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Abstract
Emerging viral diseases pose a threat to the global population as intervention
strategies are mainly limited to basic containment due to the lack of efficacious
and approved vaccines and antiviral drugs. The former was the only available
intervention when the current unprecedented Ebolavirus (EBOV) outbreak in
West Africa began. Prior to this, the development of EBOV vaccines and
anti-viral therapies required time and resources that were not available.
Therefore, focus has turned to re-purposing of existing, licenced medicines that
may limit the morbidity and mortality rates of EBOV and could be used
immediately. Here we test three such medicines and measure their ability to
inhibit pseudotype viruses (PVs) of two EBOV species, Marburg virus (MARV)
and avian influenza H5 (FLU-H5). We confirm the ability of chloroquine (CQ) to
inhibit viral entry in a pH specific manner. The commonly used proton pump
inhibitors, Omeprazole and Esomeprazole were also able to inhibit entry of all
PVs tested but at higher drug concentrations than may be achieved . Wein vivo
propose CQ as a priority candidate to consider for treatment of EBOV.

 This article is included in the channel.Ebola 
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Introduction
Emerging pathogens such as Ebolaviruses (EBOV), Avian Influ-
enza viruses, Severe Acute Respiratory Syndrome (SARS) virus, 
Middle-East coronavirus (MERS), Chikungunya virus (CHIKV) 
and Dengue virus pose public health challenges that demand 
researchers and governments work together to assess their pan-
demic potential and plan mitigating strategies. Of the five species 
of EBOV belonging to the Filoviridae (including Zaire ebolavirus 
(EBOV-Z), Bundibugyo ebolavirus (EBOV-B), Reston ebolavirus, 
Sudan ebolavirus (EBOV-S) and Tai Forest ebolavirus1), EBOV-Z 
and EBOV-S are responsible for the majority of outbreaks of 
highly pathogenic haemorrhagic fevers causing high fatality rates2. 
Past outbreaks have been of limited size affecting a local popula-
tion, however a strain of EBOV-Z is the causative agent of the 
current outbreak that began in late 2013 and has since become 
an unprecedented and devastating epidemic3,4, resulting in over 
20,000 suspected cases, of which those confirmed had a case 
fatality rate of around 60% in the afflicted West African countries 
(http://apps.who.int/gho/data/view.ebola-sitrep.ebola-summary-
20150107?lang=en and http://www.who.int/csr/disease/ebola/
situation-reports/en/). Towards the end of 2014 the trend in case 
numbers reversed in Liberia and the epidemic slowed in Sierra 
Leone and Guinea, but the virus continues to transit in new geo-
graphical areas5. This epidemic has triggered a significant global 
health response relying on primary hygiene and other containment 
measures that have proved successful in limiting the spread of the 
virus in previous outbreaks. Given the scale of this outbreak and 
the fear that traditional containment measures may fail to pre-
vent global spread, several vaccines have been fast-tracked into 
phase I clinical trials6–8 although even if proved efficacious, the 
limited supply of sufficient quantities of vaccine will hinder their 
use in the current situation. For disease treatment, patients suf-
fering a haemorrhagic fever have relied on the clinical manage-
ment of symptoms (http://www.cdc.gov/vhf/ebola/treatment/). 
with a handful of patients in this outbreak receiving experimental 
therapies such as ZMapp, TKM-Ebola, brincidofovir and favipira-
vir (http://www.nature.com/news/ebola-trials-to-start-in-decem-
ber-1.16342)9–12. Alternatively antibody treatment by transfusion 
therapy using blood or plasma from Ebola virus survivors has been 
approved11,13–16; although issues with safety and lack of resources 
for this method limit its suitability in West Africa today. Having 
no approved or widely available therapeutics for EBOV, as with 
many other emerging viral diseases, focus has turned to possible 
re-purposing of drugs already licensed for other uses by the EMA 
and FDA. Several clinically approved drugs have been identi-
fied by researchers17–20, including amiodarone, one of the several 
cationic amphiphiles found to inhibit filovirus entry which is cur-
rently being trialled in Sierra Leone21. However reservations have 
been expressed about the complications that could be caused by 
side effects of the drug in EBOV patients. The anti-malarial drug 
chloroquine (CQ) has also been shown to inhibit EBOV entry and 

protected mice from EBOV infection18,22 and has been previously 
highlighted as a possible drug to treat EBOV infection11.

The possible difficulties that may arise with use of re-purposed 
drugs include unforeseen interactions between virus/drug and host 
causing exacerbation of disease. Therefore it is important to try and 
understand the mechanism of virus inhibition by such drugs. To 
this end we re-examined the anti-viral properties of CQ, and show 
here that it inhibited the pH-dependent endosomal entry of a pseu-
dotyped virus (PV) bearing EBOV glycoproteins, in the same way 
as did the potent and specific vacuolar-ATPase (vATPase) inhibitor 
bafilyomycin A1 (BafA1) (a non-medical laboratory compound). 
We also show that licensed and widely used proton pump inhibitors 
(PPIs) for treatment of gastric acid reflux, omeprazole (OM) and 
esomeprazole (ESOM), inhibited PV EBOV entry, likely by their 
off-target inhibitory activity on endosomal vATPase.

Methods
Cell culture
Human embryonic kidney (293T/17) (ATCC) and Human lung 
adenocarcinoma epithelial cells (A549) (ATTC) were maintained in 
Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen) supple-
mented with 10% fetal calf serum (FCS) (Biosera) and 1% Penicillin- 
streptomycin (PS) (Invitrogen). The cell lines were maintained at 
37°C in a 5% CO

2
 atmosphere.

Compounds
Chloroquine diphosphate salt (CQ), bafilomycin A1 from Streptomy-
ces griseus (BafA1), omeprazole (OM) and esomeprazole magnesium 
hydrate (ESOM) (Sigma) were resuspended as per manufacturer’s 
instructions and aliquots stored at -20°C: CQ was prepared in ster-
ile dH

2
O; BafA1, OM and ESOM were prepared in sterile DMSO 

(Sigma).

Plasmid constructs
The Bundibugyo ebolavirus (EBOV-B) envelope glycoprotein (GP) 
(FJ217161) coding sequence was synthesised (Bio Basic Inc.) 
and the HA glycoprotein of avian influenza A/turkey/England/50-
92/91(H5N1) (FLU-H5) was amplified from the HA plasmid of 
the H5N1 reverse genetics system23. Both were sub-cloned into 
the pCAGGS expression vector. Expression vectors containing the 
envelope glycoproteins of Zaire Ebolavirus (Mayinga) (EBOV_Z), 
Marburg virus (Lake Victoria isolate; MARV) and Gibbon Ape 
Leukemia Virus (GALV) (modified to contain the trans-membrane 
domain of amphotropic murine leukemia virus (A-MLV) envelope 
glycoprotein) are described previously24,25. The Renilla luciferase 
gene was sub-cloned into pCAGGS expressing vector from a mini-
genome reporter described previously26.

Generation of pseudotype viruses
The generation of all lentiviral pseudotype viruses was based on 
the methods detailed previously27–29. Briefly, 293T/17 cells were 
seeded into 10cm3 tissue culture plates (Nunc™ Thermo Scien-
tific). The HIV gag-pol plasmid, pCMV-Δ8.91 and the firefly luci-
ferase reporter construct, pCSFLW, were transfected together with 
either influenza HA, GALV, EBOV or Marburg GP expression con-
structs at a ratio of 1:1.5:1 (core:reporter:envelope) using Fugene6 
transfection reagent (Promega). At 24 h post-transfection, cells 
were washed and fresh media applied. For the generation of H5 

            Amendments from Version 1

The units for chloroquine in Table 1 have been corrected from 
nM to μM. 
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PVs, 1U exogenous recombinant neuraminidase from Clostridium 
perfringens (Sigma-Aldrich) was also added 24 h after transfec-
tion to effect egress from the producer cells. PV supernatants were 
harvested at 48 and 72 h post-transfection and passed through a 
0.45m pore filter. EBOV PVs were aliquoted and stored at 4°C; the 
remaining PVs were stored at -80°C.

Entry inhibition assay
293T cells in 10cm3 plates were transfected with 15ug of Renilla 
luciferase expressing plasmid using Lipofectamine 2000 according 
to manufacturer’s instructions (Life Technologies™). CQ, BafA1, 
OM and ESOM were serially diluted in 96-well white-bottomed 
plates (Nunc™ Thermo Scientific) to give the final described con-
centrations. After 20h the transfected cells were trypsinised and 
1×104 cells were added to each well. After 30min cells were trans-
duced with no more than 1×105 RLU of PV per well (estimated 
from raw RLU values of previously infected 293T cells), and to 
an equal volume per well. 48 h later supernatant was removed 
and cells were lysed with 30µl of passive lysis buffer (Promega), 
and firefly/Renilla luciferase activity measured using a FLUOstar 
Omega plate reader (BMG Labtech) and the Dual luciferase assay 
system (Promega).

Measurement of intracellular pH
A549 cells were pre-treated with drug 1 h before 75nM of the pH 
sensitive Lysotracker® Red DND-99 (Life Technologies™) was 
added to the media of each well30. After 30minutes in growth con-
ditions, cells were analyzed for fluorescence using an Axiovert 40 
confocal laser (CFL) microscope and an AxioCam MRc camera 
(Carl Zeiss).

Statistical analysis
PV transduction RLUs were normalised to the Renilla value in the 
corresponding wells. Percent infection of each drug dilution was 
calculated compared to untreated cells. Two-way ANOVA with 
Bonferroni’s multiple comparisons test between untreated and 
treated mean values (α-0.05) was performed to measure statisti-
cally significant differences. IC

50
 values were calculated using non-

linear regression analysis (log[inhibitor] vs normalised response). 
All manipulation of data was performed on GraphPad Prism 6 
(GraphPad software).

Results
Inhibition of pseudotype virus entry by exisiting FDA-
approved drugs
The envelope glycoproteins of several emerging viruses with high 
pathogenicity and pandemic potential were used to create lenti-
viral based pseudotype particles as previously described29. PVs 
were generated bearing the envelope glycoproteins from Zaire 
ebolavirus (Mayinga strain) (EBOV-Z), Bundibugyo ebolavi-
rus (EBOV-B), Marburg (Lake Victoria isolate) virus (MARV), 
H5 HA from a highly pathogenic avian influenza virus A/turkey/ 
England/50-92/91(H5N1) (FLU-H5), and Gibbon Ape Leukaemia 
virus (GALV). GALV PVs were included because GALV is a virus 
that does not require acidification of endosomes for its entry into 
cells. All the PVs generated were shown to transduce 293T cells 
and firefly luciferase expression from the packaged reporter gene 
was measured above mock infected cells (non-transduced cells) 
(Dataset 1).

In order to assess the ability of CQ, BafA1, OM and ESOM to 
inhibit PV entry, drugs were serially diluted in triplicate in white 
bottomed 96-well plates. Next, 293T cells transfected 24 hours 
previously with a Renilla luciferase expression plasmid to allow 
monitoring of cell viability, were added to each well. Appropriately 
diluted PVs were then added to each dilution, including a no-drug 
control. After 48 hours incubation, the supernatant was removed 
and firefly and Renilla luciferase RLUs were recorded using the 
Dual Luciferase Assay System (Promega).

PV RLUs were normalised to the corresponding Renilla values, 
which reduced the edge effect observed in the 96-well plates, and 
controlled for toxicity of the drugs. Only BafA1 appeared to reduce 
expression of Renilla at the highest concentrations, suggesting 
cellular toxicity, (Dataset 1) and visible cytopathic effect was not 
observed in cells treated by CQ, OM and ESOM at the concentra-
tions used in Figure 1.

Both BafA1 and CQ reduced EBOV-Z, EBOV-B, MARV and FLU-
H5 entry in a dose dependent manner (Figure 1A and B). The IC

50
 

value of BafA1 was in the nM range for EBOV-Z, EBOV-B, FLU-
H5 and MARV and inhibition of entry was statistically significant at 
the 10nM concentration compared to the untreated control (Table 1). 
CQ inhibited EBOV-Z, EBOV-B, MARV and FLU-H5 with IC

50
 

of 3.319, 3.585, 3.192 and 10.44µM respectively, and inhibition 
was statistically significant (Table 1). In contrast, GALV entry 
was augmented by both BafA1 and CQ above that of the untreated 
cells to a maximum of 143.83% (3.33nM) and 180.38% (3.33µM) 
respectively. Both OM and ESOM reduced entry of all PVs tested 
at 100µM but GALV PV was the least affected (Figure 1C and D). 
Inhibition of entry for EBOV-Z, EBOV-B, MARV and FLU-H5 PVs 
by ESOM was significant at 50µM, and GALV PV was not signifi-
cantly inhibited at this dose (Figure 1D and Table 1).

Increasing endosome pH as a mechanism of inhibiting 
virus pH-dependent entry
BafA1 and CQ are known endosomal acidification inhibitors 
(BafA1 being a potent and specific vATPase inhibitor and CQ 
a licensed lysotropic agent)31. The effects of OM and ESOM on 
endosomal acidification have also been previously reported32,33. 
To confirm that endosomal pH was being affected at doses used 
here, A549 cells were treated with drug for 1 hour before applying 
LysoTracker® Red DND-99 (LifeTechnologies). A549 cells were 
chosen here because 293T cells are poorly imaged due to their 
morphology. The lysotracker probe specifically fluoresces in acidic 
organelles. Fluorescence was decreased in cells treated with BafA1 
and CQ in a dose dependant manner, but was unaffected in cells 
treated with vehicle alone (Figure 2). OM and ESOM appeared to 
decrease fluorescence, and therefore increase endosomal pH, only 
at a concentration of 200µM, higher than that required to inhibit PV 
entry. Moreover cellular toxicity was observed at this concentration 
after 24 hours.

Inhibition of pseudotype virus entry by existing FDA-approved 
drugs

1 Data File 

http://dx.doi.org/10.6084/m9.figshare.1294801
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Figure 1. Inhibition of pseudotype virus entry by existing FDA-approved drugs. 293T cells previously transfected with a Renilla expression 
plasmid were treated with differing concentrations of drug before being transduced with PV (carried out in triplicate). Data are the percent of 
infection compared to untreated cells. EBOV-Z, EBOV-B, MARV, FLU-H5 and GALV inhibition was measured for each drug compound. Cells 
were harvested and firefly and Renilla activity measured after 48 h incubation. A. Cells were treated with 10, 3.33 and 1.11nM of BafA1. B. 
Cells were treated with 30, 10, 3.33 and 1.11µM of CQ. C and D. Cells were treated with 100, 50 and 25µM of OM and ESOM, respectively. 
Statistical analysis of these data are shown in Table 1.

Conclusions and discussion
After attachment to cells, viruses require a mechanism of fusion to 
deliver the viral genome. Preventing this action by fusion inhibitors 
has been successful approach for HIV antiviral therapy34. Unlike 
HIV, EBOV and many other viruses are dependent on the naturally 
low pH of acidic endosomes to activate and trigger fusion by their 
envelope glycoproteins. In this instance, a ‘fusion inhibitor’ could 
target the host cell machinery preventing acidification of the endo-
some, working to inhibit virus entry of several different viruses. Here 
we have reiterated that cell entry by PVs representing EBOV, FLU-
H5 and MARV can be inhibited by increasing the endosome pH 
using BafA1 and CQ (Figure 1), and this correlates with their ability 
to prevent the acidification of intracellular organelles (Figure 2).

CQ has shown antiviral activity against several viruses in vitro, 
including EBOV, influenza, Nipah, Hendra, Dengue and CHIKV35–37. 
Disappointingly, this antiviral activity has not always translated into 

efficacy in vivo models or clinical trials, although CQ was effective 
in a mouse model against EBOV18,35,38–42. The variability in in vivo 
results may depend on study design and strains of virus used. In 
one study BafA1 treated mice were not protected from influenza 
infection but treatment with a related compound, SaliPhe, was pro-
tective, even though both drugs were potent in vitro43. Inhibition 
of endosome acidification as a target for inhibiting EBOV can be 
justified by the knowledge that the filoviruses depend on the low 
pH for two separate steps of their entry pathway. Not only is the 
fusion by G protein triggered by low pH, but its cleavage into a 
fusogenic form is carried out by endosomal enzymes cathepsins B 
and L whose activation is also pH dependent44. Some have argued 
that G protein cleavage by cathepsin is less essential than previ-
ously thought45,46 and that EBOV species other than Zaire together 
with closely related MARV do not require cathepsin cleavage for 
entry47,48. Nonetheless, entry of MARV PVs was still inhibited in 
our assays suggesting that inhibiting fusion alone is sufficient.
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Recently, using computational modelling, Ekins et al. suggested the 
anti-EBOV mechanism of CQ may be by binding the VP35 protein 
of EBOV49. If this drug had activity on several steps of the replica-
tion cycle it may not only be more effective in vivo but it may be 
even less likely that the virus could mutate to escape inhibition.

At first we were surprised that CQ actually increased entry of GALV 
PV (Figure 1). However this effect has been noted before for other 

retroviruses, including A-MLV and HIV-1, and is accounted for by 
the inhibitory effect of CQ on the autophagy pathway. CQ prevents 
degradation of phagosomes that contain virus particles and prevents 
them from otherwise being degraded50–52.

CQ has been used for many years as an anti-malarial drug, although 
it is now only effective in parts of central America and the Carib-
bean due to accumulation of drug resistance by the plasmodium 
parasite53. Interestingly, compounds belonging to the omeprazole 
family have also been described as having anti-malarial proper-
ties in vitro, possibly via their reported ability to target vATPase 
in the plasma membrane of Plasmodium parasite54. Soon after its 
discovery OM was found to also inhibit intracellular vATPase at 
µM concentrations as opposed to its licensed target of gastric H+/
K+-ATPase against which it is effective at much lower concentra-
tions32,33. Indeed there are a plethora of publications indicating use of 
OM and ESOM in cancer therapy, as a means to inhibit the charac-
teristic acidic intracellular environment, and thus permit sensitivity 
to cytotoxic therapies55–59. A role of OM and ESOM has also been 
noted in the suppression of bone resorption, another physiological 
process dependent on pH60–62. Given the volume of research suggest-
ing these off target effects depend on an ability to affect intracellular 
pH, we hypothesised that these drugs would, like CQ and BafA1, 
inhibit EBOV, MARV and influenza virus pH dependent entry. We 
used GALV as a control again since its entry is reportedly independ-
ent of pH. Indeed, EBOV, FLU-H5 and MARV were inhibited by 
lower doses of OM or ESOM than GALV (Figure 1 and Table 1). 
GALV entry was also inhibited at the highest concentration, but we 
cannot exclude that this was due to a toxic effect that was not meas-
ured by the Renilla control we employed here. We did not observe as 
close a correlation between drug doses that mediated the inhibition 
of EBOV or influenza PV entry and increase in pH of intracellu-
lar vesicles for OM and ESOM as for CQ and BafA, (Figure 1 and 
Figure 2). More recently, it has been reported that OM and ESOM 
altered the localisation of vATPase in the cell as well as the pH of 
intracellular vesicles46 and this may explain their ability to inhibit 
PV entry more potently than the pH changes we observed would 
suggest.

Inhibition of influenza virus entry to cells by means of inhibiting 
acidification of endosomes has been known for decades63, although 
no current antivirals for influenza have been licensed on this basis. 
Some epidemiological evidence from population studies suggests 
that OM could exert a protective effect against influenza-like- 
illness64, but our studies suggest that doses required for potent 
inhibition might be difficult to achieve without significant toxicity. 
Despite these drugs being readily available, even without prescrip-
tion in some countries, the licensed dosing would generate a plasma 
concentration reportedly 1.59–9.61µM for ESOM that falls short of 
the IC

50
 calculated in this study, although higher doses have been 

used clinically65. Therefore it seems unlikely that OM and ESOM 
would be a suitable therapy for ebolavirus infection, but more spe-
cifically designed vATPase inhibitors may have potential as broad 
acting antivirals against several emerging viruses in the future. With 
regard to CQ, the evidence suggests a more promising position for 
use against ebolavirus. Standard adult dosing (25mg/kg) achieves 
plasma concentration of 2µM, close to our IC

50
 value against EBOV 

PV entry. Protection in the mouse model was previously shown 
with a 90mg/kg dosage18,66.

Table 1. Inhibition of pseudotype viruses by existing FDA-
approved drugs.

BafA1 

Pseudotype 
virus

IC50 
(nM)a

Std. Err.
Significance at dose (nM) 
(vs. untreated)b

1.11 3.33 10

EBOV-Z 1.213 0.195 ns * ****

EBOV-B 3.297 0.233 ns ns ***

MARV 3.538 0.260 ns ns **

FLU-H5 3.510 0.282 ns ns **

GALV ns ns ns ns

Chloroquine 

Pseudotype 
virus

IC50 
(µM)a

Std. Err.
Significance at dose (µM) 
(vs. untreated)b

1.11 3.33 10 30

EBOV-Z 3.319 0.147 ns * **** ****

EBOV-B 3.585 0.198 ns ns **** ****

MARV 3.192 0.186 ns ** **** ****

FLU-H5 10.44 0.245 ns ns ns ****

GALV ns ns **** ns ns

Omeprazole 

Pseudotype 
virus

IC50 
(µM)a

Std. Err.
Significance at dose (µM) 
(vs. untreated)b

25 50 100

EBOV-Z ns ns ns ***

EBOV-B 50.32 0.234 ns ns ***

MARV 52.21 12.290 ns ns ***

FLU-H5 50.78 0.562 ns ns **

GALV ns ns ns ns

Esomeprazole 

Pseudotype 
virus

IC50 
(µM)a

Std. Err.
Significance at dose (µM) 
(vs. untreated)b

25 50 100

EBOV-Z 50.25 0.163 ns * ****

EBOV-B 49.89 0.127 ns *** ****

MARV 50.21 0.174 ns * ****

FLU-H5 50.06 0.160 ns ** ****

GALV ns ns ns ****

aIC50 values were calculated using non-linear regression analysis 
(log[inhibitor] vs normalised response)
bTwo-way ANOVA with Bonferroni’s multiple comparisons test between 
untreated and treated mean values (α-0.05)
ns P>0.05, * P≤0.05, ** P≤0.01, *** P≤0.001, **** P≤0.0001
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Figure 2. Correlation of decreased pH with inhibitory effect on entry. A549 cells were treated with drug for 1 h before 75nM Lysotracker® 

Red DND-99 was added to each well. DMSO (drug vehicle) only was diluted at 30mM, 3mM, 0.3mM and 0.03mM. (A–D). CQ was diluted 30, 
10, 3.33 and 1.11µM (E–H), BafA1 was diluted to 10, 3.33 and 1.11nM (I–L) and OM and ESOM were diluted to 100, 50 and 25µM (M–P) and 
(Q–T) respectively. The level of fluorescence was imaged by confocal microscopy (x50 magnification).

Using re-purposed drugs to treat outbreaks of emerging diseases 
must surely be approached with caution. In Ebola patients with 
severe life-threatening disease it would be important to ensure that 
any side effects of a therapy did not enhance disease progression, 
particularly if higher doses of re-purposed drugs, as suggested here, 
were considered. On the other hand, CQ has been taken prophylacti-
cally in a tropical setting for many years to prevent malaria and we 
suggest that, with little additional need for scale up of production 
of a new agent, this might represent a useful adjunct to the current 
antiviral strategies being trialled in West Africa. We envisage that 
in contacts of EBOV cases, CQ might decrease the viral load that 
establishes in the early days after virus transmission. Further work 
in in vivo models including guinea pig and primates should inform 
about doses and administration regimens.
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 Robin A. Weiss
Division of Infection and Immunity, University College London, London, UK

This is an elegant study employing envelope pseudotypes of highly pathogenic viruses which
demonstrates that certain inhibitors of low endosomal pH can inhibit viral entry. Because some of these
molecules such as Chloroquine have been in clinical use for decades, and are inexpensive, they might tip
the balance between survival and death during human infection.

I have no criticism of the experimental work. However, I have been told by a reliable physician who has
recently cared for patients with Ebola infection that treatment with Chloroquine offered no clinical benefit.
Thus it is possible that an observation may not translate into a useful treatment . So onein vitro in vivo
should be wary about the conclusions.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 27 April 2015Referee Report

doi:10.5256/f1000research.6568.r8424

 Sean Ekins
Collaborative Drug Discovery, Burlingame, CA, USA

The work was of particular interest especially in light of several viruses shown to be taken up in this rather
non specific way. I would have perhaps also like some discussion of receptor and channel mediated virus
uptake - there are several publications in this space. The interplay between such different mechanisms
may point to multiple targets or need for combined approaches to block them.

The authors describe amiodarone, but there are many molecules that have been found as ebola
replication or pseudoviral entry inhibitors, had they looked at more molecules to see if the pH mechanism
was common across them?

I would likely suggest adding repurposing in the title of the article.

The conclusion might benefit from comparison of the chloroquine data with that previously published
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The conclusion might benefit from comparison of the chloroquine data with that previously published
(higher EC50), potential ocular toxicity etc.

Some discussion as to whether the pH effect is an in vitro specific effect or something of in vivo relevance
- would also be worth mention.

This study confirms the previous work on chloroquine and suggestions by others as to its potential utility.
This begs the question why it is not used clinically. What other data would be needed to show that
chloroquine could be clinically useful?

The study is well designed and reported and adds to the growing literature on chloroquine and its
potential as an antiviral.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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