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Abstract— This paper investigates the use of novel hardware 

features derived from the physical and behavioral 

characteristics of electronic devices to identify such devices 

uniquely. Importantly, the features examined exhibit non-

standard and multimodal distributions which present a 

significant challenge to model and characterize. Specifically, 

the potency of four data classification methods is compared 

whilst employing such characteristics, proposed model 

Multivariate Gaussian Distribution (MVGD -address 

multimodality), Logistic Regression (LogR), Linear 

Discriminant Analysis (LDA), Support Vector Machine 

(SVM). Performance is measured based on its accuracy, 

precision, recall and f measure. The experimental results 

reveal that by addressing multimodal features with proposed 

model Multivariate Gaussian Distribution classifier, the 

overall performance is better than the other classifiers. 
 

Keywords—Security, ICMetric, Authentication, Classifiers, 

Key generation, Multidimensional space. 

I.  INTRODUCTION  

     To protect passwords, encryption keys and various secrets, 

applications rely heavily on underlying native security 

platform offered by OS, device and microprocessor 

providers. A majority of these main stream providers have 

been successfully attacked multiple times for example 

Pegasus attack against WhatsApp encryption keys (iOS & A 

droid) [12], Jeff Bezos iPhone hack, Meltdown & Spectre 

[13] (Intel, ARM, AMD, Linux/Windows etc.) and most 

recently SGAxe and Crosstalk [16] targeting Intel H/W.  To 

avoid total dependence on native security features, we can 

adopt an effective ‘layered’ security approach. In this 

research paper, we explore ICMetrics as an additional layer. 

    Identity fraud can wreak havoc on societies and economies 

and this crime is often committed to facilitate other crimes 

such as credit card or, money laundering, mail, bank, and wire 

fraud etc [11]. These frauds affect not only individual citizens 

and nation’s economy but it is a national security threat as 

well.  

    A significant amount of this fraud can be tackled 

effectively if there is a robust way to link users’ physical 

identities to their online identities and the credentials strongly 

bound to their devices. Integrated Circuit Metrics (ICMetrics) 

can play a crucial role here. ICMetrics is a software client 

which reads various dynamic and static (hardware/software) 

feature values of a device and it generates a unique identifier 

for the device [8]. This unique identifier is used to generate 

the key pair of which the private key is not stored permanently 

on the device nor at database. Every time a crypto-operation 

is required, the ICMetric client reads these feature values and 

reconstructs the private key [5]. If the ICMetric client is 

skimmed, then on a rogue device, the feature values will 

differ from what ICMetric client expects, which will result in 

failed crypto operation. This technique eliminates ‘offline 

brute force’ attack [1,4]. An ICMetrics system generally 

consists of two phases, the calibration phase and the operation 

phase. The key steps involved in the calibration phase are as 

follows: 

1. Measurement of feature data for each sample device. 

2. Generation of feature distributions for each feature, 

illustrating the frequency of each discrete value for 

each device. 

3. Normalisation of the feature distributions, 

generating normalisation maps for each feature. 

Then comes operation phase which generates key for a given 

device. The operation phase contains the following steps: 

1. Measurement of feature values for the device. 

2. Application of the normalisation maps to feature 

values in order generate values suitable for key 

generation. 

3. Application of the key generation algorithm. 

 

    The focus of this paper is to propose a novel model for 

device classification and compare the performance of 

classifiers in terms of accuracy, precision, recall and F 

measure on features data extracted from computing devices.  

 

    The rest of the paper is organized as follows: - 

Section II Introduces device characteristic feature extraction, 

Section III Describes, ICMetric generation methodology, 

Section IV Summaries experiments and results and Section V 

Concludes the paper. 
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II. FEATURE EXTRACTION 

A. Calibration Phase 

      Calibration Phase is useful to extract suitable features in 

pre-production with the aim of giving sufficient correlation 

when combined. By combining device features appropriately, 

an ICMetrics system can form a unique identifier. For this 

work, the unique identifier is a unique random number, with 

high entropy (lack of predictability) to provide the 

cornerstone value, for example if device features fail in 

unexpected ways during the operation phases, this will give a 

reference point from which the acquired features can map and 

combine to provide an applicable key for authorization. 

      Calibration is carried out once per application domain. 

The suitability of device features (in terms on high entropy) 

depends on the nature of the device. In most cases, it will 

include surveying a device for a set number or period and 

gathering stable values. In other cases, it may be variable 

features that are likely to change over time. This leads into 

static and dynamic variables [3]. 

     Calibration phase contains four parts i.e., (a) Data 

Collection, (b) Feature Selection, (c) Feature Modelling, and 

(d) Feature Analysis that describes the processes sequentially 

undertaken prior to build a model. 

     The device characterizations employed by the system are 

known generically as features. Features are a major part of the 

ICMetric system, and the features utilized straightforwardly 

influence the strength of the security provided. The data 

collected from the ‘devices’ described here are the Apple 

Laptops, namely MacBook Pro and MacBook Air. With weak 

features i.e., features which do not change at all with the 

functionality and restricts the ICMetric system in how much 

security it can offer means a feature value is ultimately used 

to identify a device, so the more discriminative it is, the better 

when evaluating the security of an ICMetric system [7]. The 

values of features are dependent upon the usage of the 

machine. Ideal candidate features can provide the basis for a 

secure system that can guarantee an increase to the trust 

associated with existing security protocol. The analysis and 

mapping techniques allow the system to incorporate features 

whose value can change while still being able to transform 

these dynamic values into a unique and static value that can 

be used to distinguish a device. To facilitate this, features that 

exhibit low intra-sample variance and high inter-sample 

variance are selected as a priority for the mapping process. 

Because the values of features employed in the ICMetric 

system can change, the feature behavior and the influences on 

that feature value need to be understood before an ICMetric 

value can be reproduced consistently.  

1) Data Collection 

           The data is collected using code written in Python and 

in a monitored natural environment which gives an insight 

into the behavior of the features during the analysis. The 

features extracted is uniquely affected by each user’s machine 

usage (as each user uses their machines differently). This is 

to allow conclusions to be drawn between the presence of 

background processes for a system resource and the influence 

they can have on the various candidate features being 

analyzed. The features were initially narrowed down through 

a variety of techniques, including the analysis of their 

variance and their correlations with other features to find any 

stable correlations that were distinctive to any set of devices. 

This will lead to greater understanding of feature correlations 

per device in order to exploit their internal relationship. It is 

not just framework measures that might actually influence 

low-level hardware feature values. Client controlled cycles 

could likewise adjust the distribution of a feature. To help 

with this problem, the situation of the device is observed and 

recorded when data are read for analysis. The selected 

features were subsequently divided into sets in order to 

increase operational robustness via the employment of 

Shamir’s secret sharing to allow controlled potential partial 

failure of the system whilst still retaining some security 

verification. 

           These feature sets offer more natural obfuscation and 

are more reliable than individual features and generate 

stronger base for applying ICMetric system [2].  

B. Feature Selection 

     There are three categories of features that are collected i.e., 

CPU related features, speed of hard disk related features and 

memory-based features. Out of collected 30 features, from 

which we create 3 feature sets. Feature sets of a device can be 

sensibly considered into individual sets. Each set contains 

features, which share alike qualities or are affected by the 

same changes of a device.  

     These 3 feature sets consist of the eight, six and three 

features respectively in each set. Each feature set contains: 

CPU related features, speed of hard disk related features and 

memory-based features respectively, to recognize low-level 

behavior of the features. 

Table 1 Lists New Dynamic Features selected to build an 

ICMetric system: 

Sr. No. Feature Name Feature 

 set 

 Number 

F1 Maximum speed for copy function 1 

F2 Maximum speed for scale function 1 

F3 Maximum speed for add function 1 

F4 Maximum speed for triad function 1 

F5 Average duration for copy function 1 

F6 Average duration for scale function 1 

F7 Average duration for add function 1 

F8 Average duration for triad function 1 

F9 Sequential write(block)%CPU 2 

F10 Sequential write(block)MB/sec 2 

F11 Sequential write(rewrite)%CPU 2 

F12 Sequential write(rewrite) MB/sec 2 

F13 Sequential read (perchar)%CPU 2 

F14 Sequential read (perchar)MB/sec 2 

F15 Duration for add function 3 

F16 Quickest  duration for add function 3 

F17 Longest duration for add function 3 

 

   The following are the properties (related to raw features) 

that we have explored to identify the devices uniquely: 

 

1. Correlated features provide higher stability than 

individual features as they offer a predictability of 

range amongst them, this means that there is less 

intra-sample variance. Thus, increasing 

reproducibility of the generated key These 
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correlated raw feature sets as they contribute to build 

a robust system. 

2. The lower intra-sample (samples of the same device) 

variance is needed means the more feature value can 

vary, the harder the value is to map and the less 

stable the value is when contributing to key 

generation. 

3. Higher inter – sample (samples between two or more 

devices) variance contributes to the larger entropy of 

the system 

   The high inter-sample variance and low intra-sample 

variance are examined to observe the potential overlap of the 

data between two or more devices [7].  

C. Feature Modelling 

Unlike static features which can be used to generate a 

stable unique identifier directly, dynamic features require 

statistical modelling to be used for unique identifier 

generation; owing to the fact that they are continuously 

changing, statistical features such as the mean and variance 

of a set of raw data are required in order to generate a stable 

unique identifier, as these values are unlikely to change much 

with time. Since different approaches may be required for 

different feature sets some may be normally distributed, some 

may conform to a multimodal distribution etc. This section 

presents techniques that used to model dynamic features. 

1) Unique Identifier Generation 

The primary goal of an ICMetrics system is to generate a 

unique identifier for each device, which is derived from 

various device characteristics. This unique identifier can then 

be used to generate encryption keys, authenticate the device, 

and detect changes in device operation. This unique identifier 

should have high intra-sample stability (on the same device) 

but low inter-sample stability (between different devices). In 

other words, a given device should always generate the same 

unique identifier, which should be unique to that device [2].  

In order to increase the entropy, feature values from 

multiple features are combined in order to produce a unique 

identifier with sufficient inter-device entropy to be used for 

key generation [8], and that is stable enough that it can be 

reliably reproduced. Feature values can be generated from 

both static and dynamic features, but the process of doing so 

varies for each type. For dynamic features, it is likely that 

each time the feature is sampled, the feature will hold a 

different value. Instead, it is important to take numerous 

estimations of the feature, quantize the deliberate values into 

discrete values, and produce a frequency distribution for that 

feature. One possible approach to extract a feature value from 

a feature distribution is to map every value to a single value 

that is representative of the distribution, for example the 

median of the set. This number would then be the feature 

value for that set. Since we have 17 unique features as of now, 

the entropy is 217 and as we research new stable features, it 

is likely to go up.   

2) Normalization 

In the calibration stage, features which are described in 

Section 2.2 have been utilized. At that point, the data is sent 

to quantize and normalize process. 

If the data measured from device is non-normally 

distributed, it may be necessary to normalize the data so that 

it can be used for key generation. One approach that can be 

used to achieve this is to map the values from the raw 

distribution to a set of values in a normal distribution [9]. 

Finally, a multidimensional normalization map is produced 

dependent on normalized data. In the operation phase, a 

measured data is mapped to multidimensional normalization 

map to form a unique identifier. At last, the unique identifier 

is forward to produce encryption key [14,15]. 

D. Feature Analysis 

To analyze the data, we generate a probability distribution 

graph for each feature to understand how the data is 

distributed in multidimensional space. The importance of 

visualizing the data in multidimensional space, helps 

differentiate between the overlapping data from different 

devices. This will infer the data to be unimodal, bimodal, or 

multi-modal in nature. Addressing this multimodality will 

increase the probability of the devices being recognized 

correctly. The proposed algorithm is presented as a flow chart 

in Figure 1 where component operations undertaken step by 

step to Identify these Computing Devices uniquely and build 

a Robust Classifier. 

 

 
 
Figure 1 Shows the calibration phase of the proposed system 

 

1) Multimodal Distributions 

After feature analysis, we concluded that multimodal set 

of features do not generate a unique identifier. To address this 

challenge, we divide the distributions into a series of 

components where each component is approximately normal 

and where each mode on the original distribution become the 

mode of its own normal distribution. Simple approach to this 

problem is to apply a peak-trough detection algorithm to the 

histogram of each feature where the troughs split the 

multimodal distribution into separate normal distributions 

(converting this to unimodal) with the peaks forming the 

modes, to decrease the overlapping of data amongst devices.  
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Figure 2 Shows Probability Density Function graph as an 

example of multimodal distribution of a feature where x axis 

represent feature values and y axis represent frequency. 

 

The Peak – trough algorithms take in the histogram data 

and divides the modes based on the troughs of a probability 

distribution graph [17]. This is used to create modes to 

associate samples to their respective permutations. This in 

turn will show the relationship between the features for each 

modal combination. Hence, examining these features in 

relation with each other creates a unique device print where 

these combinations are generated. 

When the following set of sequence of instructions is 

applied to training data in our experiment, some features from 

all devices have normal or multimodal distribution. To 

identify the data belonging to a particular device, the samples 

are taken from each device, then mean and covariance of the 

modes within these distributions are calculated. Each mode 

has its own ‘identity’ i.e., mean and covariance per 

distribution. Each device having multiple modes will have 

more than one distribution to represent it. After this we check 

which mode each of the samples fall into and compute the 

likelihood of the sample and rehash similar cycle for different 

modes. Similarly, a sample from different device is taken and 

if it falls into one of the modes of first device, the probability 

is calculated as a deciding factor.  Lastly, the higher the 

probability of the test data against any device, more likely it 

is that the data belongs to that device. We repeat the same 

process for’ n’ devices. By separating these modes, we 

increase the accuracy percentage of the classifier. 

E. Operation Phase(Key Generation) 

The operation phase starts each time an encryption key is 

required. For this, all features in the three-feature set (as 

described in section 2.2) are dynamic in nature which requires 

statistical/mathematical modelling for unique identifier. In 

other words, a given device should always have unique 

identifier, which is the primary goal of the ICMetrics system 

[11,12]. 

There is a challenge with ICMetrics. The unique identifier 

generated by the device used to authenticate, is formed of 

several device characteristics, having just one characteristic 

change significantly, may change the unique identifier 

although the variation may still be consistent with the 

operation of the device. Subsequently, the device will fail to 

authenticate because basic approaches to combine feature 

values, like simple concatenation, don't allow for device 

characteristics to change. 

 One possible solution to this problem is to implement a 

secret sharing algorithm to combine feature values, which 

allows the unique identifier to be recovered even if a limited 

number of the device characteristics have failed. 

1) Secret Sharing Scheme 

In the case of Shamir’s Secret Sharing algorithm [10], this 

is done by defining a polynomial where the y-axis intercept 

defines the unique identifier, and upon which all of the 

devices feature values (at the time of calibration) lie. Since a 

polynomial can be defined if a given number of points are 

known (i.e., a straight line with 2 points, a parabola with 3 

points, a cubic polynomial with 4, etc.), the y-axis intercept 

and therefore the unique identifier can be recovered even if a 

limited number of the characteristics fail. For example, a 

parabola with 5 total points would allow up to 2 points to be 

invalid and the unique identifier can still be calculated 

correctly using the other 3 valid points available.  

     Next step is how we use Secret sharing concept in 

ICMetric key generation process. What we commonly do 

here is generate unique identifier to pass in as the X values. 

We then calculate the associated Y values to create the points 

needed to reconstruct the unique identifier, or device identity. 

When we need to reconstruct the secret, we can get the Y 

values from where we stored them & read ICMetric values to 

get the X values. Once we have these X & Y pairs, we can 

reconstruct the secret using interpolation. In this way, we can 

only re-construct the secret correctly when enough ICMetric 

values are valid. 

So, we can split a secret into several shares, with a 

threshold needed to be met before the secret can be 

reconstructed. Generating a secret using some form of 

cryptographically secure RNG then using ICMetrics to 

represent the points on the polynomial allows the secret to be 

reconstructed with valid ICMetrics, and also allow the key to 

be revoked if it gets compromised. It also allows us to set a 

level of tolerance in the system with difficult-to-map features 

so the reliability of the ICMetric system is acceptable. 

The advantage of this process is that the ICMetric is not 

stored on the system and the only values that are stored are 

one half of the co-ordinates that are necessary to generate the 

polynomial that produces the ICMetric. The halves that are 

stored on the system cannot be used to find out the polynomial 

that was used to generate them. Interpolation cannot be 

employed without the associated x value for each stored Y 

value, which means an attacker cannot derive the device 

identifier (unique identifier) with the stored data and the 

attacker has no way of knowing where on the X axis each 

point sits. Additionally, a new ICMetric can be generated any 

time the system needs to be changed or reset by repeating the 

process of taking a new arbitrary basis value and passing in 

feature values to generate new Y values similar to replace 

existing Y values, or we can use an offset to update Y values 

dynamically. 

III. EXPERIMENTAL METHODOLOGY 

       This proposed method has the ability to generate unique 

identifier. In order to evaluate the model as classifier, we 

define correct classification of unique identifier of the device 

with our model multivariate Gaussian distribution. In this 

proposed methodology we have used other three standard 

classifiers for benchmarking which are namely Logistic 

Regression (LR), Linear Discriminant Analysis and Support 

Vector Machines (SVM). These classifiers are used to 

compare the prediction. We applied the above mention 

classifiers on different device datasets to correctly classify the 

test data based on three feature sets. The performance of these 

classifiers is evaluating on the bases of accuracy, precision, 

recall and F measure. These classifiers are carried out in 

Python language. Python is an incredible mediator language 

and a solid stage for research. The exploratory outcome 

depicts which classifier is best between them.  

A. Classifiers 

This work represents a comparison amongst four 

classification techniques evaluating which of these 

techniques is best suited to identify and classify the devices 

based on the data collected. In this section, we introduce these 

classification techniques briefly. 
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1) ProposedMultivariate Gaussian Distribution(MVGD) 

Each Gaussian/normal distribution is modelled by the 

mean and variance derived from sample data extracted from 

the device. The Multivariate Gaussian defines the joint 

probability distribution which are mutually independent 

normal variables. Hence, a need to examine the collective 

effect of these variables.  Hence a probability of a vector 

belonging to a particular Multivariate Gaussian is calculated, 

where each of the MVGD is defined by the mean vector and 

covariance matrix of the distribution.  

By taking multimodality into consideration, we model the 

data of each device as multiple multivariate Gaussian 

distributions. As we know in Gaussian Mixture Models 

(GMM) [19], the data is represented as ‘n’ mixture models; 

Similarly represented by our classifier as ‘n’ multivariate 

Gaussians per distribution. Assuming each sample belongs to 

one of these multivariate Gaussian. 

The d-dimensional vector x is multivariate Gaussian in the 

event that it has a likelihood thickness capacity of the 

accompanying structure: 

 

 𝑝(𝑥; 𝜇, ∑) =
1

(2𝜋)𝑑/2|∑|1/2 𝑒𝑥𝑝 (
1

2
(𝑥 − 𝜇)𝑇∑−1(𝑥 − 𝜇))  (1) 

 

The pdf is parameterized by the mean vector µ and the 

covariance matrix Σ.   

The mean vector µ is the assumption for x:   

 

                      𝜇 = 𝐸[𝑥]                 (2) 

The covariance lattice Σ is the assumption for the deviation 

of x from the mean:  

 

                Σ = 𝐸[(𝑥 − 𝜇)(𝑥 − 𝜇)𝑇]                                   (3)  

 

2) Linear Regression(LR) 

The Logistic Regression is a linear classification 

technique conducted for a predictive analysis. When the 

dependent/target variable is dichotomous [14]. The 

classification presents a binomial outcome i.e., representing 

the occurrence of an event or not with values 1 and 0 

respectively, based on data from input variables. This can also 

be used as a multinomial regression which can deal with 

categorical classification like target variable 1 to 8 for each of 

the 8 devices [15]. 

 

3) Linear Discriminant Analysis(LDA) 

The LDA projects the data in higher dimension onto a 

lower dimension space (reducing dimensions). By combining 

the variables in a linear or quadratic manner that gives Linear 

Discriminant Analysis (LDA) and Quadratic Discriminant 

Analysis (QDA) [14]. These variables are combined in a way 

that the differences (i.e., the separation) between the classes 

are maximised. The LDA technique is used when the 

covariance of each of the unique classes is the same and the 

predictors are distributed normally.  

 

4) Support Vector Machine(SVM)) 

The SVM model has the capabilities to handle both i.e., 

regression and classification problems. Here the data is 

plotted and viewed in n-dimensional space, where n depicts 

number of features. This is a non-linear classification 

technique which can separate the data from different classes 

via a decision plane. Hence the data which seems linearly 

inseparable, are subjected to intricate mathematical functions 

called kernel which effectively separates the data belonging 

to their respective classes [15]. The complexity of the model 

ensures the higher accuracy and presents fewer possibilities 

of over-fitting.  

IV. EXPERIMENTAL  RESULTS 

        This segment presents a discussion of the obtained 

experimental results of the proposed model MVGD. The 

experiments are conducted on the features which are 

explained in section 2.2, this data is collected from the 

hardware features (Memory, CPU, Hard disk) from MacBook 

Air and MacBook Pro. This data after analysis, gives us a 

unique identifier. We used eight devices with updated 

software. For this work, we used data collected from the 

MacBook Air and Pro, Python Code and Microsoft Excel 

used for data analysis. For this experiment we are using these 

devices, where each device contains thousand samples for our 

analysis, Cross Validation method with fold value equal to 10 

has been used for training and testing phases. Consequently, 

all of the records which exist in dataset will affect the training 

and testing of the classifiers.  

       Table 2, 3, 4 show the comparison of our proposed model 

MVGD and other standard classifier LR, LDA and SVM and 

evaluate the performance of the proposed model on the bases 

of accuracy, precision, recall and F Measure defined below. 

Where TP- True Positive (A true positive is a result where the 

model effectively predicts the positive class) – if we can 

prove that a unique identifier belongs to a specific device, 

then its TP  TN- True Negative(A true Negative is a result 

where the model effectively predicts the negative class) – if 

we can prove that a unique identifier does not belong to a 

specific device, then its TN   FP- False Positive (This wrongly 

identifies the data belonging to a particular class) – if unique 

identifier identifies a device incorrectly, then its FP and FN- 

False Negative (This wrongly indicates the absence of the 

data belonging particular class)- if unique identifier 

incorrectly concludes that it’s not the specific device, 

however, in reality it is the device in question, then its FP 

[18]. 

 

Classification Rate or Accuracy is given by the relation   

 Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (4) 

Recall: Recall can be defined as the ability of the classifier to 

find all positive instances. It is defined as the ratio of true 

positives to the sum of true positives and false negatives. 

 Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (5) 

Precision: Precision can be defined as the ability of the 

classifier not to label as positive a sample that is negative. It 

is defined as the ratio of true positives to the sum of true 

positives and false positives. 

 Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (6) 

F-measure: F-measure can be defined as the Harmonic Mean 

of precision and recall. The F-measure corresponding to 

every class will tell you the accuracy of the classifier in 

classifying the data points in that particular class compared to 

all other classes. 

 F-measure = = 
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  (7) 

 

In all classifiers for first feature set which includes eight 

features related to speed of hard disk to copy, add, scale and 

triad function MVGD perform better, its accuracy is 91.5% 

after that SVM perform better it holds 90% accuracy.  
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 TABLE II. For Feature Set 1 classification performance of proposed model 

with standard classifiers using Training-Testing in 10-fold cross-validation 

setup. 

Classifier Accuracy Precision Recall F Measure 

MVGD 91.5% 74.2% 73.1% 72.5% 

LDA 87% 70.7% 69.7% 68.7% 

LA 87% 69.2% 69.7% 68.9% 

SVM 90% 73.4% 73.5% 72.9% 

 

    For Second feature set which includes 6 Features related to 

Hard disk like CPU usage when writing to disk and memory-

related features like time taken to read memory MVGD 

perform better its accuracy is 92% after that SVM perform 

better it holds 90.5% accuracy. 
 

TABLE III.  For Feature Set 2 classification performance of proposed model 

with standard classifiers using Training-Testing in 10-fold cross-validation 
setup. 

Classifier Accuracy Precision Recall F Measure 

MVGD 92% 74.1% 73.6% 73.4% 

LDA 91.2% 74% 73% 72.5% 

LA 91% 74.1% 73.4% 73% 

SVM 90.5% 77.2% 77.2% 77.1% 

 

      For Third feature set which includes 3 Features related to 

CPU-related values like the performance of floating-point 

arithmetic MVGD perform better it holds 80.1% accuracy 

after that SVM perform better its accuracy is 67.9%. 
 
TABLE IV. For Feature Set 3 classification performance of proposed model 

with standard classifiers using Training-Testing in 10-fold cross-validation 

setup. 

Classifier Accuracy Precision Recall F Measure 

MVGD 80.1% 67.9% 64.6% 62.1% 

LDA 57.8% 44.2% 47% 42.3% 

LA 57.1% 52.6% 46.4% 44.1% 

SVM 67.9% 59% 55.1% 50.3% 

 

     From the experiment results, we observe that proposed 

model Multivariate Gaussian distribution perform better as 

compared to other three standard classifiers in the prediction 

of identifying devices uniquely. 

 

     After applying secret sharing (explained in section 2.5.1), 

the result for ICMetric Key generation for Multivariate 

Gaussian distribution classifier were 94%, 95% and 84% for 

first, second and third feature set respectively. This proves 

that our results improved statistically over the previous 

results. 

V. CONCLUSION 

       In this paper, we explored the employed of hardware 

characteristic features to identify electronic devices 

performed the comparison analysis of classifiers for the 

prediction of identifying the device. The device identification 

technique is compared to four alternative classifiers. 

Experimental result show that different classifiers behave 

differently on the same dataset. From the analysis, we 

observed that proposed model MVGD performed better than 

all others for device identification. And our Shamir’s Secret 

Sharing results based on ICMetric key generation for 

proposed model MVGD are quite promising. Overall, this 

paper outlines the method of analysis and mathematical 

implementation using proposed model multivariate Gaussian 

distribution.  
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