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Abstract 

In this paper, a helical capacitive sensor is developed to measure the moisture content (MC) in 

woodchips. Firstly, based on the orthogonal test method, the structure of the capacitive sensor is 

optimized to obtain the best possible uniform sensitivity. Then, the effect of the type and random 

distribution of woodchips on the capacitive MC measurement is investigated. Finally, three 

different algorithms, including support vector machine, random forest and deep neural network, are 

employed to establish the data driven models. Experimental results demonstrate that the proposed 

system is capable of measuring the MC in woodchips with absolute error within ±5%. The 

generalization capability is verified using the cedarwood with three size ranges, with R2, RMSE 

and MAE of 0.95, 1.69% and 1.28%, respectively. The absolute error of the predicted MC in 

cedarwood over the range 24.3% and 25.2% is found to be within ±2% for a range of packing 

densities. 

Keywords – Moisture content measurement, data driven modelling, helical capacitive sensor, 

finite element modelling, woodchips. 

1. Introduction 

As a renewable and carbon neutral biomass material, woodchips are widely applied in power 

plants and domestic boilers for the power generation and heating. The moisture content (MC) is an 

important factor that affects the mechanical performance and physical stability of the woodchips. 

The MC of woodchips depends on many factors, such as the age, species and cutting season of the 

tree. Before the combustion of woodchips, they are usually squashed and compressed. However, 

woodchips with exceedingly high or very low MC cannot be molded. Moreover, in the combustion 

process, a higher MC consumes extra energy in the furnace, which results in lower combustion 

efficiency [1]. Therefore, accurate and reliable MC measurement is needed for woodchips. 
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The MC in woodchips (W0) reported in this work is the gravimetric MC and it is defined as: 
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where md and mw are the mass of dried and wet woodchips, respectively [1].  

The available methods to measure the MC in woodchips mainly include direct and indirect 

methods. The oven drying method is considered as a direct method. Material is dried at a high 

temperature until the weight reaches a constant weight. The oven drying method is time-consuming 

and destructive, so it is not suitable for online continuous measurement and large-scale usage. 

Although this method has above shortcomings, the MC from the oven drying method is often used 

as the reference value. 

Near-infrared spectroscopy (NIR), microwave, X-ray, nuclear magnetic resonance (NMR), 

imaging processing and electrical methods are usually considered as indirect methods. NIR method 

applies reflectance and absorbance principles and the amplitude ratio of the reflected wavelengths 

between the reference and sample beams is used to calculate the MC [2]. However, NIR method 

measures the MC of thin materials and only the moisture on material's surface is detected. In 

addition, the effects of material size, surface characteristics and surface color result in measurement 

errors. Microwave sensors have been used to measure the MC in different materials and the 

microwave method is independent of density changes [3-5]. In addition, several new algorithms are 

proposed for the MC prediction. However, because of the higher operation frequency, the 

measurement system for the microwave method is more complex. X-ray and NMR methods 

estimate the MC from the attenuation coefficient of the X-ray beams and NMR signal [6, 7]. 

However, X-ray and NMR methods are extremely expensive and have limited accessibility due to 

potential radiation hazard. The MC can also be measured using the image processing method and 

it is predicted by establishing the relationship between image characteristics and the MC [8]. 
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However, the image processing method needs a homogenous surface and rough surfaces or 

variations in color result in large errors. 

Since the MC affects electrical properties such as resistivity or dielectric property of the material, 

the electrical method usually includes resistive and capacitive methods [9, 10]. The resistance of 

dry material is higher than that of water. The higher the MC, the lower the resistance value is. There 

is a quantitative relationship between the MC and the resistance value. However, when the MC of 

the material is low, the resistance value is extremely high, which results in difficulty to measure the 

MC accurately. For capacitive method, dry wood has the relative permittivity between 2 and 4 and 

water at ambient temperature has the relative permittivity of about 80 [10]. Because of the large 

difference in the dielectric property, the variations in MC cause obvious changes in the capacitance, 

which results in high sensitivity for MC measurement. In addition, the capacitive method has the 

advantages of non-destructiveness, simple structure, and good repeatability. 

Different types of electrodes are adopted for the capacitive MC measurement, which include 

parallel plate electrode [11-13], interdigital electrode [14, 15], fringing-field electrode [16, 17] and 

multi-electrode [18]. However, parallel plate, interdigital and fringing-field electrodes have non-

uniform sensitivity distribution due to the fringe field effect. The capacitive measurement of the 

MC will be affected because of the random packing of woodchips in the sensing volume. Moreover, 

the sensor with multiple electrodes takes a long time in each MC measurement cycle. Many factors 

such as type, packing density and particle size of woodchips are not comprehensively analyzed for 

the capacitive MC measurement. Traditionally, the MC measurement was conducted by 

establishing empirical equations, which build the relationship between the MC and electrical 

parameters of impedance, capacitance and phase angle [11]. However, these equations have poor 

generalization capability. 
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In this paper, the capacitive sensing and data driven modelling is combined to predict the MC in 

woodchips. The proposed method can estimate the MC in different kinds of woodchips under 

different packing densities using a simply and low cost capacitive measurement system. The main 

contributions include three points: 

1) A helical capacitive sensor, which has relatively more uniform sensitivity than its counterparts 

[19-22], is applied and the structural parameters of the sensor are optimized. 

2) The capacitance spectrum obtained through the frequency sweeping is introduced and various 

factors on the capacitive MC measurement are experimentally investigated. 

3) Since data driven modelling has many advantages in solving complex and non-linear problems 

with good generalization capability [23], data driven models based on support vector machine 

(SVM), random forest (RF) and deep neural network (DNN) are established to predict the MC in 

woodchips. Comparative assessments and comprehensive evaluation of the data driven models for 

the MC prediction in applewood and cedarwood with three size ranges are conducted. 

2. Methodology 

2.1 Measurement Principle 

The measurement principle of the proposed method is given in Fig. 1. Compared with the single 

frequency and two-frequency measurement, the application of multiple frequencies provides more 

information of the dielectric property [24]. For example, different types of woodchips have different 

dielectric properties and their capacitance spectra can help to improve the prediction accuracy of 

the MC in woodchips. Therefore, the capacitive sensing system in this paper applies the frequency 

sweeping method to obtain the capacitance spectrum of woodchips. Moreover, in view of its 

advantages of high prediction accuracy and good generalization capability, data driven modelling 

is adopted to predict the MC in this study. By investigating the characteristics of the capacitance 
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spectrum and the influence of the type and random distribution of woodchips in the sensor, the 

signal features from the capacitance spectrum and the mass of the sample are selected to be the 

input of data driven models. SVM, RF and DNN algorithms are selected to build data driven models 

for the prediction of the MC in woodchips and the reason for choosing these three algorithms is that 

they have different features. SVM is a supervised learning algorithm that is widely used for the 

classification or regression problems. Due to the features of fast response and simple structure, data 

driven models based on SVM have been applied to predict the MC in the soil and fresh fruits [25, 

26]. RF is created based on the bootstrapping of many decision trees and the final prediction of the 

RF model is obtained by averaging the response from all the trees. The features of RF model include 

high prediction accuracy, high tolerance for noise data and outliers, and low possibility to 

overfitting [27]. With the popularity of deep learning, deep learning algorithms have been widely 

applied in data driven modelling [28, 29]. DNN is a type of feed forward neural network, which has 

more than one hidden layer. Compared with shallow learning algorithms, the deeper architecture of 

DNN increases the prediction accuracy and improves the generalization capability to new samples 

[30]. 

 

Fig. 1. Schematic diagram of the measurement principle. 
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As shown in Fig. 2, the helical capacitive sensor includes a detection electrode, a source electrode 

and two types of shielding electrode. The stray capacitance and fringe field effect can be reduced 

by the edge guard electrode and the electromagnetic noise can be eliminated by the shielding 

electrode. 

 

The structural parameters of the sensor are shown in Fig. 2, where L is the axial length of the 

helical electrode, A is the width of the edge guard electrode, B is the axial distance between the 

source electrode and edge guard electrodes, θ is the plate opening angle. These structural parameters 

affect the sensitivity distribution of the helical sensor and they should be optimized [18]. Because 

it is complex and impractical to determine the electrostatic field analytically, the optimization of 

the sensor structure is accomplished by a finite element model (FEM). Since the random packing 

of woodchips in the capacitive sensor will affect the optimization results, for the purpose of the 

sensitivity distribution optimization, there is no need to consider the target material to be measured. 

Considering only the air and water, the optimization of the sensor structure can also be realized. 

During the simulation, 10 × 10 elements are created in the sensing volume. The material in each 

element is set as water and air respectively, to investigate the sensitivity distribution of the helical 

sensor. The sensitivity of the helical sensor is defined as: 

( ) i l
t

h l i

C C V
S i

C C V
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                                                                  (2) 
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where i represents the sequence number of the sensing element in the FEM model. St(i) denotes the 

sensitivity of the ith element. Ch and Cl are the capacitance values when the sensing volume is full 

of water and air, respectively. Ci is the capacitance value when the material of the ith element is set 

as water, while the rest volume is set as air. Vi is the volume of the ith sensing element and V is the 

whole sensing volume.  

Non-uniformity Sr is used as the objective function for the sensor optimization. 

                                                                  (3) 

where Sσ and S  are the variation and average of the sensitivity value in the sensing volume, 

respectively. Thus, the smaller the Sr is, the more uniform the sensitivity will be. 

The orthogonal experimental design is a widely used multi-factor experimental method based on 

an orthogonal array and it has already been used to optimize the sensor structure [18]. Based on the 

orthogonality, some representative points are selected from comprehensive experiments, which 

gives equivalent results in the minimum number of attempts. The different levels for structural 

parameters of the helical capacitive sensor are given in Table 1. In order to extend the simulation 

results to the helical sensor with different diameters, L, A and B are normalized to the outer diameter 

of the pipe (D) [18]. Since D is just a coefficient, the normalization will not affect the optimal values 

of L, A and B. 

Table 1. Levels of four structure parameters for the capacitive sensor 

Levels 
Parameters 

L/D θ (°) A/D B/D 

Ⅰ 1 90 0.25 0.25 
Ⅱ 3 110 0.5 0.5 
III 5 130 0.75 0.75 
IV 7 150 1 1 
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The orthogonal table based on four parameters and their four possible levels, which need 16 

experimental runs, are given in Table 2. The last column of Table 2 shows the corresponding Sr to 

the related experiment runs. The average Sr is calculated for each parameter under four levels. Fig. 

3 shows the relationship between the average Sr and the parameters of L/D, θ, A/D and B/D. The 

course of the curves between the points is calculated through cubic spline data interpolation. It is 

found that the change in L causes the most obvious variation in average Sr. It’s proved that L has 

the largest influence on the sensitivity distribution of the sensor, followed by A and B, while θ has 

a smaller impact. The results suggest that the larger the parameters L, B and A are, the more uniform 

the sensitivity distribution will be. In fact, it is impractical for the sensor with a long axial length. 

Moreover, when the L/D is larger than 3, the change of average Sr becomes smaller. Considering 

all the structural parameters and the practicality of the sensor, the parameters are L/D=3, θ=110°, 

A/D=0.6 and B/D=0.5, respectively. The sensitivity distribution test of the parameters is also 

conducted and the resulting Sr is 0.32. Since the sensing volume of the optimized helical sensor is 

not perfectly uniform, the random distribution of woodchips in the sensor still leads to errors in the 

MC measurement. 

Table 2. L16(44) Orthogonal table and simulation results 

Configuration 
Parameter levels 

Sr 
L/D Θ A/D B/D 

1 I I I I 0.93 

2 I II II II 0.73 

3 I III III III 0.69 

4 I IV IV IV 0.70 

5 II I II III 0.50 

6 II II I IV 0.56 

7 II III IV I 0.52 

8 II IV III II 0.55 

9 III I III IV 0.38 
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10 III II IV III 0.37 

11 III III I II 0.52 

12 III IV II IV 0.53 

13 IV I IV II 0.32 

14 IV II III I 0.37 

15 IV III II IV 0.38 

16 IV IV I III 0.47 

 

 

(a)                                                                           (b) 

 

(c)                                                               (d) 

Fig. 3. Average Sr versus structural parameters. (a) L/D. (b) θ. (c) A/D. (d) B/D. 

3. Experimental setup 
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3.1. Measurement System 

The measurement system as shown in Fig. 4, includes a helical capacitive sensor, a LCR meter 

(Keysight E4980AL) and a personal computer (Intel Core i5 1.80 GHz with 12 GB of RAM). The 

LCR meter sweeps from 20 Hz to 1MHz and a capacitance spectrum with 201 points is obtained. 

In each MC measurement, the MATLAB program that is developed in-house sends control 

commands to the LCR meter to obtain the capacitance spectrum from the sensor and reads the mass 

of the sample from the precision electronic scale. The signal features of the capacitance spectrum 

and the mass of the sample are input into the data driven models and the predicted MC in woodchips 

is calculated. In addition, the reference MC in woodchips is obtained by a halogen analyzer (Mettler 

HE83). The equipment applies the oven drying method over the drying temperature from 50 to 200 

oC. The repeatability of the equipment with 10g sample is 0.05% with the MC ranging from 1% to 

100%. 

 

Fig. 4. Experimental setup. 

3.2. Samples and Experimental Procedure 
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Two types of woodchips, applewood and cedarwood, were used in the experimental 

investigations. The true densities of applewood and cedarwood are 0.83 and 0.54 kg/m3, 

respectively, which are provided by the supplier. The true densities are the mass of woodchips 

divided by the volume without voidage. In addition, for each type of woodchips, small, medium 

and large samples were tested. Their sizes are 0.5-1 cm,1.5-2.5 cm and 3-5 cm, respectively. Fig. 5 

shows the images of the three sized applewood woodchips. 

       

(a)                                                                             (b) 

 

(c)  

Fig. 5. Applewood woodchips. (a) Small samples. (b) Medium samples. (c) Large samples. 

 

Before the experiments, the woodchips were ventilated on a metal plate for a few days to 

maintain nearly consistent initial MC in each woodchip. These woodchips were separated into 15 
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groups and placed in plastic bottles. By adding a certain amount of water to each bottle, 15 different 

levels of MC were obtained during the experiments. Since the range of the MC in woodchips for 

the industry varies from 10% to 45% [1], the MC in the experiments was set between 7% and 49% 

with a 3% increment. These woodchips were firstly placed for a few days and shook periodically 

to ensure the homogeneity of moisture distribution in the bottle. Next, the prepared woodchips were 

put into the capacitive sensor and the corresponding capacitance values were recorded. Finally, 

three sub-groups of woodchips were randomly selected from each bottle and their MC were 

measured using the halogen analyzer. The average value was calculated as the reference MC. In 

addition, the capacitance spectrum was measured for three times under each MC measurement. Fig. 

6 shows the capacitance spectra from three test runs with small sized cedarwood when the MC is 

11.47%, 23.47% and 47.41%, respectively. When the frequency is greater than 100 Hz, the 

maximum discrepancy among the capacitance values from the three runs is 0.82 pF, 1.33 pF and 

1.52 pF, respectively. In addition, with the increase of the frequency, the discrepancy becomes 

smaller, showing the repeatability of the capacitive sensing system. By averaging the results from 

the three runs, the capacitance spectrum for each MC is obtained. 

 

(a)                                                                            (b) 
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(c)  

Fig. 6. Capacitance spectra from three test runs with small sized cedarwood for different MC. 

(a) MC of 11.47%. (b) MC of 21.86%. (c) MC of 47.41%. 

 

4. Experimental results and discussion 

4.1. Frequency Sweeping Results 

The capacitance values under different frequencies with different MC are shown in Fig. 7. It is 

found that the capacitance value decreases monotonically with the increase of frequency under 

lower MC (lower than 20%). In addition, a crest appears when the MC increases to about 20%. The 

dielectric constant in the material is determined by the polarization effect and the dipole is randomly 

arranged under the normal condition. The arrangement of the dipole reverses with the variation in 

the electric field. With the increase of the frequency, the polarization effect intensifies and the 

capacitance value increases. However, because of the internal resistance of the material, the reversal 

arrangement of the dipole cannot keep up with the variation in the electric field under high 

frequency. The polarization effect weakens and the capacitance value decreases [31]. As a result, a 

peak appears in the capacitance spectrum. 
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(a)                                                                          (b) 

Fig. 7. Capacitance spectra with different MC. (a) Small sized applewood. (b) Small sized 

cedarwood. 

The capacitance value and corresponding frequency at the peak of capacitance spectrum are 

recorded to explore whether the peak is related to the MC in woodchips. Their quantitative 

relationships are given in Fig. 8. The results show that there is a good correlation between the 

frequency and the MC. Therefore, it can be used for the capacitive MC measurement. However, 

there is no obvious correlation between the capacitance value and the MC. Moreover, the 

corresponding data from the cedarwood samples have similar results. The reason for the 

monotonous relationship between the frequency and the MC is that the polarization effect is affected 

by the frequency of the electric field and the largest polarization effect occurs in woodchips with 

different MC under different frequencies of the electric field. 
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(a)                                                                      (b)  

Fig. 8. Relationship of the frequency at the peak and the corresponding capacitance value 

with the MC. (a) Frequency at the peak. (b) Capacitance value at the peak. 

 

4.2. Different Types of Woodchips 

Different types of woodchips have obvious difference in density. Fig. 9 (a) is a comparison of 

the capacitance spectrum of small sized applewood and cedarwood when the MC is 16.55%. As 

shown in the figure, at a certain frequency, the capacitance value is lower when the woodchip has 

lower density and this phenomenon is more obvious when the frequency is lower. The reason is 

that when the density of woodchips increases, the number of dipoles per unit volume increases and 

the polarization effect of woodchips intensifies, thus resulting in the increase of the capacitance 

value. In addition, there are also apparent differences in the frequency values at the peak under 

different types of woodchips, as shown in Fig. 9 (b). As a result, more features are needed to predict 

the MC in different types of woodchips. 
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(a)                                                                 (b)  

Fig. 9. Comparison of different types of woodchips. (a) Capacitance spectrum. (b) Frequency at 

the peak. 

 

4.3. Random Distribution of Woodchips 

Random distribution of woodchips in the sensor is investigated in two aspects: Firstly, the 

distribution of woodchips is affected by the particle size. Different particle sizes lead to different 

distributions. Under the same type of woodchips, a larger particle size results in a smaller packing 

density. As a result, the effect of particle size needs to be considered in the capacitive MC 

measurement. Secondly, the packing of woodchips in the sensor is quite random and the packing 

density of woodchips varies in each measurement even for the same particle size. In order to 

investigate the influence of packing density, variable mass of woodchips is put into the sensor in 

each experiment, resulting in different mass within the same packing volume. The mass value of 

the sample is recorded to represent its packing density. The capacitance spectra when the MC is 

14.03%, 25.04%, 39.48% and 49.48%, respectively are given in Fig. 10. The samples investigated 

are applewood woodchips with small particle size under different packing densities. It is found that 

the curves follow the same trend under different MC and the capacitance value increases with the 

packing density. Moreover, the peak points in the capacitance spectrum shift to the right. As a 
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consequence, the packing density of woodchips has a great influence on the capacitive MC 

measurement and the mass of the sample needs to be an input for data driven models. 

 

(a)                                                                       (b)  

 

(c)                                                                         (d) 

Fig. 10. Capacitance spectra of small sized applewood under different MC and packing densities. 

(a) MC of 14.03%. (b) MC of 25.04%. (c) MC of 39.48%. (d) MC of 49.48%. 

 

4.4. Capacitance Values Under Different Frequencies 

The capacitance values of woodchips under different frequencies are also analyzed. As shown in 

Fig. 7, when the frequency of the electric field is larger than the maximum frequency at the peak of 

the capacitance spectrum (black dash line in Fig. 7), the capacitance value increases monotonically 
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with the MC. Within the MC range investigated in this paper, the maximum frequency at the peak 

of the capacitance spectrum is 293 kHz when the MC of applewood is 49.48%. By analyzing the 

relationships between capacitance values under different frequencies and the MC, as given in Fig. 

11, the capacitance value between 300 kHz and 1 MHz can be the input of data driven models. In 

addition, it has been proved that variations in the dielectric property at different frequencies can be 

used to predict the MC of grain and nuts and the greater the difference in the dielectric property, 

the more sensitive the prediction model will be [11]. Therefore, the capacitance values at 300 kHz 

and 1 MHz are selected for the MC prediction in this paper. 

 

Fig. 11. Relationship between the capacitance values under different frequencies and the MC in 

woodchips. 

 

4.5. Data Driven Modelling for Capacitive MC Measurement 

Based on the above experimental investigations, the mass of the sample, the frequency at the 

peak of the capacitance spectrum and the capacitance values at 300 kHz and 1 MHz are selected as 

the input of data driven models. In addition, when there is no peak in the capacitance spectrum, the 

frequency is set to 0. Three data driven models using SVM, RF and DNN algorithms are built. The 

criteria for the selection of the hyper-parameters of the data driven models are given as follows: 
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The DNN model used in this paper contains 4 hidden layers and the number of neurons in each 

layer is 10, 6, 6 and 4, respectively. It is found that, when the number of hidden layers is higher 

than 4, the prediction accuracy of the MC is almost the same. In view of the prediction accuracy 

and model complexity, the DNN model with 4 hidden layers are developed. Bayesian hyper-

parameter optimization is carried out for the RF model [32]. The optimum parameters are selected 

that the number of tree is 120, the minimum number of samples in the leaf node is 3 and the 

maximum number of features is 2. The penalty parameters of the SVM model are optimized through 

five-fold cross validation and the kernel function is set as the cubic polynomial kernel after 

comprehensive comparisons. The coefficient of determination (R2), the root mean square error 

(RMSE), the mean absolute error (MAE) and the prediction time (T) are used to investigate the 

performance of data driven models. 
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where Ri and Pi are the reference and predicted values of MC, respectively, R  and P  are the 

averages of the reference and predicted values, respectively, and n is the number of samples in the 

dataset. 

70% of the data from the applewood are randomly selected as a training dataset and the remaining 

data are used as a validation dataset. Three data driven models mentioned above are trained and 
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validated using the personal computer. The validation results of the data driven models are shown 

in Fig. 12. The results from the proposed model are the average of DNN and SVM models. It is 

found all the data driven models can predict the MC in woodchips with absolute error within ±5%. 

In addition, as given in Fig. 12, most of prediction results have the absolute error within ±2%. For 

example, 90% of prediction results from the proposed model (Fig. 12 (d)) have the absolute error 

within ±2%. The main reason for the error is the sensitivity distribution of the sensor, which is not 

perfectly uniform. The performance of the data driven models is listed in Table 3. DNN and SVM 

models have similar prediction accuracy, while the RF model has the largest error. The reason is 

that although the final prediction of the RF model is calculated by averaging the results from all 

trees, the unexpected prediction from a single tree results in the larger error of the MC measurement. 

In addition, since DNN and SVM models have different features, a combination of the two models 

makes the proposed model more accurate. By averaging the results from DNN and SVM models, 

the proposed model has the higher prediction accuracy with RMSE and MAE of 1.21% and 0.99%, 

respectively. 
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(a)                                                      (b)  

  
(c)                                                             (d)  

Fig. 12. Validation results of the data driven models. (a) DNN model. (b) RF model. (c) SVM 

model. (d) Proposed model. 

 

Table 3. Performance of different data driven models  

Model R2 RMSE(%) MAE(%) T(ms) 
DNN 0.99 1.30 1.04 18.40 
RF 0.96 2.23 1.64 13.51 

SVM 0.98 1.51 1.19 1.83 
Proposed model 0.99 1.21 0.99 21.43 

 

Moreover, the prediction time of different models are compared. The SVM model has the fastest 

prediction time, which is less than 2 ms. Due to the complexity of RF and DNN models, the 

prediction time are nearly 14 ms and 19 ms, respectively. The proposed model with a prediction 

time less than 22 ms is sufficient for the real time prediction of the MC in woodchips. Based on the 

results from the above investigations on the prediction accuracy and prediction time, the proposed 

model is adopted in the capacitive MC measurement. 

The type and random distribution of woodchips in the sensor influence the capacitive MC 

measurement. The data from cedarwood with different sizes are used to verify the prediction of the 
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proposed model. The prediction results are given in Fig. 13 and Table 4. It is found that the proposed 

model can predict the MC in cedarwood with absolute error within ±5% and that the prediction 

accuracy is different for different particle sizes. Since the large sized cedarwood is packed more 

randomly in the sensor, the error of the proposed model from large samples is higher than those 

from small and medium samples. Moreover, as shown in Fig. 13 (a) to (c), 89.7%, 86.2% and 72.4% 

of prediction results have the absolute error within ±2%, respectively. 

 

(a)                                                               (b)  
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(c)  

Fig. 13. Prediction results of cedarwood with different particle sizes. (a) Small samples. (b) 

Medium samples. (c) Large samples. 

 

Table 4. Prediction results of cedarwood with different sizes 

Particle size  R2 RMSE(%) MAE(%) 

Small 0.98 1.30 0.97 

Medium 0.96 1.75 1.40 

Large 0.93 1.95 1.45 

 

In addition, an empirical equation is also established. A second-order polynomial equation is 

selected due to the higher fitting accuracy. Based on the same training dataset with the proposed 

model, the coefficients of the equation are calculated using the least square method: 

2 2 2 2

0 1 2

1 2

0.003 0.023 0.032 0.865 0.528

1.283 0.535 1.903 34.838

W m C C f m

C C f

    

   
                            (7)  

where W0 is the MC of the samples, m is the mass of the samples, C1 and C2 are the capacitance 

values at 300 kHz and 1 MHz, respectively, and f is the peak frequency of the capacitance spectrum. 

The prediction results of the empirical equation and the proposed model for the data from 
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cedarwood are plotted in Fig. 14. The generalization capability of two models is summarized in 

Table 5. Although the empirical equation has good accuracy on the training dataset, its 

generalization capability is not as good as the proposed model. In general, when the data from 

cedarwood are used as the validation dataset, the proposed model has good generalization capability 

with R2, RMSE and MAE of 0.95, 1.69% and 1.28%, respectively. It is shown that the proposed 

system can be used to measure the MC in cedarwood with different particle sizes. 

 
(a)                                                         (b)  

Fig. 14. Prediction results for the data from cedarwood. (a) Empirical equation. (b) Proposed model. 

 

Table 5. Generalization capability of empirical equation and proposed model 

Models R2 RMSE(%) MAE(%) 

Empirical equation 0.82 2.95 2.21 

Proposed model 0.95 1.69 1.28 

 

Finally, two tests are conducted to investigate the uncertainty of the proposed system. Firstly, the 

predicted MC from the proposed model is calculated using the data from Fig. 6, which are measured 

under three repeated runs for the small sized cedarwood with the MC of 11.47%, 21.86% and 
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47.41%, respectively. Table 6 shows that the maximum discrepancy of the predicted MC from the 

three runs is less than 1.2%. Secondly, the other test is conducted with cedarwood for MC over the 

range 24.3% and 25.2%, as shown in Fig. 15. Although the packing density varies from 149.6 to 

234.8 kg/m3, the absolute error of the predicted MC is within ±2%. It is proved that the proposed 

measurement system can predict the MC in woodchips with remarkably different packing densities. 

Table 6. MC measurement for three repeated runs 

Data First run Second run Third run 

Fig. 6 (a) 12.62% 13.35% 13.11% 

Fig. 6 (b) 21.84% 21.74% 21.65% 

Fig. 6 (c) 46.87% 45.76% 45.70% 

 

 

Fig. 15. Uncertainty of the measurement system for different packing densities of cedarwood.  

 

5. Conclusions 
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A method for measuring the MC in woodchips using a helical capacitive sensor has been 

proposed. Through the investigations, the following conclusions are drawn: 

1) By considering the non-uniformity of the sensitivity distribution and the practicality of the 

helical sensor, the optimal structural parameters of the electrodes are determined. In the optimal 

design of electrodes, the L/D, θ, A/D and B/D are set to 3, 110°, 0.6 and 0.5, respectively, and these 

yield the sensing field non-uniformity (Sr) of 0.32. 

2) By investigating the characteristics of the capacitance spectrum and the influence of the type 

and random distribution of woodchips in the sensor, the mass of the sample, the frequency at the 

peak of the capacitance spectrum and the capacitance values at 300 kHz and 1MHz are selected to 

be the input of data driven models. 

3) Experimental results have proved that the proposed system can measure the MC in woodchips 

with absolute error within ±5% when the MC ranges from 7% to 49%. In addition, the proposed 

system has good generalization capability with R2, RMSE and MAE of 0.95, 1.69% and 1.28%, 

respectively, in predicting the MC in cedarwood with different particle sizes. Moreover, the 

uncertainty of the proposed system with cedarwood over the range 24.3% and 25.2% has been 

quantified. Although the packing density varies from 149.6 to 234.8 kg/m3, the absolute error of the 

predicted MC is within ±2%. 

Woodchips may contain impurities such as clay, stone, etc. The quantitative evaluation of 

impurities on the proposed method will be investigated in the near future. 
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