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Abstract: Expectile regression is a useful alternative to conditional mean and quantile regression

for characterizing a conditional response distribution, especially when the distribution is asym-

metric or when its tails are of interest. In this article, we propose a class of scalar-on-function

linear expectile regression models where the functional slope parameter is assumed to reside in

a reproducing kernel Hilbert space (RKHS). Our perspective addresses numerous drawbacks to

existing estimators based on functional principal components analysis (FPCA), which make im-

plicit assumptions about RKHS eigenstructure. We show that our proposed estimator can achieve
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an optimal rate of convergence by establishing asymptotic minimax lower and upper bounds on

prediction error. Under this framework, we propose a flexible implementation based on the alter-

nating direction method of multipliers algorithm. Simulation studies and an analysis of real-world

neuroimaging data validate our methodology and theoretical findings and, furthermore, suggest

its superiority over FPCA-based approaches in numerous settings. The Canadian Journal of

Statistics xx: 1–52; 2021 © 2021 Statistical Society of Canada

1. INTRODUCTION

Functional data have grown ubiquitous in medical data analysis, biology, and

image and signal processing, among many other fields (Ramsay and Silverman,

2006; Li et al., 2018; Wang et al., 2019; Yu et al., 2019). While intrinsically func-

tional, this type of data is almost always observed discretely over a grid, where

the number of grid points is often larger than the number of observations. Due to

the spatial or temporal nature of this grid, observations at nearby grid points are

often highly correlated. Specialized techniques are consequently crucial in the

proper analysis of functional data.

Traditional analytic approaches typically assume that errors are independent

and identically distributed (i.i.d.) with a symmetric and homoscedastic density

(Gu and Hui, 2016). These assumptions cannot be guaranteed in practice, par-

ticularly in high-dimensional settings (Li and Yao, 2019). As typical examples,

consider modelling meteorological outcomes (e.g., from the Canadian weather

* Author to whom correspondence may be addressed.

E-mail: lkong@ualberta.ca
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dataset, as in Ramsay and Silverman, 2006 or Cai and Yuan, 2012) or clini-

cal outcomes (e.g., Mini Mental State Examination (MMSE) scores, a clinical

survey-based measure used to quantify Alzheimer’s disease severity, as in Jack

et al., 2008). In these and many other settings, there is no guarantee that the con-

ditional response distribution will be symmetric, much less Gaussian. It is more

often the case that stochastic error terms are heteroscedastic and that the condi-

tional response distribution is highly skewed or heavy-tailed. As noted in Newey

and Powell (1987), heteroscedastic errors lead to inefficient or inconsistent pa-

rameter and covariance estimation.

From a practical standpoint, in regression settings where error is het-

eroscedastic or asymmetric, several estimators may be required for a satisfac-

tory picture of the relationship between the response variable and model predic-

tors. Each of these estimators may speak to a different notion of the location of

the conditional response distribution, such as its different quantiles levels. Neu-

roimaging data analysis is one such setting where responses at multiple extreme

levels, representing outlying or abnormal cases, are of more practical interest

than, say, a single conditional mean. Pietrosanu et al. (2021) further emphasizes

the particular need for functional tools not focused solely on conditional mean

estimation in neuroimaging data analysis and more general fields of application.

Motivated by the dependence of traditional coefficient estimators on error

homoscedasticity and symmetry assumptions, Newey and Powell (1987) first in-

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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troduced expectile regression, also called asymmetric least squares regression

(Waltrup et al., 2015; Gu and Hui, 2016). Expectiles are analogous to quantiles

and can similarly be computed for a random variable Y at any level τ ∈ (0, 1),

but are determined by the tail expectations rather than the tail probabilities of

a distribution. While quantile regression has a strong intuitive appeal, well-

studied robustness properties, and broad applications in a variety of research

fields (Koenker, 2017), Newey and Powell (1987) motivates expectiles by point-

ing out three major drawbacks to quantile estimators: their nondifferentiability,

their relative inefficiency for near-Gaussian error distributions, and the difficulty

inherent in computing their covariance.

It is then a natural development to consider expectile regression with func-

tional predictors (i.e., in a “scalar-on-function” framework). In this article, we

are concerned with the model

Y =

∫
T
X(t)β0(t) dt+ ε, (1)

where Y is a scalar response, X : T → R is a square-integrable stochastic pro-

cesss, and β0 : T → R is the slope function. We assume that the domain T is a

compact subset of a Euclidean space.

Most recent approaches to functional linear regression are based on func-

tional principal components analysis (FPCA) (Hall and Horowitz, 2007). FPCA

ultimately relies on an efficient representation of β0 in terms of the leading func-

tional principal components of X (Cai and Yuan, 2012). However, these func-

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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tional principal components might not form an appropriate basis to express β0 or

might have little predictive power. Consequently, FPCA-based methods might

not perform well. In practice, this phenomenon has been observed for func-

tional data in the Canadian weather dataset (Ramsay and Silverman, 2006; Cai

and Yuan, 2012), in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

data analyzed in this article, and more generally, in principal components re-

gression and singular value decomposition methods for linear inverse prob-

lems (Donoho and Johnstone, 1995). Numerous other works have considered

the model in Equation (1) using FPCA-based approaches (Cai and Hall, 2006;

Hall and Horowitz, 2007; Crambes et al., 2009; James et al., 2009; Schnabel and

Eilers, 2009; Guo et al., 2015; Liao et al., 2019).

In this article, we study instead the functional linear expectile regression

model from the perspective of a reproducing kernel Hilbert space (RKHS): we

assume that the slope function β0 resides in an RKHSH(K). In this more general

framework, the functional covariance operator C and the reproducing kernel K

of the RKHS are not required to be related. This assumption differs from the im-

plicit requirements in FPCA-based frameworks that the ordered eigenfunctions

of K and C perfectly coincide. FPCA-based approaches further assume that the

slope function β0 can be efficiently represented in terms of leading functional

principal components (Yuan and Cai, 2010; Cai and Yuan, 2012). RKHS-based

estimators, such as those proposed in this article, circumvent this restriction.

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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As illustrated in Yuan and Cai (2010), the eigenstructure of the RKHS plays

an important role in estimation and prediction, making RKHS-based methods

more difficult to implement. To our knowledge, the literature on RKHS-based

approaches to functional data analysis is limited. Cheng and Shang (2015)

considered a joint asymptotic framework for studying semi-nonparametric re-

gression models where (finite-dimensional) Euclidean parameters and (infinite-

dimensional) functional parameters are both of interest: the authors derived con-

vergence rates for estimators of both. Qu et al. (2016) studied functional Cox

models with right-censored data in the presence of both functional and scalar co-

variates in an RKHS framework. Notably, the authors proved that their functional

coefficient estimator achieves the minimax optimal rate of convergence in penal-

ized log partial likelihood settings. Li et al. (2007) derived various asymptotic

results regarding kernel quantile regression (KQR) and proposed an efficient al-

gorithm to compute entire KQR solution paths.

In this article, we propose a regularized estimator for the functional linear

expectile regression model in an RKHS framework. Specifically, unlike existing

FPCA-based approaches to expectile regression, we use the reproducing ker-

nel to approximate functional effects and capture local features. Theoretically

(when the eigenfunctions of K and C agree) and empirically (regardless of this

agreement) we find that our estimators exhibit stronger convergence rates rel-

ative to FPCA-based estimators. We further incorporate shrinkage penalties as

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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a means to improve estimate interpretability and generalizability for prediction.

We derive upper and lower bounds for minimax convergence in prediction error

and establish minimax convergence rate optimality for our proposed estimator.

We demonstrate that RKHS-based methods simplify functional coefficient esti-

mate regularization (e.g., via smoothness, sparsity, or Tikhonov penalties) and

allow model estimation to be formulated as a convex optimization problem. Our

RKHS-based estimator can thus be efficiently computed: the alternating direc-

tion method of multipliers (ADMM) algorithm we apply makes our procedure

simple to implement and allows us to incorporate existing computational tech-

niques for smoothing splines.

The remainder of the article is organized as follows. In Section 2, we dis-

cuss expectile regression and RKHSs and establish the minimax optimality of

our proposed estimator. In Section 3, we reformulate model estimation as a con-

vex optimization problem and derive an ADMM iterative update scheme using a

finite-dimensional representation of the slope function obtained via the represen-

ter theorem. Section 4 investigates finite-sample performance through simulation

studies and a real-world data analysis, the latter using data from the ADNI (Jack

et al., 2008). A subsequent appendix contains technical proofs of this article’s

main results.

As notation to be used throughout this article, let ‖·‖2 denote the Euclidean

L2 norm. For two positive real sequences (ak)k∈N and (bk)k∈N, we write ak � bk

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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to indicate that the sequence of ratios (ak/bk)k∈N is bounded away from zero and

infinity.

2. THEORETICAL PROPERTIES

We first introduce functional linear expectile regression, our proposed estimator,

and the setting where β0 ∈ H(K). Following this, we derive upper and lower

bounds for the minimax rate of convergence in prediction error and establish the

minimax optimality of our proposed estimator.

2.1. Expectiles and functional linear expectile regression

Let Y be a random variable with a distribution function F and a finite mean. The

τ th expectile µτ = µτ (F ) of Y , as defined by Newey and Powell (1987), is

µτ (F ) = arg min
η∈R

EY rτ (y − η),

for τ ∈ (0, 1), where rτ (y − η) = |τ − 1(y < η)|(y − η)2.

Expectiles share many desirable characteristics of quantiles and various ad-

ditional computational advantages (Newey and Powell, 1987). Jones (1994)

showed that the expectiles of a distribution F are the quantiles of a distribution

G defined explicitly as

G(y) =
P (y)− yF (y)

2(P (y)− yF (y)) + (y − µ)
,

where P (y) =
∫ y
−∞ x dF (x) and µ =

∫∞
−∞ x dF (x).

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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FIGURE 1: (Left) The expectile loss function for τ = 0.1, 0.5, 0.9 in red, blue, and black, respectively.

(Right) Kernel-smoothed estimate of the MMSE score density function (dotted blue) from the ADNI

dataset. The corresponding expectiles at τ = 0.1, 0.5, 0.9 are indicated in solid red, blue, and black,

respectively.

As a generalization of ordinary mean regression, expectile regression is

known to be statistically more efficient than quantile regression when standard

assumptions such as error homoscedasticity are not severely violated (Liao et al.,

2019). Unlike quantile regression, expectile regression uses a smooth loss func-

tion which, in terms of general computation, is considerably easier to optimize

(Gu and Hui, 2016). Holzmann and Klar (2016) and Krätschmer and Zähle

(2017) explored the asymptotic properties of sample expectiles and established

their uniform consistency under the assumption of a finite mean. Unlike quan-

tiles, expectiles are also guaranteed to be unique under this assumption. The

asymptotic normality of the sample expectile estimator follows directly with the

additional assumption of a finite second moment. Similar to quantiles, expectiles

characterize and give more insight into a distribution of interest.

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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Figure 1 illustrates the expectile loss function at τ = 0.1, 0.5, 0.9. When

τ < 0.5, the cost of a positive error is lower than that of a negative one, encour-

aging a smaller expectile µτ . Larger expectiles are correspondingly encouraged

when τ > 0.5. At τ = 0.5, the loss r0.5 is equivalent to the least squares loss and

recovers the mean of the distribution. In settings where the distribution of Y is

highly skewed rather than symmetric, τ can be chosen to obtain a more desir-

able location estimate. This is illustrated in Figure 1 using MMSE data from the

ADNI.

In this article, we are primarily interested in establishing the convergence

properties of our proposed regularized sample estimator for β0 in the functional

linear expectile regression model of Equation 1,

β̂n = arg min
β

1

n

n∑
i=1

rτ

(
yi −

∫
T
xi(t)β(t) dt

)
+ λJ(β), (2)

where {(xi, yi) : i = 1, . . . , n} is a set of observed training data, J is a penalty

function assessing the “plausibility” of a candidate β, and λ ≥ 0 is a tuning pa-

rameter controlling the strength of the penalty J . For convenience, we suppress

notation indicating implicit dependence on τ .

2.2. RKHS

We assume that the slope function β0 resides in an RKHSH = H(K), a subspace

of square-integrable functions with the domain T , equipped with a reproducing

kernelK. The canonical example ofH(K) is a Sobolev space: assuming, without

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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loss of generality, that T = [0, 1], the Sobolev space of order r (Golub et al.,

1979) can be defined as

Wr
2 =Wr

2([0, 1]) ={β : [0, 1]→ R : β, β(1), . . . , β(r−1)

are absolutely continuous and β(r) ∈ L2}.

One squared norm that will make Wr
2 an RKHS (Brézis, 2011) is∑r−1

j=0

{∫
T β

(j)(t) dt

}2

+
∫
T {β

(r)(t)}2 dt. The penalty functional J on the

slope function β can be conveniently defined as the squared norm or semi-

norm associated with H (Cai and Yuan, 2011): one possible choice is J(β) =∫ 1

0
[β(r)(t)]2 dt. The null space of J , defined as H0 = {β ∈ H : J(β) = 0},

forms a finite-dimensional linear subspace of H with some orthonormal basis

(ξ1, ξ2, . . . , ξM), where M = dim(H0). The orthogonal complement H1 of the

null space H0 is such that H = H0 ⊕H1. It can be shown that H1 also forms

an RKHS with the same inner product as H, but restricted to H1. More gen-

erally, for any β ∈ H, there exists β1 ∈ H0 and β2 ∈ H1 such that the decom-

position β = β1 + β2 is unique (Nosedal-Sanchez et al., 2012; Gu, 2013). Let

K be the reproducing kernel of H1 such that J(β2) = ‖β2‖2H = ‖β‖2K , defined

as the RKHS norm of β. Consequently, as we will demonstrate, we can find a

finite-dimensional representation for the functional slope coefficient β0.

We next consider the two kernels crucial to the estimation process. First,

recalling that T ⊂ R is a compact set, a reproducing kernel K : T × T → R

is a real, symmetric, square-integrable, nonnegative-definite function. There is

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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a one-to-one correspondence between a reproducing kernel K and an RKHS

H(K). Mercer’s theorem implies that K admits the spectral decomposition

K(s, t) =
∑∞

k=1 %kϕk(s)ϕk(t), where the eigenvalues (%k)k∈N are in nonincreas-

ing order and (ϕk)k∈N are the corresponding eigenfunctions.

For any real, square-integrable, semidefinite functionR, defineLR : L2 → L2

as the linear integral operator LR(f)(·) = 〈R(s, t), f〉L2(T ) =
∫
T R(s, ·)f(s) ds.

By the spectral theorem, there exists a sequence of orthonormal eigenfunctions

(ψRk )k∈N and a corresponding sequence of nonincreasing eigenvalues (θRk )k∈N

such that R(s, t) =
∑

k∈N θ
R
k ψ

R
k (s)ψRk (t) for all s, t ∈ T , and LR(ψRk ) = θRk ψ

R
k

for k ∈ N. Additionally, for all s, t ∈ T , R1/2(s, t) =
∑

k∈N

√
θRk ψ

R
k (s)ψRk (t).

We say that two linear operators are aligned if they share the same ordered (i.e.,

with corresponding eigenvalues in nonincreasing order) sequence of eigenfunc-

tions.

Let LR1/2 be the linear operator defined by LR1/2(ψRk ) =
√
θRk ψ

R
k . It is clear

that LR1/2 = (LR)1/2. Further defining (R1R2)(s, t) =
∫
T R1(s, u)R2(u, t) du,

it follows that LR1R2 = LR1 ◦ LR2 = LR2 ◦ LR1 .

With the previous results in mind, consider the covariance kernel C : T ×

T → R for X , defined as C(s, t) = E ([X(s)− EX(s)] [X(t)− EX(t)]). Of

course, we require that the covariance kernel C be continuous and square-

integrable over T × T . Similar to K, C admits the spectral decomposition

C(s, t) =
∑∞

k=1 µkφk(s)φk(t). The two eigenfunction sequences (ϕk)k∈N and

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



2021 13

(φk)k∈N are different in general. However, under certain conditions, K and C

can be simultaneously diagonalized (Conrad, 2014).

Using the eigenstructures of the reproducing and covariance kernels K and

C, we can define the linear operator LK1/2CK1/2 in a compositional fashion as

LK1/2CK1/2 = LK1/2 ◦ LC ◦ LK1/2 . By the spectral theorem, K1/2CK1/2 has the

spectral decomposition K1/2CK1/2(s, t) =
∑∞

k=1 νkζk(s)ζk(t), where the se-

quence of eigenvalues (νk)k∈N is arranged in nonincreasing order and (ζk)k∈N

is the corresponding sequence of orthonormal eigenfunctions. Obviously, the

eigenvalues (νk)k∈N are determined by the eigenvalues of both K and C and

the alignment of their respective eigenfunctions. We will eventually show that

the convergence rate of our proposed estimator is related to the decay rate of the

eigenvalues of K1/2CK1/2.

Before discussing estimation of the functional coefficient β0 over H(K), we

impose two basic assumptions on the reproducing and covariance kernels, whose

eigenstructures determine the optimal convergence rate.

(A1) The eigenvalues of K1/2CK1/2 satisfy νk � k−2r for some r > 0.

(A2) For any square-integrable function f ,

E

[∫
T

[X(t)− EX(t)] f(t) dt

]4
≤ c

(
E

[∫
T

[X(t)− EX(t)] f(t) dt

]2)2

for some constant c > 0.

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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Assumption A1 pertains to the decay rate of νk. As already discussed, this

rate is determined by the eigenstructures of the kernels K and C, specifically,

their individual eigenvalue decay rates and the alignment between their eigen-

functions. The eigenvalues of the covariance kernel C obey µk � k−2r
C if the

Sacks–Ylvisaker condition of order rC − 1 is satisfied for some integer rC ≥ 1

(Yuan and Cai, 2010; Ritter et al., 1995). As an example, the Ornstein-Uhlenbeck

covariance kernel C(s, t) = exp(−|s− t|) has rC = 1. For Sobolev spaces, var-

ious covariance functions are known to satisfy the Sacks–Ylvisaker condition

(Ritter et al., 1995). Concerning the eigenvalue decay rate of the kernel K, if H

is the rK th order Sobolev space WrK

2 , it is known that %k � k−2r
K (Micchelli

and Wahba, 1979).

When K and C are aligned, i.e., when they share a common ordered eigen-

function set so that φk = ϕk for k ∈ N (Cai and Yuan, 2012), it follows that

r = rC + rK in Assumption A1. However, if K and C are not aligned, then the

eigenvalues of the two operators alone cannot determine the order r. For exam-

ple, the eigenvalues for the Sobolev class Wr
2 for r > 1/2 follow a polynomial

decay rate.

Assumption A2 restricts the fourth moment of the linear functional∫
T X(t)f(t) dt, ensuring bounded kurtosis. When X is a Gaussian process, for

example, Assumption A2 is satisfied with c = 3.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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2.3. Minimax convergence properties

We take H(K) =W2
2 and define the penalty function as J(β) =∫

T [β′′(t)]2 dt = ‖β‖2K . Consequently, H0 is the linear space spanned by

ξ1(t) = 1 and ξ2(t) = t.

The accuracy of β̂n can be measured via the squared RKHS norm associated

with the covariance kernel C (Yuan and Cai, 2010), as

∥∥∥β̂n − β0∥∥∥2
C

= EX∗

(∫
X∗(t)β̂n(t) dt−

∫
X∗(t)β0(t) dt

)2

,

where X∗ is an independent copy of X and the expectation on the right-hand

side is taken over X∗. The above quantity measures the mean squared prediction

error for a random, future observation of X .

Theorem 1. (Minimax lower bound) Under Assumption A1,

lim
a→0

lim
n→∞

inf
β̂n

sup
β0∈H(K)

Pβ0

{
‖β̂n − β0‖C ≥ an−

2r
2r+1

}
= 1, (3)

where the infimum is taken over all possible estimators β̂n computed from the

training data.

Theorem 2. (Minimax upper bound) Under Assumptions A1 and A2,

lim
A→0

lim sup
n→∞

sup
β0∈H(K)

Pβ0

{
‖β̂n − β0‖C ≥ An−

2r
2r+1

}
= 0. (4)

provided that the tuning parameter satisfies λ � n−2r/(2r+1).

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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By Theorems 2 and 3, the regularized estimator β̂n is minimax rate optimal:

the minimax rate of convergence for the prediction error is n−2r/(2r+1). As dis-

cussed previously, this optimal rate of convergence depends jointly on the eigen-

value decay rate of the operator LK1/2CK1/2 (i.e., of the eigenvalues of K and C)

through r and, more importantly, on alignment between the eigenfunctions of K

and C.

3. COMPUTATION

In this section, we propose an efficient computational approach for model estima-

tion using the ADMM algorithm. We begin with an application of the represen-

ter theorem to establish that the proposed estimator lies in a finite-dimensional

subspace. We subsequently discuss hyperparameter tuning and propose our esti-

mation algorithm.

3.1. Representer theorem

Theorem 3. (Representer theorem) Let (ξ1, . . . , ξM) be a basis of H0. There

exist vectors e = (e1, . . . , eM)> and c = (c1, . . . , cn)> allowing the solution β̂n

to the problem in Equation (2) to be expressed as

β̂n(t) =
M∑
i=1

eiξi(t) +
n∑
k=1

ck

∫
T
K(s, t)Xk(t) ds. (5)

Theorem 3 is a generalization of the well-known representer lemma for

smoothing splines (Wahba, 1990). Although the minimization over β̂n in Equa-

tion (2) is taken over an infinite-dimensional space H(K), the above result im-

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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plies that the solution lies in a finite-dimensional subspace. Thus, it suffices to

estimate the coefficients e and c in Equation (5). By Theorem 3, we can conclude

that

∫
T
X(t)β(t)dt =

M∑
i=1

ei

∫
T
X(t)ξi(t) dt+

n∑
k=1

ck

∫
T

∫
T
X(t)K(s, t)Xk(s) ds dt.

Let Y = (Y1, Y2, . . . , Yn)> and let T represent the n×M matrix with

the (i, j)th entry Tij =
∫
T Xi(t)ξj(t) dt for i = 1, . . . , n and j = 1, . . . ,M .

Similarly, let Σ be the n× n matrix with the (i, j)th entry Σij =∫
T

∫
T Xi(t)K(s, t)Xj(s) ds dt for i = 1, . . . , n and j = 1, . . . , n. It follows

from the reproducing property that

J(β) =
n∑
i=1

n∑
j=1

cicj

∫
T

∫
T
Xi(t)K(s, t)Xj(s) ds dt = c>Σc.

We make use of this representation in the following subsections for model esti-

mation.

3.2. Hyperparameter tuning

As with most smoothing methods, the selection of the tuning parameter λ in-

fluences the performance of the regularized estimator β̂n. There are various

tools available for this task, such as K-fold cross-validation (Kohavi, 1995), the

Bayesian information criterion (BIC), generalized maximum likelihood (Wahba,

1990), and generalized cross-validation (GCV) (Golub et al., 1979).

In this article, unless otherwise noted, we employ GCV as a practical criterion

for choosing the optimal tuning parameter value. Because the regularized esti-
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mator is a linear estimator and can be written as ŷ = (ŷ1, ŷ2, . . . , ŷn) = H(λ)y =

Te+ Σc, where H(λ) is the “hat matrix” for a particular value of λ, we may se-

lect the the value of λ that minimizes (Wahba, 1990)

GCV (λ) =
1

n

∑n
i=1 rτ (ŷi − yi)

(1− Tr(H(λ))/n)2
.

3.3. ADMM algorithm

We next apply the ADMM algorithm to estimate the functional linear expectile

model. Pseudocode for the proposed estimation procedure is provided in Algo-

rithm 1.

Developed in the 1970s and further summarized in Boyd (2010), the ADMM

algorithm is a simple and efficient approach for solving convex optimization

problems. It has found renewed popularity in large-scale computing through its

ability to decentralize large, global problems into small, local ones. The ADMM

algorithm has been employed in quantile regression (Gu et al., 2018), two-way

functional hazard models (Li et al., 2018), and Gaussian graphical models (Ma

et al., 2020), to name only a few applications.

Using the results and notation of Section 3.1, the optimization problem in

Equation (1) can be reformulated as a convex optimization problem with respect

to e, c, and the auxiliary variable u as

minimize 1
n

∑n
i=1 rτ (yi − ui) + λc>Σc

subject to ui = Tie+ Σic, i = 1, . . . , n,

(6)
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where Ti and Σi denote the ith rows of T and Σ, respectively. The scaled ADMM

algorithm (Boyd, 2010) uses an objective function defined by the augmented

Lagrangian form of the above problem,

Lσ(u, e, c, h) =
1

n

n∑
i=1

rτ (Yi − ui) + λc>Σc+

σ

2

n∑
i=1

(ui − Tie− Σic+ hi)
2 − σ

2

n∑
i=1

h2i ,

which we aim to minimize over u = (u1, . . . , un)>, e, c, and h = (h1, . . . , hn)>

without restriction.

The scaled ADMM update scheme for the (k + 1)th iteration is straightfor-

ward to derive:

uk+1
i = arg min

ui

{
1

n

n∑
i=1

rτ (Yi − ui) +
σ

2
(ui − Tiek − Σic

k + hki )
2

}

=


σ(Tie

k + Σic
k − hki ) + 2τyi

σ + 2τ
, yi ≥ ui

σ(Tie
k + Σic

k − hki ) + 2(1− τ)yi
σ + 2(1− τ)

, yi < ui

(ek+1, ck+1) = arg min
ei,ci

{
λc>Σc+

σ

2

(
uk+1
i − Tie− Σic+ hki

)2}
hk+1
i = hki + uk+1

i − Tiek+1 − Σic
k+1.
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The update step for (e, c) above can be explicitly solved using the sub-iterations

ek+1 = (T>T )−1

[
n∑
i=1

T>i (uk+1
i − Σic

k + hki )

]
,

ck+1 = (2λΣ/σ + Σ>Σ)−1

[
n∑
i=1

Σ>i (uk+1
i − Tiek+1 + hki )

]
.

Stopping conditions for the proposed scheme can be defined in terms of the

size of the problem’s primal and dual residuals: we terminate the algorithm when

rk = ‖u− Te− Σc‖ ≤ εdual and sk = σ
(
T (ek+1 − ek) + Σ(ck+1 − ck)

)
≤ εpri.

Here, εpri =
√
nεabs + εrel max(‖u‖2, ‖Te+ Σc‖2) > 0 and εdual =

√
nεabs +

εrel‖h‖2 > 0 are feasibility tolerances for the primal and dual feasibility con-

ditions, where εabs > 0 and εrel > 0 are absolute and relative tolerances, respec-

tively. In all of the numerical studies presented in this paper, we follow the sug-

gestion in Boyd (2010) by fixing εrel = 10−4, εabs = 10−2, and σ = 2.

3.4. Convergence of the ADMM algorithm

We next apply a general result of Boyd (2010) to verify the convergence of our

proposed ADMM-based approach for estimating the functional linear expectile

regression model. For convenience, we return to a more-general formulation of

the ADMM algorithm:

minimize F (x, z) = f(x) + g(z)

subject to G(x, z) = Ax+Bz − c = 0,

(7)

with x ∈ Rn and z ∈ Rm, whereA ∈ Rp×n,B ∈ Rp×m, and c ∈ Rp (Boyd, 2010).

For our setting, x and z correspond to u and (e>, c>)>; f and g to the empirical
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Algorithm 1 ADMM algorithm for functional linear expectile regression.
Input: u0, e0, c0, h0 (initial estimates); σ (step size parameter); λ (tuning param-

eter)

1: repeat

2: for i = 1, . . . , n do

3: if uki ≤ yki then

4: uk+1
i ← σ(Tie

k + Σic
k − hki ) + 2τyi

σ + 2τ

5: else

6: uk+1
i ← σ(Tie

k + Σic
k − hki ) + 2(1− τ)yi

σ + 2(1− τ)

7: end if

8: end for

9: ek+1 ← (T>T )−1
[∑n

i=1 T
>
i (uk+1

i − Σic
k + hki )

]
10: ck+1 ← (2λΣ/σ + Σ>Σ)−1

[∑n
i=1 Σ>i (uk+1

i − Tiek+1 + hki )
]

11: hk+1
i ← hki + uk+1

i − Tiek+1 − Σic
k+1

12: until stopping criteria are met

13: compute estimated slope function β̂ from the optimal e, c

Output: Lσ(u, e, c, h), β̂

expectile loss 1
n

∑n
i=1 rτ (Yi − ui) and λc>Σc; and A, B, and c to the identity

matrix I , [Ti,Σi], and 0, respectively. To guarantee convergence, we verify two

additional conditions, referring to Assumptions 1 and 2 of Boyd (2010).

First, we require that f : Rn → R ∪ {+∞} and g : Rm → R ∪ {+∞} are

closed, proper, and convex. This requirement is naturally satisfied for our for-
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mulation in (6).

Second, we require that the nonaugmented Lagrangian L0(x, z, y) = f(x) +

g(z) + y>(Ax+Bz − c) has a saddle point, i.e., that there exists a (not necessar-

ily unique) (x?, z?, y?) satisfying L0(x
?, z?, y) ≤ L0(x

?, z?, y?) ≤ L0(x, z, y
?)

for all (x, z, y). The existence of a saddle point follows immediately from the

saddle point theorem (Mohri et al., 2018, Theorem B.29) and the fact that we are

optimizing over a real space (specifically, with a nonempty interior), thatG(x, z)

is affine, and that G(0, 0) = 0 (since c = 0).

Consequently, we can guarantee that the estimate and objective function it-

erates in our ADMM-based implementation will converge to the solution and

optimal value, respectively, of the original problem. The particular benefit of an

ADMM-based approach is that each update has a closed form, which speeds

up numerical computation relative to traditional interior point methods or other

generic algorithms. Indeed, empirical results in existing literature have illustrated

the clear superiority that ADMM-based algorithms have in a variety of settings

(Chen and Wei, 2005; Pietrosanu et al., 2020).

4. NUMERICAL EXPERIMENTS

We now investigate the finite-sample performance of our proposed estimators.

We are specifically interested in comparisons between our proposed estimator

and one using an FPCA-based approach that uses the first four leading eigen-

functions (Ramsay and Silverman, 2006; Yuan and Cai, 2010; Kato, 2012). Three
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sets of simulations in Section 4.1 examine the effects of eigenvalue decay, kernel

alignment, and various error distributions on the convergence of both estimators.

4.1. Simulation studies

In the following sets of simulation studies, we consider T = [0, 1] and let

H = H(K) be the set of functions in the linear span of the cosine basis

(Cai and Yuan, 2012), i.e.,H(K) = {g(t) =
√

2
∑

k∈N gk cos(kπt) : gk ∈ R, k ∈

N} ⊂ W2
2 . When endowed with the squared norm

‖f‖2H(K) =

∫
T

(f ′′)2 =

∫ 1

0

(
√

2
∑
k∈N

(kπ)2gk cos kπt

)2

=
∑
k∈N

(kπ)4g2k,

H is an RKHS with the reproducing kernel

K(s, t) =
∑
k∈N

2(kπ)−4 cos (kπs) cos (kπt)

= −1

3
(B4 (|s− t|/2) +B4 ((s+ t)/2)) ,

where Bk is the kth Bernoulli polynomial

B2m(x) = (−1)m−12(2m)!
∑
k∈N

cos (2πkx)

(2πk)2m
,

for x ∈ [0, 1]. Additionally, we choose (ξ1(t) = 1, ξ2(t) = t) as the basis for the

null spaceH0.

To quantify the behaviour of varying coefficient estimates, we calculate pre-

diction error (PE) on a test dataset {(x∗i , y∗i ) : i = 1, . . . , n∗}, given by

PEτ =

(
1

n∗

n∗∑
j=1

∥∥∥∥∫
T
x∗j(t)β̂n(t) dt−

∫
T
x∗j(t)β0(t) dt

∥∥∥∥2
2

)1/2

.
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As a more direct comparison between the RKHS- and FPCA-based estima-

tors, we also report relative prediction error, defined by PEFPCA
τ /PERKHS

τ , where

PEFPCA
τ and PERKHS

τ represent prediction errors for the two methods. In all simu-

lation studies, results are averaged over 100 simulated training and test datasets.

In the first simulation study, we focus primarily on the effect of eigenvalue

decay rate. We define the covariance operator as

C(s, t) =
50∑
k=1

2k−2r2 cos(kπs) cos(kπt),

where r2 = 1, 2, 3 imposes different decay rates on the eigenvalues of C: a larger

value of r2 yields stronger eigenvalue decay. In this setting, the two kernels, K

and C, share the same ordered set of eigenfunctions.

We follow the data generation procedure in Hall and Horowitz (2007) and Cai

and Yuan (2012). The response is generated as Y =
∫ 1

0
X(t)β0(t) dt+ ε, with

β0(t) =
∑50

k=1 βkφk(t); βk = 4(−1)k+1k−2 and φk(t) =
√

2 cos(kπt) for k =

1, . . . , 50; and ε ∼ N(0, 0.5). The functional covariate is generated as X(t) =∑50
k=1 γkUkφk(t), where γk = (−1)k+1k−r2 and Uk

i.i.d.∼ U [−
√

3,
√

3]. The Uks

have a mean of zero and unit variance and each X is observed at 101 equally

spaced grid points on [0, 1]. We emphasize that the data generation process is

ultimately driven by the choice of the covariance operator.

Results for the first simulation are presented in Figure 2. First, the generally

positive performance of the FPCA-based estimator is not surprising, as β0 is a

linear combination of the leading eigenfunctions of the functional covariate X .
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Nonetheless, our RKHS-based estimator demonstrates higher relative predictive

performance except in certain settings with r2 = 1, where the eigenvalue decay

rate is small. In these settings, the standard errors of the PE and relative PE

measures across simulations are typically small. Together, these results suggest

a systematically lower PE for the proposed method. The PE of both estimators

generally decreases as r2 increases, as expected. Both methods appear to con-

verge at similar rates as the sample size increases, although the RKHS-based

estimator again outperforms the FPCA-based one.

In the second simulation study, we are primarily interested in how alignment

between the reproducing kernel K and the covariance kernel C influences the

performance of the RKHS- and FPCA-based estimators. We define the covari-

ance kernel in this setting as

C(s, t) =
50∑
k=1

2(|k − k0|+ 1)−2 cos(kπs) cos(kπt).

To control the extent of the alignment between K and C, the leading eigenfunc-

tions of C are located around the k0th eigenfunction of the reproducing kernel

K: we consider k0 = 5, 10, 20, with larger values of k0 corresponding to worse

alignment (Cai and Yuan, 2012). In all other aspects, the data generation process

matches that of the first simulation study.

Figure 3 presents results for the second simulation study. As expected, the

FPCA-based estimator generally shows worse PE relative to the RKHS-based

estimator. We observe that relative PE increases with worsened alignment, most
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FIGURE 2: Effect of covariance kernel eigenvalue decay rate on the RKHS- and FPCA-based estimators at

τ = 0.2, 0.5, 0.8 in the first simulation study. From left to right, the three columns show PE for the RKHS-

and FPCA-based estimators and relative PE between both (with values above one favouring the proposed

estimator). Error bars correspond to average PE ± SE, evaluated over 100 replications. In each subplot, the

horizontal axis represents the size n of the training dataset, considered at n = 20, 50, 100, 200.

notably when k0 = 20. Furthermore, with increasing k0, poor alignment between

K and C seems to have a significant impact on the FPCA-based estimator but

little effect on the proposed RKHS-based one. The standard error for relative PE

is large in some settings, but still leads us to conclude that the proposed method

gives systematically better PE. These empirical results are consistent with our
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FIGURE 3: Effect of reproducing and covariance kernel alignment on the RKHS- and FPCA-based estima-

tors at τ = 0.2, 0.5, 0.8 in the second simulation study. From left to right, the three columns show PE for

the RKHS- and FPCA-based estimators and relative PE between both (with values above one favouring the

proposed estimator). Error bars correspond to average PE ± SE, evaluated over 100 replications. In each

subplot, the horizontal axis represents the size n of the training dataset, considered at n = 20, 50, 100, 200.

theoretical expectations and illustrate the merit of our RKHS-based perspective.

In the third simulation study, we investigate the ability of our proposed ap-

proach to cope with different types of error distributions. Specifically, we con-

sider distributions that are either heteroscedastic or asymmetric.
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We use the same setup as the first simulation study (excepting the dis-

tribution of ε), with r2 = 2. As asymmetric error distributions, we take

ε ∼ Gamma(2, 0.2) and ε ∼ Beta(5, 1) for left- and right-skewed errors, re-

spectively. Heteroscedastic errors are sampled as a mixture of N(0, 0.25),

N(0, 0.375), and N(0, 0.5) distributions, representing a simple case with three

heteroscedastic groups.

Results are presented in Figure 4 for the third simulation study. As a general

trend, our proposed RKHS-based estimator shows better performance than the

FPCA-based estimator, with relative PE typically falling between one and four.

Standard error for relative PE is moderate across the different settings but is again

suggestive of a systematically lower PE for the proposed RKHS-based estima-

tor. In the setting with right-skewed errors, PE for both estimators is relatively

smaller when τ = 0.2 than when τ = 0.8: this result is reversed for left-skewed

errors. These results, for both asymmetric and heteroscedastic error distributions,

demonstrate the power of expectile regression in dealing with various error distri-

butions, relative to methods that focus on conditional mean estimation. This sim-

ulation study highlights the versatility of our expectile model in cases of model

error misspecification.

4.2. Application to ADNI data

We next apply the proposed RKHS-based estimator in an analysis of MMSE

scores from 199 patients in the ADNI dataset. In the functional linear model,
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FIGURE 4: Effect of abnormal errors on the RKHS- and FPCA-based estimators at τ = 0.2, 0.5, 0.8 in

the third simulation study. From left to right, the three columns show PE for the RKHS- and FPCA-based

estimators and relative PE between both (with values above one favouring the proposed estimator). Error

bars correspond to average PE ± SE, evaluated over 100 replications. In each subplot, the horizontal axis

represents the size n of the training dataset, considered at n = 20, 50, 100, 200. RSE, LSE, and HE indicate

left-skewed, right-skewed, and heteroscedastic error distributions, respectively.

the response Y is MMSE score while the functional predictor X is fractional

anisotropy (FA) as a function of distance along the midsagittal corpus callosum

skeleton (scaled to T = [0, 1]). The corresponding functional linear model is

MMSE =

∫ 1

0

β0(t)FA(t) dt+ ε.
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FIGURE 5: FA curves evaluated along the corpus callosum skeleton. The solid black line is the mean FA

curve.

Figure 5 plots FA values, observed at 83 grid points, for all 199 patients. For

tuning and evaluating both estimators, approximately 80% of the data is used

for four-fold cross validation while the remaining 20% is held out as a test set.

Context and the visualization of the neuroimaging data in Figure 5 suggest that

the functional predictor X = FA may be periodic on [0, 1].

We let H(K) =Wper
2 be the second-order Sobolev space of periodic func-

tions on [0, 1], endowed with the norm ‖b‖2H =
[∫ 1

0
b(t)dt

]2
+
∫ 1

0
[b′′(t)]2 dt

and the reproducing kernel K(s, t) = 1− 1
24
B4(|s− t|), where B4 is the fourth

Bernoulli polynomial (Wahba, 1990).

Estimates obtained using our proposed method at the expectile levels τ =

0.1, . . . , 0.9 are shown in Figure 6. As expected, for any fixed t, β̂τ (t) increases

with τ . For the sake of practical interpretation, it is useful that these functional

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



2021 31

0 0.2 0.4 0.6 0.8 1

t

-2

0

2

4

6

8

10

RKHS-based FA estimates

 =0.1

 =0.2

 =0.3

 =0.4

 =0.5

 =0.6

 =0.7

 =0.8

 =0.9

FIGURE 6: RKHS-based estimates β̂τ at τ = 0.1, . . . , 0.9 in the ADNI data analysis, describing the func-

tional effect of FA on MMSE score.

estimates do not cross each other.

We also considered FPCA-based estimates obtained using 4, 6, 8, and 10

functional principal components. These estimates, illustrated in Figure 7, are

clearly not ideal for at least a couple reasons. First, the FPCA-based estimates

cross each other, unlike the RKHS-based estimates in Figure 6. This “crossing

problem” is further discussed in He (1997) in the context of quantile regression.

Second, the FPCA-based estimates are sensitive to the user-specified number

of principal components. The discrete nature of this hyperparameter makes it

difficult to tune finely, unlike the continuous hyperparameter λ in our RKHS-

based approach.

Table 1 moreover shows that, at each expectile level considered, the proposed

RKHS-based estimator outperforms the FPCA-based one in predicting MMSE.

These results emphasize the practical importance and advantages of our RKHS-
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FIGURE 7: FPCA-based estimates β̂τ at τ = 0.2, 0.5, 0.8 in the ADNI data analysis, describing the func-

tional effect of FA on MMSE score. The number of functional principal components (PCs) used is indicated

in each subplot: 4, 6, 8, and 10 PCs explain 79.9%, 86.0%, 89.3%, and 91.5%, respectively, of the observed

variance in functional FA.

based approach in functional linear expectile regression.

As an informal aside (due to the computation time involved), we also com-

pared the computational efficiency of different implementations of our proposed

RKHS-based estimator. Our first implementation is as presented in Section 3.3

using the ADMM algorithm while the second uses an interior point (IP) algo-

rithm (Mehrotra, 1992). The latter is popularly applied to constrained optimiza-
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TABLE 1: Test set prediction error in the ADNI analysis for the RKHS- and FPCA-based predictors at

τ = 0.1, . . . , 0.9.

Expectile level τ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

RKHS PE (SE)
0.9954

(0.0153)

0.9936

(0.0152)

0.9922

(0.0151)

0.9913

(0.015)

0.9907

(0.0150)

0.9905

(0.0149)

0.9907

(0.0149)

0.9911

(0.0148)

0.9918

(0.0148)

FPCA PE (SE)
1.0164

(0.0174)

1.0161

(0.0174)

1.0058

(0.0163)

1.0006

(0.0164)

0.9999

(0.0161)

0.9982

(0.016)

1.0000

(0.0160)

1.0004

(0.0161)

1.0008

(0.0157)

tion problems. We found our ADMM implementation to be far superior to the IP

implementation: the latter typically requires at least 100 times more computation

time than the former until convergence. These results can be made available on

request.

5. DISCUSSION

In this paper, we proposed a regularized estimator for the functional linear ex-

pectile regression model under an RKHS framework. We derived upper and

lower bounds for the minimax rate of convergence of prediction error and es-

tablished the minimax optimality of our proposed estimator. While most exist-

ing approaches to functional linear expectile regression rely on FPCA, we argue

that these approaches are too restrictive in their assumption regarding eigenvalue

spacing. Additionally, FPCA-based methods rely on the assumption that leading

principal components (which are determined by only the functional predictor X

and not the response Y ) are predictive of the response: in practice, this assump-

tion is typically not valid.

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



34 LIU, PIETROSANU, LIU, JIANG, ZHOU AND KONG Vol. xx, No. yy

We demonstrated the general superiority of our proposed RKHS-based ap-

proach in three sets of simulation studies and an application to an ADNI neu-

roimaging dataset. In particular, we illustrated the degradation of FPCA-based

estimators when its implicit assumptions regarding the eigenstructures of the

reproducing and covariance kernels are violated. Our results showed that both

eigenfunction alignment and eigenvalue decay rates between the reproducing

and covariance kernels have an important impact on estimator performance.

For the sake of illustration, we focused on a univariate functional predictor X

with a domain T that is a compact subset of R. We took T = [0, 1] and used the

corresponding canonical Sobolev space as a working example. Our theoretical

results apply nonetheless to more general RKHSs, provided that T remains a

compact subset of an arbitrary Euclidean space. For example, the derived optimal

convergence rate still holds for Sobolev spaces on T = [0, 1]2, e.g., for imaging

data, with the decay rate r determined by the corresponding reproducing and

covariance kernels. The developments in this article thus have wide applications

in spatial statistics, 2D and 3D image analysis, and longitudinal data analysis.

Settings where the reproducing and covariance kernels are not well aligned

(i.e., in the sense of their eigenfunctions) are interesting topics for future work.

As suggested by our ADNI analysis, another natural generalization of our ap-

proach is the inclusion of scalar predictors, e.g., age, gender, and diagnosis status,

for a partial functional expectile regression model. While it is straightforward to
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accommodate scalar covariate effect estimation from an algorithmic perspective,

the optimality of the corresponding estimators requires more work to establish.

Informally (and with results available on request), PE for the RKHS- and FPCA-

based estimators are comparable when scalar age, gender, and diagnosis status

effects are included in the model. We suspect that this decrease in relative PE

can be attributed to the relative complexity of the two models and possibly the

overwhelming usefulness of these scalar covariates as predictors. We feel that

the full impact of scalar predictors on empirical performance, such as in high-

dimensional settings, should be investigated in future work.
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Brézis, H. (2011), Functional Analysis, Sobolev Spaces and Partial Differential Equations,

Springer, New York, NY.

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



36 LIU, PIETROSANU, LIU, JIANG, ZHOU AND KONG Vol. xx, No. yy

Cai, T. T. and Hall, P. (2006), ‘Prediction in functional linear regression’, The Annals of

Statistics 34(5), 2159–2179.

Cai, T. T. and Yuan, M. (2011), ‘Optimal estimation of the mean function based on discretely

sampled functional data: Phase transition’, The Annals of Statistics 39(5), 2330–2355.

Cai, T. T. and Yuan, M. (2012), ‘Minimax and adaptive prediction for functional linear re-

gression’, Journal of the American Statistical Association 107(499), 1201–1216.

Chen, C. and Wei, Y. (2005), ‘Computational issues for quantile regression’, Sankhyā: The
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Proof of Theorem 1. Recall the functional model Y =
∫
T X(t)β0(t) dt+ ε

specified in the main text. Fix an expectile level τ ∈ (0, 1) and assume that ε

follows an asymmetric normal distribution with the density function

f(ε) =
2
√
τ(1− τ)

√
τ +
√

1− τ
1√
πσ2

exp{−rτ (ε/σ)}, (1)

where rτ (u) = |τ − I(u < 0)|u2. Further assume that β0 belongs to an RKHS

H(K).

Consider the functional space

H∗ =

{
β =

2M∑
k=M+1

bkM
−1/2LK1/2ζk : (bM+1, . . . , b2M) ∈ {0, 1}M

}
,

where (ζk)k∈N is a sequence of orthonormal eigenfunctions of K1/2CK1/2. The

function ‖·‖K is a semi-norm on H(K) and M is some large number to be dis-

cussed later. For any β ∈ H∗, observe that

J(β) = ‖β‖2K =

∥∥∥∥∥
2M∑

k=M+1

bkM
−1/2LK1/2ζk

∥∥∥∥∥
2

K

=
2M∑

k=M+1

b2kM
−1 ‖LK1/2ζk‖2K

≤
2M∑

k=M+1

M−1 ‖LK1/2ζk‖2K

= 1,

which follows from the fact that 〈LK1/2ζk, LK1/2ζl〉K = 〈LKζk, ζl〉K =

〈ζk, ζl〉L2 = δkl. Therefore,H∗ ⊂ H(K) = {β : ‖β‖K <∞}.
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The Gilbert-Varshamov bound (Tsybakov, 2008, Lemma 2.9) establishes that,

for any M ≥ 8, there exists a set {b(0), b(1), . . . , b(N)} ⊂ {0, 1}M such that

(i) b(0) = (0, . . . , 0)>;

(ii) H(b(i), b(j)) ≥M/8 for any distinct b(i), b(j) ∈ B, where H(· , · ) denotes

Hamming distance; and

(iii) N ≥ 2M/8.

Define the subset

B =

{
β(0), . . . , β(N) : β(i) =

2M∑
k=M+1

b
(i)
k−MM

−1/2LK1/2ζk, i = 1, . . . , N

}
⊂ H∗
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and let M be the smallest integer greater than c0n1/(2r+1) for some constant c0 >

0. Then for i and j satisfying 0 ≤ i ≤ j ≤ N ,

∥∥β(i) − β(j)
∥∥2
C

=

∥∥∥∥∥LC1/2

2M∑
k=M+1

(b
(i)
k−M − b

(j)
k−M)M−1/2LK1/2ζk

∥∥∥∥∥
2

L2

=
2M∑

k=M+1

(b
(i)
k−M − b

(j)
k−M)2M−1‖LC1/2LK1/2ζk‖2L2

=
2M∑

k=M+1

(b
(i)
k−M − b

(j)
k−M)2M−1νk.

≥ ν2MM
−1

M∑
k=1

(b
(i)
k − b

(j)
k )2

= 4ν2MM
−1H(b(i), b(j))

≥ ν2M/2

≥ c12
−(2r+1)M−2r

≥ 2cα2r/(2r+1)n−2r/(2r+1),

where c > 0 is some constant.

We apply the results of Tsybakov (2008) to establish a lower bound based

on multiple hypothesis testing. Under the assumption that the slope function β0

belongs to the subset B, we construct a subset {β(0), ..., β(N)} ⊂ H∗ with N

increasing in n such that, for some positive constant c and for i and j such that

0 ≤ i ≤ j ≤ N ,

‖β(i) − β(j)‖2C ≥ cα
2r

2r+1n−
2r

2r+1 (2)
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and

1

N

N∑
j=1

KL(Pβ(i) | Pβ(j)) ≤ α logN, (3)

where Pβ denotes the joint conditional distribution of Y given X and KL rep-

resents Kullback-Leibler divergence. By Theorem 2.5 of Tsybakov (2008), it

follows that

inf
β̂

sup
β∈H∗

P(‖β(i) − β(j)‖2C ≥ cα
2r

2r+1n−
2r

2r+1 ) ≥
√
N√

N + 1

(
1− 2α−

√
2α

logN

)
.

(4)

Note thatM,N →∞ as n→∞. This implies that the right-hand side of (4) can

be made arbitrarily close to 1 as n→∞ and α→ 0. We conclude that

lim
α→0

lim
n→∞

inf
β̂

sup
β0∈H∗

P(‖β(i) − β(j)‖2C ≥ an−
2r

2r+1 ) = 1. (5)

This lower bound for the asymmetric normal distribution yields a lower bound

for general error distributions. Let Pj , for j = 1, . . . , N , represent the joint dis-

tribution of the observed sample {(xk, yk) : k = 1, . . . , n} under the assumption

that β0 = β(j). It follows that

Pj =
n∏
k=1

2
√
τ(1− τ)

√
τ +
√

1− τ
1√
πσ2

exp

{
−rτ

(
yk −

∫
T xk(t)

>β(j)(t)

σ

)}
. (6)
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The Kullback-Leibler divergence between Pβ(i) and Pβ(j) is

KL(Pβ(i) | Pβ(j)) = Eβ(i) log(Pβ(i)/Pβ(j))

= nEβ(i)

[
rτ

(
Y −

∫
T X(t)β(j)(t) dt

σ

)
− rτ

(
Y −

∫
T X(t)>β(i)(t) dt

σ

)]

≤ nmax (τ, 1− τ)

(∫
T
X(t)>(β(j)(t)− β(i)(t)) dt

)2

.

The inequality above holds since, defining µi =
∫
T X(t)>β(i)(t) dt,

Eβ(i)

[
rτ

(
Y − µj

σ

)
− rτ

(
Y − µi

σ

)]

=

∫ ∞
µi

τ

[(
y − µj

σ

)2

−
(
y − µi

σ

)2
]
f(y − µi) dy

+

∫ µi

−∞
(1− τ)

[(
y − µj

σ

)2

−
(
y − µi

σ

)2
]
f(y − µi) dy

+

∫ µi

µj
(2τ − 1)

(
y − µj

σ

)2

f(y − µi) dy,

where

∫ µi

µj
(2τ − 1)

(
y − µj

σ

)2

f(y − µi) dy ≤ |1− 2τ |
(
µi − µj

σ

)2 ∫ µi

µj
f(y − µi) dy.
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Thus,

KL(Pβ(i) | Pβ(j)) ≤ nmax (τ, 1− τ)

(∫
T
Xk(t)

>(β(j)(t)− β(i)(t)) dt

)2

= nmax (τ, 1− τ)‖Lc1/2(β(j)(t)− β(i)(t))‖2L2

= nmax (τ, 1− τ)
2M∑

k=M+1

(b
(i)
k−M − b

(j)
k−M)2M−1νk

≤ nmax (τ, 1− τ)νMM
−1

2M∑
k=M+1

(b
(i)
k−M − b

(j)
k−M)2

= 4nmax (τ, 1− τ)νMM
−1H(b(i), b(j))

≤ 4nmax (τ, 1− τ)νM

≤ 4c2nmax (τ, 1− τ)M−2r.

Consequently, when 0 < α < 1/8,

1

N

N∑
j=1

KL(Pj | P0) ≤ 4c2nmax (τ, 1− τ)M−2r ≤ α log 2M/8 ≤ α logN.

By taking M to be the smallest integer greater than c2α−1/(2r+1)n1/(2r+1) with

c2 = (8c1 log 2)1/(2r+1), the desired result follows. �

Proof of Theorem 2. Recall that LK1/2 (L2) = H(K). Therefore, there exist

f0, f̂ ∈ L2 such that β0 = LK1/2f0 and β̂λ = LK1/2 f̂λ. For brevity, we assume

that H(K) is dense in L2, which ensures that f0 and f̂λ are uniquely defined.

The proof in the general case proceeds in exactly the same fashion by restricting

consideration to L2/ker (LK1/2).
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For brevity, define T = LK1/2CK1/2 . Let T ν denote a linear operator from L2

to L2 such that T νϕk = sνkϕk. Prediction error can then be written as

‖β̂ − β0‖2C =
∥∥∥T 1/2

(
f̂λ − f0

)∥∥∥2.
L2

and, furthermore,

f̂λ = arg min
f∈L2

[
1

n

n∑
i=1

rτ
(
yi − 〈xi, LK1/2f〉L2

)2
+ λ‖f‖2L2

]
.

Recalling that yi = 〈xi, LK1/2f0〉L2 + εi,

Cn(s, t) =
1

n

n∑
i=1

eixi(s)xi(t),

where ei = τ if yi ≥
〈
xi, LK1/2 f̂λ

〉
L2

and ei = 1− τ otherwise. Define Tn =

LK1/2LCnLK1/2 , where LCn is an integral operator such that, for any h ∈ L2,

LCnh(·) =

∫
T
Cn(s, ·)h(s) ds.

Consequently, f̂λ = (Tn + λ1)−1 (Tnf0 + gn), where 1 is the identity operator

and gn = 1
n

∑n
i=1 eiεiLK1/2xi.

Next, define fλ = (T + λ1)−1Tf0. By the triangle inequality,

∥∥∥T 1/2
(
f̂λ − f0

)∥∥∥
L2

=
∥∥T 1/2 (fλ − f0)

∥∥
L2

+
∥∥∥T 1/2

(
f̂λ − fλ

)∥∥∥
L2
. (7)

The first term on the right-hand side can be easily bounded. To proceed, we

appeal to the following lemma.

Lemma A1. For 0 < ν < 1, ‖T v (fλ − f0)‖L2 ≤ (1− ν)1−νννλν ‖f0‖L2 .
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Taking ν = 1/2 in Lemma A1 establishes that
∥∥T 1/2 (fλ − f0)

∥∥2
L2
≤

1
4
λ ‖f0‖2L2 .

We now turn to the second term on the right-hand side of Equation (7). Ob-

serve that

fλ − f̂λ = (T + λ1)−1 (Tn + λ1)
(
fλ − f̂λ

)
+ (T + λ1)−1 (T − Tn)

(
fλ − f̂λ

)

and that (Tn + λ1) f̂λ = Tnf0 − gn. Therefore,

fλ − f̂λ = (T + λ1)−1Tn (fλ − f0) + λ(T + λ1)−1fλ + (T + λ1)−1gn

+ (T + λ1)−1 (T − Tn)
(
fλ − f̂λ

)
= (T + λ1)−1T (fλ − f0) + (T + λ1)−1 (Tn − T ) (fλ − f0) + λ(T + λ1)−1fλ

+ (T + λ1)−1gn + (T + λ1)−1 (T − Tn)
(
fλ − f̂λ

)

We first consider bounding
∥∥∥T ν (fλ − f̂λ)∥∥∥

L2
for some ν ∈ (0, 1/2− 1/(4r)).

By the triangle inequality,

∥∥∥T ν (fλ − f̂λ)∥∥∥
L2
≤
∥∥T ν(T + λ1)−1T (fλ − f0)

∥∥
L2

+
∥∥T ν(T + λ1)−1 (Tn − T ) (fλ − f0)

∥∥
L2

+ λ
∥∥T ν(T + λ1)−1fλ

∥∥
L2

+
∥∥T ν(T + λ1)−1gn

∥∥
L2

+
∥∥∥T ν(T + λ1)−1 (T − Tn)

(
fλ − f̂λ

)∥∥∥
L2
.
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Lemma A2. Assume that there exists a constant c3 > 0 such that, for any f ∈

L2,E〈X, f〉4L2 ≤ c3(E〈X, f〉2L2)
2. Then for any ν > 0 such that 2r(1− 2ν) > 1,

∥∥T ν(T + λ1)−1 (Tn − T )T−ν
∥∥

op = Op

((
nλ1−2ν+1/(2r)

)−1/2)
,

where ‖·‖op denotes the usual operator norm, i.e., ‖U‖op =

sup{h:‖h‖L2=1}‖Uh‖L2 for an operator U : L2 → L2.

By an application of Lemma A2,

∥∥T ν(T + λ1)−1 (T − Tn)
(
fλ − f̂λ

)∥∥
L2

≤
∥∥T ν(T + λ1)−1 (T − Tn)T−ν

∥∥
op ‖T

ν
(
fλ − f̂λ

)
‖L2

≤ op(1)
∥∥∥T ν (fλ − f̂λ)∥∥∥

L2

whenever λ ≥ cn−2r/(2r+1) for some constant c > 0. Similarly,

∥∥T ν(T + λ1)−1 (Tn − T ) (fλ − f0)
∥∥
L2

≤
∥∥T ν(T + λ1)−1 (Tn − T )T−ν

∥∥
op ‖T

ν (fλ − f0)‖L2

≤ op(1) ‖T ν (fλ − f0)‖L2 .

Therefore,

∥∥∥T ν(fλ − f̂λ)∥∥∥
L2

= Op

(∥∥∥T ν(T + λ1)−1T
(
fλ − f0

)∥∥∥
L2

+ λ
∥∥∥T ν(T + λ1)−1fλ

∥∥∥
L2

+
∥∥∥T ν(T + λ1)−1gn

∥∥∥
L2

)
.
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By Lemma A1,

∥∥T ν(T + λ1)−1T (fλ − f0)
∥∥
L2
≤
∥∥T ν(T + λ1)−1T 1−ν∥∥

op ‖T
ν (fλ − f0)‖L2

≤ ‖T ν (fλ − f0)‖L2

≤ (1− ν)1−νννλν ‖f0‖L2 .

Lemma A3. When 0 ≤ ν ≤ 1/2,

∥∥T ν(T + λ1)−1gn
∥∥
L2

= Op

((
nλ1−2ν+1/(2r)

)−1/2)
.

Lemma A3 and the preceding result imply that

∥∥∥T ν (fλ − f̂λ)∥∥∥
L2

= Op

(
λν +

(
nλ1−2ν+1/(2r)

)−1/2)
= Op (λν) ,

provided that c1n−2r/(2r+1) ≤ λ ≤ c2n
−2r/(2r+1) for some constants c1 and c2 sat-

isfying 0 < c1 < c2 <∞.

Recall that

∥∥T 1/2
(
fλ − f̂λ

)∥∥
L2

=
∥∥T 1/2(T + λ1)−1T

(
fλ − f0

)∥∥
L2

+
∥∥T 1/2(T + λ1)−1

(
Tn − T

)(
fλ − f0

)∥∥
L2

+ λ
∥∥T 1/2(T + λ1)−1fλ

∥∥
L2

+
∥∥T 1/2(T + λ1)−1gn

∥∥
L2

+
∥∥T 1/2(T + λ1)−1

(
T − Tn

)(
fλ − f̂λ

)∥∥
L2
,
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so we can bound
∥∥∥T 1/2

(
fλ − f̂λ

)∥∥∥ by bounding the five terms on the right-hand

side of the above equation. By Lemma A1,

∥∥T 1/2(T + λ1)−1T (fλ − f0)
∥∥
L2
≤
∥∥T 1/2(T + λ1)−1T 1/2

∥∥
op

∥∥T 1/2 (fλ − f0)
∥∥
L2

≤ 1

2
λ1/2 ‖f0‖L2 .

Lemma A4. Under the conditions of Lemma A2,

∥∥T 1/2(T + λ1)−1 (Tn − T )T−ν
∥∥

op = Op

((
nλ1/(2r)

)−1/2)
.

By Lemmas A1 and A4,

∥∥T 1/2(T + λ1)−1
(
Tn − T

)(
fλ − f0

)∥∥
L2

≤
∥∥T 1/2(T + λ1)−1

(
Tn − T

)
T−ν

∥∥
op

∥∥T ν(fλ − f0)∥∥L2
≤ Op

((
nλ1/(2r)

)−1/2
λν
)

= op
((
nλ1/(2r)

)−1/2)
.

Similarly,

∥∥T 1/2(T + λ1)−1
(
Tn − T

)(
fλ − f̂λ

)∥∥
L2

≤
∥∥T 1/2(T + λ1)−1

(
Tn − T

)
T−ν

∥∥
op

∥∥T ν(fλ − f̂λ)∥∥L2
≤ Op

((
nλ1/(2r)

)−1/2
λν
)

= op
((
nλ1/(2r)

)−1/2)
.

By Lemma A3,
∥∥T 1/2(T + λ1)−1gn

∥∥
L2

= Op

((
nλ1/(2r)

)−1/2).
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Finally, together with the fact that λ
∥∥T 1/2(T + λ1)−1fλ

∥∥
L2

= O(λ), we con-

clude that ‖T 1/2(fλ − f̂λ)‖L2 = Op(n
− 2r

2r+1 ), as desired. �
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