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ABSTRACT
Electrical Powered Wheelchair (EPW) users may find navigation through indoor and outdoor environments
a significant challenge due to their disabilities. Moreover, they may suffer from near-sightedness or cognitive
problems that limit their driving experience. Developing a system that can help EPW users to navigate
safely by providing visual feedback and further assistance when needed can have a significant impact
on the user’s wellbeing. This paper presents computer vision systems based on deep learning, with an
architecture based on residual blocks that can semantically segment high-resolution images. The systems
are modified versions of DeepLab version 3 plus that can process high-resolution input images. Besides,
they can simultaneously process images from indoor and outdoor environments, which is challenging due
to the difference in data distribution and context. The proposed systems replace the base network with a
smaller one and modify the encoder-decoder architecture. Nevertheless, they produce high-quality outputs
with fast inference speed compared to the systems with deeper base networks. Two datasets are used to
train the semantic segmentation systems: an indoor application-based dataset that has been collected and
annotated manually and an outdoor dataset to cover both environments. The user can toggle between the two
individual systems depending on the situation. Moreover, we proposed shared systems that automatically use
a specific semantic segmentation system depending on the pixels’ confidence scores. The annotated output
scene is presented to the EPW user, which can aid with the user’s independent navigation. State-of-the-art
semantic segmentation techniques are discussed and compared. Results show the ability of the proposed
systems to detect objects with sharp edges and high accuracy for indoor and outdoor environments. The
developed systems are deployed on a GPU based board and then integrated on an EPW for practical usage
and evaluation. The used indoor dataset is made publicly available online.

INDEX TERMS CNN architecture, disabled people, deep learning, object localization, object detection,
pixels classification, semantic segmentation, visually impaired users.

I. INTRODUCTION

DRIVING an EPW can be challenging, especially for
users who suffer from cognitive problems. In addi-

tion to their physical issues, they may suffer from near-
sightedness or limited neck and head movement. These can
affect their driving experience, especially in complex en-
vironments, as they cannot fully recognize their routes or
the dimensions of their EPWs. Many accidents and injuries
have been reported for users injuring themselves or falling
from EPW as they could not distinguish between pavement
edges and car routes or walls and doors [1] [2] [3]. Besides,
some users cannot be prescribed an EPW because of their

disability [4].

In the ADAPT (Assistive Devices for empowering dis-
Abled People through robotic Technologies) project [5],
developing assistive devices that can facilitate the driving
experience of users with cognitive and physical problems is
the primary objective. A computer vision system that can
help users to distinguish between different components of
a complex environment will significantly impact the user’s
experience, specifically if a visual feedback can be presented.

EPWs’ users who do not accept fully autonomous or
semi-autonomous navigation (shared control) or who want
to be in full control of the EPW might benefit from such a
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system that can provide environmental cues to guide them.
Autonomous systems can be frustrating to some users when
they try to approach an object or a door, but the collision
avoidance system prevents them from doing so. One of the
main requirements for an EPW system is not to act as a
caretaker but instead as an assistant, and the user can override
the system control at any point [6]. Visually and cognitively
impaired users can benefit from such a system that guides
them while giving them full control over the EPW. However,
the proposed system can be combined with autonomous ones
or used as a standalone system, depending on the user’s
condition.

In this paper, two individual systems based on deep learn-
ing for pixel classification are presented. A manually col-
lected dataset for indoor environments and an outdoor dataset
(Cambridge-driving Labeled Video Database (CamVid) [7])
are used to train the two systems. The systems’ architec-
tures are based on DeepLab3 plus [8] (hereafter DLV3+ for
simplicity) for semantic segmentation and ResNet-18 is used
as the feature extraction backbone network [9]. ResNet-18
is an adequate choice as it has a smaller footprint and a
lesser number of layers when compared to its elder sisters
(ResNet50 and ResNet101).

We also introduce three novel shared systems that can
semantically segment images from both indoor and outdoor
environments simultaneously. The novelty of the proposed
three shared systems is not only in the architecture but also
in the elegance of reusing the learned information/weights
by the individual systems without the need to retrain the
shared systems. Most importantly, the shared systems can
process two different environments with almost the same
accuracy as the individual systems, which is challenging as
the data (images) being processed comes from two different
distributions (indoor and outdoor).

The paper’s main contributions can be summarised as fol-
lows: a) development of computer vision scene understand-
ing systems for disabled people, b) an extensive dataset for
indoor objects of interest has been presented, c) a modified
architecture based on residual blocks that can process high-
resolution images has been employed, d) different systems’
architectures that can simultaneously process both indoor
and outdoor images have been proposed, and finally, e) the
developed systems have been deployed on a GPU based
board and then integrated on an EPW for practical usage and
evaluation. Though, the proposed computer vision systems
can be deployed on any robotic platform for navigation and
scene understanding.

The paper is organized as follows: Related work sec-
tion covers the related assistive technologies for EPWs and
semantic segmentation literature. Methodology section dis-
cusses the datasets, challenges, systems’ architectures and
training setup. Systems performances and outcomes are ex-
plored in the Results and discussion section. Limitations
of the study section outlines the constraints and the future
scope of the study. Lastly, Conclusion and future work are
highlighted.

II. RELATED WORK
Scene understanding approaches are widely used in the
autonomous driving industry. Adopting these technologies
to help EPW users to drive safely in indoor and outdoor
environments is a novel research topic. Related work can be
divided into assistive devices for EPW users and semantic
segmentation for scene understanding. For the assistive de-
vices subsection, we will focus on the need for such a system
that can help users with visual impairments to use an EPW as
some of these users are not prescribed a powered wheelchair
due to their disabilities [4]. In the semantic segmentation
subsection, the focus is on state-of-the-art systems for pixels
classification.

A. ASSISTIVE DEVICES AND MOTIVATIONS

There are many motivations for disabled people to utilize
EPWs. Apart from the main reason, which is mobility, other
factors such as productivity, leisure and independence are
involved [10]. That is why assistive devices should enable
users to master their objectives independently and enhance
their quality of life. At the same time, poor design and
faulty assistive devices have a negative influence on the user’s
experience [10].

Clinicians report that they saw almost the same number
of patients who cannot use a powered wheelchair as who
can [4]. Patients find it extremely difficult to manoeuvre an
EPW indoors, especially in small areas and while negotiating
doorways. Clinicians also report that 40% of their powered
wheelchair users find steering tasks difficult. At the same
time, five to nine percent find them impossible. On the other
hand, the percentage of those who cannot use a powered
wheelchair due to visual impairment, cognitive disorder or
motor skills is 85%. An automated navigation system is
believed to half this percentage [4].

Navigation systems based on computer vision, such as
driving a wheelchair using face tracking [11] or eye and
iris movement [12] [13], offer semi-autonomous and fully-
autonomous driving capabilities for EPWs’ users. More-
over, technologies such as collision detection and avoid-
ance can be used to assist the driver in negotiating obsta-
cles [14]. Viswanathan et al. [15] introduce a 3D stereo-
vision navigation-based system that can detect potential ob-
ject collisions by stopping the movement towards that object,
plan paths towards a specific goal using visual odometry,
and prompt to assist the user in navigation based on the
user’s level of awareness. A comprehensive review of smart
wheelchairs is presented in [16]. Although these systems
provide great help, they can be unsatisfactory or faulty. For
example, consider the case when a user wants to approach an
object that has been detected by the system as an obstacle. In
this case, the autonomous system wants to avoid the object,
while the user needs to reach that object. The only possible
solution is to disable the system. In contrast, our proposed
systems act as a guide for the user. They do not interfere
in the navigation process. They are non-intrusive systems,
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which classify the environment into different classes to lead
and smooth the user’s navigation process.

One of the closely related systems to ours is presented
in [17]. A wheelchair system to guide people with severe
disabilities is used to track manually taught paths (reference
paths stored on a memory) using optical encoders mounted
on the wheelchairs’ wheels and visual beacons (passive cues)
placed throughout the wheelchair surrounding environment
(on walls, stationary objects, etc.). Relying only on the
optical encoders to estimate the wheelchair’s position may
introduce errors because of the inaccurate initial conditions,
wheel slippage, etc. Environmental cues that are captured
by the two cameras installed on the powered wheelchair are
used to correct and update the wheelchair’s position and
orientation using Kalman filter algorithm. The system uses
the difference between the reference path and the estimated
position to drive the wheelchair automatically. However, the
system does not override the control from the user to follow
a path until the user request so.

The main disadvantages of such a system are as follows:
it needs the deployment of visual cues in the wheelchair
environment. It needs a manually taught reference path. Most
importantly, the system needs a different setup for different
environments. This means that if the environment changes,
new reference paths are needed to teach the system. Although
we do not use our systems for path tracking, our proposed
systems detect visual cues automatically. There is not any
need to add physical visual cues to the environment. The
proposed systems can detect the distance to a specific object
using the Intel®RealSense depth camera (video). Besides,
our systems provide all the information to the user on a screen
from which the user can take full control of the EPW (video).

In contrast to the fully autonomous EPWs systems that
take the control away from the users, which are sometimes
undesirable, our methods provide environmental cues to
help and guide them. It keeps the users in full control.
EPWs systems that provide collision avoidance support such
as [18] [19] may not be suitable for drivers who are unable
to determine their location and cannot navigate to a specific
location. Our systems allow the users to understand their
surroundings and provide them with the distance to an object
when needed. Consequently, the proposed systems can be
seen as in-between systems that can provide environmental
cues (scene understanding). At the same time, the systems
do not override the user’s ability to fully control the EPW,
which tackle both disadvantages of non-autonomous and
fully autonomous systems. Though the proposed systems can
be integrated with autonomous ones, and the users can decide
the level of assistance.

B. SEMANTIC SEGMENTATION
Fully Convolutional Network (FCN) [20] represents the fun-
damental of many state-of-the-art deep learning techniques
for semantic segmentation. Besides, it represents the base
of full scene understanding using deep learning. Semantic
segmentation techniques can be divided into two main cate-

gories: series architecture and encoder-decoder architectures.
Though, the latter architectures stem from the series ones.

FCN is considered the first work to train a network end-
to-end for pixel-wise prediction using supervised pre-trained
networks. It adapts state-of-the-art classification networks
such as AlexNet [21], VGG [22] and GoogleNet [23] to make
use of the learned features by these networks on classifica-
tion tasks and transfer them to semantic segmentation tasks
through transfer learning [24] and architecture modifications.
Architecture modifications include replacing all the fully
connected layers with convolutional ones and in-network up-
sampling to the original input image size. FCN does not
make use of pre/post-processing complications such as super-
pixels, region proposals or post-hoc refinement by random
field or local classifiers [25] [26].

Although FCN architecture has achieved a high score on
standard metrics (mean pixel Intersection over Union), the
produced semantic segmentation output is unrefined. Spatial
details are not accurate, and object boundaries are not well-
defined. It does not comprise useful global context informa-
tion, instance awareness is not presented, and performance is
far from real-time execution. Also, it is not entirely suited for
unstructured data such as 3D point cloud [27] [28].

The main challenge facing semantic segmentation is the
tension between semantics and locations (global and local
information). Many solutions have been proposed to inte-
grate context knowledge, such as Conditional Random Fields
(CRFs), dilated convolutions and multi-scale predictions.
DeepLab [29] [30] makes use of CRFs to refine segmentation
results and object boundaries as a separate post-processing
stage. Dilated convolution, also known as atrous convolution,
is used in DeepLab [29] [30] [31] [8] to boost output resolu-
tion. Also, multi-scale context aggregation [32] makes use of
dilated convolution. Dilated convolutions support expanding
receptive fields without trading-off the resolution. They allow
efficient dense feature extraction on any arbitrary resolution.
Besides, multi-scale sub-networks with different resolution
output are proposed to refine the coarse prediction progres-
sively [33].

Skip architecture is introduced in FCN [20] to overcome
the global/local information dilemma. Skip design combines
‘fuses’ semantic information from deep, coarse layers with
appearance ‘context’ information from shallow fine layers
to produce detailed segmentation. By doing so, the model
becomes capable of making local predictions in the sense
of the global structure. Skip connections convert the series
architecture of the FCN into a DAG one (Directed Acyclic
Graph). Skip architecture is learned end-to-end to refine the
semantics and spatial accuracy of the output [20].

On the other hand, there is the encoder-decoder network
architecture. Many state-of-the-art semantic segmentation
architectures follow this design such as U-Net [34], Seg-
Net [35] and DLV3+ [8]. U-Net [34] is built upon FCN [20]
with some modifications to yield precise segmentation with
few training images. The main architecture modification is
the addition of the decoder part (up-sampling), where a large
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number of feature channels allow the network to propagate
context information to higher resolution layers.

U-Net is trained end-to-end and outperforms the sliding
window based convolutional network [36] [37] in terms of
accuracy and inference speed. The system has achieved high
performance on biomedical image segmentation applications
using a few annotated images thanks to the data augmentation
and elastic deformation techniques. It is also promised to pro-
vide high-quality results on other segmentation applications.

Both DeconvNet [38] and SegNet [35] use VGG-16 [22]
as their feature extraction (backbone) encoder part. Unlike
DeconvNet, SegNet discards the fully connected layers of
the VGG-16 architecture. The decoder part of the DeconvNet
consists of deconvolution and un-pooling layers [38]. How-
ever, the SegNet decoder part recalls max-pooling indices
from the corresponding encoder layer during the up-sampling
process, unlike U-Net [34] which transfers the entire feature
maps from the encoder to the decoder. This makes SegNet
fast in both training and testing with a small model size and
memory footprint.

DLV3+ [8] follows the encoder-decoder structure with
DeepLabv3 (DLV3) [31] as the encoder attached to it a
simple yet effective decoder module. DLV3 and DLV3+
avoid using CRF as it is a post-processing stage that obstructs
the network models from end-to-end training, unlike their
ancestor systems DeepLabV1 (DLV1) [29] and DeepLabV2
(DLV2) [30] which can be considered as two cascade mod-
ules systems (Deep Convolution Neural Network (DCNN)
then CRFs). DLV3+ introduces atrous separable convolution,
which is composed of a depthwise convolution (spatial con-
volution for each input channel) followed by a pointwise
convolution (1×1 convolution to combine the output from
depthwise convolution). This leads to a significant reduction
in computation complexity. Atrous separable convolution is
applied to both Atrous Spatial Pyramid Pooling (ASPP) and
the decoder modules. ASPP is introduced in DLV2 inspired
by the spatial pyramid pooling method [39] to capture objects
and context at multiple scales.

The decoder part of DLV3+ is simpler than that of U-
Net [34] and SegNet [35]. Encoder features are first bilinearly
up-sampled by a factor of 4 and then concatenated with
corresponding low-level features. A 1×1 convolution reduces
the number of channels of the low-level features before con-
catenation. After concatenation, a few 3×3 convolutions are
applied to refine the features, followed by another bilinear up-
sampling by a factor of 4. This strategy is better than directly
up-sampling the features by a factor of 16 as it reduces the
required computations (the number of trainable parameters).
Besides, it allows multi-scale features to propagate through
multiple layers of the decoder part. Consequently, better
information can be extracted from the images.

In this paper, DLV3+ (the encoder-decoder structure) is
adapted with some modifications (detailed in the next sec-
tion) and applied to a real-life application.

III. METHODOLOGY
A. DATASETS
Available standard datasets [40] [41] [42] [43] [44] contain
general objects of indoor environment but lack objects related
to the proposed application. Thus, collecting and annotating
a task-specific dataset is a non-avoidable requirement. For
example, the door handle class in the aforementioned datasets
is generic. Whereas the proposed indoor dataset contains dif-
ferent kinds of door handles for better perception and human-
system interaction. An Intel® RealSense depth camera is
installed on the Roma Reno II EPW for data collection and
inference (Fig 1). Objects of interest are doors, floors, walls,
fire extinguishers, key slots, switches, and different kinds of
door handles such as moveable, pull, and push door handles.

These objects are not only important for EPWs users but
also for any robotic platform. Any robotic platform which
uses particular actuators to open a door would require infor-
mation about the type of the door handle in order to engage
a suitable strategy for opening the door. For example, pull
door handles require different actuation than moveable door
handles. The ADAPT project chooses these classes as they
represent the main objects an EPW user may need to interact
with or utilize on a daily life basis. Other classes of interest
can be added later depending on the user’s ability and the
surrounding environment.

The proposed indoor dataset can be augmented using some
classes from the ADE20K [40] [41], NYU depth [42] [43]
and SceneNN [44] datasets which have objects instances
of indoor environment. However, specific classes, such as
door handle types, do not exist in these datasets. These
classes, besides key slot and switch classes, are infrequent.
Nevertheless, they are important for our application. To keep
a balanced distribution of class pixels, abundant classes such
as door, floor, and wall are not included from the standard
datasets. However, more objects from standard datasets may
be included to create a customized implementation of the
system upon the user’s need and the adequate distribution
of important task-oriented labels. This may require systems
retrain to tune their weights on the extended tasks.

While driving the EPW through the indoor environment,
a one-minute video is recorded and annotated. Images ex-
tracted from the video are shuffled and split randomly into
70% for training (1084 images), 15% for validation (232
images), and 15% for testing (233 images). Examples of the
collected data with ground truth annotations are shown in
Fig 2. Pixels that do not fit into any of the eight predefined
classes were assigned to an extra class called ‘Background
Wall’ class. At the same time, small areas between two
different classes, such as door frames or cupboards, are kept
unannotated (void pixels). These pixels cannot fit in one
class, such as the ‘Background Wall’ class, as they belong
to different categories of objects.

Unlike the well-known datasets [45] [46], which usually
have one big object per image, the proposed dataset has
many objects per image; some of them can be categorised as
small objects such as door handles and switches. In addition,
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(a) Roma Reno II EPW (b) Intel® RealSense Camera

FIGURE 1: Camera installation. Camera is installed beneath the EPW’s joy stick so that there is no interference with the
users’ legs which can obstruct vision.

FIGURE 2: Indoor ground truth data. Examples from the collected indoor dataset with the first row represents the original
images and the second one represents the annotated ones.
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these small objects are not available in the aforementioned
datasets. This needs novel approaches that can produce better
accuracy and sharp edges. Using high resolution and large
size images may help to tackle this problem as many pixels
will be utilized and contribute to the object classification.
This may need high computation than smaller and fewer reso-
lution images. That is why we used the elegant architecture of
residual blocks and a smaller but powerful base network such
as ResNet-18 compared to ResNet-50, ResNet-101 [9] or
Xception [47] that are used in the original implementation of
DLV3+ [8]. Thus, the system footprint can be reduced, which
may help to deploy the system on a GPU-based hardware for
inference. Besides, a semantically segmented environment
can be displayed to the users in real-time or near real-time
without sacrificing the system’s accuracy.

The only common thing between the proposed indoor
dataset and the one presented in [48] is that both are recorded
in the same environment. However, they are different in
the following: the system setup and the devices used for
recording are different because the dataset presented in [48]
is recorded by a handheld standard camera. Whereas the pro-
posed dataset is collected using an Intel®RealSense camera
installed on a Roma Reno II EPW to gain the same per-
spective and orientation as an EPW user. Larger images with
better resolution, consequently more pixels, are collected to
overcome the problem of small objects presented in the same
study [48] and to utilize more pixels to enhance the overall
system accuracy for small objects. The proposed dataset is
annotated on the pixel level (for semantic segmentation). In
contrast, the previous version is annotated on the bounding
boxes level (for object detection). Finally, unlike the previous
version, the proposed dataset is made publicly available for
other researchers using this link.

The proposed dataset images might look homogeneous
as it has been collected from one trajectory. Many factors
can affect the perspective of the captured dataset, such as
camera installation, which is limited by the available space
on the EPW. However, we were able to capture different
angles, directions, and orientations of small and rare ob-
jects of interest under different illuminations. Fig 3 shows
the front, side, and partial moveable door handles captured
during the data collection. Besides, data augmentation is
employed during training, giving another dimension for the
dataset and increasing the model’s robustness and ability to
generalize to other environments. Furthermore, the dataset
will be extended along with the study and future work.

EPWs have limited positions where a vision camera can
be integrated or placed. The size of the EPW constrains these
positions. Also, placing a camera on an EPW should not be
obscured by the driver’s body, legs, or hands. We proposed
two locations that can be used for this purpose. The first
option is a camera installed below the joystick controller, as
shown in Fig 1b. The second choice is a camera installed
on a stick/holder that can be extended above the driver’s
head. There might be other places depending on the EPW
type and design. For each case, a video has been collected.

Each of them is recorded in two different environments to
capture different perspectives and trajectories. We annotated
and used the first video in this study. The second one is under
processing and will be added to the public dataset and used
in our future work.

For the outdoor environment, we used the CamVid
dataset [7] to train a second semantic segmentation system.
CamVid dataset [7] has 701 images annotated on the pixel
level for 32 classes. Images are captured outdoors from the
perspective of a driving car. We categorised the 32 classes of
the CamVid dataset into 11 classes for simplicity: Building,
Pole, Road, Pavement, Tree. Sign/Symbol, Car, Pedestrian,
Bicyclist, Sky, and Fence.

Similarly, the outdoor dataset is split randomly into 70%
for training (491), 15% for validation (105 images) and 15%
for testing (105 images). Examples of the CamVid [7] ground
truth data are shown in Fig 4.

B. CHALLENGES
Many of the objects of interest in the proposed indoor dataset
can be classified as small size objects. Small size objects
do not possess enough pixels to be utilized for feature ex-
traction. Also, distinguishing between different door handles
represents a great challenge because of their common colour
and location in the dataset’s images. Consequently, conven-
tional object detection and semantic segmentation technique
traditionally employed to detect objects occupying a large
portion of images cannot be used [48]. In particular, object
boundaries and intersections between objects are very poorly
detected or segmented using conventional deep learning
methods [20].

A semantic segmentation system that can incorporate two
different contexts (indoor and outdoor images) is another
major challenge, not only because the images of the datasets
are limited but also because images’ types are different. A
system that is trained to semantically segment indoor images
can not perform well on outdoor scenarios and vice versa.
This is because datasets’ images have different distributions
and modalities. We introduce shared systems that incorporate
both scenarios. However, the achieved results are not as
competent as the achieved results by the individual systems.

There will always be a trade-off between the system’s
speed and accuracy. As the proposed systems are meant to be
deployed on an EPW for environment parsing, we propose
using a relatively small backbone network (ResNet-18) that
can achieve better Frame Per Second (FPS) compared to
ResNet-50 and Xception without sacrificing accuracy thanks
to the residual block architecture. Table 1 shows the number
of layers and trainable parameters of the tested systems with
different base networks.

C. SYSTEM ARCHITECTURE
The proposed systems are based on DLV3+ architecture for
semantic segmentation [8] with some modifications. The
architecture’s base network uses residual blocks, which help
the system to process high-resolution images (960×540×3
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FIGURE 3: Moveabe door handles. Although dataset objects might look similar, we were able to collect different angles and
orientations of rare classes under different light conditions.

FIGURE 4: CamVid ground truth data. The first row represents the original images and the second one represents the
annotated ones.

TABLE 1: The number of layers and trainable parameters
of the tested systems with different base networks.

Model
Metrics Trainable parameters Layers

FCN − 8s 134.3 M 51
FCN − 16s 134.3 M 47
FCN − 32s 134.6 M 43
SegNet (V GG− 16) 29.4 M 91
SegNet (V GG− 19) 42.4 M 109
U −Net 30.9 M 58
DLV 3 + (ResNet− 18) 20.6 M 100
DLV 3 + (ResNet− 50) 44.1 M 206
DLV 3 + (Xception) 27.8 M 205
Shared system 1 30.0 M 133
Shared system 2 41.2 M 198
Shared system 3 41.2 M 200

M = Million.

pixels) using a deep network (many layers) without losing
information because of the vanishing gradients problem. In
the original implementation of DLV3+, ResNet-50, ResNet-
101 [9], and Xception [47] networks are used as the system’s
feature extraction network. In this paper, various feature
extraction networks have been experimented as the backbone
of the systems, besides those used in the original implemen-
tation. However, ResNet-18 is the choice due to its small size
and fewer parameters compared to its elder sisters (ResNet-
50 and ResNet-101). Also, it can produce better FPS and
comparable accuracy, as shown in the Results and discussion
section.

Very deep networks suffer from vanishing/exploding gra-
dients [49] [50]. Residual blocks help to mitigate this prob-
lem by reusing the activations from previous layers until the
adjacent layer learns its weights [9]. This allows the network
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to learn more low-level features without being worried about
performance degradation as it goes deep. The architecture
elegance is attributed to the short-cut connections that do not
add either extra parameters or computational complexity [9].
A residual block structure can be seen in Fig 5.

Residual 
block +𝑎[𝑙]

𝑎[𝑙+1]
𝑎[𝑙+2]

ReLUReLU →

=

𝑧[𝑙+𝑖] = 𝑊[𝑙+𝑖]𝑎[𝑙] + 𝑏[𝑙+𝑖]

𝑎[𝑙+𝑖] = 𝜎(𝑧[𝑙+𝑖])
𝜎:        Rectified Linear Unit (ReLU) 

𝑎[𝑙] :    activation of layer 𝑙.
𝑎[𝑙+1]: activation of layer 𝑙 + 1 after applying ReLU.

𝑎[𝑙+2]: activation of the linear output of layer 𝑙 + 2 (𝑧[𝑙+2] )added to the 

activation of layer 𝑙 then applying ReLU. 

𝒂[𝒍+𝟐] = 𝝈(𝒛 𝒍+𝟐 + 𝒂[𝒍])

𝑙 + 1 𝑙 + 2

FIGURE 5: Residual block. The main building block for
ResNet-18, ResNet-50, and ResNet-101.

Unlike FCN [20], DLV3+ uses the encoder-decoder struc-
ture [8]. The encoder part uses the same design of DLV3 [31],
which uses dilated convolution ‘atrous’ to increase the recep-
tive field of the layers. Atrous convolution is used to control
the resolution by enlarging the field of view to incorporate a
large context without increasing the number of parameters or
computation. At the same time, a simple but effective design
is used as a decoder network. Combined, they represent the
DLV3+ network. The encoder-decoder approach has proved
its efficiency to refine object edges, resulting in better accu-
racy and Intersection over Union (IoU).

This study adopts DLV3+ design but using ResNet-18 as
a backbone feature extraction network (Fig 6). Besides, the
input layer is modified to accept large size image inputs with
960×540×3 pixels. The indoor, outdoor and shared proposed
systems are used to semantically segment images of both
indoor application-based and outdoor datasets.

Creating a system that can semantically segment indoor
and outdoor environments simultaneously is challenging as
data distribution and context differ. Also, the size of the
datasets in both cases is limited. Consequently, it is chal-
lenging for any model to fit both scenarios. Thus, we intro-
duce a novel approach by merging both the indoor and the
outdoor systems after the training process of each system
individually (Fig 7). The intuition is to make use of the
learned information and weights by both individual systems
(indoor and outdoor) without retraining a new system on a
new combined dataset. The proposed techniques can help
to combine systems from different domains, save training
time and resources, and achieve adequate results on different

scenarios simultaneously.
Our first trial is depicted in Fig 7a, which resulted in

the proposed shared system 1. The system is constructed as
follows: after training both systems (an indoor system on the
indoor dataset and an outdoor system on the outdoor dataset),
we extracted the feature extraction network (encoder) from
one of the systems. Then, we connect this encoder to both
decoders of the indoor and the outdoor systems. After that,
we concatenate both outputs of both decoders. Lastly, the
concatenated output is propagated through a softmax and
pixel classification score layers that output the annotated
image with the highest confidence score among all of the
indoor and the outdoor classes.

The proposed shared system 1 is an end-to-end system
that does not need any further post-processing for the output.
However, the system performance is highly impacted by the
encoder part. This means that if we use the encoder part of
the indoor system, the overall shared system performance
on the indoor dataset will be better than that on the outdoor
dataset and vice versa. Consequently, this system is biased
by its encoder part. This leads to the second and third trials
which are depicted in Fig 7b and Fig 7c, respectively.

In the second trial (Fig 7b), the encoders and the decoders
of the trained indoor and outdoor semantic segmentation
systems are included. After up-sampling to the original
image size, we concatenate both images using the depth
concatenation layer. Then, we add the softmax and the pixel
classification score layers. Lastly, the displayed output is the
segmented image with the highest pixels’ confidence scores
across all of the 20 classes (9 indoor and 11 outdoor classes).

Shared system 2 performs well on both the indoor and the
outdoor datasets. It is an end-to-end system that does not need
any post-processing. However, scoring the pixels with respect
to the 20 indoor and outdoor classes of the shared system 2
is more challenging than scoring 9 or 11 classes of the indi-
vidual indoor and outdoor systems, respectively. It is a highly
competitive scoring process between the 20 classes where the
uncertainty increases, especially between dominant classes
such as ‘Sky’ and ‘Background Wall’ from the indoor and
the outdoor datasets, respectively. Consequently, the system’s
performance is adequate but not as good as the individual
systems.

The main intuition behind the shared system 3 (Fig 7c) is
to make use of the individual systems’ high performances.
We use both of the individual indoor and outdoor semantic
segmentation systems to parse the same image. Then, we dis-
play the highest pixels’ confidence scores annotated output
to the user. Shared system 3 detailed process is as follows:
the encoders of both the indoor and the outdoor systems are
included. Similarly, the decoder parts of both systems are
included. Using the proposed shared system 3, we obtain two
outputs from the two parallel systems. We then apply one
post-processing step to determine which output from the two
individual systems should be displayed. The mean of each
row of the output pixels confidence scores is calculated for
both individual systems, resulting in two vectors of means
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FIGURE 6: System architecture. The encoder part with ASPP and the decoder part with simple bilinear upsampling.

with the same height as the input image. Then, the maximum
values of each vector are compared. If the indoor system
achieves a maximum value that is higher than that of the
outdoor system, then the input image is assumed to be an
indoor image and vice versa. Accordingly, we display the
system’s output that achieves the highest maximum value.

Different comparison techniques of the pixels’ confidence
scores are tried, for example, comparing pixel by pixel and
displaying the system’s output that has the highest number of
pixels with the highest pixels’ confidence scores. However,
the ‘max(mean(score)’ approach has achieved the highest
performance.

The proposed shared system 3 needs a post-processing step
for the pixels comparison of the two individual systems. As
the encoders and decoders of both systems are included, the
system inference speed has slowed, which negatively impacts
the system’s real-time operation. On the bright side, the
system can produce better results in both indoor and outdoor
environments. One of the study’s future work is to explore
different system architectures that can enhance the system’s
inference speed while achieving high performance on two or
more scenarios.

D. TRAINING
The indoor and the outdoor systems are trained end-to-end
with the following parameters: Stochastic Gradient Descent

with Momentum (SGDM) is used as the training optimiser
with 0.9 momentum. The Learning rate starts at 0.001
and then drops by a factor of 0.3 every ten epochs. The
aforementioned training parameters are chosen after several
experiments with different parameters to achieve the best
performance. To avoid overfitting, L2 regularisation is used.
Training examples are shuffled every epoch to limit sequence
memorising and avoid computing the gradients for the same
batch of images. Image normalisation is employed to rescale
all the pixels’ values in the range of zero to one. Lastly,
data augmentation with X and Y translations is employed to
enhance model generalisation, which can increase the overall
system accuracy. To avoid bias in favour of dominant classes,
inverse frequency weighting is used to balance the classes
weightings. This method increases class weights for under-
represented classes. Additionally, different hyper-parameters
and optimisation algorithms are tried to achieve the high-
est performance. Moreover, for reproducibility, systems are
trained several times under the same configurations.

The introduced systems are trained on a personal computer
with a NVIDIA GeForce RTX 2080. Training time varies as
the training process can be stopped early when the loss of the
validation dataset plateaus or when it reaches the maximum
epochs of the training process (30 epochs). For the indoor
dataset, the model’s loss is validate every 200 iterations.
However, the model’s loss is validated every 50 iterations

VOLUME 0, 0000 9
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(b) Shared system architecture 2
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FIGURE 7: Shared network architectures. Shared system 1 uses either the trained feature extraction network (encoder) of
the indoor or the outdoor semantic segmentation systems. Shared system 2 uses both feature extraction networks of the indoor
and the outdoor systems. Shared system 3 uses the indoor and the outdoor semantic segmentation system simultaneously with
an added post-processing step to display the annotated output that has the highest pixels’ confidence scores.
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for the outdoor dataset. The difference in the two cases is
attributed to the mini-batch size, the sizes of the datasets,
and the model’s size. The largest mini-batch size that can
accommodate the available memory is sought. The largest
mini-batch sizes are 8 and 4 in the case of the outdoor and the
indoor datasets, respectively. The mini-batch size is reduced
if the available memory can not accommodate the model size
with a large mini-batch size. Consequently, the number of
iterations per epoch varies. Table 2 shows the training time
of each model, the used mini-batch size, the stopping epoch
and the trained model size.

TABLE 2: Training details.

Model

Metrics
Indoor/Outdoor

Training
Time
(≈hours)

Mini-
batch
size

Stopping
epoch

Model
size
(MB)

FCN − 8s 3.5/0.75 2/2 14/6 477
FCN − 16s 2/1.25 2/2 8/8 477
FCN − 32s 2.25/2.25 2/2 9/14 478
SegNet (V GG− 16) 5.5/8.5 2/2 19/23 104
SegNet (V GG− 19) 9/8.75 2/2 26/21 142
U −Net 3/2.25 2/2 5/6 110
DLV 3 + (ResNet− 18) 1.5/1.25 4/8 20/26 58.3
DLV 3 + (ResNet− 50) 1/2 4/8 7/14 141
DLV 3 + (Xception) 9/3.5 4/8 17/18 83.4
Shared system 1 - - - 76.8
Shared system 2 - - - 116
Shared system 3 - - - 116.6

MB = Megabyte.

Systems are trained end-to-end using high-resolution and
large-size training images of 960×540×3 pixels from the
indoor and the outdoor datasets, unlike the original imple-
mentation of DLV3+, which crops patches of 513×513 size
from the PASCAL VOC dataset [45] images during training
and testing. The proposed training approach enhances the
system’s ability to semantically segment small size objects
alongside medium and larger size ones. Also, this boosts the
effectiveness of large rate atrous convolutions as its weight
can be applied to actual pixels and not to zero paddings.

IV. RESULTS AND DISCUSSION
Average pixels intersection over union (mIoU) is the method
employed to evaluate the system’s performance. Table 3
shows the detailed results of state-of-the-art systems. The
proposed DLV3+ with ResNet-18 based systems have
achieved mIoU of 0.572/0.696 and mean BF scores of
0.673/0.772, for the indoor and the outdoor datasets, respec-
tively. BF score measures the alignment of the predicted
object boundaries with the true ones.

Both systems have achieved high global and mean accu-
racy (0.970/0.915 and 0.791/0.874 for the indoor and the
outdoor datasets, respectively). Global accuracy is the ratio
between correctly classified pixels, regardless of the class,
to the total number of pixels. In comparison, mean accuracy
represents the correctly classified pixels for each class aver-
aged over all classes.

To ensure the reproducibility of our results, we trained both
the indoor and the outdoor systems three times. Images are
shuffled and randomly split to guarantee that different images
are used for training and testing at each time. Table 4 shows
the mean and the standard deviation of both systems’ metrics.
It can be seen that the proposed systems are robust and can
reproduce the results under different conditions.

The detailed results for each class of the indoor dataset
are shown in Table 5. It can be observed that objects with
bigger sizes and larger numbers of pixels have achieved the
highest IoU and BF scores, such as doors and background
walls, while smaller objects have achieved the lowest IoU,
such as pull and push door handles. This is understandable
due to the few instances and pixels per object for small
size objects in the proposed indoor dataset. Besides, it is
challenging for any tested systems to align the predicted
segments with the ground truth ones, reflected by the IoU
metric, as these objects are tiny (for example, DLV3+ with
ResNet-50 has achieved 0.102 IoU for the push door handle
class. Detailed results for different models are shown in
the appendix (Supplementary tables and figures)). However,
small size objects have achieved satisfactory accuracy and
BF score. An adequate BF score is vital to our application
as it reflects the system’s ability to define object boundaries
effectively. This is very important for visually impaired users
(Fig 13).

The outdoor system has achieved similar results (Table 6)
to the indoor one as small-sized objects such as pole has
achieved the lowest IoU. Whereas medium and big size
objects have achieved better IoU and BF scores.

The three-stream model (FCN-8s), which adds two skip
connections at layers pool3 and pool4, has achieved better
overall results compared to FCN-16s, which add one skip
connection at pool4 layer, and the series version of FCN
(FCN-32s). In contrast, the deeper version of SegNet (SegNet
with VGG-19) is not as accurate as the smaller version
(SegNet with VGG-16), similar to DLV3+ with ResNet-18
that can achieve better performance compared to its deeper
version (DLV3+ with ResNet-50). It can be concluded that
deeper versions of semantic segmentation models do not
ensure better performance. U-Net performance is the lowest
among the tested systems.

The achieved FPS for DLV3+ with ResNet-18 is better
than that of DLV3+ with ResNet-50 and with Xception base
networks (Table 7). The accuracy and speed can be enhanced
further by increasing the number of small object instances
in the proposed dataset and using a newer version of a
GPU based board such as the Jetson AGX Xavier board.
Also, the proposed shared systems have achieved adequate
speed. The most accurate shared system (shared system 3)
has achieved the lowest speed among the proposed ones.
However, the lowest accurate shared system (shared system
1) has achieved the highest speed amongst the introduced
shared systems. Interestingly, the proposed shared systems
have achieved higher FPS than state-of-the-art systems such
as FCN, SegNet and U-Net. Although the proposed shared
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TABLE 3: Results of running the trained individual models on the test set of the indoor and the outdoor datasets.

Model

Metrics
Indoor/Outdoor

Global
Accuracy

Mean
Accuracy Mean IoU Weighted IoU Mean BF

Score

FCN − 8s 0.963/0.808 0.801/0.771 0.552/0.518 0.953/0.732 0.661/0.621
FCN − 16s 0.961/0.845 0.785/0.836 0.549/0.600 0.952/0.783 0.652/0.684
FCN − 32s 0.953/0.813 0.766/0.775 0.538/0.523 0.944/0.740 0.583/0.619
SegNet (V GG− 16) 0.960/0.697 0.804/0.680 0.551/0.453 0.950/0.609 0.658/0.451
SegNet (V GG− 19) 0.956/0.783 0.796/0.755 0.528/0.499 0.946/0.686 0.657/0.501
U −Net 0.807/0.535 0.505/0.359 0.314/0.207 0.717/0.418 0.358/0.323
DLV 3 + (ResNet− 18) 0.970/0.915 0.791/0.874 0.572/0.696 0.963/0.860 0.673/0.772
DLV 3 + (ResNet− 50) 0.965/0.934 0.788/0.906 0.562/0.748 0.957/0.889 0.622/0.825
DLV 3 + (Xception) 0.966/0.911 0.808/0.883 0.560/0.692 0.958/0.856 0.621/0.769

TABLE 4: Mean and standard deviation of three trained models on the indoor and the outdoor datasets.

Metrics
Model DLV3+ (ResNet-18) indoor DLV3+ (ResNet-18) outdoor

Global Accuracy 0.970 ± 0.003 0.919 ± 0.004
Mean Accuracy 0.799 ± 0.007 0.888 ± 0.013
Mean IoU 0.570 ± 0.016 0.703 ± 0.008
Weighted IoU 0.963 ± 0.004 0.868 ± 0.007
Mean BF Score 0.680 ± 0.024 0.781 ± 0.010

TABLE 5: Per-class metrics of the indoor system using
DLV3+ with ResNet-18 on the test set.

Classes
Metrics Accuracy IoU Mean BF

Score
Door 0.983 0.983 0.870
PullDoorHandle 0.593 0.150 0.593
PushButton 0.790 0.338 0.571
MoveableDoorHandle 0.786 0.665 0.543
PushDoorHandle 0.533 0.090 0.341
FireExtinguisher 0.909 0.889 0.650
KeySlot 0.654 0.186 0.488
CarpetF loor 0.901 0.889 0.751
BackgroundWall 0.967 0.962 0.778

TABLE 6: Per-class metrics of the outdoor system using
DLV3+ with ResNet-18 on the test set.

Classes
Metrics Accuracy IoU Mean BF

Score
Sky 0.958 0.937 0.932
Building 0.859 0.835 0.745
Pole 0.765 0.275 0.680
Road 0.952 0.939 0.934
Pavement 0.920 0.783 0.837
Tree 0.919 0.823 0.842
SignSymbol 0.722 0.432 0.592
Fence 0.810 0.624 0.709
Car 0.931 0.820 0.799
Pedestrian 0.873 0.483 0.640
Bicyclist 0.909 0.699 0.732

systems have more layers, they have less trainable parameters
and smaller footprints. Besides, they utilise residual blocks,
which can explain their fast inference speed.

Similar observations can be extracted from the indoor
confusion matrix shown in Fig 8. It can be seen that the
indoor model is slightly confused to distinguish between
pixels of different door handles and key slot. The analogous
silver colour and orientation of the door handles can represent

TABLE 7: The average speed of the tested models in FPS
when deployed on a Jeston TX2 GPU based board.

Model Speed in FPS
FCN − 8s 0.86
FCN − 16s 0.86
FCN − 32s 0.86
SegNet (V GG− 16) 0.89
SegNet (V GG− 19) 0.72
U −Net 0.75
DLV 3 + (ResNet− 18) 2.65
DLV 3 + (ResNet− 50) 1.57
DLV 3 + (Xception) 2.00
Sharedsystem1 1.49
Sharedsystem2 1.30
Sharedsystem3 1.16

Systems are tested on a never seen before prerecorded video of the indoor
environment (from the same distribution of the indoor dataset used for
training) and on the CamVid video. TensorRT has been used to optimize
systems’ inference. The performance of FCN, SegNet, and U-Net is far from
real-time execution.

a reason for that problem. This can be alleviated by increas-
ing these object instances in the proposed dataset. For the
outdoor confusion matrix, there is a slight confusion between
the sign symbol and the pole classes, which can be attributed
to the similarity of their structure.

Fig 9 and Fig 10 show some examples of the indoor
and the outdoor systems in action where it can segment the
scenery with good accuracy and sharp edges. Three rows of
images are shown where the first row represents the ground
truth data, the second one shows the model’s prediction,
and the third one demonstrates the difference between the
prediction and the ground truth data. The intense green and
magenta colours that are shown in the third row indicate these
differences. These pixels are unannotated or misclassified.
The green colour shows the unannotated pixels which do not
belong to objects of interest. Whereas the magenta one shows
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FIGURE 8: Confusion matrices for the indoor and the outdoor systems.

the misclassification of some parts of an object.
It can be seen from Fig 9 that the unannotated pixels in-

between two annotated objects which do not belong to either
object can represent a challenge to the proposed network.
For instance, the indoor system struggles to classify door
frame pixels as they do not belong to the door or the wall.
Besides, they are not annotated in the proposed dataset. This
represents a challenge during inference.

One solution is to annotate door frames as a separate
class. Training a semantic segmentation system on a dataset
that has some unannotated pixels increases the system’s
uncertainty. However, annotating every pixel, even if it does
not belong to any class of interest, reduces the system’s
uncertainty because they act as a false positive for the objects
of interest. This can be done by annotating all the pixels in
an image. This will increase the overall system accuracy and
enhance the detection of the objects boundaries. However,
the process of annotating every pixel is extremely labouring
intense.

Fig 12 shows the qualitative segmentation comparison
between the proposed and state-of-the-art systems. FCN-32s
is the series version of FCN with an up-sampling stride of
32 and no skip connections. It is demonstrated that DLV3+
can define object boundaries better than FCN. At the same
time, FCN segmentations can be seen as patches with fuzzy
boundaries. For example, it is challenging to distinguish
the moveable door handle grip from the body in FCN-
32s segmentation. Similarly, U-Net could not predict all
the pixels correctly, especially small objects such as door
handles. Although SegNet defines object boundaries well, the
uncertainty pixels around the correctly predicted pixels are
high.

On the other hand, the grip in the DLV3+ segmentation

is well defined, which facilitates its manipulation using a
robotic arm. Table 3 emphasizes the qualitative assessment.
Compared to state-of-the-art systems, the proposed DLV3+
models have achieved better mIoU and mean BF scores
(contour matching score).

Shared systems 1, 2, and 3 have achieved adequate per-
formance but are not as good as the individual ones (Ta-
ble 8). For shared system 1 (Fig 7a), when the encoder
of the indoor semantic segmentation system is used, the
system has achieved a mean accuracy of 0.676 and 0.456
on the indoor and outdoor datasets, respectively. Also, it has
achieved mIoU of 0.591 and 0.300 on the indoor and the
outdoor datasets, respectively. Whereas when the encoder of
the outdoor semantic segmentation system is used, the system
has achieved a mean accuracy of 0.185 and 0.852 on the
indoor and the outdoor datasets, respectively. Also, it has
achieved mIoU of 0.182 and 0.689 on the indoor and the
outdoor datasets, respectively.

Results show that the used encoder has a direct impact
on the overall system performance. The encoder of shared
system 1, which has been trained on the indoor dataset, can
produce better results on the indoor images compared to the
outdoor ones and vice versa. This indicates the bias of shared
system 1 to the used encoder.

Shared system 2 (Fig 7b) has achieved mean accuracy and
mIoU of 0.594 and 0.555 on the indoor dataset. Whereas it
has achieved mean accuracy and mIoU of 0.830 and 0.657 on
the outdoor dataset. The performance of the shared system is
acceptable. However, the individual systems produce better
results. Detailed results of the shared systems are shown in
Table 8, where both shared systems 1 and 2 have achieved
acceptable Mean BF scores.

As shared system 3 (Fig 7c) propagates the images through

VOLUME 0, 0000 13



g
T
ru

th
p
re
d
ic
ti
on

d
if
f
er
en

ce

FIGURE 9: Results visualization using the proposed indoor system on the test set. The first row represents the ground truth
data, the second row represents the system’s output and the third row represents the difference between the ground truth and
the prediction.

TABLE 8: Shared systems 1 and 2 detailed metrics.

Model

Metrics
Indoor/Outdoor

Global Accuracy Mean Accuracy Mean IoU Weighted IoU Mean BF Score

Shared system 1
(indoor system’s encoder) 0.920/0.582 0.676/0.456 0.591/0.300 0.915/0.506 0.601/0.360
Shared system 1
(outdoor system’s encoder) 0.384/0.892 0.185/0.852 0.182/0.689 0.376/0.845 0.365/0.659

Shared system 2 0.725/0.838 0.594/0.830 0.555/0.657 0.725/0.790 0.540/0.608

both the individual indoor and outdoor semantic segmenta-
tion systems, the shared system’s metrics are similar to the
individual ones, which are the best-achieved metrics in terms
of accuracy, IoU and BF score. However, as shared system 3
compares the pixels’ scores of the individual systems (post-
processing step), the displayed annotated image is dependant
on that comparison. Table 9 shows the ability of the system to
classify the input images as indoor or outdoor ones depending
on the pixels’ confidence scores using different comparison
techniques.

To test the ability of the system to correctly classify the
input images as indoor or outdoor ones, we propagate the
indoor and the outdoor test sets images through the system.
Shared system 3 is able to classify all of the images correctly

using Max(Mean(score)) comparison technique described in
the system architecture subsection. To obtain more robust
results, we shuffled the indoor and the outdoor datasets. Then,
the mixed dataset is split randomly into 70% training set,
15% validation set, and 15% testing set. This results in a
mix (In+Out) test set with 337 images (232 indoor images
and 105 outdoor images). Shared system 3 miss-classified 11
images form the (In+Out) test set as outdoor ones using the
Max(Mean(score)) comparison technique (Table 9).

The system’s inference speed is dependant on many factors
such as the number of trainable parameters, the system’s
footprint and whether any post-processing techniques are
applied. Table 7 shows the speed of the proposed shared
systems. Shared system 1 has fewer layers and footprint
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FIGURE 10: Results visualization using the proposed outdoor system on the test set. The first row represents the ground
truth data, the second row represents the system’s output and the third row represents the difference between the ground truth
and the prediction.

TABLE 9: Classification capabilities of shared system 3 using different techniques for scores comparison.

Dataset Classification
Method Indoor Outdoor
Comparing scores pixel by pixel Indoor (233) 216 17

Outdoor (105) Zero 105
In+Out (232+105) 206 131

Max(Mean(score)) Indoor (233) 233 Zero
Outdoor (105) Zero 105
In+Out (232+105) 221 116

(Table 1) compared to Shared systems 2 and 3. Consequently,
it has achieved the fastest inference speed among the pro-
posed shared systems with 1.49 FPS. Shared system 3 is
the slowest with 1.16 FPS. It has the largest footprint and a
post-processing step. However, the proposed shared systems’
inference speeds are higher than FCN, SegNet and U-Net
systems.

Choosing the right system for the right application is a
trade-off process between accuracy, inference speed, and the
application domain. The deployment of the proposed indoor
system can be seen in Fig 11. The user is controlling the EPW
while the information is being displayed on the screen.

V. LIMITATIONS OF THE STUDY
In this section, the limitations of the study and means of
mitigation are discussed. Model choice is dependant on the

application. The system’s speed and accuracy are the main
concerns of this application. More precisely, the ability of the
system to clearly define objects boundaries. It is challenging
to develop a model that can achieve significant accuracy
with high inference speed. Tolerating high inference rates is
acceptable as disabled users do not drive fast due to the speed
limitation of the EPW. Consequently, the performance of the
proposed system is adequate for the application.

One of the major problems facing semantic segmentation
tasks is the ability of the systems to process data from two
different distributions. The proposed shared systems offer
solutions for this problem by merging the learned features
of the two models (the indoor and the outdoor systems).
However, solving the multi-model data processing issue has
negatively impacted the system’s speed and accuracy. Thus,
the application should determine its needs and compromises
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FIGURE 11: System deployment. The proposed systems are deployed on an EPW with a display, a Nvidia Jetson TX2 board,
and a depth camera.

to achieve the best model for a given application.
Unannotated pixels of the ground truth data represent a

challenge for the proposed semantic segmentation systems.
As the systems need to assign each pixel in an image to
one of the predefined classes, unannotated pixels, which
belong to classes of non-interest, will be assigned to one
of the predefined classes. Comparing predicted pixels with
the unannotated ones of the ground truth data can result
in inaccurate metrics. Usually, these predicted pixels have
low confidence scores. We propose to assign the predicted
pixels below a specific threshold to a ‘Reject’ class [51].
Consequently, they can not be included in the evaluation
process, resulting in quantitatively and qualitatively accurate
predictions.

The future work of our study will concentrate on expand-
ing the proposed dataset, especially small size objects, which
can have a positive impact on the overall system’s accuracy.
Besides, investigating different shared system architectures
that can process multi-modal data at high inference speed.

VI. CONCLUSION
In this paper, semantic segmentation systems for indoor
and outdoor environments are presented. The proposed pixel
classification systems have demonstrated high efficiency with
adequate accuracy and BF scores. These systems are in-
tended to help visually impaired EPWs’ users to navigate
safely and to interact with the environment. Results show the
proposed systems’ abilities to precisely localize and process
images compared to state-of-the-art semantic segmentation
techniques. The proposed indoor system has achieved better
mean BF scores with 9% and 5% higher than FCN-32s and
DLV3+ with ResNet-50, respectively. Whereas the outdoor
system has achieved a 15% better mean BF score than the
FCN-32s system. The indoor and the outdoor systems have
also achieved a processing speed of 2.65 FPS compared
to 1.57 FPS and 2 FPS that DLV3+ with ResNet-50 and
Xception have achieved, respectively.

The proposed shared systems that can process indoor
and outdoor images simultaneously have achieved adequate
performance on both tasks. Though, the inference speed and

the overall performance is lower than that of the individual
systems. Trading-off accuracy and speed with multi-modal
data processing is desirable in many applications. Besides,
the introduced shared systems do not require any retraining,
which is another advantage that makes them flexible and
adaptable in many domains. Being able to segment images
from two different data distributions simultaneously is chal-
lenging. Nevertheless, it is significantly important in many
applications that we believe our shared systems can handle.
The proposed systems are deployed on a GPU based board
and integrated on an EPW for practical usage. Besides ex-
panding the proposed indoor dataset, increasing the accuracy
and speed of the systems are the project’s future steps.
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APPENDIX. SUPPLEMENTARY TABLES AND FIGURES

TABLE 10: Per-class metrics of the indoor system using
FCN-8s on the test set.

Classes
Metrics Accuracy IoU Mean BF Score

Door 0.981 0.979 0.852
PullDoorHandle 0.582 0.159 0.623
PushButton 0.764 0.238 0.631
MoveableDoorHandle 0.780 0.616 0.492
PushDoorHandle 0.622 0.090 0.350
FireExtinguisher 0.897 0.853 0.481
KeySlot 0.722 0.205 0.677
CarpetF loor 0.917 0.883 0.741
BackgroundWall 0.945 0.941 0.647

TABLE 11: Per-class metrics of the indoor system using
FCN-16s on the test set.

Classes
Metrics Accuracy IoU Mean BF Score

Door 0.980 0.979 0.843
PullDoorHandle 0.587 0.128 0.579
PushButton 0.757 0.269 0.540
MoveableDoorHandle 0.748 0.624 0.483
PushDoorHandle 0.598 0.078 0.306
FireExtinguisher 0.896 0.862 0.612
KeySlot 0.638 0.184 0.675
CarpetF loor 0.917 0.881 0.760
BackgroundWall 0.940 0.938 0.824

TABLE 12: Per-class metrics of the indoor system using
FCN-32s on the test set.

Classes
Metrics Accuracy IoU Mean BF Score

Door 0.977 0.977 0.827
PullDoorHandle 0.491 0.123 0.391
PushButton 0.713 0.238 0.425
MoveableDoorHandle 0.795 0.505 0.469
PushDoorHandle 0.596 0.049 0.348
FireExtinguisher 0.903 0.851 0.804
KeySlot 0.506 0.279 0.497
CarpetF loor 0.918 0.893 0.753
BackgroundWall 0.916 0.910 0.800

TABLE 13: Per-class metrics of the indoor system using
SegNet with VGG-16 on the test set.

Classes
Metrics Accuracy IoU Mean BF Score

Door 0.975 0.975 0.830
PullDoorHandle 0.559 0.153 0.642
PushButton 0.751 0.277 0.690
MoveableDoorHandle 0.774 0.614 0.510
PushDoorHandle 0.705 0.075 0.493
FireExtinguisher 0.907 0.839 0.397
KeySlot 0.635 0.190 0.662
CarpetF loor 0.906 0.888 0.659
BackgroundWall 0.947 0.938 0.650

TABLE 14: Per-class metrics of the indoor system using
SegNet with VGG-19 on the test set.

Classes
Metrics Accuracy IoU Mean BF Score

Door 0.977 0.976 0.827
PullDoorHandle 0.542 0.149 0.639
PushButton 0.774 0.201 0.713
MoveableDoorHandle 0.787 0.570 0.576
PushDoorHandle 0.676 0.075 0.322
FireExtinguisher 0.907 0.802 0.368
KeySlot 0.602 0.172 0.696
CarpetF loor 0.894 0.873 0.659
BackgroundWall 0.932 0.927 0.668

TABLE 15: Per-class metrics of the indoor system using
U-Net on the test set.

Classes
Metrics Accuracy IoU Mean BF Score

Door 0.787 0.758 0.603
PullDoorHandle 0.256 0.062 0.267
PushButton 0.092 0.017 0.244
MoveableDoorHandle 0.281 0.140 0.219
PushDoorHandle 0.328 0.043 0.380
FireExtinguisher 0.691 0.591 0.304
KeySlot 0.279 0.039 0.307
CarpetF loor 0.945 0.467 0.579
BackgroundWall 0.877 0.701 0.432

TABLE 16: Per-class metrics of the indoor system using
DLV3+ with ResNet-50 on the test set.

Classes
Metrics Accuracy IoU Mean BF Score

Door 0.974 0.974 0.840
PullDoorHandle 0.555 0.102 0.437
PushButton 0.821 0.234 0.609
MoveableDoorHandle 0.783 0.661 0.460
PushDoorHandle 0.653 0.102 0.276
FireExtinguisher 0.855 0.846 0.582
KeySlot 0.562 0.278 0.557
CarpetF loor 0.915 0.892 0.765
BackgroundWall 0.971 0.965 0.768
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FIGURE 12: Qualitative comparison between the proposed indoor system based on DLV3+ and state-of-the-art systems.

people. His research interests focus on Computer Vision, Embedded Sys-
tems, Artificial Intelligence, and Robotics.

KONSTANTINOS SIRLANTZIS is Associate
Professor of Intelligent Systems, Head of the Intel-
ligent Interaction Research Group and Academic
Lead of the Kent Assistive Robotics Laboratory
(KAROL) at the School of Engineering and Dig-
ital Arts, University of Kent. His main research
interests focus on Pattern Recognition, Artificial
Intelligence, Robotics, Computer Vision, and their
application to Assistive Technology (AT) systems
and their security. He successfully gained over

£3M in research awards from public and private funders in the UK and

VOLUME 0, 0000 19



(a) Short-sightedness (b) Semi-neglect

FIGURE 13: Visually impaired users. Illustrated by the clouded areas, short-sightedness users cannot see far object (a), while
semi-neglect users cannot see half of the scene (b).

TABLE 17: Per-class metrics of the indoor system using
DLV3+ with Xception on the test set .

Classes
Metrics Accuracy IoU Mean BF Score

Door 0.979 0.979 0.853
PullDoorHandle 0.497 0.200 0.467
PushButton 0.759 0.261 0.630
MoveableDoorHandle 0.788 0.617 0.447
PushDoorHandle 0.621 0.0818 0.258
FireExtinguisher 0.932 0.883 0.612
KeySlot 0.843 0.172 0.534
CarpetF loor 0.890 0.886 0.749
BackgroundWall 0.961 0.958 0.752
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