
McLaughlin, Katie-May (2021) Analysis of publicly available datasets to 
produce novel findings with clinical relevance.  Doctor of Philosophy (PhD) 
thesis, University of Kent,. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/90273/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.90273

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/90273/
https://doi.org/10.22024/UniKent/01.02.90273
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


 
 

 

 

 

 

Analysis of publicly available datasets 

to produce novel findings with clinical 

relevance 

 

A PhD Thesis for the Degree of 

Doctor of Philosophy 

in 

Computational Biology 

 

School of Biosciences, 

University of Kent 

 

Katie-May McLaughlin 

2021 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Declaration 

 

No part of this thesis has been submitted in support of an application for any 

degree or other qualification of the University of Kent or any other University or 

Institute of learning. 

 

Name: Katie-May McLaughlin 

Date: 06/07/2021 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

Abstract 

 

Advances in high-throughput sequencing technologies have facilitated the generation of 

large-scale genomic and pharmacogenomic databases. Such databases represent an 

important source of multi-platform data and a critical resource for biomedical research. 

Moreover, the computational tools available to analyse such ‘big data’ have evolved 

substantially in recent years. Here, we have utilised various open-access data resources for 

our cancer and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus 

disease 2019 (COVID-19)-related research. Specifically, in our cancer studies, we have 

correlated expression of genes differentially expressed in response to the phosphorylation 

status of phosphoprotein enriched in astrocytes 15 (PEA-15) in cisplatin-treated SKOV-3 

ovarian cancer cell lines with survival of cisplatin-treated patients. We have also investigated 

the role of deoxynucleoside triphosphate triphosphohydrolase SAMHD1 in influencing drug 

sensitivity and cancer patient survival using data from both cell line and clinical studies. In 

our SARS-CoV-2/COVID-19 studies, we have used structural data to predict the impact of 

differentially conserved amino acid positions (DCPs) between SARS-CoV and SARS-CoV-2 on 

the function of SARS-CoV-2 proteins. We have also used transcriptomic and proteomic 

datasets of SARS-CoV-2-infected cells and patients to identify links between pathways of 

COVID-19 clinicopathogenesis and deregulation of genes involved in those pathways. Our 

computational approach demonstrates how publicly accessible data can not only be used to 

complement in vitro investigations, but also to generate novel findings with clinical 

significance. 
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Figure 1.1. Number of articles associated with different diseases deposited in GEO as of 

20/08/2020 

Figure 1.2. Overview of SARS-CoV-2 viral entry, replication and exit. Following binding to 

receptor ACE2, release of viral genome occurs via the cell surface pathway (membrane fusion 

at plasma membrane) or via the endocytic pathway (membrane fusion in endosome). 

Polyproteins pp1a/pp1b are translated and processed by viral proteases to form RTC. Viral 

genome is replicated and further proteins (structural and accessory) are transcribed and 

translated before structural proteins are inserted into ER membranes. Viral RNA interaction 

with structural proteins, virion assembly and Spike protein cleavage by proprotein 

convertase furin occurs in ERGIC. Mature virions exit the host cell in deacidified lysosomes. 

ACE2 = ACE2 angiotensin converting enzyme 2. CTSL = Cathepsin L. E = Envelope protein. ER 

= Endoplasmic reticulum. M = Membrane protein. RTC = Replicase-transcriptase complex. S 

= Spike protein. TMPRSS2 = Transmembrane protease serine 2. 
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Figure 1.3. Number of datasets associated with SARS-CoV-2 between February 2020 and 

October 2020 

Figure 2.1. (A) Expression of hemagglutinin (HA)-tagged phosphoprotein enriched in 

astrocytes (PEA-15) in SKOV-3 cells after transfection with the HA-tagged empty vector (EV), 

PEA-15AA (AA) and PEA-15DD (DD). GAPDH was used as a loading control. (B) Cisplatin 

sensitivity (pEC50, mean ± SEM, n = 8) of transfected SKOV-3-EV (EV), SKOV-3-AA (AA) and 

SKOV-3-DD (DD) cells. *** p < 0.001, n.s. = not significant. 

Figure 2.2. A representative Western blot of phosphorylated extracellular signal-regulated 

kinase1/2 (p-ERK1/2) expression in nuclear and cytosolic fractions of the SKOV-3 cells 

transfected with empty vector (EV), PEA-15AA (AA) and PEA-15DD (DD). GAPDH and Lamin 

B1 were used as the markers and loading controls of cytosolic (C) and nuclear fractions (N), 

respectively. 

Figure 2.3. Heatmap of the transcriptome-wide ClariomTM S array, regulated genes with fold 

change cut-off at 2.0 for differentially expressed genes and a p-value cut-off at 0.05 are 

shown. 

Figure 2.4. Heatmap indicating the relationship between low expression of the indicated 

genes and sensitivity/outcome, favourable (low cisplatin EC50 in SKOV-3-AA cells or 

prolonged survival of cisplatin-treated patients, indicated in yellow) or unfavourable (high 

cisplatin EC50 in SKOV-3-AA cells or reduced survival of cisplatin-treated patients, indicated 

in blue), based on the comparison of gene expression between SKOV-3-AA and EV- or PEA-

15DD-transfected variants and TCGA data. 

Figure 2.5. Venn diagram representing the exclusively and commonly regulated genes in 

different transfected cells upon cisplatin exposure. The diagram shows the total number of 

genes affected by cisplatin exposure in empty vector—(EV), PEA-15AA—(AA) and PEA-15DD-

transfected—(DD) cells. 

Figure 2.6. Twenty-one biological pathways significantly affected by cisplatin treatment in 

SKOV-3-AA cells, listed according to the significance level (log 2 base) in a descending order. 

Figure 2.7. Representative Western blots and the corresponding densitometric 

quantification (mean ± SEM, n = 3) of (A) the relative uridine diphosphate-glucuronyl 

transferase (UGT)1A expression and (B) the relative nuclear factor erythroid 2-related factor 

2 (Nrf2) expression in empty vector—(EV), PEA-15AA—(AA) and PEA-15DD-transfected—
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(DD) cells after treatment with 15 µM cisplatin (+Pt) for 24 h and in untreated transfected 

SKOV-3 cells. GAPDH was used as a loading control. * p < 0.05, ** p < 0.01. 

Figure 2.8. Representative Western blots and the corresponding densitometric 

quantification (mean ± SEM, n = 3) of (A) the relative Nrf2 expression and (B) the relative 

UGT1A expression in the transfected untreated SKOV-3 cells (Ctrl), after exposure to 15 µM 

cisplatin (Pt), to 20 µM retinoic acid (RA) and after co-incubation with 20 µM retinoic acid 

and 15 µM cisplatin (Pt + RA) for 24 h are shown. GAPDH was used as a loading control. *p < 

0.05, ** p < 0.01, n.s. = not significant. 

Figure 2.9. Sensitivity of SKOV-3 cells (pEC50, mean ± SEM, n = 9–10) of cisplatin alone (Pt), 

and upon co-incubation with 20 µM retinoic acid (Pt + RA) was determined over 48 h. *** p 

< 0.001. 

Figure S2.1. (A) Expression of hemagglutinin (HA)-tagged PEA-15 in EFO27rCDDP2000 cells 

after transfection with the HA-tagged empty vector (EV), PEA-15AA (AA) and PEA-15DD (DD). 

GAPDH was used as a loading control. (B) Cisplatin cytotoxicity (pEC50, mean ± SEM, n = 8) in 

nontransfected EFO27rCDDP2000 cells, cells transfected with empty vector (EV), with PEA-

15AA (AA), and with PEA-15DD (DD). ***p < 0.001, n.s. = not significant. 

Figure 3.1. SAMHD1 levels differ between T-ALL and B-ALL. 

Comparison of SAMHD1 expression (mRNA abundance) levels in T-ALL and B-ALL cell lines 

from the CTRP, CCLE, and GDSC (A) and in blasts from leukaemia patients (B). (C) Comparison 

of the expression of other genes known to affect nucleoside analogue activity based on CTRP 

data. Respective CCLE and GDSC data are provided in Figure S3.2. *p-values for the 

comparison B-ALL vs. T-ALL. 

Figure 3.2. Comparison of nelarabine (CTRP) and cytarabine (CTRP, GDSC) sensitivity 

between B-ALL and T-ALL cell lines and correlation of SAMHD1 mRNA levels with the 

nelarabine and cytarabine sensitivity (expressed as AUC) across all B-ALL and T-ALL cell lines. 

Pearson’s r values and respective p-values are provided. Respective data on the correlation 

of SAMHD1 expression with drug sensitivity exclusively for B-ALL and T-ALL cell lines are 

provided in Figure S3.3 (nelarabine) and Figure S3.4 (cytarabine). 

Figure 3.3. SAMHD1 protein and mRNA levels in the RCCL panel of B-ALL and T-ALL cell lines.  

(A) Representative Western blots indicating protein levels of total SAMHD1 and 

phosphorylated SAMHD1 (p-SAMHD1). GAPDH was used as loading control. (B) Quantitative 
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SAMHD1 protein levels are shown as means ± SD from three independent experiments 

(quantified using near-infrared Western blot images to determine the ratio SAMHD1/ GAPDH 

relative to the positive control THP-1, an acute myeloid leukaemia cell line characterised by 

high cellular SAMHD1 levels (Schneider et al., 2017). SAMHD1 mRNA abundance levels are 

shown as means ± SD from three technical replicates (as determined by qPCR, relative to cell 

line ROS-50) in B-ALL and T-ALL cell lines. Unpaired two-tailed Student’s t-tests were used to 

compare means (represented as horizontal lines ± SEM) of SAMHD1 protein or mRNA levels 

in B-ALL and T-ALL cells. 

Figure 3.4. AraG and cytarabine concentrations that reduce the viability of the RCCL ALL cell 

lines by 50% (IC50) and correlation of the IC50s with the cellular SAMHD1 protein or mRNA 

levels. 

Numerical data are provided in Supplementary Data 3.4. Closed circles and error bars 

represent means ± SD of three independent experiments, each performed in three technical 

replicates. Linear regression analyses were performed using GraphPad Prism. 

Figure 3.5. Effect of SAMHD1 on nelarabine and cytarabine sensitivity in ALL and AML cells. 

(A) Dose-response curves of AraG- and cytarabine-treated ALL cell lines in the absence or 

presence of Vpx virus-like particles (cause SAMHD1 depletion), or Vpr virus-like particles 

(negative) controls. Concentrations that reduce ALL cell viability by 50% (IC50s) and Western 

blots confirming SAMHD1 depletion are provided. Each symbol represents the mean ± SD of 

three technical replicates of one representative experiment out of three. (B) Effects of AraG 

and cytarabine on AML cell lines in the absence or presence of functional SAMHD1. In the 

SAMHD1-expressing AML cell line THP-1, the SAMHD1 gene was disrupted by CRISPR/Cas9 

(THP1-KO). The non-SAMHD1 expressing AML cell line HEL and the non-SAMHD1 expressing 

ALL cell line JURKAT were transduced with wild-type SAMHD1 (SAMHD1_WT) or the 

triphosphohydrolase-defective SAMHD1 mutant D311A (SAMHD1_D311A). Dose-response 

curves, drug concentrations that reduce cell viability by 50% (IC50s), and Western blots 

confirming SAMHD1 protein levels are provided. Each symbol represents the mean ± SD of 

three independent experiments, each performed in three technical replicates. 

Figure 3.6. SAMHD1 promoter methylation in ALL cell lines. 

(A) Analysis of SAMHD1 promoter methylation in the RCCL cell line panel through 

amplification of a single PCR product (993-bp) corresponding to the promoter sequence after 

HpaII digestion. A 0.25-kb fragment of the GAPDH gene lacking HpaII sites was PCR-amplified 
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using the same template DNA served as loading control. (B) GDSC data indicating SAMHD1 

promoter methylation in B-ALL and T-ALL cell lines and correlation of SAMHD1 promoter 

methylation and SAMHD1 expression across all ALL cell lines. (C) GDSC data indicating the 

level of global methylation in B-ALL and T-ALL cell lines. 

Figure S3.1. Gene expression profiles and nelarabine sensitivity in acute lymphoblastic 

leukaemia (ALL) cell lines. (A) Nelarabine sensitivity expressed as area under the curve (AUC) 

in T-cell precursor ALL (T-ALL) and B-ALL cell lines from CTRP. (B) Heatmap illustrating 

expression patterns of genes differentially regulated between T-ALL and B-ALL cell lines 

based on CTRP data. Heatmaps displaying the expression of all genes in the CTRP ALL cell 

lines and those displaying gene expression in the ALL cell lines in the CCLE and GDSC datasets 

are provided in Figure S3.1D-H. Individual gene expression values are presented in 

Supplementary Data 1. (D) Heatmap illustrating expression (mRNA abundance) of all genes 

in B- vs. T-ALL cells based on CTRP data. (E) Heatmap illustrating expression (mRNA 

abundance) of differentially regulated genes in B- vs. T-ALL cells based on CCLE data. (F) 

Heatmap illustrating expression (mRNA abundance) of all genes in B- vs. T-ALL cells based on 

CCLE data. (G) Heatmap illustrating expression (mRNA abundance) of differentially regulated 

genes in B- vs. T-ALL cells based on GDSC data. (H) Heatmap illustrating expression (mRNA 

abundance) of all genes in B- vs. T-ALL cells based on GDSC data. 

Figure S3.2A. SAMHD1 expression in ALL patients with different immunophenotypes. P 

values for comparisons between individual groups. 

Figure S3.2B. SAMHD1 expression in ALL patients with different genotypes. P values for 

comparisons between individual groups (1=B-other, 2=Ph pos, 3=Ph-like, 4=KMT2A, 5=T-ALL, 

6=Burkitt, 7=TCF3, 8=ETV6, 9=Hyperdip. 

Figure S3.3. Expression of genes known to be potentially involved in nucleoside analogue 

activity in B-ALL and T-ALL cell lines in the CCLE and GDSC. 

Figure S3.3. Expression of genes known to be potentially involved in nucleoside analogue 

activity in patient-derived B-ALL and T-ALL cells. 

Figure S3.4. Correlation of the expression of genes (mRNA abundance) known to affect 

nucleoside analogue activity to the nelarabine sensitivity (expressed as AUC) across all ALL, 

the B-ALL and the T-ALL cell lines based on CTRP data. Pearson’s r values and respective p-

values are provided. 
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Figure S3.5. Comparison of SAMHD1 expression (mRNA abundance) levels in acute myeloid 

leukaemia (AML), B-cell acute lymphoblastic leukaemia (B-ALL), T-cell acute lymphoblastic 

leukaemia (T-ALL) cells in CTRP, CCLE, and GDSC. Respective p-values are provided. 

Figure S3.6. Correlations of SAMHD1 expression (mRNA abundance) with the cytarabine AUC 

exclusively in B-ALL and T-ALL cell lines based on CTRP and GDSC data. Pearson’s r values and 

respective p-values are provided.  

Figure S3.7. SAMHD1 protein levels in the RCCL panel of B-ALL and T-ALL cell lines. 

Representative Western blots indicating protein levels of total SAMHD1 and GAPDH in 23 

cell lines of the RCCL panel, which were run on the same gel and blotted on the same 

membrane to confirm the representativeness of the blots provided in Figure 3.3A. Figure 

3.3A is provided for comparison. 

Figure S3.8. Correlations of SAMHD1 protein and mRNA levels determined in the RCCL cell 

lines with the SAMHD1 expression data derived from the CTRP, CCLE, and GDSC among the 

cell lines that are represented in both respective datasets. Pearson’s r values and respective 

p-values are provided. 

Figure S3.9. Correlations of the nelarabine AUCs derived from the CTRP and the AraG IC50 

values determined in the RCCL panel across the ALL cell lines present in both datasets. 

Pearson’s r values and respective p-values are provided. 

Figure S3.10. Uncropped Western blots and agarose gels. 

Figure 4.1. Effect of SAMHD1 expression in cancer patients. (A) Kaplan Meier plots 

indicating survival in cancer patients with tumours characterised by high or low SAMHD1 

expression (as determined by best separation) across all patients in the TCGA and TARGET 

databases. P-values were determined by log-rank test. (B) Pie charts indicating the number 

of cancer types for which high SAMHD1 expression was associated with increased survival, 

reduced survival, or not significantly associated with survival based on data from the TCGA 

and TARGET databases. Data are presented in Table S4.1 and Table S4.2. 

Figure 4.2. SAMHD1 expression levels and 5-year survival rates in dependence of sex based 

on TCGA data. (A) Kaplan Meier plots indicating sex-specific survival in cancer patients with 

tumours characterised by high or low SAMHD1 expression (as determined by best 

separation). P-values were determined by log-rank test. (B) Heatmap indicating the 

association of SAMHD1 expression and 5-year survival rates (blue: high SAMHD1 associated 

with higher survival rates, yellow: low SAMHD1 associated with higher survival rates). (C) 
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Heatmap indicating cancer entities in which high SAMHD1 expression (blue) or low 

SAMHD1 expression (yellow) is significantly (p<0.05) associated with higher 5-year survival 

rates. (D) Cancer entities in which SAMHD1 displays a trend towards differing roles by sex. 

Blue indicates higher survival rates in patients with tumours with high SAMHD1 levels, 

yellow in patients with low SAMHD1 levels. Abbreviations: ACC, Adrenocortical carcinoma; 

BLCA, Bladder Urothelial Carcinoma; BRCA, Breast invasive carcinoma; CESC, Cervical 

squamous cell carcinoma and endocervical adenocarcinoma; CHOL, Cholangiocarcinoma; 

COAD, Colon adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; 

ESCA, Oesophageal carcinoma; GBM, Glioblastoma multiforme; HNSC, Head and Neck 

squamous cell carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney renal clear cell 

carcinoma; KIRP, Kidney renal papillary cell carcinoma; LAML, Acute Myeloid Leukaemia; 

LGG, Low Grade Glioma; LIHC, Liver hepatocellular carcinoma; LUAD, Lung 

adenocarcinoma; LUSC, Lung squamous cell carcinoma; MESO, Mesothelioma; OV, Ovarian 

serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, Pheochromocytoma 

and Paraganglioma; PRAD, Prostate adenocarcinoma; READ, Rectum adenocarcinoma; 

SARC, Sarcoma; SKCM, Skin Cutaneous Melanoma; STAD, Stomach adenocarcinoma; TGCT, 

Testicular Germ Cell Tumours; THCA, Thyroid carcinoma; THYM, Thymoma; UCEC, Uterine 

Corpus Endometrial Carcinoma; UCS, Uterine Carcinosarcoma; UVM, Uveal Melanoma. 

Figure 4.3. SAMHD1 expression levels and 5-year survival rates in dependence of sex based 

on TARGET data. (A) Kaplan Meier plots indicating sex-specific survival in cancer patients 

with tumours characterised by high or low SAMHD1 expression (as determined by best 

separation). P-values were determined by log-rank test. (B) Heatmap indicating the 

association of SAMHD1 expression and 5-year survival rates (blue: high SAMHD1 associated 

with higher survival rates, yellow: low SAMHD1 associated with higher survival rates). (C) 

Heatmap indicating cancer entities in which high SAMHD1 expression (blue) or low 

SAMHD1 expression (yellow) is significantly (p<0.05) associated with higher 5-year survival 

rates. 

Figure 4.4. Kaplan-Meier plots indicating survival in cancer patients of different race with 

tumours characterised by high or low SAMHD1 expression (as determined by best 

separation) based on TCGA data. P-values were determined by log-rank test. 

Stratifying of patients in the TARGET database according to race provided some trends, 

which may point towards differences, but the numbers are too low to draw firm 
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conclusions (Figure 4.5, Figure S4.5, Table S4.6). No significant differences were detected 

between the SAMHD1 levels in the different race groups (Figure S4.6). 

Figure 4.5. Kaplan-Meier plots indicating survival in cancer patients of different race with 

tumours characterised by high or low SAMHD1 expression (as determined by best 

separation) based on TARGET data. P-values were determined by log-rank test. 

Figure 4.6. Tumour suppressor and oncogenic effects of SAMHD1 in different cancer types, 

as suggested by SAMHD1 levels in tumour tissues vs. matched normal tissues (Tumour vs. 

control) or the comparison of 5-year survival in patients with SAMHD1 high or low tumours 

(SAMHD1 high vs. low). Higher SAMHD1 levels in matched normal tissues were interpreted 

as tumour suppressor activity, while higher SAMHD1 levels in tumour tissues as indication 

of oncogenic effects. Higher 5-year survival in patients with SAMHD1 high tumours was 

construed as sign of tumour suppressor activity, higher 5-year survival in patients with 

SAMHD1 low tumours indication of oncogenic effects. (A) Data for all available 

comparisons. (B) Data for entities, in which at least the difference for one comparison 

reached statistical significance. (C) Data for entities, in which the difference for both 

comparisons reached statistical significance. 

Figure 4.7. Inverse correlation between SAMHD1 promotor methylation levels or miRNA 

levels and SAMHD1 expression based on TCGA data. (A) Correlation between SAMHD1 

promotor methylation levels and SAMHD1 expression across all patients and in THYM 

patients, which displayed the strongest inverse correlation across all cancer types. Data for 

all cancer types are presented in Table S4.8. (B) Correlation of mir-23b with SAMHD1 

expression across all patients and of mir-30c-1 with SAMHD1 in THYM. mir-23b was the 

miRNA that displayed the strongest inverse correlation with SAMHD1 across all patients. 

The inverse correlation between mir-30c-1 and SAMHD1 was the strongest among all 

miRNAs in all cancer types. Data for all significant inverse correlations of miRNAs and 

SAMHD1 across all cancer types are provided in Table S4.10. 

Figure 4.8. SAMHD1 mutations in cancer tissues. (A) SAMHD1 was mutated 201 times, 

including 175 non-synonymous mutations, which puts SAMHD1 within the 15.3% of most 

commonly mutated genes. (B) Survival in patients with and without SAMHD1 mutant 

tumours. (C) Survival in UCEC (cancer type with the most SAMHD1 mutations) patients with 

and without SAMHD1 mutant tumours. (D) Survival in patients with tumours with or 

without mutations in TP53, the most commonly mutated tumour suppressor genes. (E) 

Lollipop plot indicating locations of missense mutations in SAMHD1. Residues predicted to 
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be involved in ligand binding are labelled in bold. (F) nonsynonymous mutations mapped 

(coloured red) onto the SAMHD1 protein structure (Protein Data Bank identifier 6DWD 

(Knecht et al., 2018) with bound clofarabine hydrochloride (indicated in cyan) and 

magnesium ion (green). The image on the left shows the full structure and on the right the 

active site is displayed. Yellow dashed lines indicate hydrogen bonds between mutated 

residues and ligand. 

Figure S4.1. Comparison of SAMHD1 expression levels as expressed by fragments per 

kilobase of transcript per million mapped reads (FPKM) after removal of sex-specific cancer 

types and of BRCA (breast invasive carcinoma), for which only a very small fraction of 

samples (12/ 1,089 tumour tissue samples, 1/ 113 matched normal tissue samples) was 

derived from males. P-values were determined by Mann-Whitney U (Wilcoxon) test for 

independent groups. 

Figure S4.1. Comparison of SAMHD1 expression levels as expressed by fragments per 

kilobase of transcript per million mapped reads (FPKM) in tumours from the TARGET 

database. P-values determined by Mann-Whitney U (Wilcoxon) test for independent 

groups. 

Figure S4.3A. Heatmap indicating the association of SAMHD1 expression and 5-year 

survival rates (blue: high SAMHD1 associated with higher survival rates, yellow: low 

SAMHD1 associated with higher survival rates). 

Figure S4.3B. Heatmap indicating cancer entities in which high SAMHD1 expression (blue) 

or low SAMHD1 expression (yellow) is significantly (p<0.05) associated with higher 5-year 

survival rates. 

Figure S4.4. SAMHD1 levels in patients of different race in TCGA. Comparison of all groups 

was performed using the Kruskal-Wallis test. Individual group comparisons were performed 

using the Mann-Whitney U (Wilcoxon) rank sum test. 

Figure S4.3. Heatmap indicating the association of SAMHD1 expression and 5-year survival 

rates (blue: high SAMHD1 associated with higher survival rates, yellow: low SAMHD1 

associated with higher survival rates). (A) All cancer types independently of significance 

level. (B) Cancer types in which at least comparison resulted in a significant (p<0.05) 

difference. 



22 
 

Figure S4.6. SAMHD1 levels in patients of different race in the TARGET database. 

Comparison of all groups was performed using the Kruskal-Wallis test. Individual group 

comparisons were performed using the Mann-Whitney U (Wilcoxon) rank sum test. 

Figure S4.7. Summary of the findings of the literature review for articles containing data on 

the role of SAMHD1 during oncogenesis. Articles were identified by using the search term 

"(((Cancer) OR (tumor) OR (tumour))) AND (SAMHD1)" in PubMed 

(https://pubmed.ncbi.nlm.nih.gov) on 17th June 2021. 

Figure 5.1. SARS-CoV-2 and SARS-CoV replication in cell culture. (A) Cytopathogenic effect 

(CPE) formation 48 h post-infection in MOI 0.01-infected Caco2, CL14, DLD-1 and HT29 cells. 

Representative images showing immunostaining for double-stranded RNA (indicates virus 

replication) and quantification of virus genomes by qPCR are presented in Figure S5.3. (B) 

CPE formation in SARS-CoV and SARS-CoV-2 (MOI 0.01)-infected ACE2-negative 293 cells and 

293 cells stably expressing ACE2 cells (293/ACE2) 48 h post-infection. Immunostaining for 

double-stranded RNA and quantification of virus genomes by qPCR is shown in 

Supplementary Figure S5.4. (C) Western blots indicating cellular ACE2 and TMPRSS2 protein 

levels in uninfected cells. Uncropped blots are provided in Figure S5.6. (D) A sequence view 

of the DCPs in the vicinity of the S two cleavage sites and an image of the R815 cleavage site 

and closely located DCPs. S is cleaved and activated by TMPRSS2. (E) Concentration-

dependent effects of the TMPRSS2 inhibitors camostat and nafamostat on SARS-CoV-2- and 

SARS-CoV-induced cytopathogenic effect (CPE) formation determined 48 h post-infection in 

Caco2 infected at an MOI of 0.01 using a phase contrast microscope. Similar effects were 

observed in CL14 cells (Figure S4.6). Values are presented as means ± S.D. (n = 3) 

Figure 5.2. SARS-CoV-2 and SARS-CoV S interaction with ACE2. (A–D)Differentially conserved 

positions in the Spike protein. (A) A sequence view of the DCPs present in the Spike protein, 

with an inset showing the receptor binding domain. (B) The S interface with ACE2 (cyan). The 

ACE2 interface is shown in blue spheres, DCPs in red. (C) The V404 = K417 DCP. (D) The 

R426 = N439 DCP, the left image shows SARS-CoV S R426, the image on the right show the 

equivalent N439 in SARS-CoV-2 S. (E) SARS-CoV residues associated with altering ACE2 

affinity and the residues at these positions in SARS-CoV-2 S. (F) Cytopathogenic effect (CPE) 

formation in SARS-CoV-2 and SARS-CoV (MOI 0.01)-infected Caco2 cells in the presence of 

antibodies directed against ACE2 or DPP4 (MERS-CoV receptor) 48 h post-infection 

https://pubmed.ncbi.nlm.nih.gov/
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Figure S5.1. The BLOSUM scores for the amino acid substitutions present in the SDPs. A graph 

is plotted that combines all of the proteins and one for each of the individual proteins that 

were analysed. 

Figure S5.2. Overview of modelled DCPs. DCPs with likely functional effect are indicated by 

arrows and labelled. Structural model shown is indicated in brackets. DCPs likely to have an 

effect are coloured red; DCPs with a possible effect are shown in orange; and DCPs unlikely 

to have an effect are coloured yellow. Please refer to table S7 for full details of structural 

analysis of each DCP. 

Figure S5.3. SARS-CoV-2 and SARS-CoV susceptibility of cell lines. (A) Representative images 

showing MOI 0.01-infected cells immunostained for double-stranded RNA 48h post 

infection. (B) Quantification of virus genomes by qPCR at different time points post infection 

(p.i.). Values are presented as means ± S.D. (n =3). 

Figure S5.4. SARS-CoV-2 and SARS-CoV replication in 293 cells stably expressing ACE2 cells 

(293/ACE2). (A) Immunostaining for double-stranded RNA (indicating virus replication) in 

SARS-CoV-2 and SARS-CoV (MOI 0.01)-infected 293/ACE2 cells 48h post infection. (B) 

Quantification of virus genomes by qPCR in SARS-CoV-2 and SARS-CoV (MOI 0.01)-infected 

293/ACE2 cells 48h post infection. Values are presented as means ± S.D. (n =3). 

Figure S5.5. Uncropped Western blots for Figure 5.1C. 293/ACE2 cells served as positive 

control for ACE2. * Protein quantification 

Figure S5.6. Role of TMPRSS2-mediated S cleavage in SARS-CoV-2 and SARS-Co-V replication. 

Concentration-dependent effects of the TMPRSS2 inhibitors camostat and nafamostat on 

SARS-CoV-2- and SARS-CoV-induced cytopathogenic effect (CPE) formation determined 48h 

post infection in CL14 cells infected at an MOI of 0.01. Values are presented as means ± S.D. 

(n =3). 

Figure 6.1. SARS-CoV-2 infection is associated with increased CD47 levels. (A) CD47 protein 

abundance in uninfected (control) and SARS-CoV-2-infected (virus) Caco-2 cells (data derived 

from (Bojkova, Klann et al., 2020). P-values were determined by two-sided Student’s t-test. 

(B) CD47 and SARS-CoV-2 N protein levels and virus titers (genomic RNA determined by PCR) 

in SARS-CoV-2 strain FFM7 (MOI 1)-infected air-liquid interface cultures of primary human 

bronchial epithelial (HBE) cells and SARS-CoV-2 strain FFM7 (MOI 0.1)-infected Calu-3 cells. 

Uncropped blots are provided in Figure S6.1. (C) CD47 mRNA levels in post mortem samples 
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from COVID-19 patients (data derived from (Blanco-Melo et al., 2020)). P-values were 

determined by two-sided Student’s t-test. 

Figure 6.2. SARS-CoV-2 infection increases SIRPα in primary human monocytes. (A) SARS-

CoV-2 strain FFM7 (MOI 1) infection of primary human monocytes does not result in the 

production of genomic viral RNA as detected by PCR. (B) SARS-CoV-2 strain FFM7 (MOI 1)-

infected primary human monocytes display enhanced SIRPα levels. Uncropped blots are 

provided in Figure S6.4. 

Figure 6.3. Results of the PubMed (https://pubmed.ncbi.nlm.nih.gov) literature search for 

“CD47 aging” (A) and “CD47 hypertension” (B). (C) Overview figure of the data derived from 

the literature searches. Age-related increased CD47 levels may contribute to pathogenic 

conditions associated with severe COVID-19. 

Figure 6.4. Results of the PubMed (https://pubmed.ncbi.nlm.nih.gov) literature search for 

“CD47 diabetes” (A). (B) Overview figure of the data derived from the literature search. 

Hyperglycemia- and diabetes-induced increased CD47 levels may contribute to immune 

escape of SARS-CoV-2-infected cells. 

Figure S6.1. Uncropped Western blots to Figure 6.1. Bands are indicated by frames. Numbers 

indicate quantification results. 

Figure S6.2. CD47 mRNA levels in SARS-CoV-2-infected Calu-3 cells (data derived from 

(Blanco-Melo et al., 2020)). P-values were determined by two-sided Student’s t-test. 

Figure S6.3. CD47 levels in SARS-CoV-2 (MOI 0.1)-infected Caco2 cells as determined by flow 

cytometry (FACSCanto II, BD Biosciences). Cells were fixed with 4% formaldehyde (10 

minutes) and then stained for CD47 using a PE-labelled CD47 antibody (Miltenyi, # 130-123-

754, 1:50 dilution).  Isotype REA Control Antibody (S) (human IgG1, PE-labelled, Miltenyi, # 

130-113-438, 1:50 dilution) was used as control.  

Figure S6.4. Uncropped Western blots to Figure 6.2. 

Figure 7.1. Gene products anticipated to be of potential relevance for COVID-19-related 

coagulopathy, based on genes with a role in coagulation that are differentially expressed 

between females and males (Table S7.1) and whose expression correlates with age (Table 

S7.2). Candidate gene products were either (A) procoagulants (ADAMTS13, F11, HGFAC, 

KLKB1), which display higher expression in males than in females and increase with age, or 

(B) anticoagulants (C1QTNF1, SERPINA5), which display higher expression in females than in 
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males and decrease with age. A complete list of the relevant genes overlapping between 

Table S1 and Table S2 is presented in Table S3. p-values were determined by two-sided 

Student’s t-test. * p-value < 0.05. 

Figure 7.2. SARS-CoV-2-induced (derived from (Bojkova et al., 2020)) transferrin (TF) 

expression and age- and gender-specific expression of the procoagulant TF and its antagonist 

SERPINC1/antithrombin based on GTEx data. Data are presented as violin blots to indicate 

the distribution of individual values and as bar charts to facilitate comparisons. TF displayed 

higher levels in SARS-CoV-2-infected cells than in non-infected cells. Moreover, TF expression 

and the expression ration of TF and SERPINC1 increased with age and were higher in females 

than in males. (A) TF protein abundance in uninfected (control) and SARS-CoV-2-infected 

(virus) Caco-2 cells. p-values are the result of a two-sided Student’s t-test. (B) TF expression 

(TPM) in females and males across six age groups. p-values were calculated using the 

Wilcoxon rank sum test for independent groups. (C) SERPINC1 expression (TPM) in females 

and males across six age groups. p-values were calculated using the Wilcoxon rank sum test 

for independent groups. (D) Ratio of TF/SERPINC1 expression (TPM) in females and males 

across six age groups. p-values were calculated using the Wilcoxon rank sum test for 

independent groups. * p-value < 0.05. 

Figure 8.1. Anti-severe acute respiratory syndrome virus 2 (SARS-CoV-2) effects of aprotinin 

and SERPINA1/alpha-1 antitrypsin. (A) Concentration-dependent effects of aprotinin and 

SERPINA1/alpha-1 antitrypsin on SARS-CoV-2-induced cytopathogenic effect (CPE) formation 

determined 48 h post-infection in Caco2 cells infected at a multiplicity of infection (MOI) of 

0.01 with the three different SARS-CoV-2 isolates. The viability of the Caco2 cells was 84.3 ± 

2.7% relative to the untreated control in the presence of 20 µM of aprotinin. (B) 

Immunostaining for the SARS-CoV-2 S protein in aprotinin- and SERPINA1/alpha-1 

antitrypsin-treated Caco2 cells infected at an MOI of 0.01 with the three different SARS-CoV-

2 isolates as determined 48 h post-infection. The protease inhibitors were tested at four 

concentrations in 1:4 dilution steps ranging from 20 to 0.3125 µM. A quantification is 

provided in Figure S8.1. (C) Copy numbers of genomic RNA in Caco2 cells infected with 

different SARS-CoV-2 isolates (MOI of 0.01) in response to treatment with aprotinin or 

SERPINA1/alpha-1 antitrypsin as determined 48 h post-infection. FFM1, 

1/Human/2020/Frankfurt; FFM2, 2/Human/2020/Frankfurt; FFM6, 

6/Human/2020/Frankfurt. 
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Figure 8.2. Effects of aprotinin on SARS-CoV-2-induced caspase 3/7 activation. Caspase 3/7 

activity was determined in Caco2 cells infected with different SARS-CoV-2 isolates (MOI of 

0.01) 48 h post-infection. 

Figure 8.3. Anti-SARS-CoV-2 effects of aprotinin when administered post-infection. For post-

infection experiments, the cells were incubated with the virus for a one-hour adsorption 

period. Then, the cells were washed three times in PBS prior to the addition of the drug. (A) 

The effects of aprotinin and the RNA polymerase inhibitor remdesivir (a positive control drug 

that interferes with virus replication after virus entry) on virus replication as determined by 

qPCR in SARS-CoV-2/FFM1 (MOI of 0.1)-infected Caco2 cells 8 h post-infection (after 

approximately one round of replication). * p < 0.05 as determined by one-way ANOVA and 

Dunnett’s multiple comparison test. (B) The effects of aprotinin on cytopathogenic effect 

(CPE) formation in SARS-CoV-2/FFM1 (MOI of 0.01)-infected Caco2 cells were determined 48 

h post-infection. 

Figure 8.4. Regulation of host cell protease inhibitors in SARS-CoV-2-infected cells. (A) Total 

protein levels based on a publicly available proteomics dataset (Bojkova et al., 2020), 

indicating cellular levels of endogenous protease inhibitors in SARS-CoV-2 (MOI of 1)-

infected Caco2 cells 2 h and 24 h post-infection. Data were normalized using summed 

intensity normalization for sample loading, followed by internal reference scaling and 

trimmed mean of M normalization. * p-values as determined using a two-sided Student’s t-

test. (B) Mean protein translation of endogenous protease inhibitors in arbitrary units (AU) 

(normalized and corrected summed peptide spectrum matches (PSMs) were averaged) in 

SARS-CoV-2 (MOI of 1)-infected Caco2 cells 2 h and 24 h post-infection based on a publicly 

available translatome dataset (Bojkova et al., 2020). * p-values as determined using a two-

sided Student’s t-test. 

Figure 8.5. Antiviral effects of aprotinin in SARS-CoV-2-infected air–liquid interface (ALI) 

cultures from primary bronchial epithelial cells. (A) Abundance of the SARS-CoV-2 proteins 

N (nucleocapsid) and M (membrane) in primary bronchial epithelial cell ALI cultures infected 

with SARS-CoV-2/FFM1 (MOI of 1) in the presence or absence of aprotinin (20 µM) as 

determined 5 days post-infection by multiplexed mass spectrometry analysis using 

acquisition targeting of previously identified viral peptides modified with TMTpro. The 

detailed data are presented in Table S1. (B) Western blots indicating cellular SARS-CoV-2 N 

and TMPRSS2 levels in primary bronchial epithelial cell ALI cultures infected with SARS-CoV-

2/7/Human/2020/Frankfurt (FFM7) (MOI of 1) in the presence or absence of aprotinin as 
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detected 5 days post infection. GAPDH was served as the loading control. Uncropped 

Western blots are shown in Figure S5. 

Figure S8.1. Quantification of immunostaining for the spike protein in SARS-CoV-2-infected 

(isolates FFM1, FFM2, FFM6) Caco2 cells with and without treatment of aprotinin or 

SERPINA1/ alpha-1 antitrypsin (prolastin) presented in Figure 8.2B. 

Figure S8.2. Trypsin inhibition by aprotinin and SERPINA1/ alpha-1 antitrypsin. Nearly 

confluent Caco2 cell cultures were washed three times with PBS and incubated with 400μg/ 

mL trypsin alone or in combination with aprotinin 20μM or SERPINA1 20μM for 2h. 

Figure S8.2. Trypsin inhibition by aprotinin and SERPINA1/ alpha-1 antitrypsin. Nearly 

confluent A549 cell cultures were washed three times with PBS and incubated with 400μg/ 

mL trypsin alone or in combination with aprotinin 20μM or SERPINA1 20μM for 2h. 

Figure S8.3. Quantification of immunostaining for the spike protein in SARS-CoV-2/FFM7 

(MOI 0.01)-infected Calu-3 cells 48h post infection in response to aprotinin treatment. 

Figure S8.4. Uncropped Western blots corresponding to Figure 8.4B. Quantification was 

performed by laser-induced fluorescence using an infrared scanner (Odyssey, Li-Cor 

Biosciences) and Image Studio version 3.1 software. 
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Chapter 1: Introduction 

 

Access to genomic datasets from sources ranging from large, publicly funded projects to 

small, independent research groups has expanded rapidly in recent years. As high-

throughput technologies have become easier and cheaper to conduct, the availability of data 

types including gene expression, protein abundance, copy number, mutation, methylation 

and miRNA expression has increased significantly. This, coupled with the development of 

sophisticated bioinformatics methodologies for analysing such data, has represented an 

important step in the pursuit of precision medicine. It is widely acknowledged that patient 

response to treatment can be substantially affected by genetic features, whether inherited 

or the result of mutations, and targeted therapies are becoming increasingly important in a 

wide variety of clinical settings. Moreover, the ability to rapidly produce data which can be 

made publicly available has been of critical importance in the context of the Coronavirus 

disease 2019 (COVID-19) pandemic.   

In this work, we have made use of numerous publicly available data resources to answer 

biological questions relating to cancer and to severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2)/COVID-19. Our in silico investigations have complemented the in vitro studies 

of our collaborators (and vice versa), which we have integrated to produce novel findings 

with a high degree of validity and scientific and clinical relevance. We have used a variety of 

bioinformatics resources to perform our analyses, to which we have applied statistical 

methodologies to evaluate the significance of our results and make conclusions. Our work 

demonstrates the diversity of applications for large-scale open-access databases and the 

benefit that databases of large numbers of cell lines or patients has can have on our ability 

to produce reliable results. We have also highlighted the importance of the contribution of 

data shared from smaller research studies to the wealth of information accessible in the 

public domain. 

 

1.1. Use of publicly available data for the analysis of cancer 

1.1.1. Overview of cancer 
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According to the World Health Organisation, cancer is currently the second most common 

cause of death globally, accounting for one in six deaths annually (World Health 

Organization, 2021). One study estimated 1,898,160 new cases and 608,570 deaths from any 

cancer type per day in in the United States, with prostate, lung and colorectal cancers 

accounting for 46% of all cases (Siegel et al., 2021). Recent increases in cancer incidences 

have been reported in a number of studies. In the United Kingdom, increases of between 

67% in the incidence of uterine cancer and 375% in the incidence of melanoma were 

identified between 1980 and 2013 (using data from Cancer Research UK). This was attributed 

to the introduction of screening programs and increased public awareness of cancer 

prompting earlier diagnosis of cancers which may have otherwise gone undetected (for 

example, before death due to another cause), as well as increases in incidental detection (for 

example, due to the increase in the number of CT scans performed for other diseases). 

Importantly, the study did not show similarly significant increases in mortality in the majority 

of cases, which the authors propose could be the result of over-diagnosis or improved 

treatments (Oke et al., 2018). In another study (using data from the National Cancer 

Registration and Analysis Service via the Office for National Statistics), an increase in the age-

standardised rates across 23 cancer types of 783.29 to 808.13 per 100,000 individuals was 

identified between 1993 and 2014. Moreover, they showed a decrease in age-standardised 

mortality rates from 542.69 to 403.92 per 100,000 individuals (Smittenaar et al., 2016). More 

recently, a study in the United States (using data derived from the Surveillance, 

Epidemiology, and End Results Program, the National Program of Cancer Registries, the 

North American Association of Central Cancer Registries and the National Center for Health 

Statistics) showed that, in men, cancer incidences have slowly declined and then stabilised 

since the significant increases that were observed up to the 1990s (coinciding with the 

introduction of prostate-specific antigen (PSA) testing). They attributed this decline to 

reductions in the use of screening programs (i.e. to avoid over-diagnosis) and changes in 

population behaviour (for example, fewer men smoking resulting in reductions in lung cancer 

incidence). In women, they show that incidences have remained stable since the 1970s but 

slightly increased in recent years, which they attributed to decreases in fertility and increases 

in body weight resulting in increases in breast cancer incidences. In both males and females, 

they reported a decline in colorectal cancer incidences but increases in the incidence of 

kidney cancer, pancreatic cancer, melanoma and upper respiratory tract cancers. They also 

noted a steady decline in mortality rates corresponding to an overall decline of 31% between 



39 
 

1991 and 2018, also attributed to early diagnosis and improved treatments, as in the UK 

studies (Siegel et al., 2021).  

Notably, each study (Oke et al., 2018; Siegel et al., 2021; Smittenaar et al., 2016) highlights 

cancer-specific differences in the relationship between incidence and mortality – for 

example, the UK studies (Oke et al., 2018; Smittenaar et al., 2016) show that increasing 

incidences of cervical cancer in recent decades have coincided with reduced mortality, 

whereas increasing incidences of liver cancer have correlated with increased mortality in the 

same timeframe. This could reflect the successes for certain cancers in prevention (e.g. the 

human papillomavirus vaccine (HPV)), early detection and the development of increasingly 

effective treatments (Aref-Adib & Freeman-Wang, 2016), which are lacking for other cancers  

(e.g. small hepatic lesions can be difficult to diagnose by ultrasound scan, and while α-

foetoprotein is reportedly the only biomarker used for surveillance of hepatocellular 

carcinoma, it is prone to false positives), as well as differences in exposure to risk factors (e.g. 

alcohol-related cirrhosis and non-alcoholic steatohepatitis resulting from diabetes or 

metabolic syndrome is an increasingly prevalent risk factor for liver cancer in Western 

societies) (Llovet et al., 2021). Interestingly, in contrast to the UK studies, the study of US 

statistics showed that survival from cervical cancer has not improved in line with that of 

other common cancers in the last five decades, which the authors proposed to be the result 

of increases in the incidences of cervical adenocarcinomas (which cytology screening is less 

effective in detecting than cervical squamous cell carcinomas) as well as low rates of HPV 

vaccination in the US. They also report that declines in mortality from prostate cancer, which 

had coincided with the introduction of PSA testing, had ceased due to reduced PSA testing 

following concerns of over-diagnosis, also resulting in increases in late-stage diagnoses 

(Siegel et al., 2021). Meanwhile, a significant overall increase in the number of deaths from 

cancer between 2014 and 2035 has also been projected, which was proposed to be due to 

increases in population size and age  (Smittenaar et al., 2016). This highlights the urgency for 

the development of early interventions and better targeted therapies. 

In the process of tumorigenesis, cells undergo a series of genetic changes which collectively 

confer growth advantage. The nature of these changes has been proposed to convey the 

following features, facilitated by the ‘enabling characteristics’ of genome 

instability/mutation and tumour-promoting inflammation (Hanahan & Weinberg, 2000; 

Hanahan & Weinberg, 2011): 

• sustaining proliferative signalling 
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• evading growth suppressors 

• resisting cell death 

• enabling replicative immortality 

• inducing angiogenesis 

• activating invasion and metastasis 

• reprogramming of energy metabolism  

• evading immune destruction 

Cytotoxic chemotherapeutic agents and radiation therapies have been used for decades in 

the treatment of cancer. However, systemic therapies are associated with side effects with 

both immediate and chronic consequences to patients, ranging from nausea and vomiting to 

life-threatening multi-organ toxicity (Nurgali et al., 2018). It is therefore of critical 

importance to select treatment protocols based on the risk-benefit ratio – for example, it has 

been known that treatment-refractory T-acute lymphoblastic leukaemias respond better to 

treatment with the nucleoside analogue drug nelarabine compared with B-acute 

lymphoblastic leukaemia. Given the risk of neurotoxicity associated with nelarabine therapy, 

knowledge of lineage-specific differences in drug response is therefore extremely important 

(Kadia & Gandhi, 2017). We investigate this further in chapter 3, identifying expression of 

the deoxynucleoside triphosphate triphosphohydrolase SAMHD1 (sterile alpha motif and 

histidine/aspartic acid domain containing protein 1) as a possible factor influencing 

differential nelarabine sensitivity (since SAMHD1 has been previously shown to detoxify 

nucleoside analogue drugs including nelarabine (Herold, N., Rudd, Sanjiv, Kutzner, Bladh et 

al., 2017; Knecht et al., 2018)). By better understanding the pathways driving cancer 

progression and the mechanisms of action of anti-cancer agents, better therapy choices can 

be made. Drugs which target specific pathways can also be developed which not only have 

enhanced efficacy over traditional chemotherapeutics but may also have less severe side 

effects and fewer long-term sequelae. 

Each of the above ‘hallmarks’ of cancer therefore presents a potential therapeutic 

opportunity, many of which are already being exploited for the treatment of various cancer 

types. For example, protein kinase inhibitors such as imatinib, gefitinib and erlotinib block 

the phosphorylation by serine, threonine or tyrosine kinases of target proteins, thereby 

preventing the transduction of signals stimulating cell cycle regulation, survival and 

proliferation (Kannaiyan & Mahadevan, 2018). Angiogenesis is also targeted by drugs such 

as bevacizumab, a recombinant humanized monoclonal antibody which binds to vascular 
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endothelial growth factor A (VEGF-A) and inhibits its interaction with vascular endothelial 

growth factor receptors 1 and 2 (VEGFR-1 and VEGFR-2), thereby attenuating signals which 

would promote proliferation of vascular endothelial cells and subsequent blood vessel 

formation (Keating, 2014). Many other putative drug targets remain at the pre-clinical stage 

of research, such as phosphoprotein enriched in astrocytes 15 (PEA-15), the phosphorylation 

status of which has been shown to determine its ability to retain extracellular signal-

regulated kinase 1 and 2 (ERK1/2) in the cytoplasm and thereby attenuate proliferative 

signalling (Bartholomeusz et al., 2008; Sulzmaier, F. et al., 2012). The role of PEA-15 in cancer 

and drug response is explored further in chapter 2. 

During the development and use of both cytotoxic and targeted cancer drug therapies, 

intratumour heterogeneity has been identified as a major barrier to the development of 

effective treatments (Marusyk et al., 2020; Mirzayans & Murray, 2020; Ramón Y Cajal et al., 

2020). The genomic instability observed among cancer cells results in the accumulation over 

time of populations of genetically diverse cells. Those cells harbouring mutations which 

convey favourable phenotypic consequences (which can include properties mediating drug 

resistance) will be selected for as the tumour progresses. In addition to innate resistance, 

mutations, changes in gene expression, changes in the activation of target genes and even 

changes to the tumour microenvironment post drug or radiotherapy can contribute to the 

development of adaptive resistance, rendering therapies which initially appeared to work to 

be less effective – as described by Hanahan and Weinberg, loss of any of the ‘hallmark 

capabilities’ that cancer cells exhibit may be compensated for by greater reliance on other 

features, and redundancy of signalling pathways between each of the capabilities can also 

mean that drug-induced selective pressures stimulate heterogeneous tumour cell 

populations to adapt.   

Genomic, epigenomic, transcriptomic and proteomic analyses are key to the improvement 

in our understanding of cancer. As the public dissemination of datasets becomes 

commonplace, analysis of these features by researchers from disciplines across the scientific 

community, from biochemists to computer scientists to statisticians, has the potential to 

broaden our understanding of the disease, enabling rigorous interrogation of the data and 

analysis from many different perspectives. This may in turn translate into the improvement 

of existing therapeutic interventions and the development of novel, more effective 

treatments. 
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1.1.2. Datasets available for the analysis of cancer 

 

A large number of publicly available genomics datasets relate to cancer. This is unsurprising, 

given that cancer is a heterogenous group of diseases which affect a relatively large 

proportion of the population (~39.5% of individuals are expected to develop cancer at some 

point in their life (National Cancer Institute, 2020)). Many of the best-know examples include 

large-scale pharmacogenomic datasets of cancer cell line data, such as the  National Cancer 

Institute-60 Human Tumor Cell Lines Screen (NCI-60) (Alley et al., 1988), the Cancer Cell Line 

Encyclopaedia (CCLE) (Barretina et al., 2012), the Cancer Therapeutics Response Portal 

(CTRP) (Basu et al., 2013; Rees et al., 2016; Seashore-Ludlow et al., 2015) and the Genomics 

of Drug Sensitivity in Cancer (GDSC) (Garnett et al., 2012; Iorio et al., 2016; Yang, W. et al., 

2013), while tumour sample genomic and clinical data are available from sources such as the 

Cancer Genome Atlas (TCGA) and Therapeutically Applicable Research To Generate Effective 

Treatments (TARGET) databases. Other resources, such as cBioPortal (Cerami et al., 2012; 

Gao, J. et al., 2013) and the NCI’s Genomic Data Commons (National Cancer Institute, 2021) 

collate multi-platform data from projects such as those listed above along with datasets from 

smaller studies which are often concerned with a single cancer type. Data generated as part 

of independent research projects can also be submitted to online repositories such as the 

Gene Expression Omnibus (GEO) (National Center for Biotechnology Information, 2021), 

including gene expression, methylation and single nucleotide polymorphism (SNP) array 

data, which can then be utilised by the wider research community. Notably, a significant 

proportion of the datasets submitted to GEO are also cancer related. To illustrate this, we 

performed a search of the GEO database to compare the number of cancer-related uploads 

with that of other human diseases (Figure 1.1). Viral and bacterial infections (similarly diverse 

groups of diseases), other leading causes of mortality (Rana et al., 2020) as well as selected 

common genetic diseases (Parkinson’s disease (DeMaagd & Philip, 2015), Down’s syndrome 

(Kazemi et al., 2016), cystic fibrosis (Almughem et al., 2020), thalassemia (Marengo-Rowe, 

2007)) were included in the search: 
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Of note, data from studies pertaining only to breast cancer were the third most frequently 

uploaded. This indicates that it may not simply be a result of the large number of different 

cancer types that cancer-related datasets are the most common. 

 

1.1.3. Authors demonstrate the value of large-scale cancer genomics datasets 

 

1.1.3.1. Cell line data 

Pharmacogenomic screens involving hundreds of cell lines from multiple lineages treated 

with hundreds of different drugs and small molecules have become an extremely important 

resource for the analysis of cancer drug response. The results from such screens can not only 

elucidate mechanisms of action for drugs which are already in clinical use, but they can also 

help to inform the development of novel drugs which may have therapeutic benefit to 

patients. They can also aid in the stratification of patients likely to respond well to certain 

treatments, which could ultimately help to avoid unnecessarily subjecting patients to drug-

associated risks and side effects and could also lead to improvements in therapeutic 

outcomes. To highlight the value of these resources, database releases are often 

accompanied by publications demonstrating the flexibility of the data and their potential 

applications in cancer research. 

Figure 1.1. Number of articles associated with different diseases deposited in GEO as of 20/08/2020 
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The CCLE is an ongoing collaboration between the Broad Institute and the Novartis Institutes 

for Biomedical Research and its Genomics Institute of the Novartis Research Foundation 

which began in 2008. It was established for the purpose of characterising large numbers of 

human cancer cell lines to relate genomic features with drug response. The project currently 

includes data for 1457 cell lines from 39 lineages, including gene expression, protein 

expression, miRNA expression, copy number and mutation data. In their flagship study, 

researchers from this project first compared genomic features (gene expression, mutation 

and copy number variation) of cancer cell lines in their database with primary tumour data 

from external datasets. They reported strong positive correlations between analogous 

features in the datasets, indicating that cell lines may provide an appropriate proxy for the 

analysis of tumour biology. They were able to identify multiple genomic features predicting 

cell line drug response, such as high insulin-like growth factor 1 receptor (IGF1R) expression 

correlating with sensitivity to insulin-like growth factor (IGF-1) receptor inhibitor AEW541 in 

multiple myeloma cell lines and high schlafen family member 11 (SLFN11) expression 

predicting sensitivity to deoxyribonucleic acid (DNA) topoisomerase 1 (TOP1) inhibitors 

irinotecan and topotecan across cell lines from multiple lineages. They also validated this 

latter finding using data from the NCI-60 cell line panel (Barretina et al., 2012).  

A more recent addition to the CCLE database included metabolic profiling of cancer cell lines, 

such as quantification of the abundance of nitrogenous compounds and cationic species, 

sugars, organic acids and lipids. They found significant lineage-specific differences in the 

abundance of different metabolites, as well as differences based on presence of features 

such as mutations, copy number variations and DNA methylation status. They also showed 

how the different metabolic profiles in the cancer cell lines could be associated with 

differences in gene dependencies in these cell lines – for instance, they noted how cells with 

a high abundance of redox metabolites (e.g. glutathione (GSH), glutathione disulphide 

(GSSG) and nicotinamide adenine dinucleotide phosphate (NADP+)) were sensitive to 

knockout of nuclear factor erythroid 2–related factor 2 (NRF2, a transcription factor which 

regulates expression of antioxidant proteins). They also found that cells with aberrantly low 

levels of asparagine were more sensitive to knockout of asparagine synthetase (ASNS), and 

that cells expressing low levels of ASNS were significantly more sensitive to asparagine 

depletion in the media. Moreover, they showed that cells expressing low ASNS were more 

sensitive to asparaginase treatment, both in vitro and in vivo (Li, H. et al., 2019).  

The authors expanded further on the existing CCLE database by including ribonucleic acid 

sequencing (RNA-seq), whole exome sequencing, whole genome sequencing, reverse-phase 
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protein array, RNA splicing, DNA methylation, microRNA (miRNA) expression and histone 

modification data for subsets of CCLE cell lines. The publication associated with these 

additions involved further comparisons with external cancer gene dependency databases. 

For example, they showed that the sensitivity of melanoma cell lines to SRY-box transcription 

factor 10 (SOX10) knockdown was paralleled by hypomethylation of the SOX10 promoter in 

these cell lines, and that high expression of mir-215 was associated with catenin beta 1 

(CTNNB1) dependency in stomach and colon cancer cell lines (which they also validated using 

the TCGA dataset, which showed enrichment of mir-215 in gastric cancers) (Ghandi et al., 

2019). 

Similarly to the CCLE, the developers of the CTRP database (also based at the Broad Institute) 

demonstrated the benefit of using large numbers of drugs and small molecules (n = 355) to 

generate sensitivity measurements across a subset of extensively characterised cancer cell 

lines (n = 242) from the CCLE. They validated their methods by identifying known associations 

between genetic mutations and drug sensitivities (e.g. cell lines mutant for B-Raf proto-

oncogene, serine/threonine kinase (BRAF) were sensitive to P-0850, an analogue of 

vemurafenib, a BRAF-V600E inhibitor), and demonstrated the ability to identify novel drug-

gene associations – some lineage-specific – with potential therapeutic implications. For 

instance, they found that epidermal growth factor receptor (EGFR)-mutant cells were 

resistant to multiple drugs which inhibit nicotinamide phosphoribosyltransferase (NAMPT, 

the rate-limiting enzyme of the NAD biosynthetic pathway). They also predicted sensitivity 

to navitoclax based on mutation and copy number variation, finding that CTNNB1 mutations 

resulting in increased β-catenin expression correlated with sensitivity to navitoclax (Basu et 

al., 2013).  

In an expansion of the previous version of the CTRP (cell lines n = 860, drug compounds n = 

481), the authors described a novel method of analysis which integrated sensitivity data for 

multiple cancer cell lines to multiple compounds, thereby not only enabling the identification 

of common features of the cell lines which may contribute to sensitivity, but also facilitating 

the discovery of mechanisms of action for unannotated compounds. They revealed known 

drug-gene feature associations (e.g. cell lines mutant for BRAF-V600 showed sensitivity to 

BRAF inhibitors such as selumetinib) as well as novel associations (e.g. they found that 

LRRK2-in-1, a leucine-rich repeat kinase 2 (LRRK2) inhibitor, also functioned as a 

bromodomain inhibitor) (Seashore-Ludlow et al., 2015). 
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The same CTRP researchers also showed, in a separate publication, how basal gene 

expression can be used to uncover previously unknown mechanisms of action for small 

molecule compounds based on the correlation of gene expression with cancer cell line 

sensitivity. They also demonstrated how correlation-based analysis can identify mechanisms 

of drug resistance. For example, after controlling for confounders (e.g. cell line lineage, 

epithelial vs mesenchymal state, etc.), they found that high expression of biliverdin 

reductase B (BLVRB) was associated with resistance to B-cell lymphoma 2 (BCL2) inhibitor 

obatoclax, and in vitro validation suggested that BLVRB may modify obatoclax and prevent 

its interaction with BCL2-family proteins. Furthermore, they correlated high expression of 

solute carrier family 35 member F2 (SLC35F2) with sensitivity to YM-155, and high expression 

of ATP binding cassette subfamily B member 1 (ABCB1) with resistance to YM-155, indicating 

that the drug is a substrate for both transporters and its efficacy thus depends on its cellular 

uptake and efflux (Rees et al., 2016). 

Meanwhile, the GDSC database was developed by a separate group (the Cancer Genome 

Project at the Wellcome Trust Sanger Institute), and initially included genomic profiling of 

639 of cancer cell lines (some overlapping with the CCLE) along with sensitivity 

measurements to 130 drugs. They identified associations between tissue of origin and drug 

sensitivity and also between gene mutations and drug sensitivity. Again, some of the 

associations pointed to known mechanisms of drug action (e.g. breakpoint cluster region-

Abelson murine leukaemia (BCR-ABL)-positive cell lines were sensitive to novel and approved 

ABL inhibitors such as nilotinib), whereas others revealed previously unknown associations 

(e.g. cell lines expressing mutant notch receptor 1 (NOTCH1) displayed sensitivity to BCL2 

inhibitor navitoclax, which they suggested could be due to the increased expression of BCL2 

family proteins in these cells). Similarly to the CCLE study, they also demonstrated how 

multiple cellular features can be integrated to identify markers of sensitivity (Garnett et al., 

2012). A follow-up paper outlined how researchers can query the GDSC database using 

online resources (Yang, W. et al., 2013). The group later used tumour sample mutation, copy 

number and methylation data (from sources including the TCGA) to generate a map of 

‘cancer functional events’ (CFEs), which they then compared with their cell line 

pharmacogenomic data. This enabled them to identify, for example, that mutations in 

tumour protein P53 (TP53) were associated with sensitivity to mitomycin C in bladder cancer 

cell lines, which has relevance given the use of this drug in treating bladder cancers. 

Moreover, they validated their results using data from the CCLE and CTRP (Iorio et al., 2016). 
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Critically, each of these studies has displayed the usefulness of cell lines as model systems 

reflecting in vivo biology. The CCLE researchers found strong positive correlations between 

multiple genomic features in the CCLE data with data from primary tumour samples from 

independent datasets. Similarly, the GDSC researchers found significant agreement between 

the tumour data and the cell lines, especially when considering tumours and cell lines with 

the same tissue of origin. They did, however, highlight the importance of using large numbers 

of cell lines to retain statistical significance in the associations between features of cancer 

and drug responses (Iorio et al., 2016; Rees et al., 2016). 

 

1.1.3.2. Patient data 

In addition to cell line databases, data from patient tumour samples represent a critical 

resource for cancer genomic analysis. The TCGA project was founded in 2006 as a 

collaboration between the National Cancer Institute and the National Human Genome 

Research Institute. They have performed multidimensional characterisation of human 

tumour samples from 33 different cancer types in order to better our understanding of the 

molecular features underlying different cancers. The data have been widely utilised 

throughout the cancer research community to enable, for example, the identification of 

tumorigenic pathways and potential therapeutic targets. A number of publications have 

been associated with the TCGA datasets, both regarding individual cancer types and pan-

cancer analyses. The first involved an analysis of aberrant copy number, gene expression and 

DNA methylation from 206 glioblastoma samples. They found 453 non-synonymous SNPs in 

223 genes, including several within genes involved in DNA damage repair. They also found 

multiple previously identified and novel copy number alterations (e.g. amplification of AKT 

serine/threonine kinase 3 (AKT3)) and copy-neutral loss of heterozygosity in the region 

including the TP53 gene. Moreover, they identified that deficient mismatch repair in samples 

characterised by methylation of the O-6-methylguanine-DNA methyltransferase (MGMT) 

gene from patients treated with DNA alkylating agents was associated with substantially 

greater GC to AT transitions at non-CpG dinucleotides compared with CpG dinucleotides (The 

Cancer Genome Atlas Research Network, 2008). Meanwhile, the pan-cancer analyses 

published by the TCGA research group highlight the common features observed between 

cancer types, the improvement in statistical power associated with larger sample sizes (i.e. 

by aggregation of data from samples derived from multiple cancer types) and the limitations 

associated with considering only individual cancer entities when attempting to identify 

cancer driver genes. They also note the importance of accounting for data that was 
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generated using different platforms and correcting for batch effects when integrating data 

from different sources (The Cancer Genome Atlas Research Network, 2013). 

Similarly, the TARGET database is a resource of tumour sample data, in this case derived from 

paediatric patients. The project has been developed by the Office of Cancer Genomics (OCG) 

with the Cancer Therapy Evaluation Program at the National Cancer Institute (National 

Cancer Institute, NCI), in collaboration with research institutions and hospitals across Central 

and North America. The project also aims to characterise genetic alterations and aberrant 

pathways associated with different cancer types in order to identify therapeutic targets. To 

date, samples derived from five cancer types have been extensively investigated by gene 

expression, copy number, methylation, miRNA and mutation analyses. Numerous 

publications have been associated with TARGET data, including an analysis of high-risk B-cell 

acute lymphoblastic leukaemia which revealed poor outcomes to be associated with deletion 

of and missense, frameshift and nonsense mutations in Ikaros family zinc finger 1 (IKZF1) 

(encoding zinc finger protein Ikaros, which regulates lymphocyte differentiation) (Medeiros, 

2009), an analysis of metastatic neuroblastoma which revealed surprisingly low frequencies 

of recurrent somatic mutations but noted potentially pathogenic germline variants in six 

genes (Pugh et al., 2013), and an analysis of clear cell sarcoma of the kidney which revealed 

downregulation of transcription factor 21 (TCF21) antisense RNA inducing promoter 

demethylation (TARID, a long non-coding RNA which induces promoter demethylation) and 

concomitant hypermethylation of the gene encoding transcription factor TCF21, a regulator 

of kidney cell differentiation (Gooskens et al., 2015). Pan-cancer analyses have also been 

performed by the group, which highlighted the importance of considering paediatric cancers 

independently of adult cancers, given divergent features such as lower median somatic 

mutation rate and differing cancer driver genes (Ma et al., 2018). 

The studies outlined above exemplify how the availability of multi-platform data from large 

numbers of cancer patients is a significant development in cancer research. Not only do these 

databases provide a useful source of cancer genomics data for analysis, but they also enable 

direct associations between features of cancer and patient outcomes to be identified. 

Moreover, many of these databases incorporate data on drug treatments, patient 

characteristics and demographic characteristics (such as age, sex, ethnicity and lifestyle 

factors) so they can be taken into account when performing analyses of the data and testing 

hypotheses. 
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1.1.4. Open access to (pharmaco)genomic datasets enables researchers to 

investigate cancer drug response and predict patient survival 

 

By releasing pharmacogenomic screening data for use by researchers from different fields, 

novel perspectives on the content and potential applications for the data are gained. In some 

instances, researchers choose to analyse individual genomic features in tandem with drug 

response data, which can be a simple and rapid method to examine mechanisms of action of 

chemotherapeutic agents and to predict cellular responses. It has been previously proposed 

that gene expression quantification can predict drug response better than other genomic 

features, such as recurrently aberrant copy number segments and mutations in cancer 

associated genes (Iorio et al., 2016). Indeed, it has been demonstrated that gene expression 

data can be correlated with cell line drug response to discover novel drug mechanisms of 

action and to identify markers of drug sensitivity – for example, the authors of the CTRP 

database showed that cell line sensitivity to tanespimycin (a heat shock protein 90 (HSP90) 

inhibitor) correlated with high expression of NAD(P)H Quinone Dehydrogenase 1 (NQO1), a 

gene that has been previously shown to be involved in the activation of the drug. Their results 

also gave mechanistic explanation for the relative insensitivity of the cell lines to other HSP90 

inhibitors (Rees et al., 2016). In another study, high expression of VEGFA was shown to 

correlate with resistance to the anaplastic lymphoma kinase (ALK) inhibitor TAE684 in non-

small cell lung cancer and soft tissue cancer-derived cell lines in both the CCLE and GDSC 

databases. They note that VEGF-A has been shown to be induced under hypoxic conditions 

and that previous studies have shown hypoxia to be associated with the development of 

resistance to ALK inhibitors, which provides evidence supporting their findings (Qin, Y. et al., 

2017). Such results therefore suggest that correlating basal gene expression with cell line 

drug response has the potential to identify important markers of drug response, which may 

have therapeutic implications.  

Other studies have demonstrated the importance of large databases for predicting drug 

response of untreated cell lines – for example, data from the CCLE and GDSC databases were 

used to generate linear weighted models to predict drug response based on the gene 

expression profiles of cell lines (i.e. reasoning that cell lines with similar gene expression 

profiles may respond similarly to a given drug, and thus giving these higher weights in the 

model) and to predict response to a novel drug based on the structural similarity of the drug 

to other drugs and the known response of cell lines to those similar drugs (i.e. reasoning that 



50 
 

drugs which are structurally similar may affect cell lines in a similar manner). They also 

combined these models to improve their predictive power (Zhang et al., 2015).  

The availability of clinical data from patients (such as from the TCGA and TARGET databases) 

also enables the prediction of patient survival based on individual genomic features, which 

could in turn be considered as therapeutic targets. For example, one study found that high 

expression of solute carrier family 2 member 3 (SLC2A3) was significantly associated with 

reduced overall survival and disease-free survival in samples of colorectal carcinoma from 

the TCGA and from a dataset from an independent research group available in the GEO 

database (Kim, E. et al., 2019). In another study, while mutations in known cancer driver 

genes were reported to lack prognostic ability, copy number alterations of numerous genes 

were found to be prognostic in various cancer types both in the TCGA and in an independent 

cohort from cBioPortal and the International Cancer Genome Consortium (ICGC) – for 

example, novel associations between murine double minute 4 protein (MDM4) amplification 

and prostate cancer and between NOTCH2 amplifications and melanoma were identified 

(Smith, J. C. & Sheltzer, 2018). 

Meanwhile, integration of multiple data types can further enhance our understanding of 

disease processes and better inform the development of targeted therapies. In one study, 

data from five separate platforms (copy number, methylation, messenger RNA (mRNA) 

expression, miRNA expression and protein expression) from the TCGA database were 

clustered in order to enhance identification of disease subtypes above their tissue-of-origin 

annotations. They noted that their ‘Cluster-Of-Cluster-Assignments’ (COCA) algorithm, when 

added to a multivariate model in addition to tissue-of-origin and clinical features, 

significantly enhanced the prediction of survival outcomes. They also found that COCA 

subtypes correlated with the mutation status of numerous genes, copy number variation and 

gene expression profiles. Moreover, their clusters revealed similarities between distinct 

tumour types (for example, copy number profiles of their basal-like breast cancer subtype 

reflected most closely that of their ovarian cancer subtype), as well as diversity within certain 

other tumour types (for example, bladder cancer samples clustered into seven of the 11 main 

COCA groups, displaying substantial differences in multiple genomic features (Hoadley et al., 

2014). This study revealed the importance of considering genomic features when classifying 

tumours, which could in turn facilitate better stratification of patients when selecting 

treatments.  
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The prediction of cancer cell line or patient response to a drug is also frequently approached 

using machine learning. Methods such as elastic net regression and random forest algorithms 

are commonly used to integrate multiple data types (e.g. gene expression, mutation, copy 

number variation) in order to predict response to individual drugs or drug families – for 

example, the authors of the CCLE, CTRP and GDSC databases each employed machine 

learning in their flagship studies (Barretina et al., 2012; Basu et al., 2013; Garnett et al., 2012). 

Biomarkers of in vivo drug response have also been identified using machine learning-based 

methods. One such method, named ‘IDWAS’ (imputed drug-wide association study), 

involved the generation of a regression model from GDSC basal gene expression and drug 

response data, which was applied to data from the TCGA to predict therapy response in 

patients. They demonstrated the validity of their method with their prediction that 

sensitivity to Erb-B2 receptor tyrosine kinase 2 (ERBB2) inhibitor lapatinib was greater in 

ERBB2+ individuals and increased with increasing ERBB2 copy number (Geeleher et al., 

2017). In another study, clustering molecular subtypes based on features such as miRNA, 

mRNA and protein expression revealed the influence of certain markers on patient survival 

outcomes, both within individual cancer types and also between different cancer types. For 

example, kidney cancer patient survival could be predicted from a machine learning model 

trained using ovarian cancer somatic copy number alteration data. They also noted how 

amalgamating somatic mutation data across cancer types enabled the identification of low-

frequency mutations within genes which are known therapeutic targets or that have been 

previously found to have clinical relevance, which may have been otherwise overlooked 

(Yuan et al., 2014). As publicly available genomics databases are expanded to include greater 

numbers of cell lines of different lineages, greater numbers of patient samples from different 

tissues and a greater variety of genomic features from each, the ability to assemble improved 

training sets will increase, which will be used to develop models with higher accuracy and 

better predictive power.  

 

1.1.5. Publicly available datasets can supplement in vitro and in vivo 

investigation  

 

In addition to providing a resource for the generation of novel findings, publicly available 

datasets are frequently used to supplement in vitro and in vivo studies and as the basis for 

further investigation. Many studies use analysis of pharmacogenomic databases as the 
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starting point for their investigations, which they can then expand upon and/or 

experimentally validate. For example, in one study, hemizygous deletion of RNA polymerase 

II subunit A (POLR2A) was found to accompany TP53 deletion in most samples from 

colorectal cancer (CRC) patients in the TCGA, and POLR2A expression was strongly correlated 

with its copy number in the TCGA and CCLE databases, which they also found in tumour and 

matched normal samples from colorectal cancer patients. These findings prompted further 

investigation into the sensitivity of CRC cells to inhibition of POLR2A and its therapeutic 

implications (Liu, Y. et al., 2015). In another study, GDSC drug response data was used to 

show that renal cell carcinoma (RCC) cell lines harbouring SET domain containing 2 (SETD2) 

mutations were significantly more sensitive to phosphatidylinositol 4,5-bisphosphate 3-

kinase catalytic subunit beta isoform (PI3Kβ) inhibitors than cells which were wildtype for 

SETD2. They also used data from RCC patients from the TCGA to determine that SETD2 was 

frequently deleted, mutated or downregulated, and that deletion of MutL homolog 1 (MLH1 

(encoding a component of the mismatch repair machinery) frequently accompanied that of 

SETD2. Given these findings, MLH1 status was investigated in SETD2 mutant A498 RCC cell 

lines treated with a PI3Kβ inhibitor in vitro, which revealed that loss of MLH1 may confer 

drug resistance via downregulation of post meiotic segregation increased 2 (PMS2), another 

mismatch repair protein (Feng, C. et al., 2015). Elsewhere, copy number variants associated 

with response to tyrosine kinase inhibitors were identified using the GDSC database, their 

association with survival was calculated using the TCGA kidney renal clear cell carcinoma 

(KIRC) database, and the results were validated with in vitro assays – for example, copy 

number gain of guanine nucleotide binding protein alpha stimulating (GNAS) was associated 

with resistance to cabozantinib and reduced patient survival, while overexpression of GNAS 

in clear cell renal cell carcinoma cells resulted in increased proliferation, invasion and 

migration (Li, Y. et al., 2020). 

Other researchers choose to follow their experimental findings with database analyses. For 

instance, a small interfering RNA (siRNA) screen of two patient-derived ovarian cancer cell 

lines identified that knockdown of bromodomain-containing protein 4 (BRD4) sensitised cells 

to poly (ADP-ribose) polymerase (PARP) inhibitor rucaparib, and that combination of 

rucaparib with bromodomain and extraterminal domain (BET) inhibitors synergistically 

reduced cell viability. To further investigate these results, they used the TCGA database to 

determine that greater levels of aneuploidy were observed in high-grade serous ovarian 

carcinoma (HGSC) patients with high BRD4. They also found mutual exclusivity between high 

BRD4 and breast cancer 1/2 (BRCA1/2) mutation in TCGA HGSC patients, while the GDSC data 
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showed that cell lines with BRCA2 mutations were significantly more sensitive to BET 

inhibitors than cell lines carrying wildtype BRCA2. Use of these cell line and patient databases 

therefore provided support for their suggestion that high expression of BRD4 may facilitate 

adaptation to genomic instability in ovarian cancer cells, which can be targeted with a 

combination of PARP and BET inhibitors (Lui et al., 2020). In another recent study, response 

to YM155 was analysed in cell lines from the CTRP and GDSC studies, which showed that cell 

lines expressing high levels of ABCB1 were relatively more resistant to YM155 and cell lines 

expressing high levels of SLC35F2 were relatively more sensitive to YM155 treatment, which 

provided further evidence supporting their initial finding that ABCB1 expression was 

increased and SLC35F2 expression was decreased in YM155-adapted UKF-NB-3 cell lines 

(Michaelis et al., 2020).  

Meanwhile, others integrate in vitro, in vivo and in silico investigation to build a 

comprehensive body of evidence for the hypothesis being tested. For example, one study 

investigated the effect of a silent poly (ADP-ribose) polymerase 1 (PARP1) single nucleotide 

polymorphism on mRNA secondary structure, ribosome inhibition and ultimately protein 

structure, and its effect on sensitivity to PARP inhibitors. In addition to biochemical assays, 

they analysed mutant vs wildtype samples from the TCGA breast invasive carcinoma (BRCA) 

cohort, as well as drug response data from mutant vs wildtype cell lines in the CTRP and 

GDSC databases. They found that presence of a synonymous variant in PARP1 in TCGA BRCA 

patients was associated with significantly lower PARP1 expression than in patients 

expressing the wildtype allele, and their in vitro investigation also revealed PARP1 expression 

to be lower in COV362 cells (which carry the mutant PARP1 allele) compared with SKOV3 

cells (which carry the wildtype PARP1 allele). In addition, they found that cell lines in the 

CTRP and GDSC which carry the silent mutation were more sensitive to PARP inhibitors 

olaparib and veliparib, which they also validated with further in vitro assays (Cashman et al., 

2020).  

 

1.2. Use of publicly available data for the analysis of SARS-CoV-

2 

1.2.1. Overview of SARS-CoV-2 
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the 

novel coronavirus disease COVID-19, was first identified in December 2019 in the Hubei 

Province of Wuhan, China (Zhu, N. et al., 2020). It is one of seven coronaviruses known to 

infect humans (along with alphacoronaviruses human coronavirus (HCoV)-229E and HCoV-

NL63, and betacoronaviruses HCoV-OC43, HCoVHKU1, severe acute respiratory syndrome 

coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) 

(Wang, H. et al., 2020)), and has been found to be most closely related to bat coronaviruses 

(bat SARS-like (bat-SL)-CoVZC45, sequence identity 87.99%; bat-SL-CoVZXC21, sequence 

identity 87.23%), and less so to SARS-CoV (~79% identity) and MERS-CoV (~60% identity) (Lu 

et al., 2020). Despite sequence similarities and use of the same host receptor (angiotensin-

converting enzyme 2 (ACE2) (Hoffmann, Kleine-Weber et al., 2020; Letko et al., 2020; Zhou, 

P. et al., 2020)), there are notable differences in the pathogenesis of SARS-CoV-2 compared 

with related viruses. Notably, as of the end of 2020, there had been over 79,673,754 cases 

and 1,761,381 deaths worldwide due to COVID-19 (covid19.who.int), compared with around 

8,000 cases and 774 deaths between November 2002 and July 2003 due to the SARS-CoV 

outbreak (nhs.uk/conditions/sars/). 

SARS-CoV-2 entry into host lung epithelial cells is mediated through the binding of the viral 

Spike (S) protein with the ACE2 receptor. Notably, a study using data derived from three 

transcriptomics databases and from nine single-cell RNA-seq datasets revealed limited ACE2 

expression in the respiratory tract (mainly in alveolar type 2 cells), while its highest 

expression was reported to be in the intestinal tract, with high expression also detected in 

the kidney, testis, gallbladder and heart. This could explain some of the clinical 

manifestations of disease that have been observed relating to these tissues, discussed below. 

Similar results for ACE2 protein expression levels were obtained using publicly available mass 

spectrometry data and by immunohistochemistry and Western blot by the authors. The 

authors suggest this could imply alternative mechanisms of SARS-CoV-2 entry (for example, 

via a different receptor or via a receptor-independent mechanism) or could result from 

immune-driven local upregulation of ACE2 in respiratory epithelial cells in response to 

infection (Hikmet et al., 2020). Others have suggested a potential role for co-receptors which 

may facilitate SARS-CoV-2 S binding to ACE2 (for example, heparan sulphate, neuropilins or 

sialic acid) such as 78 kilodalton (kDa) glucose-regulated protein (GRP78) or cluster of 

differentiation 147 (CD147) (Zamorano Cuervo & Grandvaux, 2020). 

The S protein is present on the viral surface as a trimer comprising the surface-exposed S1 

receptor binding subunit (containing the receptor binding domain (RBD)) and the 
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transmembrane S2 fusion subunit (Shang, J. et al., 2020; Xia, S. et al., 2020). The RBD is 

reported to cycle between ‘up’ and ‘down’ conformational states, with the latter mediating 

immune evasion and the former facilitating ACE2 receptor binding (Shang, J. et al., 2020). To 

facilitate membrane fusion, priming of the Spike protein by cellular proteases including the 

proprotein convertase furin and the serine protease transmembrane protease serine 2 

(TMPRSS2) is required. Between S1 and S2 subunits, a multibasic four amino acid insertion 

was identified as a cleavage site for furin, which is absent from SARS-CoV and other SARS-

related coronaviruses (Walls et al., 2020). Cleavage at this site by furin, which takes place in 

the endoplasmic reticulum-Golgi apparatus intermediate compartment during virion 

assembly, has been shown to promote proteolytic cleavage of the S protein and viral 

membrane fusion, potentially by making a further cleavage site located just upstream of the 

fusion peptide, the S2’ site, more accessible to TMPRSS2, which cleaves the S protein on the 

cell surface (Bestle et al., 2020; Hoffmann et al., 2020; Papa et al., 2021; Tang, T. et al., 2020; 

Xia, S. et al., 2020). Cleavage at the S1/S2 site followed by further cleavage at the S2’ site 

facilitates fusion of viral and host membranes and subsequent release of the viral genome 

into the host cell. Inhibition of TMPRSS2 using serine protease inhibitors such as camostat 

and nafamostat has been previously shown to inhibit SARS-CoV-2 entry (Hoffmann et al., 

2020; Hoffmann, Schroeder, Kleine-Weber, Müller, Drosten, & Pöhlmann, 2020b), and in 

chapter 8 we show that another serine protease inhibitor, aprotinin, also inhibits SARS-CoV-

2 entry at therapeutic concentrations and therefore has potential to be used as an antiviral 

treatment. Lysosomal cathepsins have also been proposed to play a role in mediating SARS-

CoV-2 viral entry (Shang, J. et al., 2020), and cathepsin L (CTSL) has been shown to further 

cleave SARS-CoV-2 S protein following cleavage by furin, while knockdown by siRNA has been 

shown to inhibit SARS-CoV-2 pseudovirus entry into Huh7 cells (Zhao, M. et al., 2021). It has 

been suggested that, in the absence of TMPRSS2, SARS-CoV-2 may enter cells via an 

endocytic pathway within endolysosomes, following which CTSL may cleave the S2’ subunit 

and stimulate viral fusion with endosomal membranes and subsequent release of the viral 

genome (Murgolo et al., 2021; Tang, T. et al., 2020). The ability to use different entry 

mechanisms therefore expands the tropism of the SARS-CoV-2 virus and could enhance its 

infectivity and transmissibility.  

Upon release of the SARS-CoV-2 genome into the host cell cytoplasm, two overlapping open 

reading frames (ORFs), ORF1a and ORF1b, are translated on host ribosomes into polyprotein 

1a (pp1a) and polyprotein 1b (pp1b), which are processed to produce 16 non-structural 

proteins (NSP1-11 from pp1a and NSP1-10 and NSP12-16 from pp1b) by viral proteases NSP3 
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(papain-like protease (PLpro)) and NSP5 (3C-like protease (3CLpro) or main protease (Mpro)). 

These 16 NSPs together form the viral replicase-transcriptase complex (RTC), with NSP1 

involved in inhibiting host cell translation, degrading host mRNA and inhibition of interferon 

(IFN) signalling and NSPs 2-11 reportedly functioning in support of viral replication (such as 

by acting as replication cofactors, double membrane vesicle formation and mediating 

immune escape), whereas NSPs 12-16 are directly involved in viral replication. In particular, 

NSP12 acts as the RNA-dependent RNA polymerase, synthesising viral RNA, with NSP7 and 

NSP8 acting as cofactors and NSP14 providing proofreading 3’-5’ exonuclease activity 

(Perlman & Netland, 2009; Romano et al., 2020; V'kovski et al., 2021). The RTC also mediates 

transcription of the remainder of the viral genome, which encodes the structural proteins S, 

envelope (E), membrane (M) and nucleocapsid (N), interspersed with accessory proteins. 

Following translation, the structural proteins are translocated to the endoplasmic reticulum 

(ER) membranes and move through the ERGIC, where interaction with newly formed viral 

RNA results in the formation of mature virions (Perlman & Netland, 2009; V'kovski et al., 

2021). The N protein packages the viral genome into helical nucleocapsid structure (RNP), 

the M protein determines the shape of the viral envelope and interacts with E to facilitate 

virion assembly, while the E protein forms a viroporin which facilitates viral assembly and 

exit (Satarker & Nampoothiri, 2020). One study showed that, instead of using the 

biosynthetic secretory pathway, β-coronaviruses such as SARS-CoV-2 exit the host cell within 

deacidified lysosomes, which also facilitates immune escape by perturbing the antigen 

presentation pathway (Ghosh et al., 2020). Meanwhile, the accessory proteins perform 

diverse functions involving immune escape and interferon antagonism (Orf3a, Orf3b, Orf6, 

Orf7a, Orf8, Orf9b), cytokine signalling (Orf3a, Orf9c) and apoptosis (Orf3a) (Redondo et al., 

2021). Orf3a has also been proposed to be responsible for the deacidification of lysosomes 

used for viral exit (Ghosh et al., 2020). 

SARS-CoV-2 infection therefore relies on a complex process of receptor binding and 

proteolytic cleavage by cellular proteases to facilitate membrane fusion and viral entry 

before the virus can utilise host protein synthesis machinery to produce the proteins 

required by the virus for replication and subsequent exit from the host cell. A schematic of 

SARS-CoV-2 entry, replication and exit is provided in Figure 1.2.  
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Figure 1.2. Overview of SARS-CoV-2 viral entry, replication and exit. Following binding to receptor 

ACE2, release of viral genome occurs via the cell surface pathway (membrane fusion at plasma 

membrane) or via the endocytic pathway (membrane fusion in endosome). Polyproteins pp1a/pp1b 

are translated and processed by viral proteases to form RTC. Viral genome is replicated and further 

proteins (structural and accessory) are transcribed and translated before structural proteins are 

inserted into ER membranes. Viral RNA interaction with structural proteins, virion assembly and Spike 

protein cleavage by proprotein convertase furin occurs in ERGIC. Mature virions exit the host cell in 

deacidified lysosomes. ACE2 = ACE2 angiotensin converting enzyme 2. CTSL = Cathepsin L. E = 

Envelope protein. ER = Endoplasmic reticulum. M = Membrane protein. RTC = Replicase-transcriptase 

complex. S = Spike protein. TMPRSS2 = Transmembrane protease serine 2. 

 

The clinical manifestations of COVID-19 range from asymptomatic infection to life-

threatening multiorgan failure and death. The risk of developing severe disease has been 

shown to correlate with certain demographic factors (such as older age (Liu, Y. et al., 2020), 

being male (Kelada et al., 2020; Peckham et al., 2020) and being from black, Asian or ethnic 

minority background (Patel et al., 2020; Sze et al., 2020)) as well as a number of comorbidities 

(including hypertension, diabetes and coronary heart disease (Zhou, F. et al., 2020)). Mild to 
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moderate cases typically present as flu-like symptoms (fever, cough, headache, myalgia, 

fatigue) as well as respiratory distress, gastrointestinal symptoms, sore throat and loss of 

sense of taste and/or smell. In severe cases, patients can also develop symptoms resembling 

acute respiratory distress syndrome (ARDS) (Li, X. & Ma, 2020), neurological symptoms 

(Whittaker et al., 2020), cardiac injury (Mitrani et al., 2020), acute kidney injury (Chaibi et al., 

2020) and laboratory findings including lymphocytopoenia and elevated C-reactive protein 

(Esakandari et al., 2020). Substantial release of proinflammatory cytokines such as IL-6, IL2R 

and TNFα indicative of a ‘cytokine storm’ has been frequently observed, which can lead to 

massive infiltration of immune cells leading to tissue damage and multiple organ failure 

(Olwal et al., 2021; Qin, C. et al., 2020). In one study, 100% of fatal cases developed COVID-

19-related sepsis, compared with 42% of non-fatal cases (Zhou, F. et al., 2020). Autopsy 

reports have shown frequent pulmonary consolidation with diffuse alveolar damage, hyaline 

membrane formation and hyperplasia of type II pneumocytes (Borczuk et al., 2020; Tian et 

al., 2020). In patients with a longer duration of disease, large vessel thrombi as well as 

microthrombi within arterioles and capillaries were frequently observed (Borczuk et al., 

2020; Fahmy et al., 2021). Coagulopathy is recognised as a significant feature of severe 

COVID-19 and has been proposed to result from the release of proinflammatory cytokines, 

which is known to be associated with hypercoagulation, for example, by increasing 

fibrinogen and platelet production and via induction of the expression of tissue factor, which 

plays a critical role in the initiation of coagulation (Hadid et al., 2020; Mezalek et al., 2020). 

We explore COVID-19-related coagulopathy further in chapter 7, in which we discuss a 

possible role for transferrin (an iron-binding glycoprotein which has recently been implicated 

as an important clotting regulator (Tang, X., Zhang et al., 2020)) in mediating enhanced 

coagulation in severe cases of infection.  

There are notable differences in the clinical characteristics of the diseases caused by SARS-

CoV-2 compared to SARS-CoV, which caused a major outbreak in 2002. Although both viruses 

infect the lower respiratory tract causing pneumonia with acute respiratory distress, sepsis 

and multi-organ failure, the fatality rate from SARS was substantially higher than that of 

COVID-19 (~10% compared with ~2%, respectively (Wang, C. et al., 2021)). SARS-CoV-2 

transmission has also been observed from individuals with asymptomatic infection 

(Johansson, M. A. et al., 2021), whereas little or no asymptomatic transmission was observed 

for SARS (Wilder-Smith et al., 2005). Gastrointestinal symptoms and have been shown to be 

less common in COVID-19 compared to SARS, and laboratory findings suggest that patients 

with COVID-19 are less likely to develop thrombocytopaenia (Zhu, Z. et al., 2020). These 
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clinical differences are likely to be the result of structural and functional differences in the 

SARS-CoV and SARS-CoV-2 viruses, which also translate into differing host responses and 

therefore differing outcomes. For example, the furin cleavage site between S1 and S2 

subunits of the Spike protein, which is present in SARS-CoV-2 but absent in SARS-CoV (Shang 

et al., 2020; Hoffman et al., 2020), may be associated with more efficient viral spread in SARS-

CoV-2. The SARS-CoV Spike protein has also been found to bind with lower affinity to the 

ACE2 receptor compared with SARS-CoV-2, which could also underly the differences 

observed in their infectivity (Yan, R. et al., 2020). Moreover, as discussed, the Spike protein 

of SARS-CoV has also been shown to exist predominantly in the ‘up’ conformation compared 

with the ‘down’ conformation in SARS-CoV-2, which has been suggested to mediate immune 

evasion (Rossi et al., 2020). Further differences in immune evasion between SARS-CoV and 

SARS-CoV-2 have been identified in relation to interferon antagonism – for example, NSP1, 

NSP6 and ORF3b of SARS-CoV-2 have been shown to inhibit type I IFN signalling more 

potently than the equivalent proteins in SARS-CoV (Konno et al., 2020; Xia, H. et al., 2020). 

We investigate another potential mechanism of SARS-CoV-2 immune evasion (by 

upregulation of cluster of differentiation 47 (CD47), a marker of self that has been implicated 

in immune evasion in cancer (Chao et al., 2012)) in chapter 6. This chapter also includes 

discussion of the previous associations that have been made between CD47 expression and 

some of the common comorbidities of COVID-19. Moreover, we also investigate the 

sequence and structural differences between SARS-CoV and SARS-CoV-2 in detail and discuss 

possible mechanisms determining the differences in their clinical phenotypes further in 

chapter 5.  

 

1.2.2. Datasets available for the analysis of SARS-CoV-2 

 

The SARS-CoV-2 viral genome was first released by an international consortium on the 10th 

January 2020 (Holmes, 2020) and deposited in GenBank (Benson et al., 2013) (accession 

MN908947), a large online resource collating publicly available nucleotide sequence data 

from thousands of independent investigations. Four additional sequences from other 

patients which had >99.9% sequence homology were isolated, and all five were deposited 

between the 10th and 11th January in the Global Initiative on Sharing Avian Influenza Data 

(GISAID) database (Shu, Y. & McCauley, 2017). This platform was initially developed to 

facilitate the sharing of sequencing data from studies of influenza viruses but has now also 
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become a critical resource for the sharing of SARS-CoV-2 sequencing data. An article 

associated with the findings was published on the 3rd February 2020 (Zhou, P. et al., 2020). 

At the time of writing (21/08/2020), 16,557 nucleotide sequences of the SARS-CoV-2 virus 

have been released (11,123 complete sequences, 5,434 partial sequences).  

In addition to sequence data, structures of the SARS-CoV-2 proteins have been deposited in 

the Protein Data Bank (PDB) (Berman et al., 2000), a large online repository of publicly 

accessible 3D structural data for proteins, DNA and RNA from x-ray crystallography, electron 

microscopy and nuclear magnetic resonance (NMR) studies. The SARS-CoV-2 structures 

available in the PDB include unliganded and uncomplexed protein structures as well as viral 

proteins in complex with other SARS-CoV-2 proteins, with ACE2, with antibodies or bound to 

drug compounds.  Furthermore, as described for publications relating to cancer, a rapidly 

increasing number of datasets from studies into SARS-CoV-2 has been deposited into the 

GEO database (1,339 as of 24/10/2020, Figure 1.3), which includes not only genomic and 

transcriptomic datasets from studies of the SARS-CoV-2 virus itself, but data relating to host 

cell response to the virus.  

1.2.3. Authors demonstrate the value of their data and its public release in the 

context of a global pandemic  

 

Figure 1.3. Number of datasets associated with SARS-CoV-2 between February 2020 and October 
2020 
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The first crystal structure of a SARS-CoV-2 protein, the main protease protein (Mpro) in 

complex with inhibitor N3, was deposited in the PDB in January 2020 (PDB accession: 6LU7). 

In their associated publication, the authors described how the availability of the structure 

can facilitate the rapid identification of potential inhibitors of the Mpro protein, which may in 

turn have clinical relevance (Jin, Z. et al., 2020). Similarly, the first crystal structure of the 

SARS-CoV-2 receptor binding domain in complex with ACE2 was deposited in March 2020 

(PDB accession: 6VW1). The authors identified the interacting residues and demonstrated 

how differences in binding affinities compared with that of SARS-CoV:ACE2 may affect the 

strength of the complex. They also remarked how their study may inform the development 

of novel treatments by highlighting potentially relevant epitopes that could be targeted by 

monoclonal antibodies, and how the results could even aid in the development of a receptor 

binding domain vaccine (Shang, J. et al., 2020). 

The global host cellular response to viral infection has also been the focus of a number of 

investigations for which the data have been publicly released. For example, a proteomics 

study of SARS-CoV-2-infected Caco-2 cells revealed enrichment of components of the host 

translation machinery post infection at both the translatome and proteome level, as well as 

increases in proteins involved in RNA modification and carbon metabolism. For example, 

they investigated whether inhibition of splicing factor 3B subunit 1 (SF3B1) or of hexokinase 

may inhibit viral replication. Since inhibition of splicing and glycolysis did appear to prevent 

viral replication, the authors concluded that targeting of these pathways could represent a 

potential therapeutic strategy for COVID-19 (Bojkova et al., 2020). In another study, 

researchers infected A549 cells exogenously expressing ACE2 with the virus, both at a high 

multiplicity of infection (MOI) (2) and a low MOI (0.2), as well as CALU-3 cells, which they 

reported to be more susceptible to SARS-CoV-2 infection than wildtype A549 cells. They also 

infected ferrets with SARS-CoV-2 and quantified differential protein expression in samples 

from the trachea at day 3 post infection and intranasal samples at 14 days post infection. In 

addition, they compared the transcriptional profile of post-mortem lung samples from 

COVID-19 patients with samples from healthy lung biopsies. Importantly, their results 

revealed significant differences in responses to SARS-CoV-2 infection compared with 

infection with other viruses (e.g. respiratory syncytial virus and influenza A virus), especially 

pertaining to low expression of interferons I and III combined with significant increases in 

chemokine signalling (Blanco-Melo et al., 2020). Elsewhere, transcriptome analyses were 

performed comparing healthy peripheral blood mononuclear cells (PBMC) and 

bronchoalveolar lavage fluid (BALF) cells compared with SARS-CoV-2-infected cells. This 
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revealed similar perturbations to those observed in the study by Bojkova et al., such as 

upregulation of host transcriptional machinery and increased protein targeting to the 

endoplasmic reticulum membrane, as well as downregulation of proteins involved in 

response to stress (Xiong et al., 2020). Another group infected Vero E6 cells with SARS-CoV-

2 and performed tandem mass spectrometry at intervals up to 7 days post-infection to 

identify differentially expressed proteins, also revealing deregulation of pathways such as 

membrane trafficking and lipid metabolism (Grenga et al., 2020). Datasets of host 

transcriptional and translational response to SARS-CoV-2 infection therefore provide a rich 

source of information for further study, which can be utilised in the identification of 

pathways which may be targeted for therapeutic intervention. 

Meanwhile, other studies have investigated the interactions between host and viral proteins 

post viral entry. These publications have included the release of datasets which have enabled 

the scientific community to gain a better understanding of the pathogenesis of the SARS-

CoV-2 virus and also provided critical information to suggest further potential therapeutic 

targets. In one notable study, human proteins that interact directly with SARS-CoV-2 proteins 

were identified by affinity purification and mass spectrometry to produce a list of 332 high 

confidence interactors. Consistent with the differentially expressed genes observed in other 

studies post-infection, they found a large proportion of interactions between viral proteins 

and host proteins involved in membrane trafficking, translation and regulation of the 

immune system. They also identified a number of drugs which could potentially target host-

viral interactions, such as zotatifin, an inhibitor of eukaryotic initiation factor 4A (eIF4A), 

which they had found to interact with non-structural protein 9 (NSP9 which, based on 97% 

homology with NSP9 of SARS-CoV, is thought to be important for viral replication (Littler et 

al., 2020)) (Gordon et al., 2020). This study had already been cited by 450 other articles at 

the time of writing (03/01/2021) (National Library of Medicine, 2021). In another study, host-

viral protein-protein interactions were analysed by overexpression of plasmids encoding 

SARS-CoV-2 encoded genes in HEK293 cells, affinity purification, liquid chromatography and 

mass spectrometry. This identified 295 interactions between viral proteins and host proteins, 

and again involved in pathways including intermembrane trafficking, metabolic processes, 

stress response and inflammation, as well as mRNA transport and nucleotide excision repair. 

45 of the host proteins they identified were also found to bind with SARS-CoV-2 proteins in 

the Gordon et al. dataset. In addition, they investigated intra-viral protein-protein 

interactions using yeast-two hybrid screens and co-immunoprecipitation, arguing that 

disruption of these interactions could present another opportunity for therapeutic 
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intervention. They also quantified proteome changes between healthy and COVID-19-

infected PBMC samples from patients, for example revealing increased expression of 

proteins involved in blood coagulation and decreased expression of proteins involved in T-

cell activation in severely affected patients (Li, J. et al., 2020). Another group transduced 

A549 cells with haemagglutinin (HA)-tagged SARS-CoV and SARS-CoV-2 protein-expressing 

lentiviruses and performed affinity purification and mass spectrometry, which identified 

1484 interactions between viral and cellular proteins associated with immune, stress and 

DNA damage response. They also quantified mRNA/protein abundance, phosphorylation and 

ubiquitination in SARS-CoV-2-infected ACE2-expressing A549 cells, which also revealed 

perturbations in these pathways (Stukalov et al., 2020).  

In addition to quantification of changes in protein abundance following SARS-CoV-2 

infection, another group identified host and viral protein interactions with viral RNA by 

infection of human liver cell line Huh7 with SARS-CoV-2 followed by RNA antisense 

purification with mass spectrometry (RAP-MS). 13 SARS-CoV-2 proteins and 104 human 

proteins were identified to interact with SARS-CoV-2 RNA. Notably, they compared their data 

with that of Gordon et al., and found only 10 of the 332 human proteins that interacted with 

SARS-CoV-2 proteins to also bind to SARS-CoV-2 RNA. They also identified significant 

enrichment of proteins interacting with SARS-CoV-2 RNA involved in translation, DNA 

damage response and membrane targeting, and described how their interaction network 

can suggest potential therapeutic targets, as in other studies outlined above. Furthermore, 

they performed detailed investigations into the importance of host protein/viral RNA 

interactions on viral pathogenesis (e.g. by performing knockout studies of human proteins 

using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated 

protein 9 (Cas9)) (Schmidt et al., 2020).  

Taken together, each of these studies for which data regarding the host cellular 

transcriptional and translational response to SARS-CoV-2 infection as well as host-viral 

interactions have been publicly released represents an important source of information for 

the identification of potential therapeutic targets, which is especially significant in the 

context of a pandemic of a novel disease for which few treatment options exist.   

 

1.2.4. Publicly available data improves our understanding of SARS-CoV-2 and 

facilitates the identification of potential drug treatments  
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As described, the first sequences of the SARS-CoV-2 genome were deposited into databases 

that were either publicly accessible (GenBank (Benson et al., 2013)) or accessible to the 

scientific community (GISAID (Shu, Y. & McCauley, 2017)) within days of the discovery of the 

virus. These sequences and subsequent releases of sequence and structural data have 

prompted substantial research efforts by institutions worldwide into the nature of the virus, 

its relation to other coronaviruses and how it interacts with its host. A number of studies 

have focused on the entry receptor ACE2 – for example, one study investigated the potential 

for zoonotic transmission of the virus by comparing sequences of ACE2 orthologues from 410 

vertebrate species with human ACE2 at known SARS-CoV-2 Spike binding residues. They also 

performed mutagenesis of variant residues from a selection of ACE2 orthologues using the 

PDB structure 6M0J to further analyse the nature of the host-viral interactions (Damas et al., 

2020). Meanwhile, another group performed homology modelling of ACE2 structures for 

nine species, using sequences from the National Center for Biotechnology Information (NCBI) 

and using the human ACE2 structure (6M17 and 2AJF) as a template. This revealed differing 

residue interactions with the SARS-CoV-2 RBD, which they suggested may underlie the 

divergent susceptibility to SARS-CoV-2 infection observed in different species. In addition, 

sequences of transmembrane protease serine 2 (TMPRSS2, a serine protease which 

facilitates priming of the SARS-CoV-2 S protein and subsequent viral entry) from a number 

of species were aligned with that of the human sequence, and a model for human TMPRSS2 

was generated using the protein structure prediction server Iterative Threating Assembly 

Refinement (I-TASSER). This enabled, for example, the identification of residues constituting 

a pocket surrounding the catalytic triad of the peptidase S1 domain, which was found to be 

identical in each of the species studied. The results led the authors to conclude that TMPRSS2 

is unlikely to determine host susceptibility to SARS-CoV-2 (Brooke & Prischi, 2020). 

Meanwhile, others have made use of available SARS-CoV-2 structures and the structures of 

relevant host proteins to simulate binding of drugs and peptide inhibitors. For example, one 

study used a publicly available antiviral peptide database (AVPdb (Qureshi et al., 2013)) to 

perform in silico docking of a selection of 51 peptides to the SARS-CoV-2 RBD, also using the 

PDB structure 6M0J. They were then able to perform molecular dynamics simulations and 

structure-activity relationship analysis on the peptides with the highest affinity for the RBD 

(Chowdhury et al., 2020). In another study, United States Food and Drug Administration 

(FDA) approved antiviral and antimalarial drugs were screened against the structure of ACE2 

and of SARS-CoV-2 3C-like protease (Hussien & Abdelaziz, 2020). Similarly, ZINC15, another 

compound library (Sterling & Irwin, 2015) was used for a docking study of covalent inhibitors 
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of cysteine and serine proteases (cathepsins B and L and TMPRSS2, respectively), which could 

prevent the priming of the SARS-CoV-2 S protein for host cell entry (Li, Q. et al., 2020). 

Numerous studies have also made use of the host-viral protein interaction network released 

by Gordon et al. (Gordon et al., 2020). For example, this dataset has been used to predict 

which existing drugs may disrupt the interactions between SARS-CoV-2 and host proteins 

and therefore be repurposed to treat COVID-19 infection (Das et al., 2020; Kowalewski & 

Ray, 2020), to compare with other predicted virus-host interactions (e.g. between predicted 

viral miRNAs and their human gene targets (Saçar Demirci & Adan, 2020)), to supplement 

further analyses (e.g. regarding the impact of SARS-CoV-2 on mitochondrial function (Singh 

et al., 2020)) and even to characterise subsets of interacting proteins in terms of their 

implications in tumorigenesis (Süt, 2020). The latter study is an example of how research into 

SARS-CoV-2/COVID-19 could have wider implications even extending into other areas of 

biological and clinical interest. 

As discussed previously, a key source of valuable information regarding the impact of SARS-

CoV-2 infection on the host has been transcriptomics and proteomics datasets from both 

patient-derived samples and studies of SARS-CoV-2-infected cell lines. In one study, publicly 

available transcriptomic data from a lung sample of a COVID-19 patient was analysed in 

combination with transcriptomic data from SARS-CoV-2 and SARS-CoV-infected normal 

human bronchial epithelial (NHBE) and 2B4 cell lines, respectively. Each dataset was 

obtained from the GEO database. This enabled the identification of pathways deregulated 

uniquely in the lung sample of the COVID-19 patient, such as those associated with surfactant 

and cholesterol metabolism. They also analysed the Gordon et al. dataset alongside a similar 

dataset of the SARS virus-host interactome generated using yeast two-hybrid screening 

(Pfefferle et al., 2011), and used these data to predict possible drugs and therapies targeting 

systems affected by SARS-CoV-2 infection, such as lung surfactants (Islam & Khan, 2020). 

Another study involved gene set enrichment analysis of interactome data from Gordon et 

al., transcriptome data from Blanco-Melo et al. and Xiong et al. and proteome data from 

Bojkova et al., as well as data from a resource that mines scientific literature to identify 

connections between genes (and their variants) and human diseases (Bauer-Mehren et al., 

2010) and which now includes a data collection relating to SARS-CoV-2. The integration of 

data from these sources also facilitated the identification functional pathways affected by 

SARS-CoV-2 infection and drugs targeting those pathways – for instance, they identified that 

deregulation of mRNA splicing could be targeted by a number of antineoplastic agents, such 

as mitomycin and cisplatin (Barh et al., 2020). 
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In addition to utilising data that has been generated during the course of the COVID-19 

pandemic, numerous research groups have seized the opportunity to mine large databases 

of compounds for their ability to target processes involved in the pathogenesis of the virus. 

The possibility of repurposing existing drugs (which have already undergone clinical trials and 

have been assessed for their safety and efficacy) has also been of great interest, especially 

given the urgency to find novel treatments. Targeting of the interaction between SARS-CoV-

2 Spike protein and human ACE2 has been one common approach for the identification of 

possible drug interventions. One study used two of the ‘drug-like chemical libraries’ from 

MTiOpenScreen resource (Drugs-lib, a database of 7,173 approved drugs, and iPPI-Lib, a 

database of 51,232 drug-like molecules which target protein-protein interactions (Lagarde 

et al., 2018)) to identify potential inhibitors which bind in the same location as ACE2 in the 

RBD of SARS-CoV-2. They also used binding prediction software (RASPD (Mukherjee & 

Jayaram, 2013)), which incorporates data from a large compound library (ZINC (Irwin & 

Shoichet, 2005)). Each of these databases enabled the identification of several potential 

SARS-CoV-2-S RBD-binding compounds, including four antiviral compounds licensed and one 

in clinical trials for the treatment of hepatitis C (Behloul et al., 2020). 

Before the SARS-CoV-2-host interactome had been experimentally examined, researchers 

sought to broaden the scope of investigation outside of Spike-ACE2 interactions using pre-

existing data. In one study, expression of ACE2 was correlated with expression of other genes 

using data from lung adenocarcinoma (LUAD) patients in the TCGA, lung tissue samples of 

individuals in the Genotype-Tissue Expression (GTEx) database (a database of genomic data 

from post-mortem samples of 980 donors (GTEx Consortium, 2013)), and data from two GEO 

datasets of healthy volunteers. Generation of a protein-protein interaction network from the 

correlated genes enabled the identification of a number of existing drugs which target these 

pathways (Cava et al., 2020). Elsewhere, human proteins that were known to interact with 

other coronaviruses (four human coronaviruses, one murine and one avian) or proteins 

known to be involved in pathways related to coronavirus infection were identified from the 

literature. Existing drugs targeting these proteins and/or their functional pathways were 

then identified using multiple large drug databases (Zhou, Y. et al., 2020).  

Another research group reasoned that existing drug response data could be used to identify 

drugs able to reverse the effects of lung injury caused by SARS-CoV-2-mediated inhibition of 

ACE2. Transcriptome data from lung tissue of deceased COVID-19 patients as well as data 

from lung tissue of healthy donors were obtained from GEO (from Blanco-Melo et al., 

discussed previously), and differential gene expression between COVID-19-infected and non-
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infected donors was calculated. Meanwhile, they used the Library of Integrated Network-

Based Cellular Signatures (LINCS) L1000 database, which provides gene expression data from 

human cell lines treated with perturbagens (including small molecules and FDA approved 

drugs) (Subramanian et al., 2017) to identify compounds which were associated with the 

inverse expression of the lung injury-associated genes, as well as ‘concordantly expressed 

genes’ (i.e. those which were upregulated in disease but downregulated by drug treatment, 

and vice versa) (He & Garmire, 2020). Such studies demonstrate the flexibility of open-access 

data, and how different data types and resources can be integrated in novel ways to make 

potentially significant findings.     

 

1.2.5. Publicly available data enables the monitoring of and rapid response to 

SARS-CoV-2 

 

Rapid sequencing and continual monitoring of mutations within the SARS-CoV-2 genome has 

been critically important during the COVID-19 pandemic, facilitating the early 

characterisation of the virus and enabling variants to be tracked. The GISAID and GenBank 

databases have been particularly important platforms for researchers to deposit sequences 

and retrieve sequences for analysis. For example, a study conducted on the earliest released 

sequences in GISAID identified that the genome comprises 14 ORFs which encode 27 

proteins (15 NSPs, four structural proteins and eight accessory proteins). They also identified 

380 amino acid substitutions between SARS-CoV-2 and SARS and SARS-like bat CoVs, none 

of which were of residues known to directly interact with ACE2, but six of which were located 

within the receptor binding domain (Wu, A. et al., 2020). Variants emerging in the viral 

genome began to be analysed as early as March 2020 using the sequencing data from both 

GenBank and GISAID (Pachetti et al., 2020; Wang, C. et al., 2020), and correlations with 

differing infectivity rates and survival outcomes across different populations have been 

performed. For example, a study of sequences retrieved from GenBank revealed that the 

presence of 4715L-type ORF1ab protein and 614G-type S protein, both of which were less 

prevalent among Asian populations, was associated with increased fatality rates (Toyoshima 

et al., 2020). GISAID has also been used to estimate the replicative advantage of a novel 

strain of SARS-CoV-2 (variant under investigation (VUI)-202012/01) (Grabowski et al., 2021), 

and also to enable the analysis of the impact of novel variants on disease severity and patient 

outcomes (Voss et al., 2020). Moreover, when it was discovered that mink in farms in 
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Denmark and the Netherlands had become infected with SARS-CoV-2, sequences of viral 

genomes isolated from mink and from humans infected in geographically similar regions 

were quickly uploaded to GISAID (Hammer et al., 2020; Oreshkova et al., 2020) and examined 

by the scientific community. One study included the use of these data to investigate the 

mechanisms of viral adaptation to a new host, such as by identifying variants emerging 

independently in multiple samples (van Dorp et al., 2020).  

Open-access resources have also played a role in the generation of clinical recommendations 

during the pandemic. A notable example is the use of the University of Liverpool COVID-19 

Drug Interactions resource (University of Liverpool, 2021), which was referred to in 

guidelines for the administration of dexamethasone in conjunction with remdesivir 

(Department of Health and Social Care, 2020). Although the resource gives no empirical 

evidence for any interaction (or lack of interaction) between the two drugs, it provides 

rationale for their safe co-administration. In addition, the minutes of a New and Emerging 

Respiratory Virus Threats Advisory Group (NERVTAG) meeting (NERVTAG Bird Table 8, 9th 

October 2020) include mention of a preprint which showed that exogenous heparin can 

inhibit SARS-CoV-2 entry by competing for binding to cell surface heparan sulphate. Notably, 

the study cited had involved the use of publicly available SARS-CoV-2 crystal structures to 

investigate the electrostatic potential across the surface of the Spike protein and to identify 

a putative heparan sulphate binding site (Clausen et al., 2020).  
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1.3. Thesis overview 

 

This thesis presents six studies which all make use of open-access data to make novel 

biological findings. The databases and data resources used in each study are summarised in 

Table 1.1. A brief summary of each study is given below. 

 

Chapter 1: Introduction 

An introduction to the concept of publicly accessible data, discussing the data resources 

available to the scientific community and highlighting the scope and flexibility of application 

of these resources. 

 

Chapter 2: Non-Phosphorylatable PEA-15 Sensitises SKOV-3 Ovarian Cancer Cell Lines to 

Cisplatin 

An analysis of the relationship between the phosphorylation status of the astrocytic 

phosphoprotein PEA-15 and the sensitivity of ovarian cancer cell lines to the platinum-based 

chemotherapeutic drug cisplatin. 

Contribution 

• Acquired relevant data from the TCGA database 

• Performed all analyses relating to use of the TCGA data 

• Produced summary data table of TCGA results 

• Assisted in the preparation of the manuscript for publication 

 

Chapter 3: SAMHD1 is a key regulator of the lineage-specific response of acute lymphoblastic 

leukaemias to nelarabine 

An analysis of the relationship between the expression of deoxynucleoside triphosphate 

triphosphohydrolase SAMHD1 in T-acute lymphoblastic leukaemia compared with B-acute 

lymphoblastic leukaemia and sensitivity to the nucleoside analogue drug nelarabine. 

Contribution 
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• Acquired all relevant data from the CCLE, CTRP and GDSC databases  

• Performed all analyses relating to use of the CCLE, CTRP and GDSC data 

• Produced all graphs and data tables of results from each analysis of CCLE, CTRP and 

GDSC data 

• Assisted in the preparation of the manuscript for publication 

 

Chapter 4: Multifaceted roles of SAMHD1 in cancer 

An analysis of the expression and regulation of SAMHD1 and its impact on the survival of 

patients in the TCGA and TARGET databases. 

Contribution 

• Acquired data from the TCGA and TARGET databases 

• Performed all analyses of the data 

• Produced figures and tables of results from the analysis of the data 

• Assisted in the preparation of the manuscript for publication 

 

Chapter 5: Differentially conserved amino acid positions may reflect differences in SARS-CoV 

and SARS-CoV-2 behaviour 

An analysis of the genomic variations between SARS-CoV and SARS-CoV-2 which may be 

responsible for the differences in infectivity and mortality of the diseases they cause. 

Contribution 

• Acquired structural data from the PDB database 

• Performed all structural analyses using PyMOL 

• Produced figures and data tables of results from the structural analysis 

• Assisted in the preparation of the manuscript for publication 

 

Chapter 6: A potential role of the CD47-SIRPalpha axis in COVID-19 pathogenesis 

An analysis of the transmembrane protein CD47 and its association with several COVID-19 

risk factors which indicate that CD47 may act as a biomarker for the identification of patients 

likely to develop severe disease as a result of SARS-CoV-2 infection. 
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Contribution 

• Acquired all relevant data released by Bojkova et al. (2020) and Blanco-Melo et al. 

(2020) 

• Performed analyses of the transcriptomic and proteomic data 

• Produced graphs from analyses of transcriptomic and proteomic data 

• Assisted in the preparation of the manuscript for publication 

 

Chapter 7: COVID-19-related coagulopathy, is transferrin a missing link? 

An analysis of the coagulation-associated genes which are differentially expressed in 

response to SARS-CoV-2 infection including the iron transport protein transferrin, whose 

expression also correlates with COVID-19 risk factors and which could be associated with the 

disorder of coagulation observed in severe cases of COVID-19.  

Contribution 

• Acquired all relevant data released by Bojkova et al. (2020), Gordon et al. (2020) and 

data from the GTEx database 

• Acquired data and performed all analyses relating to use of the GO ontology 

database 

• Performed all analyses of the transcriptomic and proteomic data 

• Produced all graphs and data tables of results from each analysis 

• Assisted in the preparation of the manuscript for publication 

 

Chapter 8: Aprotinin inhibits SARS-CoV-2 replication 

An analysis of the potential for protease inhibitor aprotinin to compensate for the SARS-CoV-

2-mediated downregulation of endogenous protease inhibitors, thereby inhibiting SARS-

CoV-2 entry and replication. 

Contribution 

• Acquired all relevant data released by Bojkova et al. (2020) 

• Performed analyses of the transcriptomic and proteomic data 

• Assisted in the preparation of the manuscript for publication 
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Chapter 9: Discussion 

An appraisal of the significance of the findings from each of the manuscripts presented in 

chapters 2-8, giving perspectives on their scientific and clinical relevance. 

 

Chapter 10: Conclusions 

A concluding statement highlighting the relevance and significance of this work. 

 

Appendix 

Supplementary materials for each of the manuscripts presented in chapters 2-8. 

 

Table 1.1. Databases and data resources used for each study in this thesis 

Database/resource Chapter(s) Data used in study Reference 

The Cancer 

Genome Atlas 

(TCGA) 

2, 4 Transcriptomics (RNA-

seq), methylation, 

miRNA expression, 

mutation, 

demographics, survival 

data 

(The Cancer Genome Atlas 
Research Network, 2008; 
The Cancer Genome Atlas 
Research Network, 2013) 

The Cancer Cell 

Line Encyclopaedia 

(CCLE) 

3 Transcriptomics 

(microarray) 

(Barretina et al., 2012) 

The Cancer 

Therapeutics 

Response Portal 

(CTRP) 

3 Transcriptomics 

(microarray), drug 

response 

(Basu et al., 2013; Rees et 

al., 2016; Seashore-Ludlow 

et al., 2015) 

Genomics of Drug 

Sensitivity in 

Cancer (GDSC) 

3 Transcriptomics 

(microarray), drug 

response, methylation 

(Garnett et al., 2012; Iorio 

et al., 2016; Yang, W. et al., 

2013) 
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(Herold, T. et al., 

2017) 

3 Transcriptomics 

(microarray) 

(Herold, T. et al., 2017) 

Therapeutically 

Applicable 

Research to 

Generate Effective 

Treatments 

(TARGET) 

4 Transcriptomics (RNA-

seq), demographics, 

survival data 

(https://ocg.cancer.gov/pr

ograms/target) 

Global Initiative on 

Sharing Avian 

Influenza Data 

(GISAID) 

5 Genomic sequence 

data 

(Shu, Y. & McCauley, 2017) 

Protein Data Bank 

(PDB) 

5 Protein structural data  (Berman et al., 2000) 

Virus Pathogen 

Database and 

Analysis Resource 

(VIPR) 

5 Genomic sequence 

data 

(Pickett, Sadat et al., 2012; 
Pickett, Greer et al., 2012) 

(Blanco-Melo et al., 

2020) 

6 Transcriptomics (RNA-

seq) 

(Blanco-Melo et al., 2020) 

(Bojkova et al., 

2020)  

6, 7, 8 Translatome and 

proteome proteomics 

(liquid 

chromatography-

tandem mass 

spectrometry (LC-

MS/MS)) 

(Bojkova et al., 2020) 

Gene Ontology 

(GO) database 

7 List of genes 

annotated with GO 

term “blood 

coagulation” 

(GO:0007596) 

(The Gene Ontology 

Consortium, 2019) 
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The Genotype-

Tissue Expression 

Project (GTEx) 

7 Transcriptomics (RNA-

seq) 

(GTEx Consortium, 2013) 

IntAct Molecular 

Interaction 

Database (IntAct) 

7 List of human proteins 

interacting with SARS-

CoV-2 proteins, 

derived from 

literature/user 

submissions 

(https://www.ebi.ac.uk/int

act/) 

(Gordon et al., 

2020) 

7 List of human proteins 

interacting with SARS-

CoV-2 proteins, 

identified by affinity 

chromatography/mass 

spectrometry 

(Gordon et al., 2020) 
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Abstract 

The efficacy of cisplatin-based chemotherapy in ovarian cancer is often limited by the 

development of drug resistance. In most ovarian cancer cells, cisplatin activates extracellular 

signal-regulated kinase1/2 (ERK1/2) signalling. Phosphoprotein enriched in astrocytes (PEA-

15) is a ubiquitously expressed protein, capable of sequestering ERK1/2 in the cytoplasm and 

inhibiting cell proliferation. This and other functions of PEA-15 are regulated by its 

phosphorylation status. In this study, the relevance of PEA-15 phosphorylation state for 

cisplatin sensitivity of ovarian carcinoma cells was examined. The results of MTT-assays 

indicated that overexpression of PEA-15AA (a non-phosphorylatable variant) sensitised 

SKOV-3 cells to cisplatin. Phosphomimetic PEA-15DD did not affect cell sensitivity to the 

drug. While PEA-15DD facilitates nuclear translocation of activated ERK1/2, PEA-15AA acts 

to sequester the kinase in the cytoplasm as shown by Western blot. Microarray data 

indicated deregulation of thirteen genes in PEA-15AA-transfected cells compared to non-

transfected or PEA-15DD-transfected variants. Data derived from The Cancer Genome Atlas 

(TCGA) showed that the expression of seven of these genes including EGR1 (early growth 
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response protein 1) and FLNA (filamin A) significantly correlated with the therapy outcome 

in cisplatin-treated cancer patients. Further analysis indicated the relevance of nuclear factor 

erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signalling for the 

favourable effect of PEA-15AA on cisplatin sensitivity. The results warrant further evaluation 

of the PEA-15 phosphorylation status as a potential candidate biomarker of response to 

cisplatin-based chemotherapy. 

 

2.1. Introduction 

Platinum-based drugs have been used to treat ovarian cancer since the late 1970s and 

cisplatin, followed by carboplatin-based combinations, has been the standard of care for 

over 15 years. As most patients relapse and ultimately succumb to ovarian cancer, new 

strategies are urgently required to improve survival. Cisplatin is believed to exert its cytotoxic 

effects via its interaction with DNA and formation of DNA adducts, primarily intrastrand 

crosslinks. This initiates signal transduction pathways involving among others Ataxia 

Telangiectasia Mutated (ATM) protein, p53, p73 and mitogen-activated protein kinases 

(MAPK), eventually resulting in cancer cell apoptosis (Dilruba & Kalayda, 2016). However, 

DNA damage-mediated apoptotic signals can be diminished leading to the development of 

resistance, which represents a major restraint of cisplatin-based chemotherapy (Siddik, 

2003).  

Among the constituents of DNA damage signalling, mitogen-activated protein kinases 

(MAPKs) are of particular interest for their diverse functions in modulating cell death 

machineries. MAPKs are a family of structurally-related serine/threonine protein kinases that 

coordinate various extracellular stimuli to regulate cell growth and survival (Chang & Karin, 

2001; Johnson & Lapadat, 2002; Marshall, 1995). There are three major subfamilies of 

MAPKs: extracellular signal-regulated kinase (ERK1/2), stress-activated protein kinase 

(SAPK)/c-Jun N-terminal kinase (JNK) and p38 MAPK (Siddik, 2003). 

ERK1 and ERK2 are homologous isoforms that share the same substrate specificity in vitro 

(Gille et al., 1992). These 44- and 42-kDa proteins that phosphorylate a multitude of protein 

substrates (Boulton et al., 1990; Boulton et al., 1991) share 85% of amino acid identity. In 

resting conditions, ERK1/2 is anchored in the cytoplasm by its association with MEK1/2 

(Fukuda et al., 1997), the microtubule network (Reszka et al., 1995) or with phosphatases, 

which contain a nuclear export signal (NES) (Karlsson et al., 2004). Upon stimulation, ERK1/2 
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becomes phosphorylated at threonine and tyrosine residues resulting in its separation from 

MEK1/2. Then ERK1/2 translocates into the nucleus by passive diffusion of the monomer 

(Adachi et al., 1999), active transport of the dimer (Whitehurst et al., 2002) or by a direct 

interaction of ERK1/2 with the nuclear pore complex (Matsubayashi et al., 2001). Upon 

translocation, activated ERK1/2 phosphorylates the ternary complex factors Elk-1, Sap-1a 

and TIF-IA (growth dependent transcription initiation factor) (Chen, R. H. et al., 1992; 

Lenormand et al., 1993; Zhao, J. et al., 2003). Phosphorylation of Elk-1 enhances transcription 

of growth-related proteins, such as c-Fos (Marais et al., 1993).  

Phosphoprotein enriched in astrocytes -15 kDa (PEA-15) is a small scaffold protein, 

ubiquitously expressed and highly conserved among mammals (Danziger et al., 1995; Estelles 

et al., 1996; Ramos et al., 1998). It is involved in the regulation of several cellular functions, 

including glucose metabolism, cell proliferation, apoptosis and survival (Fiory et al., 2009). 

Its expression has been shown to be elevated in tumours, including human glioma and 

mammary carcinomas (Glading et al., 2007; Hao et al., 2001), and in cell lines derived from 

human larynx, cervix and skin tumours (Formisano et al., 2005; Glading et al., 2007). PEA-15 

may function as a tumour promoter or suppressor, regulating both proliferation and 

apoptosis (Sulzmaier, F. et al., 2012). 

PEA-15 has two phosphorylation sites at Ser104 and Ser116 and is preferentially 

phosphorylated by protein kinase C (PKC) at Ser104 and by calcium/calmodulin-dependent 

protein kinase II (CaMKII) or Akt at Ser116 (Araujo et al., 1993; Estelles et al., 1996; Kubes et 

al., 1998). PEA-15 can bind both ERK1/2 and phosphorylated ERK1/2 (p-ERK1/2) with equal 

affinity (Callaway et al., 2007). PEA-15 phosphorylation releases ERK1/2 resulting in its 

translocation to the nucleus and activation of the nuclear transcription factor Elk-1 as well 

as other transcription factors promoting cell proliferation. As PEA-15 has a nuclear export 

sequence, it is almost exclusively confined to the cytoplasm (Formstecher et al., 2001). PEA-

15-mediated cytoplasmic sequestration of ERK1/2 was reported to suppress tumourigenicity 

in ovarian cancer by diminishing the activity of Elk-1 (Bartholomeusz et al., 2006). Another 

study found that PEA-15 expression inhibited cell proliferation by autophagy involving 

ERK1/2 activation (Bartholomeusz et al., 2008). The functions of PEA-15 are tightly regulated 

by its phosphorylation status (Fiory et al., 2009). The impact of PEA-15 phosphorylation was 

investigated by Lee et al. (Lee, J. et al., 2012) in ovarian cancer tissue samples revealing that 

tissues from high-grade ovarian tumour were significantly more likely than adjacent normal 

tissues to express PEA-15 phosphorylated at both sites. The authors used phosphomimetic 

and non-phosphorylatable PEA-15 mutants where the two serine residues of PEA-15 at 104 
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and 116 positions were either replaced by two aspartic acid (PEA-15DD) or two alanine (PEA-

15AA) residues, respectively. The non-phosphorylatable PEA-15AA exerted a more 

pronounced antitumourigenic effect in ovarian cancer than did the phosphomimetic PEA-

15DD (Lee, J. et al., 2012). To study the role of PEA-15 phosphorylation in paclitaxel sensitivity 

in ovarian cancer, PEA-15AA and PEA-15DD were overexpressed in SKOV-3.ip1, OVTOKO and 

HEY cells. All three cell lines showed enhanced sensitivity to paclitaxel when phosphomimetic 

PEA-15DD was overexpressed, while nonphosphorylatable PEA-15AA augmented resistance 

to paclitaxel (Xie et al., 2013). 

The aim of this work was to investigate the influence of PEA-15 and its phosphorylation 

status on cisplatin sensitivity in ovarian carcinoma cells. We show that the non-

phosphorylatable PEA-15AA sensitises ovarian cancer cells to cisplatin. The results warrant 

further evaluation of the phosphorylation state of PEA-15 in order to consider it as a 

potential biomarker of tumour sensitivity to cisplatin. 

 

2.2. Methods 

2.2.1. Chemicals 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was purchased from 

AppliChem (Darmstadt, Germany), dimethylsulfoxide (DMSO) was ordered from Riedel-de 

Haën, (Seelze, Germany), bovine serum albumin (BSA), all-trans-retinoic acid and cisplatin 

were obtained from Sigma-Aldrich (Steinheim, Germany), foetal calf serum, penicillin-

streptomycin solution, IMDMTM Medium, trypsin-EDTA solution were ordered from PANTM 

Biotech (Aidenbach, Germany) and ultrapure water was obtained using a Purelab Plus TM 

system from ELGA Labwater (Celle, Germany). 

2.2.2. Cell Lines and Cell Culture 

The SKOV-3 ovarian carcinoma cell line (ATCC® HTB77TM) was from American Type Culture 

Collection (ATCC). The cisplatin-resistant ovarian carcinoma cell line EFO27rCDDP2000 was 

derived from the Resistant Cancer Cell Line (RCCL) collection 

(www.kent.ac.uk/stms/cmp/RCCL/RCCLabout.html). Cell backups were frozen with 10% 

DMSO. Cells were grown as monolayers in IMDMTM medium supplemented with 10% foetal 

calf serum, 100 IU/mL penicillin, 0.1 mg/mL streptomycin in a humidified atmosphere 

containing 5% CO2. The medium of EFO27rCDDP2000 cells was supplemented with 2 µg/mL 
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cisplatin. Every ten passages a new backup of cells was thawed in order to avoid alterations 

in cell features during cultivation. 

2.2.3. Plasmid Transfection 

Cells were transfected with plasmids of interest using K2® transfection system (Biontex 

Laboratories GmbH, Munich, Germany) according to the manufacturer’s instruction. 

Plasmids used in this study include three DNA constructs of pcDNA3-HAR36 containing two 

mutated PEA-15 protein versions and the empty vector. These plasmids were kindly provided 

by Prof. Naoto T. Ueno (Breast Medical Oncology, MD Anderson Cancer Center, University of 

Texas, Houston, TX, USA). The constructs were originally made by Ramos et al. (Ramos et al., 

1998). The two mutated versions of PEA-15 protein were PEA-15AA, in which two serine 

residues at 104 and 116 positions were replaced with two alanine (A) residues, and PEA-

15DD, in which the same serine residues were replaced with aspartic acid (D). Cells were 

used for protein expression and chemosensitivity analysis 48 h after transfection. 

2.2.4. Cell Fractionation 

Nuclear/cytosol fractionation kit (Biovision Inc., Milpitas, CA, USA) was used for separating 

the cytosolic and the nuclear fractions of the transfected cells according to the 

manufacturer’s protocol. All steps of the fractionation were performed on ice. To analyse the 

efficiency of the fractionation, Western blot analysis was performed for each fraction 

(nuclear or cytosolic) as described below. As a marker for the cytosolic fraction, GAPDH was 

used. For the nuclear fraction, Lamin B1 was used as an indicator of the purity of the nuclear 

fraction. No cross-contamination was assumed when the indicator was detected only in the 

expected fraction. 

2.2.5. Western Blot 

Cells were fractionated as mentioned above or lysed in lysis buffer (50 mM Tris-HCl, 150 mM 

NaCl, 0.1% SDS, 1 mM NaF, 2 mM Na3VO4, 70% NP-40, 0.5% sodium deoxycholate, 6.24 mM 

benzamidine and 0.5 mM PMSF, all from Sigma-Aldrich, Steinheim, Germany) for 30 min on 

ice. Then the cells were sonicated on ice using a sonicator with the settings: 60% power, 5 s 

pulse, 30 s interval, 3 pulses per sample. The suspensions were centrifuged for 5 min at 

18,620× g at 4 °C, and the protein content in the supernatants was measured using the 

bicinchoninic acid assay (BCATM Protein Assay Kit, Pierce, Rockford, IL, USA) (Smith, P. K. et 

al., 1985). Samples containing 30 μg total protein were subjected to electrophoresis in 12% 

SDS-polyacrylamide gel and transferred to a PVDF membrane (Carl Roth GmbH, Karlsruhe, 

Germany). The membranes were blocked in 5% milk powder in TBS-T (0.2% Tween-20) for 1 
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h, rinsed three times with TBS-T and incubated at 4 °C overnight with primary antibodies 

diluted in TBS-T with 5% BSA. After washing three times with TBS-T, incubation with the 

secondary antibody diluted 1:1000 in TBS-T with 5% milk powder for 1.5 h followed. The 

monoclonal mouse antibody against UGT1A (diluted 1:1000) sc-271268, the polyclonal rabbit 

antibody against Nrf2 (diluted 1:500) sc-722 were from Santa Cruz Biotechnology, 

Heidelberg, Germany, the monoclonal mouse antibody against HA MMS-101-P (diluted 

1:500) was received from Covance Inc., PA, USA. The secondary HRP-conjugated goat anti-

rabbit (diluted 1:1000) SBA-4030-05 was obtained from Biozol Diagnostica Vertrieb GmbH, 

Eching, Germany, the rabbit polyclonal antibody against p-ERK1/2 (Thr202/Tyr204) 9101 

(diluted 1:1000) was ordered from Cell Signaling Technology Europe B.V., Frankfurt (Main), 

Germany, and the Peroxidase AffiniPure goat anti-mouse (diluted 1:5000) 115-035-003 was 

from Jackson ImmunoResearch Europe Ltd., Cambridgeshire, UK. The detection was 

performed using a Molecular Imager ChemiDocTM XRS+ System from Bio-Rad Laboratories 

GmbH, Munich, Germany. After subsequent triple washing with TBS-T, the membranes were 

incubated for 30 min. with the rabbit antibody against GAPDH (GTX100118, Biozol 

Diagnostica Vertrieb GmbH, Eching, Germany) diluted 1:20000 or for 1 h with the rabbit 

polyclonal antibody to Lamin B1 (GTX-103292, Biozol Diagnostica Vertrieb GmbH, Eching, 

Germany) diluted 1:1000 in TBS-T with 5% BSA. After rinsing with TBS-T, the incubation with 

the secondary antibody and detection were performed as described above. Densitometric 

analysis was performed using ImageLabTM 5.1 software (Bio-Rad Laboratories, Hercules, CA, 

USA). 

2.2.6. MTT Assay 

Cell sensitivity to cisplatin, retinoic acid or their combination was assessed using an MTT-

based assay (Alley et al., 1988). In brief, cells were seeded in 96-well microtiter plates (1 × 

104 cells/well) and allowed to attach overnight. Then medium was removed and nine 

subsequent dilutions of retinoic acid or cisplatin in medium were added to the cells in 

triplicate (100 µL/well). For the combination treatment, cisplatin dilutions each contained 20 

µM retinoic acid. After 47 h of incubation, 20 µL of a 5 mg/mL MTT solution in phosphate 

buffered saline (PBS) was added to each well, and the cells were incubated at 37 °C for 1 h. 

The supernatant was discarded, and the formazan crystals formed were dissolved in 100 µL 

DMSO. Absorbance of the dye was measured at 570 nm with background subtraction at 690 

nm using a Multiskan Ascent® microtiter plate reader (Thermo Fisher Scientific, 

Langenselbold, Germany). The results were analysed and the pEC50 values (pEC50 = -log EC50, 

EC50 = half maximal effective concentration) were estimated for each independent 
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experiment with the GraphPad PrismTM 6 analysis software package (GraphPad Software, San 

Diego, CA, USA) using non-linear regression (sigmoidal dose response, variable slope). The 

mean pEC50 values were calculated from the results of several independent experiments and 

used for the determination of the respective EC50 values. 

2.2.7. cDNA Microarray Analysis 

SKOV-3 cells were transfected with PEA-15-HA- (empty vector, EV), PEA-15AA- or PEA-15DD-

containing plasmids, respectively, as described above. Twenty-four hours after transfection, 

cells were treated with 15 µM cisplatin (this concentration corresponds to the EC50 of 

cisplatin in EV-transfected cells as measured after 48 h of incubation) for 24 h and then the 

total RNA of the cells was extracted using my-Budget RNA mini kit following the instructions 

provided by the manufacturer. Next generation transcriptome-wide gene-level expression 

profiling using ClariomTM S assay was performed by Life and Brain GmbH (Bonn, Germany). 

The microarray data have been deposited into the Gene Expression Omnibus database under 

the accession number GSE144041. 

The raw data of the array were collected as CEL files and analysed using the Transcriptome 

Analysis Console (TAC 4.1, Thermofisher Scientific, Waltham, MA, USA) software. The gene 

expression was analysed with the Gene Level Signal Space Transformation-Robust Multi-Chip 

Analysis (SST-RMA) summarization method. Data obtained from the microarray were 

normalised by the robust multiarray average method (Irizarry et al., 2003). A probe set was 

considered expressed if ≥50% samples had DABG (Detected Above Background) values below 

DABG threshold (p < 0.05). Statistical significance of the differences in gene expression was 

analysed using Limma (Ritchie et al., 2015). Differential expression was assumed at a p value 

<0.05 and a fold change in expression ≥2 or ≤−2. 

2.2.8. Correlation of Tumour Gene Expression Levels with the Survival of 

Cisplatin-Treated Patients in The Cancer Genome Atlas (TCGA) 

Gene expression data from patient tumours was derived from The Cancer Genome Atlas 

(TCGA) (Liu, J. et al., 2018; The Cancer Genome Atlas Research Network, 2008) via the GDC 

Data Portal (https://portal.gdc.cancer.gov). The Bioconductor R package TCGAbiolinks was 

used to obtain corresponding clinical data. Tumour gene expression data and cisplatin 

response data were available for 779 patients representing 23 different cancer types 

(adrenocortical carcinoma, n = 2; bladder urothelial carcinoma, n = 78; breast invasive 

carcinoma, n = 2; cervical squamous cell carcinoma and endocervical adenocarcinoma, n = 

122; cholangiocarcinoma, n = 4; lymphoid neoplasm diffuse large b-cell lymphoma, n = 2; 
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oesophageal carcinoma, n = 14; glioblastoma multiforme, n = 7; head and neck squamous 

cell carcinoma, n = 94; kidney renal papillary cell carcinoma, n = 1; liver hepatocellular 

carcinoma, n = 4; lung adenocarcinoma, n = 84; lung squamous cell carcinoma, n = 72; 

mesothelioma, n = 34; ovarian serous cystadenocarcinoma, n = 115; pancreatic 

adenocarcinoma, n = 2; sarcoma, n = 3; skin cutaneous melanoma, n = 9; stomach 

adenocarcinoma, n = 44; testicular germ cell tumours, n = 53; thymoma, n = 5; uterine corpus 

endometrial carcinoma, n = 21; uterine carcinosarcoma, n = 7). Overall survival (OS) was 

defined as days to last follow-up or death as previously described (Ng, S. W. et al., 2016). 

Genes whose expression was undetected (FPKM = 0, FPKM – fragments per kilobase of exon 

model per million reads mapped) in >10% samples were removed from the investigation as 

previously described (Cai, L. et al., 2017). Patients were stratified by cancer type, and the 

median expression for each gene was calculated. Genes with expression values above the 

median were considered highly expressed, while those below the median were considered 

to have low expression. Patients were then re-amalgamated before being stratified by drug 

treatment for pan-cancer analysis. 

Cox proportional hazards regression was used to calculate the hazard ratio for cohorts 

expressing high (above-median) vs. low (below-median) levels of a given gene. Calculations 

were performed using the R survminer and survival packages. p-values in each case are the 

result of a log rank (Mantel-Cox) test, which assesses whether there is a significant difference 

between the survival of two independent groups. Hazard ratios quoted refer to values for 

‘low’ (below median) expression for each gene in the model, with values >1 indicating 

increased hazard (i.e., reduced OS) and values <1 indicating decreased hazard (i.e., increased 

OS). Multiple test correction was again performed for each of the samples (Benjamini-

Hochberg method (Benjamini & Hochberg, 1995)). The false discovery rate (FDR) values are 

thresholds that indicate whether p-values are below or above the respective significance 

levels. 

2.2.9. Statistical Analysis 

GraphPad PrismTM 6 was used for analysing and plotting the data. Protein expression data 

were compared using one-way ANOVA with a Holm-Sidak post-test. Unpaired t-test was used 

to compare pEC50 values. p values of <0.05 were considered significant. 
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2.3. Results 

2.3.1. PEA-15AA Sensitised SKOV-3 Cells to Cisplatin 

In order to assess if the phosphorylation status of PEA-15 affects cisplatin sensitivity, the 

non-phosphorylatable PEA-15AA (further AA) and the phosphomimetic PEA-15DD (further 

DD) were overexpressed in SKOV-3 cells by liposome-mediated transient transfection. 

Control cells were transfected with the empty vector (further EV). The efficiency of the 

transfection was confirmed by Western blot (Figure 2.1A). PEA-15AA overexpression 

significantly increased the sensitivity of SKOV-3 cells to cisplatin compared to the empty 

vector-transfected cells (Figure 2.1B). This was not the case upon PEA-15DD overexpression. 

The EC50 in SKOV-3-AA cells was lower (EC50 = 9.9 µM) than in SKOV-3-EV cells (14.9 µM), 

while SKOV-3-DD cells (EC50 = 14.3 µM) showed similar cisplatin sensitivity as the SKOV-3-EV 

controls.  

 

Figure 2.1. (A) Expression of hemagglutinin (HA)-tagged phosphoprotein enriched in astrocytes (PEA-

15) in SKOV-3 cells after transfection with the HA-tagged empty vector (EV), PEA-15AA (AA) and PEA-

15DD (DD). GAPDH was used as a loading control. (B) Cisplatin sensitivity (pEC50, mean ± SEM, n = 8) 

of transfected SKOV-3-EV (EV), SKOV-3-AA (AA) and SKOV-3-DD (DD) cells. *** p < 0.001, n.s. = not 

significant. 

In addition, we confirmed the effect of PEA-15AA on cisplatin sensitivity in the cisplatin-

resistant EFO27rCDDP2000 ovarian carcinoma cell line. Non-phosphorylatable PEA-15 

significantly sensitised EFO27rCDDP2000 cells to the platinum drug (Figure S2.1). The EC50 

value after PEA-15AA transfection was 25.1 µM and thus lower than that of 33.1 µM in cells 

transfected with the empty vector. Overexpression of PEA-15DD did not have any significant 

effect (EC50 = 30.9 µM) compared to the empty-vector control. 
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2.3.2. PEA-15AA-Transfected SKOV-3 Cells Contain more Cytosolic p-ERK1/2 

than PEA-15DD-Transfected Cells 

EV-, PEA-15AA- and PEA-15DD-transfected SKOV-3 cells were fractionated to separate the 

nuclear and cytosolic fractions. Figure 2.2 presents relative expression of activated ERK in 

the cytosolic and nuclear fractions of the same samples following transfection with different 

mutants of PEA-15, loaded on the same gel. In SKOV-3-AA cells, the cytosolic fraction 

contained more p-ERK1/2 than the corresponding nuclear fraction of the same cell lysate, 

while in SKOV-3-DD cells the opposite was observed (Figure 2.2). This provides a proof of 

concept that PEA-15 unphosphorylated at both Ser104 and Ser116 (PEA-15AA) retains p-

ERK1/2 in the cytoplasm of SKOV-3-AA cells while the phosphomimetic PEA-15DD does not 

keep p-ERK1/2 in the cytoplasm, promoting an increase in p-ERK1/2 nuclear accumulation in 

SKOV-3-DD cells. 

 

 

 

 

 

 

 

 

Figure 2.2. A representative Western blot of phosphorylated extracellular signal-regulated kinase1/2 

(p-ERK1/2) expression in nuclear and cytosolic fractions of the SKOV-3 cells transfected with empty 

vector (EV), PEA-15AA (AA) and PEA-15DD (DD). GAPDH and Lamin B1 were used as the markers and 

loading controls of cytosolic (C) and nuclear fractions (N), respectively. 
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2.3.3. Differentially Expressed Genes in Transfected Cells 

As PEA-15 has many other functions inside the cells beside controlling ERK1/2 localisation, a 

microarray analysis was warranted to identify genes, which may account for enhanced 

cisplatin sensitivity in PEA-15AA-transfected cells. ClariomTM S assay was performed to 

analyse the differences in gene expression in untreated and cisplatin-treated SKOV-3-EV, 

SKOV-3-AA and SKOV-3-DD cells. Genes were considered to be differentially expressed when 

the fold change was ≥2 and the p value was <0.05. The resulting heat map of regulated genes 

shows clear clustering between treatment conditions (Figure 2.3). 

 

Figure 2.3. Heatmap of the transcriptome-wide ClariomTM S array, regulated genes with fold change 

cut-off at 2.0 for differentially expressed genes and a p-value cut-off at 0.05 are shown. 

Table 2.1 shows the number of differentially expressed genes in EV-, PEA-15AA- and PEA-

15DD-transfected cells after cisplatin exposure and in untreated transfected cells. Prior to 

cisplatin exposure, only three genes were differentially regulated between untreated SKOV-

3-EV and untreated SKOV-3-AA. Between SKOV-3-EV and SKOV-3-DD, the number of 

differentially expressed genes was 18, while for SKOV-3-AA and SKOV-3-DD the number was 

10. Following cisplatin treatment, 4430 genes were differentially regulated in EV-transfected 

cells, while in PEA-15AA- and PEA-15DD-transfected cells the numbers were 4196 and 4110, 

respectively. 

 

Table 2.1. Number of differentially expressed genes, compared as treatment condition 1 vs. condition 

2 with at least two-fold up- or down-regulation with p < 0.05. 
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Treatment Condition 1 

 

Treatment Condition 2 Number of Genes 

SKOV-3-EV, untreated SKOV-3- AA, untreated 3 

SKOV-3-EV, untreated SKOV-3-DD, untreated 18 

SKOV-3-AA, untreated SKOV-3- DD, untreated 10 

SKOV-3-EV, untreated SKOV-3-EV, 15 µM cisplatin, 24 h 4430 

SKOV-3-AA, untreated SKOV-3-AA, 15 µM cisplatin, 24 h 4197 

SKOV-3-DD, untreated SKOV-3-DD, 15 µM cisplatin, 24 h 4110 

 

2.3.4. Correlation of Genes Differentially Expressed in the Comparisons 

Untreated SKOV-3-AA vs. SKOV-3-EV and SKOV-3-AA vs. SKOV-3-DD Cells with 

the Survival of Cisplatin-Treated Patients in The Cancer Genome Atlas (TCGA) 

Next, we selected genes, which were differentially regulated in comparisons: SKOV-3-AA vs. 

SKOV-3-EV and SKOV-3-AA vs. SKOV-3-DD. Then we checked the expression levels of those 

13 genes in the tumours of cisplatin-treated cancer patients and correlated them to patient 

survival (Table 2.2). 

 

Table 2.2. Correlation of the expression of genes, differentially expressed between SKOV-3-AA and 

SKOV-3-EV or SKOV-3-DD cells, in tumours of cisplatin-treated patients (n = 779) and patient survival. 

Gene Fold 

Change 

Hazard 

Ratio 1 

p-Value FDR (thr. 

0.2) 2 

FDR (thr. 

0.05) 

EGR1 −2.22 0.7068 0.00322 ** 0.034099 0.008525 

NAV3 −2.18 0.7062 0.00317 ** 0.033948 0.008487 

GPRC5C 2.14 1.4745 0.000971 ** 0.023936 0.005984 
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Gene Fold 

change 

Hazard 

ratio 1 

p-value FDR (thr. 

0.2) 2 

FDR (thr. 

0.05) 

TSTD3 2.16 0.7545 0.0162 * 0.053933 0.013483 

ELFN2 2.09 0.9036 0.385 0.139261 0.034815 

LOC100287225 −2.37 n.a. 3 n.a. n.a. n.a. 

TIPARP −2.19 0.7505 0.015 * 0.052694 0.013174 

PRKG1 −2.00 0.7532 0.0154 * 0.053205 0.013301 

ND6 −2.07 0.8492 0.163 0.10641 0.026602 

RBM26 −2.42 0.8951 0.342 0.133674 0.033418 

FLNA −2.86 0.7523 0.0152 * 0.052997 0.013249 

MAVS −2.24 0.6656 0.000569 ** 0.020231 0.005058 

GTSF1L −2.07 n.a. n.a. n.a. n.a. 

 

1 Hazard ratio at low gene expression levels in tumour tissue; 2 thr. = false discovery rate threshold 

determined according to Benjamini-Hochberg (Benjamini & Hochberg, 1995); 3 n.a. = not applicable; 

* = p-value below 0.05 and significant at FDR = 0.2; ** = p-value below 0.05 and significant at FDR = 

0.05. 

 

Patient survival is expressed as the hazard ratio at low (below median) expression of the 

respective gene in tumour tissue. A hazard ratio >1 means that the overall survival is reduced 

in patients with tumours that display low expression of the respective gene. A hazard ratio 

<1 indicates prolonged survival in patients, whose tumours display low expression of the 

respective genes. When we prepared a heatmap, in which we directly compared the effect 

of low expression of the investigated genes on cisplatin sensitivity or patient survival, there 

was substantial overlap as illustrated in Figure 2.4. The expression levels of nine of the eleven 

genes, for which gene expression data was available in the TCGA, were associated with 

beneficial (low EC50, prolonged survival) or poor (high EC50, shorter survival) outcome in the 

same way in both datasets (Table 2.2, Figure 2.4). There was a significant correlation (at a 

FDR of 0.2) for seven of these nine genes between their expression level in tumour tissue 
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and patient survival: early growth response protein 1 (EGR1), neuron navigator 3 (NAV3), G 

Protein-Coupled Receptor Class C Group 5 Member C (GPRC5C), TCDD-inducible poly [ADP-

ribose] polymerase (TIPARP), cGMP-dependent protein kinase 1 (PRKG1), filamin A (FLNA), 

mitochondrial antiviral-signalling protein (MAVS). 

 

 

Figure 2.4. Heatmap indicating the relationship between low expression of the indicated genes and 

sensitivity/outcome, favourable (low cisplatin EC50 in SKOV-3-AA cells or prolonged survival of 

cisplatin-treated patients, indicated in yellow) or unfavourable (high cisplatin EC50 in SKOV-3-AA cells 

or reduced survival of cisplatin-treated patients, indicated in blue), based on the comparison of gene 

expression between SKOV-3-AA and EV- or PEA-15DD-transfected variants and TCGA data. 

 

2.3.5. Pathway Analysis for the Genes Exclusively Regulated in SKOV-3-AA Cells 

Following Cisplatin Treatment 

Since cisplatin treatment had a major impact on gene expression, we created a Venn diagram 

to define the genes exclusively regulated upon cisplatin treatment in different transfected 

cells. For all three cell types, 3039 differentially regulated genes were common. However, 

717 genes were exclusively regulated after cisplatin exposure in SKOV-3-EV cells, while in 

SKOV-3-AA and SKOV-3-DD cells 444 genes and 383 genes were exclusively differentially 

expressed, respectively (Figure 2.5). The 444 genes that were found to be exclusively 

regulated in SKOV-3-AA cells upon cisplatin exposure may contribute to the increased 
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cisplatin sensitivity in these cells. A pathway analysis based on Wikipathways revealed 21 

pathways to be significantly affected in response to cisplatin treatment in SKOV-3-AA cells 

(Figure 2.6). 

 

 

 

 

 

 

 

 

 

Figure 2.5. Venn diagram representing the exclusively and commonly regulated genes in different 

transfected cells upon cisplatin exposure. The diagram shows the total number of genes affected by 

cisplatin exposure in empty vector—(EV), PEA-15AA—(AA) and PEA-15DD-transfected—(DD) cells. 

 

 

Figure 2.6. Twenty-one biological pathways significantly affected by cisplatin treatment in SKOV-3-AA 

cells, listed according to the significance level (log 2 base) in a descending order. 
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The most significantly affected pathway was the glucuronidation pathway with a significance 

value of 9.9 (log 2 base). Glucuronidation is the process of metabolizing substances such as 

drugs, pollutants, bilirubin, androgens, estrogens, glucocorticoids, fatty acids and bile acids. 

In glucuronidation process, the glucuronic acid of a uridine diphosphate (UDP) glucuronic 

acid is transferred to a substrate by UDP-glucuronyl transferase (UGT). The resulting 

substrates, glucuronides are more soluble in water and are excreted from body with urine 

and faeces. Among the other significant pathways, the Nrf2 pathway is of importance, as it 

is an upstream regulator of the UGTs. In addition, this pathway was previously found to 

influence cisplatin sensitivity in cancer cells (Furfaro et al., 2015). 

 

2.3.6. Evaluation of the Responsible Genes Within the Affected Pathways 

2.3.6.1. UGT1A and Nrf2 Pathway 

All ten UGT1A isoforms were downregulated in SKOV-3-AA cells after cisplatin exposure 

according to the microarray data. Western blot analysis indicated that the expression of 

UGT1A protein in EV-, PEA-15AA- and PEA-15DD-transfected cells decreased in response to 

cisplatin to 55.63% (p = 0.02), 38.65% (p = 0.0013) and 48.27% (p = 0.01) of their basal level 

in untreated cells, respectively (Figure 2.7A). The greatest extent of reduction after cisplatin 

exposure was thus observed after PEA-15AA transfection (61.35% in SKOV-3-AA compared 

to 44.37% for SKOV-3-EV and 51.73% for SKOV-3-DD, along with much lower p-value). 
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Figure 2.7. Representative Western blots and the corresponding densitometric quantification (mean 

± SEM, n = 3) of (A) the relative uridine diphosphate-glucuronyl transferase (UGT)1A expression and 

(B) the relative nuclear factor erythroid 2-related factor 2 (Nrf2) expression in empty vector—(EV), 

PEA-15AA—(AA) and PEA-15DD-transfected—(DD) cells after treatment with 15 µM cisplatin (+Pt) for 

24 h and in untreated transfected SKOV-3 cells. GAPDH was used as a loading control. * p < 0.05, ** p 

< 0.01. 

 

The UGT1A family is also annotated in other pathways significantly affected by cisplatin 

treatment in SKOV-3-AA cells, including codeine and morphine metabolism, estrogen 

metabolism, aryl hydrocarbon receptor pathway, irinotecan pathway, nicotine metabolism, 

tamoxifen metabolism and Nrf2 pathway. Nrf2 is the upstream regulator of UGT1A 

expression. The array did not show any differential regulation of Nrf2, but some downstream 

genes of Nrf2 were differentially expressed. Therefore, the expression of Nrf2 was analysed 

on the protein level by Western blot in transfected cells before and after exposure to 

cisplatin (Figure 2.7B). The results showed a slight decrease in the overall Nrf2 levels after 

cisplatin exposure in all investigated cells. However, the differences were not statistically 

significant conforming to the result of the array. 

2.3.6.2. Retinoic Acid, an Inhibitor of Nrf2/ARE Pathway, Increases Cisplatin Sensitivity 

Since UGT1A expression was affected by cisplatin in SKOV-3-AA cells, while Nrf2 expression 

was not, we hypothesised that Nrf2-associated downstream signalling via the Nrf2/ARE 

pathway may contribute to the sensitisation of PEA-15AA-transfected cells to cisplatin. All-

trans retinoic acid (further retinoic acid), which is known to reduce the Nrf2-mediated 

induction of ARE-driven genes (Atencia et al., 1994), was used to investigate this 

phenomenon further. 

The EC50 value of retinoic acid was 216 µM (pEC50 = 3.660 ± 0.003, mean ± SEM, n = 6) after 

48 h of incubation. In order to investigate the influence of the compound on cisplatin 

sensitivity, 20 µM of retinoic acid was used in combination with cisplatin in SKOV-3 cells as 

this concentration was lower than the EC10 of retinoic acid and therefore not toxic to the 

cells. 

Retinoic acid did not affect Nrf2 protein levels in all investigated cells independent of 

cisplatin treatment (Figure 2.8A). However, retinoic acid significantly reduced UGT1A levels 

alone and in combination with cisplatin (Figure 2.8B). This suggests that retinoic acid 

interferes with UGT1A expression via effects on Nrf2 signalling (but without directly affecting 
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Nrf2 levels) similarly to PEA-15AA overexpression. In agreement, retinoic acid also 

significantly sensitised SKOV-3 cells to cisplatin (Figure 2.9). The EC50 value for cisplatin 

decreased from 32.6 µM to 13.9 µM in the presence of 20 µM retinoic acid. It should be 

noted that this experiment was conducted with non-transfected SKOV-3 cells, which cannot 

be directly compared with empty vector-transfected cells. Generally, after transfection 

process, cells became more sensitive to cisplatin. A similar effect of transfection procedure 

was also noticed in EFO27rCDDP2000 cells (Figure S2.1). 

 

 

Figure 2.8. Representative Western blots and the corresponding densitometric quantification (mean 

± SEM, n = 3) of (A) the relative Nrf2 expression and (B) the relative UGT1A expression in the 

transfected untreated SKOV-3 cells (Ctrl), after exposure to 15 µM cisplatin (Pt), to 20 µM retinoic acid 

(RA) and after co-incubation with 20 µM retinoic acid and 15 µM cisplatin (Pt + RA) for 24 h are shown. 

GAPDH was used as a loading control. *p < 0.05, ** p < 0.01, n.s. = not significant. 
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Figure 2.9. Sensitivity of SKOV-3 cells (pEC50, mean ± SEM, n = 9–10) of cisplatin alone (Pt), and upon 

co-incubation with 20 µM retinoic acid (Pt + RA) was determined over 48 h. *** p < 0.001. 

 

2.4. Discussion 

Our results show that overexpression of PEA-15AA, a PEA-15 variant that cannot be 

phosphorylated at Ser104 and Ser116, increases the sensitivity of SKOV-3 ovarian cancer 

cells to cisplatin. The modest absolute effect of PEA-15 phosphorylation status on pEC50 may 

result from counteracting signalling pathways. Nevertheless, the finding was confirmed in an 

additional cell line model. 

Previously, PEA-15 overexpression was found to induce cisplatin resistance and knockdown 

of PEA-15 was shown to enhance sensitivity to cisplatin in colorectal carcinoma cell line 

(Funke et al., 2013). In that case, the wild-type PEA-15 was overexpressed, with both 

regulatory serine residues (Ser104 and Ser116) open to be phosphorylated. Therefore, the 

observed effects cannot be attributed to a single factor, i.e., overexpression of PEA-15. Our 

results indicate that PEA-15 phosphorylation status critically determines the cancer cell 

response to cisplatin. Non-phosphorylatable PEA-15AA had been previously found to inhibit 

ovarian cancer tumourigenicity and progression by blocking beta-catenin (Lee, J. et al., 2012). 

However, we did not observe direct effects of PEA-15AA on cell growth kinetics. PEA-15 

phosphorylation at Ser116 rendered glioblastoma cells resistant to glucose-deprivation 

mediated cell death (Eckert et al., 2008), which is in line with our finding that 

unphosphorylatable PEA-15 can potentiate cytotoxic effects. However, it appears to be not 

the case for all kinds of toxic stimuli. Interestingly, PEA-15AA had been shown to reduce 



94 
 

ovarian cancer cell sensitivity to paclitaxel (Xie et al., 2013), a drug that interferes with 

microtubule disassembly (Xiao et al., 2006), whereas cisplatin acts in a different fashion 

directly inducing DNA damage (Dilruba & Kalayda, 2016). PEA-15 phosphorylation status 

affects several signalling pathways and apparently, depending on the mode of action, 

different downstream events gain more importance accounting for the diverging effects on 

cell sensitivity to different drugs. 

In agreement with previous reports, PEA-15AA retained activated ERK1/2 in the cytoplasm. 

However, due to the diverse cellular functions of PEA-15, a microarray analysis was 

warranted to investigate the underlying key players of sensitisation of SKOV-3 cells to 

cisplatin by PEA-15AA. 

In untreated cells, PEA-15-AA overexpression resulted in the differential regulation of 

thirteen genes between SKOV-3-AA and SKOV-3-EV or SKOV-3-DD cells. For eleven of these 

genes, data from cisplatin-treated patients was available in TCGA, and the expression of 

seven genes significantly correlated with the outcome of cisplatin therapy in the same way 

as expected from our data. Some of these genes are of particular interest in the context of 

ERK1/2 signalling. Early growth response protein 1 (EGR1) is a downstream nuclear target of 

Elk-1, which itself is regulated by activated ERK1/2 upon nuclear translocation (Gregg & 

Fraizer, 2011; Shi, Q. et al., 2014), suggesting that PEA-15AA-mediated retention of activated 

ERK1/2 in the cytosol results in reduced EGR1 expression. Low EGR1 levels have also been 

reported to correlate with high cisplatin sensitivity in primary glioma cells (Calogero et al., 

2011). FLNA, coding for filamin A, a non-muscle actin filament cross-linking protein, is a 

downstream target of the nuclear transcription factor Sp1 (D’Addario et al., 2006), which is 

also regulated by ERK1/2 (Milanini-Mongiat et al., 2002). Reduced FLNA levels were observed 

in PEA-15AA-transfected cells in this study, and also correlated with increased cisplatin 

sensitivity in a mouse xenograft model (Yue et al., 2012) and with improved overall survival 

in patients (Jin, Y. Z. et al., 2016) according to previous reports. Filamin A was also found to 

promote cancer growth (Savoy & Ghosh, 2013) and to play an important role in repair of DNA 

damage (Evans & Relling, 1999). 

A total of 444 genes were exclusively differentially regulated in cisplatin-treated SKOV-3-AA 

cells with UGT1A family representing the most significantly affected pathway 

(glucuronidation). UGTs catalyse the addition of a β-glucuronic acid moiety to a variety of 

nucleophilic sites of xenobiotics and endogenous compounds including bilirubin, steroids, 

bile acids, drugs and other carcinogenic and toxic compounds (Xie et al., 2015), and have 
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been linked to drug resistance in cancer. The downregulation of UGT1A enzymes upon 

cisplatin exposure is likely to be a consequence of suppression of upstream signalling via Nrf2 

pathway, which was also affected in response to cisplatin treatment. However, effects did 

not involve Nrf2 itself but seemed to be rather mediated by downstream signalling events. 

Retinoic acid, a known inhibitor of Nrf2/ARE signalling reduced UGT1A levels and increased 

cisplatin sensitivity of SKOV-3 cells independently of Nrf2 expression in a similar fashion as 

PEA-15AA overexpression. 

PEA-15 was already evaluated for treating advanced breast cancer in mice. To target PEA-15 

in advanced breast tumours, Xie et al. developed a breast cancer specific construct (T-VISA) 

composed of the human telomerase reverse transcriptase (hTERT; T) promoter and a 

versatile transgene amplification vector VISA (VP16-GAL4-WPRE integrated systemic 

amplifier). T-VISA-PEA-15 was found to be highly specific, to selectively express PEA-15 in 

breast cancer cells, and to induce cancer cell killing in vitro and in vivo without affecting 

normal cells (Xie et al., 2015). A similar construct with PEA-15AA would be of interest for 

ovarian cancer in order to investigate if the efficacy of cisplatin treatment can be improved. 

In conclusion, non-phosphorylatable PEA-15AA increases cisplatin sensitivity of ovarian 

cancer cells, suggesting that the phosphorylation status of PEA-15 could be evaluated as a 

biomarker to predict the responsiveness of ovarian tumours to cisplatin treatment. For this 

purpose, correlation of PEA-15 phosphorylation with therapy outcome in high-grade serous 

ovarian cancer is needed, as this subtype is the most aggressive and has the worst prognosis 

(Domcke et al., 2013). 
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Abstract 

The nucleoside analogue nelarabine, the prodrug of arabinosylguanine (AraG), is effective 

against T-cell acute lymphoblastic leukaemia (T-ALL) but not against B-cell ALL (B-ALL). The 

underlying mechanisms have remained elusive. Here, data from pharmacogenomics studies 

and a panel of ALL cell lines reveal an inverse correlation between nelarabine sensitivity and 

the expression of SAMHD1, which can hydrolyse and inactivate triphosphorylated nucleoside 

analogues. Lower SAMHD1 abundance is detected in T-ALL than in B-ALL in cell lines and 

patient-derived leukaemic blasts. Mechanistically, T-ALL cells display increased SAMHD1 

promoter methylation without increased global DNA methylation. SAMHD1 depletion 

sensitises B-ALL cells to AraG, while ectopic SAMHD1 expression in SAMHD1-null T-ALL cells 

induces AraG resistance. SAMHD1 has a larger impact on nelarabine/AraG than on cytarabine 

in ALL cells. Opposite effects are observed in acute myeloid leukaemia cells, indicating entity-

specific differences. In conclusion, SAMHD1 promoter methylation and, in turn, SAMHD1 

expression levels determine ALL cell response to nelarabine. 

 

3.1. Introduction 

Acute lymphoblastic leukaemia (ALL) cells originate from precursor lymphoid T- (T-ALL) and 

B-cells (B-ALL). In children, ALL is the most common cancer associated with high cure rates 

of about 85%. In adults, ALL accounts for 15–25% of acute leukaemias and is associated with 

a less favourable outcome (Coccaro et al., 2019; Follini et al., 2019; Mohseni et al., 2018; 

Pavlovic et al., 2019). Among ALLs, T-ALL is responsible for ~15% of paediatric ALLs and 25% 

of adult ALLs (Follini et al., 2019). Nelarabine displays selective activity in T-ALL over B-ALL 

and is used for the treatment of relapsed and refractory T-ALL but not routinely for the 

treatment of B-ALL (Cohen et al., 1983; Follini et al., 2019; Jabbour et al., 2015; Jabbour et 

al., 2018; Kadia & Gandhi, 2017; Kantarjian et al., 2017; Marks & Rowntree, 2017; Shewach 

& Mitchell, 1989; Teachey & O'Connor, 2020). However, the molecular mechanisms 

underlying this difference remain elusive. Moreover, nelarabine therapy can be associated 

with irreversible life-threatening neurotoxicity (Berg et al., 2005; Kadia & Gandhi, 2017). 

Hence, biomarkers indicating patients who are most likely to benefit from nelarabine therapy 

are needed. 

Here, we used an approach that combined data from the large pharmacogenomics screens 

Cancer Therapeutics Response Portal (CTRP) (Basu et al., 2013), Cancer Cell Line 
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Encyclopedia (CCLE) (Barretina et al., 2012), and Genomics of Drug Sensitivity in Cancer 

(GDSC) (Yang, W. et al., 2013) with data from an ALL cell line panel derived from the Resistant 

Cancer Cell Line (RCCL) collection and patient data to investigate the mechanisms underlying 

the discrepancy in the nelarabine sensitivity between T-ALL and B-ALL. 

The results show that low expression of Sterile alpha motif and histidine-aspartic acid 

domain-containing protein 1 (SAMHD1) in T-ALL cells is a key determinant of nelarabine 

sensitivity and that SAMHD1 is a potential biomarker and therapeutic target for the 

improvement of nelarabine-based therapies for both T-ALL and B-ALL patients. 

 

3.2. Methods 

3.2.1. Analysis of data from pharmacogenomics screens 

ALL cell line drug sensitivity data and RMA-normalised gene expression values were obtained 

from the CCLE (2015 release, https://portals.broadinstitute.org/ccle), which contains data 

from 34 ALL cell lines (18 B-ALL and 16 T-ALL) (Barretina et al., 2012), GDSC (2016 release, 

https://www.cancerrxgene.org/; 21 B-ALL/ 17 T-ALL cell lines) (Yang, W. et al., 2013), and 

CTRP (version 2, 2015 release, https://ocg.cancer.gov/programs/ctd2/data-portal; 11 B-ALL/ 

13 T-ALL cell lines) (Basu et al., 2013). 

Gene expression was compared using the Mann-Whitney U (Wilcoxon) test for independent 

groups. Multiple test correction of p-values was performed using the Benjamini–Hochberg 

(BH) procedure (Benjamini & Hochberg, 1995), with a false discovery rate (FDR) of 0.05 

(BH = (rank/n) × FDR, where n = the total number of genes compared). Gene expression 

levels between B-ALL and T-ALL cell lines were visualised using the ggboxplot function in R. 

Heatmaps showing gene expression levels were generated using the ggplot2 package in R. 

In all, 36 of the ALL cell lines (19 B-ALL, 17 T-ALL) in the GDSC and 22 ALL cell lines (10 B-ALL, 

12 T-ALL) in the CTRP were treated with cytarabine. 23 ALL cell lines (11 B-ALL, 12 T-ALL) in 

the CTRP were treated with nelarabine. Scatter plots and their associated Pearson 

correlations for each drug AUCs against gene expression were calculated using the ggplot2 

package in R. 

Expression of 18,542 genes was correlated with the nelarabine AUC in ALL cell lines and 

SAMHD1 expression was correlated with the AUC values of 441 drugs tested in ALL cell lines 

using the CTRPv2 dataset. Pearson correlation coefficients were calculated using the cor.test 
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function in R. P-values for each correlation were ranked and multiple test correction was 

performed (Benjamini–Hochberg procedure, FDR = 0.05). 

Pathway analysis was performed using the PANTHER (version 14.1) Overrepresentation Test 

(Mi et al., 2019) based on genes significantly differentially expressed in B-ALL and T-ALL cell 

lines after Benjamini–Hochberg p-value correction (FDR = 0.05). Fisher’s exact test was 

applied to calculate over- vs. underrepresentation of classes. Heatmaps were prepared using 

the ggplot2 package in R. 

Beta values for CpG sites in the SAMHD1 promoter derived from the GDSC (Gene Expression 

Omnibus ID GSE68379) were correlated with SAMHD1 expression in ALL cell lines. 

3.2.2. Analysis of patient data 

SAMHD1 gene expression was analyzed in publicly available Microarray data of 306 primary 

adult B- and T-ALL patients (Gene Expression Omnibus ID GSE66006) (Herold, T. et al., 2017). 

The median percentage of leukemic cells in the samples was 90%. 

3.2.3. Drugs 

Cytarabine was purchased from Tocris Biosciences (via Bio-Techne GmbH, Wiesbaden, 

Germany), AraG from Jena Bioscience (Jena, Germany). 

3.2.4. Cell lines 

The human ALL cell lines 697, ALL-SIL, BALL-1, CTV-1, GRANTA-452, HAL-01, HSB-2, JURKAT, 

KE-37, MHH-CALL-4, MN-60, MOLT-4, MOLT-16, NALM-6, NALM-16, P12-ICHIKAWA, REH, 

ROS-50, RPMI-8402, RS4;11, SEM, TANOUE, and TOM-1 and the AML cell lines THP-1 and HEL 

were obtained from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen 

GmbH, Braunschweig, Germany). The ALL cell lines CCRF-CEM and JJHan were received from 

ATCC (Manassas, VA, US) and the ALL cell line KARPAS231 from Cambridge Enterprise Ltd. 

(Cambridge, UK). 

THP-1 cells deficient in SAMHD1 (THP-1 KO) and control cells (THP-1 Ctr.) were generated 

using CRISPR/Cas9 approach as previously described (Oellerich et al., 2019; Schneider et al., 

2017; Wittmann et al., 2015). THP-1 cells were plated at a density of 2 × 105 cells per ml. After 

24 h, 2.5 × 106 cells were resuspended in 250 µl Opti-MEM, mixed with 5 µg CRISPR/Cas 

plasmid DNA, and electroporated in a 4-mm cuvette using an exponential pulse at 250 V and 

950 mF utilizing a Gene Pulser electroporation device (Bio-Rad Laboratories). We used a 

plasmid encoding a CMV-mCherry-Cas9 expression cassette and a human SAMHD1 gene 

specific gRNA driven by the U6 promoter. An early coding exon of the SAMHD1 gene was 



100 
 

targeted using the following gRNA construct: 5′-CGGAAGGGGTGTTTGAGGGG-3′. Cells were 

allowed to recover for 2 days in six-well plates filled with 4 ml medium per well before being 

FACS sorted for mCherry-expression on a BD FACS Aria III (BD Biosciences). For subsequent 

limiting dilution cloning, cells were plated at a density of 5, 10, or 20 cells per well of nine 

round-bottom 96-well plates and grown for 2 weeks. Plates were scanned for absorption at 

600 nm and growing clones were identified using custom software and picked and duplicated 

by a Biomek FXp (Beckman Coulter) liquid handling system. 

The HEL and JURKAT SAMHD1-WT and SAMHD1-D311A cell lines were generated by co-

transfection of the packaging vector pPAX2 (Addgene), either pHR-SAMHD1-WT or pHR-

SAMHD1-D311A and a plasmid encoding VSV-G, as previously described (Oellerich et al., 

2019). All cell lines were routinely tested for Mycoplasma, using the MycoAlert PLUS assay 

kit from Lonza, and were authenticated by short tandem repeat profiling, as described 

elsewhere. 

All cell lines were cultured in IMDM (Biochrom) supplemented with 10% FBS (Sigma-Aldrich), 

4 mM L-glutamine (Sigma-Aldrich), 100 IU per ml penicillin (Sigma-Aldrich), and 100 µg per 

ml streptomycin (Sigma-Aldrich) at 37 °C in a humidified 5% CO2 incubator. 

3.2.5. Viability assay 

Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) assay modified after Mosmann (Mosmann, 1983), as previously described 

(Onafuye et al., 2019). Cells suspended in 100 µL cell culture medium were plated per well in 

96-well plates and incubated in the presence of various drug concentrations for 96 h. Then, 

25 µL of MTT solution (2 mg/mL (w/v) in PBS) were added per well, and the plates were 

incubated at 37 °C for an additional 4 h. After this, the cells were lysed using 200 µL of a 

buffer containing 20% (w/v) sodium dodecylsulfate in 50% (v/v) N,N-dimethylformamide 

with the pH adjusted to 4.7 at 37 °C for 4 h. Absorbance was determined at 570 nm for each 

well using a 96-well multiscanner. After subtracting of the background absorption, the 

results are expressed as percentage viability relative to control cultures which received no 

drug. Drug concentrations that inhibited cell viability by 50% (IC50) were determined using 

CalcuSyn (Biosoft, Cambridge, UK). 

3.2.6. Western blotting 

Western blotting was performed as previously described (Schneider et al., 2017). Cells were 

lysed in Triton X-100 sample buffer and proteins separated by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis. Proteins were blotted on a nitrocellulose membrane 
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(Thermo Scientific). The following primary antibodies were used at the indicated dilutions: 

SAMHD1 (Proteintech, 12586-1-AP, 1:1,000), β-actin (BioVision, 3598R-100, 1:5,000), 

pSAMHD1 (Cell Signaling, 89930S, 1:1,000), and GAPDH (Trevigen, 2275-PC-10C, 1:5,000). 

Visualisation and quantification were performed using IRDye-labeled secondary antibodies 

(LI-COR Biotechnology, IRDye®800CW Goat anti-Rabbit, 926-32211, 1:40,000) according to 

the manufacturer’s instructions. Band volume analysis was conducted by Odyssey LICOR. 

Uncropped blots are presented in Figure S3.10. SAMHD1 quantification was performed using 

a protein extract of the AML cell line THP-1 as internal control (Figure S3.10, Figure S3.5). 

3.2.7. mRNA analysis 

RNA extraction and TaqMan-based mRNA quantification of SAMHD1 (assay no. 

Hs00210019_m1) and RNaseP (TaqMan® RNaseP Assay (A30065)) as endogenous reference 

control were performed according to the manufactures protocol (Applied Biosystems). Total 

RNA was extracted using the RNeasy Kit from Qiagen and stored at −80 °C until use. Relative 

quantitative PCR analyses were performed on the QuantStudio 7 Flex Real-Time PCR System 

(Applied Biosystems). SAMHD1 mRNA expression levels were quantified by using the ΔΔCt 

method with RNaseP mRNA as an endogenous reference control. All samples were run in 

triplicate. Data analysis was conducted using the QuantStudio System Software (Applied 

Biosystems). 

3.2.8. SAMHD1 promoter methylation 

SAMHD1 promoter methylation was determined as previously described (Oellerich et al., 

2019). SAMHD1 promoter contains five HpaII sites surrounding the transcription start site 

(de Silva et al., 2013). Methylation of the HpaII sites in the SAMHD1 promoter would prevent 

digestion by the HpaII, and the intact sequence would serve as a template for PCR 

amplification using SAMHD1 promoter-specific primers that flank the HpaII sites. To measure 

methylation of the SAMHD1 promoter genomic DNA was treated with the methylation-

sensitive HpaII endonuclease or left untreated as described previously with some 

modifications (de Silva et al., 2013). PM3.fwd: TTCCGCCTCATTCGTCCTTG and PM3.rev: 

GGTTCTCGGGCTGTCATCG were used as SAMHD1 promoter-specific primers. A single PCR 

product (993-bp) corresponding to the SAMHD1 promoter sequence was obtained from 

untreated genomic DNA and treated DNA from cells with methylated but not from cells with 

unmethylated SAMHD1 promoter. To serve as input control, a 0.25-kb fragment of the 

GAPDH gene lacking HpaII sites was PCR-amplified using the same template DNA (de Silva et 

al., 2013). Uncropped agarose gels are shown in Figure S3.10. 
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3.2.9. SAMHD1 depletion using Vpx virus-like particles 

Cells were spinoculated with VSV-G pseudotyped virus-like particles carrying either Vpx or 

Vpr from SIVmac251, produced by co-transfection of 293T cells with pSIV3 + gag pol 

expression plasmids and a plasmid encoding VSV-G as previously described (de Silva et al., 

2013; Schneider et al., 2017). 

3.2.10. Statistics and reproducibility 

Statistical data analyses were performed in GraphPad Prism version 7. Population means 

were compared using unpaired two-tailed Student’s t-tests. Data are presented as 

means ± standard deviation (S.D.). Specific information on the number and nature of 

replicates is provided in the figure legends. Correlation analyses were performed using linear 

regression in GraphPad Prism resulting in r2 as a measure for goodness-of-fit and the P value, 

which is calculated from an F test, indicating whether the slope is significantly different from 

zero. 

 

3.3. Results 

3.3.1. Gene expression comparison between T-ALL and B-ALL cells 

To identify potential differences between T-ALL and B-ALL that may explain the observed 

discrepancies in nelarabine sensitivity, we started by analysing data derived from the large 

pharmacogenomics databases CCLE (Barretina et al., 2012), Cancer Therapeutics Response 

Portal (CTRP) (Basu et al., 2013), and Genomics of Drug Sensitivity in Cancer (GDSC) (Yang, 

W. et al., 2013). The CCLE contained data derived from 34 leukaemia cell lines (18 B-ALL, 16 

T-ALL) and the GDSC from 38 leukaemia cell lines (21 B-ALL, 17 T-ALL), with an overlap of 19 

cell lines (Table S3.1). The CCLE and CTRP used the same cell line panel for their studies (Basu 

et al., 2013). 

Nelarabine was tested in 24 ALL (11 B-ALL, 13-T-ALL) cell lines in the CTRP (Table S3.2). In 

agreement with the available literature (Beesley et al., 2007; Cohen et al., 1983; Homminga 

et al., 2011; Shewach & Mitchell, 1989), nelarabine displayed higher activity in T-ALL than in 

B-ALL cell lines (Figure S3.1A, Table S3.2). 

Initially, we compared transcriptomics data (mRNA abundance) between T-ALL and B-ALL cell 

lines. Substantial proportions of transcripts displayed significant differences (P < 0.05) in 

their abundance levels between T-ALL and B-ALL cells in the GDSC (3,998/ 22.5% of 17,735 
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transcripts), CCLE (8,498/ 42.1% of 20,172 transcripts), and CTRP (4,507/ 24.3% of 18,539 

transcripts) (Supplementary Data 3.1). Gene expression heatmaps illustrated these 

differences (Figure S3.1), but manual analysis of the top differentially regulated genes did 

not result in the identification of candidate genes, whose expression seemed likely to be 

responsible for the observed differences in nelarabine sensitivity. 

A pathway analysis using the PANTHER database (Protein ANalysis THrough Evolutionary 

Relationships, http://pantherdb.org) (Mi et al., 2019) also did not reveal processes that may 

underlie the increased nelarabine sensitivity of T-ALL cells (Figure S3.1, Supplementary Data 

3.2). As expected, B-cell- and T-cell-specific processes featured prominently among the most 

strongly differentially regulated pathways. 

3.3.2. SAMHD1 levels correlate with nelarabine resistance 

The correlation of transcriptomics data with the nelarabine drug response, represented as 

AUC, identified SAMHD1 as the gene, whose expression displayed the most significant direct 

correlation (Supplementary Data 3.3). Analysis of SAMHD1 expression exclusively in either 

the B-ALL or T-ALL subset also showed a highly significant direct correlation with the 

nelarabine AUC (Supplementary Data 3.3). Furthermore, when we correlated drug AUCs with 

SAMHD1 expression, nelarabine displayed the most significant direct correlation with 

SAMHD1 expression across all ALL cell lines, the second most significant direct correlation 

with SAMHD1 expression in the B-ALL cell lines, and the third most significant direct 

correlation with SAMHD1 expression in the T-ALL cell lines (Supplementary Data 3.4). 

3.3.3. SAMHD1 levels are lower in T-ALL than in B-ALL cells 

SAMHD1 is a deoxynucleotide triphosphate (dNTP) hydrolase that cleaves physiological 

dNTPs and triphosphorylated nucleoside analogues (Amie et al., 2013; Ballana et al., 2014; 

Hollenbaugh et al., 2017; Knecht et al., 2018; Mauney & Hollis, 2018). It was previously 

shown to interfere with the activity of anti-cancer nucleoside analogues including nelarabine 

(Herold, N. et al., 2017; Hollenbaugh et al., 2017; Knecht et al., 2018). If SAMHD1 was 

responsible for the differences observed in nelarabine sensitivity between T-ALL and B-ALL, 

T-ALL cells would be expected to express lower levels of SAMHD1. Indeed, the SAMHD1 

expression (mRNA abundance) levels were significantly lower in T-ALL than in B-ALL cell lines 

in all three databases (Figure 3.1A). Similar findings were detected in a gene expression 

dataset derived from blasts of 306 ALL (222 B-ALL, 84 T-ALL) patients (Herold, T. et al., 2014; 

Herold, T. et al., 2017) (Figure 3.1B). Further analysis revealed a reduced expression of 

SAMHD1 in T-ALL in general but more pronounced in the thymic and mature 

http://pantherdb.org/
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immunophenotypic subtype (Figure S3.2A). On the genetic level, some B-ALL subgroups like 

for example Philadelphia (Ph)-like patients display a gene expression pattern of SAMHD1 that 

is equally low as seen in T-ALL (Figure S3.2B). 

 

  

Figure 3.1. SAMHD1 levels differ between T-ALL and B-ALL. 

Comparison of SAMHD1 expression (mRNA abundance) levels in T-ALL and B-ALL cell lines from the 

CTRP, CCLE, and GDSC (A) and in blasts from leukaemia patients (B). (C) Comparison of the expression 

of other genes known to affect nucleoside analogue activity based on CTRP data. Respective CCLE and 

GDSC data are provided in Figure S3.2. *p-values for the comparison B-ALL vs. T-ALL. 

 

3.3.4. SAMHD1 is a determinant of nelarabine sensitivity in ALL 

A number of other gene products have been described to be involved in the transport, 

activation, and metabolism of nucleoside analogues such as nelarabine, including DCK, 

DGUOK, SLC29A1 (ENT1), SLC29A2 (ENT2), NT5C, NT5C2, PNP, RRM1, RRM2 and SLC22A4 

(OCTN1) (Drenberg et al., 2017; Homminga et al., 2011). While statistically significant 

differences in the expression of some of the respective genes were noted between B-ALL and 

T-ALL cell lines in some of the three datasets, none was consistent across all three and none 
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was as robust as in the expression of SAMHD1 (Figure 3.1c, Figure S3.3). In patient samples, 

SAMHD1 also displayed the most significant difference in expression levels between B-ALL 

and T-ALL (Figure S3.3). Moreover, only the expression of SAMHD1 correlated with the 

nelarabine AUC in the CTRP dataset (Figure 3.2, Figure S3.4). This shows that SAMHD1 is a 

critical determinant of nelarabine efficacy in ALL and that low SAMHD1 levels critically 

contribute to the specific nelarabine sensitivity of T-ALL cells. 

 

Figure 3.2. Comparison of nelarabine (CTRP) and cytarabine (CTRP, GDSC) sensitivity between B-ALL 

and T-ALL cell lines and correlation of SAMHD1 mRNA levels with the nelarabine and cytarabine 

sensitivity (expressed as AUC) across all B-ALL and T-ALL cell lines. 

Pearson’s r values and respective p-values are provided. Respective data on the correlation of 

SAMHD1 expression with drug sensitivity exclusively for B-ALL and T-ALL cell lines are provided in 

Figure S3.3 (nelarabine) and Figure S3.4 (cytarabine). 

 

3.3.5. SAMHD1 is no determinant of cytarabine sensitivity in ALL 

Cellular SAMHD1 levels have previously been shown to critically determine cytarabine 

efficacy in acute myeloid leukaemia (AML) cells (Hollenbaugh et al., 2017; Knecht et al., 2018; 

Schneider et al., 2017) and SAMHD1 expression levels are lower in T-ALL than in AML cells 

(Figure S3.5). The CTRP and GDSC contained data on cytarabine activity. In contrast to AML 

cells, however, there was no difference in the cytarabine sensitivity between B-ALL and T-

ALL cell lines and no correlation between SAMHD1 expression and cytarabine sensitivity in 
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ALL cells (Figure 3.2, Figure S3.6). Hence, the effect of SAMHD1 on nucleoside analogue 

activity depends on the tissue context. 

3.3.6. SAMHD1 mRNA levels reflect protein levels in ALL cell lines 

To further investigate the role of SAMHD1 on nelarabine and cytarabine efficacy in ALL, we 

assembled a panel consisting of 15 B-ALL and 11 T-ALL cell lines from the RCCL collection 

(Michaelis et al., 2019) (Table S3.3). Firstly, we investigated the extent to which cellular 

SAMHD1 mRNA levels are indicative of cellular protein levels. Western blot analyses 

confirmed that the RCCL T-ALL cell lines generally display lower SAMHD1 protein levels than 

the RCCL B-ALL cell lines (Figure 3.3a, Figure S3.7). However, quantitative western blot 

analysis and quantitative PCR (qPCR) showed that cellular SAMHD1 mRNA levels do not 

always directly correlate with cellular SAMHD1 protein levels (Figure 3.3B). This is likely to 

reflect the complexity of the regulation of protein levels, which are determined by 

transcription and translation efficacy, factors that control mRNA stability (e.g. microRNAs 

and proteins that control mRNA degradation), and post-translational modifications that 

promote (proteasomal) protein degradation (Bicknell & Ricci, 2017; Dikic, 2017; Jaén et al., 

2018; Ko & Dixon, 2018; Radhakrishnan & Green, 2016; Wolf & Menssen, 2018). Moreover, 

mutations may affect SAMHD1 function, as demonstrated in patients with chronic 

lymphocytic leukaemia and colorectal cancer (Clifford et al., 2014; Rentoft et al., 2016). 

However, the only ALL cell line with a SAMHD1 mutation was Jurkat, which harboured an 

R611* nonsense mutation based on GDSC data. SAMHD1 mRNA and protein levels in the 

RCCL are correlated with SAMHD1 mRNA levels in the corresponding cell lines from CTRP, 

CCLE and GDSC (Figure S3.8). Hence, SAMHD1 mRNA levels, largely predict SAMHD1 protein 

levels, which is in line with previous findings (Schneider et al., 2017). 
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Figure 3.3. SAMHD1 protein and mRNA levels in the RCCL panel of B-ALL and T-ALL cell lines.  

(A) Representative Western blots indicating protein levels of total SAMHD1 and phosphorylated 

SAMHD1 (p-SAMHD1). GAPDH was used as loading control. (B) Quantitative SAMHD1 protein levels 

are shown as means ± SD from three independent experiments (quantified using near-infrared 

Western blot images to determine the ratio SAMHD1/ GAPDH relative to the positive control THP-1, 

an acute myeloid leukaemia cell line characterised by high cellular SAMHD1 levels (Schneider et al., 

2017). SAMHD1 mRNA abundance levels are shown as means ± SD from three technical replicates (as 

determined by qPCR, relative to cell line ROS-50) in B-ALL and T-ALL cell lines. Unpaired two-tailed 

Student’s t-tests were used to compare means (represented as horizontal lines ± SEM) of SAMHD1 

protein or mRNA levels in B-ALL and T-ALL cells. 

 



108 
 

 Next, the sensitivity of the RCCL ALL cell lines was tested against arabinosylguanine (AraG), 

the product of the prodrug nelarabine (Curbo & Karlsson, 2006) and cytarabine. The results 

were in agreement with the CTRP data showing that T-ALL cell lines were significantly more 

sensitive to AraG than B-ALL cell lines (Figure 3.4, Table S3.3). Notably, there was a significant 

correlation between the nelarabine AUCs in the CTRP and the AraG IC50s in the RCCL panel 

among the cell lines that were present in both datasets (Figure S3.9). In contrast to the CTRP 

and GDSC data that had not indicated a difference between the cytarabine sensitivity of T-

ALL- and B-ALL- cells, T-ALL cell lines displayed a trend indicating increased sensitivity to 

cytarabine (P = 0.055) (Figure 3.4). SAMHD1 protein levels displayed a significant correlation 

with the AraG concentrations that reduced cell viability by 50% (IC50) in all ALL cell lines and 

the lineage-specific subanalyses (Figure 3.4). In contrast, a significant correlation between 

SAMHD1 protein levels and cytarabine activity was only detected across all ALL cell lines but 

not when only B-ALL or T-ALL cell lines were considered (Figure 3.4). SAMHD1 mRNA levels 

were correlated with the AraG IC50 across all ALL cell lines and T-ALL cell lines but not B-ALL 

cell lines (P = 0.1335) (Figure 3.4). No significant correl  ation was detected between the 

SAMHD1 mRNA levels and the cytarabine IC50 in the RCCL ALL cell lines (Figure 3.4). 

 

Figure 3.4. AraG and cytarabine concentrations that reduce the viability of the RCCL ALL cell lines by 

50% (IC50) and correlation of the IC50s with the cellular SAMHD1 protein or mRNA levels. 
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Numerical data are provided in Supplementary Data 3.4. Closed circles and error bars represent 

means ± SD of three independent experiments, each performed in three technical replicates. Linear 

regression analyses were performed using GraphPad Prism. 

 

Taken together, these results confirm the CTRP data in showing that cellular SAMHD1 levels 

determine ALL sensitivity against AraG, the product of nelarabine, and that low SAMHD1 

levels in T-ALL cells are associated with specific nelarabine/ Ara-G activity in this lineage. In 

contrast to the CTRP and GDSC data, the additional experimental analyses in the RCCL ALL 

cell line panel suggest that SAMHD1 levels may also affect cytarabine activity in ALL, albeit 

to a lower degree than AraG activity. 

3.3.7. SAMHD1 depletion sensitises ALL cells to AraG 

To further investigate the functional role of SAMHD1 in determining AraG and cytarabine 

activity in ALL cells, we depleted SAMHD1 using virus-like particles containing Vpx as 

previously described (Baldauf et al., 2012; Schneider et al., 2017). Vpx is a protein encoded 

by HIV-2 and certain SIV strains that mediates proteasomal SAMHD1 degradation (Baldauf 

et al., 2012; Hrecka et al., 2011; Laguette et al., 2011). Vpx virus-like particles resulted in the 

sensitisation of ALL cells to AraG and cytarabine but exerted much more pronounced effects 

on the activity of AraG (Figure 3.5A). 
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Figure 3.5. Effect of SAMHD1 on nelarabine and cytarabine sensitivity in ALL and AML cells. 

(A) Dose-response curves of AraG- and cytarabine-treated ALL cell lines in the absence or presence of 

Vpx virus-like particles (cause SAMHD1 depletion), or Vpr virus-like particles (negative) controls. 

Concentrations that reduce ALL cell viability by 50% (IC50s) and Western blots confirming SAMHD1 

depletion are provided. Each symbol represents the mean ± SD of three technical replicates of one 

representative experiment out of three. (B) Effects of AraG and cytarabine on AML cell lines in the 
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absence or presence of functional SAMHD1. In the SAMHD1-expressing AML cell line THP-1, the 

SAMHD1 gene was disrupted by CRISPR/Cas9 (THP1-KO). The non-SAMHD1 expressing AML cell line 

HEL and the non-SAMHD1 expressing ALL cell line JURKAT were transduced with wild-type SAMHD1 

(SAMHD1_WT) or the triphosphohydrolase-defective SAMHD1 mutant D311A (SAMHD1_D311A). 

Dose-response curves, drug concentrations that reduce cell viability by 50% (IC50s), and Western blots 

confirming SAMHD1 protein levels are provided. Each symbol represents the mean ± SD of three 

independent experiments, each performed in three technical replicates. 

 

In the ALL cell lines MHH-CALL-4, SEM, and TANOUE, the AraG IC50s were between 37.5- and 

101-fold lower following exposure to Vpx virus-like particles compared to Vpr virus-like 

particles, which served as negative controls. In contrast, Vpx virus-like particles only reduced 

the cytarabine IC50s by 5- and 7-fold lower in these cell lines. 

3.3.8. Different role of SAMHD1 as resistance factor in ALL and AML 

In AML cells, SAMHD1 has been described as a critical regulator of cytarabine activity 

(Schneider et al., 2017). Since Vpx virus-like particle-mediated SAMHD1 depletion had 

resulted in a more pronounced sensitisation of ALL cells to AraG than to cytarabine, we 

further compared the effect of the presence or absence of functional SAMHD1 on the activity 

of these structurally related nucleoside analogues in these two types of acute leukaemia. Cell 

models included the SAMHD1-expressing AML cell line THP-1 and its subline, in which the 

SAMHD1 gene had been disrupted by CRISPR/Cas9 (THP-1- KO). Further, we investigated the 

SAMHD1 low/ non- expressing cell lines HEL (AML) and Jurkat (T-ALL) and their respective 

sublines transduced either with wild-type (WT) SAMHD1 or the triphosphohydrolase-

defective mutant SAMHD1-D311A. In the AML cell lines, absence of functional SAMHD1 was 

associated with a 60-fold (THP-1/ THP-1-KO) and 6583-fold (HEL-SAMHD1_WT/HEL-

SAMHD1_D311A) sensitisation to cytarabine, but only a 5.6- and 6.0-fold sensitisation to 

AraG (Figure 3.5B). The T-ALL cell line Jurkat-SAMHD1_D311A was 101 times more sensitive 

to AraG than Jurkat-SAMHD1_WT, while JURKAT-SAMHD1_D311A was only 10 times more 

sensitive to cytarabine (Figure 3.5B). In summary, SAMHD1 activity critically regulates 

cytarabine activity but has a much lower impact on AraG in AML cells. The opposite effect is 

observed in ALL cells, in which SAMHD1 crucially determines AraG activity but exerts 

substantially less pronounced effects on cytarabine activity. This further confirms that the 

cellular background critically determines the importance of SAMHD1 as regulator of 

nucleoside activity. 



112 
 

3.3.9. High SAMHD1 promoter methylation in T-ALL cell lines 

SAMHD1 levels may be regulated by SAMHD1 promoter methylation in leukaemia cells (de 

Silva et al., 2013; Oellerich et al., 2019). Therefore, we compared SAMHD1 promoter 

methylation in T-ALL and B-ALL cell lines through amplification of a single PCR product (993-

bp) corresponding to the promoter sequence after HpaII digestion. Results indicated that the 

SAMHD1 promoter was methylated in all T-ALL cell lines but one (MOLT-16) (Figure 3.6A), 

which was the only T-ALL cell line characterised by high SAMHD1 mRNA and protein levels 

(Figure 3.3) and low AraG sensitivity (Table S3.3). In contrast, SAMHD1 promoter methylation 

was only observed in two out of 15 B-ALL cell lines (NALM-6, TOM-1) (Figure 3.6A). In 

agreement, SAMHD1 promoter methylation was also significantly higher in T-ALL than in B-

ALL cells in the GDSC and inversely correlated with SAMHD1 expression (Figure 3.6B). 

Notably, global DNA methylation did not differ between T-ALL and B-ALL cell lines (Figure 

3.6C), suggesting lineage-specific differences. Taken together, this suggests that the 

differences in cellular SAMHD1 levels observed between T-ALL and B-ALL cell lines are to a 

large extent caused by differences in SAMHD1 promoter methylation. 

 

 Figure 3.6. SAMHD1 promoter methylation in ALL cell lines. 

(A) Analysis of SAMHD1 promoter methylation in the RCCL cell line panel through amplification of a 

single PCR product (993-bp) corresponding to the promoter sequence after HpaII digestion. A 0.25-kb 

fragment of the GAPDH gene lacking HpaII sites was PCR-amplified using the same template DNA 

served as loading control. (B) GDSC data indicating SAMHD1 promoter methylation in B-ALL and T-ALL 

cell lines and correlation of SAMHD1 promoter methylation and SAMHD1 expression across all ALL cell 

lines. (C) GDSC data indicating the level of global methylation in B-ALL and T-ALL cell lines. 
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3.4. Discussion 

Similar chemotherapeutic agents are used to treat T-ALL and B-ALL. However, nelarabine is 

specifically used for relapsed T-ALL (Follini et al., 2019; Jabbour et al., 2015; Kadia & Gandhi, 

2017; Kantarjian et al., 2017; Marks & Rowntree, 2017; Zwaan et al., 2017). Although it had 

been known for decades that nelarabine is more active in T-ALL than in B-ALL cells (Shewach 

& Mitchell, 1989; Verhoef & Fridland, 1985), the underlying mechanisms had remained 

elusive. 

Here, we used an approach combining data derived from large pharmacogenomics screens 

(CTRP, CCLE, GDSC), an RCCL-derived ALL cell line panel, and patient data and found that 

cellular SAMHD1 levels critically determined ALL cell sensitivity to nelarabine and AraG. 

Nelarabine is metabolised into AraG, which is then triphosphorylated by cellular kinases into 

the active form (Curbo & Karlsson, 2006). SAMHD1 is a deoxynucleotide triphosphate (dNTP) 

hydrolase that cleaves and inactivates triphosphorylated nucleoside analogues including 

triphosphorylated AraG (Hollenbaugh et al., 2017; Knecht et al., 2018; Mauney & Hollis, 

2018; Oellerich et al., 2019). Moreover, T-ALL cells were characterised by substantially lower 

SAMHD1 levels than B-ALL cells. Previous studies had demonstrated an association between 

AraG efficacy and AraG triphosphate levels in leukaemia cells, but the mechanism 

determining AraG triphosphate levels had remained unknown (Akahane et al., 2019; 

Homminga et al., 2011; Shewach & Mitchell, 1989; Verhoef & Fridland, 1985). Hence, 

SAMHD1 is the missing link explaining the discrepancy in nelarabine sensitivity between T-

ALL and B-ALL. 

Notably, SAMHD1 has also been shown to promote DNA damage repair including damage 

induced by the topoisomerase inhibitors camptothecin and etoposide (Daddacha et al., 

2017a). Thus, SAMHD1-mediated repair of nelarabine/ AraG-induced DNA damage may 

potentially also contribute to the increased nelarabine/ AraG resistance associated with high 

SAMHD1 levels in ALL cells. However, SAMHD1 expression was not associated with generally 

increased resistance to DNA damaging agents in the CTRP (Supplementary Data 3.4). The 

AUC of the PARP inhibitor veliparib was correlated with SAMHD1 expression, but the AUC of 

the PARP inhibitor olaparib was not. The AUCs of etoposide and other prominent DNA 

damaging agents such as the alkylating agents temozolomide, ifosfamide, and dacarbazine 

and the nucleoside analogue 5-fluorouracil also were also not correlated with SAMHD1 

expression, and the AUCs of the alkylating agents cyclophosphamide and chlorambucil, the 
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nucleoside analogue gemcitabine, the DNA cross-linker mitomycin C, and the topoisomerase 

inhibitor doxorubicin displayed a significant inverse correlation to SAMHD1 expression 

(Supplementary Data 3.4). These data do not suggest that SAMHD1 interferes with the 

effects of anti-cancer drugs predominantly via promotion of DNA damage repair. 

Data derived from the RCCL ALL cell line panel as well as from the GDSC indicate that the 

differences in SAMHD1 expression observed between T-ALL and B-ALL cells are at least in 

part the consequence of higher SAMHD1 promoter methylation in T-ALL than in B-ALL cells. 

Thus, SAMHD1 expression levels and SAMHD1 promoter methylation are potential 

biomarkers of nelarabine sensitivity that deserve further clinical investigation. Based on our 

current data, patients suffering from ALL characterised by high SAMHD1 expression are 

unlikely to benefit from therapy using nelarabine and may be better treated with ribose-

based thiopurines that are no SAMHD1 substrates, such as 6-thioguanine or 6-

mercaptopurine (Wu, C. & Li, 2018). 

SAMHD1 depletion sensitised ALL cells to AraG, indicating that SAMHD1 may also serve as a 

therapeutic target to improve nelarabine therapies in ALL patients. Notably, both T-ALL and 

B-ALL patients may benefit from SAMHD1 inhibition in combination with nelarabine therapy. 

Interestingly, the effect of SAMHD1 on the activity of nucleoside analogues varied 

substantially between different forms of leukaemia. SAMHD1 was previously shown to 

critically determine the activity of the nucleoside analogue cytarabine in AML (Hollenbaugh 

et al., 2017; Knecht et al., 2018; Schneider et al., 2017). Compared to the pronounced effects 

of SAMHD1 on nelarabine/ AraG activity in ALL, however, SAMHD1 exerted only minor 

effects on the activity of cytarabine in this leukaemia type. Interestingly, the situation was 

reversed in AML cells, where SAMHD1 critically affected cytarabine activity but had much 

lower impact on AraG. These findings are important, because they illustrate that, despite a 

general trend in the biomedical community towards tumour-agnostic approaches, which 

consider cancer-specific alterations independently of the cancer type (Huang, F. W. & Feng, 

2019; Luoh & Flaherty, 2018), a much more in depth understanding of the molecular make-

up of cancer cells will be required, before therapy decisions can be entirely based on 

molecular markers without taking the cancer entity into consideration. 

In conclusion, our data indicate that cellular SAMHD1 levels critically determine ALL cell 

sensitivity to nelarabine/ AraG and that T-ALL cells display lower SAMHD1 levels than B-ALL. 

This provides a solution to a decades old conundrum providing a mechanistic explanation for 

the higher nelarabine sensitivity of T-ALL cells compared to B-ALL cells. Hence, SAMHD1 has 
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potential as a biomarker for the more accurate identification of ALL patients, who are likely 

to benefit from nelarabine therapy. Moreover, SAMHD1 is a therapeutic target for the design 

of improved nelarabine-based treatment strategies for ALL patients. 
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Abstract 

SAMHD1 is discussed as a tumour suppressor protein, but its potential role in cancer has only 

been investigated in very few cancer types. Here, we performed a systematic analysis of the 

TCGA (adult cancer) and TARGET (paediatric cancer) databases, the results of which did not 

suggest that SAMHD1 should be regarded as a bona fide tumour suppressor. SAMHD1 

mutations that interfere with SAMHD1 function were not associated with poor outcome, 

which would be expected for a tumour suppressor. High SAMHD1 tumour levels were 

associated with increased survival in some cancer entities and reduced survival in others. 

Moreover, the data suggested differences in the role of SAMHD1 between males and females 

and between different races. Often, there was no significant relationship between SAMHD1 

levels and cancer outcome. Taken together, our results indicate that SAMHD1 may exert pro- 

or anti-tumourigenic effects and that SAMHD1 is involved in the oncogenic process in a 

minority of cancer cases. These findings seem to be in disaccord with a perception and 

narrative forming in the field suggesting that SAMHD1 is a tumour suppressor. A systematic 

literature review confirmed that most of the available scientific articles focus on a potential 

role of SAMHD1 as a tumour suppressor. The reasons for this remain unclear but may include 

confirmation bias and publication bias. Our findings emphasise that hypotheses, 

perceptions, and assumptions need to be continuously challenged by using all available data 

and evidence.  
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4.1. Introduction 

Sterile α motif and histidine-aspartic domain containing protein 1 (SAMHD1) was initially 

discovered in dendritic cells and named dendritic cell-derived IFN-y induced protein (DCIP) 

(Coggins et al., 2020; Li, N. et al., 2000). SAMHD1 is indeed involved in the regulation of 

interferon signalling, and SAMHD1 mutations are associated with Aicardi-Goutieres 

syndrome, an autoimmune inflammatory disorder characterised by a dysregulated 

interferon response (Coggins et al., 2020; Mauney & Hollis, 2018; Rice, G. I. et al., 2009). 

In the meantime, SAMHD1 has been shown to exert a range of additional functions (Chen, Z. 

et al., 2021; Coggins et al., 2020; Mauney & Hollis, 2018). As a deoxynucleoside triphosphate 

hydrolase (dNTPase), that cleaves deoxynucleoside triphosphates (dNTPs) into 

deoxynucleosides and triphosphate, SAMHD1 plays, together with enzymes that catalyse 

dNTP biosynthesis, an important role in the maintenance of balanced cellular dNTP pools 

(Chen, Z. et al., 2021; Coggins et al., 2020; Mauney & Hollis, 2018). Since imbalances in 

cellular dNTP pools affect cell cycle regulation and DNA stability, SAMHD1 is also involved in 

the regulation of these processes (Chen, Z. et al., 2021). 

In addition to controlling cellular dNTP levels, SAMHD1 has been shown to maintain genome 

integrity by a range of further mechanisms, including maintenance of telomere integrity, 

inhibition of LINE-1 retrotransposons, facilitation of homologous recombination-mediated 

double-strand break repair and DNA end joining, and prevention of R-loop formation at 

transcription-replication conflict regions (Akimova et al., 2021; Chen, Z. et al., 2021; Herold, 

N., Rudd, Sanjiv, Kutzner, Myrberg et al., 2017; Park et al., 2021). Additionally, low SAMHD1 

levels have been detected in chronic lymphocytic leukaemia (CLL), lung cancer, cutaneous T-

cell lymphoma, AML, colorectal cancer, and Hodgkin lymphoma. Moreover, loss-of-function 

SAMHD1 mutations have been described in cancer types including CLL and colorectal cancer 

(Chen, Z. et al., 2021; Coggins et al., 2020; Herold, N. et al., 2017; Mauney & Hollis, 2018). 

Due to these observations, SAMHD1 is being considered as a tumour suppressor protein. 

However, the potential role of SAMHD1 in cancer diseases is more complex. It also recognises 

and cleaves the triphosphorylated, active forms of a range of anti-cancer nucleoside 

analogues. In this context, SAMHD1 has been described as a clinically relevant resistance 

factor in acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL) against 

nucleoside analogues including cytarabine, decitabine, and nelarabine (Herold, N. et al., 

2017; Knecht et al., 2018; Oellerich et al., 2019; Rothenburger et al., 2020; Schneider et al., 

2017). 
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So far, the potential tumour suppressor activity of SAMHD1 has only been investigated in a 

few cancer types. To establish a broader understanding of the role of SAMHD1 in cancer, we 

here performed a systematic analysis of mutation data, gene expression data, and cancer 

patient survival data provided by The Cancer Genome Atlas (TCGA) (The Cancer Genome 

Atlas Research Network, 2008) and the Therapeutically Applicable Research To Generate 

Effective Treatments (TARGET) (https://ocg.cancer.gov/programs/target) databases. The 

TCGA provided data from 9,703 patients with 33 different types of adult cancer and the 

TARGET database from 1,091 patients with seven different paediatric cancer types.  

 

4.2. Materials and Methods 

4.2.1. Gene Expression and Clinical Data 

Gene expression data (FPKM values) from patient tumours were derived from The Cancer 

Genome Atlas (TCGA) (The Cancer Genome Atlas Research Network, 2008) via the GDC Data 

Portal (https://portal.gdc.cancer.gov). The Bioconductor R package TCGAbiolinks was used 

to obtain corresponding clinical data. Primary tumour gene expression data and clinical 

response data were available for 9,572 patients (5,037 female, 4,535 male) with 33 different 

cancer types. Ages at diagnosis ranged from 14 to 90 (median age at diagnosis = 61, no data 

for 113 patients). Data were also downloaded for 694 matched normal tissue samples.  

Gene expression (RPKM) values and clinical data were extracted for patients in the TARGET 

database from the National Cancer Institute Office of Cancer Genomics TARGET data matrix 

(https://ocg.cancer.gov/programs/target/data-matrix). Primary tumour sample data was 

available for a total of 1,091 patients in TARGET (470 females and 593 males) with seven 

cancer types. Ages at diagnosis ranged from six days to 32.41 years (median age at diagnosis 

was 5.4 years (1976 days)). 

Tumour vs normal sample gene expression was compared using the wilcox.test function in 

R, which performs the Mann Whitney U test for independent groups. Pairwise comparisons 

were made using the Wilcoxon Signed Rank test. Pie charts were generated using ggplot2. 

4.2.2. Methylation and miRNA data 

TCGA methylation beta values and miRNA expression values (reads per million miRNA 

mapped) were downloaded from the GDC Data Portal (https://portal.gdc.cancer.gov). Mean 

methylation beta values for each CpG site in the SAMHD1 promoter for which data were 

https://ocg.cancer.gov/programs/target
https://portal.gdc.cancer.gov/
https://ocg.cancer.gov/programs/target/data-matrix
https://portal.gdc.cancer.gov/
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available (cg02078758, cg00642209, cg16430572, cg09128050, cg12099051, cg18861300, 

cg11094122, cg22769031, cg23888977, cg09717261, cg24951864, cg06097592, 

cg22583967, cg10804363 and cg12517061) were calculated per individual. Expression data 

for miRNAs which were listed in DIANA-TarBase v8 (Karagkouni et al., 2018) as being 

experimentally validated to positively interact with SAMHD1 (n=21) along with eight miRNAs 

shown in previous experiments to target SAMHD1 (Jin, C. et al., 2014; Kohnken et al., 2017; 

Pilakka-Kanthikeel et al., 2015; Riess et al., 2017) were extracted for analysis. Scatter plots 

and associated Pearson correlations for methylation and miRNA expression with SAMHD1 

expression were calculated using the ggplot2 package in R. 

4.2.3. Survival analyses 

Cox proportional hazards regression was used to calculate the hazard ratio for cohorts 

expressing high levels of SAMHD1. Overall survival (OS) was defined as days to last follow-up 

or death, as previously described (Ng, S. W. et al., 2016). Calculations were performed using 

the R survminer and survival packages. The ‘surv_cutpoint’ function was used to identify the 

optimal expression cut-off point to give the lowest p-value for high vs low expression. We 

permitted the cut-off to be only between the 20th and 80th percentiles of gene expression 

values, as described by previously (Uhlen et al., 2017).  

Kaplan-Meier survival curves were generated using R package ggsurvplot. P-values in each 

case were the result of a log rank (Mantel-Cox) test, which assesses whether there is a 

significant difference between the survival of two independent groups. Hazard ratios quoted 

refer to values for ‘low’ (below the calculated optimal cut-off) expression for each gene in 

the model, with values >1 indicating increased hazard (i.e. reduced OS) and values <1 

indicating decreased hazard (i.e. increased OS).  

4.2.4. Mutation Data and Variant Effect Prediction 

Mutation data for 10,149 TCGA patients were downloaded from the GDC Data Portal 

(https://portal.gdc.cancer.gov). A dot plot displaying mutation frequencies of 21,156 genes 

was generated using ggplot2. 

In order to assess the potential impact of mutations in SAMHD1, we used the online tool 

Variant Effect Predictor (VEP) (McLaren et al., 2016) to obtain reports from SIFT (Sim et al., 

2012), PolyPhen-2 (Adzhubei et al., 2010) , Condel (González-Pérez & López-Bigas, 2011) and 

CADD (Kircher et al., 2014). 

https://portal.gdc.cancer.gov/
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A lollipop plot of SAMHD1 mutations was generated using the cBioPortal MutationMapper 

tool (https://www.cbioportal.org/mutation_mapper) (Cerami et al., 2012). 

4.2.5. Literature review 

Relevant articles were identified on 17th June 2021 by using the search term "(((Cancer) OR 

(tumor) OR (tumour))) AND (SAMHD1)" in PubMed (https://pubmed.ncbi.nlm.nih.gov) on 

the basis of the principles outlined in the PRISMA guidelines (http://prisma-statement.org). 

Articles in English were included into the analysis, when they contained original data on the 

role of SAMHD1 in cancer. Moreover, reviews that discussed the potential impact of 

SAMHD1 on cancer were used to analyse conceptions and the predominant narrative in the 

field. Two reviewers independently analysed articles for relevant information and then 

agreed a list of relevant articles. 

 

4.3. Results 

4.3.1. High SAMHD1 expression is not consistently associated with increased 

survival 

Although SAMHD1 has recently been considered as a tumour suppressor protein (Coggins et 

al., 2020; Herold, N. et al., 2017; Mauney & Hollis, 2018), high SAMHD1 expression in tumour 

tissues was not associated with favourable outcomes across all patients in the TCGA (Figure 

4.1A). In contrast, high SAMHD1 expression was associated with favourable outcome across 

all patients in the paediatric cancer database TARGET (Figure 4.1A).  

Considering the individual cancer categories in the TCGA database, high SAMHD1 expression 

was significantly associated with increased survival in nine out 33 of cancer categories (Figure 

4.1B, Table S4.1) and with poor outcome in five cancer categories (Figure 4.1B, Table S4.1). 

This indicates that the role of SAMHD1 differs between cancer types and that it does not 

always function as a tumour suppressor. Similarly, high SAMHD1 expression was significantly 

correlated with longer survival in only one cancer type (osteosarcoma) in the TARGET 

database but with reduced survival in two others (acute lymphoblastic leukaemia, Wilm’s 

tumour) (Figure 4.1B, Table S4.2). 

https://www.cbioportal.org/mutation_mapper
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Figure 4.1. Effect of SAMHD1 expression in cancer patients. (A) Kaplan Meier plots indicating survival 

in cancer patients with tumours characterised by high or low SAMHD1 expression (as determined by 

best separation) across all patients in the TCGA and TARGET databases. P-values were determined by 

log-rank test. (B) Pie charts indicating the number of cancer types for which high SAMHD1 expression 

was associated with increased survival, reduced survival, or not significantly associated with survival 

based on data from the TCGA and TARGET databases. Data are presented in Table S4.1 and Table S4.2. 

 

4.3.2. Role of SAMHD1 expression in the context of sex 

Next, we analysed the role of SAMHD1 in males and females in TCGA and TARGET. In TCGA, 

there were no sex-specific differences with regard to the association of SAMHD1 with 

survival time across all cancer types (Figure 4.2A). However, some discrepancies became 

visible upon the comparison of the role of SAMHD1 in the 27 cancer entities that occur in 

both females and males (Figure 4.2B, Table S4.3). When we did not consider statistical 

significance levels, high SAMHD1 levels were associated with higher 5-year survival rates in 

TCGA (all patients)A TARGET (all patients)

B TCGA TARGET



122 
 

13 cancer entities across all patients, in 17 cancer entities in female patients, and in 14 cancer 

entities in male patients (Figure 4.2B, Table S4.3). 

When we only considered comparisons in which the 5-year survival rates were significantly 

different (p<0.05) between high and low SAMHD1-expressing tumours for at least one 

comparison (across all patients, in females, and/ or males), differences reached significance 

for only one sex in ten cancer types (Figure 4.2C, Table S4.3). Consistent findings were 

obtained for three cancer types (LAML, LGG, SARC, all abbreviations for cancer entities are 

provided in Table S4.1 and the legend of Figure 4.2). 

Although differences did not reach our cut-off value for statistical significance (p < 0.05), 

trends were detected indicating opposite effects of SAMHD1 on disease outcome between 

the sexes in four cancer entities, (Figure 4.2D, Table S4.3). In kidney renal clear cell carcinoma 

(KIRC), low SAMHD1 levels were associated with a higher 5-year survival rate (68%) than high 

SAMHD1 levels (50%) in males (p=0.009). In contrast, high SAMHD1 levels were related to 

higher survival in females (72% vs. 55%), with the p-value being close to significance 

(p=0.056). In three other cancer types (KIRP, PAAD, STAD), low SAMHD1 levels were 

associated with higher 5-year survival in females and with lower 5-year survival in males 

(Figure 4.2D, Table S4.3).  
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Figure 4.2. SAMHD1 expression levels and 5-year survival rates in dependence of sex based on TCGA 

data. (A) Kaplan Meier plots indicating sex-specific survival in cancer patients with tumours 

characterised by high or low SAMHD1 expression (as determined by best separation). P-values were 

determined by log-rank test. (B) Heatmap indicating the association of SAMHD1 expression and 5-year 

survival rates (blue: high SAMHD1 associated with higher survival rates, yellow: low SAMHD1 

associated with higher survival rates). (C) Heatmap indicating cancer entities in which high SAMHD1 

expression (blue) or low SAMHD1 expression (yellow) is significantly (p<0.05) associated with higher 

5-year survival rates. (D) Cancer entities in which SAMHD1 displays a trend towards differing roles by 

sex. Blue indicates higher survival rates in patients with tumours with high SAMHD1 levels, yellow in 

patients with low SAMHD1 levels. Abbreviations: ACC, Adrenocortical carcinoma; BLCA, Bladder 

Urothelial Carcinoma; BRCA, Breast invasive carcinoma; CESC, Cervical squamous cell carcinoma and 

endocervical adenocarcinoma; CHOL, Cholangiocarcinoma; COAD, Colon adenocarcinoma; DLBC, 
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Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; ESCA, Oesophageal carcinoma; GBM, 

Glioblastoma multiforme; HNSC, Head and Neck squamous cell carcinoma; KICH, Kidney 

Chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; 

LAML, Acute Myeloid Leukaemia; LGG, Low Grade Glioma; LIHC, Liver hepatocellular carcinoma; 

LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; MESO, Mesothelioma; OV, 

Ovarian serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, Pheochromocytoma 

and Paraganglioma; PRAD, Prostate adenocarcinoma; READ, Rectum adenocarcinoma; SARC, 

Sarcoma; SKCM, Skin Cutaneous Melanoma; STAD, Stomach adenocarcinoma; TGCT, Testicular Germ 

Cell Tumours; THCA, Thyroid carcinoma; THYM, Thymoma; UCEC, Uterine Corpus Endometrial 

Carcinoma; UCS, Uterine Carcinosarcoma; UVM, Uveal Melanoma. 

 

In TARGET, high SAMHD1 levels were significantly associated with increased survival across 

all cancer types in females (Figure 4.3A) but not in males (Figure 4.3B). For seven paediatric 

cancer types, data were available for both sexes. When we did not consider statistical 

significance levels, higher 5-year survival rates were recorded for SAMHD1 patients with 

SAMHD1 high tumours across all patients, in one entity in female patients, and in four 

entities in male patients (Figure 4.3B, Table S4.4). 

When we only considered cancer types in which the 5-year survival rates were significantly 

different (p<0.05) between high and low SAMHD1-expressing tumours for at least one 

comparison (across all patients, in females, and/ or males), differences reached significance 

only for females in two cancer types (Figure 4.3C, Table S4.4). Taken together, these data 

suggest that the role of SAMHD1 in cancer may differ between the sexes in some cancer 

types. 
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Figure 4.3. SAMHD1 expression levels and 5-year survival rates in dependence of sex based on TARGET 

data. (A) Kaplan Meier plots indicating sex-specific survival in cancer patients with tumours 

characterised by high or low SAMHD1 expression (as determined by best separation). P-values were 

determined by log-rank test. (B) Heatmap indicating the association of SAMHD1 expression and 5-year 

survival rates (blue: high SAMHD1 associated with higher survival rates, yellow: low SAMHD1 

associated with higher survival rates). (C) Heatmap indicating cancer entities in which high SAMHD1 

expression (blue) or low SAMHD1 expression (yellow) is significantly (p<0.05) associated with higher 

5-year survival rates. 

 

Notably, the potentially different roles between SAMHD1 in female and male cancer patients 

do not appear to be the consequence of sex-specific discrepancies in SAMHD1 expression. In 

TCGA, there were no significant sex-specific differences in SAMHD1 expression between 

tumour samples and matched normal tissue samples from females and males, when we 

excluded sex-specific cancer types (CESC, OV, PRAD, TGCT, UCEC, UCS) and BRCA (only 12 

out of 1,089 tumour tissue samples from male patients, only one out of 113 matched normal 

tissue samples from a male) (Figure S4.1). SAMHD1 expression was also not significantly 

different in males and females in the TARGET database (Figure S4.2). 
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4.3.3. Role of SAMHD1 expression in the context of race 

The vast majority of data in TCGA and TARGET are derived from white individuals, which 

reduces the significance of the race-related data. In TCGA, high SAMHD1 expression was 

associated with reduced overall survival in white patients (Figure 4.4). This reflects the 

findings obtained across all patients (Figure 4.1A) and probably that 6,834 (82%) out of 8,319 

patients, for whom race data are available, are reported to be white. Apart from this, a 

significant difference in outcome in dependence of tumour SAMHD1 levels was only 

detected in Native Hawaiian or other Pacific islander patients, in whom high SAMHD1 was 

associated with improved survival (Figure 4.4). However, only 13 individuals fell into this 

category. Cancer-type specific comparisons did not reveal significant differences in SAMHD1-

related outcomes between racial groups (Figure S4.3, Table S4.5), which may be due to the 

low numbers of patients in most of the categories (Figure 4.4). SAMHD1 levels were generally 

similar between the different race groups (Figure S4.4). Only Native Hawaiian or other Pacific 

islander patients displayed increased levels (Figure S4.4). 



127 
 

 

Figure 4.4. Kaplan-Meier plots indicating survival in cancer patients of different race with tumours 

characterised by high or low SAMHD1 expression (as determined by best separation) based on TCGA 

data. P-values were determined by log-rank test. 
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Stratifying of patients in the TARGET database according to race provided some trends, which may 

point towards differences, but the numbers are too low to draw firm conclusions (Figure 4.5, Figure 

S4.5, Table S4.6). No significant differences were detected between the SAMHD1 levels in the different 

race groups (Figure S4.6). 
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Figure 4.5. Kaplan-Meier plots indicating survival in cancer patients of different race with tumours 

characterised by high or low SAMHD1 expression (as determined by best separation) based on TARGET 

data. P-values were determined by log-rank test. 
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4.3.4. SAMHD1 expression in tumour vs matched normal samples  

To further investigate the potential role of SAMHD1 in cancer, we next compared SAMHD1 

expression data in tumour tissue and matched normal samples, which were available for 695 

patients and 21 cancer types in TCGA. Across all patients, there was no significant difference 

between the SAMHD1 FPKM (fragments per kilobase of transcript per million mapped reads) 

values of tumour samples and matched normal samples (Wilcoxon signed-rank test p-value 

= 0.14). However, when stratifying by cancer type, SAMHD1 levels significantly differed 

(p<0.05) between tumour samples and matched control samples in seven cancer types 

(Table S4.7). SAMHD1 was higher in matched control samples suggesting tumour suppressor 

activity in three cancer types (BLCA, LUAD, LUSC) and higher in tumour samples from four 

cancer types (KIRC, KIRP, LIHC, STAD) suggesting oncogenic action (Table S4.7). 

Next, we compared the results on potential tumour suppressor or oncogenic functions of 

SAMHD1 from tumour and matched normal tissues (Table 4.7) to those obtained from 

analysing 5-year survival in cancer patients with SAMHD1 low or high tumours (Figure 4.2; 

Table S4.1). When we did not consider statistical significance levels, SAMHD1 levels were 

higher in control tissues suggesting tumour suppressor activity in ten cancer entities (Figure 

4.6A, Table S4.7). In twelve of the 21 cancer types, both SAMHD1 levels in tumour and 

matched normal tissues and the relationship of 5-year survival and tumour SAMHD1 levels 

indicated a similar role of SAMHD1, i.e. tumour suppressor (higher SAMHD1 expression in 

matched normal tissue, higher 5-year survival in patients with SAMHD1 high tumours) or 

oncogenic (higher SAMHD1 expression in tumour tissues, higher 5-year survival in patients 

with SAMHD1 low tumours) activity (Figure 4.6A, Table S4.7). 

In the next step, only cancer entities were considered for which at least one of the 

comparisons had resulted in a statistically significant (p<0.05) difference, leaving 13 cancer 

types (Figure 4.6B, Table S4.7). In seven of these 13 cancer types, the anticipated role of 

SAMHD1 (tumour suppressor or oncogenic) coincided between both comparisons (Figure 

4.6B, Table S4.7). 

In only three cancer entities (BLCA, KIRC, LUAD), the differences reached statistical 

significance for both comparisons (Figure 4.6C, Table S4.7). SAMHD1 consistently displayed 

oncogenic activity in KIRC (Kidney renal clear cell carcinoma) and tumour suppressor activity 

in LUAD (Lung adenocarcinoma). In BLCA (Bladder Urothelial Carcinoma), higher SAMD1 

levels in matched normal tissue samples suggested tumour suppressor activity, whereas 

higher 5-year survival in patients with SAMHD1 low tumours suggested oncogenic effects 
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(Figure 4.6C, Table S4.7). Hence, SAMHD1 may exert oncogenic activity in KIRC and tumour 

suppressor activity in LUAD, but clear evidence is lacking for other cancer entities. 

 

Figure 4.6. Tumour suppressor and oncogenic effects of SAMHD1 in different cancer types, as 

suggested by SAMHD1 levels in tumour tissues vs. matched normal tissues (Tumour vs. control) or the 

comparison of 5-year survival in patients with SAMHD1 high or low tumours (SAMHD1 high vs. low). 

Higher SAMHD1 levels in matched normal tissues were interpreted as tumour suppressor activity, 

while higher SAMHD1 levels in tumour tissues as indication of oncogenic effects. Higher 5-year survival 

in patients with SAMHD1 high tumours was construed as sign of tumour suppressor activity, higher 5-

year survival in patients with SAMHD1 low tumours indication of oncogenic effects. (A) Data for all 

available comparisons. (B) Data for entities, in which at least the difference for one comparison 

reached statistical significance. (C) Data for entities, in which the difference for both comparisons 

reached statistical significance. 

 

4.3.5. SAMHD1 regulation by methylation and miRNAs  

Promotor methylation and miRNAs have been described to be involved in SAMHD1 

regulation (Chen, Z. et al., 2021; de Silva et al., 2013; Kohnken et al., 2017).  Tumour and 

normal sample SAMHD1 expression and promoter methylation beta values were available 

for 18 cancer types in TCGA. SAMHD1 promotor methylation significantly inversely 
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correlated with SAMHD1 expression levels across all patients, but the correlation coefficient 

was moderate and the relationship appears weak (Figure 4.7A).  

When we looked at the individual cancer types, an inverse correlation between SAMHD1 

expression and promotor methylation was detected in 18 cancer entities (Table S4.8). In 

eleven of these cancer types, the inverse correlations displayed p-values < 0.05 (Table S4.8). 

The cancer types with the strongest inverse correlations between SAMHD1 expression and 

promotor methylation were TGCT (Testicular Germ Cell Tumours), THYM (Thymoma), and 

CHOL (Cholangiocarcinoma) (Figure 4.7A). There were also 15 cancer entities with a direct 

correlation between SAMHD1 expression and promotor methylation, only four of which 

were associated with a p-value < 0.05. These data suggest that promotor methylation is one 

SAMHD1 regulation mechanism among others and that its role differs between cancer types. 

Eight miRNAs (mir-30a, mir-155, and six subtypes of mir-181) have been described to be 

involved in SAMHD1 regulation (Jin, C. et al., 2014; Kohnken et al., 2017; Pilakka-Kanthikeel 

et al., 2015; Riess et al., 2017). Moreover, 21 miRNAs were indicated to interact with 

SAMHD1 in the DIANA-TarBase v8 (http://www.microrna.gr/tarbase) (Karagkouni et al., 

2018), an online resource that lists experimentally validated miRNA/mRNA interactions. 

After the removal of overlaps, this resulted in a list of 28 miRNAs with a documented effect 

on SAMHD1 (Table S4.9). 

Each of these 28 miRNAs were found to be inversely correlated with SAMHD1 expression in 

between two (mir-155) and all 28 (mir-23b and mir-183) cancer entities (Table S4.10). Six 

miRNAs (mir-23b, mir-30a, mir-192, mir-181d, mir-218-1, mir-218-2) were significantly 

(p<0.05) inversely correlated with SAMHD1 across all patients, with mir-23b showing the 

strongest inverse correlation (Figure 4.7B, Table S4.10). The strongest inverse correlation in 

a cancer type was detected between mir-23b and SAMHD1 in TGCT (R= -0.54, p=7.37x10-13) 

(Figure 4.7B, Table S4.10). 

Taken together, SAMHD1 levels are determined by complex regulation mechanisms that 

include promotor methylation and miRNAs, together with post-translational modifications 

such as phosphorylation and acetylation that have also been described (Chen, Z. et al., 2021; 

Coggins et al., 2020). 

http://www.microrna.gr/tarbase
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Figure 4.7. Inverse correlation between SAMHD1 promotor methylation levels or miRNA levels and 

SAMHD1 expression based on TCGA data. (A) Correlation between SAMHD1 promotor methylation 

levels and SAMHD1 expression across all patients and in THYM patients, which displayed the strongest 

inverse correlation across all cancer types. Data for all cancer types are presented in Table S4.8. (B) 

Correlation of mir-23b with SAMHD1 expression across all patients and of mir-30c-1 with SAMHD1 in 

THYM. mir-23b was the miRNA that displayed the strongest inverse correlation with SAMHD1 across 

all patients. The inverse correlation between mir-30c-1 and SAMHD1 was the strongest among all 

miRNAs in all cancer types. Data for all significant inverse correlations of miRNAs and SAMHD1 across 

all cancer types are provided in Table S4.10. 
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4.3.6. SAMHD1 mutations and patient survival 

SAMHD1 mutations have been described in cancers including chronic lymphocytic 

leukaemia, T-cell prolymphocytic leukaemia, mantle cell lymphoma, cutaneous T-cell 

lymphoma and colon cancer (Amin et al., 2016; Bühler et al., 2021; Burns et al., 2018; Clifford 

et al., 2014; Guièze et al., 2015; Johansson, P. et al., 2018; Merati et al., 2015; Nadeu et al., 

2020; Rentoft et al., 2016; Roider et al., 2021). 

Mutation data was available for 10,149 patients in the TCGA. 15,351 out of 21,156 genes 

harboured at least one non-synonymous mutation in one patient (Table S4.11). The three 

most commonly mutated genes were TTN, MUC16, and TP53 (Table S4.11). TTN and MUC16 

encode the two longest human proteins (36,800 and 14,500 amino acids, respectively) that 

are frequently found mutated. Mutations in these genes are commonly regarded not to be 

of functional relevance and removed as artefacts or used as indicators of the mutational 

burden of tumours, while TP53 is known to be the most commonly mutated tumour 

suppressor gene (Kim, Y. A. et al., 2017; Lawrence et al., 2013; Levine, 2020; Oh et al., 2020; 

Wang, X. et al., 2020; Yang, Y. et al., 2020).  

In total, SAMHD1 was mutated 201 times, including 175 non-synonymous mutations in 159 

patients (1.57% of patients for whom mutation data was available) (Table S4.11). This places 

SAMHD1 within the top 15.3% of most commonly mutated genes (Figure 4.8A, Table S4.11). 

Among the 135 patients with SAMHD1 mutant tumours for whom survival data were 

available, SAMHD1 mutations were associated with superior outcome (Figure 4.8B, Table 

S4.12). In 18 of the 25 cancer types, in which SAMHD1 mutations were detected, 5-year 

survival was higher in patients with SAMHD1 mutant tumours (Table S4.12). However, the 

significance of these data is limited due to the low number of SAMHD1 mutations. Notably, 

the p-value (0.07) was close to significance in UCEC, the cancer type with the most SAMHD1 

mutations (35/ 6.6% out of 527), in which 93.2% of patients with SAMHD1 mutant cancers 

survived for five years, in contrast to 76.1% of the 492 UCEC patients with SAMHD1 wild-type 

cancers (Figure 4.8C, Table S4.12). 

Although it is not possible to draw firm conclusions from these data, they do not support a 

general tumour suppressive role of SAMHD1, as mutations in tumour suppressor genes 

would rather be expected to result in shorter survival. For example, mutations in TP53, the 

most commonly mutated tumour suppressor gene (Levine, 2020), were associated with 

reduced survival (Figure 4.8D). 
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4.3.7. SAMHD1 mutations are likely to be deleterious 

Twenty-nine of the mutations are likely to result in a loss of function, including 11 stop-gain, 

11 frameshift, six splice site and one stop loss mutation. While 21 mutations were located in 

untranslated regions (six 5’ UTR, 15 3’ UTR), four were in introns, three in-frame, 25 were 

synonymous, with the remaining 104 resulting in nonsynonymous mutations.  

50 mutations had already been described in cancer cells or were present in positions that 

had been found mutated in cancer cells (Table S4.11). Three of the SAMHD1 mutations 

identified in the TCGA (R143C/ UCEC patient, R145Q/ COAD patient, R290H/ STAD patient) 

were loss-of-function mutations associated with Aicardi-Goutiѐres syndrome (Coggins et al., 

2020; Mauney & Hollis, 2018; Rice, G. I. et al., 2009; UniProt Consortium, 2021). 18 

nonsynonymous mutations occurred at positions demonstrated to be important for SAMHD1 

function by mutagenesis studies according to UniProt (Figure 4.8E, Figure 4.8F, Table S4.11). 

This was supported by structural analysis which showed that ten non-synonymous mutations 

were located around the SAMHD1 active ligand binding sites (Figure 4.8F). 

Next, the SAMHD1 non-synonymous variants were analysed using SIFT (Sim et al., 2012), 

PolyPhen-2 (Ng, P. C. & Henikoff, 2001; Sim et al., 2012; Vaser et al., 2016), Condel (González-

Pérez & López-Bigas, 2011), and CADD (Kircher et al., 2014) to predict if they are likely to 

have an effect on protein function (Table 4.11). Approximately half of the amino acid changes 

were predicted to have a significant impact on SAMHD1 function (SIFT: 63/104 (60.6%), 

Polyphen-2: 50/104 (48.1%) and Condel: 54/104 (51.9%)). 72 of these variants also had a 

scaled CADD score of >20, which rates a variant among the top 1% of the most deleterious 

changes. Five variants displayed CADD scores >30 (Figure 4.8E). 39 variants had a SIFT rating 

of ‘tolerated’, a PolyPhen-2 rating of ‘benign’ and a Condel rating of ‘neutral’, of which 13 

had a scaled CADD score of <10. Predictions for the remaining 17 amino acid changes were 

inconsistent (i.e. contrasting SIFT, PolyPhen-2 and Condel predictions) (Table 4.11). 
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Taken together, many of the mutations appear to affect SAMHD1 function. However, loss-

of-function should typically be associated with reduced survival in tumour suppressor genes. 
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Figure 4.8. SAMHD1 mutations in cancer tissues. (A) SAMHD1 was mutated 201 times, including 175 

non-synonymous mutations, which puts SAMHD1 within the 15.3% of most commonly mutated genes. 

(B) Survival in patients with and without SAMHD1 mutant tumours. (C) Survival in UCEC (cancer type 

with the most SAMHD1 mutations) patients with and without SAMHD1 mutant tumours. (D) Survival 

in patients with tumours with or without mutations in TP53, the most commonly mutated tumour 

suppressor genes. (E) Lollipop plot indicating locations of missense mutations in SAMHD1. Residues 

predicted to be involved in ligand binding are labelled in bold. (F) nonsynonymous mutations mapped 

(coloured red) onto the SAMHD1 protein structure (Protein Data Bank identifier 6DWD (Knecht et al., 

2018) with bound clofarabine hydrochloride (indicated in cyan) and magnesium ion (green). The image 

on the left shows the full structure and on the right the active site is displayed. Yellow dashed lines 

indicate hydrogen bonds between mutated residues and ligand. 

 

4.3.8. Literature review SAMHD1 and cancer 

Our analysis of TCGA and TARGET data do not suggest that SAMHD1 generally functions as a 

tumour suppressor protein. Neither SAMHD1 mutations nor low SAMHD1 levels were 

consistently associated with reduced survival. However, SAMHD1 is discussed as a potential 

tumour suppressor protein in the literature (Chen, Z. et al., 2021; Herold, N. et al., 2017). 

Next, we performed a systematic review to compare our findings to those from the literature 

and to gain further insights into the narrative underlying the perceived role of SAMHD1 in 

cancer. 

The literature search was performed in PubMed (https://pubmed.ncbi.nlm.nih.gov) on 17th 

June 2021 using the search term "(((Cancer) OR (tumor) OR (tumour))) AND (SAMHD1)". It 

resulted in 150 hits, including 35 articles with relevant original data and 15 relevant 

secondary literature articles (reviews, editorials, comments) (Figure S4.7, Table S4.13). 

The first articles reported on a potential role of SAMHD1 in cancer in 2013 (Clifford et al., 

2014; de Silva et al., 2014; Shi, Y. et al., 2014). The first one reported on low SAMHD1 levels 

in patients with Sézary syndrome, an aggressive subtype of cutaneous T-cell lymphoma, due 

to SAMHD1 methylation (de Silva et al., 2014), while the second paper described SAMHD1 

variants associated with hepatitis B virus- and hepatitis C virus-induced hepatocellular 

carcinoma (Shi, Y. et al., 2014). The third paper found SAMHD1 mutations in chronic 

lymphocytic leukaemia and proposed that these mutations promote leukaemia 

development by affecting SAMHD1-mediated DNA repair (Clifford et al., 2014). 
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Among the 35 articles that reported on an association between SAMHD1 and cancer, four 

did not (entirely) support the ‘SAMHD1 is a tumour suppressor’ narrative (Kodigepalli et al., 

2018; Shang, Z. et al., 2018; Xagoraris et al., 2021; Yang, C. A. et al., 2017). One study 

correlated high SAMHD1 levels with metastasis formation in colorectal cancer (Yang, C. A. et 

al., 2017). Kodigepalli et al., (2018) reported that SAMHD1 knock-out increases acute 

myeloid leukaemia cell proliferation via PI3K signalling but inhibits tumourigenesis 

potentially due to a lack of SAMHD1-mediated TNFalpha suppression. Notably, the title of 

this study exclusively focused on the inhibitory effects of SAMHD1 on leukaemia cell 

proliferation and did not mention its role in tumourigenesis (Kodigepalli et al., 2018). One 

study detected a SAMHD1 increase upon lung cancer progression (Shang, Z. et al., 2018), and 

the most recent study, correlated the presence of SAMHD1 in Hodgkin lymphoma cells with 

unfavourable outcome (Xagoraris et al., 2021). Notably, this study (Xagoraris et al., 2021) 

even referred to SAMHD1 as "novel tumour suppressor" in the title, although the study 

rather indicated an oncogenic role of SAMHD1. 

The remaining articles largely focused on SAMHD1 mutations and reduced SAMHD1 levels in 

different cancer types as well as on SAMHD1’s potential role as a tumour suppressor involved 

in DNA repair (Table S4.13). SAMHD1 mutations were detected in patients with 

hepatocellular carcinoma (Shi, Y. et al., 2014), chronic lymphocytic leukaemia (Amin et al., 

2016; Burns et al., 2018; Clifford et al., 2014; Guièze et al., 2015; Kim, J. A. et al., 2016), 

cutaneous T-cell lymphoma (Merati et al., 2015), colorectal cancer (Rentoft et al., 2016), T-

cell prolymphocytic leukaemia (Johansson, P. et al., 2018), acute myeloid leukaemia (Zhu, K. 

W. et al., 2018), and mantle cell lymphoma (Bühler et al., 2021; Nadeu et al., 2020). 

In our TCGA analysis performed above (Figure S4.8, Table S4.12), there is rather a trend 

towards higher 5-year survival rates among hepatocellular carcinoma (LIHC) patients with 

SAMHD1 mutant tumours, although the significance of the data is limited due to low 

numbers (Table S4.12). All four patients with SAMHD1 mutant hepatocellular carcinoma 

survived for five years, while only 51.4% of 359 patients with SAMHD1 wild-type 

hepatocellular carcinomas survived for five years. In colorectal adenocarcinoma (COAD), 

there was no noticeable difference between the survival of patients with SAMHD1 mutant 

and SAMHD1 wild-type tumours (Table S4.12). Only in rectal adenocarcinoma (READ), a 

trend suggested that patients with SAMHD1 mutant tumours may have a worse outcome. 

None out of five patients with SAMHD1 mutant tumours survived for five years, while 54.9% 

of 130 patients with SAMHD1 wild-type tumours did (Table S4.12). 
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Acute myeloid leukaemia (LAML) was the only cancer type in which a significant difference 

was detected between patients with SAMHD1 mutant and wild-type cancer cells. Patients 

with SAMHD1 mutant leukaemia cells had a higher 5-year survival rate (Table S4.8). 

However, this is most probably not due to general oncogenic activity, but because lack of 

SAMHD1 function results in a higher activity of nucleoside analogues including cytarabine 

and decitabine that are SAMHD1 substrates and commonly used for LAML treatment 

(Oellerich et al., 2019; Schneider et al., 2017). 

The study on colorectal cancer (Rentoft et al., 2016) was the only one that had used TCGA 

data. However, it only used TCGA data to identify mutations, but did not compare survival in 

patients with and without SAMHD1 mutations. 

SAMHD1 expression levels have been suggested to impact on cutaneous T-cell lymphoma 

(de Silva et al., 2014), lung cancer (Shang, Z. et al., 2018; Wang, J. L. et al., 2014), colorectal 

cancer (Yang, C. A. et al., 2017), and acute myeloid leukaemia (Jiang et al., 2020). Low 

SAMHD1 levels were described in cutaneous T-cell lymphoma and acute myeloid leukaemia 

cells (Jiang et al., 2020), supporting a potential role as a tumour suppressor. TCGA did not 

contain data on SAMHD1 expression in cutaneous T-cell lymphoma or acute myeloid 

leukaemia cells relative to control cells. 

In lung cancer, conflicting results were reported. One study found that SAMHD1 is down 

regulated in lung cancer by methylation and inhibits tumour cell proliferation (Wang, J. L. et 

al., 2014). The other study reported that SAMHD1 levels increase in the serum of lung cancer 

patients upon progression (Shang, Z. et al., 2018). Our analysis of SAMHD1 data found 

significantly higher 5-year survival rates in patients with tumours displaying high SAMHD1 

expression levels (Table S4.1) supporting the first study. Notably, elevated SAMHD1 in the 

serum of lung cancer patients may not have been derived from cancer tissue. 

In colorectal cancer, low SAMHD1 levels were detected in tumour tissues relative to adjacent 

control tissues (Yang, C. A. et al., 2017), which agrees with a tumour suppressor function. 

However, higher SAMHD1 levels were associated with metastasis formation (Yang, C. A. et 

al., 2017), rather supporting an oncogenic role. The study included the analysis of TCGA data 

on colorectal cancer (Yang, C. A. et al., 2017), but no systematic analysis of SAMHD1 across 

different cancer entities.  

The 15 relevant secondary literature articles all had narratives focussing on the potential role 

of SAMHD1 as a tumour suppressor (Table S4.13). 
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4.4. Discussion 

SAMHD1 has been suggested to exert tumour suppressor functions due its role in 

maintaining genome integrity and as an inhibitor of uncontrolled proliferation (Chen, Z. et 

al., 2021; Herold, N. et al., 2017). However, our analysis of TCGA and TARGET data does not 

suggest that SAMHD1 should be regarded as a bona fide tumour suppressor. Notably, 

SAMHD1 mutations that interfere with SAMHD1 function were not associated with poor 

outcome, which is something that would be expected from a tumour suppressor. In 

agreement, no increased cancer formation has been described in SAMHD1-deficient animal 

models (Kohnken et al., 2017). 

Our results rather indicated that changes in SAMHD1 are involved in the oncogenic process 

in a minority of cases and that it may exert pro- or antitumourigenic effects in different 

cancer types (and perhaps individual tumours). Moreover, the role of SAMHD1 may differ 

between the sexes and different races. These findings also show that our understanding of 

the processes underlying cancer needs to improve further, before a broad paradigm shift 

towards tumour-agnostic approaches (Danesi et al., 2021) can become a reality. 

Notably, the interpretation of our findings may be affected by SAMHD1 being a 

triphosphohydrolase that cleaves and inactivates the triphosphorylated forms of a number 

of nucleoside analogues including cytarabine, decitabine, and nelarabine (Oellerich et al., 

2019; Rothenburger et al., 2020; Schneider et al., 2017). However, most cancer diseases are 

not treated with SAMHD1 substrates. Notably, KIRC (kidney renal clear cell carcinoma), the 

only cancer in which 5-year survival is significantly lower in SAMHD1 high tumours and 

SAMHD1 levels are significantly higher in tumour than in control tissues, suggesting an 

oncogenic role of SAMHD1, is not treated with nucleoside analogues (Geynisman et al., 

2021). Hence, the absence of tumour suppressor activity and/ or oncogenic effects cannot 

simply be explained by SAMHD1-mediated inactivation of nucleoside analogue substrates. 

Our findings demonstrating that SAMHD1 plays multifaceted (and often, if any, minor) roles 

in cancer seem to be in disaccord with a perception and narrative forming in the field 

suggesting that SAMHD1 is a tumour suppressor (Chen, Z. et al., 2021; Herold, N. et al., 2017). 

A systematic review confirmed that most of the available literature focuses on a potential 

role of SAMHD1 as a tumour suppressor. Among 35 original articles on the role of SAMHD1 

in cancer, 31 discussed a potential tumour suppressor function and three potential 

oncogenic effects. One article reported both potential tumour suppressor and oncogenic 

activity, but only mentioned the anticipated tumour suppressor effects in the title 
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(Kodigepalli et al., 2018). All 15 secondary literature articles (reviews, editorials, comments) 

had a narrative built around SAMHD1 being a candidate tumour suppressor. 

The narrative that SAMHD1 is a tumour suppressor has formed since 2013 around findings 

in a limited number of cancer entities (Table S4.13). Three reasons may contribute to the 

perpetuation of such a narrative without much scrutiny. Firstly, SAMHD1 has been described 

to maintain genome integrity by a range of different mechanisms (Akimova et al., 2021; 

Chen, Z. et al., 2021; Herold, N. et al., 2017; Park et al., 2021). Hence, a potential tumour 

suppressor role is plausible and convincing. Further research will have to show why 

SAMHD1's multifaceted roles in DNA repair do not translate into a consistent and general 

tumour suppressor function. 

The second potential reason is confirmation bias. Scientists (like everybody else) tend to 

accept findings that support their own experiences, assumptions, and perceptions and to 

disregard evidence that challenges them (Letrud & Hernes, 2019; Yanai & Lercher, 2021). 

Thus, researchers are more likely to look for data that support their hypothesis and not for 

those that contradict it. Notably, one study referred to SAMHD1 as "novel tumour 

suppressor" in the title, although SAMHD1 expression was described as an adverse 

prognostic factor in Hodgkin lymphoma (Xagoraris et al., 2021).  

The final potential reason is publication bias, i.e. a focus on 'positive' findings that are easier 

to publish in more prestigious journals than 'negative' findings (Begley & Ioannidis, 2015; 

Marks-Anglin & Chen, 2020; Nissen et al., 2016; Wass et al., 2019). In the case of studies 

investigating a potential role of SAMHD1 in cancer, this means that some studies that did not 

find a relationship between SAMHD1 and cancer may simply not have been published and 

that the publicly available data may not reflect all available data on the subject. 

In conclusion, SAMHD1 can play multifaceted roles in cancer that may differ between 

different cancer types, the sexes, and races. In contradiction to the predominant narrative, 

SAMHD1 may exert oncogenic as well as tumour suppressor activity and may often be a 

minor (if any) player in carcinogenesis. Our findings emphasise that hypotheses, perceptions, 

and assumptions need to be continuously challenged by using all available data and 

evidence. In this context, it is important that all data are actually published and made 

available, even if they are not deemed particularly exciting by researchers. Finally, the 

increasing number of available data and databases should be effectively used to inform and 

challenge our research and research findings. 
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Abstract 

SARS-CoV-2 is a novel coronavirus currently causing a pandemic. Here, we performed a 

combined in-silico and cell culture comparison of SARS-CoV-2 and the closely related SARS-

CoV. Many amino acid positions are differentially conserved between SARS-CoV-2 and SARS-

CoV, which reflects the discrepancies in virus behaviour, i.e. more effective human-to-human 

transmission of SARS-CoV-2 and higher mortality associated with SARS-CoV. Variations in the 

S protein (mediates virus entry) were associated with differences in its interaction with ACE2 

(cellular S receptor) and sensitivity to TMPRSS2 (enables virus entry via S cleavage) inhibition. 

Anti-ACE2 antibodies more strongly inhibited SARS-CoV than SARS-CoV-2 infection, probably 

due to a stronger SARS-CoV-2 S-ACE2 affinity relative to SARS-CoV S. Moreover, SARS-CoV-2 

and SARS-CoV displayed differences in cell tropism. Cellular ACE2 and TMPRSS2 levels did 

not indicate susceptibility to SARS-CoV-2. In conclusion, we identified genomic variation 

between SARS-CoV-2 and SARS-CoV that may reflect the differences in their clinical and 

biological behaviour. 
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5.1. Introduction 

In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel 

betacoronavirus, was identified that causes a respiratory disease and pneumonia called 

coronavirus disease 19 (COVID-19) (Coronaviridae Study Group of the International 

Committee on Taxonomy of Viruses, 2020; Zhu, N. et al., 2020). As of 22nd of December 

2020, 77 801 721 confirmed COVID-19 cases and 1 713 109 COVID-19 deaths have been 

reported (Dong et al., 2020). Since 2002, SARS-CoV-2 is the third betacoronavirus, after 

severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory 

syndrome coronavirus (MERS-CoV), that has caused a substantial outbreak associated with 

significant mortality (Wu, A. et al., 2020). 

SARS-CoV-2 is closely related to SARS-CoV (Coronaviridae Study Group of the International 

Committee on Taxonomy of Viruses, 2020; Wu, A. et al., 2020). Entry of both viruses is 

mediated via interaction of the viral Spike (S) protein with the cellular receptor ACE2, and 

both viruses depend on S activation by cellular proteases, in particular by TMPRSS2 (Cui et 

al., 2019; Wan et al., 2020; Wrapp et al., 2020; Wu, A. et al., 2020; Yan, R. et al., 2020). 

Despite these similarities, the diseases caused by SARS-CoV-2 (COVID-19) and SARS-CoV 

(SARS) differ. According to WHO, the SARS-CoV outbreak resulted in 8098 confirmed and 

suspected cases and 774 deaths, equalling a mortality rate of 9.6% (www.who.int). Estimated 

mortality rates for SARS-CoV-2 are below 1% (Borges do Nascimento et al., 2020). SARS-CoV 

was only spread by symptomatic patients with severe disease (Cheng, V. C. et al., 2013). In 

contrast, SARS-CoV-2 has been reported to be transmitted by individuals who are 

asymptomatic during the incubation period or who do not develop symptoms at all (Rivett 

et al., 2020). 

We have developed an approach to identify sequence-associated phenotypic differences 

between related viruses based on the identification of differentially conserved amino acid 

sequence positions (DCPs) and in silico modelling of protein structures (Martell et al., 2019; 

Pappalardo et al., 2016). Conserved amino acid positions are likely to be of functional 

relevance, and differential conservation may indicate functional differences and they have 

been widely used for the analysis of protein families (Das et al., 2015; Rausell et al., 2010). 

Here, we used this method to identify differentially conserved positions that may explain 

phenotypic differences between SARS-CoV-2 and SARS-CoV. These data were combined with 

data derived from virus-infected cells. 
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5.2. Materials and methods 

5.2.1 Structural analysis 

Sequences for each of the SARS-CoV-2 proteins were obtained from the GISAID resource. 

The protein sequences were then filtered for sequences from human hosts with high 

coverage, and sequences with spans of X’s were removed. The number of sequences 

retained after filtering for each protein is shown in Table S5.4. Fifty-three SARS-CoV genome 

sequences derived from human hosts were downloaded from VIPR (Pickett, Sadat et al., 

2012; Pickett, Greer et al., 2012). Open Reading Frames (ORFs) were extracted using EMBOSS 

getorf (Rice, P. et al., 2000) and matched to known proteins using BLAST. Fragments and 

mismatches were discarded. To match the ORF1ab non-structural proteins, a BLAST database 

of the sequences from the SARS non-structural proteins was generated and the SARS-CoV-2 

ORF1ab searched against it. The sequences for each protein were then aligned using ClustalO 

(Sievers et al., 2011) with default settings. 

Conserved positions were identified by calculating the Jensen-Shannon divergence score 

(Capra & Singh, 2007) for each position in the multiple sequence alignment in virus. Differing 

alignment positions with conservation score >0.8 for both species were considered as 

differentially conserved positions (DCPs). 

SARS-CoV-2 and SARS-CoV protein structures were downloaded from the Protein Data Bank 

(PDB; Table S5.1) (Armstrong et al., 2020). Where structures were not available, they were 

modelled using Phyre2 ((Kelley et al., 2015); Table S5.2). Where Phyre2 did not generate a 

confident model, structural models from AlphaFold were used (Senior et al., 2020). Ligand 

binding sites were modelled using 3DLigandSite (Wass et al., 2010). DCPs were mapped onto 

protein structures using PyMOL. Exposed (solvent-accessible) and buried (solvent-

inaccessible) residues were identified using Python module findSurfaceResidues with default 

parameters. Amino acid changes at DCPs were manually analysed for their potential impact 

on protein structure and function based on the presence or absence of hydrogen bonding, 

changes in hydrogen bonding capacity and changes in charge in SARS-CoV compared with 

SARS-CoV-2 proteins. Where models were unavailable, mutagenesis was performed within 

PyMOL to assess the potential impact of the amino acid changes. The structural analysis 

grouped DCPs into six different categories based on the effect that they were proposed to 

have. These include ‘unlikely’, ‘possible’ and ‘likely’. The possible and likely categories were 

split into three and two subgroups respectively depending on the type of effect (Table S5.3). 
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5.2.2 Cell culture 

The Caco2 cell line was obtained from DSMZ (Braunschweig, Germany). The cells were grown 

at 37°C in minimal essential medium (MEM) supplemented with 10% foetal bovine serum 

(FBS), 100 IU/ml penicillin, and 100 μg/mL of streptomycin. 293 cells (PD-02-01; 

MicrobixBisosystems Inc.) and 293/ACE2 cells (Kamitani et al., 2006) (kindly provided by 

Shinji Makino, UTMB, Galveston, Texas) were cultured in Dulbecco’s modified Eagle medium 

(DMEM) supplemented with 10% FBS, 50 IU/mL penicillin and 50 µg/mL streptomycin. 

Selection of 293/ACE2 cells constitutively expressing human angiotensin-converting enzyme 

2 (ACE2) was performed by addition of 12 µg/mL blasticidin. All culture reagents were 

purchased from Sigma (Munich, Germany). Cells were regularly authenticated by short 

tandem repeat (STR) analysis and tested for mycoplasma contamination. 

5.2.3 Virus infection 

The isolate SARS-CoV-2/1/Human/2020/Frankfurt (Hoehl et al., 2020) was cultivated in 

Caco2 cells as previously described for SARS-CoV strain FFM-1 (Cinatl Jr et al., 2004). Virus 

titres were determined as TCID50/ml in confluent cells in 96-well microtitre plates (Cinatl Jr 

et al., 2005; Cinatl et al., 2003). 

5.2.4 Western blot 

Western blotting was performed as previously described (Schneider et al., 2017). Briefly, cells 

were lysed using Triton-X-100 sample buffer, and proteins were separated by SDS-PAGE. 

Proteins were blotted on a nitrocellulose membrane (Thermo Scientific). Detection occurred 

by using specific antibodies against β-actin (1:2500 dilution, Sigma-Aldrich, Munich, 

Germany), ACE2 and TMPRSS2 (both 1:1000 dilution, abcam, Cambridge, UK) followed by 

incubation with IRDye-labeled secondary antibodies (LI-COR Biotechnology, IRDye®800CW 

Goat anti-Rabbit, 926-32211, 1:40 000) according to the manufacturer’s instructions. Protein 

bands were visualized by laser-induced fluorescence using infrared scanner for protein 

quantification (Odyssey, Li-Cor Biosciences, Lincoln, NE, USA). 

5.2.5 Receptor blocking experiments 

SARS-CoV/SARS-CoV-2 receptor blocking experiments were adapted from Cinatl et al (2004) 

(Cinatl Jr et al., 2004). Caco2 cells were pre-treated for 30 min at 37°C with goat antibodies 

directed against the human ACE2 or DDP4 ectodomain (R&D Systems, Wiesbaden-

Nordenstadt, Germany). Then, cells were washed three times with PBS and infected with 

SARS-CoV-2 at MOI 0.01. Cytopathogenic effects were monitored 48 h post-infection. 
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Cytopathogenic effect (CPE) was assessed visually by light microscopy by two independent 

laboratory technicians 48 h after infection (Cinatl et al., 2003). 

5.2.6 Antiviral assay 

Confluent cell cultures were infected with SARS-CoV-2 or SARS-CoV in 96-well plates at MOI 

0.01 in the absence or presence of drug. Cytopathogenic effect (CPE) was assessed visually 

by light microscopy by two independent investigators 48 h post-infection (Cinatl et al., 2003). 

5.2.7 Viability assay 

Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) assay modified after Mosmann (Mosmann, 1983), as previously described 

(Onafuye et al., 2019). 

5.2.8 Qpcr 

SARS-CoV-2 and SARS-CoV RNA was isolated from cell culture supernatants using AVL buffer 

and the QIAamp Viral RNA Kit (Qiagen) according to the manufacturer’s instructions. RNA 

was subjected to OneStepqRT-PCR analysis using the SYBR green based Luna Universal One-

Step RT-qPCR Kit (New England Biolabs) and a CFX96 Real-Time System, C1000 Touch 

Thermal Cycler. Primers were adapted from the WHO protocol (Corman et al., 2020) 

targeting the open reading frame for RNA-dependent RNA polymerase (RdRp) of both SARS-

CoV-2 and SARS-CoV: RdRP_SARSr-F2 (GTGARATGGTCATGTGTGGCGG) and RdRP_SARSr-R1 

(CARATGTTAAASACACTATTAGCATA) using 0.4 μM per reaction. RNA copies/ml were 

determined by standard curves which were using plasmid DNA (pEX-A128-RdRP) harbouring 

the corresponding amplicon regions for SARS-CoV-2 RdRP target sequence (GenBank 

Accession numberNC_045512). For each condition, three biological replicates were used. 

Mean and standard deviation were calculated for each group. 

 

5.3. Results 

5.3.1 Determination of differentially conserved positions (DCPs) 

Coronavirus genomes harbour single-stranded positive sense RNA (+ssRNA) of about 30 

kilobases in length, which contain six or more open reading frames (ORFs) (Cui et al., 2019; 

Wu, A. et al., 2020). The SARS-CoV-2 genome has a size of approximately 29.8 kilobases and 

was annotated to encode 14 ORFs and 27 proteins (Wu, A. et al., 2020). Two ORFs at the 5’-

terminus (ORF1a, ORF1ab) encode the polyproteins pp1a and pp1b, which comprise 15 non-
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structural proteins (nsps), the nsps 1 to 10 and 12–16 (Wu, A. et al., 2020). Additionally, SARS-

CoV-2 encodes four structural proteins (S, E, M, N) and eight accessory proteins (3a, 3b, p6, 

7a, 7b, 8b, 9b, orf14) (Wu, A. et al., 2020). This set-up resembles that of SARS-CoV. The 8a 

protein in SARS-CoV is absent in SARS-CoV-2. 8 b is longer in SARS-CoV-2 (121 amino acids) 

than in SARS-CoV (84 amino acids), while 3 b is shorter in SARS-CoV-2 (22 amino acids) than 

in SARS-CoV (154 amino acids) (Wu, A. et al., 2020). 

To identify genomic differences between SARS-CoV-2 and SARS-CoV that may affect the 

structure and function of the encoded virus proteins, we identified differentially conserved 

amino acid positions (DCPs) (Rausell et al., 2010) and determined their potential impact by 

in silico modelling (Martell et al., 2019; Pappalardo et al., 2016). 

In the reference sequences of the 22 SARS-CoV-2 virus proteins that could be compared with 

SARS-CoV, 1393 positions encoded different amino acids. 891 (64%, 9% of all SARS-CoV-2 

genome residues) of these positions were DCPs (Table S5.2). Most of the amino acid 

substitutions at DCPs appear to be fairly conservative as demonstrated by the average 

BLOSUM substitution score of 0.32 (median 0; Figure S5.1) and with 69% of them having a 

score of 0 or greater (the higher the score the more frequently such amino acid substitutions 

are observed naturally in evolution). 46% of DCPs represent conservative changes where 

amino acid properties are retained (e.g. change between two hydrophobic amino acids), 18% 

represented polar—hydrophobic substitutions, and <10% were changes between charged 

amino acids (Table S5.3). 

Six of the SARS-CoV-2 proteins have a higher proportion of DCPs, S, 3a, p6, nsp2, nsp3 

(papain-like protease), and nsp4 with 14.82%, 11.68%, 9.52%, 21.38%, 17.9% and 10.8% of 

their residues being DCPs, respectively (Table S5.4). Very few DCPs were observed in the 

envelope (E) protein and most of remaining non-structural proteins encoded by ORF1ab. For 

example, no residues in the helicase and <4% of residues in the RNA-directed RNA 

polymerase, 2’-O-Methyltransferase, nsp8 and nsp9 are DCPs (Table S5.1). 

We were able to map 572 DCPs onto protein structures (Figure S5.2, Table S5.5 and S4.6). 

Nearly all of the mapped DCPs occur on the protein surface (86%), with only 34 DCPs buried 

within the protein, primarily in S and the papain-like protease (nsp3) (Table S5.3). We 

propose that 49 DCPs are likely to result in structural/functional differences between SARS-

CoV and SARS-CoV-2 proteins. A further 259 could result in some change. The remaining 264 

DCPs seem unlikely to have a substantial functional impact (Table S5.3). 
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5.3.2 Differentially conserved positions (DCPs) in interferon antagonists 

At least 10 SARS-CoV proteins have roles in interferon antagonism (Totura & Baric, 2012). 

Two of these proteins, p6 and the papain-like protease (nsp3), contain many DCPs, two have 

very few DCPs (nsp7 and nsp16), five have intermediate numbers of DCPs (nsp14, nsp1, 

nsp15, N and M), while p3b is not encoded by SARS-CoV-2. Initial studies have identified a 

difference in the interferon inhibition between SARS-CoV and SARS-CoV-2 (Lokugamage et 

al., 2020). Thus, it is possible that especially the DCPs in p6 and the papain-like protease may 

have an effect on interferon inhibition. 

5.3.3 Differences in cell tropism between SARS-CoV-2 and SARS 

Next, we elucidated whether the substantial number of DCPs results in different phenotypes 

in cell culture, using the cell lines Caco2, CL14 (susceptible to SARS-CoV infection), HT-29 and 

DLD-1 (non-susceptible) (Cinatl Jr et al., 2004). Analogously to SARS-CoV infection, SARS-CoV-

2 replication was detected in Caco2 and CL14 cells, but not in HT-29 or DLD-1 cells, as shown 

by cytopathogenic effects (CPE) (Figure 5.1A), staining for double-stranded RNA (Figure 

S5.3A) and viral genomic RNA levels (Figure S5.3B). 
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Figure 5.1. SARS-CoV-2 and SARS-CoV replication in cell culture. (A) Cytopathogenic effect (CPE) 

formation 48 h post-infection in MOI 0.01-infected Caco2, CL14, DLD-1 and HT29 cells. Representative 

images showing immunostaining for double-stranded RNA (indicates virus replication) and 

quantification of virus genomes by qPCR are presented in Figure S5.3. (B) CPE formation in SARS-CoV 

and SARS-CoV-2 (MOI 0.01)-infected ACE2-negative 293 cells and 293 cells stably expressing ACE2 cells 

(293/ACE2) 48 h post-infection. Immunostaining for double-stranded RNA and quantification of virus 
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genomes by qPCR is shown in Figure S5.4. (C) Western blots indicating cellular ACE2 and TMPRSS2 

protein levels in uninfected cells. Uncropped blots are provided in Figure S5.5. (D) A sequence view of 

the DCPs in the vicinity of the S two cleavage sites and an image of the R815 cleavage site and closely 

located DCPs. S is cleaved and activated by TMPRSS2. (E) Concentration-dependent effects of the 

TMPRSS2 inhibitors camostat and nafamostat on SARS-CoV-2- and SARS-CoV-induced cytopathogenic 

effect (CPE) formation determined 48 h post-infection in Caco2 infected at an MOI of 0.01 using a 

phase contrast microscope. Similar effects were observed in CL14 cells (Figure S5.6). Values are 

presented as means ± S.D. (n = 3) 

 

However, ACE2-expressing 293 cells differed in their susceptibility to SARS-CoV-2 and SARS-

CoV (Figure 5.1B, Figure S5.4). ACE2 has been identified as a cellular receptor for both SARS-

CoV-2 and SARS-CoV (Cui et al., 2019; Hoffmann et al., 2020; Walls et al., 2020; Wan et al., 

2020; Wrapp et al., 2020; Wu, A. et al., 2020; Yan, R. et al., 2020). Unmodified 293 cells are 

not susceptible to SARS-CoV infection due to a lack of ACE2 expression. However, 293 cells 

that stably express ACE2 (293/ACE2) support SARS-CoV infection (Kamitani et al., 2006). As 

expected, infection of 293 cells with SARS-CoV or SARS-CoV-2 did not result in detectable 

cytopathogenic effect (CPE) (Figure 5.1B), but a SARS-CoV-induced CPE was detected in 

293/ACE2 cells (Figure 5.1B). In contrast, 293/ACE2 cells displayed limited permissiveness to 

SARS-CoV-2 infection (Figure 5.1B). Staining for double-stranded RNA (Figure S5.4A) and 

detection of viral genomic RNA copies (Figure S5.4B) confirmed these findings. Hence, the 

ACE2 status does not reliably predict cell sensitivity to SARS-CoV-2. Indeed, CL-14 was 

characterized by lower ACE2 levels than DLD-1 and HT29 (Figure 5.1C). 

SARS-CoV-2 and SARS-CoV cell entry depends on S cleavage by transmembrane serine 

protease 2 (TMPRSS2) (Hoffmann et al., 2020; Hoffmann, Schroeder, Kleine-Weber, Müller, 

Drosten, & Pöhlmann, 2020a; Zhou, Y. et al., 2015). However, the non-SARS-CoV-2 

susceptible and susceptible cell lines displayed similar TMPRSS2 levels (Figure 5.1C). Thus, 

cellular TMPRSS2 levels do also not reliable predict cell susceptibility to SARS-CoV-2. 

5.3.4 Differences between SARS-CoV-2 and SARS-CoV S (Spike) protein cleavage 

sites and sensitivity to protease inhibitors 

R667 and R797 are the critical cleavage sites in SARS-CoV S that are recognized by TMPRSS2 

(Simmons et al., 2013; Zhou, Y. et al., 2015). These cleavage sites are conserved in SARS-CoV-

2 (R685 and R815) (Figure 5.1D). However, there is a four amino acid insertion in SARS-CoV-

2 S prior to R685 and many of the residues close to R685 are DCPs (V663 = Q677, S664 = T678, 
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T669 = V687, Q671 = S689, K672 = Q690 DCPs are represented by the SARS-CoV residue 

followed by the SARS-CoV-2 residue) (Figure 5.1D). The R815 cleavage site has two DCPs in 

close proximity (L792 = S810, T795 = S813) (Figure 5.1D). Around the R685 cleavage site two 

DCPs retain polar side chains (S664 = T678, Q671 = S689), while the others represent larger 

changes between hydrophobic and polar side chains (V663 = Q677, T669 = V687) and one 

changes from a positive charge to a polar side chain (K672 = Q690). While around the R815 

cleavage site, one substitution is conservative (T795 = S813) and the other is a hydrophobic 

to polar change (L792 = S810). 

These changes are likely to impact on TMPRSS2-mediated S cleavage. Indeed, SARS-CoV-2 

was more sensitive than SARS-CoV to inhibition by the serine protease inhibitors camostat 

and nafamostat (Figure 5.1E, Figure S5.6), which are known to inhibit TMPRSS2-mediated S 

cleavage and virus entry (Hoffmann et al., 2020; Hoffmann et al., 2020a; Zhou, Y. et al., 2015). 

This confirms that the observed differences in the amino acid sequence of S have functional 

consequences. 

5.3.5 Differences between SARS-CoV-2 and SARS-CoV S interaction with ACE2 

Our computational analysis detected further interesting changes in the S protein. SARS-CoV-

2 S is 77.46% sequence identical to the SARS-CoV S and many of the remaining positions are 

DCPs (186 residues) (Table S5.1). 

The SARS-CoV S receptor binding domain (residues 306-527, equivalent to 328-550 in SARS-

CoV-2) is enriched in DCPs, containing 43 DCPs (19% of residues). Nine of the 24 SARS-CoV S 

residues in direct contact with ACE2 were DCPs (Figure 5.2A, Table S5.4). Five of these DCPs 

represent conservative substitutions in amino acid (hydrophobic—hydrophobic or polar-

polar), two hydrophobic -polar substitutions, one positive charge to polar change, while the 

ninth is substitution between a hydrophobic and positively charged amino acid (Table S5.5). 
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Figure 5.2. SARS-CoV-2 and SARS-CoV S interaction with ACE2. (A–D)Differentially conserved positions 

in the Spike protein. (A) A sequence view of the DCPs present in the Spike protein, with an inset 

showing the receptor binding domain. (B) The S interface with ACE2 (cyan). The ACE2 interface is 

shown in blue spheres, DCPs in red. (C) The V404 = K417 DCP. (D) The R426 = N439 DCP, the left image 
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shows SARS-CoV S R426, the image on the right show the equivalent N439 in SARS-CoV-2 S. (E) SARS-

CoV residues associated with altering ACE2 affinity and the residues at these positions in SARS-CoV-2 

S. (F) Cytopathogenic effect (CPE) formation in SARS-CoV-2 and SARS-CoV (MOI 0.01)-infected Caco2 

cells in the presence of antibodies directed against ACE2 or DPP4 (MERS-CoV receptor) 48 h post-

infection 

 

Analysis of the DCPs using the SARS-CoV and SARS-CoV-2 S protein complexes with ACE2 

(Song et al., 2018; Yan, R. et al., 2020) identified runs of DCPs (A430-T433, F460-A471) in 

surface loops forming part of the S-ACE2 interface and resulted in different conformations in 

SARS-CoV-2 S compared to SARS-CoV S (Figure 5.2A, 4.2B). Two DCPs remove intramolecular 

hydrogen bonding within the spike protein in SARS-CoV-2 (Table S5.4) and three DCPs 

(R426 = N439, N479 = QQ493, Y484 = Q498) are residues that form hydrogen bonds with 

ACE2. For two of these positions, hydrogen bonding with ACE2 is present with both S 

proteins, but for R426 = N439 hydrogen bonding with ACE2 is only observed with SARS-CoV 

S. N439 in SARS-CoV-2 S is not present in the interface and the sidechain points away from 

the interface. Further, analysis of the SARS-CoV-2 S-ACE2 complex highlighted important 

roles of the V404 = K417 DCP, where K417 in SARS-CoV-2 S is able to form a salt bridge with 

ACE2 D30 (Figure 5.2C, 4.2D) (Yan, R. et al., 2020). 

Alanine scanning (Chakraborti et al., 2005) and adaptation experiments (Wan et al., 2020) 

have identified 16 SARS-CoV S residues impacting on the binding affinity with ACE2. For all 

five residues identified from adaptation studies and four of the 11 identified by alanine 

scanning experiments, different amino acids are present in SARS-CoV-2 S (Figure 5.2E), 

highlighting the difference in the interaction with ACE2. 

In agreement with our structural analysis, we detected differences in the effects of an anti-

ACE2 antibody on SARS-CoV-2 and SARS-CoV infection. Antibodies directed against ACE2 

were previously shown to inhibit SARS-CoV replication (Li, W. et al., 2003). In line with this, 

an anti-ACE2 antibody inhibited SARS-CoV infection in Caco2 cells (Figure 5.2F). In contrast, 

the anti-ACE2 antibody displayed limited activity against SARS-CoV-2 infection (Figure 5.2F). 

This shows that it is more difficult to antagonize SARS-CoV-2 infection with anti-ACE2 

antibodies and supports previous findings indicating a stronger binding affinity of SARS-CoV-

2 S to ACE2 compared to SARS-CoV S (Walls et al., 2020; Wrapp et al., 2020). As anticipated, 

antibodies directed against DPP4, the MERS-CoV receptor (Cui et al., 2019; de Wit et al., 

2016), did not interfere with SARS-CoV or SARS-CoV-2 infection (Figure 5.2F). 
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5.4. Discussion 

Here, we performed an in-silico analysis of the effects of differentially conserved amino acid 

positions (DCPs) between SARS-CoV-2 and SARS-CoV proteins on virus protein structure and 

function in combination with a comparison of wild-type SARS-CoV-2 and SARS-CoV in cell 

culture. 

We identified 891 DCPs, which represents 64% of the amino acid positions that differ 

between SARS-CoV-2 and SARS-CoV and nearly 9% of all residues encoded by the SARS-CoV 

genome. 49 of these DCPs are likely to have a structural and functional impact. The DCPs are 

not equally distributed between the proteins. DCPs are enriched in S, 3a, p6, nsp2, papain-

like protease and nsp4, but very few DCPs are present in the envelope (E) protein and most 

of the remaining non-structural proteins encoded by ORF1ab. This indicates that the 

individual proteins differ in their tolerance to sequence changes and/or their exposure to 

selection pressure exerted by the host environment. 

The large proportion of DCPs reflects the differences in the clinical behaviour of SARS-CoV-2 

and SARS-CoV. Mortality associated with SARS-CoV is higher than that associated with SARS-

CoV-2 (Borges do Nascimento et al., 2020; Cui et al., 2019). SARS-CoV causes a disease of the 

lower respiratory tract. Infected individuals are only contagious when they experience 

symptoms (de Wit et al., 2016). SARS-CoV-2 is present in the upper respiratory tract and can 

be readily transmitted prior to the onset of symptoms. Mild but infectious cases may 

substantially contribute to its spread (Rivett et al., 2020). 

Although further research will be required to elucidate in detail, which DCPs are responsible 

for which differences in virus behaviour, our analysis has already provided important clues. 

Both viruses use ACE2 as a receptor and are activated by the transmembrane serine protease 

TMPRSS2 (Cui et al., 2019; Hoffmann et al., 2020; Li, W. et al., 2003; Walls et al., 2020; Wan 

et al., 2020; Wrapp et al., 2020; Yan, R. et al., 2020). Our results show, however, that the 

ACE2 and the TMPRSS2 status are not sufficient to predict cells susceptibility to SARS-CoV-2 

or SARS-CoV. The cell line CL14 supported SARS-CoV-2 replication, although it displayed 

lower ACE2 levels and similar TMPRSS2 levels to non-susceptible DLD-1 and HT29 cells. Thus, 

attempts to identify SARS-CoV-2 target cells based on the ACE2 status (Luan et al., 2020; Qiu 

et al., 2020; Xu, H. et al., 2020) need to be considered with caution. 
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As previously described (Kamitani et al., 2006), ACE2 expression rendered SARS-CoV non-

permissive 293 cells susceptible to SARS-CoV. However, ACE2 expression had a substantially 

lower impact on SARS-CoV-2 infection. This suggests the presence of further host cell factors 

that determine SARS-CoV-2 susceptibility. Based on our sequence analysis, DCPs in the viral 

interferon antagonists may contribute to the differences observed in the cellular tropism of 

SARS-CoV-2 and SARS-CoV. 

Our computational analysis detected DCPs in the ACE2-binding domain of S, which are likely 

to impact S-ACE2 binding. In agreement, an anti-ACE2 antibody displayed higher efficacy 

against SARS-CoV than against SARS-CoV-2, illustrating the differences between SARS-CoV-2 

S and SARS-CoV S interaction with ACE2. This probably reflects an increased SARS-CoV-2 S 

affinity to ACE2 compared to SARS-CoV S (Wrapp et al., 2020), which may be more difficult 

to antagonize. 

To mediate virus entry, S needs to be cleaved by host cell proteases, in particular by TMPRSS2 

(Hoffmann et al., 2020; Hoffmann et al., 2020a; Zhou, Y. et al., 2015). The S cleavage sites 

are conserved between SARS-CoV-2 and SARS-CoV. However, we found DCPs in close vicinity 

to the S cleavage sites, which are likely to affect S cleavage by host cell enzymes and/or the 

activity of protease inhibitors on S cleavage. Indeed, the serine protease inhibitors camostat 

and nafamostat, which interfere with S cleavage (Hoffmann et al., 2020; Hoffmann et al., 

2020a), displayed increased activity against SARS-CoV-2 infection than against SARS-CoV 

infection, confirming the functional relevance of the DCPs. 

In conclusion, our in-silico study revealed a substantial number of differentially conserved 

amino acid positions in the SARS-CoV-2 and SARS-CoV proteins. In agreement, cell culture 

experiments indicated differences in the cell tropism of these two viruses and showed that 

cellular ACE2 and TMPRSS2 levels do not reliably indicate cell susceptibility to SARS-CoV-2. 

Moreover, we identified DCPs in S that are associated with differences in the interaction with 

ACE2 and increased SARS-CoV-2 sensitivity to the protease inhibitors camostat and 

nafamostat relative to SARS-CoV. 

 

 

 

 



156 
 

Chapter 6: A potential role of the CD47-SIRPalpha axis in 

COVID-19 pathogenesis 

 

Katie-May McLaughlin1,#, Denisa Bojkova2,#, Joshua D. Kandler2,#, Marco Bechtel2, Philipp 

Reus2, Trang Le2, Florian Rothweiler2, Julian U. G. Wagner3, Andreas Weigert, Sandra 

Ciesek2,5,6, Mark N. Wass2, Martin Michaelis2, Jindrich Cinatl Jr2 

1School of Biosciences, University of Kent, Canterbury, UK; km625@kent.ac.uk (K.M.); 

M.N.Wass@kent.ac.uk (M.N.W); M.Michaelis@kent.ac.uk (M.M.) 

2Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, Germany; 

Marco.Bechtel@kgu.de (M.B.); Denisa.Bojkova@kgu.de (D.B.); Joshua.Kandler@kgu.de (J.D.K.); 

philipp.reus@kgu.de (P.R.); letrang1211@gmail.com (T.L.); Sandra.ciesek@kgu.de (S.C.); 

Cinatl@em.uni-frankfurt.de (J.C.jr.) 

3Institute for Cardiovascular Regeneration, Goethe University, Theodor Stern Kai 7, Frankfurt, 

Germany; German Center for Cardiovascular Research (DZHK), Frankfurt, Germany; Faculty for 

Biological Sciences, Goethe University, Frankfurt, Germany; j.wagner@med.uni-frankfurt.de 

(J.U.G.W.) 

4Faculty of Medicine, Institute of Biochemistry I, Goethe-University, Frankfurt am Main, Germany; 

weigert@biochem.uni-frankfurt.de (A.W.) 

5German Center for Infection Research, DZIF, External partner site Frankfurt am Main, Germany; 

Sandra.ciesek@kgu.de (S.C.) 

6Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine 

und Pharmacology, Frankfurt, Germany; Sandra.ciesek@kgu.de (S.C.) 

#Equal contribution 

 

Submitted to MDPI Pathogens (Viral Pathogens) for peer review  

 

Abstract 

The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-

CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected 

individuals develops severe, life-threatening disease, which is caused by an uncontrolled 

immune response resulting in hyperinflammation. However, the factors predisposing 

individuals to severe disease remain poorly understood. Here, we show in a range of model 

systems and data from post mortem samples that SARS-CoV-2 infection results in increased 
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levels of CD47, which is known to mediate immune escape in cancer and virus-infected cells. 

Systematic literature searches further indicated that known risk factors such as older age and 

diabetes are associated with increased CD47 levels. High CD47 levels contribute to vascular 

disease, vasoconstriction, and hypertension, conditions which may predispose SARS-CoV-2-

infected individuals to COVID-19-related complications such as pulmonary hypertension, 

lung fibrosis, myocardial injury, stroke, and acute kidney injury. Hence, age-related and virus-

induced CD47 expression is a candidate mechanism potentially contributing to severe 

COVID-19 and also a therapeutic target, which may be addressed by antibodies and small 

molecules.  

 

6.1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the ongoing 

coronavirus disease 2019 (COVID-19) outbreak (Chilamakuri & Agarwal, 2021; Hokello et al., 

2020), which has resulted in more than 120 million confirmed cases and more than 2.6 

million confirmed COVID-19-associated deaths so far (Dong et al., 2020). 

The first COVID-19 vaccines have been developed (Chilamakuri & Agarwal, 2021), and their 

roll-out has started in many countries. However, it will take a significant time until large parts 

of the world population will be vaccinated, and there is growing concern about the 

emergence of escape variants that can bypass immunity conferred by the current vaccines 

and previous SARS-CoV-2 infections (Andreano et al., 2020; Kemp et al., 2020; Liu, Z. et al., 

2020; Sabino et al., 2021; Weisblum et al., 2020; Wibmer et al., 2021). Thus, for the 

foreseeable future there will be a need for improved COVID-19 therapies. 

Currently, the therapeutic options for COVID-19 are still very limited (Chilamakuri & Agarwal, 

2021; Rebold et al., 2021). COVID-19 therapies can either directly inhibit SARS-CoV-2 

replication or target other COVID-19-associated pathophysiological processes, such as 

corticosteroids that are anticipated to control COVID-19-related cytokine storm and 

hyperinflammation (Pum et al., 2021).  Dexamethasone and potentially other corticosteroids 

increase survival in patients who depend on oxygen support (RECOVERY Collaborative Group 

et al., 2021; WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group 

et al., 2020). In a controlled open-label trial, dexamethasone reduced mortality in patients 

receiving oxygen with (from 41.1% to 29.3%) or without (from 26.2% to 23.3%) mechanical 

ventilation, but increased mortality in patients not requiring oxygen support (RECOVERY 
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Collaborative Group et al., 2021). Other immunomodulatory therapy candidates are being 

tested, but conclusive results are pending (Rebold et al., 2021). Further COVID-19 

therapeutics under investigations include anticoagulants that target COVID-19-induced 

systemic coagulation and thrombosis (coagulopathy) (Hadid et al., 2020). 

However, it would be much better to have effective antiviral treatments that reliably prevent 

COVID-19 disease progression to a stage when immunomodulators and anticoagulants are 

needed. The antiviral drug remdesivir was initially described to reduce recovery time from 

15 to ten days and 29-day mortality from 15.2% to 11.4% (Beigel et al., 2020; Rebold et al., 

2021). However, other trials did not confirm this and conclusive evidence on the efficacy of 

remdesivir remains to be established (Rebold et al., 2021). The JAK inhibitor baricitinib, which 

interferes with cytokine signaling, was reported to improve therapy outcomes in 

combination with remdesivir in a double-blind, randomised, placebo-controlled trial, in 

which patients were either treated with remdesivir plus baricitinib or remdesivir plus placebo 

(Kalil et al., 2021). Moreover, convalescent sera and monoclonal antibodies are under clinical 

investigation for COVID-19 treatment (Devarasetti et al., 2021; Tuccori et al., 2020). 

Ideally, antiviral therapies are used early in the disease course to prevent disease progression 

to the later immunopathology-driven stages (Weinreich et al., 2021). However, only a small 

proportion of patients develops severe disease (Salzberger et al., 2020). Therefore, a better 

understanding of the underlying processes is required to identify patients, who will develop 

severe disease, as early as possible.  

Here, we investigated the potential role of the ubiquitously expressed cell surface 

glycoprotein CD47 in severe COVID-19. CD47 is the receptor of thrombospondin-1 (THBS1) 

and the counter-receptor for signal regulatory protein-α (SIRPα). CD47 interaction with 

SIRPα inhibits the activation of macrophages and dendritic cells and thrombospondin-1/ 

CD47 signaling inhibits T cell activation (Cham et al., 2020; Kaur et al., 2020). High CD47 

expression prevents immune recognition of cancer and virus-infected cells (Cham et al., 

2020; Kaur et al., 2020). 

 

6.2. Methods 

6.2.1 Cell culture 

Calu-3 cells (ATCC) were grown at 37°C in minimal essential medium (MEM) supplemented 

with 10% fetal bovine serum (FBS), 100 IU/mL penicillin, and 100 μg/mL of streptomycin. All 
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culture reagents were purchased from Sigma. Cells were regularly authenticated by short 

tandem repeat (STR) analysis and tested for mycoplasma contamination. 

Primary human bronchial epithelial cells were purchased from ScienceCell. For 

differentiation to air-liquid interface (ALI) cultures, the cells were thawed and passaged once 

in PneumaCult-Ex Medium (StemCell technologies) and then seeded on transwell inserts (12 

well plate, Sarstedt) at 4x104 cells/insert. Once cell layers reached confluency, medium on 

the apical side of the transwell was removed, and medium in the basal chamber was replaced 

with PneumaCult ALI Maintenance Medium (StemCell Technologies) including 

Antibiotic/Antimycotic solution (Sigma Aldrich) and MycoZap Plus PR (Lonza). During a 

period of four weeks, medium was changed and cell layers were washed with PBS every other 

day. Criteria for successful differentiation were the development of ciliated cells and ciliary 

movement, an increase in transepithelial electric resistance indicative of the formation of 

tight junctions, and mucus production. 

Human monocytes were isolated from buffy coats of healthy donors (RK-Blutspendedienst 

Baden-Württemberg-Hessen, Institut für Transfusionsmedizin und Immunhämatologie 

Frankfurt am Main, Germany). After centrifugation on Ficoll (Pancoll, PAN-Biotech) density 

gradient, mononuclear cells were collected from the interface, washed with PBS, and plated 

on cell culture dishes (Cell+, Saarstedt) in RPMI1640 (Gibco) supplemented with 100 IU/mL 

penicillin and 100 μg/mL of streptomycin. After incubation for 90 minutes (37°C, 5% CO2), 

non-adherent cells were removed, and the medium was changed to RPMI1640 

supplemented with 100 IU/mL penicillin, 100 μg/mL of streptomycin, and 3% human serum 

(RK-Blutspendedienst Baden-Württemberg-Hessen, Institut für Transfusionsmedizin und 

Immunhämatologie Frankfurt am Main, Germany). 

6.2.2 Virus infection 

SARS-CoV-2/7/Human/2020/Frankfurt (SARS-CoV-2/FFM7) was isolated and cultivated in 

Caco2 cells (DSMZ) as previously described (Hoehl et al., 2020; Toptan et al., 2020). Virus 

titers were determined as TCID50/ml in confluent cells in 96-well microtiter plates (Cinatl Jr 

et al., 2005; Cinatl et al., 2003).  

Monocytes were infected at an MOI of 1 with SARS-CoV-2/FFM7 for 2 hours. After infection, 

cells were washed three times with PBS and subsequently cultivated in RPMI1640 (Gibco) 

supplemented with 100 IU/mL penicillin and 100 μg/mL of streptomycin. 
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6.2.3 Western blot 

Cells were lysed using Triton-X-100 sample buffer, and proteins were separated by SDS-

PAGE. Detection occurred by using specific antibodies against CD47 (1:100 dilution, CD47 

Antibody, anti-human, Biotin, REAfinity™, # 130-101-343, Miltenyi Biotec), SARS-CoV-2 N 

(1:1000 dilution, SARS-CoV-2 Nucleocapsid Antibody, Rabbit MAb, #40143-R019, Sino 

Biological), SIRPα  (1:1000 dilution, SIRPα/SHPS1 (D6I3M) Rabbit mAb #13379, Cell Signaling), 

and GAPDH (1:1000 dilution, Anti-G3PDH Human Polyclonal Antibody, #2275-PC-100, 

Trevigen). Protein bands were visualized and quantified by laser-induced fluorescence using 

infrared scanner for protein quantification (Odyssey, Li-Cor Biosciences). 

6.2.4. qPCR 

SARS-CoV-2 RNA from cell culture supernatant samples was isolated using AVL buffer and 

the QIAamp Viral RNA Kit (Qiagen) according to the manufacturer’s instructions. SARS-CoV-

2 RNA from cell lysates was isolated using RTL Buffer and the RNeasy Mini Kit (Qiagen) 

according to the manufacturer´s instructions. Absorbance-based quantification of the RNA 

yield was performed using the Genesys 10S UV-Vis Spectrophotometer (Thermo Scientific). 

RNA was subjected to OneStep qRT-PCR analysis using the Luna Universal One-Step RT-qPCR 

Kit (New England Biolabs) and a CFX96 Real-Time System, C1000 Touch Thermal Cycler. 

Primers were adapted from the WHO protocol29 targeting the open reading frame for RNA-

dependent RNA polymerase (RdRp): RdRP_SARSr-F2 (GTG ARA TGG TCA TGT GTG GCG G) 

and RdRP_SARSr-R1 (CAR ATG TTA AAS ACA CTA TTA GCA TA) using 0.4 µM per reaction. 

Standard curves were created using plasmid DNA (pEX-A128-RdRP) harboring the 

corresponding amplicon regions for RdRP target sequence according to GenBank Accession 

number NC_045512. For each condition three biological replicates were used. Mean and 

standard deviation were calculated for each group. 

6.2.5 Data acquisition and analysis 

Normalized protein abundance data from SARS-CoV-2-infected Caco-2 cells were derived 

from a recent publication (Bojkova et al., 2020). Data were subsequently normalized using 

summed intensity normalization for sample loading, followed by internal reference scaling 

and Trimmed mean of M normalization. Mean protein abundance was plotted using the 

function ggdotplot of the R package ggpubr. P-values were determined by two-sided 

student’s t-test 

Raw read counts from post-mortem samples of two COVID-19 patients and two healthy 

controls, as well as mock infected and SARS-CoV-2-infected Calu-3 cells, were derived from 
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a recent publication (Blanco-Melo et al., 2020) via the gene expression omnibus (GEO) 

database (accession: GSE147507) and processed using DESeq2. Normalized gene counts 

were plotted using the function ggdotplot of the R package ggpubr. P-values were 

determined by two-sided student’s t-test. 

6.2.6 Literature review 

Relevant articles were identified by using the search terms 'CD47 aging', 'CD47 hypertension', 

'CD47 diabetes', and 'CD47 obesity' in PubMed (https://pubmed.ncbi.nlm.nih.gov) on the 

basis of the principles outlined in the PRISMA guidelines (http://prisma-statement.org). 

Articles in English were included into the analysis, when they contained original data on the 

influence of aging, diabetes, diabetes, or obesity on CD47 expression levels and/ or the 

relevance of CD47 with regard to pathological conditions observed in severe COVID-19. Two 

reviewers independently analyzed articles for relevant information and then agreed a list of 

relevant articles. 

 

6.3. Results 

6.3.1 SARS-CoV-2 infection results in enhanced CD47 expression 

A publicly available proteomics dataset (Bojkova et al., 2020) indicated increased CD47 

expression in SARS-CoV-2-infected Caco2 colorectal carcinoma cells (Figure 6.1A). We also 

detected enhanced CD47 levels in SARS-CoV-2-infected primary human bronchial epithelial 

cells (HBE) grown in air liquid interface (ALI) cultures (Bojkova, Bechtel et al., 2020) and Calu-

3 lung cancer cells (Figure 6.1B). Analysis of transcriptomics data from another study also 

indicated increased CD47 levels in SARS-CoV-2-infected Calu-3 cells (Figure S6.2) and in post 

mortem lung samples from COVID-19 patients (Figure 6.1C) (Blanco-Melo et al., 2020). Flow 

cytometry analysis confirmed increased CD47 levels in SARS-CoV-2-infected Caco2 cells 

(Figure S6.3). 

https://pubmed.ncbi.nlm.nih.gov/
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Figure 6.1. SARS-CoV-2 infection is associated with increased CD47 levels. (A) CD47 protein abundance 

in uninfected (control) and SARS-CoV-2-infected (virus) Caco-2 cells (data derived from (Bojkova et al., 

2020). P-values were determined by one-way ANOVA with post-hoc Tukey HSD test. (B) CD47 and 

SARS-CoV-2 N protein levels and virus titers (genomic RNA determined by PCR) in SARS-CoV-2 strain 

FFM7 (MOI 1)-infected air-liquid interface cultures of primary human bronchial epithelial (HBE) cells 

and SARS-CoV-2 strain FFM7 (MOI 0.1)-infected Calu-3 cells. Uncropped blots are provided in Figure 

S6.1. (C) CD47 mRNA levels in post mortem samples from COVID-19 patients (data derived from 

(Blanco-Melo et al., 2020)). P-values were determined by two-sided Student’s t-test. 

 

6.3.2 Increased SIRPα levels in SARS-CoV-2-infected monocytes 

CD47 inhibits the activity of innate immune cells via interaction with SIRPα (Cham et al., 

2020; Kaur et al., 2020). Hence, we next investigated whether SARS-CoV-2 infection of 

monocytes may impact SIRPα levels. SARS-CoV-2 did not result in a productive infection of 

primary human monocytes as indicated by a lack of an increase in genomic RNA levels (Figure 

6.2A). However, SARS-CoV-2 infection resulted in increased SIRPα levels in primary 

monocytes from three different individuals (Figure 6.2B). Hence, SARS-CoV-2 may interfere 

with both players of the CD47- SIRPα axis. 
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Figure 6.2. SARS-CoV-2 infection increases SIRPα in primary human monocytes. (A) SARS-CoV-2 strain 

FFM7 (MOI 1) infection of primary human monocytes does not result in the production of genomic 

viral RNA as detected by PCR. (B) SARS-CoV-2 strain FFM7 (MOI 1)-infected primary human monocytes 

display enhanced SIRPα levels. Uncropped blots are provided in Figure S6.4.  

 

6.4. Discussion 

Here, we show that SARS-CoV-2 infection is associated with increased CD47 expression in a 

range of model systems and in post mortem samples from COVID-19 patients. CD47 exerts 

immunosuppressive activity via interaction with SIRPα in immune cells and as a 

thrombospondin-1 receptor (Cham et al., 2020; Kaur et al., 2020). In this context, human 

CD47 expression is discussed as a strategy to enable the xenotransplantation of organs from 

pigs to humans (Cooper et al., 2019; Hosny et al., 2021). Moreover, high CD47 expression is 

an immune escape mechanism observed on cancer cells, and anti-CD47 antibodies are under 

investigation as cancer immunotherapeutics (Feng, R. et al., 2020; Kaur et al., 2020). Due its 

immunosuppressive action, CD47 expression is also discussed as a target for the treatment 

of viral and bacterial pathogens including SARS-CoV-2 (Cham et al., 2020; Oronsky et al., 

2020; Tal et al., 2020). It has been demonstrated that cells infected with different viruses 

display enhanced CD47 levels, which function as a “don’t eat me” signal, which interferes 

with the immune recognition of virus-infected cells (Tal et al., 2020). Thus, our data indicating 

increased CD47 levels in a range of SARS-CoV-2 infection models and clinical samples further 

support the potential role of CD47 as a drug target for the mediation of a more effective 

antiviral immune response. 
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Moreover, we found that, although SARS-CoV-2 did not replicate in primary human 

monocytes, it increased the levels of the CD47 binding partner SIRPα in these cells. Hence, 

SARS-CoV-2 infection may affect immune recognition of SARS-CoV-2-infected cells by 

upregulating both players of the CD47- SIRPα axis.  

Older age, diabetes, and obesity are known risk factors for COVID-19 morbidity and mortality 

(Hokello et al., 2020; Shah et al., 2021). To further investigate a potential role of CD47 in 

severe COVID-19, we performed systematic literature searches on the relationship of CD47 

and the known COVID-19 risk factors ‘ageing’, ‘diabetes’, and ‘obesity’. 

A literature search in PubMed (https://pubmed.ncbi.nlm.nih.gov, 17th February 2020) using 

the terms 'CD47' and aging' resulted in 62 hits (Table S6.1). Eight of these articles contained 

information that support a link between age-related increased CD47 levels and an elevated 

risk of severe COVID-19 (Figure 6.3A, Table S6.1). One article suggested that alpha-

tocopherol reduced age-associated streptococcus pneumoniae lung infection in mice by 

CD47 downregulation (Bou Ghanem et al., 2015), which is in accordance with the known 

immunosuppressive functions of CD47 (Cham et al., 2020; Kaur et al., 2020). 

The remaining seven articles reported on age-related increased CD47 levels in vascular cells 

that are associated with reduced vasodilatation and blood flow (Table S6.1), as CD47 

signaling inhibits NO-mediated activation of soluble guanylate cyclase and in turn 

vasodilatation (Isenberg et al., 2008; Miller et al., 2010). Since reduced vasodilatation can 

cause hypertension (Touyz et al., 2018), we performed a follow-up literature search using 

the search terms "CD47 hypertension" (Table S6.2). This resulted in 20 hits, including a 

further six relevant studies (Figure 6.3B, Table S6.2). The evidence supporting a link between 

aging and/ or hypertension and increased CD47 levels is summarized in Table 6.1. 

Initial experiments showed that loss or inhibition of CD47 prevented age- and diet-induced 

vasculopathy and reduced damage caused by ischemic injury in mice (Isenberg et al., 2007). 

CD47-deficient mice indicated that CD47 functions as a vasopressor and were also shown to 

be leaner and to display enhanced physical performance and a more efficient metabolism 

(Frazier et al., 2011; Isenberg et al., 2009). In agreement, CD47 was upregulated in clinical 

pulmonary hypertension and contributed to pulmonary arterial vasculopathy and 

dysfunction in mouse models (Bauer et al., 2012; Rogers, Sharifi-Sanjani et al., 2017). Age-

related increased CD47 levels further affected peripheral blood flow and wound healing in 

mice (Rogers, Roberts et al., 2013) and NO-mediated vasodilatation of coronary arterioles of 

rats (Nevitt et al., 2016). Moreover, thrombospondin-1/ CD47 signaling was shown to induce 
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ageing-associated senescence in endothelial cells (Gao, Q. et al., 2016; Meijles et al., 2017) 

and age-associated deterioration in angiogenesis, blood flow, and glucose homeostasis 

(Ghimire et al., 2020). 

Increased CD47 levels were also detected in the lung of a sickle cell disease patient with 

pulmonary arterial hypertension, and vasculopathy and pulmonary hypertension were 

reduced in a CD47-null mouse model of sickle cell disease (Novelli et al., 2019; Rogers, Yao 

et al., 2013). Finally, anti-CD47 antibodies reversed fibrosis in various organs in mouse 

models (Wernig et al., 2017), which may be relevant in the context of COVID-19-associated 

pulmonary fibrosis (Leeming et al., 2021). 

In addition to immunosuppressive activity, ageing-related increased CD47 levels may thus be 

involved in vascular disease, vasoconstriction, and hypertension and predispose COVID-19 

patients to related pathologies such as pulmonary hypertension, lung fibrosis, myocardial 

injury, stroke, and acute kidney injury (Cruz Rodriguez et al., 2020; Fabrizi et al., 2020; 

Karmouty-Quintana et al., 2020; Leeming et al., 2021; Maile et al., 2008; Rogers, Ghimire et 

al., 2017; Sanghvi et al., 2021; Scutelnic & Heldner, 2020; Soto-Pantoja et al., 2013). 
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Figure 6.3. Results of the PubMed (https://pubmed.ncbi.nlm.nih.gov) literature search for “CD47 

aging” (A) and “CD47 hypertension” (B). (C) Overview figure of the data derived from the literature 

searches. Age-related increased CD47 levels may contribute to pathogenic conditions associated with 

severe COVID-19. 

 

Table 6.1. Evidence supporting a link between aging and/ or hypertension and increased CD47 levels. 

Reference Link between aging and/ or hypertension and increased CD47 levels 

(Bou 
Ghanem et 
al., 2015) 

CD47 downregulation may be involved in the alpha-tocopheol-mediated inhibition 
of age-associated streprococcus pneumoniae lung infection in mice 

(Isenberg et 
al., 2007) 

Blocking thrombospondin-1/CD47 signaling alleviates deleterious effects of aging 
on tissue responses to ischemia 

(Isenberg et 
al., 2009) 

CD47 null mice indicate that CD47 functions as vasopressor 

(Frazier et 
al., 2011) 

CD47-null mice are leaner - loss of signaling from the TSP1-CD47 system promotes 
accumulation of normally functioning mitochondria in a tissue-specific and age-
dependent fashion leading to enhanced physical performance, lower reactive 
oxygen species production and more efficient metabolism 

(Bauer et 
al., 2012) 

High CD47 levels promote pulmonary arterial hypertension in lungs from humans 
and mice 

(Rogers et 
al., 2017) 

TSP1-CD47 signaling is upregulated in clinical pulmonary hypertension and 
contributes to pulmonary arterial vasculopathy and dysfunction 

(Rogers et 
al., 2013) 

Increased THBS1/ CD47 signalling contributes to reduced skin blood flow and 
wound healing in aged mice 

(Nevitt et 
al., 2016) 

CD47 blocks NO-mediated vasodilatation 

(Gao, Q. et 
al., 2016) 

THBS1/ CD47 signalling drives endothelial cell senescence 

(Meijles et 
al., 2017) 

TSP1 promotes ageing-associated human and mouse endothelial cell senescence 
through CD47 

(Ghimire et 
al., 2020) 

Increased CD47 expression causes age-associated deterioration in angiogenesis, 
blood flow and glucose homeostasis 

(Rogers et 
al., 2013) 

Increased CD47 levels in the lung of a sickle cell disease patient with pulmonary 
arterial hypertension relative to control tissues 

(Novelli et 
al., 2019) 

Pulmonary hypertension reduced in a CD47-null mouse model of sickle cell disease 

(Wernig et 
al., 2017) 

Anti-CD47 antibodies reversed fibrosis in various organs in mouse models 

 

Diabetes has also been associated with an increased risk of severe COVID-19 and COVID-19-

related death (Shah et al., 2021). A PubMed search for "CD47 diabetes" produced 47 hits, 

nine of which reported on increased CD47 levels in response to hyperglycemia and/ or 

diabetes (Figure 6.4, Table S6.3). 

Hyperglycemia protected CD47 from cleavage resulting in increased CD47 levels (Allen et al., 

2009; Maile et al., 2008; Maile et al., 2009; Maile et al., 2010). In agreement, increased CD47 
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levels were detected in various cell types and tissues in rat diabetes models and diabetes 

patients (Abdul-Rahman et al., 2012; Abu El-Asrar et al., 2013; Bitar, 2019; Maile et al., 2012; 

Wang, J. M. et al., 2014) (Table 6.2). Therefore, diabetes-induced increased CD47 levels may 

interfere with the recognition of SARS-CoV-2-infected cells by the immune system (Cham et 

al., 2020; Kaur et al., 2020). 

 

 

Figure 6.4. Results of the PubMed (https://pubmed.ncbi.nlm.nih.gov) literature search for “CD47 

diabetes” (A). (B) Overview figure of the data derived from the literature search. Hyperglycemia- and 

diabetes-induced increased CD47 levels may contribute to immune escape of SARS-CoV-2-infected 

cells. 

Table 6.2. Evidence supporting a link between diabetes and increased CD47 levels. 

Reference Link between aging and/ or hypertension and increased CD47 levels 

(Maile et 
al., 2008) 

Hyperglycemia protects CD47 from cleavage 

(Allen et al., 
2009) 

Hyperglycemia protects CD47 from cleavage 

(Maile et al., 
2009) 

Hyperglycemia protects CD47 from cleavage 

(Maile et al., 
2010) 

Hyperglycemia protects CD47 from cleavage 

(Maile et al., 
2012) 

CD47 is involved in pathophysiological changes in retinal cells in response to 
hyperglycemia in cell culture and rats 

(Abdul-
Rahman et 
al., 2012) 

Elevated CD47 mRNA levels both in the hippocampus and prefrontal cortex of type 
2 diabetes rat model 
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(Abu El-
Asrar et al., 
2013) 

Increased levels of CD47 in epiretinal membranes with active neovascularisation in 
proliferative diabetic retinopathy 

(Wang, J. M. 
et al., 2014) 

Increased THBS1/ CD47 signalling in bone marrow–derived angiogenic cells in a rat 
diabetes model 

(Bitar, 2019) Increased diabetes-associated CD47 levels inhibit angiogenesis and wound healing 
in a diabetes model in rats 

 

As obesity is another risk factor for severe COVID-19 (Shah et al., 2021), we also performed 

a PubMed search for "CD47 obesity", which resulted in eight hits, two of which provided 

potentially relevant information (Table S6.4). Results indicated that CD47-deficient mice 

were leaner, probably as a consequence of elevated lipolysis (Maimaitiyiming et al., 2015; 

Norman-Burgdolf et al., 2020). Hence, low CD47 levels may be associated both with lower 

weight and increased immune recognition of virus-infected cells (Cham et al., 2020; Kaur et 

al., 2020; Maimaitiyiming et al., 2015; Norman-Burgdolf et al., 2020), but there is no direct 

evidence suggesting that obesity may also directly increase CD47 expression. However, 

obesity may at least indirectly contribute to enhanced CD47 levels as risk factor for diabetes 

and hypertension (Shah et al., 2021). 

Taken together, increased CD47 levels associated with aging, hypertension, and 

hyperglycemia and diabetes may predispose individuals to severe COVID-19. 

 

6.5. Conclusions 

Severe COVID-19 disease is the consequence of hyperinflammation ('cytokine storm') in 

response to SARS-CoV-2 infection (Cooper et al., 2019; Feng, R. et al., 2020; Hosny et al., 

2021). Hence, the optimal time window for antiviral intervention is as early as possible to 

prevent disease progression to severe stages driven by immunopathology (Weinreich et al., 

2021). Since the vast majority of cases are mild or even asymptomatic (Salzberger et al., 

2020), an improved understanding of the processes underlying severe COVID-19 is required 

for the early identification of patients at high risk. 

Here, we investigated a potential role of CD47 expression in determining COVID-19 severity. 

SARS-CoV-2 infection results in enhanced CD47 expression, which is known to interfere with 

the host immune response, and SARS-CoV-2 elevated the CD47 binding partner SIRPα on 

monocytes. Moreover, CD47 levels are elevated in groups at high risk from COVID-19 such 

as older individuals and individuals with hypertension and/ or diabetes. Thus, high CD47 

levels may predispose these groups to severe COVID-19. Additionally, CD47 is a potential 
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therapeutic target, which can be addressed with antibodies and small molecules (Cham et 

al., 2020; Kaur et al., 2020; Oronsky et al., 2020; Tal et al., 2020). Targeting SIRPα is an 

alternative therapeutic option that may be associated with a favorable pharmacokinetic and 

safety profile, as SIRPα is restricted to monocytes and macrophages (Kuo et al., 2020). 
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Abstract 

SARS-CoV-2 is the causative agent of COVID-19. Severe COVID-19 disease has been 

associated with disseminated intravascular coagulation and thrombosis, but the mechanisms 

underlying COVID-19-related coagulopathy remain unknown. The risk of severe COVID-19 

disease is higher in males than in females and increases with age. To identify gene products 

that may contribute to COVID-19-related coagulopathy, we analyzed the expression of genes 

associated with the Gene Ontology (GO) term “blood coagulation” in the Genotype-Tissue 

Expression (GTEx) database and identified four procoagulants, whose expression is higher in 

males and increases with age (ADAMTS13, F11, HGFAC, KLKB1), and two anticoagulants, 

whose expression is higher in females and decreases with age (C1QTNF1, SERPINA5). 

However, the expression of none of these genes was regulated in a proteomics dataset of 

SARS-CoV-2-infected cells and none of the proteins have been identified as a binding partner 
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of SARS-CoV-2 proteins. Hence, they may rather generally predispose individuals to 

thrombosis without directly contributing to COVID-19-related coagulopathy. In contrast, the 

expression of the procoagulant transferrin (not associated to the GO term “blood 

coagulation”) was higher in males, increased with age, and was upregulated upon SARS-CoV-

2 infection. Hence, transferrin warrants further examination in ongoing clinic-pathological 

investigations. 

 

7.1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the 

ongoing coronavirus disease 2019 (COVID-19) outbreak (Marchandot et al., 2020; Zhu, N. et 

al., 2020). SARS-CoV-2 was first detected in December 2019 in the Chinese city Wuhan and 

has since spread around the world. The John Hopkins University Coronavirus Resource 

Center (Dong et al., 2020) currently reports more than 16 million confirmed COVID-19 cases 

and more than 650,000 confirmed COVID-19-related deaths. The majority of SARS-CoV-2 

infections are mild with a substantial proportion of asymptomatic cases. However, SARS-

CoV-2 causes in some patients severe life-threatening multi-organ disease (Guan et al., 2020; 

Iba et al., 2020; Marchandot et al., 2020; Tang, N. et al., 2020). 

Severe COVID-19 disease has been associated with disseminated intravascular coagulation 

and thrombosis (Guan et al., 2020; Iba et al., 2020; Marchandot et al., 2020; Tang, N. et al., 

2020), but the mechanisms underlying COVID-19-related coagulopathy remain unknown. It 

is known, however, that the risk of severe and fatal COVID-19 disease is higher in males than 

in females and that it increases with age (Borges do Nascimento et al., 2020). Similarly, the 

risk of coagulation-related pathologies and thrombosis increases with age and is further 

enhanced in males (Di Minno et al., 2016; Previtali et al., 2011). Thus, gene products that (1) 

are involved in coagulation, (2) change with age, (3) differ in their levels between females 

and males, and (4) are regulated in response to SARS-CoV-2 infection represent candidate 

factors that may contribute to COVID-19-related coagulopathy and disease severity. 

To identify such candidate factors that may be involved in COVID-19-related coagulopathy, 

we here performed a combined analysis of a proteomics dataset derived from SARS-CoV-2-

infected cells (Bojkova et al., 2020), of a dataset of host cell proteins found to bind to SARS-

CoV-2 proteins (Gordon et al., 2020), and of human gene expression data from the Genotype-

Tissue Expression (GTEx) database (GTEx Consortium, 2013). 
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7.2. Methods 

7.2.1. Data Acquisition 

Gene Ontology is an initiative that annotates genes with functions (The Gene Ontology 

Consortium, 2019). Genes associated with the Gene Ontology (GO) term “Blood Coagulation” 

(GO:0007596) were identified using the online database AmiGO 2 (The Gene Ontology 

Consortium, 2019). This generated a list of 335 unique genes annotated with 23 unique terms 

(including “Blood Coagulation” and 22 child terms) for further analysis. 

Gene expression data (transcripts per million, TPM) and clinical data for 980 individuals 

(17,382 samples from 30 tissues) were downloaded from the GTEx Portal 

(https://www.gtexportal.org/home/datasets; GTEx Project, version 8). We also used 

normalized protein abundance data from a recent publication (Bojkova et al., 2020) in which 

protein abundance in uninfected and SARS-CoV-2-infected Caco-2 (SARS-CoV-2-susceptible 

colorectal cancer cell line) cells was quantified. Data were subsequently normalized using 

summed intensity normalization for sample loading, followed by internal reference scaling 

and Trimmed mean of M normalization. 

We also queried the EBI IntAct database (https://www.ebi.ac.uk/intact/) for 

“annot:dataset“coronavirus””, and filtered for interactions between human proteins and 

SARS-CoV-2 proteins. These SARS-CoV-2-interacting proteins were derived from a study by 

Gordon et al. (Gordon et al., 2020), in which 29 SARS-CoV-2 proteins were cloned, tagged, 

and expressed in HEK293T cells, and incubated for 40 h prior to affinity purification and 

identification of binding partners by mass spectrometry. This resulted in 332 high confidence 

human protein interactors for 26 of the SARS-CoV-2 proteins. 

7.2.2. Data Analysis 

Analyses were performed using R3.6.1. Linear models were generated to estimate the 

relationship between gene expression and age using the base R function lm, which generated 

p-values indicating the significance of the relationship. Models with a p-value <0.05 were 

considered significant. Plots were generated using the R package ggplot2. Mean protein 

abundance (for proteomics data) and median gene expression TPM (for GTEx data) was 

plotted using the function ggviolin. p-values indicating the significance of the difference 

between gene expression/protein abundance in males and females in each given age group 

were the result of a Wilcoxon rank sum test for independent groups. For the proteome data, 
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we performed a two-sided student’s t-test. Boxplots comparing gene expression in males 

and females were generated using the function ggboxplot, for which p-values were the result 

of a Wilcoxon rank sum test for independent groups. 

 

7.3. Results 

7.3.1. Identification of Genes that May Be Associated with an Increased 

Coagulation Risk in Males and at an Older Age 

Using AmiGO 2 (GTEx Consortium, 2013), we identified 335 genes, which are associated with 

the GO term “blood coagulation” (GO:0007596). Since the risk of severe COVID-19 disease 

increases with age and is higher in males than in females (Borges do Nascimento et al., 2020), 

coagulation-associated genes which may be relevant in the context of COVID-19-related 

coagulopathy would be expected to differ in their expression between females and males 

and change in their expression with age. 

An analysis of the genes associated with the GO term “blood coagulation” using the 

Genotype-Tissue Expression (GTEx) database (GTEx Consortium, 2013) resulted in 256 

coagulation-associated genes, that are differently expressed between females and males 

(Table S7.1) and 237 genes whose expression changed with age (Table S7.2). These lists 

included many genes, whose products are involved in the regulation of upstream processes, 

which may be linked to coagulation in certain cell types and under certain circumstances but 

are not core players directly involved in the actual coagulation process. Examples include 

members of major signaling cascades such as PI3K or MAPK signaling (Tables S6.1 and S6.2). 

Hence, the functions of these genes were manually annotated to identify candidate genes, 

whose products act as procoagulants and anticoagulants (Tables S6.1 and S6.2). This resulted 

in a list of 49 overlapping genes, whose products are directly involved in coagulation (Table 

S7.3). 

Two groups of genes were considered as candidates, whose products may increase or reduce 

the risk of COVID-19-related coagulopathy: (1) procoagulants that display higher expression 

in males and increase in their expression with age and (2) anticoagulants that display higher 

expression in females and decrease in their expression with age. According to these criteria, 

we found four procoagulants (ADAMTS13, F11, HGFAC, KLKB1) and two anticoagulants 

(C1QTNF1, SERPINA5), whose expression may predispose males and older individuals to 
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COVID-19-related coagulopathy and severe COVID-19 disease (Table 7.1, Figure 7.1, Table 

S7.3). 

 

 

Figure 7.1. Gene products anticipated to be of potential relevance for COVID-19-related coagulopathy, 

based on genes with a role in coagulation that are differentially expressed between females and males 

(Table S7.1) and whose expression correlates with age (Table S7.2). Candidate gene products were 

either (A) procoagulants (ADAMTS13, F11, HGFAC, KLKB1), which display higher expression in males 

than in females and increase with age, or (B) anticoagulants (C1QTNF1, SERPINA5), which display 
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higher expression in females than in males and decrease with age. A complete list of the relevant 

genes overlapping between Table S7.1 and Table S7.2 is presented in Table S7.3. p-values were 

determined by two-sided Student’s t-test. * p-value < 0.05. 

 

Table 7.1. Candidate gene products that may be involved in COVID-19-related coagulopathy. 

Candidates were either (A) procoagulants (ADAMTS13, F11, HGFAC, KLKB1), which display a lower 

expression in females than in males and increase with age, or (B) anticoagulants (C1QTNF1, 

SERPINA5), which display higher expression in females than in males and decrease with age. 

(A) Procoagulants 

 Female vs. male Age-associated expression 

Relative 

expression 

p-value * Direction p-value 

ADAMTS13 low 8.9 × 10−8 increase 1.6 × 10−11 

F11 low 3.5 × 10−4 increase <2.2 × 10−16 

HGFAC low 0.032 increase 0.049 

KLKB1 low <2.2 × 10−16 increase 4.3 × 10−6 

(B) Anticoagulants 

 Female vs. male Age-associated expression 

Relative 

expression 

p-value Direction p-value 

C1QTNF1 high 6.7 × 10−13 decrease 2.6 × 10−16 

SERPINA5 high 3.7 × 10−3 decrease 2.8 × 10−6 

* p-value < 0.05 were considered as significantly different. 

 

7.3.2. No Overlap between COVID-19-Related Coagulopathy Predisposition 

Genes and SARS-CoV-2-Associated Genes 

Next, we investigated whether there is a known relationship between the candidate genes, 

whose products may predispose individuals to severe COVID-19 disease, and SARS-CoV-2 
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infection. For this, we used a proteomics and translatome dataset derived from SARS-CoV-2-

infected and non-infected cells (Bojkova et al., 2020) (Table S7.4) and 332 high confidence 

human SARS-CoV-2 interactor proteins, which had been identified by expressing 29 tagged 

SARS-CoV-2 proteins in HEK293T cells, followed by affinity purification and mass 

spectrometric identification of binding partners (Gordon et al., 2020) (Table S7.4). However, 

none of our six candidates were shown to be regulated by or interact with SARS-CoV-2 

(Tables S6.4 and S6.5). 

7.3.3. Transferrin May Be Involved in COVID-19-Related Coagulopathy 

While searching manually for additional candidates potentially involved in COVID-19-related 

coagulopathy, we found transferrin to be upregulated in SARS-CoV-2-infected cells relative 

to non-infected cells (Bojkova et al., 2020) (Figure 7.2A). Transferrin is a glycoprotein 

circulating in the blood that is best known for its function as an iron carrier. It binds to cellular 

transferrin receptors and delivers iron by receptor-mediated endocytosis (Kawabata, 2019; 

Luck & Mason, 2012). However, transferrin has also been shown to increase coagulation 

independent of its role as an iron transporter by interfering with antithrombin/SERPINC1-

mediated inhibition of coagulation proteases including thrombin and factor XIIa (Tang, X. et 

al., 2020). Hence, there might be a link between transferrin levels and coagulation in COVID-

19 patients. 
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Figure 7.2. SARS-CoV-2-induced (derived from (Bojkova et al., 2020)) transferrin (TF) expression and 

age- and gender-specific expression of the procoagulant TF and its antagonist SERPINC1/antithrombin 

based on GTEx data. Data are presented as violin blots to indicate the distribution of individual values 

and as bar charts to facilitate comparisons. TF displayed higher levels in SARS-CoV-2-infected cells 

than in non-infected cells. Moreover, TF expression and the expression ration of TF and SERPINC1 
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increased with age and were higher in females than in males. (A) TF protein abundance in uninfected 

(control) and SARS-CoV-2-infected (virus) Caco-2 cells. p-values are the result of a two-sided Student’s 

t-test. (B) TF expression (TPM) in females and males across six age groups. p-values were calculated 

using the Wilcoxon rank sum test for independent groups. (C) SERPINC1 expression (TPM) in females 

and males across six age groups. p-values were calculated using the Wilcoxon rank sum test for 

independent groups. (D) Ratio of TF/SERPINC1 expression (TPM) in females and males across six age 

groups. p-values were calculated using the Wilcoxon rank sum test for independent groups. * p-value 

< 0.05. 

 

GTEx data indicated that transferrin expression increased with age and was higher in males 

than in females (Figure 7.2B). In contrast, expression of its antagonist antithrombin did not 

increase with age and was similar in females and males (Figure 7.2C). Thus, the 

transferrin/antithrombin ratio increases with age and is higher in males than in females 

(Figure 7.2D). This correlates with the risk of severe and fatal COVID-19 disease, which is 

higher in males than in females and also increases with age (Borges do Nascimento et al., 

2020). Hence, an increased transferrin/antithrombin ratio may contribute to COVID-19-

related coagulopathy and more severe disease in older patients, in particular in males. 

Transferrin was not included in the list of SARS-CoV-2-interacting proteins (Gordon et al., 

2020) (Table S7.4). This suggests that transferrin is regulated in response to SARS-CoV-2 

infection but does not directly interact with SARS-CoV-2 proteins. 

 

7.4. Discussion 

Severe COVID-19 disease is associated with intravascular coagulation and thrombosis 

(COVID-19-related coagulopathy) (Buja et al., 2020; Guan et al., 2020; Iba et al., 2020; 

Marchandot et al., 2020; Tang, N. et al., 2020) and the risk of severe disease increases with 

age and is higher in males than in females (Borges do Nascimento et al., 2020). To identify 

factors involved in coagulation that may contribute to COVID-19-related coagulopathy, we 

used genes associated with the GO term “blood coagulation” and the GTEx database 

resulting in four procoagulants, whose expression was higher in males than in females and 

increased with age (ADAMTS13, F11, HGFAC, KLKB1), and two anticoagulants, whose 

expression was higher in females and decreased with age (C1QTNF1, SERPINA5). 
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However, these candidate factors were not found to be regulated in SARS-CoV-2-infected 

cells (Bojkova et al., 2020) or among proteins known to interact with SARS-CoV-2 proteins 

(Gordon et al., 2020). Hence, they may rather generally predispose individuals to 

coagulopathy, which is known to be higher in males and to increase with age (Di Minno et 

al., 2016; Previtali et al., 2011), than being directly involved in the disease processes 

mediated by SARS-CoV-2 infection. Therefore, these factors may also be relevant in age- and 

gender-related thrombosis formation beyond COVID-19. 

Our manual further investigations identified transferrin as a candidate factor, which may be 

involved in COVID-19-related coagulopathy. The expression of transferrin, a known 

procoagulant (Tang, X. et al., 2020), was upregulated in SARS-CoV-2-infected cells, increased 

with age, and was higher in males than in females. Moreover, a rise of transferrin levels was 

observed in patients during COVID-19 disease progression (Bolondi et al., 2020). Transferrin 

is an iron carrier protein that circulates and delivers iron to cells via transferrin receptor 

binding followed by receptor-mediated endocytosis (Kawabata, 2019; Luck & Mason, 2012). 

However, it also promotes coagulation by iron-independent mechanisms as an inhibitor of 

antithrombin, which interferes with the prothrombotic activity of coagulation proteases such 

as thrombin and factor XIIa (Tang, X. et al., 2020). 

Transferrin is primarily produced in the liver. However, (SARS-CoV-2-induced) locally 

produced transferrin may contribute to COVID-19 pathology, even independent of 

circulating transferrin levels (Kawabata, 2019; Luck & Mason, 2012; Lum et al., 1986; Mateos 

et al., 1998; McClain et al., 2018; Murakami et al., 2019; Yang, F. et al., 1997; Zakin et al., 

2002). For example, transferrin is produced in the brain (Zakin et al., 2002), and high 

transferrin levels have been associated with hypercoagulability and ischemic stroke (Zakin et 

al., 2002). Stroke is a significant complication in COVID-19 (Tang, X. et al., 2020) and is much 

more common in COVID-19 than, for example, in influenza patients (Koralnik & Tyler, 2020). 

Both ischemic and hemorrhagic strokes are observed in COVID-19 patients (Tang, X. et al., 

2020). Notably, transferrin may not only contribute to ischemic strokes via inducing 

coagulation (Merkler et al., 2020), it may also increase the brain injury associated with 

hemorrhagic strokes by facilitating cellular iron uptake (Nakamura et al., 2005). High 

transferrin levels have also been associated with diabetes and metabolic syndrome 

(Fumeron et al., 2006; McClain et al., 2018; Vari et al., 2007; Zhao, H. Q. et al., 2015), which 

are known risk factors for severe COVID-19 disease. 
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7.5. Conclusions 

In conclusion, the role of transferrin in the course of COVID-19 disease and in particular of 

COVID-19-related coagulopathy should be considered and further examined in ongoing 

clinico-pathological investigations. If the role of transferrin is confirmed in the pathogenesis 

of severe COVID-19 disease and in COVID-19-related coagulopathy, it is a candidate 

diagnostic marker for the monitoring of COVID-19 progression and may guide the use of 

anticoagulants in COVID-19 patients. 
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Abstract 

Severe acute respiratory syndrome virus 2 (SARS-CoV-2) is the cause of the current 

coronavirus disease 19 (COVID-19) pandemic. Protease inhibitors are under consideration as 

virus entry inhibitors that prevent the cleavage of the coronavirus spike (S) protein by cellular 

proteases. Herein, we showed that the protease inhibitor aprotinin (but not the protease 

inhibitor SERPINA1/alpha-1 antitrypsin) inhibited SARS-CoV-2 replication in therapeutically 

achievable concentrations. An analysis of proteomics and translatome data indicated that 

SARS-CoV-2 replication is associated with a downregulation of host cell protease inhibitors. 
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Hence, aprotinin may compensate for downregulated host cell proteases during later virus 

replication cycles. Aprotinin displayed anti-SARS-CoV-2 activity in different cell types (Caco2, 

Calu-3, and primary bronchial epithelial cell air–liquid interface cultures) and against four 

virus isolates. In conclusion, therapeutic aprotinin concentrations exert anti-SARS-CoV-2 

activity. An approved aprotinin aerosol may have potential for the early local control of SARS-

CoV-2 replication and the prevention of COVID-19 progression to a severe, systemic disease. 

 

8.1. Introduction 

Severe acute respiratory syndrome virus 2 (SARS-CoV-2), a novel betacoronavirus, causes a 

respiratory disease and pneumonia called coronavirus disease 19 (COVID-19) and is the cause 

of a current pandemic responsible for millions of cases and hundreds of thousands of deaths 

(Chen, N. et al., 2020; Coronaviridae Study Group of the International Committee on 

Taxonomy of Viruses, 2020; Dong et al., 2020; Lu et al., 2020; Wu, F. et al., 2020; Zhou, P. et 

al., 2020; Zhu, N. et al., 2020). Drugs for the treatment of COVID-19 are urgently needed. 

Cell entry of coronaviruses is mediated by the interaction of the viral spike (S) protein with 

their host cell receptors, which differ between different coronaviruses (Cui et al., 2019). For 

example, Middle East respiratory syndrome coronavirus (MERS-CoV) uses dipeptidyl 

peptidase 4 (DPP4) as a cellular receptor (Cui et al., 2019). Host cell entry of SARS-CoV-2 and 

of the closely related severe acute respiratory syndrome virus (SARS-CoV) is mediated by 

angiotensin-converting enzyme 2 (ACE2) (Cui et al., 2019; Hoffmann et al., 2020; Matsuyama 

et al., 2020). S binding to ACE2 depends on S cleavage at three sites (S1, S2, and S2’) by host 

cell proteases, typically by the transmembrane serine protease 2 (TMPRSS2), and can be 

inhibited by serine protease inhibitors (Hoffmann et al., 2020; Matsuyama et al., 2020). 

Camostat was the first serine protease inhibitor that was shown to inhibit TMPRSS2 

(Hoffmann et al., 2020). Subsequently, additional TMPRSS2 inhibitors, including nafamostat 

and Arbidol derivatives, were demonstrated to interfere with SARS-CoV-2 internalization 

into host cells (Choudhary & Silakari, 2020; Hoffmann et al., 2020a; Yamamoto et al., 2020). 

Aprotinin is a serine protease inhibitor, which has previously been shown to inhibit TMPRSS2 

and has been suggested as a treatment option for influenza viruses and coronaviruses (Shen, 

L. W. et al., 2017; Zhirnov et al., 2011). Herein, we investigated the effects of aprotinin 

against SARS-CoV-2. 
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8.2. Materials and Methods 

8.2.1. Drugs 

SERPINA1/alpha-1 antitrypsin (Prolastin) was obtained from Grifols (Barcelona, Spain). 

Aprotinin was purchased from Sigma-Aldrich (Darmstadt, Germany)). 

8.2.2. Cell Culture 

The Caco2 cell line was obtained from DSMZ (Braunschweig, Germany), and Calu-3 from 

ATCC (Manassas, VA, US). The cells were grown at 37 °C in minimal essential medium (MEM) 

supplemented with 10% fetal bovine serum (FBS), 100 IU/mL of penicillin, and 100 μg/mL of 

streptomycin. All culture reagents were purchased from Sigma-Aldrich. Cells were regularly 

authenticated by short tandem repeat (STR) analysis and tested for mycoplasma 

contamination. 

Lung tissue for the isolation of primary epithelial cells was provided by the Hannover Medical 

School, Institute of Pathology (Hannover, Germany). The use of tissue was approved by the 

ethics committee of the Hannover Medical School (MHH, Hannover, Germany, number 

2701–2015) and was in compliance with The Code of Ethics of the World Medical Association. 

Primary bronchial epithelial cells were isolated from the lung explant tissue of a patient with 

lung emphysema as described previously (Van Wetering et al., 2000). All patients or their 

next of kin gave written informed consent for the use of their lung tissue for research. Basal 

cells were expanded in Keratinocyte-SFM medium supplemented with bovine pituitary 

extract (25 µg/mL), human recombinant epidermal growth factor (0.2 ng/mL, all from Gibco, 

Schwerte, Germany), isoproterenol (1 nM, Sigma), Antibiotic/Antimycotic Solution (Sigma-

Aldrich), and MycoZap Plus PR (Lonza, Cologne, Germany) and cryopreserved until further 

use. 

For differentiation, the cells were thawed and passaged once in PneumaCult-Ex Medium 

(StemCell Technologies, Cologne, Germany) and then seeded on transwell inserts (12-well 

plate, Sarstedt, Nümbrecht, Germany) at 4 × 104 cells/insert. Once the cell layers reached 

confluency, the medium on the apical side of the transwell was removed, and medium in the 

basal chamber was replaced with PneumaCult ALI Maintenance Medium (StemCell 

Technologies), including Antibiotic/Antimycotic Solution (Sigma-Aldrich) and MycoZap Plus 

PR (Lonza). During a period of four weeks, the medium was changed and the cell layers were 

washed with PBS every other day. Criteria for successful differentiation were the 
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development of ciliated cells and ciliary movement, an increase in transepithelial electric 

resistance indicative of the formation of tight junctions, and mucus production. 

8.2.3. Virus Infection 

The isolates SARS-CoV-2/1/Human/2020/Frankfurt (SARS-CoV-2/FFM1), SARS-CoV-

2/2/Human/2020/Frankfurt (SARS-CoV-2/FFM2), SARS-CoV-2/6/Human/2020/Frankfurt 

(SARS-CoV-2/FFM6), and SARS-CoV-2/7/Human/2020/Frankfurt (SARS-CoV-2/FFM7) were 

isolated and cultivated in Caco2 cells as previously described (Hoehl et al., 2020; Toptan et 

al., 2020). Virus titers were determined as TCID50/mL in confluent cells in 96-well microtiter 

plates (Cinatl Jr et al., 2005; Cinatl et al., 2003). 

8.2.4. Antiviral Assay 

Confluent cell cultures were infected with SARS-CoV-2 in 96-well plates at a multiplicity of 

infection (MOI) of 0.01 in the absence or presence of the drug. The cytopathogenic effect 

(CPE) was assessed visually 48 h post-infection (Cinatl et al., 2003). Concentrations that 

inhibited CPE formation by 50% (IC50) were determined using CalcuSyn (Biosoft, Cambridge, 

UK). 

8.2.5. Viability Assay 

Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) assay modified after Mosman (Mosmann, 1983), as previously described 

(Onafuye et al., 2019). Confluent cell cultures in 96-well plates were incubated with the drug 

for 48 h. Then, 25 µL of MTT solution (2 mg/mL (w/v) in PBS) were added per well, and the 

plates were incubated at 37 °C for an additional 4 h. After this, the cells were lysed using 200 

µL of a buffer containing 20% (w/v) sodium dodecylsulfate and 50% (v/v) N,N-

dimethylformamide with the pH adjusted to 4.7 at 37 °C for 4 h. Absorbance was determined 

at 570 nm for each well using a 96-well multiscanner (Tecan, Crailsheim, Germany). After 

subtracting of the background absorption, the results are expressed as percentage viability 

relative to control cultures that received no drug. Drug concentrations that inhibited cell 

viability by 50% (CC50) were determined using CalcuSyn (Biosoft). 

8.2.6. Immunostaining for SARS-CoV-2 S Protein 

Immunostaining was performed as previously described (Cinatl Jr et al., 1995), using a 

monoclonal antibody directed against SARS-CoV-2 S protein (1:1500 dilution, Sino Biological, 

Eschborn, Germany) 24 h post-infection. 
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8.2.7. Caspase 3/7 Activation 

Caspase 3/7 activation was determined using the Caspase-Glo® 3/7 Assay (Promega, 

Walldorf, Germany) according to the manufacturer’s instructions. 

8.2.8. qPCR 

SARS-CoV-2 RNA from the cell culture supernatant samples was isolated using AVL buffer 

and the QIAamp Viral RNA Kit (Qiagen, Hilden, Germany) according to the manufacturer’s 

instructions. Absorbance-based quantification of the RNA yield was performed using the 

Genesys 10S UV-Vis Spectrophotometer (Thermo Fisher Scientific, Dreieich, Germany). RNA 

was subjected to OneStep qRT-PCR analysis using the Luna Universal One-Step RT-qPCR Kit 

(New England Biolabs, Frankfurt am Main, Germany) and a CFX96 Real-Time System, C1000 

Touch Thermal Cycler (Bio-Rad, Feldkirchen, Germany). Primers were adapted from the WHO 

protocol29 targeting the open reading frame for RNA-dependent RNA polymerase (RdRp): 

RdRP_SARSr-F2 (GTG ARA TGG TCA TGT GTG GCG G) and RdRP_SARSr-R1 (CAR ATG TTA AAS 

ACA CTA TTA GCA TA) using 0.4 µM per reaction. Standard curves were created using plasmid 

DNA (pEX-A128-RdRP) harboring the corresponding amplicon regions for RdRp target 

sequence according to GenBank Accession number NC_045512. For each condition, three 

biological replicates were used. The mean and standard deviation were calculated for each 

group. 

8.2.9. Western Blot 

Cells were lysed using Triton-X-100 sample buffer (Sigma-Aldrich), and proteins were 

separated by SDS-PAGE. Detection occurred by using specific antibodies against SARS-CoV-2 

N (1:1000 dilution, SARS-CoV-2 Nucleocapsid Antibody, Rabbit monoclonal antibody (Mab), 

#40143-R019, Sino Biological), ACE2 (1:500 dilution, Anti-ACE2 antibody, #ab15348, Abcam, 

Berlin, Germany), TMPRSS2 (1:1000 dilution, Recombinant Anti-TMPRSS2 antibody 

[EPR3861], #ab92323, Abcam), and GAPDH (1:1000 dilution, Anti-G3PDH Human Polyclonal 

Antibody, #2275-PC-100, Trevigen, Wiesbaden, Germany). Protein bands were visualized by 

laser-induced fluorescence using an infrared scanner for protein quantification (Odyssey, Li-

Cor Biosciences, Bad Homburg, Germany). 

8.2.10. Sample Preparation for LC–MS 

Preparation of samples was performed as previously described (Klann et al., 2020) and 

labeled with TMTpro multiplexing reagents. 
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8.2.11. Targeted Analysis by SPS–MS3 

Mass spectrometry data were acquired in centroid mode on an Orbitrap Fusion Lumos mass 

spectrometer hyphenated to an easy-nLC 1200 nano HPLC system using a nanoFlex ion 

source (ThermoFisher Scientific) applying a spray voltage of 2.6 kV with the transfer tube 

heated to 300 °C and a funnel RF of 30%. Internal mass calibration was enabled (lock mass 

445.12003 m/z). Peptides were separated on a self-made, 32 cm long, 75 µm ID fused-silica 

column, packed in house with 1.9 µm C18 particles (ReproSil-Pur, Dr. Maisch, Ammerbuch-

Entringen, Germany) and heated to 50 °C using an integrated column oven (Sonation, 

Biberach, Germany). The HPLC solvents consisted of 0.1% formic acid in water (Buffer A) and 

0.1% formic acid with 80% acetonitrile in water (Buffer B). 

Dependent scans were performed on precursors matching a mass list of viral peptides 

modified with TMTpro reagents and their charge states (mass tolerance was set to 5 ppm for 

matching precursors). Peptides were eluted by a non-linear gradient from 5% to 40% B over 

30 min, followed by a step-wise increase to 95% B in 6 min, which was held for another 9 

min. Full scan MS spectra (350–1500 m/z) were acquired with a resolution of 120,000 at m/z 

200, a maximum injection time of 100 ms, and an automatic gain control (AGC) target value 

of 4 × 105. The 10 most intense precursors matching the target list per full scan were selected 

for fragmentation (“Top 10”) and isolated with a quadrupole isolation window of 0.4 Th. MS2 

scans were performed in the Orbitrap using a maximum injection time of 300 ms, an AGC 

target value of 1.5 × 104, and fragmented using HCD with a normalized collision energy (NCE) 

of 35% and a fixed first mass of 110 m/z. Repeated sequencing of already acquired precursors 

was limited by setting a dynamic exclusion of 20 s and 10 ppm and advanced peak 

determination was deactivated. 

8.2.12. Data Analysis 

RAW data was processed with Proteome Discoverer 2.4 software. HCD-fragmented spectra 

were searched against a SARS-CoV-2 proteome FASTA file (UniProt pre-realease) by 

SequestHT and the false discovery rate (FDR) was calculated using a target/decoy-based 

approach. TMTpro reporter abundances were extracted and used for plotting and statistical 

analysis. 

8.2.13. Data Availability 

The mass spectrometry proteomics data were deposited to the ProteomeXchange 

Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository with the dataset 

identifier PXD019950. 
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8.3. Results 

8.3.1. The Protease Inhibitor Aprotinin Exerts Superior Anti-SARS-CoV-2 Activity 

Relative to the Endogenous Protease Inhibitor SERPINA1/alpha-1 Antitrypsin 

We compared the anti-SARS-CoV-2 activity of aprotinin (Shen, L. W. et al., 2017; Solun & 

Shoenfeld, 2020) and SERPINA1/alpha-1 antitrypsin, an endogenous protease inhibitor that 

is available as a pharmaceutical preparation for the treatment of alpha-1 antitrypsin 

deficiency (Strnad et al., 2020), against three different SARS-CoV-2 isolates from two lineages 

(L: SARS-CoV-2/FFM1 and SARS-CoV-2/FFM2; GR: SARS-CoV-2/FFM6) (Toptan et al., 2020). 

SARS-CoV-2/FFM1 and SARS-CoV-2/FFM2 were isolated from patients in Hubei province in 

China, while SARS-CoV/FFM6 was derived from an Italian patient (Toptan et al., 2020). 

The aprotinin concentrations that inhibited the formation of cytopathogenic effects (CPEs) 

by 50% (IC50) in SARS-CoV-2-infected Caco2 cells ranged from 0.81 µM (SARS-CoV-2/FFM2) 

to 1.03 µM (SARS-CoV-2/FFM1) across the three tested SARS-CoV-2 isolates, whereas 

SERPINA1/alpha-1 antitrypsin did not show significant antiviral effects in the tested 

concentrations up to 20 µM (Figure 8.1A). Similar effects were observed by cell staining for 

SARS-CoV-2 S protein (Figure 8.1B and Figure S8.1, Table 8.1). Quantification of genomic 

SARS-CoV-2 RNA using qPCR confirmed that aprotinin inhibits SARS-CoV-2 replication (Figure 

8.1C). Aprotinin (20 µM) reduced the genomic RNA levels of SARS-CoV-2/FFM1 by 900-fold, 

those of SARS-CoV-2/FFM2 by 237-fold, and those of SARS-CoV-2/FFM6 by 584-fold. 
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Figure 8.1. Anti-severe acute respiratory syndrome virus 2 (SARS-CoV-2) effects of aprotinin and 

SERPINA1/alpha-1 antitrypsin. (A) Concentration-dependent effects of aprotinin and SERPINA1/alpha-

1 antitrypsin on SARS-CoV-2-induced cytopathogenic effect (CPE) formation determined 48 h post-

infection in Caco2 cells infected at a multiplicity of infection (MOI) of 0.01 with the three different 

SARS-CoV-2 isolates. The viability of the Caco2 cells was 84.3 ± 2.7% relative to the untreated control 
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in the presence of 20 µM of aprotinin. (B) Immunostaining for the SARS-CoV-2 S protein in aprotinin- 

and SERPINA1/alpha-1 antitrypsin-treated Caco2 cells infected at an MOI of 0.01 with the three 

different SARS-CoV-2 isolates as determined 48 h post-infection. The protease inhibitors were tested 

at four concentrations in 1:4 dilution steps ranging from 20 to 0.3125 µM. A quantification is provided 

in Figure S8.1. (C) Copy numbers of genomic RNA in Caco2 cells infected with different SARS-CoV-2 

isolates (MOI of 0.01) in response to treatment with aprotinin or SERPINA1/alpha-1 antitrypsin as 

determined 48 h post-infection. FFM1, 1/Human/2020/Frankfurt; FFM2, 2/Human/2020/Frankfurt; 

FFM6, 6/Human/2020/Frankfurt. 

 

Table 8.1. Aprotinin concentrations that reduce SARS-CoV-2-induced cytopathogenic effect (CPE) 

formation, SARS-CoV-2 spike (S) levels, and SARS-CoV-2-induced caspase 3/7 activation by 50% (IC50) 

as determined in Caco2 cells infected with different SARS-CoV-2 isolates (MOI of 0.01) 48 h post-

infection. 

  IC50 (µM)  

 FFM1 FFM2 FFM6 

CPE formation 1.03 ± 0.07 0.81 ± 0.07 0.92 ± 0.03 

S levels 0.79 ± 0.15 1.04 ± 0.21 1.65 ± 0.30 

Caspase 3/7 

activation 
0.41 ± 0.25 0.32 ± 0.09 0.73 ± 0.40 

 

Both aprotinin and SERPINA1/alpha-1 antitrypsin are trypsin inhibitors (Gettins, 2002; Solun 

& Shoenfeld, 2020). To verify the integrity of the used protease inhibitor samples, we tested 

their capacity to antagonize trypsin and enable Caco2 and A549 cell adhesion. The results 

confirmed that both protease inhibitors are active (Figure S8.2). Taken together, these 

findings indicate differences in the protease inhibitor spectrum of aprotinin and 

SERPINA1/alpha-1 antitrypsin that result in different effects on SARS-CoV-2 replication. 

8.3.2. Quantification of the Antiviral Effects of Aprotinin by Measuring SARS-

CoV-2-Induced Caspase 3/7 Activation 

Different viruses, including SARS-CoV-2, have been shown to induce caspase 3 activation (Li, 

S. et al., 2020; Michaelis et al., 2007; Ren et al., 2020; Xu, M. et al., 2016), and virus-induced 

caspase 3 activation has been used as read-out in assays that quantify the antiviral effects of 
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drug candidates (Xu, M. et al., 2016). Hence, we used the Caspase-Glo® 3/7 Assay (Promega) 

as an additional quantitative method to determine the anti-SARS-CoV-2 activity of aprotinin. 

The results confirmed those obtained by CPE formation and S expression resulting in similar 

IC50 values (Figure 8.2, Table 8.1). 

 

Figure 8.2. Effects of aprotinin on SARS-CoV-2-induced caspase 3/7 activation. Caspase 3/7 activity 

was determined in Caco2 cells infected with different SARS-CoV-2 isolates (MOI of 0.01) 48 h post-

infection. 

 

8.3.3. Aprotinin Inhibits Virus Entry 

Protease inhibitors were suggested to interfere with SARS-CoV-2 replication predominantly 

as entry inhibitors that prevent S cleavage and activation (Shen, L. W. et al., 2017). In 

agreement, aprotinin addition after a one-hour adsorption period did not significantly 

interfere with SARS-CoV-2 replication in one round of a replication assay, in which virus titers 

were determined 8 h post-infection with an MOI of 0.1 (Figure 8.3A). In contrast, remdesivir, 

which was anticipated to interfere with the replication of the viral genome, inhibited SARS-

CoV-2 replication when added post-infection (Figure 8.3A). 
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Figure 8.3. Anti-SARS-CoV-2 effects of aprotinin when administered post-infection. For post-infection 

experiments, the cells were incubated with the virus for a one-hour adsorption period. Then, the cells 

were washed three times in PBS prior to the addition of the drug. (A) The effects of aprotinin and the 

RNA polymerase inhibitor remdesivir (a positive control drug that interferes with virus replication after 

virus entry) on virus replication as determined by qPCR in SARS-CoV-2/FFM1 (MOI of 0.1)-infected 

Caco2 cells 8 h post-infection (after approximately one round of replication). * p < 0.05 as determined 

by one-way ANOVA and Dunnett’s multiple comparison test. (B) The effects of aprotinin on 

cytopathogenic effect (CPE) formation in SARS-CoV-2/FFM1 (MOI of 0.01)-infected Caco2 cells were 

determined 48 h post-infection. 

 

8.3.4. Aprotinin May Interfere with SARS-CoV-2-Mediated Downregulation of 

Host Cell Protease Inhibitors 

Notably, aprotinin exerted similar anti-SARS-CoV-2 effects when added before or after 

infection of Caco2 cells with a lower MOI (0.01) in a 48 h assay (Figure 8.3B). In this format, 

aprotinin probably inhibits the later rounds of SARS-CoV-2 replication, but other mechanisms 

may also contribute. 
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Host cell protease inhibitors interfere with the activity of proteases such as TMPRSS2 (Esumi 

et al., 2015; Straus et al., 2020) that mediate SARS-CoV-2 cell entry by cleaving and activating 

the viral S protein (Hoffmann et al., 2020; Hoffmann et al., 2020a; Yamamoto et al., 2020). 

An analysis of the effect of SARS-CoV-2 infection on host cell protease inhibitors using 

proteomics data from SARS-CoV-2-infected Caco2 cells (Bojkova et al., 2020) showed that 

the endogenous protease inhibitors SPINT1 (Kunitz-type protease inhibitor 1), SPINT2 

(Kunitz-type protease inhibitor 2), and SERPINA1 (alpha-1-antitrypsin) are present at lower 

levels in SARS-CoV-2-infected cells than in non-infected control cells 24 h post-infection 

(Figure 8.4A). Translatome data from the same dataset (Bojkova et al., 2020) indicated that 

the translation of SERPINA1 and SPINT2 (but not that of SPINT1) is also reduced in SARS-CoV-

2-infected cells (Figure 8.4B). Hence, SARS-CoV-2 infection results in the downregulation of 

endogenous protease inhibitors, which may support SARS-CoV-2 replication. Thus, 

compensation for downregulated endogenous protease inhibitors may contribute to the 

antiviral effects of aprotinin. 

 

Figure 8.4. Regulation of host cell protease inhibitors in SARS-CoV-2-infected cells. (A) Total protein 

levels based on a publicly available proteomics dataset (Bojkova et al., 2020), indicating cellular levels 

of endogenous protease inhibitors in SARS-CoV-2 (MOI of 1)-infected Caco2 cells 2 h and 24 h post-

infection. Data were normalized using summed intensity normalization for sample loading, followed 

by internal reference scaling and trimmed mean of M normalization. * p-values as determined using 

a two-sided Student’s t-test. (B) Mean protein translation of endogenous protease inhibitors in 
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arbitrary units (AU) (normalized and corrected summed peptide spectrum matches (PSMs) were 

averaged) in SARS-CoV-2 (MOI of 1)-infected Caco2 cells 2 h and 24 h post-infection based on a publicly 

available translatome dataset (Bojkova et al., 2020). * p-values as determined using a two-sided 

Student’s t-test. 

 

8.3.5. Aprotinin Exerts Anti-SARS-CoV-2 Activity in Air–Liquid Interface (ALI) 

Cultures from Primary Bronchial Epithelial Cells 

We also investigated the effects of aprotinin in SARS-CoV-2-infected air–liquid interface (ALI) 

cultures from primary bronchial epithelial cells. A targeted proteomics assay demonstrated 

that aprotinin 20 µM suppressed the expression of the SARS-CoV-2 proteins N (nucleocapsid 

protein) and M (membrane protein) in SARS-CoV-2-infected ALI cultures (Figure 8.5A, Table 

S8.1). The results for N were confirmed by Western blots in the ALI cultures infected with 

SARS-CoV-2/FFM7 (Figure 8.5B). SARS-CoV-2/FFM7 (G lineage) is an alternative isolate 

derived from a patient from Israel (Toptan et al., 2020). Aprotinin also suppressed SARS-CoV-

2 S expression in SARS-CoV-2/FFM7-infected Calu-3 lung adenocarcinoma cells (Figure S8.3). 
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Figure 8.5. Antiviral effects of aprotinin in SARS-CoV-2-infected air–liquid interface (ALI) cultures from 

primary bronchial epithelial cells. (A) Abundance of the SARS-CoV-2 proteins N (nucleocapsid) and M 

(membrane) in primary bronchial epithelial cell ALI cultures infected with SARS-CoV-2/FFM1 (MOI of 

1) in the presence or absence of aprotinin (20 µM) as determined 5 days post-infection by multiplexed 

mass spectrometry analysis using acquisition targeting of previously identified viral peptides modified 

with TMTpro. The detailed data are presented in Table S8.1. (B) Western blots indicating cellular SARS-

CoV-2 N and TMPRSS2 levels in primary bronchial epithelial cell ALI cultures infected with SARS-CoV-

2/7/Human/2020/Frankfurt (FFM7) (MOI of 1) in the presence or absence of aprotinin as detected 5 

days post infection. GAPDH was served as the loading control. Uncropped Western blots are shown in 

Figure S8.4. 
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8.4. Discussion 

Herein, we showed that aprotinin inhibits SARS-CoV-2 replication predominantly as an entry 

inhibitor, probably via interfering with SARS-CoV-2 S activation by TMPRSS2. Notably, 

SERPINA1/alpha-1 antitrypsin, which is available as a pharmaceutical preparation for the 

treatment of alpha-1 antitrypsin deficiency (Strnad et al., 2020), did not inhibit SARS-CoV-2 

replication in the same concentration range. Further investigations will have to elucidate the 

differences between aprotinin and SERPINA1/alpha-1 antitrypsin that are responsible for the 

discrepancy in anti-SARS-CoV-2 activity. Notably, SERPINA1/alpha-1 antitrypsin was shown 

to inhibit TMPRSS2 in an enzymatic assay and is suggested as an antiviral treatment for 

COVID-19 (Azouz et al., 2020). A clinical trial testing SERPINA1/alpha-1 antitrypsin for the 

treatment of COVID-19 has recently been started (ClinicalTrials.gov Identifier: 

NCT04385836). Based on our data, however, SERPINA1/alpha-1 antitrypsin is not expected 

to exert direct antiviral effects in COVID-19 patients. Our findings also indicate that antiviral 

therapy candidates should be tested for their effects on complete replication-competent 

viruses in permissive cells. 

Aprotinin exerted anti-SARS-CoV-2 effects in three cell culture models (Caco2, Calu-3, and 

air–liquid interface cultures from primary bronchial epithelial cells) and against three SARS-

CoV-2 strains (FFM1, FFM2, FFM6, and FFM7). Notably, another study became available 

during the revision of our manuscript that detected anti-SARS-CoV-2 activity of aprotinin in 

Calu-3 cells (Bestle et al., 2020). Our findings are also in agreement with studies that reported 

other TMPRSS2 inhibitors to inhibit SARS-CoV-2 entry and replication (Choudhary & Silakari, 

2020; Hoffmann et al., 2020a; Yamamoto et al., 2020). In addition, furin has been shown to 

cleave and activate SARS-CoV-2 S and furin inhibitors have been demonstrated to exert anti-

SARS-CoV-2 effects (Cheng, Y. W. et al., 2020). 

Endogenous protease inhibitors may interfere with the activation of virus surface proteins 

such as S by host cell proteases (Esumi et al., 2015; Hoffmann et al., 2020; Hoffmann et al., 

2020a; Straus et al., 2020; Yamamoto et al., 2020). Our analysis of proteomics and 

translatome data from SARS-CoV-2-infected Caco2 cells (Bojkova et al., 2020) revealed a 

downregulation of endogenous protease inhibitors in response to SARS-CoV-2 infection, 

which may contribute to efficient SARS-CoV-2 replication. In addition to entry inhibition, 

compensation for downregulated endogenous proteases may, hence, further contribute to 

the antiviral activity of aprotinin during later rounds of SARS-CoV-2 replication. 
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The clinical potency of aprotinin is typically measured in kallikrein inhibitor units (KIUs) (Levy 

et al., 1994; Zhirnov et al., 2011). Therapeutic aprotinin plasma levels were described to 

reach 147 ± 61 KIU/mL after the administration of 1,000,000 KIU (Levy et al., 1994). 

Moreover, an aerosol preparation of aprotinin, which is likely to result in increased local 

aprotinin concentrations in the lung, is approved for the treatment of influenza in Russia 

(Zhirnov et al., 2011). The aprotinin IC50 values for SARS-CoV-2-induced CPE formation, S 

expression, and apoptosis induction ranged from 0.32 to 1.65 µM, which is equivalent to 4.0 

KIU and 20.6 KIU, respectively. Hence, aprotinin interferes with SARS-CoV-2 infection in 

therapeutically achievable concentrations. 

Aprotinin exerts pro- and antithrombotic effects by balancing fibrinolysis and thrombus 

formation and is approved for the prevention of blood loss during surgery. It interferes with 

the fibrinolysis of established thrombi by plasmin, but also inhibits contact-activated 

thrombus formation in the blood stream (Dietrich, 1996; Kuitunen et al., 2005; Solun & 

Shoenfeld, 2020; Terrell et al., 1996). Late-stage, severe COVID-19 disease has been 

associated with disseminated intravascular coagulation and thrombosis (COVID-19-related 

coagulopathy) (Marchandot et al., 2020). Based on the available data, it is not clear whether 

aprotinin may exert pro- or antithrombotic effects in patients suffering from COVID-19-

related coagulopathy. Thus, aprotinin would have to be considered with care for such 

patients. 

However, antiviral treatment may anyway be of limited impact in late-stage COVID-19 

disease, during which, damage is anticipated to be largely caused by immunopathology and 

not by virus replication (Kuitunen et al., 2005; Lega et al., 2020; Polycarpou et al., 2020). 

Hence, the main potential of antiviral drugs may lie in the early treatment of COVID-19 

patients to suppress virus replication and, through this, to prevent COVID-19 progression 

into a severe, life-threatening disease. Local aprotinin therapy of the airways and the lungs 

using an aerosol, which is clinically approved in Russia and has been reported to be very well 

tolerated in influenza patients (Zhirnov et al., 2011), may have particular potential as such 

an antiviral treatment for early stage COVID-19 disease. Notably, aprotinin may additionally 

prevent the very early stages of lung injury by inhibition of matrix metalloproteinases and, 

in turn, of the cytokine storm that eventually results in severe, systemic COVID-19 disease 

(Solun & Shoenfeld, 2020). 
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8.5. Conclusions 

In conclusion, therapeutic aprotinin concentrations inhibit SARS-CoV-2 replication as entry 

inhibitors and by compensating for downregulated cellular protease inhibitors during later 

replication cycles. Local treatment of the respiratory tract using an aprotinin aerosol, which 

is approved in Russia for the treatment of influenza (Zhirnov et al., 2011), may be a 

particularly promising strategy to suppress virus replication and lung injury early and to 

prevent COVID-19 progression into a severe, systemic disease. 
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Chapter 9: Discussion 

 

The manuscripts presented in this thesis have each demonstrated the potential for publicly 

available data to be used to contribute to new knowledge in different areas of biological 

interest. Here, such data have been used to investigate mechanisms of drug resistance in 

cancer, as well as for the characterisation of the novel coronavirus SARS-CoV-2 and COVID-

19 to produce novel findings with scientific significance and clinical relevance. The methods 

we have used can also be easily extrapolated to other areas of research. In this chapter, the 

context in which each manuscript should be considered is discussed, the implications of the 

work are presented, and perspectives on how these findings and similar works may be 

expanded upon in the future are proposed.    

 

9.1. Investigating drug resistance in cancer 

Drug resistance is one of the major challenges faced in the treatment of cancer. It is 

estimated that around 90% of cancer treatment failures are due to drug resistance (Bukowski 

et al., 2020; Mansoori et al., 2017; Wang, X. et al., 2019), which can be the result of 

mechanisms such as drug efflux, reduced drug uptake, drug detoxification, alteration of the 

drug target, DNA damage repair or resistance to apoptosis. With the use of several large-

scale pharmacogenomic databases, we have been able to examine a number of these factors 

and generate findings which could be of critical importance when determining patient 

treatment protocols.  

Ovarian cancer is the seventh most common type of cancer diagnosed globally, and it is the 

leading cause of mortality among all gynaecological cancers (Coburn et al., 2017). Late 

diagnosis of ovarian cancer is a significant issue, with over 75% of cases identified at an 

advanced stage due to the early stages of disease being asymptomatic (Doubeni et al., 2016). 

Moreover, while most cases respond to platinum-based chemotherapeutic agents initially, 

the majority become refractory to treatment (Damia & Broggini, 2019). It is therefore of 

critical importance that we develop a better understanding of the mechanisms driving 

resistance in order to find ways to block these pathways or to find alternative treatments.  

Given its role as a regulator of diverse cellular signalling pathways and its implication in 

numerous diseases (including cancer, diabetes, cardiovascular disease, neurodegenerative 

diseases, polycystic ovarian syndrome (Greig & Nixon, 2014)), the impact of differential PEA-
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15 expression on the expression of other genes has been widely investigated (Funke et al., 

2013; Shin et al., 2015; Sulzmaier, F. J. et al., 2012). The significance of PEA-15 

phosphorylation status has also been studied in relation to a number of biological processes, 

such as the serum starvation response (Quintavalle et al., 2014), expression of β-catenin (a 

cell adhesion protein and transducer of Wnt signalling) and Ki-67 (a marker of cell 

proliferation) (Lee, J. et al., 2012) and expression of superior cervical ganglion 10 (SCG10)-

like protein (SCLIP, a microtubule destabilising protein) (Xie et al., 2013).  

In chapter 2, we investigated the impact of PEA-15 phosphorylation status on the sensitivity 

of SKOV-3 ovarian cancer cells to the platinum-based chemotherapeutic agent cisplatin. 

Transcriptome-wide expression analysis of SKOV-3 cells transfected with PEA-15-AA, PEA-15-

DD or PEA-15-EV enabled the identification of genes which were differentially expressed 

depending on PEA-15 phosphorylation status, and TCGA data was then used to investigate 

the impact of expression of these differentially regulated genes on survival of cisplatin-

treated patients. This enabled us to infer mechanisms by which PEA-15 phosphorylation 

status (and potentially the associated ERK1/2 sequestration) may influence cisplatin 

sensitivity. Our study appears to be the only one to date which has been able to identify a 

correlation between PEA-15 phosphorylation status and sensitivity of ovarian cancer cells to 

cisplatin, enabling us to consider it a potential biomarker to predict treatment outcomes. 

This is particularly important, as cisplatin is widely used as a first-line therapy for ovarian 

cancer (Helm & States, 2009; Pokhriyal et al., 2019). 

Using the TCGA provided us with a unique opportunity to include data from a large cohort of 

cisplatin-treated patients complete with gene expression and survival outcome statistics, 

which may have been otherwise time-consuming and costly to obtain. Another advantage to 

our approach was that it eliminated bias towards any specific pathway (i.e. we did not set 

out to analyse perturbation of the expression of any particular genes in response to PEA-15 

phosphorylation). We were able to identify that nine of the 11 genes which were significantly 

differentially expressed in untreated SKOV-3-AA cells compared with SKOV-3-DD cells were 

also associated with corresponding survival outcomes in cisplatin-treated TCGA patients (i.e. 

genes which were upregulated were also associated with improved survival when their 

expression was high, while genes which were downregulated were associated with improved 

survival when their expression was low). Further analysis of these differentially expressed 

genes could reveal important pathways affecting the development of resistance to cisplatin 

in ovarian cancers, which could in turn have therapeutic implications. 
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Drug resistance is also an important issue in the treatment of acute lymphoblastic leukaemia 

(ALL). ALL involves the abnormal proliferation of a clonal population of lymphoid precursor 

cells in the bone marrow. While 75% of cases arise from the malignant transformation of B-

cell progenitor cells, the remainder arise from T-cell progenitors (Terwilliger & Abdul-Hay, 

2017). Outcomes appear to worsen with increasing age, with one clinical trial finding five-

year survival rates of 41% in patients under 55 and 21% in patients over 55 (Sive et al., 2012). 

It is well recognised that nelarabine, the prodrug of arabinosylguanine (Ara-G), is effective in 

treating T-ALL but less effective in B-ALL (Verhoef & Fridland, 1985), and a number of studies 

have found greater accumulation of Ara-G in T-ALL cells compared with B-ALL cells (Gandhi 

et al., 1998; Rodriguez Jr et al., 2003). However, the reason for this difference has been 

previously unclear. Given the risks associated with nelarabine treatment (including, as 

previously highlighted, potentially lethal neurotoxicity), identifying a biomarker which could 

aid in the stratification of patients likely to benefit from the treatment has substantial clinical 

importance.  

In the paper presented in chapter 3, we were able to shed light on the possible mechanism 

driving this difference in nelarabine response. We revealed how differential regulation of 

SAMHD1, by virtue of its ability to detoxify certain nucleoside analogue drugs, was able to 

influence differential drug response in T-acute lymphoblastic leukaemia (T-ALL) compared 

with B-acute lymphoblastic leukaemia (B-ALL). To achieve this, we combined results from 

wet-lab investigations with analysis of pharmacogenomics data from the GDSC, CCLE and 

CTRP databases, as well as transcriptomic data from a cohort of ALL patients. We were not 

only able to identify that SAMHD1 expression was lower in T-ALL cells compared with B-ALL 

cells, but we also showed that methylation of the SAMHD1 promoter was a likely factor 

influencing the differential expression observed. Our results again demonstrated that cell 

line pharmacogenomic databases can be used for the validation of in vitro investigations, 

and that they can be used to generate findings which could ultimately inform treatment 

protocols. 

It is acknowledged that the efficacy of nucleoside analogue drugs such as nelarabine depends 

in part on the accumulation of the drug within the cell, which enables the drug to out-

compete deoxynucleotide triphosphates for incorporation into DNA. Our results give specific 

rationale for stratifying patients based on their SAMHD1 expression levels to determine in 

which cases nelarabine would be most likely to be effective. For example, a recent study 

investigated use of nelarabine with fludarabine (which inhibits ribonucleotide reductase, 

thereby reducing the accumulation of competing deoxyguanosine triphosphates) and 
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etoposide (a topoisomerase II inhibitor which arrests the cell cycle in G1/S phase, when DNA 

synthesis inhibitors are most effective) (Kumamoto et al., 2020). Combination of this 

approach with stratification by SAMHD1 expression level could further enhance treatment 

efficacy when using nelarabine. This could enable clinicians to identify patients who may 

better respond to an alternative therapy or to a nucleoside analogue which is not a substrate 

for SAMHD1. 

9.2. Further investigations into SAMHD1 and its impact on cancer patient survival 

As discussed, a major physiological role for SAMHD1 has been described as its cell cycle-

dependent regulation of dNTP pools through its deoxynucleoside triphosphohydrolase 

activity in G1 phase, which acts in opposition to the de novo dNTP synthesis catalysed by 

ribonucleotide reductase (RNR) in S phase (Franzolin et al., 2013). This activity has been 

proposed to contribute to the maintenance of genome stability, as imbalanced dNTP levels 

lead to reduced replicative fidelity and impaired mismatch repair (Pai & Kearsey, 2017). In 

addition to its G1 phase activity, SAMHD1 has also been shown to play a direct role in 

mediating DNA damage repair during S phase, where it localises to double strand breaks and 

promotes DNA end resection via its interaction with C-terminal binding protein-interacting 

protein (CtIP) and meiotic recombination 11 (MRE11), thereby facilitating homologous 

recombination (Daddacha et al., 2017a). Notably, methylation-dependent downregulation 

of SAMHD1 and mutations which affect its tumour-suppressive dNTPase activity have been 

associated with  the development of a number of different types of cancer (Clifford et al., 

2014; de Silva et al., 2014; Johansson, P. et al., 2018; Rentoft et al., 2016), while 

overexpression of SAMHD1 has been associated with reduced proliferation of lung cancer 

A549 cells (Wang, J. L. et al., 2014). Findings such as these have contributed to the perception 

of SAMHD1 as a tumour suppressor (Coggins et al., 2020; Herold, N. et al., 2017; Kohnken et 

al., 2015; Mauney & Hollis, 2018).  

Certain aspects of SAMHD1 function also appear to oppose its potential tumour-suppressive 

activity. For example, the role of SAMHD1 in genome maintenance is widely accepted to 

present significant challenges in the treatment of cancer. As discussed, SAMHD1 can detoxify 

nucleoside analogue drugs with broad substrate specificity (Herold, N., Rudd, Ljungblad et 

al., 2017; Schneider et al., 2017) separate from its documented activity in enhancing the 

efficacy of nucleoside analogue reverse transcriptase inhibitors via depletion of competing 

dNTPs (Amie et al., 2013; Coggins et al., 2020). Moreover, the involvement of SAMHD1 in 

mediating DNA damage repair could also represent another mechanism by which SAMDH1 
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opposes the activity of anti-cancer drugs, such as DNA damaging agents (Daddacha et al., 

2017b).  

Post-translational modifications of SAMHD1 could also influence whether it plays a tumour-

promoting role. For example, it has been suggested that acetylation at K405 may lead to 

enhanced dNTPase activity and depletion of dNTP pools in G1 phase, thereby promoting 

transition to S phase and thus increasing cancer cell proliferation (Coggins et al., 2020; Lee, 

E. J. et al., 2017). Meanwhile, reports into the effect of SAMHD1 phosphorylation are 

conflicting – some have found that phosphorylation at T592 destabilises the tetramer and 

diminishes its dNTPase activity (Tang, C. et al., 2015; Yan, J. et al., 2015), while others have 

found phosphorylation to have no impact on its catalytic activity (Welbourn et al., 2013; 

White et al., 2013). Interestingly, however, it has been shown that phosphorylation status 

may play a critical role in the DNA damage repair function of SAMHD1 independently of its 

dNTPase activity – phosphomimetic T592E mutant SAMHD1 was found to promote 

replication fork progression and to restore DNA end resection in HEK293T in which SAMHD1 

had been silenced using short hairpin RNA (shRNA) (Coquel et al., 2018). Elsewhere, it has 

been shown that oxidation of SAMHD1 results in the formation of intrachain disulphide 

bonds, inhibition of tetramerization and a reduction in its catalytic activity (Mauney et al., 

2017), which could have significant implications given the redox dysregulation present in 

many cancers (Acharya et al., 2010; Perillo et al., 2020; Purohit et al., 2019).  

Given how differences in SAMHD1 expression and regulation, mutation status and exposure 

to nucleoside analogue drugs contribute to a complex role for this triphosphohydrolase in 

influencing cancer progression, we were interested to explore the evidence further. In 

chapter 4, we have shown that SAMHD1 is widely regarded as a tumour suppressor that can 

detoxify certain nucleoside analogue drugs (Chen, Z. et al., 2021; Herold, N. et al., 2017). On 

the other hand, we also highlighted a number of studies which noted a potential tumour-

promoting role for SAMHD1 independent of its drug-inactivating function (Kodigepalli et al., 

2018; Shang, Z. et al., 2018; Xagoraris et al., 2021; Yang, C. A. et al., 2017). We related these 

findings to our own investigation into the role of SAMHD1 in cancer, in which we took an 

unbiased approach in assessing whether it may be considered a tumour suppressor or 

tumour promoter based on publicly available cancer patient data. 

The large volume of data available for the hundreds of cancer patients included the TCGA 

and TARGET studies enabled us to perform multiple analyses of SAMHD1 expression and its 

regulation in relation to patient survival. We found substantial differences in the survival 
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outcomes of patients expressing high or low SAMHD1, depending on cancer type. While this 

could reflect differences in treatment regimes for different cancers (for example, lymphoid 

cancers are often treated with nucleoside analogues), it could also reflect tissue-specific 

SAMHD1 activity which has yet to be fully understood. The differential regulation of SAMHD1 

by promoter methylation and miRNAs we observed in patients with different cancer types 

could in part underly these differences and warrants further investigation. Moreover, the 

differences observed in outcomes for male and female patients expressing high or low 

SAMHD1 gives yet further support for an individualised approach to cancer treatment, since 

factors such as sex-specific gene expression or differing hormone levels may affect the 

impact of SAMHD1 on patient survival and/or response to therapy.  

Our investigations into the impact of SAMHD1 mutations in TCGA patients also further 

challenged the notion that SAMHD1 may be considered a tumour suppressor. Despite 

previous evidence which suggests that loss-of-function mutations in SAMHD1 or 

methylation-dependent downregulation of SAMHD1 is associated with the development of 

various types of cancer, our finding that expression of mutant SAMHD1 is associated with 

improved survival outcomes compared with expression of wildtype SAMHD1 does not 

support this. We supported this conclusion by showing that expression of mutant TP53 (a 

well-known frequently mutated tumour suppressor (Kim, Y. A. et al., 2017; Lawrence et al., 

2013; Levine, 2020; Wang, X. et al., 2020)) among the same cohort of patients was associated 

with reduced overall survival. This study, alongside our work in chapter 3, has therefore 

highlighted the need for a holistic approach to the investigation of the role of SAMHD1 and 

its diverse functions, as well as the need for careful clinical decision-making when 

considering SAMHD1 expression and/or mutation status as a factor influencing cancer 

treatment.  

 

9.3. Characterisation of the novel coronavirus SARS-CoV-2 

While complete conservation of an amino acid position is generally simple to identify and 

easy to interpret, positions with functional significance which are conserved within protein 

families but vary between them are less easily distinguished. Building on early sequence, 

phylogeny and structure-based approaches to determining functionally significant 

differentially conserved positions (Casari et al., 1995; del Sol Mesa et al., 2003; Hannenhalli 

& Russell, 2000; Lichtarge et al., 1996; Pazos & Sternberg, 2004; Pazos et al., 2006), a more 

recent principal component analysis (PCA)-like approach (‘multiple correspondence 
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analysis’) based on the simultaneous identification of protein sub-families and ‘specificity 

determining positions’ (SDPs) was described. This study revealed how the presence of SDPs 

in and around protein and ligand binding sites closely reflected substrate specificity and, by 

extension, the functional evolution of a protein (Rausell et al., 2010). The methodology of 

this study was employed in recent research which involved the analysis of Ebolavirus 

genomes to explain the differences in pathogenicity between the related viruses (Martell et 

al., 2019; Pappalardo et al., 2016). We employed a similar approach in the work presented 

in chapter 5 – by combining analysis of multiple sequence alignments of publicly available 

SARS-CoV and SARS-CoV-2 sequences with manual analysis of publicly available structural 

data for each viral protein, we have identified how amino acid substitutions that consistently 

differed between SARS-CoV and SARS-CoV-2 (at differentially conserved positions, or DCPs) 

could affect the differences observed in their cell tropism, receptor binding affinity and 

sensitivity to protease inhibitors. 

Differential conservation of selected functional residues in a protein arise due to selective 

pressures necessitating functional adaptation to a novel environment or host. We have 

highlighted the SARS-CoV-2 viral proteins which may be under the greatest selective pressure 

and therefore harbour the highest density of DCPs. Notably, we observed enrichment of 

DCPs in the Spike glycoprotein – two of the vaccines currently approved for use in the UK are 

mRNA-based vaccines which encode the Spike glycoprotein (Pfizer (Polack et al., 2020), 

Moderna (Baden et al., 2021)), while the third consists of an adenoviral vector containing the 

Spike glycoprotein gene (AstraZeneca (Voysey et al., 2020)). Variants arising within this viral 

protein have therefore been of concern due to the potential for a reduction in the efficacy 

of these vaccines. Conversely, our results revealed relatively few DCPs present in the 

envelope (E) protein, which is also located on the surface of the SARS-CoV-2 virus and could 

therefore present an alternative vaccine target. The notion that the E protein could be 

considered a potential vaccine target is not without precedent – another study also identified 

a lower frequency of mutations in this viral protein compared to the Spike glycoprotein, and 

also suggested that the introduction of inactivating mutations in the ion channel structure of 

the E protein, which plays a role in viral pathogenicity, could provide the basis for the 

development of an inactivated or live attenuated vaccine (Sarkar & Saha, 2020). Importantly, 

the lower mutability of this viral protein could suggest a low risk of reversion to a pathogenic 

strain.  

It has been suggested that SARS-CoV and SARS-CoV-2 differ in the efficiency with which they 

suppress type I interferon (IFN) responses (Konno et al., 2020; Xia, H. et al., 2020). We noted 
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a significant number of DCPs in SARS-CoV-2 proteins (e.g. orf6) which have been previously 

found to play a role in interferon antagonism in the equivalent proteins in SARS-CoV (Totura 

& Baric, 2012) and in SARS-CoV-2 (Yuen et al., 2020). Notably, a number of studies have 

suggested significant clinical implications for interferon antagonism in SARS-CoV-2 – one 

study showed significantly impaired type I interferon responses in the most severe cases of 

COVID-19, with IFN-β mRNA and protein levels undetectable in all infected patients (Hadjadj 

et al., 2020). Moreover, a randomised double-blind placebo-controlled phase 2 trial showed 

that COVID-19 patients treated with nebulised IFN-β-1a had a higher probability of 

improvement and faster recovery time than patients who received a placebo (Monk et al., 

2020). Our results could therefore prompt further investigation of DCP-enriched interferon-

inhibiting proteins in SARS-CoV-2, which could reveal the mechanisms driving the enhanced 

interferon antagonism observed in critically ill patients. 

Our analysis of DCP-enriched regions of the SARS-CoV-2 proteins has also complemented our 

in vitro findings and those of other groups. We have identified DCPs which may have a 

specific effect on the infectivity of the SARS-CoV-2 virus compared with SARS-CoV, such as 

those in proximity to the Spike glycoprotein RBD which may contribute to its enhanced 

affinity for ACE2. As discussed, targeting this interaction has been the focus of many efforts 

to develop novel treatments and vaccines for COVID-19, and identifying compounds which 

sufficiently overcome high affinity Spike/ACE2 binding has been a significant challenge. 

Monoclonal antibodies purified from the convalescent plasma of SARS-CoV-2 patients which 

target the Spike RBD have demonstrated efficacy in blocking interaction with ACE2 in vitro 

(Chen, X. et al., 2020) and in mouse models (Wu, Y. et al., 2020), and several have entered 

phase 2/3 trials (Tuccori et al., 2020). Meanwhile, one group proposed that multiple high-

affinity monoclonal antibodies directed against multiple epitopes of SARS-CoV-2 Spike 

protein could more effectively inhibit viral adhesion and entry than a single antibody against 

a single epitope (Khatri et al., 2020). In an alternative approach, structural data of Spike 

protein RBD/ACE2 interactions have been used as a template for the computer-aided design 

of novel peptide or miniprotein inhibitors, which can be optimised for high-affinity binding 

(Cao et al., 2020; Huang, X. et al., 2020). The DCPs we identified and which were also shown 

in adaptation studies to affect Spike protein affinity for ACE2 (Wan et al., 2020) could 

therefore be useful for reference in the design of novel antiviral peptides. Additionally, we 

found several DCPs in regions important for cleavage of proteases, which complemented our 

in vitro findings suggesting different responses to protease inhibition in SARS-CoV-2 
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compared to SARS-CoV. We further investigated the impact of protease inhibition on SARS-

CoV-2 infectivity in chapter 8, discussed below.  

This study has demonstrated how sequencing data made publicly available to the scientific 

community can be used to make significant inferences regarding the nature of a novel virus. 

In the context of a global pandemic in which the rapid identification of therapeutic and 

vaccine targets is paramount, the ability to narrow the search for such targets using ‘big data’ 

approaches represents a critical development in modern drug discovery. 

 

9.4. Determining mechanisms driving severe COVID-19 and identifying potential 

therapeutic interventions 

Several factors have been associated with an increased risk of developing severe COVID-19. 

These include demographic characteristics, such as age, being male and being from black, 

Asian and ethnic minority backgrounds (Kelada et al., 2020; Liu, Y. et al., 2020; Patel et al., 

2020; Peckham et al., 2020; Sze et al., 2020), as well as health conditions such as 

hypertension, diabetes, cardiovascular disease, cerebrovascular disease, respiratory disease, 

renal disease and cancer (Wolff et al., 2021; Zhou, F. et al., 2020). In the papers presented in 

chapters 5 and 6, we were able to integrate the analysis of a number of publicly available 

transcriptomic and proteomics datasets to further investigate the role of a number of these 

risk factors in the development of severe COVID-19. 

The mechanisms linking severe COVID-19 to its known risk factors are incompletely 

understood, but current evidence frequently points to altered immune function predisposing 

individuals to more severe disease. In terms of the demographic risk factors, it has been 

noted that studies of other viral infections have demonstrated hormonal differences 

between males and females affecting immune responses, such that females are capable of 

mounting a more effective antiviral immune response compared with males. For example, 

oestrogen has been found to regulate the activity of numerous cells of both the innate and 

adaptive immune systems, inducing cytokine and chemokine signalling via regulation of 

neutrophil activity, inducing dendritic cell maturation and enhancing T and B cell activity 

(Khan & Ansar Ahmed, 2016; Klein & Flanagan, 2016). Specific differences in response to 

SARS-CoV-2 infection have also been observed, such as higher expression of ACE2 in males 

(Sama et al., 2020) and higher levels of terminally differentiated and activated T cells in 

female COVID-19 patients compared with males (Takahashi et al., 2020). Meanwhile, the link 

between severe COVID-19 and age is unclear, although it has been proposed that factors 
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such as age-related immune system, transcriptional and epigenetic changes may underlie 

the association (Mueller et al., 2020).  

The mechanism by which hypertension is associated with increased risk of severe disease is 

also unclear, but it has also been proposed to relate to dysregulation of the immune system 

(Guzik et al., 2020; Kamyshnyi et al., 2020), for example, through increases in cluster of 

differentiation 8 (CD8)+ T cells which are both immunosenescent (i.e. have a reduced ability 

to recognise and response to antigens) and proinflammatory (i.e. capable of producing 

proinflammatory cytokines, such as IFN-γ and tumour necrosis factor (TNF)-α) (Youn et al., 

2013). The involvement of ACE2 in the renin-angiotensin-aldosterone system (a key pathway 

regulating blood pressure) and the use of ACE inhibitors among hypertensive patients (which 

has been suggested to result in increased ACE2 expression) has also been highlighted, 

although no causal link with severe disease has yet been established (Danser et al., 2020; 

Kamyshnyi et al., 2020).  

Greater susceptibility to infections as a result of dysregulation of the immune system in both 

type 1 and type 2 diabetes, especially when glucose levels are poorly controlled, has also 

been widely documented (Critchley et al., 2018; Graves & Kayal, 2008; Muller et al., 2005). 

One review noted that factors such as reduced activity of natural killer cells, variable 

neutrophil numbers, impaired chemotaxis and phagocytosis and chronic low-level 

inflammation resulting from increased activation of CD4+ and CD8+ T cells have been 

proposed to render patients with diabetes more susceptible to the ‘cytokine storm’ observed 

in patients with severe COVID-19 (Erener, 2020). They also suggested that an increased 

propensity towards hypercoagulation (e.g. due to altered plasma concentrations of 

coagulation proteins and metal ions and increased platelet activation) (Sobczak & Stewart, 

2019) and reduced pulmonary function (Anandhalakshmi et al., 2013) could contribute 

towards the increased risk of severe disease observed among diabetic patients (Erener, 

2020).  

An increased risk of severe COVID-19 has also been observed in obese patients (Cai, Q. et al., 

2020; Hamer et al., 2020; Kalligeros et al., 2020). This has been suggested to relate to the 

association between excess adipose tissue and chronic inflammation due to recruitment of 

macrophages producing cytokines such as TNF-α and interleukin 6 (IL-6) and a reduction in 

serum concentrations of the anti-inflammatory hormone adiponectin, as well as endothelial 

dysfunction and impaired fibrinolysis predisposing patients to thromboses (Lockhart & 

O'Rahilly, 2020).  
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For each of these risk factors, however, their frequent co-existence presents difficulty in 

interpreting their individual impact on propensity toward severe disease – for example, 

obesity is frequently linked with hypertension and diabetes (Pantalone et al., 2017). It has 

also been argued that age cannot be considered in isolation of the increased likelihood of 

possessing certain other known risk factors as an individual ages (Romero Starke et al., 2020). 

Similarly, while there is consensus that outcomes for COVID-19 patients with hypertension 

are worse than for patients without hypertension, it is unclear whether it can be considered 

an independent risk factor (Huang, S. et al., 2020; Pan et al., 2020; Wei et al., 2021).  

There is a need to develop reliable methods to predict which COVID-19 patients are most 

likely to develop severe disease, which can aid in the stratification of patients for appropriate 

treatment. Several groups have used demographic characteristics and comorbidities (as well 

as clinical and laboratory observations) to make such predictions – for example, one group 

generated an equation to predict outcome severity which incorporated patient age, sex, 

dyspnoea, immunocompromise, chronic kidney disease and hyperlipidaemia (Ryan et al., 

2020). Others performed Cox proportional hazards regression on clinical data from a cohort 

of 419 COVID-19 patients to identify independent risk factors (age, comorbidities, albumin 

levels and C-reactive protein (CRP) levels), which they then used to generate a nomogram 

and associated scoring system to aid in the prediction of severe disease based on presence 

of those risk factors (Dai et al., 2020). Similarly, another group developed a machine learning 

method trained on data from 105 potential risk factors which could generate predictions of 

disease severity based on data from up to eight input variables (Wongvibulsin et al., 2021). 

As discussed previously (chapter 1.2.4), analyses of the transcriptomic and proteomic 

changes that occur as a result of infection with SARS-CoV-2 have been widely used to identify 

deregulated pathways which can be therapeutically targeted to reduce infection or 

progression to severe disease. Such data can also be used for the identification of biomarkers 

which could be used alongside demographic characteristics and clinical measurements that 

are routinely taken (such as CRP and albumin levels) to predict which patients may be at risk 

of severe disease. For example, one study involved quantification of proteins and 

metabolites in the sera of patients with severe COVID-19 as well as control subjects, which 

enabled the identification of 22 proteins and seven metabolites whose expression could be 

used to accurately predict severe cases (Shen, B. et al., 2020). Another study also used 

plasma proteomic profiling of COVID-19 patients to identify single proteins and combinations 

of proteins which could predict disease outcome (Shu, T. et al., 2020), while others identified 

27 putative biomarkers which were differentially expressed depending on COVID-19 severity 
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(Messner et al., 2020). The results from each of these studies included both novel and known 

biomarkers of viral infection, such as CRP.  

In the paper presented in chapter 6, we were able to integrate data from two independent 

sources (proteomics data from Bojkova et al. (Bojkova et al., 2020) and transcriptomics data 

from Blanco-Melo et al. (Blanco-Melo et al., 2020)) with data obtained from wet-lab 

investigations to provide strong evidence supporting our hypothesis that CD47 expression 

levels may be used as a biomarker for increased risk of developing severe COVID-19. Given 

the immense body of literature freely available online, we were also able to conduct 

extensive literature reviews incorporating large numbers of studies relating to CD47 and its 

role in a number of the known comorbid conditions of severe COVID-19. Our results 

demonstrate how the substantial quantity of transcriptomics and proteomics data that have 

been generated during the COVID-19 pandemic can be used to identify specific biomarkers 

of disease severity which can be experimentally validated and whose role can be explained 

through prior knowledge of their functions in other contexts. 

An important feature of severe COVID-19 which has a significant impact on mortality is 

abnormal blood coagulation, or coagulopathy. Studies have reported several markers of 

coagulopathy which have been correlated with worse outcomes – for example, higher 

prothrombin time and elevated D-dimer (a fibrin degradation product and marker of 

thrombosis) has been observed in patients in intensive care (Huang, C. et al., 2020) and (in 

addition to increased activated partial thromboplastin time) in non-survivors compared with 

survivors (Tang, N. et al., 2020; Zhou, F. et al., 2020). Thrombocytopaenia has also been 

observed in a number of cases (Zhou, F. et al., 2020). In one study, it was suggested that the 

clinical presentations of 71.4% of non-survivors were consistent with a form of disseminated 

intravascular coagulation (DIC), whereas only 0.6% of survivors exhibited similar laboratory 

findings (Tang, N. et al., 2020). The DIC exhibited in COVID-19 patients has been suggested 

to differ from sepsis-related DIC, which would be typically marked by less extreme increases 

in D-dimer and more prominent thrombocytopaenia (Levi et al., 2020) – indeed, one study 

showed patients with more severe disease exhibited higher increases in platelet levels 

compared with less severely ill patients, which correlated with longer hospital stays (Qu et 

al., 2020).   

In chapter 7, the mechanisms driving the disorder of blood coagulation observed in certain 

COVID-19 patients were investigated by combining analysis of data from four different 

sources – the GTEx database, the Gene Ontology Resource (Ashburner et al., 2000; Gene 
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Ontology Consortium, 2021), proteomics data from Bojkova et al. (Bojkova et al., 2020) and 

interactome data from Gordon et al. (Gordon et al., 2020). Not only does this study 

demonstrate, similar to the study presented in chapter 6, the usefulness of publicly available 

proteomics data for unveiling mechanisms of SARS-CoV-2 pathogenicity, but it has also 

demonstrated the value of pre-existing data resources for the investigation of a novel 

disease. With our simple approach, we were able to use basal gene expression data in 

combination with gene function annotations to identify possible links between expression of 

genes involved in blood coagulation, such as transferrin, and selected risk factors for COVID-

19 (increasing age and being male).  

In addition to understanding factors contributing to the development of severe COVID-19, 

the identification of drugs which may inhibit viral infection or prevent progression to severe 

disease is a critical issue, and one which has been the focus of many researchers using various 

approaches during the COVID-19 pandemic. As described in chapter 1.2.4, drug repurposing 

has been an attractive option, given the convenience of prior knowledge of drug targets and 

their likely effects as well as their safety and potency. The widespread clinical use of the 

steroid dexamethasone (shown to reduce deaths by a third in ventilated patients and a fifth 

in patients receiving oxygen therapy (Mahase, 2020)) is a notable example.  

By revisiting the proteomics dataset released by Bojkova et al. (Bojkova et al., 2020), in 

chapter 8 we were able to identify SARS-CoV-2-induced downregulation of host cell protease 

inhibitors, which our in vitro studies suggested could be counteracted by the protease 

inhibitor aprotinin. As discussed, aprotinin has been previously shown to inhibit TMPRSS2 

activity – for example, MDCK cells engineered to express TMPRSS2 were susceptible to H1N1 

influenza virus infection in the absence of protease inhibitors (as TMPRSS2 was able to cleave 

the receptor binding glycoprotein haemagglutinin), and viral replication and spread was 

reduced by treatment with aprotinin (Böttcher et al., 2009). As it has been shown that the 

interaction between SARS-CoV-2 S protein and ACE2 requires its proteolytic cleavage and 

activation by host cell proteases such as TMPRSS2, our findings have significant implications 

for the possible benefit of repurposing aprotinin for the treatment COVID-19. As highlighted, 

an aerosol preparation of aprotinin has been shown to be effective against influenza 

infection in mice (Ovcharenko & Zhirnov, 1994) and double-blind randomised clinical trials 

showed similar benefit (Zhirnov et al., 2011), which suggests its efficacy in targeting viral 

replication at therapeutic concentrations. Of note, an open-label observational trial 

assessing the efficacy and safety of treatment of moderate-to-severe COVID-19 patients with 
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aprotinin began in August 2020, and results are pending (ClinicalTrials.gov Identifier: 

NCT04527133).  

Several other studies have also suggested the possible benefit of using protease inhibitors as 

a prophylactic measure against SARS-CoV-2 infection, including one which showed that 

camostat mesylate inhibits TMPRSS2-mediated S priming (Hoffmann et al., 2020), one which 

found that nafamostat mesylate was ten times more effective in inhibiting viral fusion than 

camostat mesylate (Yamamoto et al., 2020) and one which suggested the efficacy of 

treatment with nafamostat mesylate in combination with the antiviral favipiravir (Doi et al., 

2020). Another group suggested repurposing of a specific TMPRSS2 inhibitor, bromhexine, 

which acts as a mucolytic and has been used to treat respiratory conditions associated with 

excess mucus production (Maggio & Corsini, 2020). A trial of bromhexine in hospitalised 

COVID-19 patients later showed that treatment with the drug was associated with reduced 

admission to intensive care, reduced requirement for mechanical ventilation and reduced 

mortality, as well as faster recovery from symptoms such as cough and dyspnoea and lower 

serum CRP levels after two weeks (Ansarin et al., 2020). Our results could therefore have 

significant clinical relevance, given the clear emphasis on the possible benefit of using 

protease inhibitors in the treatment of COVID-19. 

In each of our analyses of publicly available proteomics and transcriptomics datasets, we 

once again demonstrated the value of data sharing within the research community during 

the course of the pandemic. Notably, our use of the same databases for multiple separate 

analyses is indicative of their flexibility and diversity of applications. Our findings could 

stimulate further research into the potential for CD47 and transferrin to be used as 

biomarkers of severe disease and as possible therapeutic targets, and they also provided 

useful evidence to suggest the potential benefit of aprotinin in targeting some of the key 

mechanisms of SARS-CoV-2 pathogenesis, which could also be investigated further in a 

clinical setting. In the case of transferrin, the results could even have implications for other 

diseases involving deregulation of blood coagulation.  

 

9.5. Limitations to the use of publicly available data 

Despite the advantages to the use of large publicly available datasets of cell line and patient 

data, its limitations have been widely documented. Many of the issues stem from the 

challenges inherent in laboratory and clinical investigations and are therefore not restricted 

to open-access databases. Not only can data be noisy (for example, low frequency genomic 
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variants may be difficult to detect), susceptible to batch effects (for example, assays 

performed under subtly different environmental conditions could yield variable results 

which are difficult to compare) and insufficient for performing lineage-specific analyses (due 

to small sample sizes), data tend to only provide measurements at a single time point (i.e. 

they are a snapshot of the physical state of the cells), and may therefore fail to completely 

reflect the nature of dynamic features such as gene expression. These issues can seriously 

impact the reliability and validity of the data and the conclusions drawn from results.  

A notable limitation to our investigation in chapter 3 was the small numbers of acute 

lymphoblastic leukaemia cell lines included in the databases (CCLE, CTRP and GDSC). This 

highlights a significant issue for large-scale pharmacogenomics databases overall, whereby 

certain cancer subtypes are less well represented in such databases than others. For 

example, the GDSC database includes gene expression data for 66 adenocarcinoma-type 

non-small-cell lung cancer (NSCLC) samples, but it only includes data for one sample from an 

adrenal gland tumour. Until databases including larger numbers of cell lines and tumour 

samples from different sub-lineages are produced, the statistical power of analyses such as 

these can be improved by normalisation methods which enable cross-sample comparisons 

to be made (i.e. to increase the pool of samples for each condition). This would also enable 

the results to be compared with new data in subsequent studies. We were nevertheless able 

to generate significant results using these data independently. Moreover, the consilience 

observed between the results from each of the different resources used gives us further 

confidence in our conclusions. 

Another issue which may have affected our analysis of data from genomics studies is cell line 

genetic drift. Repeated passage of cell lines could mean they no longer reflect the 

characteristics of the tumour of origin, making interpretation of the results and predictions 

regarding drug sensitivity of particular cell lines difficult. For example, one study of the CCLE, 

GDSC and Genentech Cell Line Screening Initiative (gCSI) database, showed that between 

4.5-6.1% of the entire genomes of the same cell lines had been affected by genetic drift 

(Quevedo et al., 2020). While it has been proposed that such drift may mainly affect 

passenger mutations (since correlation between hotspot somatic variants between the CCLE 

and GDSC was found to be high) (Ghandi et al., 2019), others have demonstrated the impact 

that genetic divergence can have on cell phenotype – for example, OVCAR-3 cells from 

different collections of the NCI-60 cell line panel have been shown to exhibit significantly 

different responses to treatment with doxorubicin, as well as significantly different protein 

levels of asparagine synthase but similar levels of mRNA (Lorenzi et al., 2009). The possibility 
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of genetic drift affecting cell line sensitivity to nelarabine in our study in chapter 3 must 

therefore be taken into account when interpreting the results. However, the agreement of 

the in silico results with our in vitro findings, generated using a number of different cell lines 

from the same lineages, suggests this issue may not significantly affect our results.       

Different methods to handle incomplete dose-response curves have also been recognised as 

a potential issue affecting large pharmacogenomic datasets. For example, in the GDSC data, 

126 of the 427 cell lines treated with paclitaxel had their IC50 values extrapolated beyond 

the top tested drug concentration of 0.1024µM. In the CCLE data, 503 cell lines were treated 

with paclitaxel over a dose range of 0.0025-8µM – however, for 34 of these cell lines, the 

maximum IC50 value was capped at 8µM. These differing approaches, along with inadequate 

standardisation of pharmacological assay, have been proposed to explain the lack of 

agreement observed between the CCLE and GDSC in previous investigations (Haibe-Kains et 

al., 2013). The CTRP dataset avoids this problem by providing only AUC (area under the curve) 

values instead of IC50 values. AUC has been proposed to provide a superior measure of drug 

response that incorporates data for both the potency and efficacy of the drug and can be 

more easily compared across cell lines, providing that that cell lines are tested using the same 

drug concentration ranges (Pozdeyev et al., 2016). We made use of AUC values from the 

CTRP and GDSC in our study in chapter 3, which correlated well with our in vitro 

investigations.  

Concerns regarding the reliability and reproducibility of genomic data from large scale 

pharmacogenomic screens (a ‘reproducibility crisis’) have also been raised (Begley & 

Ioannidis, 2015; Hirsch & Schildknecht, 2019; Wass et al., 2019). Criticism for such databases 

often surrounds differing practices and methodologies for handling and processing cell lines. 

For example, limitations in storage capacity by institutions housing large collections of cell 

lines can necessitate passage of cells which, if repeatedly performed, can result in genetic 

alterations as described previously. This also highlights the importance of ensuring that, 

when obtaining cell lines for analysis from other institutions or cell culture banks, sufficient 

information regarding cell passage number is provided (Hirsch & Schildknecht, 2019). 

Similarly, cell line lineage is a critical factor to ascertain, as misclassification of cell lineage is 

another issue which has affected the use of cell lines. A well-known example of this is MDA-

MB-435, which was initially considered to be of breast cancer origin but was later suggested 

to derive entirely from a melanoma cell line (due to mislabelling of the sample or 

contamination of the breast cancer cells with the melanoma cells (Rae et al., 2007)). 

However, MDA-MB-435 was still being classed as a breast cancer cell line and used in studies 



214 
 

in the 2010s (Prasad & Gopalan, 2015). Given the reliance of our study in chapter 3 on the 

ability to differentiate T-acute lymphoblastic leukaemia from B-acute lymphoblastic 

leukaemia, such discrepancies could seriously impact the conclusions drawn from the results. 

However, the cell lines included in these pharmacogenomic screens have all undergone 

extensive characterisation by the researchers responsible for them, and so we can be 

confident that this issue is unlikely to affect our study.  

Analysis of data from databases of donated patient tissue samples (such as the TCGA, 

TARGET and GTEx) has also been associated with certain obstacles. For example, tumour 

sample purity can be affected by differing amounts of infiltration by stromal and immune 

cells. One study estimated TCGA tumour sample purity across all cancer types to be 

75.3±18.9%, with inter-tumour variability proposed to be the result of differing mutation 

rates – for example, lung adenocarcinomas and lung squamous cell carcinomas were found 

to have both the lowest tumour purity and the highest frequency of mutations compared to 

all other TCGA cancer types investigated. They suggested that this may be due to greater 

inflammation (i.e. infiltrating immune cells) in the microenvironment of these tumours 

driving enhanced mutation. On the other hand, they also proposed that the ease with which 

tumour cells can be isolated from surrounding cells during sample collection can differ based 

on cancer type and grade. They also found that tumour purity can impact genomic analyses 

(such as gene expression correlations and molecular subtyping) (Aran et al., 2015), which 

may be relevant to our studies in chapters 2, 4 and 7. In future studies, it may improve the 

validity and reliability of results to adjust for tumour purity before performing analyses using 

data from tumour samples.  

As for cell line pharmacogenomic databases, small sample sizes of cancer patient data 

(especially for individual cancer types) remain a significant issue, and incomplete data for 

certain patients (clinical data, certain types of genomic data or combinations of different 

data types) can further reduce the pool available for analysis. For example, our study in 

chapter 2 was particularly focused on investigating the role of PEA-15 in cisplatin response 

in ovarian cancer, but our TCGA analyses were not entity-specific. 772 cisplatin-treated 

patients were included in the TCGA database; however, only 114 had ovarian cancer. In order 

to improve the statistical power of the survival analyses, we therefore decided to include the 

full cisplatin-treated TCGA cohort. However, it may have been useful to perform the analyses 

only in cisplatin-treated ovarian cancer patients, as this approach may have enhanced the 

specificity of the observed associations. In addition, patients are typically treated with 

multiple cytotoxic and/or targeted therapies, and the majority of cisplatin-treated patients 
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included in our analysis were also treated with a number of other drugs. This could clearly 

confound results when attempting to consider the impact of only one drug and must 

therefore be taken into consideration when interpreting the results. 

It is also noteworthy that research using open-access data is often limited in the patient 

phenotypes that can be investigated due to restrictions on the available clinical data – for 

example, it would have been useful to analyse expression of transferrin and CD47 in relation 

to the risk factors of COVID-19 using the GTEx dataset for a more comprehensive analysis in 

chapters 6 and 7. Meanwhile, in some cases, it is also impossible to distinguish between 

patients that have died as a result of their cancer or due to unrelated causes, which may 

affect interpretation of our results in chapter 4. 

Another potentially problematic issue to consider when analysing large volumes of data is 

the application of arbitrary cut-offs during analysis. For example, in analysing ‘high’ vs ‘low’ 

gene expression, we used the median of normalised expression (FPKM) across each sample 

in chapter 2 (with ‘high’ expression considered to be above median and ‘low’ expression to 

be below median), whereas we used a computationally calculated ‘best separation’ method 

(i.e. the cut-off which gives the lowest p-value) for our analyses in chapter 4. Our ability to 

determine high vs low expression was therefore limited by the data we had available, and so 

expression levels should be considered relative to patients within the same sample. As 

discussed previously, larger sample sizes would improve the validity of the results by 

improving the statistical power. Meanwhile, in our study in chapter 5, we considered 

residues at equivalent alignment positions which differed between the two viruses but were 

>80% conserved within their respective viral genomes to be differentially conserved. This 

assumption may oversimplify the situation, potentially resulting in positions with functional 

significance being overlooked. However, with availability of larger numbers of sequences, it 

will become possible to make more accurate prediction of which residues may be considered 

differentially conserved. 

Another important issue relevant to a number of the papers presented in this work is the 

lack of correlation between mRNA and protein levels frequently reported (Koussounadis et 

al., 2015; Maier et al., 2009). Factors which affect translation of an mRNA transcript 

(including cis-regulatory elements such as promoters and enhancers, regulation of 

translation elongation factors by phosphorylation, transfer RNA (tRNA) abundances, 

miRNAs, mRNA transcript stability) along with protein degradation (by the ubiquitin-

proteasome pathway or by lysosomal proteolysis) dictate the relative abundances of mRNA 



216 
 

transcripts and their corresponding proteins within a cell at any given time (de Sousa Abreu 

et al., 2009). It has been shown that mRNA and protein levels correlate better for certain 

classes of genes than others (such as those encoding proteins involved in translation or 

metabolic processes (Nicolet & Monika C. Wolkers, 2020), or those encoding cell cycle-

regulated proteins, for which mRNA and protein synthesis and protein degradation are 

coordinated (Ly et al., 2014)). We addressed this issue in the study presented in chapter 3, 

in which cell line mRNA levels (determined by microarray) were compared with protein levels 

(determined by quantitative Western blot and quantitative PCR) and found some differences 

in SAMHD1 mRNA and protein levels in certain cell lines, but overall expression levels 

appeared moderately correlated (both within in vitro data and between in vitro and in silico 

data). However, for our studies using patient transcriptomic data from the TCGA, TARGET 

and GTEx databases (chapters 2, 4, 6 and 7), our inferences of clinical significance were based 

on the assumption that mRNA levels will reflect protein levels. Further validation of our 

results will therefore be necessary in order to be confident in any conclusions made from 

these studies. 

It should also be noted that, while the patient sample-derived data used in these studies 

were generated using next-generation sequencing technologies (such as RNA-seq for gene 

expression quantification), the cell line data was generated using microarray technology. 

Microarrays have been associated with a number of issues (such as difficulties in 

normalisation and correcting for batch effects, noisy data, low accuracy and specificity, 

incorrect probe assignment to genes and limitations in the probes included on a single 

microarray) (Jaksik et al., 2015), many of which are overcome by RNA-seq technologies – for 

example, RNA-seq is better able to detect transcripts with low expression, it displays greater 

reproducibility, and the method also allows for the identification of novel transcripts since it 

does not rely on the use of a reference genome (van der Kloet et al., 2020). As the technology 

becomes more cost-effective to use, RNA-seq is becoming the preferred method for gene 

expression analysis. For example, newer updates of the CCLE databases are indeed including 

expression data generated using the RNA-seq platform (Ghandi et al., 2019). 

A number of our studies also involved manual analysis of data which may also have several 

limitations, given its subjectivity and the potential for human error. In particular, the 

structural analyses carried out (including that of the SAMHD1 substrate binding pocket in 

chapter 4 and of each of the available structures of SARS-CoV and SARS-CoV-2 proteins in 

chapter 5) relied on use of molecular graphics software (i.e. static protein structures) to make 

conclusions regarding the impact of amino acid variants on protein function. While 
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supplementary data is available regarding the impact of SAMHD1 active site mutations (from 

extensive in vitro studies described in the literature, as described), little is yet known about 

the impact of variants on SARS-CoV-2 structure and function. Moreover, considering the 

impact of amino acid substitutions independently of their known interactions (for example, 

with other SARS-CoV-2 proteins if the protein normally exists in a complex) could have 

resulted in variants with substantial structural or functional impact being predicted to be 

benign. As more is discovered about the interactions of the SARS-CoV-2 viral proteins with 

other viral and host proteins and as more structures become available which model these 

interactions, it will be possible to make more confident predictions about the consequences 

of variants observed within the SARS-CoV-2 genome.  
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Chapter 10: Conclusions 

 

Substantial progress has been made in recent years to incorporate computational methods 

into biological research. Tasks that might have taken years to complete can now be 

completed in days, and this has had a major impact on the ability to deliver effective medical 

insights and interventions quickly and affordably. The drive towards the availability of public 

data has undoubtedly complemented this development, as increasingly powerful and 

efficient methods to analyse the vast quantities of available data are required. 

This project has highlighted the flexibility of a computational approach when adapting to 

novel scenarios and responding to different research demands. It is clear that the analysis of 

large databases has been made considerably more feasible by the implementation of in silico 

methods – for example, it is now possible to compare features of disease from different 

tissues of origin, between different populations of individuals, and to relate these variations 

to the differences in response to treatment. This in turn has prompted researchers to 

produce larger and larger datasets with the knowledge that these data can be rapidly 

processed and even analysed with minimal human input. 
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Appendix 

 

Supplementary Materials for Chapter 2 

 

 

 

Figure S2.1. (A) Expression of hemagglutinin (HA)-tagged PEA-15 in EFO27rCDDP2000 cells 

after transfection with the HA-tagged empty vector (EV), PEA-15AA (AA) and PEA-15DD (DD). 

GAPDH was used as a loading control. (B) Cisplatin cytotoxicity (pEC50, mean ± SEM, n = 8) in 

nontransfected EFO27rCDDP2000 cells, cells transfected with empty vector (EV), with PEA-

15AA (AA), and with PEA-15DD (DD). ***p < 0.001, n.s. = not significant. 
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Supplementary Materials for Chapter 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3.1. Gene expression profiles and nelarabine sensitivity in acute lymphoblastic leukaemia 

(ALL) cell lines. (A) Nelarabine sensitivity expressed as area under the curve (AUC) in T-cell precursor 

ALL (T-ALL) and B-ALL cell lines from CTRP. (B) Heatmap illustrating expression patterns of genes 

differentially regulated between T-ALL and B-ALL cell lines based on CTRP data. Heatmaps displaying 

the expression of all genes in the CTRP ALL cell lines and those displaying gene expression in the ALL 

cell lines in the CCLE and GDSC datasets are provided in Figure S3.1D-H. Individual gene expression 

values are presented in Supplementary Data 3.1. 
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(D) Heatmap illustrating expression (mRNA abundance) of all genes in B- vs. T-ALL cells based on CTRP 

data. 
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(E) Heatmap illustrating expression (mRNA abundance) of differentially regulated genes in B- vs. T-ALL 

cells based on CCLE data. 
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(F) Heatmap illustrating expression (mRNA abundance) of all genes in B- vs. T-ALL cells based on CCLE 

data. 
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(G) Heatmap illustrating expression (mRNA abundance) of differentially regulated genes in B- vs. T-

ALL cells based on GDSC data. 
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(H) Heatmap illustrating expression (mRNA abundance) of all genes in B- vs. T-ALL cells based on GDSC 

data. 

 

 

 

Figure S3.2A. SAMHD1 expression in ALL patients with different immunophenotypes. 
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 P value 

pre-B/ c-Burkitt 0.0067358 

early T/ Burkitt 0.00073591 

pro-B/ Burkitt 0.927323943 

mature T/ Burkitt 5.00E-05 

thy T-Burkitt 2.23E-07 

early T/ pre-B/c 0.478671852 

pro-B/ pre-B/c 0.00285102 

mature T/ pre-B/c 0.040886675 

thy T/ pre-B/c 9.73E-05 

pro-B/ early T 0.000553081 

mature T/ early T 0.68842299 

thy T/ early T 0.379143369 

mature T/ pro-B 5.40E-05 

thy T/ pro-B 3.67E-09 

thy T/ mature T 1 

 

Figure S3.2A. SAMHD1 expression in ALL patients with different immunophenotypes. P values for 

comparisons between individual groups. 
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Figure S3.2B. SAMHD1 expression in ALL patients with different genotypes. 

 

 

 P value 

2 vs. 1 0.38282375 

3 vs. 1 0.999905 

4 vs. 1 0.00230736 

5 vs. 1 0.02880067 

6 vs. 1 0.00619649 

7 vs. 1 0.70123101 

8 vs. 1 0.99542401 

9 vs. 1 0.99530362 
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3 vs. 2 0.38981245 

4 vs. 2 0.41595306 

5 vs. 2 2.73E-07 

6 vs. 2 0.26166224 

7 vs. 2 0.2631177 

8 vs. 2 0.8994844 

9 vs. 2 0.79514518 

4 vs. 3 0.00682233 

5 vs. 3 0.55549758 

6 vs. 3 0.0073478 

7 vs. 3 0.84170864 

8 vs. 3 0.99912995 

9 vs. 3 0.99961577 

5 vs. 4 1.60E-10 

6 vs. 4 0.99429435 

7 vs. 4 0.04940224 

8 vs. 4 0.56219644 

9 vs. 4 0.28423458 

6 vs. 5 3.79E-07 

7 vs. 5 0.99596858 

8 vs. 5 1 

9 vs. 5 0.99999962 

7 vs. 6 0.02309725 

8 vs. 6 0.37573601 
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9 vs. 6 0.14840814 

8 vs. 7 0.99992001 

9 vs. 7 0.99681029 

9 vs. 8 0.99999994 

 

Figure S3.2B. SAMHD1 expression in ALL patients with different genotypes. P values for comparisons 

between individual groups (1=B-other, 2=Ph pos, 3=Ph-like, 4=KMT2A, 5=T-ALL, 6=Burkitt, 7=TCF3, 

8=ETV6, 9=Hyperdip. 

 

 

 

 

 

Figure S3.3. Expression of genes known to be potentially involved in nucleoside analogue activity in 

B-ALL and T-ALL cell lines in the CCLE and GDSC. 

CCLE 
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Figure S3.3. Expression of genes known to be potentially involved in nucleoside analogue activity in 

patient-derived B-ALL and T-ALL cells. 
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Figure S3.4. Correlation of the expression of genes (mRNA abundance) known to affect nucleoside 

analogue activity to the nelarabine sensitivity (expressed as AUC) across all ALL, the B-ALL and the T-

ALL cell lines based on CTRP data. Pearson’s r values and respective p-values are provided. 
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Figure S3.5. Comparison of SAMHD1 expression (mRNA abundance) levels in acute myeloid leukaemia 

(AML), B-cell acute lymphoblastic leukaemia (B-ALL), T-cell acute lymphoblastic leukaemia (T-ALL) cells 

in CTRP, CCLE, and GDSC. Respective p-values are provided. 

 

 

 

 

Figure S3.6. Correlations of SAMHD1 expression (mRNA abundance) with the cytarabine AUC 

exclusively in B-ALL and T-ALL cell lines based on CTRP and GDSC data. Pearson’s r values and 

respective p-values are provided.  



303 
 

 

 

Figure S3.7. SAMHD1 protein levels in the RCCL panel of B-ALL and T-ALL cell lines. Representative 

Western blots indicating protein levels of total SAMHD1 and GAPDH in 23 cell lines of the RCCL panel, 

which were run on the same gel and blotted on the same membrane to confirm the 

representativeness of the blots provided in Figure 3.3A. Figure 3.3A is provided for comparison. 

 

 

Figure S3.8. Correlations of SAMHD1 protein and mRNA levels determined in the RCCL cell lines with 

the SAMHD1 expression data derived from the CTRP, CCLE, and GDSC among the cell lines that are 

represented in both respective datasets. Pearson’s r values and respective p-values are provided. 
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Figure S3.9. Correlations of the nelarabine AUCs derived from the CTRP and the AraG IC50 values 

determined in the RCCL panel across the ALL cell lines present in both datasets. Pearson’s r values and 

respective p-values are provided. 
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Figure S3.10. Uncropped Western blots and agarose gels. 

 

Table S3.1. B-ALL and T-ALL cell lines in the CCLE and GDSC (overlaps highlighted in italics) 

CCLE GDSC 

Cell Line Lineage Cell Line Lineage 

697 B-ALL 697 B-ALL 

A4FUK B-ALL ALL-PO B-ALL 

EHEB B-ALL BALL-1 B-ALL 

HUNS1 B-ALL GR-ST B-ALL 

JM-1 B-ALL HAL-01 B-ALL 

KASUMI-2 B-ALL KARPAS-231 B-ALL 

KOPN-8 B-ALL KOPN-8 B-ALL 
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MHH-CALL2 B-ALL LC4-1 B-ALL 

MHH-CALL3 B-ALL MHH-CALL-2 B-ALL 

MHH-CALL4 B-ALL MHH-CALL-4 B-ALL 

MUTZ-5 B-ALL MHH-PREB-1 B-ALL 

NALM-19 B-ALL MN-60 B-ALL 

NALM-6 B-ALL NALM-6 B-ALL 

RCH-ACV B-ALL P30-OHK B-ALL 

REH B-ALL RCH-ACV B-ALL 

RS-411 B-ALL REH B-ALL 

SEM B-ALL ROS-50 B-ALL 

SUP-B15 B-ALL RS4-11 B-ALL 

  SUP-B15 B-ALL 

  SUP-B8 B-ALL 

  U-698-M B-ALL 

ALL-SIL T-ALL ALL-SIL T-ALL 

C8166 T-ALL ATN-1 T-ALL 

DND-41 T-ALL BE-13 T-ALL 

HPB-ALL T-ALL CCRF-CEM T-ALL 

JURKAT T-ALL DND-41 T-ALL 

KE-37 T-ALL HH T-ALL 

LOUCY T-ALL JURKAT T-ALL 

MOLT-13 T-ALL KARPAS-45 T-ALL 

MOLT-16 T-ALL KE-37 T-ALL 

MOLT-3 T-ALL LOUCY T-ALL 
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P12-ICHIKAWA T-ALL MOLT-13 T-ALL 

PEER T-ALL MOLT-16 T-ALL 

PF-382 T-ALL MOLT-4 T-ALL 

RPMI-8402 T-ALL P12-ICHIKAWA T-ALL 

SUP-T11 T-ALL PF-382 T-ALL 

TALL-1 T-ALL RPMI-8402 T-ALL 

  SUP-T11 T-ALL 

 

 

Table S3.2. B-ALL and T-ALL cell line sensitivity to nelarabine expressed as area under the curve (AUC) 

derived from CTRP. 

Cell Line Lineage AUC 

HPBALL T-ALL 11.757 

DND-41 T-ALL 7.29 

SUPT-1 T-ALL 8.4742 

JURKAT T-ALL 12.58 

PEER T-ALL 13.818 

PF-382 T-ALL 11.193 

ALL-SIL T-ALL 13.546 

P12-ICHIKAWA T-ALL 9.5418 

RPMI-8402 T-ALL 10.052 

MOLT-16 T-ALL 17.44 

MOLT-13 T-ALL 8.6473 

TALL-1 T-ALL 8.2253 

KE-37 T-ALL 9.3765 
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SEM B-ALL 17.602 

RCH-ACV B-ALL 12.759 

MHH-CALL3 B-ALL 10.123 

RS-411 B-ALL 14.526 

MHH-CALL4 B-ALL 15.322 

REH B-ALL 7.9391 

697 B-ALL 12.28 

SUP-B15 B-ALL 11.372 

KASUMI-2 B-ALL 13.107 

NALM-6 B-ALL 12.483 

 

Table S3.3. AraG and cytarabine concentrations that reduce B-ALL and T-ALL cell line sensitivity by 

50% (IC50). 

B-ALL IC50 

Cell Line AraG (µg/mL) Cytarabine (ng/mL) 

697 0.27 ± 0.01 1.23 ± 0.05 

BALL-1 4.76 ± 0.50 2.74 ± 0.05 

GRANTA-452 6.69 ± 0.70 3.42 ± 0.25 

HAL-01 2.15 ± 0.49 0.98 ± 0.04 

KARPAS231 26.73 ± 2.62 11.57 ± 0.77 

MHH-CALL-4 31.22 ± 2.50 27.07 ± 3.05 

MN-60 99.10 ± 1.62 14.95 ± 0.99 

NALM-6 3.25 ± 0.28 2.19 ± 0.06 

NALM-16 65.19 ± 2.72 8.79 ± 0.42 
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REH 1.48 ± 0.07 1.31 ± 0.17 

ROS-50 90.62 ± 9.05 18.28 ± 3.57 

RS4;11 16.42 ± 1.32 5.74 ± 1.89 

SEM 35.64 ± 3.71 27.35 ± 3.18 

TANOUE 49.14 ± 2.95 27.67 ± 0.60 

TOM-1 0.10 ± 0.01 1.38 ± 0.03 

T-ALL IC50 

Cell Line AraG (µg/mL) Cytarabine (ng/mL) 

ALL-SIL 1.28 ± 0.16 5.17 ± 0.64 

CCRF-CEM 0.43 ± 0.02 3.88 ± 0.70 

CTV-1 0.38 ± 0.07 1.72 ± 0.01 

HSB-2 0.52 ± 0.05 3.51 ± 0.07 

JJHan 0.97 ± 0.19 5.61 ± 0.53 

Jurkat 0.96 ± 0.06 6.65 ± 0.52 

KE-37 0.32 ± 0.11 1.83 ± 0.25 

MOLT-4 0.46 ± 0.01 3.02 ± 0.10 

MOLT-16 15.55 ± 1.30 6.48 ± 0.53 

P12-ICHIKAWA 0.26 ± 0.01 2.12 ± 0.19 

RPMI-8402 0.44 ± 0.01 3.43 ± 0.21 

 

 

Supplementary Files: 

Supplementary Data 3.1. Gene transcripts differentially regulated (mRNA abundance) 

between T-ALL and B-ALL cell lines based on data derived from GDSC, CCLE, or CTRP.  

Link:  
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314829/bin/42003_2020_1052_MOESM

2_ESM.xlsx 

Supplementary Data 3.2. Pathway analysis using the PANTHER database to identify 

differentially regulated processes based on genes differentially regulated between B-ALL and 

T-ALL cell lines in the CTRP, CCLE, and GDSC.  

Link: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314829/bin/42003_2020_1052_MOESM

3_ESM.xlsx 

Supplementary Data 3.3. Genes whose expression is directly or inversely correlated with the 

nelarabine AUC based on CTRP data.  

Link: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314829/bin/42003_2020_1052_MOESM

4_ESM.xlsx 

Supplementary Data 3.4. Genes whose expression is directly or inversely correlated with the 

nelarabine AUC based on CTRP data.  

Link: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314829/bin/42003_2020_1052_MOESM

5_ESM.xlsx 

Supplementary Data 3.5. Data underlying graphs. 

Link: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314829/bin/42003_2020_1052_MOESM

6_ESM.xlsx 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314829/bin/42003_2020_1052_MOESM2_ESM.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314829/bin/42003_2020_1052_MOESM2_ESM.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314829/bin/42003_2020_1052_MOESM3_ESM.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314829/bin/42003_2020_1052_MOESM3_ESM.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314829/bin/42003_2020_1052_MOESM4_ESM.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314829/bin/42003_2020_1052_MOESM4_ESM.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314829/bin/42003_2020_1052_MOESM5_ESM.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314829/bin/42003_2020_1052_MOESM5_ESM.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314829/bin/42003_2020_1052_MOESM6_ESM.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314829/bin/42003_2020_1052_MOESM6_ESM.xlsx
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Supplementary Materials for Chapter 4 
 

 

 

 

 

 

 

 

 

 

 

 

Figure S4.1. Comparison of SAMHD1 expression levels as expressed by fragments per 

kilobase of transcript per million mapped reads (FPKM) after removal of sex-specific cancer 

types and of BRCA (breast invasive carcinoma), for which only a very small fraction of samples 

(12/ 1,089 tumour tissue samples, 1/ 113 matched normal tissue samples) was derived from 

males. P-values were determined by Mann-Whitney U (Wilcoxon) test for independent 

groups. 

 

 

 

 

 

 

 

 

 

 

  

Figure S4.1. Comparison of SAMHD1 expression levels as expressed by fragments per 

kilobase of transcript per million mapped reads (FPKM) in tumours from the TARGET 

database. P-values determined by Mann-Whitney U (Wilcoxon) test for independent groups. 

Matched 

normal tissue 
Tumour tissue 

Tumour tissue 
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Figure S4.3A. Heatmap indicating the association of SAMHD1 expression and 5-year survival 

rates (blue: high SAMHD1 associated with higher survival rates, yellow: low SAMHD1 

associated with higher survival rates). 
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Figure S4.3B. Heatmap indicating cancer entities in which high SAMHD1 expression (blue) or 

low SAMHD1 expression (yellow) is significantly (p<0.05) associated with higher 5-year 

survival rates. 
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Figure S4.4. SAMHD1 levels in patients of different race in TCGA. Comparison of all groups 

was performed using the Kruskal-Wallis test. Individual group comparisons were performed 

using the Mann-Whitney U (Wilcoxon) rank sum test. 
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Figure S4.3. Heatmap indicating the association of SAMHD1 expression and 5-year survival 

rates (blue: high SAMHD1 associated with higher survival rates, yellow: low SAMHD1 

associated with higher survival rates). (A) All cancer types independently of significance level. 

(B) Cancer types in which at least comparison resulted in a significant (p<0.05) difference. 

 

 

 

A 
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Figure S4.6. SAMHD1 levels in patients of different race in the TARGET database. Comparison 

of all groups was performed using the Kruskal-Wallis test. Individual group comparisons were 

performed using the Mann-Whitney U (Wilcoxon) rank sum test. 
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Figure S4.7. Summary of the findings of the literature review for articles containing data on 

the role of SAMHD1 during oncogenesis. Articles were identified by using the search term 

"(((Cancer) OR (tumor) OR (tumour))) AND (SAMHD1)" in PubMed 

(https://pubmed.ncbi.nlm.nih.gov) on 17th June 2021. 

  

 

Supplementary Files: 

Table S4.1. 5-year survival in cancer patients with tumours displaying high or low SAMHD1 

levels as determined by best separation of data derived from TCGA. 

Table S4.2. 5-year survival in cancer patients with tumours displaying high or low SAMHD1 

levels as determined by best separation of data derived from TARGET. 

Table S4.3. 5-year survival in cancer patients divided by sex with tumours displaying high or 

low SAMHD1 levels as determined by best separation of data derived from TCGA. 

Table S4.4. 5-year survival in cancer patients divided by sex with tumours displaying high or 

low SAMHD1 levels as determined by best separation of data derived from TARGET. 

Table S4.5. 5-year survival in cancer patients divided by race with tumours displaying high or 

low SAMHD1 levels as determined by best separation of data derived from TCGA. 

Table S4.6. 5-year survival in cancer patients divided by race with tumours displaying high or 

low SAMHD1 levels as determined by best separation of data derived from TARGET. 

Table S4.7. Median SAMHD1 levels (FPKM, fragments per kilobase of transcript per million 

mapped reads) in tumour and control tissues 

https://pubmed.ncbi.nlm.nih.gov/
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Table S4.8. Correlation between SAMHD1 expression levels and SAMHD1 promotor 

methylation in different cancer types based on data derived from TCGA. 

Table S4.9. miRNAs documented to regulate SAMHD1. 

Table S4.10. Correlation of miRNAs and SAMHD1 expression in different cancer types. 

Table S4.11. TCGA mutation data. 

Table S4.12. 5-year survival in patients with SAMHD1 mutant or wild-type tumours based on 

TCGA data. 

Table S4.13. Literature search performed in PubMed (https://pubmed.ncbi.nlm.nih.gov) on 

17th June 2021 using the search term "(((Cancer) OR (tumor) OR (tumour))) AND (SAMHD1)". 

Link: 

https://www.biorxiv.org/content/biorxiv/early/2021/07/05/2021.07.03.451003/DC1/embe

d/media-1.zip?download=true 
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Supplementary Materials for Chapter 5 

 

 

Figure S5.1. The BLOSUM scores for the amino acid substitutions present in the SDPs. A graph is 

plotted that combines all of the proteins and one for each of the individual proteins that were 

analysed. 
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 (Phyre2 model c2k87A) 
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NSP9 
 (model 6w4b) 

NSP10 
 (model 6w61) 

E128P 

NSP14 
 (Phyre2 model c5c8sd) 

S220N 

S307A 

Q501L 

NSP8 
 (Phyre 2 model c2ahmG) 
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 (model 6y2e) 
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Nucleocapsid 

(model 6m3m) 
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 (Phyre 2 model c5x29B) 
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NSP12  

(model 7bv2) 

A801S 
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Figure S5.2. Overview of modelled DCPs. DCPs with likely functional effect are indicated by arrows 

and labelled. Structural model shown is indicated in brackets. DCPs likely to have an effect are 

coloured red; DCPs with a possible effect are shown in orange; and DCPs unlikely to have an effect are 

coloured yellow. Please refer to table S7 for full details of structural analysis of each DCP. 
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Figure S5.3. SARS-CoV-2 and SARS-CoV susceptibility of cell lines. (A) Representative images showing 

MOI 0.01-infected cells immunostained for double-stranded RNA 48h post infection. (B) 

Quantification of virus genomes by qPCR at different time points post infection (p.i.). Values are 

presented as means ± S.D. (n =3). 
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Figure S5.4. SARS-CoV-2 and SARS-CoV replication in 293 cells stably expressing ACE2 cells (293/ACE2). 

(A) Immunostaining for double-stranded RNA (indicating virus replication) in SARS-CoV-2 and SARS-

CoV (MOI 0.01)-infected 293/ACE2 cells 48h post infection. (B) Quantification of virus genomes by 

qPCR in SARS-CoV-2 and SARS-CoV (MOI 0.01)-infected 293/ACE2 cells 48h post infection. Values are 

presented as means ± S.D. (n =3). 
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Figure S5.5. Uncropped Western blots for Figure 5.1C. 293/ACE2 cells served as positive control for 

ACE2. * Protein quantification 

 

 

Figure S5.6. Role of TMPRSS2-mediated S cleavage in SARS-CoV-2 and SARS-Co-V replication. 

Concentration-dependent effects of the TMPRSS2 inhibitors camostat and nafamostat on SARS-CoV-

2- and SARS-CoV-induced cytopathogenic effect (CPE) formation determined 48h post infection in 

CL14 cells infected at an MOI of 0.01. Values are presented as means ± S.D. (n =3). 

 

Table S5.1. Protein structures used for structural analysis obtained from the Protein Data Bank. 
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SARS  PDB 

identifier  

Protein  Residues  

SARS-CoV  2hsx  NSP1  13-127  

SARS-CoV  2gri  NSP3  1-111  

SARS-CoV  2fav  NSP3  185-354  

SARS-CoV-2  6vxs  NSP3  207-373  

SARS-CoV  2w2g  NSP3  389-652  

SARS-CoV  2kaf  NSP3  655-720  

SARS-CoV  5y3e  NSP3  723-1036  

SARS-CoV-2  6w9c  NSP3  748-1061  

SARS-CoV  2k87  NSP3  1066-1180  

SARS-CoV  2h2z  NSP5  1-306  

SARS-CoV-2  6y2e  NSP5  1-306  

SARS-CoV  6nur  NSP7  2-71  

SARS-CoV-2  6xip  NSP7  1-70  

SARS-CoV  2ahm  NSP8  1-190  

SARS-CoV  2fyg  NSP10  10-132  

SARS-CoV-2  6w61  NSP10  18-132  

SARS-CoV  6nur  NSP12  41-819  

SARS-CoV-2  7bv2  NSP12  31-929  

SARS-CoV  5c8s  NSP14  1-525  

SARS-CoV  2h85  NSP15  1-345  

SARS-CoV-2  6vww  NSP15  1-346  

SARS-CoV  2xyq  NSP16  1-290  

SARS-CoV-2  6w61  NSP16  1-299  

SARS-CoV  6acg  S:ACE2  18-1119  

SARS-CoV-2  6m17  S:ACE2  336-518  

SARS-CoV  5xlr  S  33-1120  

SARS-CoV  5wrg  S  261-1058  

SARS-CoV-2  6vsb  S  27-1146  

SARS-CoV-2  6xdc  3a  40-238  

SARS-CoV  5x29  E  8-65  

SARS-CoV  1yo4  7a  16-99  
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SARS-CoV  1ssk  N  49-185  

SARS-CoV-2  6m3m  N  48-173  

SARS-CoV  2gib  N  270-366  

SARS-CoV-2  6zco  N  248-364  

 

 

Table S5.2. Structural models generated by Phyre2 and used for structural analysis. Where structures 

were not available from the Protein Data Bank, the structures were modelled. 

SARS  Template 

structure  

Protein  Residues  Coverage  Confidenc

e  

Identity 

(%)  

SARS-

CoV-2  

2gdta1  NSP1  13-127  64  100  86  

SARS-CoV  6zojj  NSP1  148-180  17  99.1  76  

SARS-

CoV-2  

6zojj  NSP1  148-180  18  99.8  100  

SARS-

CoV-2  

2gria1  NSP3  2-111  5  100  77  

SARS-

CoV-2  

2acfa1  NSP3  207-373  8  100  74  

SARS-

CoV-2  

2wctC  NSP3  425-676  12  100  76  

SARS-

CoV-2  

2fe8B  NSP3  745-1058  16  100  82  

SARS-

CoV-2  

2k87A  NSP3  1089-

1203  

5  100  82  

SARS-

CoV-2  

3gzfD  NSP4  403-477  18  100  41  

SARS-

CoV-2  

2duca1  NSP5  2-283  98  100  96  

SARS-

CoV-2  

2ahmG  NSP8  1-175  95  100  97  

SARS-

CoV-2  

1uw7A  NSP9  1-90  100  100  97  
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SARS-

CoV-2  

2g9tT  NSP10  9-116  86  100  98  

SARS-

CoV-2  

6nusA  NSP12  118-909  87  100  97  

SARS-

CoV-2  

5c8sD  NSP14  1-504  97  100  95  

SARS-CoV  6xdcB  3a  40-238  72  100  77  

SARS-

CoV-2  

5x29B  E  8-65  77  99.8  91  

SARS-

CoV-2  

1yo4A  7a  16-98  67  100  91  

 

Table S5.3. Criteria used for classifying proposed effect on protein structure and function within the 

structural analysis. 

Effect  Reason  

Unlikely  Conservative changes (between 

residues with the same 

polarity/charge) which do not 

affect ability to form hydrogen 

bonds with equivalent residues 

in SARS-CoV and SARS-CoV-2  

Possible – conformational change  Changes which could affect the 

ability of a sidechain of a residue 

in a given position to form 

hydrogen bonds with equivalent 

residues in SARS-CoV and SARS-

CoV-2 (e.g. gain/loss of polarity, 

substitution for larger/smaller 

sidechain) but no such effects 

are visible, or conservative 

changes (between residues with 

the same polarity/charge) which 

appear in the model to result in 
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gain/loss of hydrogen bonding 

between equivalent residues in 

SARS-CoV and SARS-CoV-2 (but 

mutagenesis suggests hydrogen 

bonding is possible with 

sidechain rotation)  

Possible – alteration of sidechain/ligand 

interactions  

Changes which result in gain of 

charge/alter the charge of a 

sidechain for a residue in a given 

position  

Possible – conformational change and alteration of 

sidechain/ligand interactions  

Changes which affect the ability 

of a sidechain of a residue in a 

given position to form hydrogen 

bonds with equivalent residues 

in SARS-CoV and SARS-CoV-2 

(e.g. gain/loss of polarity, 

substitution for larger/smaller 

sidechain) but no such effects 

are visible, and changes which 

result in gain of charge/alter the 

charge of a sidechain for a 

residue in a given position  

Likely – conformational change  Changes which result in visible 

alteration in the conformation of 

a protein at a given location (e.g. 

through loss of hydrogen 

bonding between equivalent 

residues in SARS-CoV and SARS-

CoV-2) and/or which result in 

the loss of capacity for hydrogen 

bonding  

Likely – conformational change (and possible 

alteration of sidechain/ligand interactions)  

Changes which result in visible 

alteration in the conformation of 

a protein at a given location (e.g. 
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through loss of hydrogen 

bonding between equivalent 

residues in SARS-CoV and SARS-

CoV-2, and/or which result in 

the loss of capacity for hydrogen 

bonding and which result in gain 

of charge/alter the charge of a 

sidechain for a residue in a given 

position)  

 

 

 

 

Table S5.4. Specificity Determining Positions (DCPs) identified between SARS-CoV and SARS-CoV-2. 

Protein  

(SARS-CoV)  

Protein  

(SARS-CoV-2)  

Sequences in 

Dataset  

Protein 

Length (SARS-

CoV)  

DCPs 

Identified  

% of Residues 

DCPs  

S  S  73863  1255  186  14.82  

3a  ORF3a  91214  274  32  11.68  

3b   n/a  154   

E  E  94787  76  2  2.63  

M  M  93860  221  15  2.26  

6  6  94935  63  13  9.52  

7a  7a  82940  122  0  0  

7b 7b n/a 44 NA  

8a/8b  8  n/a  39/84  NA  NA  

9b  n/a 98 NA  

N  N  91609  422  13  3.08  

 ORF10 n/a n/a   

nsp1  nsp1  93621  180  6  3.33  

nsp2  nsp2  88288  636  136  21.38  

Nsp3  nsp3  75324  1922  344  17.90  
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nsp4  nsp4  89707  500  54  10.80  

nsp5  nsp5  91731  306  5  1.63  

nsp6  nsp6  93432  290  13  4.48  

nsp7  nsp7  95038  83  1  1.20  

nsp8  nsp8  94806  198  5  2.53  

nsp9  nsp9  94970  113  2  1.77  

nsp10  nsp10  92505  139  1  0.72  

nsp12  nsp12  89874  932  21  2.25  

nsp13  nsp13  91305  601  0  0  

nsp14  nsp14  72306  527  16  3.04  

nsp15  nsp15  85595  346  31  8.96  

nsp16  nsp16  83565  298  12  4.03  

      

Total    891 9.36 

 

 

Table S5.5. Analysis of DCPs present in the SARS-CoV and SARS-CoV-2 Spike protein interface with 

human ACE2. 

SDP  SARS-CoV structural 

analysis  

SARS-CoV-2 

structural analysis  

Effect?  

V404=K417  V404 is not in the 

interface  

K417 is in the 

interface and could 

form a salt bridge with 

ACE-2 D30  

Likely – new polar 

interaction within 

interface  

R426=N439  Loss of hydrogen 

bond to ACE2 Gln325 

due to shorter 

sidechain. N would 

still be able to form 

hydrogen bonds  

N439 is located away 

from the interface site 

and so does not form 

a hydrogen bond with 

ACE2. Instead forms a 

hydrogen bond with 

S443 (also a DCP – 

A430=S443) which is 

likely to stabilise the 

Likely – Loss of 

interface hydrogen 

bond.  



337 
 

loop they are both 

part of.  

Y442=L455  Y422 forms hydrogen 

bond to backbone of 

W476 – loss could 

result in 

conformational 

change. The sidechain 

also contacts the 

backbone of ACE2 

D30 and K31  

L455 remains in 

interface and contacts 

ACE2 D30 and H34.  

Likely – loss of 

intramolecular 

hydrogen bond  

F460=Y473  Conservative change.  Introduction of OH 

group that can form 

hydrogen bonds. Y473 

forms hydrogen bond 

with backbone of 

R457 and is closer to 

ACE2 T27 so potential 

to form hydrogen 

bond in interface.  

Possible – 

introduction of 

hydrogen bond (could 

be with ACE2)  

P462=A475  Located in a loop, 

could affect this 

conformation – many 

DCPs in this loop  

Loop has different 

conformation.  

Possible – 

Conformational 

change of loop  

N479=Q493  Interface hydrogen 

bond formed with 

ACE2 H34 backbone. 

With a shorter 

sidechain this this 

may be lost in SARS-

CoV-2.  

Q493 forms a 

hydrogen bond with 

ACE2 E35 in this 

complex. So hydrogen 

bond is maintained 

but also different.  

Possible – hydrogen 

bond with ACE2 

retained but to 

different residue.  

Y484=Q498  Y484 can form 

hydrogen bonds with 

ACE2 Gln42 

Q498 maintains 

hydrogen bonds with 

ACE2 Gln42  

Possible – change in 

residue forming 
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(sidechain) and 

intramolecular H 

bonds with T433 

(backbone), Y436 

(sidechain).  

hydrogen bonds with 

ACE2.  

 

Supplementary Files: 

Table S5.6. Structural analysis of DCPs in SARS-CoV and SARS-CoV-2 

Link: 

https://oup.silverchair-

cdn.com/oup/backfile/Content_public/Journal/bioinformatics/PAP/10.1093_bioinformatics

_btab094/2/btab094_supplementary_data.zip?Expires=1625998633&Signature=yEUo7aFs

wjDlJ2J0BZuqT5wteb0dWc78MDQzrLGwtkWyWt6uaNzLl9Dg17DKRgDiHotgC8sN2I7h62rxti

A3RlPRE5aCr~qPU4QSmJABE-

RLMe8r2myHS5XMsQbOb1VJtYWHUVDkfkNUp81R9lkGUQqKiD9sAgIYXurbyoJ~wJMk~IIFz8I

yIJcgZ0SJiEeZUtMQRE8-pjm3d-xMix1bgj0dI9PKl8Iw8BugX4SGWjqmgoD9xeEUbTwZWvP32-

fxYnxxi5fgMyuDWdcTEitPS6YAaYwf0q8kkI7XaSRXS41NZi0HhMRZiDMh2Aeo0eEADveEabsX

UiSoJ5G~cLKhwg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA 

 

 

https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/PAP/10.1093_bioinformatics_btab094/2/btab094_supplementary_data.zip?Expires=1625998633&Signature=yEUo7aFswjDlJ2J0BZuqT5wteb0dWc78MDQzrLGwtkWyWt6uaNzLl9Dg17DKRgDiHotgC8sN2I7h62rxtiA3RlPRE5aCr~qPU4QSmJABE-RLMe8r2myHS5XMsQbOb1VJtYWHUVDkfkNUp81R9lkGUQqKiD9sAgIYXurbyoJ~wJMk~IIFz8IyIJcgZ0SJiEeZUtMQRE8-pjm3d-xMix1bgj0dI9PKl8Iw8BugX4SGWjqmgoD9xeEUbTwZWvP32-fxYnxxi5fgMyuDWdcTEitPS6YAaYwf0q8kkI7XaSRXS41NZi0HhMRZiDMh2Aeo0eEADveEabsXUiSoJ5G~cLKhwg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/PAP/10.1093_bioinformatics_btab094/2/btab094_supplementary_data.zip?Expires=1625998633&Signature=yEUo7aFswjDlJ2J0BZuqT5wteb0dWc78MDQzrLGwtkWyWt6uaNzLl9Dg17DKRgDiHotgC8sN2I7h62rxtiA3RlPRE5aCr~qPU4QSmJABE-RLMe8r2myHS5XMsQbOb1VJtYWHUVDkfkNUp81R9lkGUQqKiD9sAgIYXurbyoJ~wJMk~IIFz8IyIJcgZ0SJiEeZUtMQRE8-pjm3d-xMix1bgj0dI9PKl8Iw8BugX4SGWjqmgoD9xeEUbTwZWvP32-fxYnxxi5fgMyuDWdcTEitPS6YAaYwf0q8kkI7XaSRXS41NZi0HhMRZiDMh2Aeo0eEADveEabsXUiSoJ5G~cLKhwg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/PAP/10.1093_bioinformatics_btab094/2/btab094_supplementary_data.zip?Expires=1625998633&Signature=yEUo7aFswjDlJ2J0BZuqT5wteb0dWc78MDQzrLGwtkWyWt6uaNzLl9Dg17DKRgDiHotgC8sN2I7h62rxtiA3RlPRE5aCr~qPU4QSmJABE-RLMe8r2myHS5XMsQbOb1VJtYWHUVDkfkNUp81R9lkGUQqKiD9sAgIYXurbyoJ~wJMk~IIFz8IyIJcgZ0SJiEeZUtMQRE8-pjm3d-xMix1bgj0dI9PKl8Iw8BugX4SGWjqmgoD9xeEUbTwZWvP32-fxYnxxi5fgMyuDWdcTEitPS6YAaYwf0q8kkI7XaSRXS41NZi0HhMRZiDMh2Aeo0eEADveEabsXUiSoJ5G~cLKhwg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/PAP/10.1093_bioinformatics_btab094/2/btab094_supplementary_data.zip?Expires=1625998633&Signature=yEUo7aFswjDlJ2J0BZuqT5wteb0dWc78MDQzrLGwtkWyWt6uaNzLl9Dg17DKRgDiHotgC8sN2I7h62rxtiA3RlPRE5aCr~qPU4QSmJABE-RLMe8r2myHS5XMsQbOb1VJtYWHUVDkfkNUp81R9lkGUQqKiD9sAgIYXurbyoJ~wJMk~IIFz8IyIJcgZ0SJiEeZUtMQRE8-pjm3d-xMix1bgj0dI9PKl8Iw8BugX4SGWjqmgoD9xeEUbTwZWvP32-fxYnxxi5fgMyuDWdcTEitPS6YAaYwf0q8kkI7XaSRXS41NZi0HhMRZiDMh2Aeo0eEADveEabsXUiSoJ5G~cLKhwg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/PAP/10.1093_bioinformatics_btab094/2/btab094_supplementary_data.zip?Expires=1625998633&Signature=yEUo7aFswjDlJ2J0BZuqT5wteb0dWc78MDQzrLGwtkWyWt6uaNzLl9Dg17DKRgDiHotgC8sN2I7h62rxtiA3RlPRE5aCr~qPU4QSmJABE-RLMe8r2myHS5XMsQbOb1VJtYWHUVDkfkNUp81R9lkGUQqKiD9sAgIYXurbyoJ~wJMk~IIFz8IyIJcgZ0SJiEeZUtMQRE8-pjm3d-xMix1bgj0dI9PKl8Iw8BugX4SGWjqmgoD9xeEUbTwZWvP32-fxYnxxi5fgMyuDWdcTEitPS6YAaYwf0q8kkI7XaSRXS41NZi0HhMRZiDMh2Aeo0eEADveEabsXUiSoJ5G~cLKhwg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/PAP/10.1093_bioinformatics_btab094/2/btab094_supplementary_data.zip?Expires=1625998633&Signature=yEUo7aFswjDlJ2J0BZuqT5wteb0dWc78MDQzrLGwtkWyWt6uaNzLl9Dg17DKRgDiHotgC8sN2I7h62rxtiA3RlPRE5aCr~qPU4QSmJABE-RLMe8r2myHS5XMsQbOb1VJtYWHUVDkfkNUp81R9lkGUQqKiD9sAgIYXurbyoJ~wJMk~IIFz8IyIJcgZ0SJiEeZUtMQRE8-pjm3d-xMix1bgj0dI9PKl8Iw8BugX4SGWjqmgoD9xeEUbTwZWvP32-fxYnxxi5fgMyuDWdcTEitPS6YAaYwf0q8kkI7XaSRXS41NZi0HhMRZiDMh2Aeo0eEADveEabsXUiSoJ5G~cLKhwg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/PAP/10.1093_bioinformatics_btab094/2/btab094_supplementary_data.zip?Expires=1625998633&Signature=yEUo7aFswjDlJ2J0BZuqT5wteb0dWc78MDQzrLGwtkWyWt6uaNzLl9Dg17DKRgDiHotgC8sN2I7h62rxtiA3RlPRE5aCr~qPU4QSmJABE-RLMe8r2myHS5XMsQbOb1VJtYWHUVDkfkNUp81R9lkGUQqKiD9sAgIYXurbyoJ~wJMk~IIFz8IyIJcgZ0SJiEeZUtMQRE8-pjm3d-xMix1bgj0dI9PKl8Iw8BugX4SGWjqmgoD9xeEUbTwZWvP32-fxYnxxi5fgMyuDWdcTEitPS6YAaYwf0q8kkI7XaSRXS41NZi0HhMRZiDMh2Aeo0eEADveEabsXUiSoJ5G~cLKhwg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/PAP/10.1093_bioinformatics_btab094/2/btab094_supplementary_data.zip?Expires=1625998633&Signature=yEUo7aFswjDlJ2J0BZuqT5wteb0dWc78MDQzrLGwtkWyWt6uaNzLl9Dg17DKRgDiHotgC8sN2I7h62rxtiA3RlPRE5aCr~qPU4QSmJABE-RLMe8r2myHS5XMsQbOb1VJtYWHUVDkfkNUp81R9lkGUQqKiD9sAgIYXurbyoJ~wJMk~IIFz8IyIJcgZ0SJiEeZUtMQRE8-pjm3d-xMix1bgj0dI9PKl8Iw8BugX4SGWjqmgoD9xeEUbTwZWvP32-fxYnxxi5fgMyuDWdcTEitPS6YAaYwf0q8kkI7XaSRXS41NZi0HhMRZiDMh2Aeo0eEADveEabsXUiSoJ5G~cLKhwg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/PAP/10.1093_bioinformatics_btab094/2/btab094_supplementary_data.zip?Expires=1625998633&Signature=yEUo7aFswjDlJ2J0BZuqT5wteb0dWc78MDQzrLGwtkWyWt6uaNzLl9Dg17DKRgDiHotgC8sN2I7h62rxtiA3RlPRE5aCr~qPU4QSmJABE-RLMe8r2myHS5XMsQbOb1VJtYWHUVDkfkNUp81R9lkGUQqKiD9sAgIYXurbyoJ~wJMk~IIFz8IyIJcgZ0SJiEeZUtMQRE8-pjm3d-xMix1bgj0dI9PKl8Iw8BugX4SGWjqmgoD9xeEUbTwZWvP32-fxYnxxi5fgMyuDWdcTEitPS6YAaYwf0q8kkI7XaSRXS41NZi0HhMRZiDMh2Aeo0eEADveEabsXUiSoJ5G~cLKhwg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA


339 
 

Supplementary Materials for Chapter 6 

 

 

 

Figure S6.1. Uncropped Western blots to Figure 6.1. Bands are indicated by frames. Numbers indicate 

quantification results. 
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Figure S6.2. CD47 mRNA levels in SARS-CoV-2-infected Calu-3 cells (data derived from 

(Blanco-Melo et al., 2020)). P-values were determined by two-sided Student’s t-test. 

 

 

 

Figure S6.3. CD47 levels in SARS-CoV-2 (MOI 0.1)-infected Caco2 cells as determined by flow 

cytometry (FACSCanto II, BD Biosciences). Cells were fixed with 4% formaldehyde (10 

minutes) and then stained for CD47 using a PE-labelled CD47 antibody (Miltenyi, # 130-123-

754, 1:50 dilution).  Isotype REA Control Antibody (S) (human IgG1, PE-labelled, Miltenyi, # 

130-113-438, 1:50 dilution) was used as control.  
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Figure S6.4. Uncropped Western blots to Figure 6.2. 

 

Supplementary Files: 

Table S6.1. Literature search for 'CD47 aging'. Literature search performed using PubMed 

(https://pubmed.ncbi.nlm.nih.gov) on 17th February 2021 

Link: 

https://www.biorxiv.org/content/biorxiv/early/2021/03/01/2021.03.01.433404/DC3/embe

d/media-3.xlsx?download=true 

Table S6.2 Literature search for 'CD47 hypertension'. Literature search performed using 

PubMed (https://pubmed.ncbi.nlm.nih.gov) on 18th February 2021 

Link: 

https://www.biorxiv.org/content/biorxiv/early/2021/03/01/2021.03.01.433404/DC3/embed/media-3.xlsx?download=true
https://www.biorxiv.org/content/biorxiv/early/2021/03/01/2021.03.01.433404/DC3/embed/media-3.xlsx?download=true
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https://www.biorxiv.org/content/biorxiv/early/2021/03/01/2021.03.01.433404/DC4/embe

d/media-4.xlsx?download=true 

Table S6.3. Literature search for 'CD47 diabetes’. Literature search performed using PubMed 

(https://pubmed.ncbi.nlm.nih.gov) on 19th February 2021 

Link: 

https://www.biorxiv.org/content/biorxiv/early/2021/03/01/2021.03.01.433404/DC5/embe

d/media-5.xlsx?download=true 

Table S6.4. Literature search for 'CD47 obesity’. Literature search performed using PubMed 

(https://pubmed.ncbi.nlm.nih.gov) on 22nd February 2021 

Link: 

https://www.biorxiv.org/content/biorxiv/early/2021/03/01/2021.03.01.433404/DC6/embe

d/media-6.xlsx?download=true 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.biorxiv.org/content/biorxiv/early/2021/03/01/2021.03.01.433404/DC4/embed/media-4.xlsx?download=true
https://www.biorxiv.org/content/biorxiv/early/2021/03/01/2021.03.01.433404/DC4/embed/media-4.xlsx?download=true
https://www.biorxiv.org/content/biorxiv/early/2021/03/01/2021.03.01.433404/DC5/embed/media-5.xlsx?download=true
https://www.biorxiv.org/content/biorxiv/early/2021/03/01/2021.03.01.433404/DC5/embed/media-5.xlsx?download=true
https://www.biorxiv.org/content/biorxiv/early/2021/03/01/2021.03.01.433404/DC6/embed/media-6.xlsx?download=true
https://www.biorxiv.org/content/biorxiv/early/2021/03/01/2021.03.01.433404/DC6/embed/media-6.xlsx?download=true
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Supplementary Files: 

Table S7.1. Genes associated with the GO term “Blood Coagulation” (GO:0007596) in males 

vs. females  

Table S7.2. Correlation of the expression of coagulation-associated genes with age 

Table S7.3. Genes with relevant functions whose expression levels correlate with age and 

differ between males and females 

Table S7.4. Genes differentially regulated in SARS-CoV-2-infected Caco2 cells 

Table S7.5. Interaction partners of SARS-CoV-2 proteins. 

Link: 

https://www.mdpi.com/2075-4418/10/8/539/s1 
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Figure S8.1. Quantification of immunostaining for the spike protein in SARS-CoV-2-infected (isolates 

FFM1, FFM2, FFM6) Caco2 cells with and without treatment of aprotinin or SERPINA1/ alpha-1 

antitrypsin (prolastin) presented in Figure 8.2B. 
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Figure S8.2. Trypsin inhibition by aprotinin and SERPINA1/ alpha-1 antitrypsin. Nearly confluent Caco2 

cell cultures were washed three times with PBS and incubated with 400μg/ mL trypsin alone or in 

combination with aprotinin 20μM or SERPINA1 20μM for 2h. 
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Figure S8.2. Trypsin inhibition by aprotinin and SERPINA1/ alpha-1 antitrypsin. Nearly confluent A549 

cell cultures were washed three times with PBS and incubated with 400μg/ mL trypsin alone or in 

combination with aprotinin 20μM or SERPINA1 20μM for 2h. 

 

 

 

 

 

 

 

 

 

 

 

Figure S8.3. Quantification of immunostaining for the spike protein in SARS-CoV-2/FFM7 (MOI 0.01)-

infected Calu-3 cells 48h post infection in response to aprotinin treatment. 
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Figure S8.4. Uncropped Western blots corresponding to Figure 8.4B. Quantification was performed by 

laser-induced fluorescence using an infrared scanner (Odyssey, Li-Cor Biosciences) and Image Studio 

version 3.1 software. 

Supplementary Files: 

Table S8.1. Detailed mass spectrometry data 

Link: 

https://www.mdpi.com/2073-4409/9/11/2377/s1 
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