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Towards Safer Industrial Serial Networks: An
Expert System Framework for Anomaly Detection

Abstract—Cyber security is a topic of increasing relevance
in relation to industrial networks. The higher intensity and
intelligent use of data pushed by smart technology (Industry 4.0)
together with an augmented integration between the operational
technology (production) and the information technology (busi-
ness) parts of the network have considerably raised the level of
vulnerabilities. On the other hand, many industrial facilities still
use serial networks as underlying communication system, and
they are notoriously limited from a cyber security perspective
since protection mechanisms available for TCP/IP communi-
cation do not apply. Therefore, an attacker gaining access to
a serial network can easily control the industrial components,
potentially causing catastrophic incidents, jeopardizing assets and
human lives. This study proposes a framework to act as an
anomaly detection system (ADS) for industrial serial networks.
It has three ingredients: an unsupervised K-means component
to analyse message content, a knowledge-based expert system
component to analyse message metadata, and a voting process
to generate alerts for security incidents, anomalous states, and
faults. The framework was evaluated using the Profibus-DP, a
network simulator which implements a serial bus system. Results
for the simulated traffic were promising: 99.90% for accuracy,
99,64% for precision, and 99.28% for F1-Score. They indicate
feasibility of the framework applied to serial-based industrial
networks.

Index Terms—Cyber security, Anomaly Detection Systems,
Industrial Serial-based networks, Expert Systems, Profibus-DP

I. INTRODUCTION

Cyber security is an increasing topic in industrial researches
due to the intense, intelligent use of the data generated
in many varied sources, which brings, as a consequence,
greater integration between the communication elements. This
phenomenon is also happening in the industry shop-floor
through data generated on the Industrial Control Systems
(ICS) [1]. ICSs are being connected to business networks
to enable intelligent decision-making through the correlation
among operational data extracted from plants in real-time and
corporate or public databases. Industrial networks are how data
generated in ICS can be integrated and consumed [2].

Industrial plants typically use industrial networks to inte-
grate ICS elements. The up-to-date ones are based on ethernet-
like networks, also known as routable industrial networks.
These networks have cyber security protection mechanisms
inherited from business networks such as identity and ac-
cess control mechanisms, firewalls, IDS (Intrusion Detection
Systems), and IPS (Intrusion Protect Systems) [3]. However,
not all industrial networks are routable, and many industrial
facilities make use of serial networks. Serial-based networks
do not have similar mechanisms as routable networks and are

very limited from a cyber security perspective. The limitations
come from the fact that these networks were created when
ICSs were isolated. There was no concern about security
issues at that time, as an attacker would have to be physically
connected to the network to carry out an attack [4].

Serial industrial networks were created to be deterministic,
repeatable, and performing appropriately for their application.
There are dozens, perhaps hundreds of different serial net-
works in industrial plants, the vast majority of them without
any mechanism to protect against cyber-attacks [4]. Even so,
these networks are being integrated into business networks, be-
ing considered essential sources of process data [3]. The inte-
gration increases vulnerabilities and opportunities for attacks.
Because they do not have adequate security mechanisms, an
attacker can easily control the network and cause catastrophic
incidents [4]. In addition, critical infrastructures such as power
systems, nuclear power plants, and even autonomous vehicles
could be susceptible to these invaders, jeopardizing assets and
human lives [1].

This study presents an expert system that combines
knowledge-based and unsupervised technics to improve pro-
tection in industrial serial-based networks. ADS is a protection
mechanism widely used in routable networks but with little
or no application in serial-based networks [5]. The generic
framework proposed is the base of an expert system that com-
bines a knowledge-based process in parallel with unsupervised
technics to detect anomalies. Furthermore, a voting process is
employed to reduce false-positive rates and improve anomaly
detection precision. The main objective of the expert system
is to improve the identification of anomaly states, faults in
network operation, and cyber security incidents. The main
contributions of the proposed approach are: (1) We propose
and evaluate a generic framework based on an expert system
implemented in any industrial serial-based network as addi-
tional cyber security protection; (2) We propose an approach
using knowledge-based combined with unsupervised technics
to detect anomalies in industrial serial-based networks; (3)
We present an efficient voting process to reduce false-positive
rates and improve anomaly detection in industrial serial-based
networks.

II. SERIAL-BASED INDUSTRIAL NETWORKS AND CYBER
SECURITY LIMITATIONS

Industrial networks connect equipment in the industry to
control and monitor physical actions and conditions. Many
devices and equipment in an ICS are commonly segregated
in layers that form different automation subsystems [40].



Distinct networks may support each subsystem according to
its characteristics, such as the number of elements, real-time
responses, throughput, and type of devices [4].

Serial-based industrial networks are usually deterministic
and repeatable with regular cycles. Determinism means that
there is a known maximum time in which data is sent and
reaches its destination. Repeatable means that the intervals
between sending the data are repeated in consecutive cycles.
There can be no drop in performance or interruptions in
these networks, as this would directly impact production
processes [6]. Serial-based industrial networks commonly
support lower-level network layers such as sensor networks
(Sensorbuses), device networks (Devicebuses), and other field
instruments (FieldBuses). The equipment can range from
simple digital or analogic sensors plugged into an I/O module
to intelligent devices, controllers, and PLCs (Programmable
Logic Controller) [7]. Thus, there is a most suitable network
for each type of equipment.

Serial-based networks were built on the assumption that all
entities operating in the network are legitimately installed, per-
form the intended logic, and follow the protocol’s rules [41]. In
general, serial-based networks do not implement robust cyber
security defense mechanisms. Cyber security professionals
usually implement defense layers through firewalls between
security zones and DMZs (Demilitarized Zones) to avoid
access to the lower industrial networks. However, they do not
have specific protection mechanisms for serial-based industrial
networks, not even those from default [3].

The devices applied in serial-based networks, in general, do
not implement cryptography; all the data transferred over the
network is plaintext [41] because of hardware and network
bandwidth limitations [9]. Network components do not verify
the identity and permissions of other components associated
with them [41], authentication and authorization are not usual,
and the control is limited to the address checks. Network com-
ponents do not verify the messages’ content and legitimacy
(Data Integrity) [41].

Updates in hardware and firmware are sometimes nonvi-
able – some manufactures do not even support upgrades in
cyber security features [10]. In addition, almost no devices
or software specialized in serial-based industrial networks on
the market, not even asset monitoring. ADS, IDS, or IPS are
only available for routable networks, significantly reducing the
possibilities for improvements in cyber security in serial-based
networks [3]. If attackers could inject messages into the serial-
based network, they could cause significant damage [41].
As there are usually no intrinsic cyber security mechanisms,
network monitoring using an ADS seems to be an additional
security measure. A critical aspect is that it is not intrusive;
i.e., it does not interfere with the network.

III. RELATED WORKS

Several defense techniques may be applied in industrial
networks. Anomaly and intrusion detection systems are recog-
nized as strong lines of defense, mainly in situations in which
there are no other efficient cyber security mechanisms [11].

Intrusion detection is a process of detecting and tracking
anomalous activity in computing and network resources [12].
IDS are based on the fact that an intruder’s behavior will
be noticeably different from that of a legitimate user [13].
Differently, anomaly detection methods assume that something
abnormal is suspicious and tracks behavior, learning from
continuous monitoring and data collecting [12]. Anomalies are
patterns in data not conform to a notion of normal behavior [8].
IDS and ADS may be applied to improve cyber security
defenses; however, ADS can detect additional events like other
anomalous states and faults in the network operation.

There are several studies related to these subjects. Rubio
et al. [11] review the threats that affect elements in an ICS
and analyzed the applicability of IDS mechanisms. Chandola
et al. [14] provides an overview of the research of anomaly
detection systems, creating categories, and discussing the com-
putational complexity of the anomaly detection techniques. Hu
et al. [15] presented a taxonomy of IDS for ICS based on dif-
ferent methods and analyzed the advantages and disadvantages
of various categories of IDS. Finally, Mitchell and Chen [16]
classify IDS techniques based on detection technique and audit
material, summarizing the benefits and drawbacks of each one.

Some industrial networks were covered in many studies that
propose multiple techniques more adherents with their speci-
ficities. For example, Goldenberg and Wool [17] suggested
deploying an intrusion detection system on Modbus /TCP
networks based on deterministic finite automation (DFA),
assuming that the traffic is highly periodic. Gao and Morris et
al. [18] discuss the need for intrusion and detection systems
for some vulnerabilities in the serial-based network Modbus
RTU / ASCII. Liang et al. [19] proposed an intrusion detection
using a multi-feature data clustering optimization model to
improve detection accuracy and reduce false positive detection
rates. Khan et al. [20] proposed a hybrid model that uses k-
nearest neighbor and takes advantage of the consistent nature
of communications patterns in SCADA (Supervisory Control
and Data Acquisition Systems) networks.

Morris et al. [22] propose a deterministic intrusion detec-
tion for Modbus protocols (TCP and serial) derived from
vulnerabilities analysis of these protocols. There are many
ways to implement an anomaly or intrusion detection system.
Multiple algorithms to be applied in industrial networks were
proposed over the years. For example, Tomlin et al. [22]
proposed an unsupervised learning algorithm based on clus-
tering in SCADA system networks. Machine learning is the
most popular technique in recent studies, as in Zolanvari
et al. [23], Mehmod and Rais [24] and, Anton et al. [25].
Deep learning algorithms are also applied in anomaly and
intrusion detection systems for industrial networks such as
Hijazi et al. [26] and Javaid et al. [27]. Martinez et al. [28] and
Alvaro and Emilio [29] proposed using multi-agent systems
for intrusion detection that implement agents to collect and
analyze information from multiple sources, not only from
the industrial networks. This approach is considered a hybrid
intrusion detection system such as in Shen et al. [30], Ullah
and Mahmoud [31], and Anton et al. [32], in which various



techniques are applied to improve the robustness and the
effectiveness of the ADS and IDS.

The studies that relate ADS or IDS to industrial networks in
their majority are concentrated in techniques and algorithms
for detecting anomalies or intrusions in SCADA networks
based on routable protocols and the traditional methods al-
ready applied in business networks. Some studies propose
solutions for networks based on serial protocols but are limited
to specific protocols, like Modbus and CAN [9]. Although
these works deal with serial networks, they are not generic to
the point of being implemented in other well-known protocols
and used in industry such as Profibus DP / PA, Interbus,
DeviceNet, among others. Thus, there is a notorious gap that
needs to be addressed in networks based on serial protocols
with the primary objective of strengthening the cyber security
defenses in ICS where these networks are still applied.

IV. PROFIBUS-DP
Profibus-DP is a serial-based network, and it implements

a serial bus system. Profibus is a multi-master system and
offers different services for automation technology as cyclic
data exchange for process data and acyclic data exchange
for configuration and diagnostics [33]. There are two types
of devices; the masters are an active station that determines
data traffic on the bus and can assume two functions (or
classes) [34]: DP master, class 1: Control the system and
the slaves, typically are controllers, PLC, or computer-based
systems. DP master, class 2: These masters are tools for
commissioning, engineering, and maintenance. Typically, they
are PC based systems.

Fig. 1. Structure of Profibus-DP system

Each Profibus-DP device must have a unique address
for communication; these addresses comprise the range 0-
127 [35]. Profibus-DP has well-defined cycle phases, as shown
in Figure 2. During the startup phase, addresses are checked
to assess if they are valid, and slave diagnostics, configuration,
and parametrization are carried out. After all validations, the
data exchange starts [33].

During the data exchange phase, master class 1 exchanges
messages with slaves cyclically. The message exchange routine
made by master class 1 includes requesting information for

Fig. 2. Cycle phases [4]

slaves who are part of the network and assessing whether
new slaves have been included. The network master exchange
occurs cyclically between class 1 and class 2 masters; however,
Class 2 masters do not follow a routine, as their action occurs
in periods of configuration and diagnosis, which can vary
according to the need [33].

Telegrams and telegram sequences are uniform, and their
formats are fixed. There are five distinct telegram formats, as
shown in Figure 3 [33]:

• SD1: Telegram without data field.
• SD2: Telegram with variable length (payload range from

4 to 249 bytes).
• SD3: Telegram with fixed data length (8 bytes).
• SD4: Token telegram.
• SC: Short confirmation.

SD means, start delimiter, and assume different values as
shown in Figure 3. ED stands for end delimiter and marks
the end of a telegram [35].

The message sequence during the data exchanges is: a
master receives the token from another master (SD4), sends a
telegram without a data field (SD1), and gets a short confir-
mation (SC) [33]. Then, the master sends another telegram
without a data field (SD1) and receives a telegram with
variable length in reply (SD2). Finally, it sends this telegram to
all active slaves. After the cycle, the master passes on control
and sends a token to another master (SD4) [35].



Fig. 3. Telegram formats [2]

V. EXPERT SYSTEM PROPOSAL

The Expert System is based on an important observation:
Serial-based network traffic is highly periodic [6], [41]; if
multiple traffic samplings are regularly performed, it tends to
converge in a pattern in the long term. The regular pattern
helps establish a normal behavior, and any deviation from this
pattern signals an anomaly. The anomaly can represent a cyber
security event or an issue in the typical network behavior (a
defect, for example).

Serial-based network traffic behavior reduces the anomaly
detection complexity because it can sense the minimum
difference from the expected behavior. In this situation, a
low false-positive rate technique called Knowledge-based is
indicated to detect many types of attacks, predominately those
find out through rules [36]. The knowledge-based technique
implemented to the Profibus-DP network can be called an
expert system [14].

However, these techniques have difficulties detecting new
types of attacks because they only evaluate specific rules [14],
[36]. Furthermore, these techniques have problems detecting
attacks in the message data (PDU), as the message data can
vary, which unfeasible evaluations through directives.

Unsupervised techniques can circumvent this problem; they
may detect new types of attacks in the message data (PDU) and
eliminate the need for known directives. Another advantage of
these technics is that they do not need labeled training data,
simplifying the model refining [14]. However, they have high
false-positive rates. Even an efficient classifier may not be
sufficiently discriminative and generates false positives despite
robust training [37].

The expert system is based on the framework shown in
Figure 4, which proposes composing a knowledge-based with
unsupervised methods in a voting process. The composition
aims to increase the scope of anomaly detection and reduce
the false-positive rates. A voting processor evaluates (1) an
anomaly in metadata, (2) or anomaly in the message data
detected by the unsupervised algorithm; however, in this case,
variations in the message data statistics should also occur.

The framework divides the ADS into two phases: insight
momentum (or training phase) when the models are created
and refined and running momentum when the detection actions
occur.

A. Insight Momentum

In the insight momentum, the pre-processed data collected
by a sniffer is stored at the Training Dataset. The Training
Module transforms the stored data into a list of function
codes, addresses used during the multiple cycles, and a traffic
behavior model, as shown in Figure 5. The insight phase needs
a dataset large enough to see reliable behavior patterns.

The lists and the model are the base to detect anomalies in
two aspects: data behavior and message behavior.

1) Data Behavior: During the data exchange phase, the
master requests slaves’ information about their monitored
physical variables or sends updates to their actuators’ behavior.
Profibus-DP expresses regular cyclical behavior, and the data
in a stable operation in the long term tends to converge to a
particular pattern that can be the reference of normal behavior.
The network cycle arrangement expresses two data behavior
clusters, as the network cycle has two primary cycles – Mas-
ter Class 1 data exchange and configuration/parametrization
phases (Figure 2).

The SD2 and SD3 telegrams are the data sources of this
model. During the pre-processing, the PDUs are extracted
and stored in the Training Database. The data extracted from
PDUs can be clustered in different groups that represent a
specific data behavior. The cluster method groups object into
meaningful subclasses so that the members from the same
cluster are similar, and the members from different groups are
quite different from each other [38].

K-means is an unsupervised learning clustering technique
that has shown promising anomaly detection techniques [38],
[39]. The K-means algorithm creates two clusters representing
the Profibus-DP primary cycles; the clusters are extracted
with their centroids (centers of the clusters) referenced for
Euclidean distance assessments in the running momentum.

2) Message Behavior: The message behavior focuses on
the metadata. The metadata is extracted from the messages
exchanged during all cycles. There is three message behavior
evaluation:

• Traffic behavior: Refers to traffic statistics collected
during the cycles. The statistics are master length data
average, slave length data average, and message size
average. The traffic behavior evaluates all cycles (defined
by the SD4 telegram) and all telegrams.

• Function Codes: Collect all function codes exchanged
between masters and slaves. The function code occurs
in SD1, SD2, and SD3 telegrams.

• Address list: Collect all active addresses in the network.
The tuple source target is also collected and stored. The
addresses are collected in SD1, SD2, SD3, and SD4
telegrams.



Fig. 4. Proposed Framework

Fig. 5. Insight momentum flow.

B. Running Momentum
In the running momentum, the real-time data collected

by the sniffer (Figure 4) is pre-processed to detach PDU
data and metadata from the messages. Figure 6 shown the
running momentum flow. The SD4 message delimit the net-
work cycle [33]. Some evaluations are done for each message
and others for each cycle. As such, PDU data statistics are
calculated for every cycle, and the Euclidean distance and
metadata are evaluated for every message.

1) Voting Method: Voting is a method that combines
multiple detection techniques with the aim of reach better
results. Different techniques can detect anomalies with their
particular false-positive and false-negative rates. When they

are combined, it is possible to reach better rates [17]. The
proposed framework applies a voting method to get a more
accurate result than a single technique [17]. Expert systems
based on knowledge have low false-positive rates but can
have high false-negative rates when exposed to new cyber-
attacks [14]. On the other hand, the unsupervised technique
is suitable to detect new attacks, but it has high false-positive
rates [37]. Combining these two techniques in a voting process
can improve anomaly detection reducing false-positives and
false-negative rates. Algorithm 1 shows the background logic
in the voting process.

Table I shows the anomaly detection techniques applied in
the framework. For PDU Data, the average of master data,



Fig. 6. Running momentum flow.

Algorithm 1: Voting algorithm for evaluate a cycle
anomaly alert

function Voting (alerts);
Input : An ordered alert array of the 9 (Table I)

different anomalies alert
Output: BooleanAnomaly
if countPDUDataAnomaly(alerts) ≥ 2 or

evaluateMetaDataAnomaly(alerts) then
return True;
{If there is more than one alert related to the PDU

data or if there is at minimum one metadata
alert.}

else
return False;

slave data, number of errors, and the message size is calculated
in every cycle. This information is compared with the pattern
through a difference in means (confidence level of 0.95), but
no alert is issued unless another data deviation is detected.
Additionally, the Euclidean distance evaluates data deviation
comparing the distance between each message PDU and the
cluster centroids (0.80 of percentile). Still, no alert is issued
unless another data deviation is detected.

Figure 7 shown the voting process; each technique has the
same probability of detecting an anomaly. Still, the alert is only
issued if two or more techniques detect an abnormal behavior
simultaneously. The techniques are described in Table I.

For message metadata, the knowledge model compares, in
real-time, the function codes and the addresses with the pattern
stored in the metadata database. Additionally, a tuple source-
target is also compared to evaluate new communication flows.
For message metadata, any deviation issue an alert due to is
an apparent deviation of abnormal behavior. Any modification
in the network should trigger a model retraining.

Another traffic behavior assessment is the class 1 master
request message sequence (Table 2 – 1.4). There is a sequence
of requests between masters and slaves (starting from 1 to
127) [33]. If the request series is interrupted, an anomaly alert

TABLE I
ANOMALY DETECTION TECHNIQUES

Method Technique Anomaly
1. Knowledge 1.1 Mean Difference 1.1.1 Master average PDU

data deviation

1. Knowledge 1.1 Mean Difference 1.1.2 Slave average PDU
data deviation

1. Knowledge 1.1 Mean Difference 1.1.3 PDU data average size
deviation

1. Knowledge 1.2 Comparison 1.2.1 New Function Code
(metadata)

1. Knowledge 1.3 Comparison 1.3.1 New Addresses (meta-
data)

1. Knowledge 1.3 Comparison 1.3.2 New Tuple (metadata)

1. Knowledge 1.4 Rule 1.4.1 Master requests se-
quence out of order (meta-
data)

1. Knowledge 1.5 Rule 1.5.1 Number of messages
per cycle (metadata)

2. Unsupervised 2.1 Euclidean distance 2.1.1 PDU Data deviation

Fig. 7. Voting Process.

is issued.

VI. EXPERIMENT SETUP

The algorithms and techniques were implemented using
the python language. The phyton code in insight momentum
collects statistical data and rule-based data by storing it in
a local database. At running momentum, the code counts
the anomalous states identifying them for future analysis.
The experiments were performed with data collected from a
simulation software called ”Profibus Network Simulator” [42].
The simulation software very accurately reproduces the normal
functioning of a Profibus-DP network.

A real Profibus-DP network with a class 1 master and five
slaves was the basis for experimenting using the Profibus-DP
simulator.

In addition, one hundred thousand data records with normal
behavior were collected, and these were used for the insight



Fig. 8. Clusters centroids.

momentum for training. After the startup phase, the com-
munication establishes a very repeatable routine. Since these
networks are very repeatable [6], a smaller amount of data
would be enough to model normal behavior. Table II shows
the statistics calculated during the training phase.

TABLE II
STATISTICS

Statistic Value
Master data length average (bytes) 6.99
Master data length standard deviation (bytes) 0.24
Slave data length average (bytes) 31.34
Slave data length standard deviation (bytes) 7.55
Message size average (bytes) 27.23
Message size standard deviation (bytes) 12.45
Message cycle count average (bytes) 25.98
Centroid X cluster 1 (Data Deviation) 30.999
Centroid Y cluster 1 (Data Deviation) -9.769e40
Centroid X cluster 2 (Data Deviation) 129
Centroid Y cluster 2 (Data Deviation) 2.118e40

These statistics are used at running momentum as factors
to compare traffic behavior—the Figure 8 shown the cluster
centroids represented by gray circles and the observations by
purple circles.

VII. EXPERIMENTAL RESULTS

A second base was collected with 20,000 records from the
network simulator for the running momentum. To simulate
attacks or anomalies, new slaves were added via software;
slaves were removed from the network, the master address was
modified, repeated messages were inserted out of sequence.
In addition, messages with errors or data different from the
normal data were included in different moments.A total of
1398 abnormal situations were included to be detected by the
algorithms. Figure 9 shown Profibus-DP telegram fields that
were changed (in red) to simulate anomalies.

The abnormal states were identified, counted to enable the
metrics calculations. An overview of the performance of the
algorithms on the dataset is provided in Table III.

Fig. 9. Profibus-DP anomalies.

The overall accuracy and F1-Score were 99.90% and
99.28%, respectively. The high rates demonstrate that highly
cyclic and repeatable networks make anomaly detection sim-
pler.

VIII. EVALUATION

Accuracy (A) is a ratio of correctly predicted observations
to total observations. Total observations are the addition of
True positives (TP), True Negatives (TN), False positives (FP),
and False Negatives (FN), as shown in Equation 1. As shown
in Table III, the voting process has a smaller accuracy which
implies higher false-negative rates if compared with individual
unsupervised techniques. Precision (P) (Equation 4) is the
ratio of correctly predicted positive observations to the total
predicted positive observations. The precision after the voting
process is higher than the individual techniques, which implies
fewer false positives. The recall (Equation 3) is the ratio of
correctly predicted positive observations to all observations.
Recall is the ability to find all the positive samples. F1 Score
(F1)(Equation 4) is the weighted average of Precision and
Recall (R) [25]. This score takes both false positives and
false negatives into account. It is observed that after the voting
process, a better F1 Score is obtained than the other individual
detections.

A =
TP + TN

TP + FN + FP + FN
(1)

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

F1 =
2× P ×R

P +R
(4)

Analyzing the results, it is clear that, individually, the
number of false positives is higher than after the voting
process, which somewhat reduces the problem of unsupervised
algorithms. However, this may imply an increase in the rate of
false negatives, as it takes two detections to confirm an alert.
As the accuracy of rule-based algorithms is high, this, in a



TABLE III
PERFORMANCE

Method TP FN FP TN Accuracy Precision Recall F1 Score
1.1.1 Master average data deviation 95 5 3 19897 0.9996 0.9694 0.9500 0.9596
1.1.2 Slave average data deviation 95 5 2 19898 0.9997 0.9794 0.9500 0.9645
1.1.3 Message average size deviation 197 3 3 19797 0.9997 0.9608 0.9800 0.9703
1.2.1 New Function Code 190 0 0 19810 1.000 1.000 1.000 1.000
1.3.1 New Addresses 120 0 0 19880 1.000 1.000 1.000 1.000
1.3.2 New Tuple 120 0 0 19880 1.000 1.000 1.000 1.000
1.4.1 Master request sequence out of order 160 0 0 19840 1.000 1.000 1.000 1.000
1.5.1 Number of messages per cycle 168 0 0 19832 1.000 1.000 1.000 1.000
2.2.1 Data deviation 130 10 5 19855 0.9993 0.9630 0.9286 0.9455
Voting (overall) 1373 15 5 18597 0.9990 0.9964 0.9892 0.9928

way, creates a balance that allows for both high accuracy and
an added ability to detect new attacks.

Rules-based detection is 100% accurate because all devia-
tions were detected. It was an expected behavior since rule-
based algorithms do not rely on statistical inference to detect
anomalies. However, it can be a problem in networks where
constant changes happen. In these cases, new training must be
carried out to update the model at every change in the network.
Therefore, this type of detection only makes sense in stable
networks, a situation expected in industrial networks.

Another important point to consider is the need to interrupt
detection during network maintenance, diagnostics, configura-
tion, and parameterization procedures. During these periods,
the network behavior will be different, which can cause undue
alerts. As these actions are always controlled, it will not be
challenging to interrupt detection during these periods.

The experiment carried out with simulation software is an
intermediate test built to attest to using ADS in industrial serial
networks. The results were auspicious, which now allows us
to proceed to tests in real networks.

IX. CONCLUSION

The framework application and experiment were made in
a Profibus-DP network; however, there is no limitation in
implementing it in any other serial-based industrial network.
The framework is generic, and the same assumptions applied
in Profibus-DP can be adapted to other networks taking into
account the specificities of each network. The advantage of
using anomaly detection techniques is that it is possible to
detect cyber security events, other anomalies such as device
defects or communication bus problems.

Applying two anomaly detection techniques in the context
of the industrial network reduces the number of false posi-
tives. In addition, it increases the evaluation scope, allowing
anomaly detection both in the context of messages (metadata)
and data.

This work analyzed datasets captured from a Profibus-DP
simulated tool to evaluate the voting framework proposed. The
results showed 99.90% accuracy and 99.28% of F1-Score,
which implies a promising approach and shows the advantages
of combining the techniques.

The voting process reduces the number of false positives,
but it increases the possibility of false negatives. However, part

of knowledge-based algorithms does not participate in the vot-
ing process, creating a balance that turns the framework robust
enough to practical implementation. Thus, it is attested that the
feasibility of applying ADS in serial industrial networks.

A limitation of this work is that it uses data from the
simulation. Therefore, the conclusions are still initial, done
only to test the framework’s viability. Future work may be
carried out on real data collected in industrial networks. Real-
time tests are also needed to verify the performance and
algorithms response time and the possibility of implementation
on dedicated hardware.
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