Hecke, Temperley–Lieb and Khovanov–Lauda–Rouquier

algebras.

1.3.1 Hecke algebras

In the previous section it has been made clear that Schur-Weyl duality tells us

that there are connections between the representation theories of different groups

and algebras. Information on the representation theory of certain structures gives

useful information about the representation theory of their Schur-Weyl dual. More-

over, the concept of Schur-Weyl dualities has initiated studies on the structure of

algebras arising as deformations of other algebras.

Let k be a (commutative) integral domain. The Hecke algebras are deformations

of the group algebras of Coxeter groups and they form families of algebras which

depend on a quantum parameter q ∈ k×. Namely, we recover the group algebra

of the Coxeter group when q = 1.

One of the most classic and well studied instances of such algebra is the Hecke

algebra of the symmetric group Sn or Hecke algebra of type A. In the literature,

for example in [Mat99], the Hecke algebra Hk,q(Sn) of Sn is defined as the unital

associative k-algebra with generators {T1, T2, · · · , Tn−1} and relations

(Ti − q)(Ti + 1) = 0 for i = 1, 2, · · · , n− 1 (1.5)

TiTj = TjTi for 1 ≤ i < j − 1 ≤ n− 2 (1.6)

TiTi+1Ti = Ti+1TiTi+1 for i = 1, 2, · · · , n− 2. (1.7)
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For q = 1, relation (1.5) can be written as T 2
i = 1. Hence, we recover the group

algebra of the symmetric group kSn when q = 1.

At this point we shall introduce the Ariki–Koike algebra of the complex reflection

groups (Z/`Z) o Sn (alternatively the groups of type G(`, 1, n) in the Shephard–

Todd classification [ST54]). Let q,Q1, · · · , Q` ∈ k and Q := {Q1, · · · , Q`}. Ariki

and Koike [AK94] defined the Ariki–Koike algebra to be the unital associative

k-algebra Hk,q,Q((Z/`Z) oSn) with generators {T0, · · · , Tn−1} and relations

(T0 −Q1) · · · (T0 −Q`) = 1 (1.8)

T0T1T0T1 = T1T0T1T0 (1.9)

(Ti + 1)(Ti − q) = 1 for 1 ≤ i ≤ n− 1 (1.10)

TiTj = TjTi for 0 ≤ i < j − 1 ≤ n− 2 (1.11)

Ti+1TiTi+1 = TiTi+1Ti for 1 ≤ i ≤ n− 2. (1.12)

Note that for ` = 1 we get the Hecke algebra of type A. Another instance of Hecke

algebra which will be of particular interest in the thesis, is the Hecke algebra of

the complex reflection group (Z/2Z) o Sn or Hecke algebra of type B. It is easily

understood from the notation that the Hecke algebra of type B can be recovered

from the Ariki-Koike algebra for ` = 2. Note that the type B case was defined prior

to the Ariki-Koike algebras and in fact was one of the motivations for defining these

generalised algebras. In particular, Dipper and James [DJ92], defined the Hecke

algebra Hk,q,Q((Z/2Z) oSn) to be the unital associative k-algebra with generators

{T0, T1, · · · , Tn−1} and relations

(T0 + 1)(T0 −Q) = 0 (1.13)

T0T1T0T1 = T1T0T1T0 (1.14)

(Ti + 1)(Ti − q) = 0 for 1 ≤ i ≤ n− 1 (1.15)

TiTj = TjTi for 0 ≤ i < j − 1 ≤ n− 2 (1.16)

Ti+1TiTi+1 = TiTi+1Ti for 1 ≤ i ≤ n− 2. (1.17)
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For q = Q = 1, we recover the group algebra of the complex reflection group

k((Z/2Z) oSn).

1.3.2 Khovanov-Lauda-Rouquier algebras

The Khovanov-Lauda-Rouquier algebras, most commonly known as KLR algebras,

were introduced by Khovanov and Lauda [KL09] and independently by Rouquier

[Rou]. In their pioneering work, Brundan and Kleshchev [BK09] proved that the

Hecke algebras from above, are isomorphic to the KLR algebras. This discovery

opened brand new routes in the study of Hecke algebras, since it gives the option

of utilising more advanced combinatorics and the diagrammatic presentation of

the KLR algebras.

Recall that we denote by Sn the symmetric group in n letters and let e ∈

{2, 3, · · · }. Given i = (i1, i2, · · · , in) ∈ (Z/eZ)n and sr = (r, r + 1) ∈ Sn we

set sr(i) = (i1, · · · , ir−1, ir+1, ir, ir+2, · · · , in).

Definition 1.5. [BK09] Fix e > 2. The quiver Hecke algebra or Khovanov-Lauda-

Rouquier (KLR) algebra Hn, is defined to be the associative Z-algebra with gener-

ators

{ei | i = (i1, · · · , in) ∈ (Z/eZ)n} ∪ {y1, · · · , yn} ∪ {ψ1, · · · , ψn−1},

subject to the relations

eiej = δi,jei
∑

i∈(Z/eZ)n

ei = 1Hn ψrei = esr(i)ψr (R1)

yrei = eiyr yrys = ysyr (R2)

for all r, s, i, j and

ψrys = ysψr for s 6= r, r + 1 ψrψs = ψsψr for |r − s| > 1 (R3)

yrψrei = (ψryr+1 − δir,ir+1)ei yr+1ψrei = (ψryr + δir,ir+1)ei (R4)
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ψ2
rei =



(ψr+1ψrψr+1 + 1)ei if ir = ir+1,

ei if ir+1 6= ir, ir ± 1,

(yr+1 − yr)ei if ir+1 = ir + 1,

(yr − yr+1)ei if ir+1 = ir − 1

(R5)

ψrψr+1ψrei =


(ψr+1ψrψr+1 − 1)ei if ir = ir+2 = ir+1 + 1,

(ψr+1ψrψr+1 + 1)ei if ir = ir+2 = ir+1 − 1

ψr+1ψrψr+1ei otherwise

(R6)

for all permitted r, s, i, j. We identify such elements with decorated permutations

and the multiplication with vertical concatenation, ◦, of these diagrams in the

standard fashion of [BK09, Section 1]. We let ∗ denote the anti-involution which

fixes the generators (this can be visualised as a flip through the horizontal axis of

the diagram).

The cyclotomic quiver Hecke algebra is defined as quotient of the quiver Hecke

algebra. Let ` ≥ 1 be an integer and σ = (σ0, σ1, · · · , σ`−1) ∈ Z` be an `-tuple.

Definition 1.6. Fix e > 2 and σ ∈ Z`. The cyclotomic quiver Hecke algebra, Hσ
n,

is defined to be the quotient of Hn by the relation

y
]{σm|σm=i1(mod e),0≤m<`}
1 ei = 0 for i ∈ (Z/eZ)n. (1.18)

We refer to relation (1.18) as cyclotomic relation.

We remark that the algebra of Definition 1.5 is isomorphic to the affine Hecke

algebra. The extra relation of Definition 1.6 gives a family of quotient algebras,

which are isomorphic to the cyclotomic Hecke algebra.

Given p < q we set

wpq = spsp+1 . . . sq−1, wqp = sq−1 . . . sp+1sp (1.19)

ψpq = ψpψp+1 · · ·ψq−1, ψqp = ψq−1 · · ·ψp+1ψp (1.20)
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and given an expression w = si1 · · · sip ∈ Sn we set ψw = ψi1 · · ·ψip ∈ Hn. We

note that the element ψw depends on the expression si1 · · · sip , not just on w ∈ Sn

Finally, we define the degree function on Hσ
n as follows.

Definition 1.7. We define the function deg : Hσ
n −→ Z determined by

deg(ei) = 0 deg(yrei) = 2 deg(ψsei) =


−2 if is = is+1

1 if is = is+1 ± 1

0 otherwise

(1.21)

for 1 ≤ r ≤ n and 1 ≤ s ≤ n − 1. This is a degree function on Hσ
n, hence the

cyclotomic quiver Hecke algebra is a Z-graded algebra with degree function deg.

One of the biggest advantages with KLR algebras is that we have a diagrammatic

presentation and we can view the generators and the elements as planar diagrams

of decorated strands. For a more detailed description of the diagrammatic pre-

sentation, the reader may refer to [LP] and [HMP18]. Each KLR diagram of the

quiver Hecke algebra Hn consists of n strings and each string carries an integer

i ∈ Z/eZ. The bottom and the top of the KLR diagram are sequences of inte-

gers. The product of two KLR diagrams is given by vertical concatenation. If

i = (i1, i2, · · · , id) ∈ (Z/eZ)n the correspondence between the generators of the

KLR algebra and the diagrammatic presentation can be seen in Figure 1.1.

· · ·

i1 i2 in

ei = · · · · · ·

i1 is is+1 in

ψsei = · · · · · ·

i1 ir in

yrei = •

Figure 1.1: The correspondence between the algebraic and diagrammatic gen-
erators of the quiver Hecke algerba.

There are also some rules and conventions which must satisfied by the KLR dia-

grams. These conventions are listed in [HMP18] and we outline them at this point

for the sake of completeness. In particular, in a KLR diagram:

• all intersections are transversal;
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• there are no triple intersections;

• the strings can be decorated with a finite number of dots at non-intersection

points.

As we see in Figure 1.1, the idempotent ei labelled by the sequence i ∈ (Z/eZ)n is

visualised as straight strands with each one carrying the integers i1, · · · , in. The

ψs elements can be seen as a single crossing of the strands labelled by the integers

is, is+1 ∈ Z/eZ. We refer to them as KLR crossings or simply crossings. Finally,

the yr elements are visualised as dots on strands; we hence refer to them as KLR

dots or simply dots.

In Figure 1.1 we can see a KLR diagram with KLR dots and crossings. Note that

the element ψpq is the element defined in (1.20) and the bottom of the diagram is

labelled by i = (i1, · · · , in) ∈ (Z/eZ)n.

i1 ip−1 iqip ip+1 iq−2 iq−1 iq+1 in

Figure 1.2: The element y1ψ
p
qei for 1 < p < q ≤ n.

We mentioned above that the product of two or more KLR diagrams can be

thought of as vertical concatenation. We denote the vertical concatenation by ◦

and in the following example we visualise vertical concatenation of diagrams.

Example 1.8. Consider the elements y1ψ
2
4e(0,1,2,3), y1y2ψ

4
2e(0,3,1,2) ∈ H4. The KLR

diagrams of these elements are depicted in the left-hand side of the equation of

Figure 1.3. The vertical concatenation of the diagrams is depicted in the right-

hand side of Figure 1.3. We also remark that the diagram on the right-hand side

of Figure 1.3 can be simplified further, as it is not reduced. The simplifications

can be performed by applying the appropriate relations of Definitions 1.5, 1.6.

We denote by � the horizontal concatenation of both KLR diagrams and residue

sequences. In the following example we describe a horizontal concatenation of
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0 1 2 3

◦

0 3 1 2

=

0 1 2 3

0 31 2

Figure 1.3: The vertical concatenation of the KLR diagrams of
y1ψ

2
4e(0,1,2,3), y1y2ψ

4
2e(0,3,1,2) ∈ H4.

KLR diagrams and their residue sequences. Note that the result of the horizontal

concatenation will be 0 unless the residues are compatible. To see that the reader

can refer to the first relation of (R1).

Example 1.9. Consider the elements y1ψ
2
4e(0,1,2,3), y1ψ

2
5e(0,1,2,3,4) and y1ψ

4
2e(0,1,2,3).

The KLR diagrams of those elements are the ones displayed in Figure 1.4. The

horizontal concatenation is the element of H13 illustrated in Figure 1.5.

0 1 2 3 0 1 2 3 4 0 1 2 3

Figure 1.4: The elements y1ψ
2
4e(0,1,2,3), y1ψ

2
5e(0,1,2,3,4), y1ψ

4
2e(0,1,2,3).

0 1 2 3 0 1 2 3 4 0 1 2 3

Figure 1.5: The element y1ψ
2
4e(0,1,2,3) � y1ψ

2
5e(0,1,2,3,4) � y1ψ

4
2e(0,1,2,3).

The concept of vertical concatenation of KLR diagrams will be widely utilised

throughout the proofs of chapter 3, as it simplifies our calculations massively.

Horizontal concatenation will be a useful tool throughout chapter 2 and it will

provide a useful language which makes our notation simpler and easier for the

reader.
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1.3.3 Quasi-hereditary quotients of quiver Hecke algebras

The symmetric group lies at the intersection of two great categorical theories:

Khovanov–Lauda and Rouquier’s categorification of quantum groups and their

knot invariants [KL09, Rou] and Elias–Williamson’s diagrammatic categorification

in terms of endomorphisms of Bott–Samelson bimodules. The objects of this

section are the main objects of the two companion papers [BCHM20, BCH]. The

purpose of those papers is to construct an explicit isomorphism between these

two diagrammatic worlds. The backbone of this isomorphism is provided by the

“light-leaves” bases of these algebras.

The light leaves bases of diagrammatic Bott–Samelson endomorphism algebras

were crucial in the calculation of counterexamples to the expected bounds of

Lusztig’s and James’ conjectures [Wil17]. These bases are structurally far richer

than any known basis of the quiver Hecke algebra — they vary with respect to

each possible choice of reduced word/path-vector in the alcove geometry — this

richer structure is necessary in order to construct a basis in terms of the “Soergel

2-generators” of these algebras. We note that for these algebras, the path-theoretic

light-leaves basis is out of the scope of this thesis and the interested reader may

refer to [BCHM20, Section 2] for more details. In particular, we shall construct a

“classical-type” cellular basis for specific quasi-hereditary quotients of the cyclo-

tomic quiver Hecke algebra of Definition 1.6.

A long-standing belief in modular Lie theory is that we should (first) restrict our

attention to fields whose characteristic, p, is greater than the Coxeter number, h,

of the algebraic group we are studying. This allows one to consider a “regular” or

“principal block” of the algebraic group in question. For p > h + 1 we consider

the idempotent

eh =
∑

ik+1=ik+1
1≤k≤h

e(i1,...,in) (1.22)

modulo “more dominant terms”. We recall Definitions 1.5, 1.6 of quiver Hecke

algebras Hn and their cyclotomic quotients Hσ
n, for σ ∈ Z`. In order to define
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the quasi-hereditary quotients of interest, we need a few definitions along with an

important long-standing convention.

Definition 1.10. Fix integers h, ` ∈ Z>0 and e ≥ (h + 1)`. An `-tuple σ ∈ Z`

such that h < |σi − σj| < e − h for 0 ≤ i 6= j ≤ ` − 1, is called (h, e)-admissible

charge.

Using the work and definitions from above, we define another algebra of interest.

Definition 1.11. For an (h, e)-admissible charge σ ∈ Z`, we define the following

quotient of the cyclotomic quiver Hecke algebra H σ
n := Hσ

n/Hσ
nehHσ

n.

For ease of notation, we assume that the (h, e)-admissible charge σ ∈ Z` is in-

creasing. This assumption does not restrict the definition of the algebra as it is

independent of the ordering. It is only a convention which will make our combi-

natorics easier throughout the thesis.

Convention. Throughout this section and the second chapter of the thesis, when

we refer to the e-charge or charge σ ∈ Z` we will assume that it is (h, e)-admissible

and increasing.

Constructing a cellular basis for the algebra of Definition 1.11 will be one of the

main results of this thesis. More details on the motivation and the applications

using such cellular basis can be found in the introduction of the related chapter.

1.3.4 Blob algebra

We will now discuss the “blob algebra”, one of the algebras that can be regarded as

a special case of the quasi-hereditary quotients of the Hecke algebra. Despite being

just a special case of the above, the definition of the blob algebras was motivated

by studies in physics and in particular in statistical mechanics.

Statistical mechanics aims to understand the large-scale observables (temperature,

pressure) of physical systems in terms of microscopic fluctuations of the system:
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water in a kettle, gas within a container, or the atomic structure of magnets. The

Temperley–Lieb algebras of type A and B (the latter of which is also known as

the “blob” algebra) first arose in the context of the 2-dimensional ferromagnetic

Ising and Potts models. The Temperley–Lieb of type A played central role for

Vaughan Jones in the discovery of new polynomial invariant of knots and links

[Jon97]. Jones had an algebraic approach and in his work the Temperley–Lieb

algebra was presented in terms of generators and relations. This presentation is

rather restrictive and later Louis Kauffman [Kau90] gave a handy description as

planar diagram algebra. The characters of simple modules of the Temperley–Lieb

algebras of type A, over a field of arbitrary characteristic, were computed by de

Boeck, Evseev, Lyle and Speyer in [dBELS18].

The Temperley–Lieb algebra of type B was defined by Martin and Saleur [MS94]

as a two parameter generalisation of the Temperley–Lieb algebra of type A. In

fact, they originally named this algebra “blob algebra” due to the fact that the

planar diagrams generating it are the planar diagrams for the Temperley–Lieb

algebra of type A decorated with blobs. The presentation of the blob algebra in

terms of planar diagrams, is out of the scope of this thesis. The interested reader

can refer to [MS94], where there is a recap on the diagrammatic presentation

of the Temperley–Lieb algebra of type A and the “blob generalisation” with the

aforementioned decorated diagrams.

One might raise the question, why the Temperley–Lieb algebras are characterised

by their type. The answer is hidden in the connection of the Temperley–Lieb

algebras of type A and B with the Hecke algebras of type A and B respectively.

The isomorphism between the Hecke algebra of type B and the blob algebra was

constructed by Martin and Woodcock in [MW03, Proposition 4.4]. The reader can

find further information -closer to our notation- on the connection between these

algebras in [PRH14].

We shall now give the exact definition of the blob algebra, as a quotient of the

cyclotomic quiver Hecke algebra of level 2. Recall that level 2 implies that in
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Definition 1.6, ` = 2 and we our quotient depends on an e-bicharge σ = (σ0, σ1) ∈

Z2. Moreover let k be a field of any characteristic.

Definition 1.12. [PRH14, Corollary 3.6] Fix e > 2 and σ = (σ0, σ1) an e-bicharge.

The blob algebra Bσ
n is the k-algebra with generators

{ei | i = (i1, · · · , in) ∈ (Z/eZ)n} ∪ {y1, · · · , yn} ∪ {ψ1, · · · , ψn−1}

subject to the relations of the cyclotomic quiver Hecke algebra of Definition 1.6,

modulo the additional relation

ei = 0, if i2 = i1 + 1. (1.23)

We refer to relation (1.23) as the blob relation.

Note that the original definition of the blob algebra was in terms of generators and

relations similar to the ones of the Temperley–Lieb algebras. The presentation of

Definition 1.12, which we will be using throughout the thesis, was proven to exist

in the work of Plaza and Ryom–Hansen [PRH14].

Remark 1.13. In order to further connect the blob algebra with the quasi-hereditary

quotients of the Hecke algebra, we shall re-write the blob relation (1.23) in terms

of the idempotent (1.22). In particular, the blob relation gives a quotient by the

idempotent

e1 =
∑

i2=i1+1

e(i1,··· ,in).

As a direct consequence of Definition 1.12, the blob algebra has the structure of

a graded algebra. The result that the blob algebra admits a Z-grading is due to

Plaza and Ryom–Hansen [PRH14] and the definition if its degree function follows.

Definition 1.14. We define the function deg : Bσ
n −→ Z determined by

deg(ei) = 0, deg(yrei) = 2, deg(ψsei) =


−2 if is = is+1

1 if is = is+1 ± 1

0 if is 6= is+1 ± 1
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for 1 ≤ r ≤ n and 1 ≤ s ≤ n− 1. This is a degree function on Bσ
n, hence the blob

algebra is a Z-graded algebra with degree function deg.

Note that the equations which determine the degree function are those of relation

(1.21) in Definition 1.7, i.e. the equations determining the degree function of

the cyclotomic Hecke algebras. The grading of the blob algebra has opened new

horizons in its study and some of the most recent results are due to this grading.

Plaza in [Pla13] calculated the graded decomposition numbers of the blob algebra

over a field of characteristic 0. Moreover, Hazi, Martin and Parker [HMP18]

determined the structure of the indecomposable tilting modules of the blob algebra

over C, again by using the graded structure.

In the chapter dedicated to the blob algebra, we shall state some of the aforemen-

tioned results as they will be essential for our proofs and findings. Hence, more

details on the structure and combinatorics of the blob algebra can be found in

chapter 3. This section serves as an overview of the work that has been done on

the blob algebra and is mainly used in order to fix the notation that we shall use

later on in the thesis.

1.4 Combinatorics

In this section we present the basic combinatorial concepts which will be useful in

formalising our ideas towards the study of the algebras defined in previous sections.

Note that the main purpose of the first subsections is to give a general flavour of

the combinatorics and also fix some notation. The particularities, assumptions and

constrains of each combinatorial theory will be included in the last two subsections.

In particular, we shall summarise the combinatorics appearing in the study of the

quasi-hereditary quotients of the Hecke algebra and the combinatorics appearing

in the blob algebras. The key idea in both combinatorial theories is that we restrict

the number of columns and/or the number of components of the partitions and

compositions.
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1.4.1 Partitions and residues

We define a box-configuration to be a subset of

{[i, j,m] | 0 ≤ m < `, 1 ≤ i, j ≤ n}

and we let B`(n) denote the set of all box-configurations with n boxes. We refer to a

box [i, j,m] ∈ B`(n) as being in the ith row and jth column of the mth component

of the configuration. Given a box, [i, j,m], we define the content of this box to

be ct[i, j,m] = σm + j − i and we define its residue to be res[i, j,m] = ct[i, j,m]

(mod e). We refer to a box of residue r ∈ Z/eZ as an r-box. We define a

composition, λ, of n to be a finite sequence of non-negative integers (λ1, λ2, . . .)

whose sum, |λ| = λ1+λ2+· · · , equals n. We say that λ is a partition if, in addition,

this sequence is weakly decreasing. An `-composition (respectively `-partition) λ =

(λ(0), · · · , λ(`−1)) of n is an `-tuple of compositions (respectively partitions) such

that |λ(0)| + · · · + |λ(`−1)| = n. We denote by C`(n) and P`(n) the set of `-

compositions and `-partitions of n, respectively. Given λ = (λ(0), λ(1), . . . , λ(`−1)) ∈

P`(n), the Young diagram of λ is defined to be the box configuration,

{[i, j,m] | 1 ≤ j ≤ λ
(m)
i , 0 ≤ m < `}.

We do not distinguish between the `-partition and its Young diagram.

Given λ ∈ P`(n), we let Rem(λ) (respectively Add(λ)) denote the set of all

removable (respectively addable) boxes of the Young diagram of λ so that the

resulting diagram is the Young diagram of an `-partition. We let Remr(λ) ⊆

Rem(λ) and Addr(λ) ⊆ Add(λ) denote the subsets of boxes of residue r ∈ Z/eZ.

Example 1.15. Let n = 25, ` = 3, σ = (0, 2, 4) ∈ Z3 and e = 5. Con-

sider the box configurations λ = ((4, 3, 1), (3, 12), (4, 32, 2)) ∈ P3(25) and µ =

((2, 33, 2), (42, 3, 1)) ∈ C2(25). The box configurations corresponding to λ and µ
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are the following

λ =

 , ,



µ =

 ,

 .

We notice that all three components of λ are partitions, whereas the first component

of µ is a composition. We consider the boxes [2, 1, 0], [3, 2, 1] and we calculate their

content and residue. We have that

ct[2, 1, 0] = 0 + 1− 2 = −1

ct[3, 2, 1] = 2 + 2− 3 = 4

and

res[2, 1, 0] = res[3, 2, 1] = 4

as we consider the contents modulo e = 5. We focus on the 3-partition λ and

one can easily observe that the residues of the boxes are the same in the diagonals

of the box-configurations. We colour the boxes of the same residue with the same

colour and then our partition looks as follows.

λ =

 0 1 2 3
4 0 1
3

,
2 3 4
1
0

,

4 0 1 2
3 4 0
2 3 4
1 2


The numbers in the boxes are the residues of each box.

1.4.2 Tableaux

The combinatorial objects arising naturally from partitions, compositions and their

Young diagrams are tableaux. They have been in the centre of the representation
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theory of the symmetric groups and their related algebras from the early days of

their study by James [Jam77]. Ever since tableaux (and indeed the special case

of standard tableaux) are of extreme importance in combinatorial representation

theory and they are used to encode useful information for the structure of the

algebra.

Given λ ∈P`(n), we define a λ-tableau to be a filling of the boxes of [λ] with the

numbers {1, · · · , n} without repeated entries. A tableau is called row-standard if

the entries increase along the rows in each component, and column-standard if the

entries increase down the columns in each component. A tableau is called standard

if it is both row and column standard. We denote the set of all tableau of shape

λ by Tab(λ). We denote by RStd(λ), CStd(λ), Std(λ) ⊂ Tab(λ) the subsets of

row-standard, column-standard and standard tableau, respectively. Moreover, for

n ∈ Z we define Std(n) =
⋃
λ∈P`(n) Std(λ).

One can view a λ-tableau as a bijection t : [λ] −→ {1, · · · , n} and we say that

the tableau t has shape λ and we write Shape(t) = λ. We denote by t−1(k) the

box occupied by the integer k ∈ {1, · · · , n} and by t[r, c,m] the integer occupying

the box [r, c,m] ∈ [λ]. For a tableau t we write t↓≤k, t↓≥k for the subtableaux

of t containing the entries {1, · · · , k}, {k, · · · , n}, for 1 ≤ k ≤ n respectively.

Sometimes, for ease of notation we shall denote the above subtableaux simply by

t≤k and t≥k.

Definition 1.16. Given two λ-tableaux s, t ∈ Tab(λ), we let ws
t ∈ Sn be the

permutation such that ws
t(s) = t.

Remark 1.17. The symmetric group Sn acts in a natural way on the set of

tableaux. In particular if t is a tableau and si is a simple transposition, the

tableau sit obtained by interchanging the entries i, i+ 1.

In the following example we shall see examples of standard, row-standard, column-

standard and non-standard tableaux.
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Example 1.18. Let n = 14, e = 5 and λ = ((3, 22, 1), (22, 12)) ∈ P2(14). The

tableaux

tλ =


1 2 3
6 7
1011
13

,

4 5
8 9
12
14

 , s =


1 2 4
6 7
1011
14

,

3 5
8 12
9
13


are standard λ-tableaux. On the other hand the λ-tableaux

u1 =


1 2 3
6 7
1110
13

,

4 5
8 9
14
12

 , u2 =


1 2 3
6 7
1011
13

,

4 5
8 9
12
14

 , u3 =


1 2 3
6 11
10 7
13

,

4 5
8 9
12
14


are non-standard. In particular, u1 is column-standard but not row-standard, while

u2 is row-standard but not column-standard and u3 is neither row nor column

standard.

Remark 1.19. We remark that tableau tλ of the Example 1.18 is a special tableau

which will be of huge importance later in the thesis. Sometimes it can be found

in the literature as superstandard or initial tableau.

Example 1.20. We continue from Example 1.18 and we have that wtλ
s = (3, 4)(9, 12)

(13, 14) ∈ S14 is the permutation defined above. We can give the corresponding

permutation for any pair of tableaux, but the permutations related to the tableau

tλ are of particular interest, since they help to index specific elements which form

bases of our algebras.

Definition 1.21. Let λ ∈ P`(n) and t be a λ-tableau. We define the residue

sequence of t to be the n-tuple:

res(t) := (res(t−1(1)), · · · , res(t−1(n))) ∈ In.

Moreover, we set et := eres(t) ∈H σ
n .

We shall now define the degree of a tableau in the usual fashion, in terms of the

number of addable and removable nodes of a certain residue. For this we will first

need to define an order relation on the set of boxes.
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Definition 1.22. We define the reverse lexicographic order on boxes as follows. Let

1 ≤ i, i′, j, j′ ≤ n and 1 ≤ m,m′ ≤ `. We write [i, j,m] � [i′, j′,m′] if

(i) i < i′, or

(ii) i = i′ and m < m′, or

(iii) i = i′ and m = m′ and j < j′.

For a λ-tableau t we denote by Addt(k) and Remt(k) the following sets:

Addt(k) := {A ∈ Add(Shape(t≤k)) | A � t−1(k), res(A) = res(t−1(k))} (1.24)

and

Remt(k) := {A ∈ Rem(Shape(t≤k)) | A � t−1(k), res(A) = res(t−1(k))} (1.25)

for all 1 ≤ k ≤ n. By using (1.24), (1.25) we define the degree of the tableau t.

Definition 1.23. Let t ∈ Std(n) be a standard tableau. We define the degree of

the node t−1(k) to be

deg(t−1(k)) := |Addt(k)| − |Remt(k)|.

The degree of the tableau t is the sum of the degrees of its nodes, namely

deg(t) =
n∑
k=1

deg(t−1(k)).

1.4.3 Combinatorics of quasi-hereditary quotients

We fix two positive integers h, ` ∈ Z>0, e ≥ (h+1)` and let σ = (σ0, · · · , σ`−1) ∈ Z`

be a (h, e)-admissible charge. The order relations we shall use later in the thesis,

arise from the aforementioned charge. Note that these charges are of different

flavour compared to the ones used by Dipper–James–Mathas [DJM98]. Recall
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from previous subsections that we denote by P`(n) the set of `-partitions of n.

We denote by Ph,`(n) ⊂ P`(n) the subset of `-partitions of n with at most h-

columns in each component. By using the usual conventions, we shall denote by

Tabh(n) ⊂ Tab(n) the set of tableaux of shape with at most h columns in each

component. For λ ∈ Tabh(n), we denote by Stdh(λ), RStdh(λ) and CStdh(λ) the

set of standard, row-standard and column-standard tableaux of shape with at most

h columns in each component. Moreover, we set by Stdh(n) :=
⋃
λ∈Ph,`(n) Stdh(λ).

Note that when the subscript h is clear from the context we will omit it.

At this point we shall introduce the order relation, which will be used in the

construction of a filtration for the quasi-hereditary quotients of the cyclotomic

Hecke algebras. Recall that we have already defined the reverse lexicographic

order on the set of boxes/nodes (see Definition 1.22) and we, naturally, define the

reverse lexicographic order on the set of box-configurations.

Definition 1.24. We define the reverse lexicographic order on B`(n) as follows.

Given λ, µ ∈ B`(n), λ 6= µ, we write λ � µ if the lexicographically minimal box

� ∈ (λ ∪ µ) \ (λ ∩ µ) belongs to µ.

In the following example, we see how the reverse lexicographic order can be viewed

in terms of the lexicographic order of the symmetric group, as the reader might

be more familiar with that one.

Example 1.25. For the symmetric group, the reverse lexicographic ordering is

equal to the transpose of the usual lexicographic ordering. In other words λ � µ if

there exists some t ≥ 1 such that

∑
1≤i≤t

λTi <
∑

1≤i≤t

µTi and
∑

1≤i≤k

λTi =
∑

1≤i≤k

µTi

for all 1 ≤ k ≤ t where T denotes the transpose partition. More generally, �

is a total refinement of the so-called “FLOTW” dominance order on Ph,`(n) in

[Bow, BC18, LP].
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Definition 1.26. Let λ ∈ P`(n) be an `-partition. We define the standard

tableau tλ ∈ Std(λ) to be the tableaux in which we place the entry n in the

minimal �-node of λ, then continue in this fashion inductively.

Example 1.27. Let λ = (3, 22, 16) ∈ P3,1(13) and µ = (3, 2, 17) ∪ {[2, 6, 1]} ∈

B1(13). Note that the node [3, 2, 0] is least in the lexicographic order and [3, 2, 0] 6∈

λ∩µ and furthermore we have that [3, 2, 0] ∈ λ. Hence, according to the definition

of the reverse lexicographic order on box-configurations, we have that µ � λ. The

box configurations of the example can be seen in Figure 1.6.

Figure 1.6: The left-hand side box-configuration (partition) is λ = (3, 22, 16)
and the right-hand side box-configuration is µ = (3, 2, 17) ∪ [2, 6, 1]. The node
[3, 2, 0] ∈ λ, which results to µ � λ, is highlighted in the first box-configuration.

Example 1.28. Let n = 14, ` = 2, h = 3 and λ = ((3, 22, 1), (22, 12)) ∈P3,2(14).

Note that the parameters in this example are similar to those in Example 1.18.

However, in order to be consistent with the assumptions and conventions of this

section we have picked the integer h = 3 and now e = 9, so that e ≥ (h + 1)`.

Below we have two examples of standard tableaux of shape λ. Note that the tableau

tλ is the tableau of Definition 1.26.

tλ =


1 2 3
6 7
1011
13

,

4 5
8 9
12
14

 , s =


1 2 4
6 7
1011
14

,

3 5
8 12
9
13



We shall now give the definition of the Garnir tableaux associated to a node of a

`-partition of the set Ph,`(n). We note that the definition can be extended to any
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partition of the set P`(n), but we choose to present it here as it will only be used

in the combinatorics of the principal block of the Hecke algebra. For the study

of the blob algebra we shall introduce Garnir tableaux of different combinatorial

flavour, which will be defined later in the thesis.

Definition 1.29. Given any node A = [r, c,m] ∈ λ with r 6= 1, we define the

associated Garnir belt BA to be the collection of boxes

{[r, j, k] | j ≥ 1, 1 ≤ k < m} ∪ {[r, j,m] | 1 ≤ j ≤ c}∪

∪{[r − 1, j,m] | c ≤ j} ∪ {[r − 1, j, k] | j ≥ 1, k > m}.

Remark 1.30. We emphasise that, by definition, we don’t obtain Garnir belts for

the boxes in the first row of each component. This happens because we use Garnir

belts because of our need to have a useful language for describing the movement

of a box in positions higher in the �-order.

Example 1.31. Let n = 35, σ = (0, 5, 10) ∈ Z3 and e = 16. We consider the

3-partition λ = ((32, 22), (42, 3, 2), (42, 3, 1)) ∈P4,3(35) and the node [3, 3, 1]. The

associated Garnir belt is given by

λ =


0 1 2

15 0 1

14 15

13 14

,

5 6 7 8

4 5 6 7

3 4 5

2 3

,

10 11 12 13

9 10 11 12

8 9 10

7


where here we have coloured the Garnir belt in yellow. We note that this is of a dif-

ferent combinatorial flavour to the Garnir belts of [Mat99] as we are working with

a different weighting on our Hecke algebra, or equivalently a “twisted” Fock-Uglov-

space ordering, or equivalently a Cherednik algebra which is not Morita equivalent

to the cyclotomic q-Schur algebra. See [BC18, LP, LPRH] for more details.

We also note that the Garnir belt is independent of the parameters e, σ, however

in this example we use them since we want to show how the residue pattern works

within the Garnir belt.

Remark 1.32. Note that the Garnir belt is independent of e, σ. The only reason

we mention them in Example 1.31 is because we want to provide another example
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of how the residues look like. In particular, we want the reader to observe that

within the Garnir belt, each residue appears with multiplicity at most 1.

1.4.4 Blob-type combinatorics

For the study of the blob algebra we use combinatorics that can be viewed as

special cases of the combinatorics described earlier in this chapter. For a positive

integer n ∈ Z>0 we shall work with `-partitions of n consisting of two components,

with at most one column in each component. We refer to those partitions as

one-column bipartitions or simply bipartitions of n and we denote the set consisting

of those bipartitions by Bip1(n). Note that such bipartitions are of the form

λ = ((1λ1), (1λ2)) while the nodes of such bipartitions are of the form [i, 1,m]

Remark 1.33. In order to become clear that the combinatorial objects (partitions,

tableaux) that we use in the case of the blob algebra are special cases of the com-

binatorics defined previously, we remark that the set Bip1(n) is another notation

for the set P1,2(n). We keep the former because we choose to be aligned with the

notation in [Mic21].

Remark 1.34. Consider the set Λn = {−n,−n + 2, · · · , n − 2, n}. There is an

obvious bijective map between Λn and the set Bip1(n) of bipartitions of n, given

by

Bip1(n) −→ Λn, ((1λ1), (1λ2)) 7−→ λ1 − λ2.

In other words we can identify each bipartition with an integer in the set Λn. Using

the above bijection we freely identify a bipartition ((1λ1), (1λ2)) and the integer

λ1 − λ2.

The following remark will adjust the reverse lexicographic order on box-configurations

(see Definition 1.24) in the context of one-column bipartitions. This will provide

an easy criterion about determining the order between one-column bipartitions.

Based on that adjustment, we shall define an order on the set of standard tableaux

which are of shape λ ∈ Bip1(n).
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Definition 1.35. Let λ = ((1λ1), (1λ2)), µ = ((1µ1), (1µ2)) ∈ Bip1(n) with λ 6= µ

be two bipartitions of n. Then

λ � µ if and only if |λ1 − λ2| < |µ1 − µ2|.

If |λ1 − λ2| = |µ1 − µ2| and λ 6= µ then λ and µ are incomparable. We say that

λ is more dominant than µ and we write λ D µ, if additionally λ, µ have the same

multiset of residues.

Remark 1.36. We note that in Definition 1.35 the only case that the equality in

the order relation holds is when we compare a bipartition with itself. This is the

only difference of the above partial order with the order of Definition 1.24. For

consistency, we shall keep the same notation as it will be clear from the context

when we refer to the blob algebra.

Definition 1.37. Let t, s ∈ Std(λ). We write t � s if and only if

Shape(t≤k) � Shape(s≤k)

for 1 ≤ k ≤ n. In addition if res(t) = res(s), we write t E s and we say that t is

less dominant than s.

Note that if t ∈ Std(n) is a standard tableau, we denote by tt the transpose of t.

For ease of notation we will often use the transpose tableau.

Example 1.38. Let λ = ((1), (19)) ∈ Bip1(10), σ = (0, 2) and e = 4 and we

consider the standard λ-tableaux

tt =
(

10 , 1 2 3 4 5 6 7 8 9
)

and

st =
(

8 , 1 2 3 4 5 6 7 9 10
)
.
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We remark that res(t) 6= res(s) and Shape(t≤k) = Shape(s≤k), for 1 ≤ k ≤ 7.

However we have that

Shape(t≤k) � Shape(s≤k)

for 8 ≤ k ≤ 10, hence t precedes s in the order of Definition 1.37 and we write

t ≺ s. Now we consider the standard λ-tableau

ut =
(

7 , 1 2 3 4 5 6 8 9 10
)

and we note that res(u) = res(s). Since Shape(s≤k) = Shape(u≤k), for 1 ≤ k ≤ 6,

and

Shape(s≤k) ≺ Shape(u≤k)

for 7 ≤ k ≤ 10, we have that s E u, i.e s is less dominant than u.

Definition 1.39. [Pla13, Section 3] Let λ = ((1λ1), (1λ2)) ∈ Bip1(n) and m =

min{λ1, λ2}. We define the initial tableau tλ ∈ Std(λ) to be the tableau obtained

by filling the nodes increasingly down to columns as follows:

1. even numbers less than or equal to 2m in the first component,

2. odd numbers less than 2m in the second component,

3. numbers greater than 2m in the remaining nodes.

For a given bipartition λ = ((1λ1), (1λ2)) ∈ Bip1(n) the standard tableau tλ ∈

Std(λ) is maximal under the order of Definition 1.37. Note that the tableau tλ of

Definition 1.26 is also maximal but for historic reasons and in order to be aligned

with [Mic21], in the context of the blob algebra we shall use tλ. In order to

simplify the notation, in later sections we shall write iλ = (iλ1 , · · · , iλn) ∈ In instead

of res(tλ) for the residue sequence of the tableau tλ.

Remark 1.40. For any λ-tableau t we define wt := wtλ

t ∈ Sn, in the sense of

Definition 1.16. We refer to wt = si1 · · · sik , where sij .1 ≤ j ≤ k are simple

transpositions, as the reduced expression of t.
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The following remark is of particular importance, as many of the results of the

blob algebra are based on this fact.

Remark 1.41. Let λ ∈ Bip1(n) be a bipartition of n and r, r + 1, r + 2, 1 ≤ r ≤

n − 2, be three successive positive integers. There are eight different cases for a

standard λ-tableau and four of them are depicted in Figure 1.7 and we denote them

(T1)-(T4) respectively. The rest four standard tableaux are the ones obtained by

interchanging the numbers between the components and we denote them (T1’)

- (T4’). For instance the tableau (T1’) is the tableau with r + 2 in the first

component and r, r + 1 in the second component.

r

r + 1

...

...

...

...

r + 2 ,

...

...

r
r + 1

r + 2

...

...

,

...

...

r

r + 1

r + 2

... and
r

r + 2

...

...

...

...

r + 1

Figure 1.7: We depict the four out of eight different cases of standard tableaux
for three successive integers r, r + 1, r + 2 and we denote them (T1)-(T4).

The subword srsr+1sr cannot appear in the reduced expression of any of the above

tableaux, as if we apply it to any standard tableau we get a non-standard tableau.

In particular if t ∈ Std(λ) is the initial tableau, the non-standard tableau would be

the one coming from the interchange of the nodes occupied by the entries r, r+ 2,

which can be denoted by tr↔r+2. Hence the reduced expression for each tableau is

unique up to the commuting relations of the symmetric group.

Definition 1.42. Let n, n′ ∈ Z be two positive integers with n′ < n. If λ ∈ Bip1(n)

and ν ∈ Bip1(n′) with [ν] ⊂ [λ], we define the skew bipartition λ \ ν to be the

bipartition with diagram the set difference [λ]− [ν].

Definition 1.43. Let n, n′ ∈ Z with n′ < n, λ ∈ Bip1(n), ν ∈ Bip1(n′) and let

λ \ ν be the skew bipartition. If t ∈ Std(ν) and s ∈ Std(λ \ ν) then the λ-tableau
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with entries {1, 2, · · · , n} in the nodes

(t−1(1), · · · , t−1(n′), s−1(1), · · · , s−1(n− n′))

respectively, is the composition t ◦ s ∈ Std(λ) of the tableaux t and s.

The following example will clarify the notions of skew bipartitions and composition

of tableaux.

Example 1.44. Let n = 10 and n′ = 4 and consider the bipartitions λ =

((13), (17)) ∈ Bip1(10), ν = ((1), (13)) ∈ Bip1(4). The skew bipartition λ \ ν

is the box-configuration consisting of the following nodes

[λ \ ν] = {[2, 1, 0], [3, 1, 0], [4, 1, 1], [5, 1, 1], [6, 1, 1], [7, 1, 1]}.

Now, we consider the tableau

t =

 3 ,
1
2
4


in Std(λ) and let s ∈ Std(λ \ ν) be the tableau with

s[2, 1, 0] = 2 s[5, 1, 1] = 4

s[3, 1, 0] = 3 s[6, 1, 1] = 5

s[4, 1, 1] = 1 s[7, 1, 1] = 6.

The composition t ◦ s ∈ Std(λ) is the standard tableau

t ◦ s =


3
6
7
,

1
2
4
5
8
9
10


.
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We shall now define the concept of Garnir tableaux in the setting of one-column bi-

partitions. As per usual the concept of defining Garnir tableaux starts by defining

Garnir nodes and Garnir belts. Note that previously in this chapter we have spo-

ken about Garnir belts in the context of quasi-hereditary quotients of the quiver

Hecke algebra. In the context of the blob algebra there will be slight differences.

Recall that in Definition 1.29, the only restriction on the node [r, c,m] is that

r 6= 1. In the context of one-column bipartitions we have the following definition

of a Garnir node. In turn this gives us the definition of a Garnir belt associated

to a Garnir node.

Definition 1.45. Let λ ∈ Bip1(n) and A = [r, 1,m] ∈ [λ] be a node of the diagram

of λ. The node A is called Garnir node if it is not removable.

Suppose that A = [r, 1,m] ∈ [λ] is a Garnir node and let u := tλ[r, 1,m] and

v := tλ[r+ 1, 1,m]. It is clear from the definition of tλ that- for [r, 1,m] be Garnir

node- there are two distinct cases for u and v. In particular it will either be

v = u + 1 or v = u + 2 and recall that [u, v] := {t ∈ Z | u ≤ t ≤ v}. The Garnir

belt BA is a set consisting of the nodes (tλ)−1(k) for k ∈ [u, v].

Remark 1.46. We remark that the Garnir belts for the blob algebra are essentially

the same as in Definition 1.29 up to reindexing.

Definition 1.47. For a Garnir node A = [r, 1,m] ∈ [λ] we define a Garnir tableau

GA associated to A to be the λ-tableau which:

• coincides with tλ outside the Garnir belt BA;

• has the numbers of the set [u, v] in the remaining nodes according to the

following rules.

1. If v = u+ 1, then GA has the numbers u, u+ 1 from the bottom to the

top in the mth column;

2. if v = u+ 2, then GA has the entries u, u+ 1, u+ 2 from the bottom to

the top in both components, first by filling one of the components and

then by filling the other.
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Note that we define a Garnir tableau associated to A rather that the Garnir

tableau, as the above definition does not always give a unique tableau. In the

following remark we will clarify this point and we shall give a more concrete

description of the Garnir tableaux.

Remark 1.48. Let A = [r, 1,m] be a Garnir node and BA be the Garnir belt

associated to A. When v = u+ 1 there is a unique Garnir tableau GA, since there

is a unique way of placing the numbers u, u + 1. In particular, the tableau GA is

the tableau

GA = sutλ. (1.26)

When v = u+ 2 there are two choices of Garnir tableaux. The first choice comes

from filling the first component first and then the second component, while the

second choice comes from filling the second component first and then the first

component. In particular, the two different Garnir tableaux are

GA =

susu+1tλ

su+1sutλ.

(1.27)

The following example aims to clear the concept of the Garnir tableaux discussed

in Definition 1.47 and Remark 1.48.

Example 1.49. Let n = 12, σ = (0, 2) and e = 4. We consider the bipartition

λ = ((14), (18)) ∈ Bip1(12) and the nodes A = [2, 1, 0], B = [6, 1, 1] ∈ [λ] which

are Garnir nodes (i.e removable). The Garnir tableaux associated to A and B are

the following non-standard tableaux

GA
1 =


2
5
4
8

,

1
3
6
7
9
10
11
12


,GA

2 =


2
6
5
8

,

1
3
4
7
9
10
11
12


and GB =


2
4
6
8

,

1
3
5
7
9
11
10
12


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where the nodes shaded in blue are the Garnir belts of each Garnir tableau. As

expected, there are two distinct Garnir tableaux associated to the node A and one

unique Garnir tableau associated to B. One can easily check that GA
1 = s4s5tλ,

GA
2 = s5s4tλ and GB = s10tλ, as described in Remark 1.48.

In order to make the notation simpler we introduce the notion of the left and right

exposed transposition. Let t ∈ Std(n) with reduced expression wt = si1 · · · sik . A

simple transposition sr is called left exposed (resp. right exposed) if sr = sij for

some j ∈ {1, · · · , k} and sr commutes with sil for all l < j (resp. l > j). We also

define the length function of the symmetric group Sn.

Definition 1.50. We define the length L(σ) of a permutation σ ∈ Sn to be the

least number of simple permutations needed to form σ.

Lemma 1.51. Let λ ∈ Bip1(n) and t 6∈ Std(λ) is a non-standard tableau of shape

λ. Suppose that A = [r, 1,m] ∈ λ is a node such that t(r, 1,m) > t(r + 1, 1,m).

Then there exists w ∈ Sn such that t = wGA′ for some Garnir node A′ ∈ λ and

some Garnir tableau GA′ and L(wt) = L(w) + L(wGA′ ). Conversely, if t = wGA′

with L(wt) = L(w) + L(wGA′ ) then t 6∈ Std(λ).

Proof. Let u := tλ[r, 1,m], v := tλ[r+1, 1,m], a := t[r, 1,m] and b := t[r+1, 1,m].

First we consider the case that v = u+ 1. From our discussion in Remark 1.48 we

have that GA = sutλ and without loss of generality we may assume that [r, 1,m] is

the node with t[r, 1,m] > t[r+ 1, 1,m]. If t = GA we have nothing to prove, so let

t 6= GA. If a = v and b = u the result is straightforward. Assume that a 6= v and

b = a− 1 and let s = sa−1t, that is t = sa−1s. Then the word sa−1sasa−1 appears

as subword of wt and by successively applying the braid Coxeter relations we end

up with a subword of the form susu−1su with su being right exposed. Note that if
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b 6= a− 1 then t will be of the form

...

...

a

a− k

...

for some 2 ≤ k ≤ a − 1 and we simply have the subword sa−k · · · sa−2 on the left

of susu−1su.

In any case we have that

t = w′susu−1sutλ = w′susu−1GA (1.28)

for some permutation w′ ∈ Sd and we have factorised the non-standard tableau t

through the unique Garnir tableau associated to A.

Now we consider the case that v = u + 2 and recall that the Garnir tableau

associated to A are the tableaux GA
1 := susu+1tλ and GA

2 := su+1sutλ. Same as in

the case v = u + 1, if t = GA
1 or t = GA

2 the result is straightforward. Hence we

may assume that t 6= GA
1 ,G

A
2 . If the entries u, u+ 1, u+ 2 occupy the nodes in BA

in t then the result is straightforward, that is t = su+1GA
1 = suGA

2 . Now suppose

that the numbers u, u+ 1, u+ 2 do not occupy the nodes of BA, but those nodes

contain consecutive numbers a, a + 1, a + 2. Then if a < u we have that on of

the subwords sa+3sa+2 or sa+2sa+3 will appear in wt and it will be right exposed,

hence

t = wGB, where B := (tλ)−1(a+ 2) (1.29)

for some w ∈ Sn and some Garnir tableau GB associated to B. If a > u then

either sa−2sa−1 ir sa−1sa−2 will appear as subword of wt and it will be right exposed,
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hence

t = wGC , where C := (tλ)−1(a− 2) (1.30)

for some w ∈ Sn and some Garnir tableau GC associated to C. From (1.28), (1.29)

and (1.30) we have the desired result.

For the converse argument we refer to [APS19, Lemma 1.12].



Chapter 2

Cellularity of quasi-hereditary

quotients of Hecke algebras

In this chapter we present one of the main results of this thesis concerning the

quasi-hereditary quotients H σ
n , σ ∈ Z`, of cyclotomic quiver Hecke algebras. In

particular, we construct a “classical-type” tableaux-theoretic cellular basis for the

aforementioned quotients. These bases might look familiar to the reader and

remind them the Murphy’s bases for Hecke algebras. However, in this case the

underlying combinatorics are different, as they rely on the non-standard order of

Definition 1.24 for the cellular structure. The results of this chapter form the first

section of the preprint [BCHM20] and they are personal work of the author.

The motivation for the construction of the above cellular basis comes from the

representation theory of the symmetric group. The representation theory of the

symmetric group lies in the intersection of two great categorical theories. The first

is Khovanov–Lauda and Rouquier’s categorification of quantum groups and their

knot invariants [KL09, Rou] and Elias–Williamson’s diagrammatic categorifica-

tion in terms of endomorphisms of Bott–Samelson bimodules. Bowman–Hazi–Cox

[BCH] construct explicit isomorphisms between these two diagrammatic worlds.

For this construction, the “light-leaves” bases of these algebras play crucial role.

38
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In [BCHM20] Bowman–Hazi–Cox and the author construct such bases for the

quasi-hereditary quotients H σ
n , σ ∈ Z`, of cyclotomic quiver Hecke algebras.

The backbone for the construction of the light-leaves basis for the quiver Hecke

algebras is the construction of the tableaux-theoretic cellular basis we mentioned

above, with respect to that order relation. The first section of this chapter is

devoted in defining technicalities and combinatorial analogues of the action of the

dot generators of the algebras. In particular, these analogues will be considered

as maps on the set of box-configurations. Prior to that we define some essential

combinatorial language accompanied with examples, in order to make it easier

for the reader to understand the new concepts. The second section is the most

fruitful section of this chapter and it contains the technical proof that enables

us to construct a chain of two-sided ideals for the quotients H σ
n , σ ∈ Z`, with

respect to the order relation of Definition 1.24. The proof massively depends on

the maps defined in the previous section and the order of Definition 2.2 (which is a

coarsening of �). Throughout this section we use a running example which makes

the technical load easier for the reader to digest. Finally, in the last section we

utilise that chain of two-sided ideals and we prove that the algebras H σ
n , σ ∈ Z`,

are cellular and indeed (over a field k) quasi-hereditary.

2.1 Maps on box-configurations

Let h, ` ∈ Z>0, e ≥ (h+ 1)` and σ ∈ Z` be an (h, e)-admissible charge, as defined

in Definition 1.10. Recall that

H σ
n := Hσ

n/Hσ
nehHσ

n

is the quotient of the cyclotomic quiver Hecke algebra of Definition 1.11. In order

to construct a tableaux-theoretic basis for the aforementioned quasi-hereditary

quotients, we first need to construct a stratification of H σ
n in which each layer

is generated by an idempotent corresponding to some `-partition. Hence we need

to understand the effect of multiplying a generator of a given cell-stratification
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by a KLR dot. Towards that direction, in this section, we define combinatorial

analogues of the dot generators as maps on the set of box-configurations.

Definition 2.1. Let λ ∈ B`(n) and let [i, j,m] ∈ λ be an r-box for some r ∈ Z/eZ.

We say that [i, j,m] is left-justified if either j < e or there exists some [i, j−p,m] ∈ λ

for 1 ≤ p ≤ e.

Recall the reverse lexicographic order � on the set of box configurations as defined

in Definition 1.24. The next definition is crucial for the remainder of this chapter.

It defines a new order relation (which will be a coarsening of �) which will be

mainly used in the proof of Proposition 2.12.

Definition 2.2. Let λ ∈ B`(n), r ∈ Z/eZ. For an r-box α ∈ λ, we define

Yα(λ) := λ− α ∪ β

where β 6∈ λ is the box with β � α satisfying the following properties:

(i) has residue r;

(ii) is left-justified; and

(iii) is minimal to the order relation � with respect to these properties.

If such box does not exist, we say that Yα(λ) is undefined. We write λ �� µ if

λ = Yα(µ) for some α ∈ µ and we then extend �� to a partial order on B`(n) by

taking the transitive closure. Suppose that {[ik, jk,mk] | 0 < k ≤ p} is a set of

r-boxes and that Y[ik,jk,mk](λ ∪ [ik, jk,mk]) = λ ∪ [ik+1, jk+1,mk+1] for k ≥ 1. We

define

Y p
[i1,j1,m1](λ ∪ [i1, j1,m1]) = (λ ∪ [ip, jp,mp]).

Note that the only case that Yα(λ) is undefined, is when i = 1 and m = 0.

Remark 2.3. We remark that λ �� µ implies that λ � µ. Hence the order �� of

Definition 2.2 is a coarsening of �.
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Example 2.4. Let λ = (3, 22, 16) ∈ P3,1(13) and e = 5 and σ = 0 ∈ Z.

The residue of the node [3, 2, 0] is res[3, 2, 0] = 4. We have that Y[3,2,0](λ) =

(3, 22, 16) ∪ [2, 6, 0] ∈ B1(13), since the 4-node [2, 6, 0] is minimal in the lexico-

graphic order such that [2, 6, 0] � [3, 2, 0] and [2, 6, 0] is left-justified. Note that the

lexicographically least 4-node satisfying the first condition of Definition 2.2, is the

node [2, 11, 0]. However, the node [2, 11, 0] is not left-justified, hence we pick the

node [2, 6, 0] which is also left-justified. The above are depicted in Figure 2.1.

0 1 2
4 0
3 4
2
1
0
4
3
2

0 1 2
4 0
3
2
1
0
4
3
2

4

Figure 2.1: The pair of box-configurations is the same as in Example 1.27.
Here we also record the residues of each node of the configuration. The left
hand side partition is λ and the right hand side box-configuration is Y[3,2,0](λ).

Example 2.5. Let h = 3, ` = 1, e = 5, σ = 0 and λ = (3, 22, 16) ∈P3,1(13) as in

Example 2.4. We have that Y 1
[4,1,0](λ) = (3, 22, 16) ∪ [3, 5, 0]− [4, 1, 0], Y 2

[4,1,0](λ) =

(3, 22, 16)∪[2, 4, 0]−[4, 1, 0] and Y 3
[4,1,0](λ) = (3, 22, 16)∪[1, 8, 0]−[4, 1, 0]. The above

box-configurations in B1(13) can be found in Figure 2.2. Note that in Y 1
[4,1,0](λ) the

node [4, 1, 0] does not pass through any node with adjacent residue, as it belongs in

the first column of the row and ` = 1.

Given an idempotent indexed by an n-tuple j ∈ (Z/eZ)n, we wish to identify in

which layer of the stratification this idempotent belongs to. To this end we make

the following definition.

Definition 2.6. Associated to any n-tuple j = (j1, · · · , jn) ∈ (Z/eZ)n we define

the tableau J ∈ Std(n) to be the tableau given by placing the entry k = 1, 2, · · · , n

in the lexicographically least addable jk-node of the partition Shape(J≤k−1) or

formally setting J = 0 and Shape(J) = ∅ if no such node exists for some 1 ≤ k ≤ n.



42

0 1 2
4 0
3 4 2

1
0
4
3
2

0 1 2
4 0
3

2
4

1
0
4
3
2

0 1 2 2
4 0
3 4

1
0
4
3
2

Figure 2.2: The box configurations Y 1
[4,1,0](λ), Y 2

[4,1,0](λ) and Y 3
[4,1,0](λ) respec-

tively. The partition λ is depicted in Figure 2.1.

Example 2.7. Let h = 3, ` = 1, e = 5, σ = 0 and consider the tuple j =

(0, 1, 4, 0, 3, 4, 2, 1, 0, 4, 3, 2, 2) ∈ (Z/5Z)13. The tableau J ∈ Std(13) described in

Definition 2.6 is depicted in Figure 2.3.

0 1 2
4 0
3 4
2
1
0
4
3
2

1 2 13
3 4
5
7
8
9
10
11
12

6

Figure 2.3: In the left hand side we have a residue pattern same as the vector
j. In the right hand side we present the tableau J ∈ Std(13), constructed

according to Definition 2.6.
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2.2 Chain of two-sided ideals

We are now ready to construct the chain of two-sided ideals for the quotients H σ
n ,

σ ∈ Z`. This chain of ideals is the central technical result of this section and will

be used for constructing the tableaux-theoretic cellular basis. In the section we

include some further combinatorial concepts and definitions which are important

in the statement and proof of the main result.

Lemma 2.8. Let λ ∈Ph,`(n) and σ ∈ (Z/eZ)` be (h, e)-admissible. For any box

[i, j,m] ∈ λ we have that the multiset of residues of boxes in λ ∩ B[i,j,m], where

B[i,j,m] is the Garnir belt of [i, j,m], is multiplicity-free (i.e. no residue appears

more than once).

Proof. This follows immediately from the definitions, since σ ∈ (Z/eZ)` is (h, e)-

admissible.

Remark 2.9. Let [i, j,m] ∈ λ and suppose [i′, j′,m′] ∈ B[i,j,m] ∩ λ is such that

res([i′, j′,m′]) = res([i, j,m])− 1.

The most common case of such a box is [i′, j′,m′] = [i, j − 1,m]. Whenever

σm − σm−1 = h, for m > 0, we also have a case where j = 1 and [i′, j′,m′] =

[i, h,m− 1]. If σ`−1− σ0 = e− h, we also have a case where j = 1 and m = 0 and

[i′, j′,m′] = [i − 1, h, ` − 1]. However, we note that the aforementioned cases will

not appear due to restrictions on the charge σ.

Definition 2.10. Let λ ∈ Ph,`(n). We define the Garnir adjacency set of a node

α = [i, j,m], with res(α) = r ∈ Z/eZ, to the set of boxes γ ∈ λ ∩ Bα such that

|res(γ)− res(α)| ≤ 1 and denote this set by Adj− Gar(α). We also set

res(Bα) = {res(γ) | γ ∈ Adj− Gar(α)}.

Note that for any node α 6∈ λ, the set Adj− Gar(α) has at most one node of each

possible residue, by Lemma 2.8. We also define the following elements, which will
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be needed for the construction of the chain of two-sided ideals and the cellular

basis.

Definition 2.11. Given s, t ∈ Std(λ) we define the element

ψs
t := esψwet ∈H σ

n

where w ∈ Sn any fixed reduced expression for ws
t ∈ Sn.

We define H ≥λ
n := H σ

n 〈etν | ν ≥ λ〉H σ
n for ≥ any order on Ph,`(n); we formally

set H ≥0
n = 0 to be the zero ideal.

The next proposition is the technical element of the main result of this chapter.

0 1 2
4 0 1

3 4 0

2 3

1 2

0 1

4

3

2

Figure 2.4: For n = 13 and λ = (23, 16), we illustrate how the idempotent,
e(0,1,4,0,3,4,2,1,0,4,3,2,2), labelled by J in Figure 2.3, is rewritten in the form of
equation (2.4). The box moves through each row until it comes to rest at the
point J−1(13) = [1, 3, 0]. This involves 8 applications of (2.1) to deduce (2.4) in
this example. For the purposes of later referencing, we label the 9 boxes from

bottom-to-top by α1 = [9, 6, 0], α2 = [8, 5, 0] . . . , α9 = [1, 3, 0]

Proposition 2.12. Let λ ∈ Ph,`(n − 1) and α = [i, j,m] 6∈ λ with res(α) = r.

We set β to be the box determined byY
`+1
α (λ ∪ α), if Adj− Gar(α) = {r − 1};

Yα(λ ∪ α), otherwise.
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Moreover, β is undefined if Adj− Gar(α) = ∅ and r = 1. We set a = tλ∪α(α) and

b = tλ∪β(β). We define

H (�� λ)∪β
n =

∑
{µ∈Ph,`(n−1)|µ�� λ,β 6∈µ}

H σ
n etµ∪βH

σ
n ≤H �� (λ∪β)

n .

and we also define

y�tλ∪α =

yaetλ∪α if there exists � ∈ Add(tλ↓≤a−1) with α �� �;

etλ∪α otherwise.

• If λ ∪ α 6∈Ph,`(n), then we have that

y�tλ∪α ∈

±ψ
a
b y
�
tλ∪β

ψba + H (�� λ)∪β
n or

±(ya−1ψ
a
b y
�
tλ∪β

ψba − ψab y�tλ∪βψ
b
aya) + H (�� λ)∪β

n

(2.1)

if β is defined (the two possible cases are detailed in the proof). If β is undefined,

then etλ∪α = 0.

• If λ ∪ α ∈Ph,`(n), then we have that

yay
�
tλ∪α
∈ ±ψab y�tλ∪βψ

b
a + H (�� λ)∪β

n (2.2)

if β is defined. If β is undefined, then yaetλ∪α = 0.

Remark 2.13. By Lemma 2.8, if λ ∪ α ∈Ph,`(n) then y�tλ∪α = etλ∪α .

Before we proceed to the proof of Proposition 2.12 we shall try to emphasise its

importance by intuitively describing the motivation behind the need of having

such a technical result. The motivation is its immediate Corollary 2.15. We aim

to construct a chain of two-sided ideals for the algebra H σ
n , with respect to the

order �, in which each two-sided ideal is generated by an idempotent etλ for

λ ∈Ph,`(n). By using equations (2.1) and (2.2) of Proposition 2.12 , we are able

rewrite any element of

Yn := 〈ei, yk | i ∈ (Z/eZ)n, 1 ≤ k ≤ n〉 (2.3)



46

in the required form by moving a given box α through the partition λ ∈Ph,`(n),

one row at a time until it comes to rest at some point β. We include a running

example of this procedure for the tableau of Figure 2.3. The eight steps (indexed

by nine tableaux) of this procedure are illustrated in Figure 2.4.

Remark 2.14. We remark that in the proof of Proposition 2.12 we often relate

ideals and elements in algebras of smaller and larger rank by using horizontal

concatenation of diagrams, in the sense of the first chapter of the thesis (see Figures

1.4, 1.5). The reason we can do that is by the definition of the reverse lexicographic

order. In more detail, the order � distinguishes between box configurations based

on the first discrepancy upon reading a pair of box configurations backwards.

Proof of Proposition 2.12. We assume the equation (2.1) holds for all λ∪α = ν 6∈

Ph,`(k) and equation (2.2) holds for all λ ∪ α = ν ∈ Ph,`(k) for all 1 ≤ k < n.

(The k = 1 base case is trivial.) By repeated applications of equations (2.1) and

(2.2) we know that the algebra H σ
k has a chain of 2-sided ideals H �� ν

k indexed

by ν ∈ Ph,`(k) for 1 ≤ k < n. In particular, for any j = (j1, . . . , jk) ∈ (Z/eZ)k,

1 ≤ k < n, we have thatej ∈ ±ψ̂
J
tν ψ̂

tν
J + H �� ν

k if Shape(J) = ν ∈Ph,`(k)

ej = 0 if Shape(J) = ∅
(2.4)

where ψ̂J
tν , ψ̂

tν
J are obtained by ψJ

tν , ψ
tν
J , respectively, by possibly adding dot dec-

orations along the strands. Also for ν ∈ Ph,`(k), 1 ≤ k < n, the element yaetν

belongs to H �� ν
k for any 1 ≤ a < n.

We can now further assume that the result has been proven for all ν of the form

µ ∪ α = ν ∈ Ph,`(n) for some µ �� λ in Ph,`(n − 1), thus leaving us to prove the

result for all ν = λ ∪ α for λ ∈ Ph,`(n − 1). By Definition 2.2, res(α) = res(β)

and we set this residue equal to r ∈ Z/eZ for the remainder of the proof.

Proof of equation (2.1) for a given λ and α. We include a running example

of our algorithm for e = 5 and ` = 1 and λ = (23, 16). There are four cases to
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consider, depending on the residue of the final node in the column (i.e. the residue

of the strand labelled by α′ := t−1
λ∪α(a− 1)).

(i) Suppose α′ = t−1
λ∪α(a − 1) has residue r ∈ Z/eZ and so y�tλ∪α = etλ∪α . By

application of relations R4 and R5, we have that

etλ∪α = ψa−1ya−1etλ∪αψaya−1 − yaψa−1ya−1etλ∪αψa−1. (2.5)

An example of the visualisation of the idempotents on the righthand-side of

equation (2.5) is given in the first step of Figure 2.4; the corresponding righthand-

side of equation (2.5) is depicted in Figure 2.5. Now, we have that

ya−1etλ∪α = (ya−1etλ∪α↓≤a−1
)� er � etλ∪α↓>a

and so by our inductive assumption for equation (2.2) for rank a − 1 < n, we

have that

ya−1etλ∪α ∈ ψa−1
b y�tλ∪β↓≤a−1

ψba−1 � etλ∪β↓≥a + H (�� λ)∪β
n

= ψa−1
b y�tλ∪βψ

b
a−1 + H (�� λ)∪β

n

where we have implicitly used the following facts: (i) Y d+1
α′ (λ∪α) = λ∪α∪β−α′

(ii) tλ∪α↓>a = tλ∪β↓>a and (iii) once we have moved α′ to position β, the α box

is free to move into the newly unoccupied position. Substituting this back into

equation (2.5), we obtain

etλ∪α ∈ ψab y�tλ∪βψ
b
aya−1 − yaψab y�tλ∪βψ

b
a + H (�� λ)∪β

n (2.6)

as required. An example is depicted in Figure 2.5 (although we remark that the

error terms belonging to H (�� λ)∪β
n are actually all zero in this case).

(ii) Now suppose t−1
λ∪α(a − 1) = [x, y, z] has residue r + 1 ∈ Z/eZ. Here we need

to consider two separate cases. We first consider the case in which [x, y, z] =

[i, 1,m], which will be the easier one. By Lemma 2.8 and relation R5 we have
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0 1 4 0 3 4 2 1 0 4 3 2 2

tλ∪α1

tλ∪α2

tλ∪α1

0 1 4 0 3 4 2 1 0 4 3 2 2

−

0 1 4 0 3 4 2 1 0 4 3 2 2

tλ∪α1

tλ∪α2

tλ∪α1

0 1 4 0 3 4 2 1 0 4 3 2 2

Figure 2.5: We continue with the example in Figure 2.4 for λ = (26, 13). This
is the righthand-side of equation (2.5) for y13etλ∪α1 .

that

y�tλ∪α = yaetλ∪α = ya−1etλ∪α − etλ∪αψa−1etλ∪βψa−1etλ∪α (2.7)

were the former term belongs to the required ideal by equation (2.1) for rank

a− 1 < n. Note that in this case we simply have that b = a− 1.

The second case is the one in which y > 1. Then the (a − 2)th, (a − 1)th and

ath strands have residues r, r + 1, and r respectively. We have that

y�tλ∪α = etλ∪α = etλ∪αψa−2ψa−1ψa−2etλ∪α − etλ∪αψa−1ψa−2ψa−1etλ∪α

= −etλ∪αψa−2ψa−1ya−1ψa−1ψa−2etλ∪α

+ etλ∪αψa−1ψa−2ya−2ψa−2ψa−1etλ∪α . (2.8)

where the first equality follows from relation R6 and the second follows from

relations R4 and R5. We set ξ = Shape(tλ↓<a−2). The two terms in equation

(2.8) factor through the elements

etλ↓<a−2
� er+1︸ ︷︷ ︸

ξ∪[x,y,z]

�y1er,r � etλ∪α↓>a etλ↓<a−2
� y1er︸ ︷︷ ︸

ξ∪[x,y−1,z]

�er,r+1 � etλ∪α↓>a (2.9)

respectively.

• We first consider the latter term on the righthand-side of equation (2.8) (which

we will see, is the required non-zero term). We note that [x, y − 1, z] and α

have the same residue and so Y[x,y−1,z](ξ ∪ [x, y − 1, z]) = ξ ∪ β − [x, y − 1, z].

By our inductive assumption that (2.2) holds for rank a − 2 < n, we have
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that

etλ↓<a−2
� y1er = ya−2etξ∪[x,y−1,z]

∈ ψa−2
b y�tξ∪βψ

b
a−2 + H (�� ξ)∪β

a−2 (2.10)

Substituting this back into the second term of equation (2.9) we obtain

ψa−2
b y�tξ∪βψ

b
a−2 � er,r+1 � etλ∪α↓>a ∈ ψ

a−2
b y�tλ∪βψ

b
a−2 + H (�� λ)∪β

n

and then substituting into the second term of equation (2.8) we obtain

etλ∪αψa−1ψa−2ya−2ψa−2ψa−1etλ∪α ∈ ψa−1ψa−2ψ
a−2
b y�tλ∪βψ

b
a−2ψa−2ψa−1 + H (�� λ)∪β

n

= ψab y
�
tλ∪β

ψba + H (�� λ)∪β
n

as required.

• We now consider the former term of equation (2.8) (which, we will see, is zero

modulo the ideal). We have that Y 2
[x,y,z](ξ ∪ [x, y, z]) = ξ ∪ γ �� ξ ∪ [x, y, z] for

γ a box of residue r + 1 ∈ Z/eZ. We set c = t−1
ξ∪γ(γ) and We have that

etξ � er+1 = etξ∪[x,y,z] = ψa−2
c etξ∪γψ

c
a−2 ∈ ψa−2

c y�tξ∪γψ
c
a−2 + H (�� ξ)∪γ

a−2

by our inductive assumption that the equation (2.1) holds for rank a−2 < n.

We now consider the concatenation with y1er. We have that Y[x,y−1,z](Y[x,y,z](ξ∪

[x, y, z]) ∪ [x, y − 1, z]) = Y[x,y−1,z](ξ ∪ γ ∪ [x, y − 1, z]) = ξ ∪ γ ∪ β for

γ � β �� [x, y − 1, z] with γ a box of residue r + 1 ∈ Z/eZ. We have

that

etξ∪γ � y1er = ya−1etξ∪γ∪[x,y−1,z]
∈ ψa−1

b y�tξ∪γ∪δψ
b
a−1 + H (�� ξ)∪γ∪δ

a−1

by induction for rank a − 1 < n and (2.4). Finally, we concatenate again to

obtain

etλ↓<a−2
� er+1� y1er,r � etλ∪α↓>a ∈ ψ

a−2
c ψa−1

b y�tλ∪γ∪β−[x,y,z]
ψba−1ψ

c
a−2 + H (�� λ)∪β

n
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and we note that the idempotent on the righthand-side is labelled by (λ∪γ−

[x, y, z])∪ β where λ∪ γ − [x, y, z] �� λ. Therefore this element belongs to the

ideal H (�� λ)∪β
n as required.

(iii) Now suppose α′ = t−1
λ∪α(a− 1) has residue d ∈ Z/eZ such that |d− r| > 1. We

set ξ = Shape(tλ↓<a−1). By case 2 of relation R5, we have that

ykaetλ∪α = ψa−1

(
etλ↓<a−1

� yk1er︸ ︷︷ ︸
ξ∪α

�ed � etλ∪α↓>a
)
ψa−1 (2.11)

for k ∈ {0, 1}. By the inductive assumption for rank a < n of equation (2.1),

we have that

etλ↓<a−1
� yk1er ∈ ψa−1

b etξ∪βψ
b
a−1 + H (�� ξ)∪β

a−1

and so, as in the case (ii) above, we concatenate to deduce the result. Two

examples of the visualisation of the righthand-side of equation (2.11) are given

in the third and fourth steps of Figure 2.4; the corresponding elements are

depicted in Figure 2.6.

0 1 4 0 3 4 2 1 0 4 2 3 2

0 1 4 0 3 4 2 1 0 4 2 3 2tλ∪α3

tλ∪α4

tλ∪α3 0 1 4 0 3 4 2 1 0 2 4 3 2

0 1 4 0 3 4 2 1 0 2 4 3 2 tλ∪α4

tλ∪α5

tλ∪α4

Figure 2.6: The righthand-side of (2.11) for λ = (26, 13) and α = α3 and α4

respectively. Note that this is the case of (2.11) where k = 0, as there is no
addable box of residue 2.

(iv) Suppose t−1
λ (a−1) = [x, y, z] has residue r−1 ∈ Z/eZ (thus [x, y, x] = [i, j−1,m]

by residue considerations). We also note that [i−1, j,m] 6∈ λ. To see this, if [i−

1, j,m] ∈ λ, this implies that λ∪α ∈Ph,`(n) and so the process would terminate.

Let γ = [i − 1, j − 1,m] and we set c = tλ(γ) and let ξ = Shape(tλ↓<a−1) (see



51

Figure 2.8 for an example). Then y�tλ∪α = etλ∪α and we have that

etλ∪α = etλ∪αψ
c
a−2ψ

a−2
c etλ∪α (2.12)

= etλ∪αψa−1ψ
c
a−1ψ

a−2
c ψa−1etλ∪α − etλ∪αψca−1ψ

a
c etλ∪α (2.13)

= etλ∪αψ
a
c+1ψ

c
a − ψca−1(etξ−γ � er−1,r,r � etλ∪α↓>a)ψ

a
c (2.14)

= −etλ∪αψac ycψca − ψca−1(etξ−γ � er−1,r,r � etλ∪α↓>a)ψ
a
c (2.15)

= −ψab y�tλ∪βψ
b
a − ψca−1(etξ−γ � er−1,r,r � etλ∪α↓>a)ψ

a
c (2.16)

where the first and third equalities follow from the commuting case 2 of rela-

tion R5 and Lemma 2.8; the second equality follows from case 1 of relation R6;

the fourth equality follows from relation R4; and the fifth equality is either

trivial or follows from the case 3 of relation R5 (in the latter case, the error

term is zero by our inductive assumption for rank c− 1 < n of equation (2.1)).

For our continuing example, the righthand-side of equation (2.16) is depicted

in Figure 2.7; the box-configurations labelling the idempotents on the left and

righthand-sides of (2.16) are depicted in Figure 2.8.

0 1 4 0 3 4 2 1 2 0 4 3 2

0 1 4 0 3 4 2 1 2 0 4 3 2

tλ∪α5

tλ∪α5

−

0 1 4 0 3 4 2 1 2 0 4 3 2

0 1 4 0 3 4 2 1 2 0 4 3 2 tλ∪α5

tλ∪α5

Figure 2.7: The righthand-side of (2.14) for λ = (26, 13) and α = α5 is the
respective box in Figure (2.4).

We now consider the second term on the righthand-side of equation (2.16), and

we have that

etξ−γ � er−1,r,r = etξ−γ∪[i,j−1,m]∪α∪[i,j+e,m]
.

We will prove that this term is zero modulo the ideal H (�� λ)∪β
n . By our inductive

assumption for ranks a− 2, a− 1 < n for equation (2.1), we have that:

etξ−γ∪[i,j−1,m]
∈H �� ρ

a−2 =⇒ etξ−γ∪[i,j−1,m]∪α ∈H (�� ρ)∪γ
a−1
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2

0 1 2
4 0 1

3 4 0

2 3

1 2

0 1

4

3

2

↔ 2 2

0 1 2
4 0 1

3 4 0

3

1 2

0 1

4

3

2

−
2

0 1 2
4 0 1

3 4 0

2 3

1 2

0 1

4

3

2

Figure 2.8: Let e = 5 and ` = 1. The left hand-side is λ ∪ α5 as in Figure 2.4
(with ξ shaded grey). The righthand-side labels the idempotents obtained from

applying equation (2.16).

for ρ = Y `+1
[i,j−1,m](ξ − γ ∪ [i, j − 1,m]). Given π �� (ρ ∪ γ), we can left justify

π∪ [i, j+e,m] to obtain π∪α. We note that Bα∩π contains no nodes of residue

r or r ± 1. Therefore

etξ−γ∪[i,j−1,m]∪α∪[i,j+e,m]
∈H (�� ρ∪γ)∪β

a =⇒ etξ � er−1,r,r � etλ∪α↓>a ∈H (�� λ)∪β
n

as required. (Note that γ, β 6∈ π by Lemma 2.8.) See Figure 2.9 for an example.

2 2

0 1 2
4 0 1

3 4 0

3

1 2

0 1

4

3

2

↔
2 2

1

222

0 1 2
4 0 1

3 4 0

32

2

0 1

4

3

2

2

Figure 2.9: Rewriting the first term after the equality in equation (2.16). We
have moved the 1-box using case (iii) and this leaves us free to move the 2-boxes

up their corresponding diagonals.

Proof of equation (2.2) for a given λ and α. We assume that (2.2) holds for

all λ ∈Ph,`(n− 1). We set ν = λ∪ α and we have that y�tλ∪α = etλ∪α . Recall that
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α is a box of residue r ∈ Z/eZ. Let 1 ≤ k < a ≤ n, we know that

yky
�
tλ∪α
∈ ±ψab y�tλ∪βψ

b
a + H (�� λ)∪β

n (2.17)

by our inductive assumption on rank k < a ≤ n and the definition of �� . It remains

to compute the product yaetλ∪α . We have that

yaetλ∪α =


ya−1etλ∪α + etλ∪αψ

a
b etλ∪βψ

b
aetλ∪α if r − 1 ∈ res(Adj− Gar(α));

ybetλ∪β if r − 1 6∈ res(Adj− Gar(α)) 6= ∅;

0 if res(Adj− Gar(α)) = ∅.

(2.18)

In the first case, the statement follows from case 3 of relation R5 and the commuta-

tivity relations. To see this note that the (a−1)th strand has residue r−1 ∈ Z/eZ.

In the second case, this follows from case 4 of relation R5 and the commutativity

relations. To see this note that b + 1 < a is maximal such that the correspond-

ing strand is of adjacent residue (namely, r + 1 ∈ Z/eZ), by Lemma 2.8. In the

third case, this follows from from the commutativity and cyclotomic relations. By

equation (2.17), the dotted terms on the righthand-side of equation (2.18) belong

to the required ideal.

We let λ[0] � λ[1] � · · · � λ[m] denote the complete set of elements of Ph,`(n)

enumerated according to the total ordering �. Note that we use square brackets

in order not to confuse the enumeration of the `-partitions with the notation for

components of a given `-partition.

Corollary 2.15. For j ∈ (Z/eZ)n, we have that

ej ∈ ±ψ̂
J
tν ψ̂

tν
J + H �ν if Shape(J) = ν ∈Ph,`(n)

ej = 0 if Shape(J) = ∅
(2.19)

where ψ̂J
tν , ψ̂

tν
J are obtained by ψJ

tν , ψ
tν
J , respectively, by possibly adding dot decora-

tions along the strands. For ν ∈ Ph,`(n), the element yaetν belongs to H �ν for
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any 1 ≤ a ≤ n. In particular, the Z-algebra H σ
n has a chain of two-sided ideals

0 = H 0
n ⊂H �λ[0]

n ⊂H �λ[1]
n ⊂ · · · ⊂H �λ[m]

n = H σ
n .

Proof. This follows from repeated applications of Proposition 2.12 and the defini-

tion of the reverse lexicographic ordering (and the fact that �� is a coarsening of

�).

2.3 A tableaux-theoretic basis

In this last section of the second chapter we construct the cellular basis for our

quotients of the quiver Hecke algebras. We start the section by preparing the

ground for the proof of the main theorem, which is Theorem 2.17.

Recall that the set Yn defined in (2.3), contains elements in H σ
n which are poly-

nomials on the generators y1, · · · , yn. The following technical result is an amal-

gamation of Lemma 2.4 and Proposition 2.5 of [BKW11] and it is crucial towards

constructing a basis for our algebra.

Proposition 2.16. Let w ∈ Sn. We let w, w′ be any two choices of reduced

expression for w and let v be any non-reduced expression for w. We have that

eiψwej = eiψw′ej +
∑

x<w,w′

eiψxfx(y)ej (2.20)

eiψvej =
∑
x<v

eiψxejgx(y) (2.21)

ykeiψwej = ejψweiyw(k) +
∑
x<w

eiψxej (2.22)

for some fx(y), gx(y) ∈ Y.

The following theorem is the basic result of this chapter and provides a graded

cellular basis for the algebra H σ
n . In order to prove this theorem we shall utilise

all the technical work we did previously and in particular Proposition 2.12, hence

Corollary 2.15.
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Theorem 2.17. Let k be an integral domain. The k-algebra H σ
n is a graded

cellular algebra with basis

{ψs
tλ
ψtλ
t | s, t ∈ Std(λ), λ ∈Ph,`(n)}. (2.23)

We let H �λ
n be the k-submodule of H σ

n with basis

{ψu
tµψ

tµ
v | u, v ∈ Std(µ), µ ∈Ph,`(n), µ � λ}.

Under the anti-involution ∗ : H σ
n −→ H σ

n we have (ψs
tλ
ψtλ
t )∗ = ψt

tλ
ψtλ
s . The

degree function deg : H σ
n −→ Z inherited from Definition 1.7. For k a field, H σ

n

is quasi-hereditary.

Proof. Let d ∈ eiH σ
n ej be an arbitrary element of the algebra. By equation (2.19)

we can rewrite ej (or equivalently ei) so that

d =
∑

x,y∈Sn

eiaxetλayej

for some ax, ay ∈H σ
n which are linear combinations of KLR elements tracing out

some bijections x, y ∈ Sn respectively (but possibly decorated with dots and need

not be reduced) and λ = Shape(J) (see Definition 2.6). It remains to show that

ax, ay ∈ H σ
n can be assumed to be reduced and undecorated. We establish this

by induction along the Bruhat order, by working modulo the span of elements

spank{ψuetλψv | u < x or v < y}+ H �λ
n . (2.24)

If the word x is not reduced, then the element ψxetλay is zero modulo (2.24) by

equation (2.21). Given two choices x, x′ of reduced expression for x ∈ Sn we have

that (ψx − ψx′)etλay belongs to equation (2.24) by equation (2.20). Finally, if ax

is obtained from ψx by adding a linear combination of dot decorations (at any

points within the expression ψx = ψsi1 . . . ψsik ) then ψxetλay is zero modulo (2.24)
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by equation (2.22). Thus H �λ
n /H �λ

n is spanned by elements of the form

{ψxetλψy | for x, y ∈ Sn}+ H �λ
n . (2.25)

Note that x, y are arbitrary choices of fixed reduced expressions of x, y ∈ Sn. It

remains to show that a spanning set is given by the elements x = ws
tλ

, y = wtλ
t for

s, t ∈ Std(λ). In order to prove this, we need show that when the tableaux indexing

these words are non-standard, then the elements belong to the ideal H �λ
n . More

precisely we will proceed by assuming that t is either column or row standard, but

non-standard. We will then prove that the element et belongs to H �λ
n .

We first consider the case that t is column-standard and not row-standard, that

is t ∈ CStd(λ) \ Std(λ). Then we have that wtλ
t has a pair of crossing strands

from 1 ≤ i < j ≤ n to 1 ≤ wtλ
t (j) < wtλ

t (i) ≤ n such that t−1
λ (i) = [r, c,m] and

t−1
λ (j) = [r, c + 1,m] are in the same row and in particular so that i = j − 1. It

suffices to show that ψxetλψy belongs to the ideal H �λ
n for a preferred choice of

y; we choose y = siw (for some w ∈ Sn such that siw = y). Thus it remains to

show that etλψsiw belongs to H �λ
n . However, this immediately follows from (2.1)

because etλψsi = ψsiesi(tλ) and we have that esi(tλ) ∈H �α
n for α = Yt−1

λ (i+1)(λ) � λ.

We now consider the case that t is row-standard but not column-standard, that

is t ∈ RStd(λ) \ Std(λ). We let k be minimal such that t↓<k ∈ Std(µ) for some

µ ∈ Ph,`(k − 1) and Shape(t↓≤k) = ν, for some ν ∈ Ch,`(k) \Ph,`(k). We have

that et = et↓≤k � et↓>k , and since ν ∈ Ch,`(k) \Ph,`(k), by equation (2.1), we have

that et≤k ∈ H �ν
k . Then by concatenation and the definition of the order �, we

have that et ∈H �λ
n . This implies that etλψ

t
tλ

= ψtλ
t et ∈H �λ

n , as required.

In addition, we notice that there is no tableau s ∈ Std(λ), λ ∈Ph,`(n), with

res(s) = (i1, i1 + 1, i1 + 2, . . . , i1 + h).

Hence, any idempotent of the form e(i1,··· ,i1+h) annihilates the cell modules and the

algebra H σ
n is of rank at least

∑
λ∈Ph,`(n) |Std(λ)|2. Therefore, the spanning set

is linearly independent (and hence a basis) as required.
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Finally, we note that each layer of the cell chain contains an idempotent etλ . Hence

when k is a field, by [KX99a], the algebra is quasi-hereditary as required.

Remark 2.18. A nice property of the quasi-hereditary algebras is that their simple

modules are generated by an idempotent hence they have the same number of cell

and simple modules.



Chapter 3

Simple modules of the blob

algebra

In this chapter we present the basic results of our research on the blob algebra. The

main algebraic and combinatorial concepts have been defined in the first chapter

and the notation will follow from there. The first section of this chapter is devoted

to the alcove geometry of type Â1. Alcove geometries will play central role in the

proofs of this study as they provide a way of visualising our arguments. In the

second section we shall briefly present basic results on the blob algebra, proven by

other researchers, which form the building blocks for our proofs. The third section

is devoted in the construction of homomorphisms between cell modules of the blob

algebra (regardless the characteristic of the field). We also construct the images

of these homomorphisms which will be crucial in the calculation of the radical of

the cell modules. In section 4, by utilising the images of the homomorphisms we

construct bases for the simple modules of the blob algebra over a field of character-

istic zero. In order to do that we construct a Bσ
n-module with bar-invariant graded

dimension and we prove it to be equal to the simple head of the corresponding

simple module.

One of the main reasons we initiated our study is [dBELS18], where de Boeck,

58
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Evseev, Lyle and Speyer constructed bases for the simple modules of Temperley–

Lieb algebras of type A. Our ambition was to construct such bases for simple

modules of Temperley–Lieb algebras of type B over a field of characteristic zero.

The blob algebra has a very rich and fruitful combinatorial theory arising from

the fact that we need to consider partitions with 2 components.

The work presented in this chapter is based on the author’s work in [Mic21].

3.1 Alcove geometry of type Â1

Let {ε1, ε2} be formal symbols. We consider the 2-dimensional Euclidean space

V :=
⊕
i=1,2

Rεi

with basis {ε1, ε2} and let VZ≥0
be the Z≥0-span of {ε1, ε2}. To any bipartition

λ = ((1λ1), (1λ2)) ∈ Bip1(n) we attach a point of the Euclidean space V via

the embedding ((1λ1), (1λ2)) 7−→
∑

i=1,2 λiεi. We consider the affine Weyl group

Waff
∼= Ŝ2 of type Â1 with α1 = ε1 − ε2 the corresponding simple real root. Note

that the affine Weyl group is generated by the reflection sα1,−1/2 and the reflection

sα1,1/2, where the later corresponds to translation of the former by eα1. Let (·, ·)

be a symmetric bilinear form on V determined by (εi, εj) = δi,j, where δi,j is the

Kronecker delta. For a given e-bicharge σ = (σ0, σ1) we set ρ := (σ1 − σ0)ε1.

Definition 3.1. For any m ∈ Z we define the hyperplane

Hα1,m− 1
2

:= {v ∈ V | (v + ρ, α1) = me}. (3.1)

and we sometimes refer such a hyperplane as a wall.

For any m ∈ Z there exists a unique reflection sα1,m−1/2 such that

sα1,m− 1
2
· v = v − ((v + ρ, α1)−me)α1
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for any v ∈ V . In other words sα1,m−1/2 acts on V by reflection with respect to the

hyperplane Hα1,m−1/2. From now on, since we have only one simple real root α1,

we shall write simply Hm−1/2, sm−1/2 for the wall and the reflection corresponding

to the integer m ∈ Z, respectively.

For any two integers r, s ∈ Z we denote by [r, s] the set [r, s] = {t ∈ Z | r ≤ t ≤ s}.

For n ∈ Z>0 we define Path(n) to be the set of maps π : [0, n] −→ VZ≥0
such that

π(0) = 0 and π(k + 1)− π(k) ∈ {ε1, ε2}

for all k ∈ [0, n− 1] and we call its elements paths from 0 to n. Given a standard

tableau t ∈ Std(n) we define the point πt(k) in the space VZ≥0
by the formula

πt(k) := ck,1(t)ε1 + ck,2(t)ε2 (3.2)

where ck,i(t) is the number of nodes of the tableau t≤k in the ith component.

Using the aforementioned notation we shall define the path in VZ≥0
attached to a

standard tableau t ∈ Std(λ).

Definition 3.2. Let t ∈ Std(n) be a standard tableau. We define the path πt

corresponding to the tableau t given by the sequence of points

πt = (πt(0), · · · , πt(n))

in the sense of relation (3.2). There is a bijection between the set Std(d) of

standard tableaux and the set of paths Path(d), given by t 7−→ πt.

Definition 3.3. Let t ∈ Std(d) and suppose that πt(a) ∈ Hm−1/2 is the ith

intersection point of πt with the hyperplane Hm−1/2. We define the path sim−1/2 ·πt
as follows

(si
m− 1

2
· πt)(k) :=

πt(k) if 0 ≤ k ≤ a

sm−1/2 · πt(k) if a < k ≤ n

.

We refer to the path sim−1/2 · πt as the reflected path through the ith intersection

point of πt with the hyperplane Hm−1/2.
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Remark 3.4. Note that if the path πt intersects the hyperplane Hm−1/2 at a unique

point, then we shall denote the reflected path simply by sm−1/2 · πt.

+
ε
1+

ε 2

λ

+
ε 2

+
ε
1

λ µ

Figure 3.1: The path T and the reflected path s2
−1/2 · T.

In Figure 3.1 we visualise the last definition. We consider a Pascal triangle with

points corresponding to integers and the top of the triangle corresponds to 0. We

can represent the paths in V as paths in the Pascal triangle starting from the

top and moving downwards. Let λ = ((1λ1), (1λ2)) ∈ Bip1(n) and t ∈ Std(λ) be

a standard tableau. The path πt is a path starting from the top of the Pascal

triangle and ending at a point corresponding to the integer λ1 − λ2 at the level

n of the triangle. We draw a path with endpoint the bipartition λ and we also

draw the reflected path through its second intersection point with the hyperplane

H−1/2.

Let u, v ∈ VZ≥0
such that u − v = εi, i = 1, 2. Then we define the degree of the

pair (u, v) as follows

deg(u, v) :=


1 if u ∈ Hm− 1

2
and |(v + ρ, α1)| < |me| for some m ∈ Z;

−1 if v ∈ Hm− 1
2

and |(u+ ρ, α1)| > |me| for some m ∈ Z;

0 otherwise.

(3.3)

By using relation (3.3) we are able to give a reinterpretation of the degree of a

tableau in terms of paths.



62

Definition 3.5. Let t ∈ Std(n) and πt ∈ Path(n) be the path corresponding to t.

The integer

deg(πt) :=
n−1∑
k=0

deg(πt(k), πt(k + 1))

is the degree of the path πt.

Remark 3.6. By [Pla13, Corrolary 4.6] we have that the degree of the path πt

coincides with the degree of the tableau t.

Using the aforementioned notions we are able to describe an alcove geometry on

the Euclidean space V . We say that for any m ∈ Z, the set of points

am := {v ∈ V | me < (v + ρ, α1) < (m+ 1)e}

forms an alcove. By the definition of the hyperplane as presented in (3.1), we can

deduce that the origin, namely the point (0, 0), will always lie in an alcove and

not on a hyperplane.

Notation. From now on we shall not distinguish between the standard tableau

and the corresponding path. Namely, we will denote the path corresponding to

the tableau t by

T = (T(0), · · · ,T(n)) ∈ Path(n).

Moreover, let λ ∈ Bip1(n) and µ ∈ Bip1(n′) with n′ < n. We denote by Path(µ→

λ) the set of paths starting from the bipartition µ and ending at the bipartition

λ. We also let Path(λ) := Path(∅ → λ). Namely the paths of Path(λ) are paths

starting from the top of the Pascal triangle and they have the bipartition λ as

endpoint. By using the above notation we have that

Path(n) =
⋃

λ∈Bip1(n)

Path(λ).

In the following example we shall summarise most of the facts we discussed above.

Recall that we denote by tt the transpose of a tableau t ∈ Std(n).
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Example 3.7. Suppose n = 9, e = 4, σ = (0, 2) and let λ = ((12), (17)), µ =

((15), (14)) ∈ Bip1(9). We consider the λ-tableau

tt =
(

4 7 , 1 2 3 5 6 8 9
)
.

By following the description above we can construct the path corresponding to the

tableau t as in the left picture in Figure 3.1. We observe that the path T intersects

the hyperplane H−1/2 at two points which correspond to the steps t1−1/2 and t2−1/2

of the path. Then we obtain the reflected paths s1
−1/2 · T, s2

−1/2 · T and the later is

also pictured in Figure 3.1. The endpoint of the reflected paths is the bipartition

µ.

Moreover one can easily calculate the degree of the path T to be equal to −1. To

see this note that deg(T(3),T(4)) = −1 and degree is zero otherwise. This is

something we expect since deg(t−1(4)) = −1 and the rest nodes of the tableau t are

of degree 0.

The residue sequence of the tableau t is

res(t) = (2, 1, 0, 0, 3, 2, 3, 1, 0)

and we observe that res(s2
−1/2 · t) = res(t).

More generally, from [Pla13, Lemma 4.7] we have that given any two tableaux

t, s ∈ Std(n) we have that

res(t) = res(s)⇐⇒ T = sj1i1−1/2 · · · s
ja
ia−1/2 · S (3.4)

for some simple reflections sil−1/2, 1 ≤ l ≤ a. Given two bipartitions λ, µ ∈ Bip1(n)

and T ∈ Path(λ), we define the set of µ-paths which can be obtained by T by a

series of reflections as follows:

Path(µ,T) := {S ∈ Path(µ) | S = sj1i1−1/2 · · · s
ja
ia−1/2 · T, for some sil−1/2 ∈ Ŝ2}.
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Now we equip our alcove geometry with a length function

` : Bip1(n) −→ 1
2
Z, λ = ((1λ1), (1λ2)) 7−→

m if λ1ε1 + λ2ε2 ∈ am

m− 1
2

if λ1ε1 + λ2ε2 ∈ Hm− 1
2
.

We will also give a useful geometric interpretation of the dominance order on

tableaux, mentioned in Definition 1.37 in terms of the alcove geometry. Given

two tableau t, s ∈ Std(n) with res(t) = res(s) we say that the node t−1(k) is less

dominant that the node s−1(k) in the sense of Definition 1.35 if and only if

|`(Shape(t≤k)| > |`(Shape(s≤k)|.

The tableau t is less dominant than s if and only if t−1(k) E s−1(k), 1 ≤ k ≤ n,

and there is at least one node of t strictly less dominant than the corresponding

node of s.

Example 3.8. We continue on the Example 3.7 and we have that `(λ) = −1

while `(µ) = 0. The paths S1, S2 drawn in the following figure are the elements of

Path(µ,T).

+
ε
1+

ε 2

λ

+
ε 2

+
ε
1

λ µ

Figure 3.2: The paths S1 and S2 are solid. The path T is dotted.

In particular we have that S1 = s1
−1/2 · T and S2 = s2

−1/2 · T. Moreover we observe

that S1 D S2 D T.

Recall that to each bipartition λ = ((1λ1), (1λ2)) ∈ Bip1(n) we can attach the

integer λ1 − λ2. Hence the action of the affine Weyl group Waff on the set of
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bipartitions of d can be described in terms of the action of Waff on Z. In particular,

reflection sm−1/2 corresponds to reflection about the integers (σ0 − σ1) + me, for

all m ∈ Z. Note that the integer obtained by reflecting as above corresponds to

a bipartition of d. We say that two bipartitions λ, µ are linked with respect to

the alcove geometry of type Â1 and we write λ ∼ µ if they belong to the same

Waff-orbit, i.e λ ∈ Waff · µ. If T ∈ Path(λ) then the paths linked with T are the

paths of Path(µ,T), defined above, for µ ∼ λ. The paths linked with the path

Tλ will be of particular interest when we construct homomorphisms of the blob

algebra. We define

Path∼(λ) :=
⋃
µDλ

Path(µ,Tλ).

Remark 3.9. If λ, µ ∈ Bip1(n) are two bipartitions, we note that λ is less dominant

than µ if and only if λ ∼ µ and |`(λ)| > |`(µ)|, i.e. λ is further away from the

origin of the Pascal triangle than µ.

Let us see an example regarding the notions we discussed above.

Example 3.10. Let n = 9, e = 4, σ = (0, 2) as in Example 3.7 and λ = ((1), (18)) ∈

Bip1(9). Then

(tλ)
t

=
(

2 , 1 3 4 5 6 7 8 9
)

and the paths linked with Tλ are drawn in the following diagram

+
ε
1+

ε 2

λ

Figure 3.3: The red path is the path Tλ and the black ones are those linked
with Tλ.

The new linked paths correspond to the tableaux

st1 =
(

2 9 , 1 3 4 5 6 7 8
)
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st2 =
(

2 5 6 7 8 , 1 3 4 9
)

and

st3 =
(

2 5 6 7 8 9 , 1 3 4
)
.

Thus Path∼(λ) = {Tλ, S1, S2, S3} and one can easily see that for a given bipartition

µ ∈ Bip1(9), Path(µ, tλ) 6= ∅ implies µ D λ.

3.2 Algebraic structure of the blob algebra

In this section we shall briefly present some the basic properties of the blob algebra.

This will include the adjustment of the general algebraic properties of Chapter 1,

in the context of the blob algebra. These properties are essential for our work and

have been proven by various researchers in the past. This is the reason we shall

not provide detailed proofs and we shall refer to the relevant literature instead.

If w = si1 · · · sil ∈ Sn is a reduced expression of an element of the symmetric

group, recall that

ψw = ψi1 · · ·ψil ∈ Bσ
n.

Also, recall that for any tableau t ∈ Std(λ), λ ∈ Bip1(n), we have defined the

reduced expression wt = si1 · · · sil ∈ Sn such that t = wtt
λ. Recall from Remark

1.41 that the reduced expression of t is unique up to the commuting relations of

the symmetric group. We define the element

ψt := ψi1 · · ·ψileiλ ,

and again by Remark 1.41 and (3.2) we have that the product ψi1 · · ·ψil is unique

up to the commuting KLR relation (i.e. the second relation of (R3)). Suppose

that λ ∈ Bip1(n) and t, s ∈ Std(λ). We set

ψst = ψseiλψ
∗
t ∈ Bσ

n.
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Remark 3.11. In order to connect the element ψst ∈ Bσ
n above with the elements

ψs
t of Definition 2.11, we remark that

ψst = ψtλ

s ψ
t
tλ .

For ease of notation, in the remainder of the thesis we shall carry on using the

symbol ψst.

The following theorem summarises the fact that the blob algebra is cellular in the

sense of Graham–Lehrer [GL96], as presented in the first chapter of the thesis.

Moreover, it has the structure of a graded cellular algebra in the sense of [HM10]

Theorem 3.12 ([PRH14, Theorem 6.10]). The blob algebra Bσ
n is a graded k-

algebra with basis

{ψst | s, t ∈ Std(λ) for λ ∈ Bip1(n)}.

We let Bσ
n,.λ be the k-submodule of Bσ

n with basis

{ψuv | u, v ∈ Std(µ) for µ ∈ Bip1(n), µ . λ}.

Under the anti-involution ∗ : Bσ
n −→ Bσ

n, we have ψ∗st = ψts. For any λ ∈ Bip1(n),

t ∈ Std(λ) and a ∈ Bσ
n there exists αu ∈ k such that for all s ∈ Std(λ)

aψst =
∑

u∈Std(λ)

αuψut mod Bσ
n,.λ.

In particular the blob algebra Bσ
n is a graded cellular algebra.

Again by the classical theory of cellular algebras as presented in the first chapter,

we know that there exists a family of modules {∆(λ) | λ ∈ Bip1(λ)} with k-basis

{ψt | t ∈ Std(λ)}
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called cell or standard modules and there is a unique bilinear form 〈·, ·〉 : ∆(λ) ×

∆(λ) −→ k such that 〈ψs, ψt〉 for s, t ∈ Std(λ), is given by

〈ψs, ψt〉ψuv = ψusψtv mod Bσ
n,.λ.

The radical of a cell module ∆(λ) is given by

rad ∆(λ) := {x ∈ ∆(λ) | 〈x, y〉 = 0 for all y ∈ ∆(λ)}

and let L(λ) := ∆(λ)/rad ∆(λ). By [MW00, Section 9], the bilinear form is

non-degenerate and so Bσ
n is quasi-hereditary with simples {L(λ) | λ ∈ Bip1(n)}.

In this thesis we focus our interest in the graded version of the blob algebra. Many

of the proofs of the known results for the graded case, use results for the ungraded

case. Moreover, the results in the ungraded case are motivation for similar results

when we add the graded structure.

Let M be a finite dimensional graded Bσ
n-module and let M =

⊕
i∈ZMi be its

decomposition into direct sum of homogeneous components.

Definition 3.13. We define the graded dimension of M to be the polynomial

dimt(M) :=
∑
i∈Z

(dimMi)t
i ∈ Z[t, t−1]

where t is an indeterminate.

Moreover if L(λ) is a simple graded Bσ
n-module, we denote by L(λ)〈k〉 the graded

Bσ
n-module obtained by shifting the grading on L(λ) up by k, namely

L(λ)〈k〉 =
⊕
i∈Z

L(λ)〈k〉i =
⊕
i∈Z

L(λ)i−k.

The following theorem summarises the work of Plaza and Ryom–Hansen using

the Hu and Mathas’ work on graded cellular structure of KLR algebras, [PRH14,

HM10].
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Theorem 3.14. Let L(λ), λ ∈ Bip1(n) be a simple module. Then

{L(λ)〈k〉 | λ ∈ Bip1(n) and k ∈ Z}

is a complete set of pairwise non-isomorphic simple graded Bσ
n-modules.

We also have the following useful proposition from [HM10] regarding the graded

dimension of a simple module.

Proposition 3.15. For any λ ∈ Bip1(n) the graded dimension of the simple

module L(λ) is bar-invariant (i.e., fixed under interchanging t and t−1).

Proof. See [HM10, Proposition 1.8].

It is also important to know the block structure of the blob algebra. In our case

of study the block structure is controlled by a linkage property with respect to the

affine Weyl group Waff of type Â1.

Proposition 3.16 ([MW00, Theorem 9.3]). Let λ, µ ∈ Bip1(n). Two simple

modules L(λ), L(µ) are in the same block of Bσ
n if and only if λ and µ are in the

same orbit, i.e λ ∈ Waff · µ.

For a graded Bσ
n-module M we denote by [M : L(λ)〈k〉] the graded multiplicity of

the simple module L(λ)〈k〉 as a graded composition factor of M . Then the graded

decomposition number is

[M : L(λ)]t :=
∑
k∈Z

[M : L(λ)〈k〉]tk ∈ Z[t, t−1].

In particular we are interested in the decomposition matrix D = (dµλ)µ,λ∈Bip1(n),

that is the decomposition numbers

dµλ = [∆(µ) : L(λ)]t

which were computed, over a field k of characteristic zero, by Plaza [Pla13]. The

closed formula for the graded decomposition number [∆(µ) : L(λ)]t depends on
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whether the bipartition λ lies in an alcove or on a hyperplane. However using the

length function we defined before we can amalgamate the two distinct formulas

into one. In what follows we assume that µ D λ, since this is the only case we can

have a non-zero decomposition number, by Theorem 3.12. The following theorem

gives the graded decomposition numbers of the blob algebra.

Theorem 3.17 ([Pla13, Theorem 5.11, 5.15]). Let k be a field of characteristic

zero and let λ, µ ∈ Bip1(d) be two linked bipartitions with λ E µ. Then

[∆(µ) : L(λ)]t = t|`(λ)|−|`(µ)|.

Remark 3.18. We remark that by the construction of our alcove geometry the

difference |`(λ)| − |`(µ)| is strictly positive for λ / µ.

Example 3.19. We continue with the Example 3.10 and let λ1 = ((12), (17)),

λ2 = ((15), (14)), λ3 = ((16), (13)). According to Theorem 3.17, the (non-zero)

graded decomposition numbers are the following:

[∆(λ) : L(λ)] = 1, [∆(λ1) : L(λ)] = t, [∆(λ2) : L(λ)] = t2 and [∆(λ3) : L(λ)] = t.

3.3 One column homomorphisms between cell

modules

In this section we shall construct homomorphisms between certain cell modules of

the blob algebra. By using the fact that Bσ
n is quasi-hereditary, we know that for

a given bipartition ν ∈ Bip1(n) we have HomBσn(∆(ν ′),∆(ν)) 6= 0 only if ν ′ E ν.

For the purposes of the thesis we need to construct homomorphisms between cell

modules indexed by linked bipartitions which also have lengths with absolute value

differing by one.

Let µ ∈ Bip1(n) be a bipartition with `(µ) = m or `(µ) = m−1/2 for some integer

m ∈ Z. Equivalently µ lies in the alcove am or in the hyperplane Hm−1/2.
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1. Suppose that `(µ) = m, m ∈ Z. There exist at most two bipartitions λ, λ′

with λ, λ′ ∼ µ satisfying |`(λ)| = |`(λ′)| = |`(µ)|+ 1. We wish to distinguish

between these bipartitions (when they exist).

• If m ≤ 0 is a non-positive integer then we let `(λ) < 0 and `(λ′) > 0;

• if m > 0 is a positive integer then we let `(λ) > 0 and `(λ′) < 0.

In this case we shall construct maps in the sets HomBσn(∆(λ′),∆(µ)) and

HomBσn(∆(λ),∆(µ)).

2. Suppose that `(µ) = m − 1/2, m ∈ Z. In this case we fix the unique

bipartition λ′ with λ′ ∼ µ and |`(λ′)| = |`(µ)|+ 1, such that

• if m ≤ 0 is a non-positive integer then `(λ′) > 0;

• if m > 0 is a positive integer then `(λ′) < 0.

In this case we shall construct map in the set HomBσn(∆(λ′),∆(µ)).

Notation. From now on we will make the following abuse of notation. We shall

not distinguish between the tableau t and the attached path T and both will be

denoted by T. Moreover we shall denote by tim−1/2 the ith intersection point of

the path T with the hyperplane Hm−1/2.

In what follows we shall restrict ourselves in the case that m ≤ 0 and we shall

construct the maps we discussed above. Note that the results are not affected by

whether m ≤ 0 or m > 0. This is just a convention in order to save space since

everything is analogous for m > 0.

Definition 3.20. Let µ ∈ Bip1(n) be a bipartition.

1. If `(µ) = m, m ≤ 0, we define the maps ϕµλ : ∆(λ) −→ ∆(µ) and ϕµλ′ : ∆(λ′) −→

∆(µ) as follows:

ϕµλ(ψTλ) := ψsm−1/2·Tλ (3.5)

and

ϕµλ′(ψTλ′ ) := ψs1/2·Tλ′ (3.6)
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where the paths sm−1/2 ·Tλ and s1/2 ·Tλ′ are the reflections of the paths Tλ,

Tλ′ through the hyperplanes Hm−1/2, H1/2 respectively.

2. If `(µ) = m − 1/2, m ≤ 0, then we define the map ϕµλ′ : ∆(λ′) −→ ∆(µ) on

the same way as in equation (3.6).

Remark 3.21. Note that each of the paths Tλ and Tλ′ intersects the hyperplanes

Hm−1/2 and H1/2 at precisely one point and we have dropped the superscripts.

Remark 3.22. In the case that m > 0, we can define the maps ϕµλ and ϕµλ′ in an

analogous way. In particular, if `(µ) = m > 0, then

ϕµλ(ψTλ) := ψsm+1/2·Tλ and ϕµλ′(ψTλ′ ) := ψs−1/2·Tλ
′

where sm+1/2 · Tλ and s−1/2 · Tλ′ are the reflections of the paths Tλ, Tλ′ through

the hyperplanes Hm+1/2, H−1/2 respectively. If `(µ) = m − 1/2 then the desired

map is ϕµλ(ψTλ′ ) = ψs−1/2·Tλ
′ .

In the next proposition we shall prove that the maps of Definition 3.20 are indeed

Bσ
n-module homomorphisms. We cover the m ≤ 0 case, since the other case works

analogously.

At this point we shall prove that the relations of Proposition 3.23 hold in a cell

module. In addition, we shall prove that the relations below form a presentation

for the cell modules of the blob algebra. Both results are essential for proving that

the maps of Definition 3.20 are module homomorphisms.

Proposition 3.23 (Relations for cell modules). Let λ = ((1λ1), (1λ2)) ∈ Bip1(n).

Then

e(i)ψTλ = δi,iλψTλ , δi,iλ the Kronecker delta, (3.7)

ysψTλ = 0 (3.8)

ψrψTλ =

ψTλr↔r+1
if r, r + 1 are in different components

0 otherwise

(3.9)

ψt+1ψtψTλ = 0 (3.10)

ψtψt+1ψTλ = 0 (3.11)
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for all 1 ≤ r ≤ n − 1, 1 ≤ s ≤ n and 1 ≤ t ≤ 2 min{λ1, λ2} − 2. We refer to the

relations (3.9)-(3.11) as Garnir relations.

Proof. Let ei, i ∈ In be a KLR idempotent of Bσ
n. By the orthogonality relation

we have that

eiψTλ = eieiλ =

ψTλ if i = iλ

0 otherwise.

The element ψreiλ corresponds to a tableau with residue sequence

(iλ1 , · · · , iλr+1, i
λ
r , · · · , iλn).

We use the fact that for any standard tableau T the element ψwT
is unique up to

the second KLR relation of (R3) by Remark 1.41. If the nodes of Tλ occupied

by the entries r, r + 1 are in the same component, then any tableau with such

residue sequence indexes elements in the ideal Bκ
n,.λ, hence ψreiλ = 0 modulo more

dominant terms. If they are in different components then the only choice for a

tableau with the above residue sequence and corresponding permutation consisting

of the generator ψr is the tableau Tλ
r↔r+1, hence ψreiλ = ψTλr↔r+1

. The element

yseiλ corresponds to a tableau with residue sequence iλ ∈ In. The unique tableau

with that residue sequence is Tλ. However

deg(yseiλ) = 2 6= 0 = deg(eiλ)

thus yseiλ . Regarding relation (3.10), if t, t+1 are in the same component then the

result follows from (3.9). If t, t + 1 are in different components then the element

ψt+1ψteiλ corresponds to a tableau with residue sequence

(iλ1 , · · · , iλt+1, i
λ
t+2, i

λ
t , · · · , iλn).

But such standard λ-tableau does not exist hence ψt+1ψteiλ = 0 modulo terms

in the ideal Bκ
n,.λ (we note that there are µ-tableaux of this residue sequence, for

µ . λ). Similarly we prove relation (3.11).



74

Proposition 3.24. Let λ ∈ Bip1(n). The generator ψTλ and relations of Propo-

sition 3.23 form a presentation for the cell module ∆(λ).

Proof. By Proposition 3.23 we have that the desired relations are satisfied. By

Lemma 1.51 and the fact that we know a basis for the cell modules, we deduce

that this list of relations is complete. Hence this is enough for proving that the

relations, together with the generator ψTλ , form a presentation for the cell module

∆(λ).

Proposition 3.25. Let µ ∈ Bip1(n) with `(µ) = m, m ≤ 0. The maps ϕµλ : ∆(λ) −→

∆(µ) and ϕµλ′ : ∆(λ′) −→ ∆(µ) of Definition 3.20 are homomorphisms of Bσ
n-

modules.

Proof. We shall prove the result for the map ϕµλ and then similar arguments apply

for the map ϕµλ′ . By Proposition 3.24 we need to show that the relations (3.9)-

(3.11) of Theorem 3.23 are satisfied. Recall that ϕµλ(ψTλ) = ψsm−1/2·Tλ and let us

denote S := sm−1/2 · Tλ. Also let S(q) = Tλ(q) ∈ Hm−1/2, for some 1 ≤ q ≤ n− 1,

be the unique reflection point of the path Tλ through the hyperplane Hm−1/2.

Then

eiϕ
µ
λ(ψTλ) =eiψS

=ψwS
e(w−1

S i)eiµ

=δi,res(S)ψwS
eiµ

=δi,res(ϕµλ(ψ
Tλ

))ϕ
µ
λ(ψTλ) (3.12)

for any idempotent ei and so relation (3.7) holds. Now consider the generator ys

for some 1 ≤ s ≤ n. We claim

ysϕ
µ
λ(ψTλ) = ysψS = 0. (3.13)

To see the claim we note that deg(Tλ) = 0, deg(S) = 1 and the degree of the

element ysψS is equal to 3. By residue considerations we can see that there does



75

not exist a path of degree 3 terminating at µ with residue sequence res(S). Hence

relation (3.8) holds.

Consider the element ψrϕ
µ
λ(ψTλ), for some 1 ≤ r 6= q < n. then

ψrϕ
µ
λ(ψTλ) = ψrψS

=

ψSr↔r+1 if r, r + 1 are in different components

0 otherwise

=

ϕ
µ
λ(ψTλ)r↔r+1 if r, r + 1 are in different components

0 otherwise.

In order to prove that relation (3.9) holds we need to consider the case r = q. By

construction, the simple transposition sq exists in wS and it is left exposed. Hence

ψS = ψqψi1 · · ·ψileiµ . Since res(S−1(q)) = res(S−1(q + 1)) + 1 (since we reflected

through a hyperplane at this point) we have that

ψqψS = ψ2
qψsqS

= (yq+1 − yq)ψsqS.

But both summands are zero and we can see that by using the same arguments

as in the proof of relation (3.13). Thus ψqψS = 0 and so relation (3.9) holds.

Consider the product ψr+1ψrϕ
µ
λ(ψTλ), for r = Tλ(A) where A is a Garnir node as

in the statement of Theorem 3.23. Then

ψr+1ψrϕ
µ
λ(ψTλ) = ψr+1ψrψS = ψr+1ψsr(S)

and we deduce that the product is zero (modulo terms in the ideal Bσ
n,.µ), since

there does not exist standard µ-tableau with residue sequence res(sr+1srS); this

we use an argument identical to the proof of relation (3.12). Hence relation (3.10)

is satisfied. Similarly we prove that relation (3.11) is also satisfied.
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Figure 3.4: The black path is a length increasing path whereas the red path
is non-length-increasing.

The proof is identical in the case that µ ∈ Bip1(n) lies on a hyperplane. We

present the result without repeating the proof.

Proposition 3.26. Let µ ∈ Bip1(n) with `(µ) = m − 1/2, m ≤ 0. The map

ϕµλ′ : ∆(λ′) −→ ∆(µ) of Definition 3.20 is a homomorphism of Bσ
n-modules.

Proof. The proof is identical to the proof of Proposition 3.25.

In the last part of this section, we shall discuss a specific type of paths which will

be the building blocks of the main proofs of this chapter.

Definition 3.27. Let T ∈ Std(n) be a standard tableau. The path T is called

length increasing if

|`(Shape(T≤k))| ≤ |`(Shape(T≤k+1))|

for all 1 ≤ k < n.

An example of a length increasing path along with a non-length-increasing path

can be seen in Figure 3.4.
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An alternative criterion to be a length increasing path of shape µ is that for a given

bipartition µ ∈ Bip1(n) with `(µ) = m < 0 (resp. `(µ) = m > 0) every length in-

creasing path in Path(µ) intersects with the hyperplanes H−1/2, · · · , Hm+1/2 (resp.

H1/2, · · · , Hm−1/2) at exactly one point and it does not intersectHm+3/2, Hm+5/2, · · ·

(resp. Hm−3/2, Hm−5/2, · · · ). In the exceptional case that `(µ) = 0 we have that

a length increasing path is a path that does not leave the fundamental alcove at

any point. This criterion can be also visualised in Figure 3.4.

The following lemma shows that the generators of the cell modules indexed by

length increasing paths belong to the simple head.

Lemma 3.28. Let ν ∈ Bip1(n) and T ∈ Path(ν) be a length increasing path. Then

the element ψT belongs to the simple module L(ν).

Proof. Let res(T) ∈ In be the residue sequence of T. Since T is length increasing,

the set Path(ν ′,Tν) is non-empty only if ν ′ D ν. Hence we have that eres(T)∆(ν ′) =

0, for any bipartition ν ′ / ν. Thus eres(T)L(ν ′) = 0, for any bipartition ν ′ / ν. This

shows that the element ψT belongs to a composition factor of ∆(µ) not of the form

L(ν ′), ν ′ / ν, so it belongs to the simple head L(ν).

3.4 Image of the homomorphisms

In this section we shall construct the image of the homomorphisms ϕµλ′ and ϕµλ

of Definition 3.20. This will be the decisive step for constructing the radical of a

cell module ∆(µ) since the images of the homomorphisms are closely related with

that, as we will see in the next section of this chapter.

Same as in last section we cover the case that m ≤ 0, since all the arguments

work equally in the case m > 0 up to relabelling hyperplanes. In the alcove case

we compute the image of both ϕµλ, ϕµλ′ whereas in the hyperplane case it is only

necessary to consider the homomorphism ϕµλ.
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Suppose that T1 ∈ Path(λ′) is a length increasing path. The image of the element

ψT1 under the homomorphism ϕµλ′ is

ϕµλ′(ψT1) = ψs1/2·T1

since the path s1/2 · T1 is the unique path with residue sequence equal to res(T)

terminating at the bipartition µ. For the same reason, if `(µ) = m, m ≤ 0 and

T2 ∈ Path(λ) is a length increasing path then the image of the element ψT2 under

the homomorphism ϕµλ is

ϕµλ(ψT2) = ψsm−1/2·T2 .

The following proposition is one of the main results of the section and describes a

spanning set for the image of the homomorphism ϕµλ′ . Note that the result holds

for both `(µ) = m and `(µ) = m− 1/2, m ≤ 0.

Proposition 3.29. The homomorphism ϕµλ′ : ∆(λ′) −→ ∆(µ) of Definition 3.20

is an injective homomorphism. Moreover

1. if m ≤ 0

Imϕµλ′ = spank{ψU | U ∈ Path(µ), U intersects H1/2},

2. if m > 0

Imϕµλ′ = spank{ψU | U ∈ Path(µ), U intersects H−1/2}.

Proof. We cover the case m ≤ 0 as the other one works similarly. Take any path

U ∈ Path(µ) and suppose that it intersects the hyperplane H1/2 at n-many points

and let un1/2 be the final one. Then we notice that the reflection sn1/2 · U through

the final point that U intersects the hyperplane H1/2 gives a path terminating at

λ′. This shows that there is a bijection between the paths in Path(µ) intersecting

H1/2 and the paths in Path(λ′). We will prove that any path intersecting the

hyperplane H1/2 belongs indeed to the image of ϕµλ′ and thus the result will follow
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from the fact that the dimension of ∆(λ′) is equal to the dimension of the image

of ϕµλ′ .

We consider the path Tµ and we fix integer a ∈ Z, 1 ≤ a ≤ n−1. Let T ∈ Path(µ)

be the maximal path, under the lexicographic order, with the property T(a) ∈ H1/2

(see Figures 3.5, 3.6). We proceed by considering each value, a, one at a time.

Since T must intersect H1/2 at some point by assumption, this allows us to consider

all such paths.

Note that the reflection s1/2 · T of the path T through the hyperplane H1/2 is a

length increasing path in Path(λ′). Hence the element ψT belongs to the image

of the homomorphism ϕµλ′ . Let U ∈ Path(µ) be any path which intersects the

hyperplane H1/2 at the point U(a) = T(a), with wU = si1 · · · sik ∈ Sn its reduced

expression. Since T is the maximal path, under the lexicographic order, with

T(a) ∈ H1/2 we have that wT is a subword of wU.

+
ε

1+
ε 2

µ λ′

s3

s5

s4

Figure 3.5: For n = 20, µ = ((17), (113)), `(µ) = −3/2, e = 4, σ = (0, 2) and
a = 4 the red path is the path T. The shaded area corresponds to all the paths
that can be obtained from T and the elements corresponding to them belong to
the image of ϕµλ. Any path within the shaded region has s4s3s5 as a subword.

Note that the subword wT will be right exposed, as otherwise the condition U(a) ∈

H1/2 would not hold. We can rewrite the reduced expression wU as

wU = si1 · · · silwT, 1 ≤ l ≤ k
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hence U = si1 · · · silT, 1 ≤ l ≤ k.

+
ε

1+
ε 2

µ λ′

s3

s5

s4

Figure 3.6: For n = 20, µ = ((16), (114)), `(µ) = −2, e = 4, σ = (0, 2) and
a = 4 the blue path is the path T. The shaded area corresponds to all the paths
that can be obtained from T and the elements corresponding to them belong to
the image of ϕµλ. Any path within the shaded region has s4s3s5 as a subword.

Then the basis element ψU corresponding to the path U can be written as

ψU = ψi1 · · ·ψilψT

and it belongs to the image of ϕµλ, since ψT does. By repeating the same procedure

for all admissible integers a ∈ Z, 1 ≤ a ≤ n, we prove that all paths in Path(µ)

which intersect the hyperplane H1/2 correspond to elements in the image of the

homomorphism ϕµλ.

Example 3.30. Let n = 20, e = 4, σ = (0, 2) and µ = ((17), (113)) ∈ Bip1(20). If

T = s4s3s5Tµ then we observe that the path

S = s15s14s16s18s13s15s17s3s5s12s14s16s2s4s6s11s13s15s1s3s5s7s10s12s14Tµ

can be written as

S = s15s14s16s18s13s15s17s3s5s12s14s16s2s6s11s13s15s1s7s10s12s14(s4s3s5Tµ)

= s15s14s16s18s13s15s17s3s5s12s14s16s2s6s11s13s15s1s7s10s12s14T
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by using the Coxeter relations of the symmetric group (see Figure 3.7).
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µ λ′
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s4
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s5
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s16
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s18

s13
s14

s15
s16

s11
s12

s13
s14

s15

Figure 3.7: The red path is the path T intersecting the hyperplane H1/2 at the
point T(4). The blue path is the path S which intersects H1/2 at S(4) = T(4)

and it belongs to the image of the homomorphism ϕµλ′ .

Hence the basis element ψS can be written as

ψS = ψ15ψ14ψ16ψ18ψ13ψ15ψ17ψ3ψ5ψ12ψ14ψ16ψ2ψ6ψ11ψ13ψ15ψ1ψ7ψ10ψ12ψ14ψT ∈ ∆(µ)

and since the element ψT belongs to the image of ϕµλ′, we have that ψS also belongs

to the image of ϕµλ′.

Recall that the homomorphism ϕµλ : ∆(λ) −→ ∆(µ) only exists when `(µ) = m,

that is the bipartition µ lies in the alcove am. The construction of the spanning set

for the image of the homomorphism ϕµλ is the next important result of the thesis

towards our aim to construct bases for the irreducible representations of Bσ
n. For

completeness we give the spanning sets for both m ≤ 0 and m > 0.

Proposition 3.31. The homomorphism ϕµλ : ∆(λ) −→ ∆(µ) of Definition 3.20 is

an injective homomorphism. Moreover

1. if m ≤ 0

Imϕµλ = spank

{
ψU |

U∈Path(µ), U last intersects Hm−1/2 or
intersects H1/2 after intersecting H−1/2

}
,
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2. if m > 0

Imϕµλ = spank

{
ψU |

U∈Path(µ), U last intersects Hm+1/2 or
intersects H−1/2 after intersecting H+1/2

}
.

Before presenting the proof, we shall give an example which illustrates which paths

we are referring to in the statement of Proposition 3.31.

Example 3.32. Let n = 20, e = 4, σ = (0, 2) and consider the bipartition

µ = ((16), (114)) with `(µ) = m = −2. Then λ = ((14), (116)) is the bipartition

linked with µ with `(λ) = −3 (see Figure 3.8). The hyperplanes that we shall be

interested in are H−1/2, H1/2 which are the hyperplanes of the fundamental alcove

and the hyperplane Hm−1/2 = H−5/2 which is the left hyperplane of the alcove a−1.

+
ε

1+
ε 2

H−1/2

H−5/2

H−3/2

H1/2

µλ

Figure 3.8: The blue and the black path label elements which belong in the
image of ϕµλ whereas the red path labels an element not in the image of ϕµλ.

The black path is a path which intersects the hyperplane H1/2 after intersecting the

hyperplane H−1/2. The blue path is a path last intersecting the hyperplane H−5/2.

Both paths belong to the image of the homomorphism ϕµλ. On the other hand the

red path does intersect the hyperplane H−5/2, but it last intersects H−3/2 and it

does not belong to the image of ϕµλ.

Let µ = ((1µ1), (1µ2)) ∈ Bip1(n) with `(µ) = m < 0, i.e. µ1 < µ2. We shall con-

struct a path T ∈ Path(µ) which intersects hyperplanesH−1/2, · · · , Hm+3/2, Hm−1/2
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at exactly one point, hyperplane Hm+1/2 at exactly two points and it does not

intersect hyperplane H1/2, as follows. Let j ∈ Z, 1 ≤ j ≤ n − 1 be such

that T(i) = Tµ(i), for any 1 ≤ i ≤ j + 1, and recall from relation (3.2) that

T(j) = cj,1(T)ε1 + cj,2(T)ε2. Also let q > j such that T(q) ∈ H−1/2 and T(q) =

cq,1(T)ε1 +cq,2(T)ε2 with cq,1(T) = cj,1(T) and cq,2(T) = cj,2(T)+n− j. We denote

by a ∈ Z the integer with the property T(a) ∈ Hm−1/2 and ca,1(T) = cj,1(T),

ca,2(T) = cn,2(T) + |`(µ)|e. Finally, let T(b) ∈ Hm+1/2 be the second intersection

point of T with Hm+1/2. Note that the integers j, q, a, b determine the path T. The

diagram corresponding to the basis element ψT is presented in Figure 3.9.

· · · · · ·

2µ1

|`(µ)|e e

ψq

ψa ψb−1

Figure 3.9: The general form of the diagram corresponding to the element
ψT. Here the crossing marked with red is the crossing ψb−1 and the colouring

has nothing to do with the residues adjacent to it.

Notation. Let ν ∈ Bip1(n) and T ∈ Path(ν) be a path. We denote by tlast
q−1/2 the

last intersection point of the path T with the hyperplane Hq−1/2, for some q ∈ Z.

Also we denote by slast
q−1/2 the reflection through that point with respect to the

hyperplane Hq−1/2.

Proof of Proposition 3.31. Same as in the proof of Proposition 3.29 we cover the

case m ≤ 0. Let a ∈ Z, 1 ≤ a < n be a fixed integer such that if α = ((1α1), (1α2))

is a bipartition of a, then α1−α2 ∈ Hm−1/2. Also let Tα ∈ Std(α) be the α-tableau

which is maximal with respect to the order of Definition 1.37. Consider the skew

bipartition λ\α and let S, S′ ∈ Path(α→ λ) be length increasing paths which are

highest and lowest in the lexicographic order respectively (see Figure 3.10). Recall

that the elements of the set Path(α → λ) are paths starting from the bipartition
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α ∈ Hm−1/2 and endpoint the bipartition λ. All the remaining length increasing

λ\α-paths placed between S and S′ can be obtained by multiplying with a product

of transpositions on the tableau S and we focus on S, S′ for the ease of notation.

We define the standard λ-tableaux T := Tα ◦ S (in the sense of Definition 1.43)

and T′ := Tα ◦ S′ and let T̂ := sm−1/2 · T and T̂′ := sm−1/2 · T′ be the reflection of

those paths through the unique point they intersect the hyperplane Hm−1/2. Note

that since the paths T, T′ are length increasing paths, the basis elements ψT̂, ψT̂′

corresponding to the paths T̂, T̂′ belong the image of the homomorphism ϕµλ.

We shall prove that if the generators ψr, a < r < n act on ψT̂ then ψrψT̂ is a

non-zero element and it corresponds to a path which either last intersects Hm−1/2

or intersects H1/2 after intersecting H−1/2. Since ψrψT̂ belongs to the image of ϕµλ,

the new element will also belong to the image of ϕµλ. For any a < r < d such that

srT does not intersect Hm−1/2, Hm+1/2, it is straightforward that ψrψT̂ = ψsrT̂

because srT is the unique tableau with the desired residue sequence. Let b ∈ Z,

a < b < n, such that (sbT)(b) ∈ Hm+1/2. Since sbT̂ � T̂ we also have that

ψbψT̂ = ψsbT̂

and the element ψbψT̂ is a non zero element which belongs to the image of the

homomorphism ϕµλ. We also need to prove that ψrψT̂′ , 1 < r < n is a non zero

element which belongs to the radical. Consider the element ψT̂′ and let b ∈ Z

be such that (sbT
′)(b) ∈ Hm−3/2. This is the only interesting case as for the rest

cases the result is straightforward. The transposition sb will appear in the reduced

expression of T̂′ and it will be left exposed. Hence

ψbψT̂′ = ψ2
bψi1 · · · ψ̂b · · ·ψikeiµ

with ψsbT̂′ = ψi1 · · · ψ̂b · · ·ψikeiµ , where by ψ̂b we mean that the generator ψb does

not appear in the product. Since res((sbT̂
′)−1(b)) = res((sbT̂

′)−1(b + 1)) + 1, by

applying the KLR relation (R5) we have that

ψbψT̂′ = (yb+1 − yb)ψsbT̂′ .
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Step 1: We shall prove that yb+1ψsbT̂′ = 0. Let (sbT̂
′)(n) ∈ H−1/2, for some q ∈ Z,

be the unique intersection point of the path sbT̂
′ with the hyperplane H−1/2.

+
ε

1+
ε 2

µλ
Figure 3.10: Let n = 20, e = 4 and σ = (0, 2). For a = 14 and b = 18 the
paths T (red), T′ (blue) and s18T̂

′ (black) are depicted above. The paths S and
S′ are the bits of the T and T starting from the hyperplane H−5/2 all the way

down to λ. In this case q = 6.

In order to compute the product yb+1ψsbT̂ it is easier to consider the diagrammatic

presentation of our algebra. In particular the diagram of the element sbψT̂′ is of

the form of Figure 3.9.

Note that the diagram consists of strands moving towards up to the right (UR-

strands) and strands moving towards up to the left (UL-strands). If the lth UR-

strand (resp. UL-strand) carries the residue i ∈ Z/eZ then the (l+xe)th, x ∈ Z>0,

UR-strand (resp. UL-strand) also carries the residue i ∈ Z/eZ. We colour strands

carrying the same residue with the same colour.

We apply the generator yb+1 on the element ψsbT̂′ and we obtain the element

corresponding to the following diagram.

· · · · · ·
•
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By applying the KLR-relation (R4) in the case that the residues coincide we get

the following combination of diagrams:

· · · · · ·• + · · · · · ·

(3.14)

We take the first summand of (3.14) and by reapplying the KLR relation (R4) we

obtain two more summands.

· · · · · ·

•

+ · · · · · ·

Those new summands are both equal to zero. The first one by the Garnir relation

(3.8) and the second one because it corresponds to a non standard tableau. We

now consider the second summand of (3.14) and we apply the KLR relation (R6).

We obtain the element

· · · · · ·

which is equal to zero because of the Garnir relations. Finally we get that

yb+1ψsbT̂′ = 0.

Step 2: Now we shall consider the product ybψsbT̂′ and we shall distinguish be-

tween two cases according to the length of µ. If |`(µ)| > 1, then the unique

element of Path(µ, sbT̂
′) with degree equal to deg(sbT̂

′) + 2 is the path V1 :=
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sm+1/2sm+3/2s1/2s−1/2 · (sbT̂′), hence

ψbψT̂′ = αV1ψV1

with αV1 ∈ k. If |`(µ)| = 1, then the unique path in Path(µ, sbT̂
′) with the desired

property is the path V2 := s2
1/2s

1
1/2 · (sbT̂′), hence

ψbψsbT̂′ = αV2ψV2

with αV2 ∈ k. In order to prove that the homomorphism ϕµλ is injective it suffices

to prove that the scalars αV1 , αV2 ∈ k are non-zero. We prove it for the scalar

αV1 ∈ k since the proof for αV2 ∈ k will be a subcase. The element ybψsbT̂′

corresponds to the diagram

· · · · · ·
•

By the KLR relation (R4) we have that the above element is equal to the following

combination of diagrams:

· · · · · ·• − · · · · · ·

By using similar arguments as above, the first summand is zero. We now consider

the second summand and we apply the KLR-relation (R6), hence we obtain the

diagram
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− · · · · · ·

We apply the KLR-relation (R5) for the case that the residues are not equal and

the do not differ by one. The we obtain the diagram

− · · · · · ·

in which we can apply the KLR relation (R5) for the case that the residues differ

by one. Then we get the following sum of diagrams.

− · · · · · ·
•

+ · · · · · ·
•

where strands with different colours carry different residues which differ by one.

We apply the KLR relations (R4) and (R6) appropriately until we obtain reduced

diagrams. Then the only non-zero summand is of the form

(±1) · · · · · ·

Hence we have proven that the scalar αV1 ∈ k is equal to ±1 and we shall not

be interested in keeping track of its value. As a result the homomorphism ϕµλ is

injective homomorphism.

In any case the element ψbψT̂′ corresponds to the path V1 := sm+1/2sm+3/2s1/2s−1/2·

(sbT̂
′) which intersects the hyperplaneH1/2 after intersecting the hyperplaneH−1/2.
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By repeating the same procedure for all admissible integers a ∈ Z we prove that

the paths which either last intersect Hm−1/2 or intersect H1/2 after intersecting

H−1/2, correspond to elements in the image of ϕµλ.

Dimension count: In order to complete the proof we need to prove that any

element in the image of ϕµλ either last intersects Hm−1/2 or intersects H1/2 after

intersecting H−1/2. For that purpose it suffices to show that the map

Φ: Path(λ) −→ Path(µ)

defined by

Φ(U) :=

s
last
m−1/2 · U, if U last intersects Hm−1/2

slast
m+1/2s

last
1/2s

last
−1/2 · U, otherwise

is an injective map of degree one, with image containing the paths in Path(µ)

which either last intersect Hm−1/2 or intersect H1/2 after intersecting H−1/2. Let

U ∈ Path(µ) be a path which last intersects the hyperplane Hm−1/2 at the point

ulast
m−1/2. Then we have that

Φ(slast
m−1/2 · U) = U

hence U belongs to the image of the map Φ. Consider an arbitrary path V ∈

Path(µ) which intersects both hyperplanes H−1/2 and H1/2. Suppose that if vlast
1/2 =

V(n2) is the last intersection point with the hyperplane H1/2, then there exists an

intersection point vl−1/2 = V(n1) with n1 < n2 and assume that n1 is the greatest

integer with that property. Moreover let vlast
m+1/2 = V(n3) be the last intersection

point of V with Hm+1/2. Then

Φ(sl−1/2s
last
1/2s

last
m+1/2 · V) = V

hence V belongs to the image of Φ. Since both those types of paths belong to the

image of ϕµλ we have proven that any element in the image corresponds to a path of

that form. The fact that Φ is of degree 1 is straightforward by its construction.
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3.5 Bases of simple modules

This is the last section of this chapter. We shall use all the work done in the

previous sections and we shall construct the bases for the simple modules of the

blob algebra over a field of characteristic zero.

From now on let k be a field of characteristic 0. Recall from Section 3.2 that for a

given bipartition µ ∈ Bip1(n) with `(µ) ≤ 0 we fix two bipartitions λ, λ′ and con-

sider the homomorphisms ϕµλ, ϕµλ′ of Definition 3.20. Note that everything works

on the same way if `(µ) > 0, so we restrict ourselves to the previous case. Let us

denote by Imϕµλ′ and Imϕµλ the images of the above homomorphisms, constructed

in Propositions 3.29 and 3.31 respectively. We denote by E(µ) the quotient module

E(µ) := ∆(µ)/(Im ϕµλ′ + Im ϕµλ),

i.e. the cell module ∆(µ) modulo the sum of the images of the homomorphisms.

From the results of the previous section we have that when µ belongs to an alcove,

E(µ) is spanned by elements corresponding to paths which do not intersect the

hyperplane H1/2 and they do not last intersect the hyperplane Hm−1/2. In the

hyperplane case we have that the module E(µ) is spanned by elements ψT where

T is a path which does not intersect the hyperplane H1/2.

A key step towards constructing our bases for the simple modules is the fact

that the graded dimension of E(µ) is bar invariant. For this reason the following

construction is of particular importance.

Construction 3.33. For any path T ∈ Path(µ) with ψT ∈ E(µ) we shall con-

struct a path T̄ ∈ Path(µ) with ψT̄ ∈ E(µ) and deg(T̄) = − deg(T). We denote by

t1
q−1/2, t

2
q−1/2, · · · the intersection points of T with the hyperplane Hq−1/2 for some

q ≤ 0. For the construction of T̄ we focus our attention on the intersection points

of T with the hyperplanes. Let Ti
q−1/2 be an intersection point of T with the hyper-

plane Hq−1/2. If the next point that T intersects any hyperplane is the point ti+1
q−1/2

then for all point between Ti
q−1/2 and Ti+1

n−1/2 (which belong to an alcove) we have

that T̄(a) := (sin−1/2 ·T)(a). We need to consider the case that the next intersection
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Figure 3.11: The black path is the path T and the red path is the path T̄.
The numbers in black and red are the integers contributing to the degree of T

and T̄ respectively.

point is tjq−3/2, for some j, or tiq−1/2 is the last intersection point of T with any

hyperplane. In these cases, for the points between tiq−1/2 and tjq−3/2 or the points

from tiq−1/2 until the end of the path respectively, we have that T̄(a) := T(a).

Note that the above construction does not depend on whether the bipartition µ

lies in an alcove or on a hyperplane.

Example 3.34. Suppose that n = 24, e = 4 and σ = (0, 2). We consider the

bipartition µ = ((18), (116)) ∈ Bip1(24) and let T ∈ Path(µ) be the black path in

Figure 3.11 which corresponds to the basis element ψT ∈ E(((18), (116))). The

path T has degree deg(T) = −2. The path T̄ ∈ Path(µ) obtained by the procedure

we described before, is the red path in Figure 3.11. One can readily check that

deg(T̄) = 2 = − deg(T).

Remark 3.35. Suppose that µ ∈ Bip1(n) with `(µ) = m > 0. Then the elements

spanning the module E(µ) are of the form ψT where T is a path which does not

intersect H−1/2 and does not last intersect the hyperplane Hm+1/2.
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Using the notions we defined above we can state and prove the following theorems.

Those theorems are two of the main results of our paper and gives a precise

description of the basis of an irreducible representation of the blob algebra over a

field of characteristic 0, in the alcove and hyperplane cases.

Theorem 3.36. Let µ ∈ Bip1(n) with `(µ) = m. The module E(µ) is equal to the

simple head L(µ), hence

1. if m ≤ 0

L(µ) = spank

{
ψT |

T∈Path(µ), T does not intersect H1/2

and does not last intersect Hm−1/2

}
,

2. if m > 0

L(µ) = spank

{
ψT |

T∈Path(µ), T does not intersect H−1/2

and does not last intersect Hm+1/2

}
.

Proof. We consider the quotient module E(µ). For any path T ∈ Path(µ) with

ψT ∈ E(µ) we have already shown (see Construction 3.33) that there exists a path

T̄ ∈ Path(µ) with deg(T̄) = − deg(T) and therefore dimt(E(µ)) is bar-invariant.

Suppose that E(µ) is not simple. Then it will have a simple constituent L(α), with

α / µ, with multiplicity equal to the decomposition number dµα(t) = ti ∈ tN0(t),

by Theorem 3.17 (note that this holds because we are working over a field of

characteristic zero). Moreover, by Theorem 3.15 we know that the simple modules

have bar-invariant characters. Considering the above, the graded dimension of

E(µ) is not bar-invariant, as strictly positive shifts of bar-invariant polynomials

are not bar-invariant polynomials, which is a contradiction. Hence, we have proven

that E(µ) = L(µ).

The following theorem is the analogous of Theorem 3.36 in the hyperplane case.

Theorem 3.37. Let µ ∈ Bip1(n) with `(µ) = m− 1/2. The module E(µ) is equal

to the simple head L(µ), hence
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1. if m ≤ 0

L(µ) = spank{ψT | T ∈ Path(µ), T does not intersect H1/2},

2. if m > 0

L(µ) = spank{ψT | T ∈ Path(µ), T does not intersect H−1/2}.

Proof. The proof is identical to the proof of Theorem 3.36.



Chapter 4

BGG resolutions

In 1975 Bernstein, Gelfand and Gelfand [BGG75] constructed resolutions for finite

Weyl groups in the context of finite dimensional Lie algebras. In more detail they

constructed resolutions of simple modules by Verma modules. These resolutions

are known after their names as Bernstein–Gelfand–Gelfand (BGG) resolutions.

Parabolic BGG resolutions were constructed by Lepowsky [Lep77] and have gone

on to have applications in the study of the Laplacian space [Eas05]. Kac–Kazhdan

conjectured that these BGG resolutions would generalise to all Kac–Moody Lie

algebras, [KK79]. Their conjecture was proven in several cases, such as for the

affine Weyl group Ŝ2 by Wakimoto [Wak86], in the classical type by Hayashi

[Hay88] and in the general case by Feigin, Frenkel, and Ku [FF92, Ku89]. The

result was extended arbitrary fields by Mathieu [Mat96]. Bowman–Hazi–Norton

[BHN20] constructed BGG resolutions in the context of affine symmetric groups

and a maximal finite parabolic subgroup over C. In the context of the modular

representation theory of the symmetric group and Hecke algebras, BGG resolu-

tions were first used by Bowman–Norton–Simental [BNS] with applications in the

calculation of Betti numbers and Castelnuovo–Mumford regularity.

In this chapter we generalise the findings of [BNS] in the case of Ŝ2. Namely, we

prove that all simple modules of the blob algebra admit BGG resolutions over a

field of characteristic zero. More precisely we shall construct resolutions of cell

modules for each simple Bσ
n-module indexed by a bipartition which belongs to an

94
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alcove. BGG resolutions of simple modules indexed by bipartitions on a hyper-

plane are simpler to construct and they are used in the proof of the more general

case. In the first section we calculate the composition of one-column homomor-

phisms between cell modules of the blob algebra. Knowing these compositions

will allow us to ensure that the diagrams of modules that we construct are indeed

chain complexes. In the second section we construct the BGG resolutions in the

hyperplane case. Finally, in the third section we present the main result of this

chapter which is the construction of BGG resolutions for all simple modules of the

blob algebra in the alcove case.

The results of this chapter are the author’s work in the last section of [Mic21].

4.1 Composition of one-column homomorphisms

In this section we shall compute the composition of certain one-column homomor-

phisms. We consider two bipartitions α, γ ∈ Bip1(n) such that |`(α)| = |`(γ)|+ 2

and without loss of generality we may assume that `(γ) < 0. Then we can ei-

ther have `(α) < 0 or `(α) > 0 and let β, β′ ∈ Bip1(d) be the bipartitions with

|`(β)| = |`(β′)| = |`(γ)| + 1 for which we have constructed the homomorphisms

ϕγβ, ϕ
γ
β′ of Chapter 3. In a case as above we can consider the following “diamond”

diagram:

∆(γ)

∆(β)

ϕγβ
;;

∆(β′)

ϕγ
β′

cc

∆(α)
ϕβα

cc

ϕβ
′
α

;;

The aim of this section is to compute the compositions of the homomorphisms in

such diamonds and prove that those are commutative or anti-commutative.
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In the next proposition we shall assume that `(α) < 0, as everything works simi-

larly when `(α) > 0.

Proposition 4.1. Let α, γ ∈ Bip1(n) with |`(α)| = |`(γ)|+ 2. Then

(ϕγβ ◦ ϕ
β
α)(ψTα) = (−1)|`(γ)|ψs`(γ)+1/2s1/2s−1/2s`(β)−1/2·Tα

and

(ϕγβ′ ◦ ϕ
β′

α )(ψTα) = ψs1/2s−1/2·Tα .

In particular the diamond will either be commutative or anti-commutative, depend-

ing on the number |`(γ)|.

Proof. Let α = ((1α1), (1α2)), β = ((1β1), (1β2)) and γ = ((1γ1), (1γ2)). The com-

position ∆(α) −→ ∆(β) −→ ∆(γ) is harder to compute than the composition

∆(α) −→ ∆(β′) −→ ∆(γ) and we shall start by computing it. Consider the

generator ψTα of the cell module ∆(α). Then

(ϕγβ ◦ ϕ
β
α)(ψTα) = ϕγβ(ϕβα(ψTα))

= ϕγβ(ψs`(β)−1/2·Tα).

Let T := s`(β)−1/2 · Tα ∈ Path(β) and T = wTTβ. Then we have that

ϕγβ(ψs`(β)−1/2·Tα) = ϕγβ(ψwT
ψTβ)

= ψwT
ϕγβ(ψTβ)

= ψwT
ψs`(β)+1/2·Tβ .

The element ψT ∈ ∆(β) corresponds to a diagram of the form

· · ·

ψ2α1+2 ψ2β1
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while the element ψs`(β)+1/2·Tβ ∈ ∆(γ) corresponds to a diagram of the form

· · ·

ψ2γ1

For the multiplication ψwT
ψs`(β)+1/2·Tβ we concatenate the above diagrams. Hence

we obtain the diagram

· · ·

and by applying the KLR-relation (R6) in the case the middle residue is less by

one that the adjacent residues we get the diagram

· · ·

Then we apply the KLR relation (R5) in the case that the residues are not equal

and they do not differ by one and we get the diagram

· · ·

Since the strands we have marked in red and blue carry the different but adjacent

residues, we apply the KLR-relation (R5) and we reduce our computation to a
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computation similar to the one in the proof of Proposition 3.31 where we compute

the effect of y-generators. Hence, we have that

(ϕγβ ◦ ϕ
β
α)(ψTα) = ψwT

ψs`(β)+1/2·Tβ

= (−1)|`(γ)|ψs`(γ)+1/2s1/2s−1/2s`(β)−1/2·Tα .

Now we shall compute the composition ∆(α) −→ ∆(β′) −→ ∆(γ) on the generator

ψTα of the cell module ∆(α). We have that

(ϕγβ′ ◦ ϕ
β′

α )(ψTα) = ϕγβ′(ϕ
β′

α (ψTα))

= ϕγβ′(ψs−1/2·Tα)

Let S := s−1/2 · Tα ∈ Path(β′) and S = wSTβ′ . Then we have that

ϕγβ′(ψs−1/2·Tα) = ϕγβ′(ψS) = ϕγβ′(ψwS
ψTβ′ ) = ψwS

ϕγβ′(ψTβ′ ).

By Definition 3.20 we have that ϕγβ′(ψTβ′ ) = ψs1/2·Tβ′ and let U := s1/2 · Tβ′ ∈

Path(γ). Then

ϕγβ′(ψs−1/2·Tα) = ψwS
ψs1/2·Tβ′ = ψwS

ψwU
ψTγ .

The final equality gives the desired result because the product of generators ψwS
ψwU

corresponds to reduced transposition, hence ψwS
ψwU

ψTγ ∈ Path(γ) is equal to the

element ψs−1/2s1/2·Tα as required.

4.2 BGG resolution for the hyperplane case

Let k be a field of characteristic zero. In this section we attach to any biparti-

tion λ ∈ Bip1(n) a complex C•(λ) called the BGG resolution for the irreducible

representation L(λ).
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In the case that the simple representation is indexed by a bipartition λ ∈ Bip1(n)

with λ ∈ Hq−1/2, q ∈ Z, the BGG resolution has an easy form. In the next

proposition we construct a BGG resolution for the irreducible representation L(λ),

λ ∈ Hq−1/2, for some q ∈ Z.

Proposition 4.2. Let λ ∈ Bip1(n) with λ ∈ Hq−1/2, for some q ∈ Z. We have a

short exact sequence

C•(λ) : 0 // ∆(µ)〈|`(µ)| − |`(λ)|〉
ϕλµ
// ∆(λ) // L(λ) // 0

where µ ∈ Bip1(n) with |`(µ)| = |`(λ)|+ 1 and `(µ) = −(`(λ) + 1).

Proof. The result is straightforward by using the fact that Coker(ϕλµ) = L(λ).

4.3 BGG resolutions for the alcove case

In this section we construct BGG resolutions for the simple modules indexed by

bipartitions which belong to an alcove. Let λ ∈ Bip1(n) be a bipartition such that

λ ∈ aq, q ∈ Z and let us denote by νi, ν
′
i the bipartitions -in the same linkage class

as λ- such that |`(νi)| = |`(ν ′i)| = |`(λ)|+ i. We set

C•(λ) := (Ci(λ))i≥0

where

C0(λ) := ∆(λ)

and

Ci(λ) :=
⊕
ν=νi,ν′i

∆(ν)〈|`(ν)| − |`(λ)|〉

for i > 0. We define the maps

δi : Ci+1(λ) −→ Ci(λ)
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between those components. For i = 0 we have that

δ0 :=
(
ϕλν1 ϕλν′1

)
. (4.1)

For i > 0 we shall distinguish between two cases on the number |`(λ)| + i. In

particular if |`(λ)|+ i is even, we set

δi :=

−ϕνiνi+1
ϕνiν′i+1

ϕ
ν′i
νi+1 −ϕν

′
i

ν′i+1

 (4.2)

whereas if it is odd, we set

δi :=

 ϕνiνi+1
−ϕνiν′i+1

−ϕν
′
i
νi+1 ϕ

ν′i
ν′i+1

 . (4.3)

Note that there is the possibility that not both the rightmost and leftmost alcove

contain bipartitions linked with λ. In that case let ν1, ν
′
1, · · · , νk ∈ Bip1(d) be the

bipartitions linked with λ. Then we define the maps δi : Ci+1(λ) −→ Ci(λ) are

defined exactly like the maps (4.1), (4.2) and (4.3) for 0 ≤ i ≤ k − 1. For i = k

we define

δk :=

ϕνk−1
νk

ϕ
ν′k−1
νk

 . (4.4)

Proposition 4.3. Let λ ∈ Bip1(n) be a bipartition such that λ ∈ aq, q ∈ Z. For

the pair (C•(λ), (δi)i≥0) we have that

Im(δi+1) ⊂ Ker(δi).

for any i ≥ 0, in other words the pair (C•(λ), (δi)i∈Z) is a (chain) complex.

Proof. The result is straightforward from Proposition 4.1.

Definition 4.4. Recall that I = Z/eZ and let r ∈ I be a given residue. The

r-restriction functor

r − resnn−1 : mod− Bσ
n −→ mod− Bκ

n−1
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is defined by

M 7−→
∑

i=(i1,i2,··· ,in−1,r)∈In−1×{r}

eiM

and we have that

resnn−1 =
∑
r∈I

r − resnn−1.

The following remark discusses the way we can restrict from modules in an algebra

of a given rank n, to modules in algebras of lower rank. It also introduces for the

first time the notation Er, for r ∈ Z/eZ which will be used later in the proofs of

this section.

Remark 4.5. Suppose that λ ∈ Bip1(n) and λ ∈ aq, q ∈ Z. If r ∈ I then we have

that λ has either 0 or 1 removable r-nodes. We shall denote by Er(λ) the unique

bipartition which differs from λ by removing an r-node. Consider the cell module

∆n(λ) ∈ mod− Bσ
n. We have that

r − resnn−1(∆n(λ)) =

∆n−1(Er(λ)), if Remr(λ) 6= ∅

0, otherwise

where ∆n−1(Er(λ)) is a cell module in mod− Bκ
n−1.

Definition 4.6. Let λ ∈ Bip1(n). The complex (C•(λ), (δi)i≥0) is called BGG

resolution of L(λ) if

Hi(C•(λ)) =

L(λ), if i = 0

0, otherwise.

Theorem 4.7 is the basic result of the thesis on BGG resolutions associated to

simple modules of the blob algebra. We follow the same tactics as in the previous

chapters of the thesis and we include an example prior to the main proof. This

will help the reader to absorb the technicalities and will make the flow of the proof

easier. We first state Theorem 4.7 and the example follows.

Theorem 4.7. Let λ ∈ Bip1(n) be a bipartition such that λ ∈ aq, q ∈ Z. The

Bσ
n-complex

C•(λ) :=
⊕
νEλ

∆(ν)〈|`(ν)| − |`(λ)|〉.
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with differentials δi : Ci+1(λ) −→ Ci(λ) the maps defined above is a BGG resolution

for the simple representation L(λ). Moreover we have that

resnn−1(Ln(λ)) =
⊕

�∈Rem(λ)

Ln−1(λ−�).

Remark 4.8. Note that the subscript in Ln(λ) is used to emphasise that L(λ) is a

module of the algebra Bσ
n. This is used when we need to distinguish from modules

in algebras in other ranks, such as Bσ
n−1.

Example 4.9. Let n = 9, e = 4 and σ = (0, 2) ∈ Z2. We consider the bipartitions

λ = ((12), (17)), µ = ((13), (16)) ∈ Bip1(9) and let r ∈ {0, 1, 2, 3} = Z/4Z. We

shall calculate the images of the bipartitions λ, µ under the restriction Er, r ∈

Z/4Z, which will belong to Bip1(8). For the bipartition λ we have that

E0(λ) = ((12), (16))

E3(λ) = ((1), (17))

while for µ we have that

E1(µ) = ((13), (15))

E2(µ) = ((12), (16)).

The bipartitions λ, µ as well as their restrictions are depicted in Figure 4.1. We

remark that the restrictions can either keep belonging to an alcove or a hyperplane

(in lower rank).

Proof of Theorem 4.7. Let λ ∈ Bip1(n) with λ ∈ aq, for some q ≤ 0. Note that

everything works analogously when q > 0. In order to prove that our Bσ
n-complex

is a BGG resolution for the simple representation L(λ) we need to show that

Hi(C•(λ)) =

Ln(λ), if i = 0

0, otherwise.
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+
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ε
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µ E1(µ)E2(µ)

Figure 4.1: The bipartitions λ = ((12), (17)), µ = ((13), (16)) and their restric-
tions under Er, r ∈ Z/4Z. The points in the alcove geometry corresponding to

the restrictions can be distinguished by different colours.

Recall that BGG resolutions and bases for the hyperplane case are already con-

structed in Proposition 4.2. We shall proceed by induction on the rank n of the

blob algebra. We assume that the theorem holds for any bipartition λ ∈ Bip1(n−1)

where λ belongs to an alcove. We also have that

resnn−1(C•(λ)) =
⊕
r∈I

C•(Er(λ)).

We shall consider one residue at a time. The bipartition λ belongs to an alcove,

hence as we mentioned in Remark 4.5 there will be either 0 or 1 removable r-nodes.

For each residue we have 3 different cases.

• Suppose that the bipartition Er(λ) belongs to the hyperplane Hq−1/2. In

terms of the alcove geometry, one can think of it as the hyperplane of the

alcove aq which is further away from the origin than λ. As an example we

refer to the restriction E3(λ) in Figure 4.1. Note that since the r-restriction

functor is exact, we have that r − resnn−1(C•(λ)) is a complex. Consider

a bipartition µ ∈ Bip1(n) such that µ is less dominant that λ and Er(µ)

is a bipartition. In the case we examine, all the bipartitions of n with the

aforementioned property come into pairs (ν+, ν−) with ν+/ν− and |`(ν+)| =

|`(ν−)|+ 1. They also have the additional property

Er(ν
+) = Er(ν

−) = ν



104

where ν is linked with Er(λ). Then we have that

r − resnn−1(∆n(ν+)) = r − resnn−1(∆n(ν−)) = ∆n−1(ν).

Now consider the homomorphism ϕν
−

ν+ ∈ HomBσn(∆n(ν+),∆n(ν−)) for some

bipartition ν / Er(λ). Under the r-restriction functor we have that

r − resnn−1(ϕν
−

ν+) = 1ν ∈ EndBσn(∆n−1(ν)).

In other words the identity morphism appears into all the differentials of

the r-restricted complex r − resnn−1(C•(λ)), hence the complex is exact. In

particular the homology

Hi(r − resnn−1(C•(λ))) = 0

for any i ≥ 0.

• Suppose that the bipartition Er(λ) belongs to the hyperplane Hq+1/2, that

is the hyperplane closer to the origin (see E1(µ) in Figure 4.1). Recall that

we denote by ν ′1 ∈ Bip1(n) the bipartition such that |`(ν ′1)| = |`(λ)| + 1

with ν ′1 belonging to the positive alcoves. The pair of bipartitions Er(λ),

Er(ν1) ∈ Bip1(n − 1) form a BGG resolution of the simple Ln−1(Er(λ)) as

in Proposition 4.2. Apart form those bipartitions, all the rest bipartitions

µ ∈ Bip1(n) which are strictly less dominant than λ and Er(µ) ∈ Bip1(n),

pair up in the exact same way as in the previous case when restricted under

the r-restriction functor. Hence

Hi(r − resnn−1(C•(λ))) = 0

for i > 0. From Proposition 4.2 we have that

H0(r − resnn−1(C•(λ))) = L(λ).

• Suppose that the bipartition Er(λ) remains to the alcove aq. Examples of
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such case are the restrictions E0(λ), E2(µ) in Figure 4.1. Then the complex

r − resnn−1(C•(λ)) is given by

r − resnn−1

(⊕
νEλ

∆n(ν)〈`(ν)〉

)

with differentials given by

r − resnn−1(δi) : r − resnn−1(Ci+1(λ)) −→ r − resnn−1(Ci(λ)).

Note that if Remr(ν) 6= ∅, we have that

r − resnn−1(∆n(ν)〈`(ν)〉) = ∆n−1(Er(ν))〈`(ν)〉

since `(ν) = `(Er(ν)), otherwise we have that

r − resnn−1(∆n(ν)) = 0.

Let ν, ν ′ ∈ Bip1(n) be bipartitions such that Remr(ν),Remr(ν
′) 6= ∅. Then

r − resnn−1(ϕν
′

ν ) = ϕ
Er(ν′)
Er(ν)

Hence we get that

r − resnn−1(C•(λ)) = C•(Er(λ))

and by the induction hypothesis we have that H0(C•(Er(λ))) = Ln−1(Er(λ)),

while Hi(C•(Er(λ))) = 0, for all i > 0. Thus r − resnn−1(H0(C•(λ))) =

H0(C•(Er(λ))) = Ln−1(Er(λ)) and r − resnn−1(Hi(C•(λ))) = 0, for all i > 0.

Using the work we have done above we have proven that

resnn−1(Hi(C•(λ))) =


⊕

r∈I Ln−1(Er(λ)), if i = 0

0, otherwise.
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Moreover we have that the cokernel of the differential δ0 projects onto the simple

representation L(λ). The above argument gives us

resnn−1(Ln(λ)) ⊂
⊕
r∈I

Ln−1(Er(λ)).

In addition, by Theorem 3.36, we have that the cardinality of the basis of the

simple representation Ln(λ) is equal to the sum of the cardinalities of the bases

for the simple representations Ln−1(Er(λ)), for all r ∈ I. Thus

resnn−1(Ln(λ)) =
⊕
r∈I

Ln−1(Er(λ)).

and we conclude that

resnn−1(Hi(C•(λ))) =

resnn−1(Ln(λ)), if i = 0

0, otherwise

.

Since resnn−1(Ln(ν)) 6= 0, for any ν E λ, despite the fact that r−resnn−1(Ln(ν)) = 0,

for some r ∈ I, we have that

Hi(C•(λ)) =

Ln(λ), if i = 0

0, otherwise.

and the proof is complete.
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