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A BAYESIAN NONPARAMETRIC TEST FOR

CONDITIONAL INDEPENDENCE

Onur Teymur and Sarah Filippi

Department of Mathematics
Imperial College London, UK

Abstract. This article introduces a Bayesian nonparametric method for quan-

tifying the relative evidence in a dataset in favour of the dependence or inde-
pendence of two variables conditional on a third. The approach uses Pólya

tree priors on spaces of conditional probability densities, accounting for uncer-

tainty in the form of the underlying distributions in a nonparametric way. The
Bayesian perspective provides an inherently symmetric probability measure of

conditional dependence or independence, a feature particularly advantageous

in causal discovery and not employed in existing procedures of this type.

1. Introduction. The random variables X and Y are conditionally independent
given Z (written X⊥⊥Y | Z) if and only if the following relation holds between their
conditional densities, for all possible realised values z of Z:

pXY |Z(x, y|z) = pX|Z(x|z) · pY |Z(y|z) (1)

A common problem in the analysis of multi-variable datasets is that of assessing
whether or not this relation is true for a given triple of variables. Typically, the
setting is that the three densities in (1)—and the marginal density pZ(z)—are all
unknown a priori, but we have a finite set of data W := {(Xi, Yi, Zi) ; i = 1, . . . , N}
assumed to be drawn from the joint measure pXY Z induced by (X,Y, Z). Notably,
this type of analysis is a key component in most common approaches to causal
discovery [28].

Testing for conditional independence with finite data is, however, known to be
a hard problem in general. This is particularly true if the unknown densities are
assumed continuous and modelled nonparametrically. In such a setting, a test
for conditional independence with desirable statistical properties cannot in general
be constructed [2, 34]. Nonetheless, many tests exist and are commonly used in
practice, despite their various theoretical deficiencies. A classic approach is to
form a test statistic from the partial correlation coefficient [8]. This vanishes if
X⊥⊥Y | Z, but only under the strong assumptions that all variables are Gaussian
and all dependences linear. Only limited extensions for non-Gaussian variables
[15, 31] and for nonlinear dependences [16, 30] exist. Other approaches include
combining a series of unconditional independence tests on the response variables
(X,Y ) conditional on multiple individual values z of Z [25, 17]; tests based on
measures of statistical distance between estimates of the conditional densities pX|Z
and pX|Y Z , which are zero if and only if X ⊥⊥ Y | Z [37, 38]; tests based on
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estimation of the conditional mutual information of X and Y given Z [19, 32, 33];
permutation-type tests [4, 3] that require knowledge of or estimation of pX|Z ; and
a large range of kernel-based methods [9, 41, 5, 40, 36] typically designed with the
aim of dealing with high-dimensional or sparse problems more effectively.

All of the methods described in the previous paragraph are frequentist by con-
struction, in that they derive a test statistic and construct a hypothesis test based
on either a known null distribution, an asymptotic approximation to it, or by using
some other strategy such as a permutation test. In the latter case, the issue is
complicated by the fact that permutation tests are not easy to design in the setting
of conditional independence testing with continuous Z variable, an issue addressed
by a range of modified non-uniform permutation tests [32, 4, 3].

Whichever specific method is used, Peters et al. [29, §7.2.1] point out one possible
problem with relying on a frequentist testing procedure for causal inference, namely
that “all causal discovery methods that are based on conditional independence tests
draw conclusions both from dependences and independences”. This reminds us that
classical hypothesis testing is inherently asymmetric. Specifically, it is often nec-
essary to detect situations in which the data are ‘in favour of the null hypothesis’
of conditional independence—this is how the PC algorithm [35] determines which
edges to remove in the process of recovering a causal graph. However, doing so sub-
tly abuses the classical hypothesis testing framework, in which one cannot directly
compute evidence in favour of the null hypothesis.

Bayesian hypothesis testing circumvents this issue. To the best of our knowledge
there is only a very limited existing literature in Bayesian testing for conditional
independence—a method for the case of Gaussian random variables only, for which
conditional independence is equivalent to zero partial correlation [12].1 In this
paper, we propose the first Bayesian nonparametric approach for conditional inde-
pendence testing. The procedure produces a probabilistic measure of the relative
evidence in a dataset for dependence or independence of two random variables X
and Y conditionally on a third variable Z. The nonparametric approach permits
the computation of such a probabilistic measure without assuming a known form
for the underlying conditional distribution pXY |Z . Following Filippi & Holmes [7],
who construct a Bayesian nonparametric test for (unconditional) independence, we
use Pólya tree priors to model the unknown data-generating distributions.

1.1. Bayesian nonparametric hypothesis testing. Recall that we have a
dataset W := {(Xi, Yi, Zi) : i = 1, . . . , N} and wish to compare two compet-
ing hypotheses H0 and H1, with H0 the hypothesis of conditional independence
and H1 the contrary.

H0 : X⊥⊥Y | Z
H1 : X 6⊥⊥Y | Z (2)

Our aim is to quantify the relative evidence for these hypotheses in the dataset W ,
which is naturally measured by the posterior probabilities p(H0|W ) and p(H1|W ).

1There are algorithms among those surveyed in this section that can be viewed as a ‘halfway
house’ towards the Bayesian ideal. In [19], for instance, the authors derive a posterior distribution
over the conditional mutual information between X and Y given Z, which they treat as random

in a Bayesian manner. However the output of their method does not directly provide a posterior
probability in favour of one of the competing hypotheses.
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To evaluate these posterior probabilities, we use the Bayes Factor [18], defined
as the ratio of the marginal likelihoods of two conditional data-generating models.

BF(H0, H1) =
pXY |Z(W |H0)

pXY |Z(W |H1)
(3)

With the prior probabilities of the two hypotheses denoted by p(H0) and p(H1), we
can use this to derive the posterior probability of H1 as

p(H1|W ) =
1

1 + BF(H0, H1)p(H0)p(H1)−1
(4)

The ratio of marginal likelihoods on the right-hand side of (3) can be expanded
by factorising the numerator. This is simply an application of the definition of
conditional independence given by (1).

pXY |Z(W |H0)

pXY |Z(W |H1)
=
pX|Z(W |H0)pY |Z(W |H0)

pXY |Z(W |H1)
(5)

In the remainder we suppress the explicit marking of the models H0 and H1 since
the subscripts now make clear which of the three terms belongs to which model.

We now follow a Bayesian nonparametric approach to accommodate the uncer-
tainty in the form of the three unknown conditional densities on the right-hand
side of (5). For a domain Ω, we denote by M(Ω) the space of all probability
measures on Ω. Consider first the two-dimensional conditional density pXY |Z (cor-
responding to hypothesis H1) with X, Y and Z all univariate real random vari-
ables. The Bayesian nonparametric approach entails placing a functional prior π
onM(R2 × R)—individual elements of which we call q(·|·)—incorporating the data
W through a likelihood function L, then marginalising over M(R2 × R) such that
the conditional marginal likelihood is given by

pXY |Z(W ) =

∫
M(R2×R)

L(W ; q) dπ(q)

=

∫
M(R2×R)

N∏
i=1

q(Xi, Yi|Zi) dπ(q) ;

(6)

We refer the reader to the comprehensive textbook treatments in [10, 11] for further
details on the basic principles of the Bayesian nonparametric approach. The same
procedure is now applied to the one-dimensional conditional densities pX|Z and
pY |Z with π, q ∈M(R× R) and L replaced by their one-dimensional analogues.

Since we wish to assume that the random variables are all continuous, we select π
to be from the Pólya tree family of priors. These priors are supported on the entire
space of probability measuresM(Ω) [11, Thm. 3.3.6] and can be designed to ensure
that individual samples q are absolutely continuous with probability one. Further-
more, they have the advantage that the marginal likelihood in (6) is tractable, in
contrast to other nonparametric models of continuous random variables such as the
Dirichlet Process Mixture [6].

The specific model we use is a modified version of the conditional Optional Pólya
tree (cond-OPT) of Ma [23], also incorporating ideas from the finite Pólya tree of
Lavine [21] and the multi-dimensional Pólya tree of Paddock [27]. We review these
models in the coming sections. The first constructions we explore are designed for
modelling random unconditional density functions q(·); later we will see how to
build upon these to model random conditional density functions q(·|·).
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2. Pólya trees. The classical (unconditional) Pólya tree (PT) [20, 26, 21] es-
sentially defines a random probability measure over a one-dimensional domain
Ω ⊆ R. The most familiar construction proceeds by recursive binary partition-
ing of Ω and at each step the assigning of probability mass to the two child
sets of a set C ⊆ Ω by means of independent Beta-distributed random branch-
ing variables θ. This results in a tree structure, similar to that shown in Figure
1. Constructed this way, it is helpful to think of the Pólya tree as a random his-
togram on Ω or, for parameter choices which result in continuous distributions
almost surely, a random density function. A particle of probability mass can be
thought of as cascading down the tree, with the direction it takes at each binary
split determined by the random parameters θ.

More precisely, let q denote a random probability density2 on Ω and π a measure
over M(Ω). Consider a partitioning of Ω in two disjoint sets C0 and C1, define
the random branching probability θ0 ≡ q(C0) ∼ Be(α1, α1) for some α1 > 0. It
follows that θ1 ≡ q(C1) = 1− θ0. Note that in general, the two parameters of this
Beta distribution need not be the same, though this symmetrising simplification is
common and we adopt it. Indeed, we take the parameters constant within each
level of the tree; the subscript on αj denotes this level. Continue in this fashion,
with C0 = C00 ∪ C01, C00 ∩ C01 = ∅ and θ00 ≡ q(C00|C0) ∼ Be(α2, α2), θ000 ≡
q(C000|C00) ∼ Be(α3, α3) and so on recursively, with each independent Beta random
variable θ∗ determining the probability that the particle enters the set C∗ at the
next level of the tree.

We write εi for a (single) element of the set {0, 1}, εj ≡ ε1ε2 . . . εj for a length-j
word from the set {0, 1}j , εj0 and εj1 for the appending of respectively a single 0
or 1 onto the end of εj , and Ej for the set of all length-j {0, 1}–words. We further
write ε∗ for an element of the set E∗ ≡

⋃∞
j=1E

j of all possible {0, 1}–words of any
finite length. The measure of a set Cε1ε2...εj can then be written as

q(Cε1ε2...εj ) =

j∏
i=1

q(Cε1ε2...εi |Cε1ε2...εi−1) (7)

Taking the infinite limit of tree depth j, it can be shown that the set of finite unions
of intervals of the form Cε∗ generates the Borel σ-algebra on Ω. With q constructed
in this fashion, the measure π(q) is a Pólya tree.

Under certain conditions on the parameters α, the Pólya tree assigns positive
probability to the Kullback–Leibler neighbourhood of any element of the space
M(Ω). Furthermore, these elements can be made to be absolutely continuous with
respect to Lebesgue measure [21]. Specifically, the parameter choice αj = cj2, with
c > 0 and j the level of the set in question within the tree, satisfies this condition
and ensures that samples from the PT are almost surely continuous. We use this
choice throughout our simulations and provide a discussion and robustness analysis
for the setting of the constant c in Section 4.3.

The Pólya tree just defined is supported on a one-dimensional domain, but a
multi-dimensional extension—in which sets C ⊆ Ωd are binary-divided in each
of d dimensions simultaneously at each step—is considered by Paddock [27]. In
this construction, the children of C are assigned probability mass by means of
Dirichlet-distributed random variables θ supported on the 2d-dimensional simplex,

2We abuse notation slightly by writing q both for the measure and for its density, the existence
of which is always assumed.
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Fig. 1. Construction of a Pólya tree distribution on Ω = [0, 1]. From
each set C∗, a particle of probability mass passes to the left with (random)
probability θ∗0 and to the right with probability θ∗1 = 1 − θ∗0, with all
θ∗ being independently Beta-distributed as described in the main text.

generalising the Beta-distributed θ of the one-dimensional PT.3 Indices εi now take
values in the expanded set {0, 1, . . . , 2d − 1}, we have (θεj−10, . . . , θεj−1(2d−1)) ∼
Dir(αj , . . . , αj), and the sets Ej and E∗ are redefined accordingly. Note that, by

definition,
∑2d−1

k=0 θεj−1k = 1.

2.1. Bayesian inference with Pólya trees. Pólya trees benefit from the conju-
gacy of the Binomial and Beta (in the multi-dimensional setting: the Multinomial
and Dirichlet) distributions, allowing a simple expression to be derived for the pos-
terior measure over M(Ω) after data X1:N ≡ {X1, . . . , XN} have been observed.
Let {θ} be the collection of all θε∗ , and ΠΩd the set of all Cε∗ arising in the recursive
partitioning procedure. Then the density of a point x ∈ Ωd is given by

q(x|{θ},ΠΩd) =

∞∏
j=1

∏
εj∈Ej

θ
1[x∈Cεj ]

εj (8)

This equation can be viewed loosely as the limiting case of (7) and unpacked by
noting that the conjunction of the product over level-j indices εj and the indicator
function in the exponent zeroes all contributions from parameters θεj not on the
path within the tree that leads to x.

A critical point is that in the classical PT model, exact calculation of quantities
such as (8) theoretically requires infinite computation, since the tree is of unlimited
depth. It is therefore common in practice to truncate the calculation at a finite tree

3Recall that if θ0 ∼ Beta(α, α) and θ1 = 1 − θ0, then θ ≡ (θ0, θ1) ∼ Dirichlet(α, α).
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depth J . These truncated (also called ‘finite’ or ‘partially-specified’) Pólya trees
(TPT) are discussed by Lavine [21] and Mauldin et al. [26]. While full Kullback–
Leibler support overM(Ω) is no longer guaranteed, bounds on the pointwise error of
the posterior measure [21] and L1 error of the predictive density [13] are available.
Hanson & Johnson [14] formalise the definition of the TPT by specifying a base
measure µ that the ‘leaf’ sets at the bottom level J < ∞ are taken to follow. If
this base measure is uniform then the TPT outputs piecewise-constant measures
(ie. random histograms). We follow this approach in the simulations in Section
4, but other base measures can be used—for example if Ω is unbounded and µ is
taken to be a d-dimensional Gaussian measure [13]. The density function for the
multivariate TPT is given by

q(x|{θ},ΠΩd , µ) =
∑

εJ∈EJ

µ(x)1[x ∈ CεJ ]

µ(CεJ)

J−1∏
j=1

∏
εj∈Ej

θ
1[x∈Cεj ]

εj (9)

The first fraction in this equation is the normalised base density of the point x
within its level-J set.

We now combine the prior with the likelihood. Conjugacy not only means that
the posterior is itself a Pólya tree, but also that the branching variables {θ} can
easily be marginalised. Assuming henceforth that µ is indeed uniform, this gives
the TPT marginal likelihood

pX(X1:N |{α},ΠΩd , µ) =

∫ N∏
i=1

q(Xi|{θ},ΠΩd , µ)p({θ}|{α}) d{θ}

=
1

2dJn

J−1∏
j=1

Γ(2dαj) ·
∏

εj∈Ej Γ(αj + nεj (X1:N ))

Γ(αj)2d · Γ(2dαj +
∑

εj∈Ej nεj (X1:N ))

(10)

Here, nεj (X1:N ) counts the number of data X1:N in the set εj . It is then possible
to derive the predictive distribution, and using this, an alternative expression for
the marginal likelihood that is easier to work with in practice.

pX(x|X1:N , {α},ΠΩd , µ) =

J∏
j=1

2dαj + 2dnj(x; X1:N )

2dαj + nj−1(x; X1:N ))
(11)

pX(X1:N |{α},ΠΩd , µ) =

N∏
i=2

J∏
j=1

2dαj + 2dnj(Xi; X1:i−1)

2dαj + nj−1(Xi; X1:i−1)
(12)

In these equations, nj(x; X1:N ) counts the number of data in {X1, . . . ,XN} that

are at the same level-j set as x, ie. nj(Xi; X1:i−1) =
∑i−1

k=1 1[Xk ∈ Cεj ]1[Xi ∈ Cεj ].

2.2. Pólya tree models for conditional distributions. In this section we de-
scribe how the canonical Pólya tree construction described in Section 2 can be
extended to model conditional distributions. Doing so first requires a notion of ran-
domised partitioning called ‘optional stopping’. This was first proposed by Wong
& Ma [39] as an alternative solution to the problem of ensuring that computation
time in PT modelling be made almost surely finite. In this paradigm, called the
Optional Pólya tree (OPT), the partitioning of Ω is augmented at each step by
the drawing of independent Bernoulli-distributed stopping variables S. For a set
C∗ arising in the partitioning of Ω, if the corresponding S∗ is equal to 1 then C∗
is divided no further and a uniform distribution is placed on it. If S∗ = 0 then
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a binary split takes place as usual. This outcome of this procedure is a (random)
partition of varying granularity across the domain.

As long as the Bernoulli parameter ρ controlling the probability Pr(S∗ = 1) is
uniformly greater than 0 for all sets C∗, it is easy to see that this algorithm will
result in all of Ω (but for a set of measure zero) being ‘stopped’ in finite time
with probability one. The additional randomness introduced by this partitioning
procedure is itself marginalised to give quantities analogous to (11) and (12) that
can be calculated in finite time. Given certain further technical conditions, a full-
support result akin to that for the classical PT is also available.

The optional stopping principle is then further leveraged in Ma [22, 23], in which
multi-scale mixtures of OPTs are used as models for conditional probability distri-
butions; this is called the conditional Optional Pólya tree (cond-OPT) [23]. The
basic idea is to construct a random conditional density q(x|z) ∈M(R× R) by par-
titioning the predictor space ΩZ using the optional-stopping algorithm described
above, then for each set A arising from this procedure to construct an independent
(unconditional) OPT random density on the response space ΩX but using only those
data Xi whose corresponding Zi value lies in A. Finally, the multiple independent
models over ΩX are combined in a weighted sum (with the weights determined by
the partition of ΩZ), giving a random conditional density q(x|z).

The measure constructed this way has full (total variation) support on the space
M(R×R) of conditional density functions supported on ΩX ×ΩZ [23], and as such
is a direct generalisation of the unconditional Pólya tree family of models so far
discussed, immediately inheriting many of their strengths. This construction for
modelling random conditional density functions forms a central part of our work
and we describe it in much greater detail in the next section.

3. A bayesian conditional independence test. Recall that we seek to compare
the hypotheses H0 : X⊥⊥Y | Z versus H1 : X 6⊥⊥Y | Z.

Call the support of X, Y and Z respectively ΩX , ΩY and ΩZ and assume that
Ω := ΩX × ΩY × ΩZ is a compact subset of R3. We will define three nonparamet-
ric priors, one for each of the three conditional density functions appearing in (5).
Then, by incorporating the data W and marginalising the randomness in the poste-
rior, we will derive the three conditional marginal likelihoods required to calculate
the Bayes Factor.

We use pX|Z as our running example; the models for pY |Z and pXY |Z are the
same, with the obvious modifications. The approach consists in first constructing
a random partition of ΩZ and then, for each partition block A, generating the
distribution of X conditionally on Z ∈ A using a truncated Pólya tree (TPT). The
first step is to partition ΩZ using the optional-stopping binary recursive partitioning
procedure described in Section 2.2. This produces a random partition of ΩZ—this
is an intrinsic feature of this scheme. This additional randomness will itself be
marginalised in order to calculate the conditional marginal likelihood pX|Z(W ).
Following Ma [23], this is done in practice by constructing a non-random binary
partition ΠΩZ

and performing a recursive calculation on the resulting tree. We now
explain this calculation in detail.

For any A ∈ ΠΩZ
, let WA = {(Xi, Yi, Zi) ; i = 1, . . . , N : Zi ∈ A} be the subset

of the data W whose Z component is in A, and let NA = |WA| be the cardinality of
this set. We also write XA for the set of X components of WA, and similarly for YA
and ZA. For each set A, we consider a ‘local’ conditional distribution of X given
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Z = z (which is assumed to be constant across all z ∈ A) and use a TPT prior for
this distribution. The ‘local’ likelihood of the data XA is therefore given by

q0
X(A) :=

NA∏
i=1

q((XA)i|{θ},ΠX,A) ,

where the contributions from individual data points are given by (9), and ΠX,A

denotes the partition that ‘separates’ XA. More precisely, the partition ΠX,A ⊆
ΠΩX

(≡ ΠX,ΩZ
) of ΩX is defined such that all leaf sets contain either 0 or 1 data point

from XA.4 The full multi-scale conditional likelihood qX(A) is then determined
recursively by drawing stopping variables SX(A), and calculating q0

X(A) for all sets
A arising in the resulting random partition of ΩZ . For any set A∗ which remains
unstopped, we call its two children A∗0 and A∗1. Then qX(A∗) is given by

qX(A∗) :=

{
q0
X(A∗) if SX(A∗) = 1,

qX(A∗0)qX(A∗1) if SX(A∗) = 0.
(13)

Equivalently, this can be written as an additive mixture.

qX(A∗) = SX(A∗)q
0
X(A∗) + (1− SX(A∗))qX(A∗0)qX(A∗1) (14)

To calculate the conditional marginal likelihood, this expression needs to be inte-
grated to marginalise the randomness from both the local likelihoods {q0

X}, and the
partitioning procedure, determined by {SX}. We write the local marginal likeli-
hoods as Φ0

X(A) := pX(XA|{α},ΠX,A), and from equation (12) we have

Φ0
X(A) =

NA∏
i=2

JX∏
j=1

2αj + 2nj((XA)i; (XA)1:i−1)

2αj + nj−1((XA)i; (XA)1:i−1)
(15)

where JX is the maximum depth of the partition ΠX . The complete conditional
marginal likelihood ΦX(A) := pX|Z(WA) is then obtained by marginalising the
partitioning randomness from (14). Letting ρ(A∗) = Pr(SX(A∗) = 1), we have

ΦX(A∗) = ρ(A∗)Φ
0
X(A∗) + (1− ρ(A∗))Φ(A∗0)Φ(A∗1) (16)

This recursion is performed in practice by starting from the leaf sets of the
most extensive non-random separating partition ΠΩZ

and applying the following
algorithm, until the root ΩZ is reached.

ΦX(A∗) :=

{
Φ0

X(A∗) if A∗ is a leaf set,

ρ(A∗) Φ0
X(A∗) + (1− ρ(A∗))ΦX(A∗0)ΦX(A∗1) if not.

(17)

The value of this function at the root ΩZ is the conditional marginal likelihood we
require, ie.

pX|Z(W ) = ΦX(ΩZ) . (18)

The variables ρ(A) ∈ (0, 1) function as mixing parameters and we take them to
be constant and equal to 0.5 for all sets A—we discuss this choice in Section 4.3.
Equation (16) makes clear the way in which the conditional marginal likelihood
ΦX(·) is formed of a multi-scale additive mixture of TPT marginal likelihoods Φ0

X(·).

4In practice such partition is calculated most efficiently by constructing the most extensive tree
ΠX,ΩZ

once, then pruning it to find the ΠX,A for each A.
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Bayesian nonparametric test to assess H0 : X⊥⊥Y | Z vs. H1 : X 6⊥⊥Y | Z
inputs: data W = {(Xi, Yi, Zi) : i = 1, . . . , N}; parameters ρ, c;

finite ‘separating’ partitions ΠΩZ ,ΠΩX ,ΠΩY and ΠΩXY

for all A in ΠΩZ

//partition pruning
WA = {(Xi, Yi, Zi) : Zi ∈ A} (WA ≡ (XA, YA, ZA))
construct ΠX,A, ΠY,A and ΠXY,A by pruning ΠΩX ,ΠΩY and ΠΩXY ,

keeping only those blocks containing ≥ 2 data points from WA

// calculate TPT marginal likelihoods (12)
Φ0

X(A)← pX(XA|{α},ΠX,A)
Φ0

Y (A)← pY (YA|{α},ΠY,A)
Φ0

XY (A)← pXY ((XA, YA)|{α},ΠXY,A)

// calculate conditional marginal likelihoods (17)
for all leaf sets A in ΠΩZ

ΦX(A)← Φ0
X(A)

ΦY (A)← Φ0
X(A)

ΦXY (A)← Φ0
XY (A)

for all non-leaf sets A in ΠΩZ with children A0 and A1 (17)
// traversal order from leaf sets towards root
ΦX(A)← ρΦ0

X(A) + (1− ρ)ΦX(A0)ΦX(A1)
ΦY (A)← ρΦ0

Y (A) + (1− ρ)ΦY (A0)ΦY (A1)
ΦXY (A)← ρΦ0

XY (A) + (1− ρ)ΦXY (A0)ΦXY (A1)

output: BF← ΦX(ΩZ)ΦY (ΩZ)(ΦXY (ΩZ))−1 (19)

Fig. 2. Pseudocode for the proposed Bayesian
nonparametric test for conditional independence

The equivalent calculation is undertaken to find pY |Z(W ) ≡ ΦY (ΩZ) and—now
using the bivariate version of the TPT—pXY |Z(W ) ≡ ΦXY (ΩZ). The Bayes Factor
(5) is then given by

BF(H0, H1) =
ΦX(ΩZ)ΦY (ΩZ)

ΦXY (ΩZ)
(19)

and, the posterior probability of conditional dependence p(H1|W ) can then be ob-
tained using (4). The algorithm described in this section is summarised in the
pseudocode in Figure 2.

4. Experiments. In this section we describe some example experiments to elu-
cidate the operation and output of the proposed approach. We stress once again
that the output of our algorithm is a Bayesian posterior probability value p(H1|W )
which is directly interpretable as a “probability of conditional dependence”, in con-
trast to previous approaches, which derive or approximate a threshold value for a
classical test statistic. This fundamental difference makes direct comparison with
existing methods challenging.

4.1. Synthetic data. Our first set of experiments uses synthetic datasets con-
structed by the formulae in the first column of Figure 3. The measures from which
the data are sampled are designed in such a way that every combination of un-
conditional independence/dependence and conditional independence/dependence is
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Fig. 3. Application of the proposed Bayesian testing procedure to four syn-
thetic datasets supported on [0, 1]3, chosen such that all combinations of uncon-
ditional and conditional dependence/independence are represented. The final
column gives the ensemble of probabilities of conditional dependence p(H1|W )
output by the test over 100 repetitions at varying values of data size N , with
the blue line representing the median, and the dark and light shaded regions
representing the (25,75)-percentile and (5,95)-percentile ranges respectively.
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represented. Specifically, in model 1 it holds that X ⊥⊥ Y as well as X ⊥⊥ Y |Z; in
model 2 we have X 6⊥⊥ Y but X ⊥⊥ Y |Z; in model 3 it holds that X ⊥⊥ Y though
X 6⊥⊥Y |Z, and in model 4 we have X 6⊥⊥Y and X 6⊥⊥Y |Z. In each case, (X,Y, Z)
are by construction supported on ΩX = ΩY = ΩZ = [0, 1]. Example 3-dimensional
scatter plots are given for each model in the middle column.

We highlight specifically model 4, for which X 6⊥⊥ Y and X 6⊥⊥ Y |Z, though the
generating process is a mixture and for 90% of the data it holds that X ⊥⊥ Y |Z.
Noting definition (1) (“for all z”), we would like a partial conditional dependence
of this type to be detected by a hypothesis test, even if it derives from only a small
subset of the data.

We vary the number of data N between 1 and 105, and for each of several
values of N in this range we run 100 repetitions of our procedure using datasets
generated by different random seeds. We consider binary recursive partitions of
ΩX = ΩY = ΩZ = [0, 1] which at level j have the form

[0, 1] =

2j−1⋃
k=0

[
k

2j
,
k + 1

2j

)
. (20)

The maximum tree depths JZ (in the predictor space) and JX , JY and JXY (in
the response spaces) are all set at dlog2(N)e, following a widely-used rule of thumb
[14]. In addition, we assume an equal prior value for both hypotheses, so that
p(H0) = p(H1) = 0.5.

We plot the range of test outputs p(H1|W ) in the right-hand column of Figure
3, with the blue line representing the median, and the dark- and light-blue shaded
regions representing the (25,75)-percentile range and the (5,95)-percentile range
respectively. In the low-data limit, the test output p(H1|W ) converges to 0.5 as
expected, indicating reversion to the prior probability p(H1), while for values of N
of 104 and greater the test consistently returns a probability value very close to 0 or
1, correctly determining in each case the hypothesis that reflects the ground truth.

In the approximate range N = 101 to 103, a relatively large uncertainty is present
in the output. In the case of the two examples for which X 6⊥⊥Y | Z (models 3 and
4), there is a noticeable tendency in this range to falsely favour H0, before p(H1|W )
converges to 1 correctly as N > 104. This is a manifestation of the natural Occam
Factor present in the test, favouring the simpler model H0 where insufficient data
exists to conclusively support H1 [24, §28]. The same phenomenon was observed in
the unconditional independence testing procedure upon which this work builds [7].

4.2. Real data. We now apply our method to a representative real dataset to
further illustrate its potential. We consider the California Cooperative Oceanic
Fisheries Investigations (CalCOFI) Bottle data, a collection of hydrographic read-
ings from maritime stations off the Californian coast collected over a period of 70
years. These data (available at calcofi.org) contain numerous examples of vari-
ables with highly non-linear or even non-functional dependence relations. This is
illustrated in Figure 4, which shows pairwise scatter plots of representative data
from three of the variables in the dataset.

The complete dataset consists of 864, 863 observations of 74 variables, but with
a high incidence of missing data and numerous strong ‘trivial’ linear correlations.
As a consequence, we first remove all variables for which there is at least one other
variable with which it has no common data at all. We then calculate pairwise cor-
relation between the remaining variables, and retain only one representative from
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Fig. 4. Marginal scatter plots from the CalCOFI Bottle dataset showing
the pairwise relationships between Salnty, Oxy µmol.Kg and T degC. The
nonlinear nature of the dependences is immediately apparent.
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Fig. 5. Example pairwise dependence graphs output by the Bayesian condi-
tional independence test for five variables from the CalCOFI dataset, condi-
tional on T degC, for four different sizes of subsample drawn from the complete
dataset. The numbers associated with each edge are the posterior probabilities
of conditional dependence p(H1|W (N)) and are given to two decimal places;
where no edge is shown, this indicates p(H1|W (N)) < 0.005.



A BAYESIAN NONPARAMETRIC TEST FOR CONDITIONAL INDEPENDENCE 167

0.00

0.25

0.50

0.75

1.00

10 20 50 100 200 500 1000 2000 5000

N

P
(H

1|
W

)
STheta / Oxy_µmol.Kg

0.00

0.25

0.50

0.75

1.00

10 20 50 100 200 500 1000 2000 5000

N

P
(H

1|
W

)

Oxy_µmol.Kg / R_DYNHT

Fig. 6. Box-plots giving the output posterior probability of conditional de-
pendence p(H1|W (N)) for 100 repetitions of the Bayesian conditional inde-
pendence test applied to randomly-drawn subsamples of various sizes N from
the CalCOFI dataset. The left-hand plot gives a representative example of a
pair of variables conditionally dependent given T degC, while the right-hand
plot gives a representative conditionally independent pair.

groups with pair correlations all greater than 0.99. This leaves 657,216 observations
of six variables, these being T degC (Temperature), Salnty (Salinity), STheta (Po-
tential density), Oxy µmol.Kg (Oxygen in micromoles per kg), R DYNHT (Dynamic
height) and R PRES (Pressure).

For the purposes of exposition, we focus on the case where Z is the variable
T degC, and X and Y are chosen from the remaining five variables. Though the
number of observations remaining even after pre-processing is not significantly lower
than in the full dataset, we subsample sets of much smaller cardinality to demon-
strate the ability of our test to correctly identify conditional dependence relations
in limited data settings. This also serves to effectively eliminate correlation be-
tween observations—which would otherwise be strong in this type of time series
data—meaning we are able to avoid violating the assumption of i.i.d. data.

For each of the 10 possible pairs (X,Y ) chosen from the five remaining variables,
we subsample N = 50, 100, 200 then 500 observations and denote the resulting
partial datasets W (N). Figure 5 gives the graph corresponding to the pairwise
dependences found among these five variables conditional on T degC for one exam-
ple draw of each size of subsample, where the number associated with each graph
edge is the posterior probability of dependence p(H1|W (N)). The uncertainty in
the existence or otherwise of a conditional dependence relation is reflected in the
smaller N cases by the posterior probabilities shown for those edges, which are away
from 0 and 1. This type of output would be unavailable with a classical test. By
N = 200 (and certainly by N = 500), the recovered graph emerges clearly. All
probabilities are given to two decimal places; where no edge is shown, this indicates
p(H1|W (N)) < 0.005.

The graphs in Figure 5 are given as an example to show the nature of the output
possible with the use of a Bayesian algorithm for this problem. In Figure 6 we
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give aggregated box-plots for 100 repetitions of the above procedure—analogous to
the plots in Figure 3—for two example variable pairs. These show, as expected,
a range in the output posterior probabilities of dependence for the smaller values
of N . If some sort of thresholding were implemented to produce the equivalent
decision output of a classical test (for example: “reject H0 if p(H1|W (N)) > 0.5, do
not reject H0 otherwise”), then this set of test runs could be used as the basis of
an empirical power analysis.

This type of output is in many ways more informative than the output of a
classical test. As can be seen in Figure 6, the algorithm occasionally returns what
appears to be a fully incorrect answer (ie. a posterior probability of 1 when the
majority of other runs strongly imply a state of conditional independence). This
is the equivalent of a classical Type I error. More often, however, the algorithm
returns a probability value strictly between 0 and 1—this output is richer and can be
interpreted by the analyst more readily as representing an uncertain test outcome.

4.3. Implementation. Practical implementation of the proposed algorithm given
in Figure 2 requires the setting of the two hyperparameters c and ρ as well as
recursively-constructed partitions for the various sample spaces. The locations of
the splits in such partitions is known to affect inference in the Pólya tree family of
models [27]. As a default, we suggest two practical approaches to the reader. In
the case of a sample space Ω with compact support, a simple binary partitioning
consists of subdividing each set into two subsets of equal size. For Ω = [0, 1], we
thus obtain the partition defined by (20). This is the approach used for the TPT
models in the experiments above. Similarly, a quaternary recursive partition of
[0, 1] × [0, 1] can be constructed by subdividing each two-dimensional set into four
square quadrants of equal size.

Another approach, which is also suitable for non-compact sample spaces, is to
construct a partition based on the quantiles of a pre-defined distribution G; a Gauss-
ian distribution is typically used. For our purposes, it is clear that the partitions of
ΩX , ΩY and ΩZ should be constructed separately in order to preserve independence
relations. The quaternary recursive partition of ΩXY = ΩX×ΩY is then constructed
from the two binary recursive partitions of ΩX and ΩY . The parameters of the dis-
tribution G—such as the mean and variance in the case that G is Gaussian—can
be derived from empirical estimates of the location and spread of the samples.

The mixing parameter ρ controls the probability of stopping during the parti-
tioning of ΩZ and thereby defines the balance between the contributions of the
restricted-data marginal likelihoods from different scales in the multi-scale mixture
model. We have chosen to keep ρ independent of the set A, however there is no
theoretical impediment to letting ρ depend on A. Wong & Ma [39] and Ma [23]
both fix ρ = 0.5 for all their simulations and provide no further discussion of it.

The second hyperparameter is the constant c in the level-dependent Dirichlet
hyperparameter αj = cj2. The question of how to set this is present in all work
on Pólya trees and is in general open. Berger & Guglielmi [1] write that c “is very
difficult to specify”, and it is clear that its value can affect inference. Hanson &
Johnson [14] point out that in the case of the TPT, the limit c → 0 essentially
turns the model into the empirical distribution of the data, while the opposite limit
c→∞ approaches the parametric model defined by the base measure. In practice,
c = 1 is a common (though ultimately arbitrary) default choice. Other strategies,
such as empirical estimation of c, have recently been considered [42].
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Fig. 7. Top left: Heat map of conditional marginal likelihood values for the
three constituent models over ΩX , ΩY and ΩXY for the second and third
models of Figure 3. Top right: ‘Slices’ from this heatmap with ρ = 0.5.
Bottom: Test outputs for 100 repetitions of the second and third models of
Figure 3. Red plots fix c = 1 (output identical to Figure 3), while the blue
plots use the optimising values ĉ from the plot above.

We ran preliminary studies to gauge the effect that ρ and c have on the output
of our test for the second and third example models in Figure 3. Plots of marginal
likelihood values, with each of the three models over ΩX , ΩY and ΩXY considered
separately, are given in Figure 7. From these it is possible to note the relative lack of
sensitivity of the conditional marginal likelihood to variations in ρ for values between
approximately 0.3 and 0.7. Similar conclusions could be drawn from the remaining
two models, not shown here. This evidence, paired with the stated approach of
Wong & Ma [39] and Ma [23], justifies our setting ρ = 0.5 throughout.

As expected, there is a greater degree of sensitivity amongst the individual mar-
ginal likelihood values to the value of c. In Figure 7 we contrast the effect on the
output posterior probability of conditional independence of setting c = 1 through-
out (as in Figure 3), and of setting c to the value that maximises the conditional
marginal likelihood over a grid of test values for each of the three constituent models
separately, ie. ĉX ≈ argmaxc>0 pX|Z(W ; c), and similarly for ĉY and ĉXY .

The heat map (top left pane of Figure 7) gives the conditional marginal likelihood
values for the three constituent models over ΩX , ΩY and ΩXY for the second and
third models of Figure 3. The line plots (top right pane) are ‘slices’ from this
heatmap which fixes ρ = 0.5 and seeks to identify the optimal value of c. We have
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left the vertical scale off these plots since we are only interested in maxima rather
than the actual values of the conditional marginal likelihood.

The four panes at the bottom of Figure 7 contrast the test output resulting from
the two different approaches to setting c, using the same quantile bands as in Figure
7. The red plots (identical to those appearing in Figure 7) fix c = 1, while the blue
plots use the optimising values from the plot above. Our empirical findings are
that, while the value of c does impact the algorithm output, the consistency of the
test procedure does not appear to be affected in the large data limit. Theoretical
investigation of this assertion would be a fruitful subject for future research.

A more detailed study of the robustness of derived quantities of Pólya trees to
changes in hyperparameters is beyond the scope of the present work. For practi-
tioners we recommend either a ‘rule of thumb’ approach similar to that we have
implemented, possibly with a small number of test runs to calibrate, or a more
detailed (but correspondingly more time-consuming) set of pre-simulations. The
choice will necessarily be dependent on the dataset under consideration and the
balance between speed and accuracy called for by the particular use case.

5. Conclusions & discussion. In this article we have defined and demonstrated
a new Bayesian nonparametric approach to quantifying the relative evidence in
favour of independence or dependence of two random variables conditionally on a
third. We have done so in a manner that minimises the assumptions required on
the unknown joint distribution of (X,Y, Z), by modelling various of its conditional
distributions using Pólya trees.

We believe this approach has the potential to be developed in numerous direc-
tions, and we hope it will in this way increasingly find application in practical
analyses. In its current form, the procedure we describe comes with relatively high
computational cost, due primarily to the recursive calculations required, though we
hope the line of research opened up by these ideas will soon lead to more efficient
implementations. An extension to the multi-dimensional setting, particularly for
the conditioning variable Z, would be of real use and is the subject of current work.

The Bayesian approach our procedure takes provides a framework in which both
the hypotheses of conditional independence and conditional dependence can be pos-
itively evidenced from a given dataset, unlike the inherently asymmetric hypothesis
tests of classical statistics. This is of great importance for causal discovery.

The output of the procedure is a value in the range [0, 1] which can directly be
interpreted as a posterior probability of conditional dependence p(H1|W ). This is
in notable contrast to previous approaches, even those that work partly within the
Bayesian paradigm. This type of output attaches a notion of uncertainty to the
result of the test, something absent in classical hypothesis testing. This uncertainty
may be propagated further down the ‘pipeline’ of computation if the test is used as
a constituent part of a larger procedure.

Our method also allows substantive prior information on the plausibility of an
association to be trivially incorporated, something particularly useful when screen-
ing large biological datasets. Lastly, the ability to detect dependences of a highly
nonlinear or even non-functional nature allows for much greater confidence in the
robustness of any inference procedure into which this type of test is embedded.
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