Simplifying Regular Expressions Further

Stefan Kahrs®*, Colin Runciman®

@School of Computing, University of Kent, Canterbury CT2 7TNF, UK
b Department of Computer Science, University of York, York YO10 5GH, UK

Abstract

We describe a cumulative series of transformations to simplify regular expressions, and investigate their effectiveness
and cost. Transformations depending on increasingly powerful comparisons of expressions give results clearly superior
to commonly used algebraic simplifications. Early in the series, efficient transformations enabled by language-invariant
attributes are surprisingly effective. Later in the series, transformations depending on comparisons of expressed languages
are made feasible by bounding the size of subexpressions to which they are applied. We set out the principles of our
transformations, address some key implementation issues, and evaluate the results of systematic test measurements.

Keywords: Regular Expression, Algebraic Simplification, Semantic Simplification,

2000 MSC: 03D40

1. Introduction

Regular expressions (hereafter “expressions”) were in-
troduced by Kleene around seventy years ago [1] as concise
specifications of regular languages. Where many expres-
sions all specify the same language, a smallest expression
is usually easiest to understand and costs the least to store
and process.

Finite-state acceptors (FSAs) also specify regular lan-
guages, and there is a long-established algorithm [2] for
simplification of a deterministic FSA to a unique min-
imal form. More recently, there has also been signifi-
cant progress on the problem of reducing non-deterministic
FSAs [3]. However, although various algebraic laws about
expressions [4] are routinely used as simplification rules,
there is no efficient equivalent to FSA minimisation for
expressions.

Using only algebraic laws between terms without re-
peated variables avoids comparison costs and allows sim-
plification as a whole to be linear-time. One good represen-
tative for this approach is the simplifying transformation
of Gruber & Gulan [5]. Various textbooks, on-line teach-
ing notes and web-based simplifiers approach the problem
in a similar way, shying away from computationally harder
methods, and avoiding a quantitative evaluation.

At the extreme end the problem is, of course, recur-
sive: we can enumerate expressions in order of size, com-
pare them semantically with the input expression, and the
first equivalent expression we find is our answer. This
is the “extreme end” because the semantic comparison is
PSPACE-hard [6], and the number of expressions to be
considered grows exponentially in relation to the size of
the input expression.

*Corresponding author: S.M.Kahrs@kent.ac.uk

Preprint submitted to Elsevier

In this paper we explore a range of transformation
methods. We show how to achieve significantly better
results than the usual algebraic simplifications alone. A
staged approach makes it possible to control the additional
cost of more powerful methods.

2. Definitions

Syntactically, given some finite alphabet ¥, the forms
of expression we adopt are 0, 1, s, x + vy, = -y, *, 7 and
(z) where s € ¥ and z, y are any finite expressions. Unless
overridden by brackets, the binding priorities are first the
unary operators * (Kleene star) and 7 (option), then -
(sequence), then + (choice). As - and + are associative,
no brackets are required in - or + chains — as we explain
further in §4, sequence and choice are both N-ary in our
implementation.

Semantically, any expression z specifies a language L(z),
a set of words over alphabet . If z, y are expressions the
usual meaning of v = y is L(z) = L(y). Concerning atomic
expressions: L(0) = () the empty set, L(1) = {e} where € is
the empty word, and L(s) = {s}. Concerning compound
expressions:

L(z +y) = L(z) U L(y)
L(z+y) ={vw | ve L(z),w € L(y)}

and the semantics of 7 and * are given by 2?7 = 14z and the
least solution to * =1+ z - z*. Although the ? operator
adds no expressive power, it is notationally convenient,
and it is useful in the formulation and implementation of
our simplifying transformations.

Some laws are true only if an expression has the empty
word property. We define ewp(x) <= € € L(x).

April 2021

We need a few other language-related attributes of an
expression z. These include the sub-alphabets of symbols
occurring leftmost, rightmost, or anywhere, in any word
of L(x); also those occurring as single-letter words. We
define

a(x)={s | swe L(x)}
d(x)={s | wse Lz
alx) ={s | vsw € L(z)}
cr(w) = {5 | s € L(x)}

We also define related functions whose results are ex-
pressions. If f(z) = {s1,...,8,} then f(z) =81+ -+ sp.
So, for example, the total language of all words over a(x)
is specified by the expression a(z)*.

The size of expressions is of special interest in this pa-
per. We define size(z), a non-negative integer:

size(0) = size(1) =0
size(s) = 1
size(x + y) = size(x - y) = size(x) + 1 + size(y)
size(z™) = size(x?) = size(z) + 1

The zero sizes of 0 and 1 are justified by their easy elimi-
nation as parts of larger expressions (see §3.1). Appropri-
ately, size(x?) = size(l +). We say an expression z is
minimal if there is no expression y for which y = = and
size(y) < size(x).

3. Simplifying Transformations

We have investigated a hierarchy of layered transfor-
mations. We discuss them from the simplest to the most
sophisticated, and explain what laws or methods are char-
acteristic for each transformational layer. We also briefly
explain the expected time-complexity of a layer when ap-
plied to expressions of size s.

We generally apply laws as size-reducing transforma-
tions. However, laws that leave size unchanged are also
used to obtain particular normal forms. Such size-preserving
transformations are generally not applied backwards, ex-
cept in composition with a size-reducing law, for example
x* e (x?-2)=(z*x?) -z =a%- 2

3.1. Standardisation

Standardisation realises a sub-theory of the algebraic
laws on expressions [4]. It computes a quotient for this sub-
theory, giving a unique normal form for each equivalence
class. Its time-complexity is O(slog(s)), mostly incurred
by the sorting of alternatives. Our standardisation sub-
theory consists of the choice laws

r+y=y+x

4+ (y+z)=(@+y) +2
r+rx=x+0==x
r+1=ux?
x+y?=(x+y)?

the sequence laws

- (y-z)=(z-y)- 2
lex=x-1=2

Orz=2-0=0
the star laws
0"=1"=1
()" = 2?* = &*
and the option laws
07=17=1

x? =2z if ewp(z)

The first, third and last laws need further explanation.
About the first and third, commutativity and idempotence
of +: in a standard-form choice 1 + ...+ z,, none of the
x; is itself a choice, and Vi < n.x; < x;41 where < is some
linear order on expressions — see §4 for implementation
details. About the last law, which holds conditionally: we
exploit it not only from left to right, to make an expression
smaller, but also from right to left: whenever we write a
rule with an explicitly optional sub-expression x?, the rule
also applies for any sub-expression x with ewp(zx).
As an example of standardisation:

b7+a-1+4a?
— {sequence law: z -1 =z}
b? +a+a?
— {choice laws:
(b+a+a)??
— {option law: x? = x when ewp(z)}
(b+a+a)?
— {choice is associative, commutative & idempotent}
(a+0b)?

ot x? = (x4 -0)?)

Although we only appeal explicitly to commutativity and
associativity of choice in the final step, in practice they
are implicit throughout as we use an N-ary representation
and a standard ordering. In particular, they are implicit
in the option-lifting second step.

3.2. Fusion

Fusion uses structural comparison to eliminate redun-
dant parts of an expression, according to these rules:

¥ . x*

(@?-y?)"

These laws imply that any expression of the form z* can
be expressed as y* where size(y) < size(x) A —ewp(y) [5].

z¥ex?=27-2"

r+y?)* = (

:x*
+y) =z +y)”

For example:

(a* - b?7)*
= {option introduction: = z? when ewp(x)}
(a*?-07)"
= {fusion law: (z7-y?)* = (z +y)*}
(a* +b)*
= {fusion law: (z 4+ y*)* = (z +y)*}
(a+b)"

For this example we have used equational reasoning, with
an implicit appeal to commutativity in the final step. Us-
ing context-aware transformations we can implement steps
such as fusion under * more directly — see §4.1.

Like standardisation, fusion has O(slog(s)) time com-
plexity. It includes a factorisation method that can be
seen as a modified merge-sort applied to choices. This is
realised by using two different linear orders under which
expressions with common prefix, or suffix, are adjacent to
one another. In each merge operation, comparison of ex-
pressions may lead to their “fusion” as both are removed
and combined into a new expression using the distributive
laws:

zytz-z=x-(y+2)
xezty-z=(x+y) -z

Because any new expression has the same prefix or suffix as
the expressions it was built from, the process can continue,
without re-ordering, to find any further factorisations. For
example, fusion simplifies:

a-a* +a*

— {fusion, factorisation}
(a+1)-a”

— {standardisation}
a?-a*

— {fusion, sequence laws}

a*
However, fusion does not implement a quotient. Fusion
can have different normal forms for the same equivalence
class. For example, the expression a-(b+c+d)+b-(c+d)
is a normal form for fusion of size 13. Yet it is equivalent
under the distributive laws to a-b+ (a+b) - (c+d), another
normal form of fusion that is only of size 11.

3.8. Lifting

Lifting exploits several language-invariant attributes of
expressions. In particular, it identifies sub-expressions x
for which L(x) includes the total language over some sub-
alphabet of «(z). Lifting uses this information to absorb
choice alternatives or sequence items. It also uses language
attributes to enhance factorisation. As we shall see, the
time complexity of lifting is O(s?).

How do we identify when an expression specifies the
total language over its alphabet? For expressions of the
form z* this is solely determined by the following principle:

¥ =ai(x)" if alz) = a1(z)

Even when L(z*) is not the total language over a(z), it
may include the total language over a sub-alphabet. We
have the following generalisation of the previous law:

(z+y)" = (a(z) +y)" if alz) Ca(z+y)
For example, by the first law we can simplify
(a+a?-b)* = (a+b)*
and by the second law we can simplify
(bec+a?-(b+c))" = (04+a?-(b+¢))" — (a?-(b+0¢)*

Further, when total-language expressions occur in se-
quences, they may be able to absorb adjacent expressions.
For example, we have the rules:

*

¥ - y?
(z+y?)" =" if aly) C o (@)

=z" if a(y) C ay(x)

For choices, we also have a subsumption rule:
¥ +y=a" if aly) C as(x)

Inclusion of this rule makes lifting a worst-case quadratic-
time transformation, because in an n-ary choice x1 +-- -+
x each pair (z;,2;) could potentially be an instance of
(", y).

Typically, lifting laws are special cases of more general
laws that can be expressed in terms of the equality or in-
clusion of languages. For example, we could replace the
condition in each of the last three laws by L(y) C L(x*).
However, language inclusion and equality are PSPACE-
complete problems [6], whereas the application conditions
for lifting are checked in constant time in our implemen-
tation.

3.4. Pressing

Pressing transformations use the full power of language
comparison, both for equivalence and inclusion. Press-
ing applies similar laws to those used for lifting, but with
more general conditions. Without size-constraints press-
ing would be PSPACE-complete; with size-constraints it is
PTIME, which derives from the selection of size-bounded
sub-expressions in choices, modulo standardisation.

There are various pressing rules for 4+ subsumption,
either where z +y = x, or where z +y = = + 3 and
size(y’) < size(y). To find instances of the second kind,
pressing tries to construct an expression 3’ such that L(y)\
L(z) C L(y') C L(z +y). We write y \, = for an expres-
sion 3" with this property. Related techniques have been

applied previously to non-deterministic FSAs [3], for tran-
sition pruning and transition saturation. Here, we increase
or decrease the language of a sub-expression rather than a
state.

A useful partial approximation of \, can be defined
by induction on sub-expressions. There is not room here
to give in full our rules for \,, but by way of illustration
special cases include:

2? Ny =z if ewp(y)
royN = g\ 2) B L) C L(=")

For example, pressing finds the simplification:
a-b?+a* — (a-b? \(a*)+a" = a(b? N\ a¥)+a* = a-b+a”

Other pressing rules use language comparison to extend
the reach of factorisation, enabling further simplifications
by the distributive law. For example:

a-(b-a)"+(a-b)*-b=(a-b)* -a+(a-b)*-b— (a-b)*-(a+Db)

Finally, pressing also uses language comparison to sup-
port star introduction. If we find a sub-expression z for
which L(z) = L(x*), introducing the star may seem an
odd move. However, after fusion the result can never be
larger than z, and it may admit further simplification by
lifting or by other pressing rules. For example, pressing
has the rule:

z?-y? = (x +y)* if L(x?-y?) = L((z?-y?)")

So pressing searches for (sub-)sequences = x; -. ...z}, for
which ewp(z) and L(z*) = L(x). If found, it replaces = by
(z1+...+xk)* which fusion will simplify to an expression
of smaller size than x. So, for instance:

(a+a)*-a?

— {pressing rule above}
((a-a)* +a)"

— {fusion including factorisation}
(a+a?)”

— {lifting}

*

a

3.5. Syntactic lookup

After we have done our utmost using algebraic trans-
formation rules, we may still hope to find further sim-
plifications by resorting to catalogues of all minimal ex-
pressions within specified bounds. Our final simplification
stages seek matches of size-bounded expressions in such
catalogues. Like pressing, and for the same reasons, these
stages have PTIME complexity.

The syntactic catalogue is a collection of finite maps,
for different alphabet sizes, each mapping pressed expres-
sions up to a certain size limit to their minimal form. The

catalogue is built by enumerating the set of all pressed ex-
pressions up to that size, partitioning this set by language
equivalence, and picking a smallest representative in each
equivalence class as the target value to which others are
mapped.

Catalogue mappings only include cases where the size
of the expression is strictly reduced. We exclude size-
preserving cases, even though they could help with fac-
torisation, because catalogue lookup is by structural com-
parison modulo renaming (see §4), and the combination
of renaming and size-preserving rules can introduce non-
termination.

When trying to simplify an expression by syntactic
lookup, the entire expression is looked up if it is within
the size-bound for its alphabet. Otherwise its largest sub-
expressions within bounds are looked up. Here we include
as sub-expressions both sub-sequences of sequence expres-
sions and sub-choices of choice expressions, as they are
obtainable as subterms by the algebraic laws of standard-
isation.

For example, the syntactic catalogue includes this sim-
plification:

a+b-b*-a? = b"-(a+0)
Pressing misses this simplification, because algebraically
we first have to make the expression bigger before we can
make it smaller: a+b-b*-a? =a+b-b*-(a+1) =a+b-b*-
a+b-b*=(14b-0")-a+b-b*=b"-a+b*-b=0"-(a+Db).

3.6. Semantic lookup

The semantic catalogue represents a family of linear-
ordered sets, for different alphabet sizes, of all regular lan-
guages specifiable by expressions up to a certain size limit.

Each language is represented by a minimal expression
that specifies it. Lookup is by a refinement of language
comparison to a linear order (see §4). As the catalogue is
a collection of languages, to find a minimal equivalent of
expression x, we search the catalogue by linear-order com-
parisons with L(z). If the catalogue contains n languages
for alphabet size |a(z)|, then we can find a minimal ex-
pression for L(x), if it is represented in the catalogue, by
O(logn) language comparisons.

Like syntactic lookup, semantic lookup involves renam-
ing, for example renaming in = with |a(z)| = 3 to obtain
an expression over the alphabet {a,b,c}. Here too, not
only an expression itself but also its sub-expressions are
candidates for look-up in the catalogue. In contrast to the
syntactic catalogue, the size of an expression does not rule
out its representation in the catalogue, but the size of its
alphabet might do so.

For example, here is a simplification by semantic lookup
which all previous phases, including syntactic lookup, fail
to find:

(a?+b-(a*-b*-a)?)" — (a?-b-a*)"

The left-hand expression is too large for the syntactic cat-
alogue, but the right-hand expression is small enough to
be in the semantic catalogue.

3.7. Minimisation

Finally, there is the “extreme end” of the transforma-
tion spectrum, mentioned in the introduction. We can enu-
merate expressions in order of increasing size until even-
tually the first equivalent to a given expression is found.
Of course the cost may be prohibitive. To reduce it some-
what, the input can first be simplified by some transforma-
tion 77, and the enumerated search-space can be confined
to normal forms of some transformation 75. Even with
such improvements, we have found minimisation is hardly
usable beyond expressions over unary alphabets.

4. Implementation

We have implemented all the transformations of §3 in
the functional language Haskell[7].

The algebraic datatype for expressions represents them
as trees. N-ary sequence and choice nodes both carry as
memoised values the size of the sequence or choice as an
expression, and its language attributes ewp, H, E>, a and
Qaq.

Any order-based implementation of sets could be used
to represent N-ary choices. We simply use ordered lists
without duplicates. Any convenient cheaply-computed lin-
ear order over expressions would do. We use a straight-
forward structural ordering for the expression type. The
cost of this ordering is O(gq), where ¢ is the size of the
smaller expression; so sorting p sub-expressions of size ¢
is O(plog(p)g), and as pq is bounded by the size s of the
whole expression, sorting is O(slog(s)) overall.

Syntactic comparison of expressions, used for example
to order choices, is at worst linear. Semantic comparisons
use methods based on Brzozowski derivatives [8]. The im-
plementation of our linear order on languages is similar to
Almeida’s language equivalence test [9]; although it has ex-
ponential complexity in the worst case, this seldom arises
in practice.

4.1. Transformations in Context

Transformations are expressed as context-aware rewrite
rules that apply to sequences or choices. These rules are
parametrised by the context of the expression to which
they are applied. Possible contexts are the free context,
the optional context, or the repetition context. For exam-
ple, to transform an expression x in the repetition context
we seek a replacement y such that * = y*. Analogously,
in the optional context, y has to satisfy x? = y?.

Contexts arise not only for direct sub-expressions such
as x in z*. For example, if we transform the sub-expression
x in (z + z)* then it can be transformed in the repetition
context: if z* = y* then (x4 2)* = (v*+2)* = (y*+2)* =
(y + 2)*. Optional contexts also arise in other ways. For
example, z in x 4+ z* can be transformed in the optional
context.

Contexts are hierarchical: any transformation applica-
ble in the free context is applicable in the optional context,

any transformation applicable in the optional context is
also applicable in the repetition context. Often a transfor-
mation in a stronger context is just a stronger variant of
a transformation in a weaker one.

For example, when considering whether x 4+ y can be
simplified to we need to check L(y) C L(x); but when
transforming x + ¥ in an optional or repetition context the
check can be weakened to L(y) C L(z?) or L(y) C L(z*),
respectively. A traditional bottom-up algebraic approach
would transform (x + y)* by first transforming = + y and
then transforming the result starred. This entails first
checking the stronger condition then, if it fails, the weaker
one. Instead, we make the transformations context-aware,
only checking the weaker condition.

4.2. Transformation Tags

Suppose a transformational layer 7" has been exhaus-
tively applied to an expression in context ¢, with expres-
sion z as result. Then we tag x as a (T, ¢)-normal form.
If other rules are subsequently applied to an expression
containing =, and x is preserved, then it retains all its
normal-form tags. However, tags of higher transformation
layers or stronger contexts subsume those of lower layers
or weaker contexts.

Generally, we first transform the whole expression with
a lower-layer transformation, tagging it throughout in the
process, and then proceed to transformations with the next
layer. For various reasons, we prefer this strategy to a
sub-expressions-first strategy. For example, if lifting finds
x = a(z)* then any effort transforming sub-expressions
of x would most likely be wasted, as lifting is based on
language-invariant attributes.

Tags can also be inherited when forming sub-sequences
of sequences or sub-choices of choices. For example, sup-
pose we factorise an expression of the form z-y+b-y —
(x +b) -y in which z is a sequence. In the original expres-
sion, since x is a sub-sequence it has no tags of its own;
but after factorisation it can inherit the free-context tags
of x - y.

Special tags of the form (minimal, ¢) are awarded when
it is known that an expression is minimal in context c.
Minimality subsumes all other transformational tags, en-
abling us to avoid redundant searches for applicable sim-
plifications. Minimal tags may arise from a successful cat-
alogue look-up. Also, any sequence of symbols, and any
choice of distinct symbols, is directly tagged as minimal
when we form a standardised expression.

4.8. Divide and Congquer

Some transformations do not scale well. So we seek
ways to break larger expressions into parts and transform
them independently. When transforming expressions of
the forms z* or 7 we simply transform their body z in the
appropriate context. In particular, any starred expression
always has a starred minimal equivalent.

A similar principle applies to sequence expressions start-
ing or ending with a single symbol. An expression s - x is

minimal in a free context if and only if x is. So to trans-
form an expression of the form s - x in a free context, we
may transform z to 2’ and then lift the transformation
tag of x’ to the whole expression s - x’. This can lead to
stronger tags than those of the transformation we are cur-
rently applying: for example, the expression a - (a+b)* - b
can be tagged as minimal in a free context.

Whenever a(z)Na(y) = 0, z and y can be transformed
independently within z -y or + y. There is a proviso
for choices: if ewp(z) (or ewp(y)) then the transforma-
tion context of y (or x) is at least optional. Unless the
transformation context of x + y is a repetition, we can do
better: for independent transformation of x and y it is
enough that both @ and @ give disjoint results for = and
y. When transforming n-ary choices z1 + - - - + x,, we try
to partition the z; into groups accordingly. For example,
a-b*+c-b-c+a?-b can be partitioned into a - b* +a? b
and c-b-c.

4.4. Size bounding

During development we found that later transforma-
tions of pressing and catalogue lookup were too expensive
for unrestricted application to large expressions. So by
default we limit the size of sub-expressions to which they
are applied. Candidate sub-expressions include segments
of oversized sequences and subsets of oversized choices.

Our default limits for the size of expression to which
pressing transformations are applied are 15 for choices and
20 for sequences. Raising these limits slightly improves
simplification but greatly increases run-times. For exam-
ple, if we raise the limits to 20 and 25, the improvement
is tiny for large inputs but typically run-time increases by
around 25% — far more in the worst case.

As catalogues are stored in files, they are of limited
size and limited alphabet size. Specifically, for alphabet
sizes from 1 to 4, we set expression-size limits of 15, 12,
11 and 10 for the syntactic catalogue, and 15, 11, 9 and
8 for the semantic catalogue. This means, for example,
that all languages over a singleton alphabet representable
by an expression of size up to 15 are in the semantic cat-
alogue, and all expressions of up to that size also have a
minimal equivalent in the syntactic catalogue. In all there
are 24,077 entries in the syntactic catalogue, and 28,478
languages in the semantic catalogue.

The time to generate the catalogues grows exponen-
tially with these expression-size limits, because the pool
of expressions from which they are built grows exponen-
tially. Raising the expression-size limits for catalogues by
just 1, for each alphabet size, approximately quadruples
the overall size of each catalogue (to 98,620 entries for the
syntactic catalogue and to 91,414 entries for the semantic
catalogue). Here again there is only a very slight improve-
ment in simplification.

4.5. Renaming
We cannot directly lookup expressions “modulo renam-
ing” in either the syntactic or the semantic catalogue, as

neither our structural comparisons nor our linear order on
languages is preserved by renaming. So we need to re-
name expressions first to match the alphabets used in the
catalogues. One option would be to create a unique cata-
logued representative for each class of renaming-equivalent
expressions. However, lookup would then be very costly,
iterating over many possible renamings. In general, if
|a(z)] = n then x has n! renamings. For example, a-b-c?+d
has 24 renamings.

Instead, we use intermediate solutions, storing small
subsets of renaming equivalents in catalogues. For the se-
mantic catalogue, any class of renaming-equivalent expres-
sions can be partitioned into subsets of expressions with
identical memoised alphabets U, @ and ;. This can be
viewed as the base of a topology on expressions, and the
renamings we construct target just one of those classes and
have to be continuous w.r.t. that topology. Concretely this
is done by bringing distinguishable elements of a(z) into
a particular order.

Returning to the example, the semantic catalogue con-
tains just two of the 24 renamings of a - b-c? + d. These
two are needed as they occupy the same target class for
the renaming. They are a +b-c-d? and a+b-d-c?.

5. Evaluation

We determine the effectiveness of our transformations
by systematic testing and measurement. When a size-
reducing transformation T is applied to an expression x
one simple and natural measure of its effectiveness is the
ratio size(T'(x))/size(x). This measure is readily extended
to a test-set X of expressions by computing the geometric

mean: o (size(T (x)))

zeX \ size(x)

5.1. Effectiveness for Random Samples of expressions

We shall first present results for randomly generated
samples of expressions. As a general observation, when
expression size is fixed, increasing alphabet size increases
the probability that a random expression is minimal, con-
verging to 1 in the limit. This is so, simply because an
expression with at most one star or option and all sym-
bols distinct is necessarily minimal. Consequently, the ef-
fectiveness of transformations on random expressions in-
evitably diminishes with increased alphabet size.

For a fixed alphabet and target expression size there are
only finitely many different expressions, but even for quite
modest sizes there are too many expressions for exhaus-
tive testing to be feasible. So we pick samples of 1000 ex-
pressions at random, with uniform distribution. We have
found this sample size is large enough for different runs to
give very similar results.

Each sample is drawn from a population of expressions
with specified size and alphabet size. We exclude expres-
sions with 0 or 1 as sub-expressions to avoid a predomi-
nance of easy targets.

The method for generating random expressions is taken
from [10]. Before generating expressions of a given size
and alphabet size, we determine by combinatorial analysis
the relative proportions of possible decompositions of such
expressions. The generation process uses these results to
attach probabilities to different operator symbols.

As we want our tests to include expression sizes in the
thousands, computations with unbounded integers are too
slow, and standard floating point numbers run out of expo-
nent space; so we represent population counts as floating-
point numbers with extra-large exponents.

The bar charts in Figures 1-3 summarise mean-size-
ratio results for expressions over alphabets of sizes 2, 4
and 8 respectively. Each bar-group in a chart represents
the results for expressions of a specified size. Sizes range
from 10 to 2560, quadrupling for each successive sample.
Bars in each group represent the effects of standardisation,
fusion and lifting. We do not include in these charts bars
representing the results of pressing and catalogue look-
ups: for random inputs, test results indicate that these
transformations have little effect after lifting has done its
work.

Even for random inputs excluding 0 and 1 as sub-
expressions, standardisation reduces size by 10%—-20%. In
comparison, the linear-time transformations from [5] are
slightly less effective, by 1%5%.

Fusion achieves further reductions by 5%-20% of the
original size. The effect is greater for small ¥ because there
is a higher likelihood of common-factor prefixes or suffixes
in choices.

Lifting has the greatest effect, and its effectiveness in-
creases for larger input expressions. This is because in
larger expressions generated at random it is more likely
that sub-expressions specify or include total languages over
a sub-alphabet, for which the simplifying rules of lifting
apply. Again, size-reductions are greatest for small 3: in
the binary case, even the smallest inputs are almost halved
in size (the mean is 52.48% for inputs of size 10), and the
largest are reduced to a tiny fraction (the mean is 0.37%
for inputs of size 2560). As expected, the gains from lifting
diminish as alphabet size increases, yet for #3 = 8 we still
see further gains of 20% or more for larger inputs.

Looking at the actual outputs of the lifting transfor-
mation, one often encounters the minimal expression for
the total language, e.g. (a + b)* for #% = 2. The lift-
ing rules that produce such total expressions only depend
on context-free properties: for any fixed alphabet X there
is a context-free grammar that describes the expressions
transformed by lifting into ¥*. Instead of relying on ran-
dom samples to observe their frequency, we can count how
many expressions of a given size satisfy a given context-
free property [11]. For #% = n each expression z falls
into one of 2 - n + 4 classes: two for each possible size of
a1(x) (ewp(x) and —ewp(x)), plus two special classes for
YT and X*. This final class contains exactly the expres-
sions transformed by lifting into the minimal expression
for the total language of alphabet size n. The proportion

> Dstd
% L S ;f*f*:——fff_——a[]fusea
E] it
% _
BSNCTor 728 S RS) S ([) S
~
S
I 40% |- S . I I
=]
&
3 20%| - . S 6 O | A
3

0% |- - O B]

10 40 160 640 2560

size of input expressions

Figure 1: Output size as a percentage of input size, for samples of
1000 randomly-generated inputs of each size (#X = 2).

- Dstd
% 80%**_;***_ ***** _777—_——77_77anusea
B =] M M 1 | e
=
E 60% - P = - L - - - - - -]
~
S
5 o40% - IR . - A | I
j=]
&
8 20%b-LHLH [P0 B [
:]

0% - - - L L _ I

10 40 160 640
size of input expressions

2560

Figure 2: Output size as a percentage of input size, for samples of
1000 randomly-generated inputs of each size (#X = 4).

S T
% 0% |- T e B o E fuse
= M it
& -
= 60% P IR [5
~
S
T 40% |- iR - - Ho|- -- -
=]
&
S 20% -0 RN Rl PRI -1
=
@)

0 | - HEL EIEE BEE BEL o

10 40 160 640
size of input expressions

2560

Figure 3: Output size as a percentage of input size, for samples of
1000 randomly-generated inputs of each size (#X = 8).

of expressions belonging to this class grows with expres-
sion size. It converges to a limit, and it converges faster
for small alphabet sizes.

In relation to Figures 1-3, for expression size 2560 and
for #¥ = 2,4,8 the proportions are 42.8%, 18.0% and
5.1%. So, indeed 42.8% of all expressions of size 2560
over the alphabet {a, b} will be transformed by lifting into
(a+b)* (size 4), which goes some way to explain why the
mean result size on our sample is as low as 0.0037 - 2560 ~
9.5.

These observations independently confirm a recently
published result drawn to our attention by a reviewer.
Uniform random expressions include with high probabil-
ity large subexpressions that collapse under an “absorbing
pattern” of simplification, and the expected size of random
expressions after such simplification is constant [12].

5.2. Effectiveness for Systematically Derived Exrpressions

Testing using expressions generated at random in a
specified variety of sizes is arguably “fair”, and taking the
ratio between input and output sizes as a measure of sim-
plification is arguably “natural”. However, both choices
limit the kinds of insights that can be obtained from test
results. Expressions generated at random are not typical
of those arising in most applications, where expressions are
used to describe the characteristics of well-defined systems.
And even the most detailed analysis of output sizes rela-
tive to input sizes tells us nothing about how close output
expressions are to the minimum possible size.

Another consideration, despite the observation about
lifting for small alphabets, is that we expect expressions
generated at random to be artificially difficult to simplify.
Generally, random assemblies resist compression, even by
techniques exploiting deep knowledge of what assemblies
mean.

For all these reasons, we also test our simplifying trans-
formations using as inputs expressions that are systemat-
ically constructed, and have known minimal equivalents.
We call this construction HU-expansion as it complicates
an expression by first translating into a non-deterministic
FSA (using the technique from [13]), and then using a
highly expansive back-translation into expressions, inspired
by a proof-of-concept method taken from [2].

The method iteratively creates expressions R;; con-
necting any two states i, j of the FSA. Starting with the
FSA’s transitions only, subsequent iterations of R;; are
obtained by a technique similar to matrix multiplication.
The process is repeated until maximum path length is
reached. The final result is given by the sum of all R, for
which s is initial and f is final.

The original algorithm in [2] adds to each R;; in the
k-th iteration the connections via state k, that is: R -
(Rkr)*+ Rij. Instead, we add in the k-th iteration the con-
nections from i to j via all states: }- g Rip* (Rpp)** Rp;.
This modification means that the round-trip can increase
the size of expressions drastically. Expressions of size n

g S ~|Ostd

% 3L T | fuse ||
£ - _ |t

é 6r-fr - |Bpress
~ sl 7AISYU ||
S B sem
=T e R e I | I e I I e
&

TR | U |- I
=

U 1%, ll-;_ .‘ .,4

minimal equivalent size

Figure 4: Output size as a multiple of minimal-equivalent size, for
exhaustive test inputs recursively derived from automata (#X = 2).

0 64y 7 |Ostd

% 33— e memmeeoe- ~Ufuse |
E | Dt

E wr-r- -~ |l press
S N I - |Wsyn. ||
S B sem

T I e Y
&

RN | BN I
5 i
O 1 l.-;_ | [WS .

minimal equivalent size

Figure 5: Output size as a multiple of minimal-equivalent size, for
exhaustive test inputs recursively derived from automata (#X = 3).

o B Tl

= 3ol ~ | fuse ||
o]

£ - it

é L i A —~{Hlpress
= Bsyn

o 8F I Bsem. ||
B m
g odaf]
i

U | N
5 1

(S 2N S o E N D__‘ l,a

minimal equivalent size

Figure 6: Output size as a multiple of minimal-equivalent size, for
exhaustive test inputs recursively derived from automata (#X = 4).

have an alphabetic width (number of alphabetic symbols)
of at most w = [n/2], and Antimirov’s construction cre-
ates FSAs with at most w + 1 states. In the worst cases,
we blow up the size of expressions from 7, 8 and 9 to 7528,
52395 and 424761, respectively, even though none of the
FSAs has more than 6 states.

Such large expressions are obtained even though we
apply standardisation throughout. They pose a suitable
challenge for our simplifying transformations.

In summary, for each of the 11,680 catalogued mini-
mal expressions of size 7...9 and with #X = 2...4 we
construct a corresponding non-deterministic FSA that is
subsequently HU-expanded to obtain a test expression al-
ready in standardised form. This collection of expressions
is systematically complete within the inevitable bounds
of computing resources: it covers every regular language
specifiable by an expression of up to size 9.

Figures 4-6 present the results for all six transforma-
tions (standardisation, fusion, lifting, pressing, syntactic
look-up and semantic look-up) applied to all 11,680 HU-
expanded expressions. For each transformation and mini-
mal size category we compute the geometric mean ratio of
output size to minimal size, giving an effectiveness mea-
sure for a complete class of tests.

The size reductions obtained by adding successive trans-
formations are so much greater than they were for random
inputs, that we plot the mean size ratios on a logarithmic
scale. For example, whereas Figure 1 shows that on av-
erage fusion reduces the size of standardised random ex-
pressions over a binary alphabet by 10%-20%, Figure 4
shows that for standardised HU-constructed expressions
it reduces size by a factor of three or four, or by around
66%—-75%.

Even the final-stage transformation, using look-up in
the semantic catalogue, does not in all cases discover a
minimal form of HU-expanded expressions even though
these languages are represented in the catalogue. This is a
consequence of the size-bounding restrictions explained in
84.4: look-up in the semantic catalogue is only attempted
for expressions beneath a certain size.

In Figure 6, the bar group for size 7 represents excep-
tionally small multiples of the minimal size. The reason
is that the very few expressions = with size(z) = 7 and
|a(z)| = 4 contain neither stars nor queries.

5.83. Run-time Cost

We need a simple measure of the cost of a simplifying
transformation applied to a test-set of input expressions.
We choose the average run-time to simplify a single test
expression.

All timings given in this section are for our implemen-
tation in Haskell, compiled using ghc version 8.6.5 for ex-
ecution on a 3GHz iMac computer.

Figures 7-9 show average run-times in milliseconds plot-
ted on a log-scale ranging from a microsecond to a tenth
of a second. Plots are given for the full range of transfor-
mations described in §3: standardisation, fusion, lifting,

102 7777777777777777777777777 - @ - Sem.
—4—Syn.
—x— press | |
—e— lift

—m— fuse
—e— std.

mean simplification times (ms)

10 40 160 640 2560
size of input expressions

Figure 7: Mean simplification times for random input expressions

(#z=2).

102 _ e -sem. ||
—e—sSyn.
1 —*— press ||
10 —e— lift
. —m— fuse
10 —e— std.

H
9
]

—_
<
M

mean simplification times (ms)

10 40 160 640 2560

size of input expressions

—_
S
w

Figure 8: Mean simplification times for random input expressions

(#Z =4).

102 - e -sem. [
—e—Syn.
1 —*— press ||
10 —e— lift
. —u— fuse
10 —e—std.

H
9
L

,_.
S
M

mean simplification times (ms)

10 40 160 640 2560
size of input expressions

,_.
9
w

Figure 9: Mean simplification times for random input expressions

(#2 = 8).

pressing, syntactic catalogue look-up & semantic catalogue
look-up. The test-sets of input expressions are the same
samples of randomly generated expressions as were used
for Figures 1-3.

For standardisation and fusion the data is consistent
with their expected log-linear runtime. The few parts of
lifting that require quadratic effort are barely detectable
in the data: lifting still shows log-linear growth on ran-
dom inputs. Runtimes for pressing show a bump before
size-boundedness sets in. All transformations beyond lift-
ing have the advantage of starting with lifted intermediate
expressions, so they rarely operate directly on expressions
of a similar size to the original inputs.

For Figure 9, recall from §4 that our catalogues only
contain data for alphabet sizes up to 4. So catalogue-based
transformations are only applicable for sub-expressions with
at most 4 distinct symbols. All expressions of size 10 sat-
isfy that constraint automatically. Alphabet size also af-
fects the distribution: random expressions of size 10 for
#3 = 8 contain fewer repeated symbols, and fewer stars
and queries, than random expressions for #% = 4.

6. Discussion and Conclusions

Typically, simplification methods reported in published
papers such as [4, 5, 14] apply a small selection of alge-
braic equivalences. Using only equivalences between terms
without repeated variables avoids comparison of expres-
sions and allows simplification in linear time. For exam-
ple, the Gruber-Gulan transformation [5] follows this ap-
proach. For reasons of space, we did not include this trans-
formation in our results section, but its effect on random
expressions is very modest: for all populations we tested,
the mean output size is greater than for any of our own
methods.

In contrast, our approach has been to find various ways
of exploiting comparisons. Even standardisation, our most
basic transformation, uses a basic structural comparison
of expressions to eliminate duplicate choices. Successive
transformations use more sophisticated comparisons up to
full-language equivalence and orderings.

Inevitably, our transformations are more costly than
the linear-time simplifications from [5]. However, by care-
ful representation choices and memoisation, many of our
comparisons can be made quite cheap. All the alphabetic
expression attributes we need can be computed in linear
time, assuming a constant-sized alphabet. Our test results
show that in practice overall costs of transformation are no
worse than log-linear — until we start using full language
comparisons.

Lifting is extremely effective on random expressions,
especially over small alphabets where the average size of a
lifted normal form seems eventually constant — regardless
of input size! Indeed, when simplifying random expres-
sions, after the lifting stage most of the size-reduction has
already been achieved. Even for HU-expanded inputs our

10

test results show a marked benefit from lifting, albeit less
dramatic than for random inputs. The benefits of the later
stage transformations are far more apparent in the results
for HU-expansions, and these we claim are more typical
for systematically derived expressions.

In closing, what summary advice would we give to de-
velopers of tools and applications involving regular expres-
sions, by way of practical recommendation? How can they
best make use of the various transformations we have set
out?

Unless there is some compelling reason to store unpro-
cessed expressions in full (e.g. in an educational setting)
at least keep them in standardised form. If processing of
expressions is one of the main computational tasks, the
potentially significant size-reductions of fusion and lift-
ing are attractive. The modest additional cost of these
transformations over linear-bounded algebraic simplifica-
tion will typically be offset by reduced application-specific
expression processing. When an overall expression result
is to be presented to a user, or provided as a primary
ingredient in output, consider the option of applying the
more costly transformations involving full language com-
parisons. Pressing and catalogue look-up give expressions
within a very small factor of minimal size; at greater cost,
they can be made even more effective by raising their var-
ious internal size-limits.

Funding

This research did not receive any specific grant from fund-
ing agencies in the public, commercial, or not-for-profit
sectors. Much of the work was done when the second au-
thor was a visiting professor at the University of Kent,
funded by the University of York.

Github Repository

See the repository at github.com/ColinRunciman/MrE for
the implementation of our simplifier and various auxiliary
programs used to obtain our test results. A README
file includes instructions for reproducing measured results
from which we extracted data for the charts and graphs
in §5. Clearly, run-times (§5.3) may vary depending on
the implementation platform. Some effectiveness figures
(85.1) may vary a little depending on the sample popu-
lations randomly generated by an installation, but with
high probability they will be very close to those we have
presented.

To aid maintaining correctness during development,
the repository includes a program that searches for counter-
examples using Braquehais’ LeanCheck library [15]. The
program checks for semantic counter-examples, where the
transformed expression has not the same language as the
original, or syntactic counter-examples where the size of
the expression increases.

References

S. C. Kleene, Representation of Events in Nerve Nets and Finite
Automata, Princeton University Press, 1951, pp. 3—42.

J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley, 1979.

L. Clemente, R. Mayr, Efficient reduction of nondeterminis-
tic automata with application to language inclusion testing,
Log. Methods Comput. Sci. 15 (1) (2019). doi:10.23638/LMCS-
15(1:12)2019.

URL https://doi.org/10.23638/LMCS-15(1:12)2019

A. Salomaa, Two complete axiom systems for the algebra of
regular events, J. ACM 13 (1) (1966) 158-169.

H. Gruber, S. Gulan, Simplifying regular expressions : A quan-
titative perspective, in: Languages and Automata Theory and
Applications (LATA 2010), Springer LNCS 6031, 2010, pp. 285—
296.

H. Hunt, On the time and tape complexity of languages I, in:
STOC’73 Proceedings of the fifth annual ACM Symposium on
the Theory of Computing, 1973, pp. 10-19.

Haskell: an advanced, purely functional programming language,
last accessed September 2020 (2020).

URL www.haskell.org

J. A. Brzozowski, Derivatives of regular expressions, JACM 11
(1964) 481—-494.

M. Almeida, Equivalence of regular languages: an algorithmic
approach and complexity analysis, Ph.D. thesis, University of
Porto (2010).

W. Gutjahr, Uniform random generation of expressions respect-
ing algebraic identities, Computing 47 (1991) 51-67.

T. Hickey, J. Cohen, Uniform generation of strings in a context-
free language, STAM Journal of Computing 12 (4) (1983) 645—
655.

F. Koechlin, C. Nicaud, P. Rotondo, Uniform Random Ex-
pressions Lack Expressivity, in: P. Rossmanith, P. Heggernes,
J.-P. Katoen (Eds.), 44th Intl. Symposium on Mathemati-
cal Foundations of Computer Science (MFCS 2019), Vol. 138
of Leibniz International Proceedings in Informatics (LIPIcs),
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019, pp.
51:1-51:14.

V. Antimirov, Partial derivatives of regular expressions and fi-
nite automaton constructions, Theoretical Computer Science
155 (2) (1996) 291-319. doi:https://doi.org/10.1016/0304-
3975(95)00182-4.

A. A. Trejo Ortiz, G. Ferndndez Anaya, Regular expres-
sion simplification, Mathematics and Computers in Simula-
tion 45 (1) (1998) 59 — 71. doi:https://doi.org/10.1016/S0378-
4754(97)00086-4.

R. M. Braquehais, Tools for discovery, refinement and general-
ization of functional properties by enumerative testing, Ph.D.
thesis, University of York (2017).

J. H. Conway, Regular Algebra and Finite Machines, Chapman
and Hall, 1971.

Appendix A. Proofs for illustrative fusion rules

We illustrate here the correctness of the transformation
rules for fusion, excluding laws that are axioms for Kleene-
algebras. We assume standardisation laws. We also use
the C11 law from [16]: (z +y)* = (z* - y)* - ™.

Fusion Law 1. (z + y*)* = (z + y)*
Proof.
= {standardisation}
(" +)"
= {C11}
(W) - 2)" - (y)"
= {standardisation}
(y* . x)* . y*
= {C11}
(y+z)°
= {standardisation}
(z+y)*

Fusion Law 2. (z +y?)* = (z +y)*
Proof.
(x+y?)"
= {standardisation}
(y?+x)*
= {C11}
(47" o) g7
= {standardisation}
(y*-x) -y
- {C11)
(y+a)"
= {standardisation}
(z+y)”

*

Fusion Law 3. z*-z* =z
Proof.
x* . ‘r*
= {standardisation}
(x* . 1)* . ,:I;*
(o +1)°
= {standardisation}

*

T

11

Appendix B. Proofs for illustrative pressing rules

We illustrate here the correctness of the transformation
rules for pressing that involve the “\, operator on expres-
sions. Semantically, correctness requires that:

L((z \y) +y) = L(z +y)

Syntactically, a useful transformation can only proceed if
in addition size(z N\, y) < size(x), but that is not our con-
cern here. In the following, “x = y” between expressions
refers to their semantic equality L(x) = L(y).

We shall prove the correctness of each of the following
illustrative rules from §3.4.

z? Ny =z if ewp(y) (B.1)
ey N2t =x-(y\2") if L(z) C L(z") (B.2)

Pressing Law 1. (x \yy)+y=2x+y

We proof this by structural induction on z, splitting
the proof into the cases for B.1 and B.2.

Proof. For the B.1 case we have:

@?\y) +y

{rule B.1}

r+y

{ewp(y) from B.1, y = y?}
x+y?

{standardisation}

x?+y

For B.2 the following lemma is useful.
Lemma 1. If L(z) C L(z*) then z* = x - 2* + 2*
Proof. Tt L(z) C L(z*) then z 4+ z* = z*, and so:

Z*

{fusion}

252"
{z+2*=2*}
(x+2"). 2"
{distributivity}
x4t
{fusion}

ezt 4+ 2F

Now we resume the proof of the pressing law.

Proof. Case B.2:

(2 9) o) + 2
{rule B.2}

(o (5 2") + 2"
{Lemma 1}

(- (y ")) +a-2" 427
{distributivity}

2 ((y N\) + 2 2
{induction hypothesis}
z-(y+27)+2"
{distributivity}
Toy+xe2t+2"

{Lemma 1}

x-y+ 2"

12

