
Seed, Thomas (2021) Program Verification Using Polynomials Over Modular
Arithmetic. Doctor of Philosophy (PhD) thesis, University of Kent,.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/90261/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.90261

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/90261/
https://doi.org/10.22024/UniKent/01.02.90261
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

PROGRAM VERIFICATION USING POLYNOMIALS
OVER MODULAR ARITHMETIC

a thesis submitted to

The University of Kent

in the subject of computer science

for the degree

of doctor of philosophy.

By

Thomas Seed

January 2021

Abstract

As program verification has matured as a discipline, so distinct topics have emerged

and then developed into thriving sub-disciplines, each with their own language and

focus. In Satisfiability Modulo Theories (SMT) solving the focus is on deciding the

satisfiability of formulae over predicates (constraints) drawn from a background

theory. If a SMT formula encodes the existence of a problematic path through a

program, then a model of the formula will expose a fault as demonstrated with a

counter-example. In abstract interpretation, on the other hand, the objective is

typically to infer invariants for a program so as to demonstrate the absence of a

fault. These complementary sub-disciplines do not exist in silos completing against

one another: one sub-discipline informs the other. This thesis illustrates how these

sub-disciplines cross-fertilise in both directions: presenting a new abstract domain

that draws on techniques from SMT solving, namely solving systems of symbolic

equations (theory solving). One fundamental operation used in the domain con-

struction applies a propagation technique that suggests how the satisfiability the

SMT formulae can be reduced to that of deciding the satisfiability of a compact

SAT instance. This leads to a new technique for SMT solving.

Although developed in tandem, for sake of presentation the thesis first addresses

the satisfiability of systems of polynomial equations over bit-vectors. Instead of

conventional bit-blasting, we exploit word-level inference to translate these sys-

tems into non-linear pseudo-boolean constraints. We derive the pseudo-booleans

by simulating bit assignments through the addition of (linear) polynomials and

applying a strong form of propagation by computing Gröbner bases, which pro-

vide an analog of a triangular form for systems of polynomials. By handling bit

assignments symbolically, the number of Gröbner basis calculations, along with the

number of assignments, is reduced. The final Gröbner basis yields an assignment

ii

to the bit-vectors, expressed parametrically in terms of the symbolic bits, together

with non-linear pseudo-boolean constraints on the symbolic variables, modulo a

power of two. The pseudo-booleans can be solved by translation into classical

linear pseudo-boolean constraints (without a modulo) or by encoding them as

propositional formulae, for which a novel translation process is described. This

aspect of the thesis has a practical bias.

The dual theme of the thesis on abstract domain construction has a theoretical

bias. The thesis presents MPAD, the modulo polynomial abstract domain, whose

invariants are systems of polynomial equations that hold modulo 2ω where ω is

bit-width. MPAD systems over d variables symbolically represent sets of points in

the d-dimensional space (Z2ω)d as their solutions, and provide a way of represent-

ing and inferring polynomial invariants in the presence of wrap-around arithmetic.

The domain operations of MPAD are computed using Gröbner bases, but are

founded on a closure operation, mirroring a construction familiar in numeric ab-

straction. Given an input system of polynomials, and their associated solutions,

closure derives a finite polynomial representation of all polynomials that satisfy

these solutions. Closure is necessary for faithfully computing join and projection,

operations that preserve it. Meet does not maintain closure, hence the need for

an algorithm for computing it. Unlike convention polynomial abstraction, MPAD

satisfies the ascending chain condition, finessing the need for widening. It also

remedies the disparity in handling of equality but not disequality in guards, nor-

mally found in numeric abstraction: the structure of MPAD allowing the addition

of a single polynomial disequality to be reexpressed using closure and join. We

demonstrate that MPAD can derive invariants necessary for verifying the correct-

ness of algorithms which exploit integrality, that were previously out of reach.

As a whole, the thesis makes contributions to SMT solving and abstract inter-

pretation, two complementary themes of program verification, both of which draw

on common techniques from algebraic computation, namely Gröbner bases.

iii

Acknowledgements

First and foremost I would like to thank my supervisor Andy King for his patience

and dedication in helping me submit this thesis. I would also like to thank my

girlfriend Georgia for her unending care for me throughout this process - you’ve

given up a lot and I couldn’t have done it without you. Thanks also to my family

and Georgia’s family who have been a great support to me throughout.

I would also like to thank Paul Subotic, for giving me a home at Amazon and

encouraging me in my pursuit of program verification and abstract interpretation,

Chris Coppins who helped me get up with speed with Scala when I needed to

rapidly develop a Gröbner engine, and finally Neil from AWE who saw a spark in

the Gröbner basis and encouraged us to develop it into an abstract domain.

iv

Contents

Abstract ii

Acknowledgements iv

Contents v

List of Figures viii

1 Introduction 1

1.1 Satisfiability Modulo Theories . 1

1.1.1 SAT solving . 2

1.1.2 Lazy SMT solving . 4

1.2 Abstract Interpretation . 6

1.3 Contributions . 12

1.4 Roadmap . 13

2 Gröbner Bases 14

2.1 Modular Arithmetic . 15

2.2 Rank and divisibility in Zm . 15

2.3 Polynomials . 16

2.4 Bases . 17

2.5 Monomial orderings . 17

2.6 Reduction . 19

2.7 Gröbner bases . 20

2.8 Buchberger’s algorithm . 21

2.9 Null polynomials . 24

v

2.10 Substitution . 27

2.11 Related work . 28

2.12 Concluding Discussion . 29

3 SMT for Modular Polynomials 30

3.1 Introduction . 30

3.2 Bit-sequence Propagation in a Nutshell 32

3.2.1 Solving using 0/1 truth values 33

3.2.2 Solving using symbolic truth values 35

3.2.3 Solving using SAT . 36

3.3 Encoding pseudo-boolean constraints 37

3.4 Experimental results . 38

3.5 Related Work . 42

3.6 Concluding Discussion . 43

4 The Modular Polynomial Abstract Domain 44

4.1 Introduction . 44

4.2 Modular Polynomial Abstract Domain 46

4.2.1 Concretisation . 46

4.2.2 Closure . 47

4.2.3 MPAD . 48

4.2.4 Null polynomials . 50

4.3 Motivating Example . 51

4.3.1 Syntax of polynomial programs 51

4.3.2 Collecting semantics of polynomial programs 53

4.3.3 Abstract semantics of polynomial programs 53

4.3.4 Calculating the abstract semantics (framework) 55

4.3.5 Calculating the abstract semantics: pre-loop 55

4.3.6 Calculating the abstract semantics: loop 58

4.3.7 Calculating the abstract semantics: post-loop 60

4.4 Related Work . 61

4.5 Concluding Discussion . 62

vi

5 Domain Operation Algorithms for MPAD 63

5.1 Calculating variable elimination and join 64

5.1.1 Concretisation and closure: reprise 64

5.1.2 Variable elimination . 66

5.1.3 Join . 67

5.2 Calculating closure and meet . 70

5.2.1 Covering . 71

5.2.2 Closure . 80

5.2.3 Meet . 83

5.3 Calculating abstract transfer functions 84

5.3.1 Assume for polynomial equality 84

5.3.2 Assume for polynomial disequality 85

5.3.3 Non-deterministic assignment 86

5.3.4 Polynomial assignment . 87

5.3.5 Fixpoint check . 89

5.4 Related work . 90

5.5 Concluding Discussion . 90

6 Future Work and Conclusions 92

6.1 Future work . 92

6.2 Conclusions . 94

A Proofs 97

A.1 Proofs for domain operations . 97

A.2 Proofs for worklist algorithm . 100

A.3 Proofs for Gröbner bases . 102

A.4 Proofs for variable elimination and join 103

A.5 Proofs for cover and closure . 105

A.6 Proofs for abstract transfer functions 122

Bibliography 125

vii

List of Figures

1 The DPLL algorithm . 3

2 The SMT framework . 6

3 A toy program (a) and its flow graph (b) 7

4 Gröbner basis algorithm over integers modulo 2ω 22

5 Execution of gb≺(B) . 24

6 Bit-assignments and word-level propagation: 0/1 bits and symbolic

bits . 33

7 Reduction rules for pseudo-boolean polynomials modulo 2r 38

8 Top: number of symbolic variables (y) against ω (x) for n = 2, 3

and 4; Bottom: number of pseudo-booleans (y) against ω (x) for n

= 2, 3 and 4 . 39

9 Histograms for the ratio of the number of pseudo-booleans (top)/logical

connectives (bottom) to the multiplication count for n = 2, 3, 4 and

ω = 32 . 41

10 Timings for Buchberger in seconds (y) against ω (x) for n = 2, 3, 4 42

11 Dyadic join with and without closure, where Q3 = 〈Q′1〉~x ∩ 〈Q2〉~x
and Q4 = 〈Q1〉~x ∩ 〈Q2〉~x . 47

12 An algorithm (a) and flow graph (b) for computing the multiplica-

tive inverse . 52

13 Worklist-based fixpoint algorithm 54

14 Updates to the state map . 56

15 Concretisation of P = {x2 + 14x}, Q = {x3 + 5x2 + 2x} and B =

{wx+ 10w, 15wx2 +wx+ x2 + 15x} for ~x = 〈x〉 and ~y = 〈x, y〉 and

~w = 〈x,w〉 . 65

16 Examples of join on Z16[~x] for ~x = 〈x, y〉 69

viii

17 Covers of F1 over 〈w1〉 and F2 over 〈w1, w2〉 70

18 The cover algorithm . 72

19 The simplify, constrain and safe functions 73

20 Covering F : γ~y(Fn) (large, translucent points) and γ~y(Sn) (small,

opaque points) for Sn = 〈 ~Wn, Fn〉 74

21 Solution sets for F , F3 and F4 . 75

22 Covering F : the simplification and splitting actions 76

23 Abstract assumes for p = 2x− 4 . 84

24 Non-deterministic and polynomial assignment 88

ix

Chapter 1

Introduction

This thesis makes contributions to both SMT solving and abstract interpretation,

the first by developing a new architecture for solving systems of polynomials where

the modulo is a power of two, and the second by devising a new abstract domain

of systems of polynomials, again where the modulo is a power of two. To provide

context for both developments, this chapter provides a gentle introduction to both

SMT and abstract interpretation. Work that closely relates to a technical devel-

opment given in a latter chapter is provided close to the development itself, at the

end of the respective chapter. The notable exception is the chapter on Gröbner

bases over modular integers, which is a common underlying theme, that warrants

its own extended primer.

1.1 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) [51] is concerned with deciding the satisfi-

ability of formulae over constraints drawn from a background theory. Examples

of such theories include, but are not limited to difference logic [67], uninterpreted

functions [7] and bit-vectors and arrays [31]. The dominant approach to SMT solv-

ing, referred to as the lazy approach [68], seeks to simplify the decision problem

by separating the logical structure of a formula from its interpretation in a given

theory. The logical form is described by a propositional formula, for which candi-

date truth assignments can be proposed by a SAT solver. On the theory side, such

1

CHAPTER 1. INTRODUCTION 2

assignments correspond to conjunctions of atomic constraints and their negations,

which can then be solved by a domain-specific solver. The approach can exploit

the extreme efficiency of modern SAT solvers. Simultaneously, new theories can

be handled by providing a domain-specific solver just for conjunctions of theory

literals, rather than arbitrary formulae, greatly simplifying the development effort.

The remainder of this section discusses lazy SMT solving in more detail, first ad-

dressing the Boolean satisfiability problem, before showing how it can be extended

with a background theory.

1.1.1 SAT solving

The Boolean satisfiability problem (SAT) is the problem of determining whether

there is an assignment of boolean values to the variables in a propositional formula

under which it evaluates to true. To illustrate, consider the propositional formula

f = (u ∨ ¬w) ∧ (x ∨ ¬y ∨ z) ∧ (¬u ∨ v ∨ ¬z)

defined over the set of propositional variables X = {u, v, w, x, y, z}. A truth

assignment is a partial mapping θ : X → {true, false}, which is said to satisfy

f if evaluating f with these assignments yields true. In the present case, θ =

{u 7→ true, x 7→ true, z 7→ false} is a satisfying assignment. The goal of SAT is to

decide if a propositional formula f is satisfiable, and if so to determine a satisfying

assignment.

Most modern SAT solvers are based on the Davis, Putman, Logemann, Love-

land (DPLL) algorithm [20], for which a recursive formulation presented in Fig. 1,

adapted from [79]. The first input to the algorithm is a propositional formula f ,

assumed to be a conjunctive normal form (CNF). A CNF formula is a conjunc-

tion of clauses, where a clause is a disjunction of literals and a literal is either a

variable or the negation of a variable. The second input to the algorithm is truth

assignment θ. Intuitively, the call DPLL(f, θ) determines the satisfiability of the

formula f under the (partial) truth assignment θ. The algorithm either returns

⊥, indicating that f is unsatisfiable under this assignment, or else an extension

θ′ ⊇ θ of θ to a satisfying assignment. By calling DPLL(f, ∅), where ∅ denotes the

empty truth function, the (unconditional) satisfiability of f can thus be decided.

CHAPTER 1. INTRODUCTION 3

function DPLL(f : CNF formula, θ : truth assignment)
begin

θ1 := θ ∪ unit propagation(f, θ)
if (is conflicting(f, θ1))

return ⊥
else if (is satisfied(f, θ1))

return θ1
else

x := choose free variable(f, θ1)
θ2 := DPLL(f, θ1 ∪ {x 7→ true})
if (θ2 6= ⊥)

return θ2
else

return DPLL(f, θ1 ∪ {x 7→ false})
end if

end if
end

Figure 1: The DPLL algorithm

DPLL first attempts to derive assignments that must necessarily hold for f to

be satisfiable To illustrate, consider f as above and θ = {v 7→ false, w 7→ true}.
Then, since w 7→ true, the assignment u 7→ true must hold to ensure the clause (u ∨
¬w) evaluates to true. Consequently, the assignment z 7→ false must hold for the

clause (¬u ∨ v ∨ ¬z) to evaluate to true. By contrast, after these two assignments,

the satisfiability of the clause (x ∨ ¬y ∨ z) still depends on two unknowns x

and y hence this clause yields no further information. It follows that θ may be

extended to θ1 = θ ∪ {u 7→ true, z 7→ false} without affecting the satisfiability

of f under θ. This process, referred to a unit propagation, is carried out in the

call unit propagation(f, θ) which thus returns θ1. Note that unit propagation only

applies when there is a single unassigned variable in a clause. This situation can

be effectively detected by maintaining a reference to two unassigned variables in

each clause using watched literals [61].

After unit propagation, DPLL tests for early termination. First, if f contains a

clause for which every literal is unsatisfiable under θ1 then f is itself unsatisfiable

and ⊥ is returned. This situation is detected by the call is conflicting(f, θ1). To

CHAPTER 1. INTRODUCTION 4

illustrate, consider g = (¬x)∧(x ∨ y) ∨ (¬y) and θ = {x 7→ false, y 7→ false}. Then,

each literal in the second clause is unsatisfiable under θ1, hence g is unsatisfiable.

Conversely, if every clause of f contains at least one literal that is satisfied under θ1

then f is also satisfied under θ1, which is thus returned. This situation is detected

by the call is satisfied(f, θ1). To illustrate, consider h = (x ∨ ¬y) ∧ (y ∨ z) and

θ1 = {y 7→ false, z 7→ true}. Then, the literal ¬y is satisfied in (x ∨ ¬y) and the

literal z is satisfied in (y ∨ z), hence h is satisfiable under θ1.

If neither of these situations applies, a currently unassigned variable x is se-

lected, as effected through choose free variable(f, θ1). A recursive call is then made

with the augmented assignment θ1 ∪ {x 7→ true}. This either yields a satisfying

assignment, or else a recursive call is made under the assignment θ1 ∪{x 7→ false}.
The return value form this call determines the satisfiability of the original formula.

Termination of this procedure is ensured since the number of unassigned variables

strictly reduces with each recursive call. To illustrate, with f and θ1 as above,

neither of the calls is conflicting(f, θ1) and is satisfied(f, θ1) succeeds. The unas-

signed variable x is thus selected and the recursive call DPLL(f, θ1 ∪ {x 7→ true})
is made. Since θ2 = θ1 ∪ {x 7→ true} is already a satisfying assignment for f , θ2

is thus returned. On top of this framework, modern SAT solvers apply a range

of techniques to improve performance, for instance, static and dynamic variable

orderings [61], non-chronological backtracking [56] and clause-learning [55].

1.1.2 Lazy SMT solving

To illustrate the lazy approach to SMT solving, consider the following formula,

drawn from the theory of linear real arithmetic:

φ = (a < b) ∧ (a = 0 ∨ a = 1) ∧ (b = 0 ∨ b = 1) ∧ ¬(1 ≤ a+ b)

The set of atomic constraints in φ is Σ = {a < b, a = 0, a = 1, b = 0, b =

1, 1 ≤ a + b}. The propositional skeleton e(φ) of φ is constructed by mapping

each atomic constraint in Σ to a propositional variable. Formally, we consider a

bijective mapping e : Σ → X where X is a set of propositional variables. For

CHAPTER 1. INTRODUCTION 5

instance, letting X = {u, v, w, x, y, z}, such a mapping can be defined

e(a < b) = u e(a = 0) = v e(a = 1) = w

e(b = 0) = x e(b = 1) = y e(1 ≤ a+ b) = z

The mapping e then lifts to formulae φ whose atomic constraints are drawn from Σ,

by replacing each atomic constraint c in φ with e(c) while preserving propositional

structure of φ. For instance, for φ as above this yields

e(φ) = u ∧ (v ∨ w) ∧ (x ∨ y) ∧ ¬z

To decide the satisfiability of φ, first a satisfying assignment θ to e(φ) is sought.

Note if no such assignment exists then φ is unsatisfiable by virtue of its propo-

sitional structure. Otherwise, θ corresponds to a conjunction of theory literals,

T (θ, e), which contains the literal l whenever θ(e(l)) = true and the literal ¬l
whenever θ(e(l)) = false. In the present example, θ = {u 7→ true, v 7→ true, w 7→
true, x 7→ true, y 7→ true, z 7→ false} is a satisfying assignment for e(φ) and T (θ, e)

is defined

T (θ, e) = (a < b) ∧ (a = 0) ∧ (a = 1) ∧ (b = 0) ∧ (b = 1) ∧ ¬(1 ≤ a+ b)

The satisfiability of T (θ, e) can be determined by a specialised solver for linear

real arithmetic. The solver will return either >, to indicate T (θ, e) is satisfiable,

else a clause t which illustrates why it is unsatisfiable. In the first case, it follows

that φ itself is satisfiable, whereas in the second, the chosen assignment θ does

not to yield a satisfying assignment to φ. In the present case, the solver might

return t = ¬(a = 0) ∨ ¬(a = 1), thus providing an explanation for why T (θ, e) is

unsatisfiable.

If the assignment θ did not yield a solution, then a new assignment is sought.

However, to avoid rediscovering same assignment, φ is strengthened with a new

blocking clause, which serves to guide search away from previously discovered so-

lutions. Concretely, a new formula f is defined f = e(t)∧φ, where e(t) codifies the

inconsistent clause t as a propositional clause. In the present case, the blocking

clause is e(¬(a = 0) ∨ ¬(a = 1)) = ¬v ∨ ¬w, which prevents further solutions

CHAPTER 1. INTRODUCTION 6

function DPLLT (f : CNF formula, e : Σ→ X)
begin

θ := DPLL(f, ∅)
if (θ = ⊥)

return ⊥
else

t := deduce(T (θ, e))
if (t = >)

return >
else

return DPLLT (f ∧ e(t), e)
end if

end if
end

Figure 2: The SMT framework

being found in which both v and w are assigned true. The while procedure is

then repeated on f and any further strengthenings of f that are inferred from

inconsistent assignments along the way. Eventually, either the theory solver suc-

ceeds on some assignment, hence φ is satisfiable, or else the formula f becomes

unsatisfiable, in which case φ is unsatisfiable.

Fig. 2 presents an algorithm that formalises this approach, based on a recursive

reformulation of Algorithm 3.3.1 from [51]. The algorithm is parameterised by a

theory T and accepts two inputs. The first is a propositional formula f , initially the

propositional skeleton of φ, and the second a propositional encoding e : Σ→ X, as

described above. The algorithm either returns >, indicating satisfiability of φ, else

⊥, indicating unsatisfiability. The procedure applies DPLL to discover satisfying

assignments to f , and a theory-specific procedure deduce for detecting satisfiability

of the conjunction of theory literals T (θ, e).

1.2 Abstract Interpretation

Abstract interpretation [14] provides a rigorous basis for static program analy-

sis. The essential idea is to synthesise an abstraction of data and deploy domain

CHAPTER 1. INTRODUCTION 7

function f()
begin

x := 0
while (x ≤ 10)

x := x+ 2
end while
return x

end

0

12

3

x := 0x ≤ 10

x := x+ 2 x > 10

(a) (b)

Figure 3: A toy program (a) and its flow graph (b)

operations that trace that abstraction over the paths of the program to automat-

ically derive program invariants. By formally relating the abstract and concrete

domain operations, abstract interpretation can be applied to show that an anal-

ysis is sound. Moreover, by expressing the analysis as a fixpoint of a system of

equations, the outcome of an analysis can be computed iteratively. Thus abstract

interpretation is not only a methodology for designing and justifying analyses: it

provides a pathway for realising them too.

The beautiful simplicity of abstract interpretation is often lost in the formal-

ity of its presentation, hence this section will motivate the essential elements of

abstract interpretation through the toy program presented in Fig. 3(a). The vari-

able x stores an (unbounded) integer and an abstract interpretation of the program

aims to discover the values x can assume at each program point. Fig. 3(b) presents

the control-flow graph of this program. Each node in this graph corresponds to

a location in the program, either prior to the initial first assignment (0), prior to

the loop test (1), prior to the second assignment (2), or prior to return (3).

Concrete semantics An abstract interpretation begins by modelling the con-

crete states of the program. First, a concrete domain C is introduced, which serves

as a data-type to describe the concrete property of interest. In the present case,

the concrete domain can be taken as ℘(Z) since, at each program point, the values

CHAPTER 1. INTRODUCTION 8

obtained by x constitute a set of integers. To relate this to the execution of the pro-

gram, the concrete (collecting) semantics is introduced, which serves as a reference

against which the soundness of a proposed analysis can be judged. The concrete

semantics defines for each program point i the set Ci ∈ C of all concrete states

obtained at that program point over all execution paths of the program. For real-

istic programs, the concrete semantics is uncomputable, or at least prohibitatively

expensive to compute. For the toy, however, it can be seen that:

C0 = Z C1 = {0, 2, . . . , 12} C2 = {0, 2, . . . , 10} C3 = {12}

where Ci is the set of values obtained by x at program point i. In particular,

the value of x is arbitrary at program point 0 (x is assumed initialised to some

unknown value), an even number between 0 and 12 at program point 1, an even

number between 0 and 10 at program point 2 and exactly 12 at program point 3.

Abstract semantics Even if the concrete semantics cannot be effectively com-

puted, it may still be approximated. This is achieved by introducing an abstract

domain A, whose elements are abstractions of sets of concrete program states. For

the present example, the interval domain [14] will be employed. Elements of this

domain are either intervals [l, u] where l ∈ Z ∪ {−∞}, u ∈ Z ∪ {∞} and l ≤ u, or

else ⊥ indicating an empty set. Here, an interval is considered simply as a pair of

bounds, giving a compact representation of the (potentially infinite) set it repre-

sents. Note in particular that intervals cannot represent arbitrary sets of points,

hence there is an inherent loss of information (precision) induced by this choice

of domain. This is a general theme in abstract interpretation, and is the tradeoff

needed for tractability. A rich variety of abstract domains have been proposed

in the literature, for instance the congruence domain [34], the polyhedral domain

[16] and the Octagon domain [59], and these for describing numerical properties

alone. Each has its own unique characteristics that make it suitable for certain

applications, and unsuitable for others. The craft of abstract interpretation is

in choosing, or designing, an appropriate abstraction for the given application,

carefully balancing performance against precision.

The relationship between the abstract and concrete domains is made plain

CHAPTER 1. INTRODUCTION 9

through a mapping γ : A → C, called concretisation. Intuitively, if a ∈ A is

an abstract domain element, then γ(a) is the concrete domain element it repre-

sents. For instance, in the interval domain, γ([0,∞]) = {0, 1, 2, . . .}, crystallising

the idea that [0,∞] describes the set of non-negative integers. Moreover, just as

the concrete domain is associated with a concrete semantics, so too the abstract

domain is associated with an abstract semantics. The abstract semantics specifies

for each program point i an abstract domain element Ai ∈ A, which describes

the set Ci of concrete states at that point. This specification is sound at program

point i if Ci ⊆ γ(Ai). For instance, for the toy, the interval A1 = [0, 12] is a sound

approximation of the set C1 = {0, 2, . . . , 12} of concrete states at program point

1, since {0, 2, . . . , 12} ⊆ γ([0, 12]) = {0, 1, . . . , 12}. Note, however, this does not

exclude the possibly of odd assignments, which is a consequence of abstraction.

In certain situations, a second map α : C → A can be defined called abstraction

which provides the best abstraction of C by an element of A. This leads to

the Galois connection approach to abstract interpretation [14] which provides a

development methodology where γ can be synthesised from α and vice versa.

Fixpoint formulation An abstract semantics for the program is typically for-

mulated as the solution of a system of fixpoint equations, which provide conditions

on the sets γ(Ai) in order that the abstract semantics be sound. To illustrate with

the toy example, these equations could be defined

γ(A1) ⊇ {0} if γ(A0) 6= ∅ (x := 0)

γ(A2) ⊇ {a ∈ γ(A1) | a ≤ 10} (x ≤ 10)

γ(A1) ⊇ {a+ 2 | a ∈ γ(A2)} (x := x+ 2)

γ(A3) ⊇ {a ∈ γ(A2) | a > 10} (x > 10)

Each equation is derived from a program statement, as indicated on the right. To

illustrate, suppose a ∈ γ(A1). Now if A1 is sound approximation at program point

1 then a might be a valid assignment to x at that point. Therefore, if a ≤ 10,

then the loop test (x ≤ 10) would succeed and a would also be a valid assignment

to x at program point 2, hence a ∈ γ(A2) is required for soundness. Conversely,

if a > 10 then the loop test would fail, hence a would be a valid assignment to x

CHAPTER 1. INTRODUCTION 10

at program point 3 and so a ∈ γ(A3) should hold. This justifies the second and

fourth equations. Similarly, if γ(A0) 6= ∅ then x might be assigned some value at

program point 0, which must therefore be reachable. In this case, x would obtain

the value 1 at program point 1 under the assignment x := 1, hence 1 ∈ γ(A1).

Similarly, if a ∈ γ(A2) then a might be a valid assignment to x at program point

2, in which case a+ 2 would be a valid assignment to x at program point 1 under

the assignment x := x + 2, hence a + 2 ∈ γ(A1). This justifies the first and third

equations.

Fixpoint solution To compute the abstract semantics, an iterative procedure

is applied. Intuitively, values for each Ai are proscribed and then the semantic

equations are repeated checked and reevaluated. If they all hold, then a valid

solution has been found which is returned. Otherwise, some Ai is updated to

ensure the violated equation is satisfied, and the process is repeated. The abstract

elements are initialised

A0 = [−∞,∞] A1 = ⊥ A2 = ⊥ A3 = ⊥

which reflects the fact that x might take any value at program point 0, but no

assignments to x have yet been witnessed at any other program point.

Now, since γ(A0) 6= ∅, the first equation above must apply, hence γ(A1) ⊇ {0}.
But A1 = ⊥ hence γ(A1) = ∅ 6⊇ {0} and the equation is thus violated. Hence, A1

is reassigned to [0, 0] to ensure γ(A1) ⊇ {0}, yielding

A0 = [−∞,∞] A1 = [0, 0] A2 = ⊥ A3 = ⊥

Next, the second equation applies to show γ(A2) ⊇ {a ∈ γ(A1) | a ≤ 10} = {0}.
But, as above, A2 = ⊥ hence γ(A2) = ∅ 6⊇ {0} and the equation is violated.

Hence, A2 is reassigned to [0, 0] to ensure γ(A2) ⊇ {0} yielding

A0 = [−∞,∞] A1 = [0, 0] A2 = [0, 0] A3 = ⊥

Now, the third equation applies to show γ(A1) ⊇ {a+ 2 | a ∈ γ(A2)} = {2}. But

since γ(A1) = {0} 6⊇ {2} the equation is violated. In this case, it is already known

CHAPTER 1. INTRODUCTION 11

that γ(A1) ⊇ {0} is necessary, hence it now follows γ(A2) ⊇ {0, 2} must hold. To

ensure this, A2 is updated to [0, 2], for which γ(A2) = {0, 1, 2} ⊇ {0, 2}, hence

A0 = [−∞,∞] A1 = [0, 2] A2 = [0, 0] A3 = ⊥

The most recent assignment to A1 again violates the second equation, which is

then corrected by reassigning A2 to [0, 2], which then leads to further relaxation

of A1. Thus a sequence of alternating updates to A1 and A2 occurs until finally

A0 = [−∞,∞] A1 = [0, 12] A2 = [0, 10] A3 = ⊥

At this point, the second equation requires γ(A2) ⊇ {a ∈ γ(A1) | a ≤ 10} =

{0, . . . , 10} and since γ(A2) = {0, . . . , 10} this already holds. Similarly, the third

equation requires γ(A1) ⊇ {a + 2 | a ∈ γ(A2)} = {0, . . . , 12} and since γ(A2) =

{0, . . . , 12} this already holds as well. The first equation also applies trivially,

hence only the fourth equation remains to validate. In this case, it is required

γ(A3) ⊇ {a ∈ γ(A2) | a > 10} = {11, 12}. Since A3 = ⊥ this does not currently

hold, so A3 is updated to [11, 12], yielding

A0 = [−∞,∞] A1 = [0, 12] A2 = [0, 10] A3 = [11, 12]

At this point, all four equations are satisfied, hence the analysis terminates. Note

particularly that for each i it holds that Ci ⊆ γ(Ii), hence the inferred analysis

is sound. However, the analysis is not fully precise. For instance, the analysis

can only infer that x might take the value 11 or 12 at program point 3. To

overcome this, a more refined abstract domain must be used. For instance, a

product domain construction [10] between intervals and the congruence domain

[34] could be employed to reason also about the value of x modulo 2.

Note, the description of the analysis presented here is somewhat simplified.

First, the calculation of the updates to the abstract semantics occurred by reason-

ing about the concretisations γ(Ai). In practice this is not possible, hence com-

putational procedures must be designed to compute the updates solely in terms of

the abstract domain elements. This is formalised through the notion of abstract

transfer functions. Second, the analysis presented here terminated rapidly. In

CHAPTER 1. INTRODUCTION 12

certain situations, however, termination may not occur, or at least the number

of iterations is so great that a fixpoint is impractical to compute. In this case,

fixpoint acceleration techniques, for instance widening [15], may be applied. This

approach computes a sound over-approximation to the fixed-point, ensuring ter-

mination at the cost of a potential loss of precision. To an extent, this precision

can be regained through the complementary technique of narrowing [15], illustrat-

ing the interplay that often arises between the fidelity of the abstraction and the

fixpoint technique.

1.3 Contributions

The present work turns its attention first to SMT, specifically the decision problem

for systems of polynomial equalities over bit-vectors. Conventional approaches to

this problem employ bit-blasting, where constraints are translated to propositional

formulae by modelling them as circuits, then solved with a SAT solver. However,

in the presence of bit-vector multiplication, the resulting formulae can be prohibi-

tatively large, and the opportunity to exploit word-level reasoning is lost.

The first novel contribution of this thesis seeks to address these limitations,

presenting a new architecture for solving systems of polynomial equalities over bit-

vectors. Rather than converting to SAT and bit-blasting, the method simulates bit

assignments through the addition of certain polynomials to the system. Computing

a Gröbner basis for the resulting system can then infer new entailed constraints

which, in turn, expose the values of other bits, a technique termed bit-sequence

propagation. Moreover, by assigning symbolic truth values to bits, the procedure

can avoid backtracking, yielding instead a residue system of non-linear pseudo-

boolean constraints modulo a power of two. The residue system can be solved

through a novel translation procedure that converts it to a compact SAT instance.

Overall, the architecture provides a principled method for compiling high-level

polynomials to low-level pseudo-boolean constraints, and then to SAT.

Next, the work turns its attention to abstract interpretation, specifically the

inference of polynomial invariants over fixed-width integers. The development

centres on MPAD: the Modulo Polynomial Abstract Domain, whose domain oper-

ations are founded on a closure operator, that extends a set of polynomials with all

CHAPTER 1. INTRODUCTION 13

other polynomials that share their solutions. Preserving closure is key to maintain-

ing the precision of domain operations, yet is not itself preserved by meet, hence

closure must be explicitly computed. To that end, the technique underpinning

bit-sequence propagation finds fresh application. Indeed, by judiciously setting

bits of individual variables, and applying propagation, a system can be reduced to

a collection of simpler systems from which closure can be computed directly.

Using closure, we provide abstract transfer functions for MPAD for the class

of polynomial programs, demonstrating particularly that the transfer function for

polynomial assignment is optimal. Coupled with the finiteness of MPAD, it follows

that MPAD will infer all polynomial invariant for programs consisting solely of

polynomial assignments. MPAD is unique in that it tracks polynomials in the

context of modular arithmetic, complementing the new approach to SMT solving

for modular polynomials, both building on bit-sequence propagation.

1.4 Roadmap

This thesis is structured as follows: Chapter 2 introduces Gröbner bases over

modulo integers, which are the fundamental tool employed in both the SMT and

MPAD work. Chapter 3 applies Gröbner bases over modular arithmetic to derive a

decision procedure for polynomial equalities over bit-vector arithmetic. Chapter 4

formally introduces MPAD before defining polynomial programs and providing an

illustrative example of MPAD in deriving a quadratic loop invariant. Chapter 5

discusses the computational aspects of MPAD, explaining how the abstract domain

operations are organised and realised. Chapter 6 summarises the contributions of

this thesis, and reviews strands of inquiry that emerged during this thesis work

which are yet be explored. Finally, to maintain a rapid pace of presentation,

proofs for the major results, and even statements and proofs for minor results, are

relegated to Appendix A. Their position should not be interpreted as a comment

on their importance.

Chapter 2

Gröbner Bases

This chapter is a primer on the theory of Gröbner bases. In particular, the nuances

of calculating Gröbner bases over modulo integers are discussed, with reference

to a variant of Buchberger’s algorithm originally proposed for circuit verification

[5]. The chapter also distills prior work on null-polynomials [35], which have

been reinvented repeatedly within the mathematics literature over the last century

[47, 43, 75]. Of prime importance in this development is an enumeration of a

minimal (irredundant) Gröbner basis for nulls, which is used, amongst other things,

in the calculation of closure.

The chapter commences by formally introducing the set of modulo integers Zm
where m = 2ω. Divisibility in Zm can be elegantly formulated in terms of the con-

cept of rank, which is discussed next. After introducing the core concepts of leading

terms and reduction, Gröbner bases are formally defined, following a conventional

development. Thereafter, when algorithmic properties are of interest, the presen-

tation diverges from the norm. In particular, Buchberger’s classic criterion, which

combines pairs of polynomials to eliminate leading terms, is extended by scaling

single polynomials by powers of two, in order to likewise eliminate leading terms.

Next, a way to finitely enumerate the set of nulls for any given number of variable

and bit-width is presented. The section concludes by discussing polynomial substi-

tution, that is the act of systematically replacing a variable in a polynomial with

a polynomial expression, needed again in the formulation of closure. Proofs are

omitted for results which are standard, and otherwise explicit citations are given

14

CHAPTER 2. GRÖBNER BASES 15

to literature where proofs can be found.

2.1 Modular Arithmetic

Throughout the following, let ω ≥ 1 and m = 2ω. Following [64, 65], Zm =

{0, . . . ,m−1} is taken as an abstraction of machine arithmetic over ω-bit integers.

The relation ≡m⊆ Z×Z is defined by x ≡m y if there exists k ∈ Z such that x−y =

km. Atop, the operation · (mod m) : Z → Zm is defined by: x (mod m) = y

where y ∈ Zm uniquely satisfies x ≡m y. The unary operation − : Zm → Zm and

the dyadic operations +, · : Zm × Zm → Zm are then defined:

−x = (−̂x) (mod m) x+ y = (x +̂ y) (mod m) x · y = (x ·̂ y) (mod m)

where −̂, +̂, ·̂ denote the classical operations over Z. If x ∈ Zm then y ∈ Zm is

a multiplicative inverse of x if x · y = 1. Note that x ∈ Zm has a multiplicative

inverse iff it is odd, in which case the inverse is unique. In particular, if ω > 1

then Zm is not a field, since 2 has no inverse. The inverse x−1 can be found as a

stationary point of the sequence y1 = 1, yn+1 = yn(2− xyn) [64].

Example 1. In Z8, each odd element of Z8 is self-inverse:

1 · 1 = 1 3 · 3 = 1 5 · 5 = 1 7 · 7 = 1

Note this property does not hold generally, since in Z16:

1·1 = 1 3·11 = 1 5·13 = 1 7·7 = 1 9·9 = 1 11·3 = 1 13·5 = 1 15·15 = 1

2.2 Rank and divisibility in Zm
Let | ⊆ Z2 denote the divisibility relation over integers: a | b iff b is divisible by

a. The rank [64] of a ∈ Zm is defined: rankω(a) = max{j ∈ N | 2j | a} if a > 0

otherwise ω, and can be computed by counting the number of trailing zeros in the

binary representation of a [78].

Example 2. In Z256 where ω = 8, rank8(0) = 8, rank8(15) = 0 and rank8(56) = 3.

CHAPTER 2. GRÖBNER BASES 16

If a ∈ Zm then a = 2rankω(a)d for some odd d. If a 6= 0 then d = a/2rankω(a) is

unique and the expression 2rankω(a)d is referred to as the rank decomposition of a.

When a = 0, d can be arbitrary; for definiteness, we declare 2ω · 1 be the rank

decomposition of 0.

Example 3. In Z256, 0 = 28 ·1, 15 = 20 ·15 and 56 = 23 ·7 are rank decompositions.

For a1 ∈ Zm and a2 ∈ Zm \ {0}, a1 is divisible by a2 if a1 = ba2 for some divisor

b ∈ Zm. This occurs iff rankω(a1) ≥ rankω(a2), in which case, if ai = 2kidi is the

rank decomposition of each ai, then b = 2k1−k2d1d2
−1.

Example 4. Recall 15 = 20 · 15 and 56 = 23 · 7 are rank decompositions in Z256.

Since rank8(56) = 3 ≥ 0 = rank8(15), it follows 56 is divisible by 15 in Z256.

Moreover, the divisor can be found by 23−0 · 7 · 15−1 = 8 · 7 · 239 = 72 and indeed

56 = 72 · 15.

2.3 Polynomials

Let ~x = 〈x1, . . . , xd〉 be a vector of variables. A monomial over ~x is an expression

~x~α = xα1
1 · · · x

αd
d where ~α = 〈α1, . . . , αd〉 ∈ Nd. A term over ~x is an expression

t = c~x~α where c ∈ Zm is the coefficient and ~x~α the monomial of t. A polynomial

over ~x is an expression t1 + · · ·+ ts where each ti is a term over ~x, the case s = 0

corresponding to the 0 polynomial. The set of polynomials over ~x is denoted Zm[~x].

A polynomial p = t1 + · · · + ts is normalised if either s = 0 or else for all

ti = ci~x
~αi and tj = cj~x

~αj it holds that ci 6= 0 and if i 6= j then ~αi 6= ~αj. By

repeatedly combining the coefficients of terms with equal monomials, and deleting

terms with coefficient 0, a polynomial can be transformed into a normalised form.

Two polynomials are considered equal if they have equal normal forms, up to the

ordering of terms. In the following, polynomials will always be considered to be

normalised. We write t ∈ p to indicate that the term t is present in the normalised

form of p.

Let ~a v ~b denote the sub-sequence relation, that is, if ~b = 〈b1, . . . , bs〉 then ~a =

〈bj1 , . . . , bj`〉 where 1 ≤ j1 < j2 < . . . < j` ≤ s. Then the inclusion Zm[~x] v Zm[~y]

will be considered to hold if ~x v ~y. If c~x~α is a term then vars(c~x~α) = {xi | αi > 0},

CHAPTER 2. GRÖBNER BASES 17

which is extended to polynomials by vars(p) =
⋃
t∈p vars(t). In general, a term t

will be printed over just those variables xi ∈ vars(t). In particular, if t = c~x~α and

vars(t) = ∅ then t will simply be denoted c.

The product of two terms t1 = c1~x
~α1 and t2 = c2~x

~α2 it defined t1 · t2 =

c1c2~x
~α1+~α2 . Negation of a term t = c~x~α is defined −t = −c~x~α. Arithmetic over

Zm[~x] can then be defined p1 + p2 =
∑

t∈p1 t+
∑

t∈p2 t, p1 · p2 =
∑

t1∈p1,t2∈p2 t1 · t2
and −p =

∑
t∈p−t.

2.4 Bases

A set B ⊆ Zm[~x] is considered to represent the set of polynomials generated thus:

Definition 1. If B ⊆ Zm[~x] then

〈B〉~x =

{
s∑
i=1

uipi

∣∣∣∣∣ s ∈ N, pi ∈ B, uj ∈ Zm[~x]

}

The set of polynomials 〈B〉~x is an ideal [2] in that it is closed under addition

with a polynomial from B and multiplication with an arbitrary polynomial (not

necessarily drawn from B). The ideal 〈B〉~x is said to be generated by B, which

is called the basis. As will be seen in the following, the principle role of Gröbner

bases is to provide a test for membership in the set 〈B〉~x.

2.5 Monomial orderings

Gröbner bases are founded on the concept of reduction, which is a rewrite proce-

dure for simplifying a polynomial with respect to a set of polynomials. To define

reduction it is necessary to order the terms in a polynomial, leading to the concept

of monomial ordering:

Definition 2. A monomial ordering over ~x is a total order ≺ over monomials ~x~α

satisfying:

• 1 ≺ ~x~α for all ~α > ~0

CHAPTER 2. GRÖBNER BASES 18

• If ~x~α1 ≺ ~x~α2 then ~x~α1~x
~β ≺ ~x~α2~x

~β for all ~x~α1 , ~x ~α2 and ~x
~β.

If ≺ is a monomial ordering then � will denote its non-strict version. Note that

monomial orderings are well-orderings, hence there is no infinite decreasing chain

~x~α1 � ~x~α2 � · · · of monomials.

Example 5. Let ~y be a permutation of ~x, so ~y = 〈xj1 , . . . , xjd〉 where ji1 6= ji2 if

i1 6= i2, and < denote (strict) lexicographical ordering over Nd. Then,

• The ordering ≺~y defined ~x~α ≺~y ~x
~β if 〈αj1 , . . . , αjd〉 < 〈βj1 , . . . , βjd〉 is a mono-

mial ordering, referred to as the lexicographical ordering with respect to ~y.

• The ordering ≺deglex[~y] defined ~x~α ≺deglex[~y] ~x
~β if

∑d
i=1 αi <

∑d
i=1 βi, or else∑d

i=1 αi =
∑d

i=1 βi and 〈αj1 , . . . , αjd〉 < 〈βj1 , . . . , βjd〉 is a monomial ordering,

referred to as the degree lexicographical ordering with respect to ~y.

Monomial orderings provide additional structure to polynomials: specifically, if

p 6= 0 then p can be uniquely expressed as p = c~x~α + q where c 6= 0 and all

monomials ~x
~β in q satisfy ~x

~β ≺ ~x~α. Making use of this additional structure we

define:

Definition 3. Let ≺ be a monomial ordering over ~x and p = c~x~α + q where c 6= 0

and all monomials ~x
~β in q satisfy ~x

~β ≺ ~x~α. Then,

• lt≺(p) = c~x~α,

• lc≺(p) = c,

• lm≺(p) = ~x~α,

are respectively the leading term, coefficient and monomial of p with respect to ≺.

Leading terms play a foundational role in reduction, introduced in the following

section.

CHAPTER 2. GRÖBNER BASES 19

2.6 Reduction

As noted above, reduction provides a mechanism to simplify one polynomial by

another:

Definition 4. Let p, q, r ∈ Zm[~x], p 6= 0, q 6= 0 and ≺ a monomial ordering. Then,

p is ≺-reducible by q to r, denoted p→≺,q r, if lt≺(p) = t lt≺(q) and p = tq + r for

some term t.

Reducibility lifts to sets B ⊆ Zm[~x] by →≺,B =
⋃
p∈B →≺,p. Furthermore, let

→+
≺,B (resp. →∗≺,B) denote the transitive (resp. transitive, reflexive) closure of

→≺,B. If p →+
≺,B r for some r then p is said to be ≺-reducible by B, otherwise

≺-irreducible by B, denoted p 6→≺,B.

Example 6. Let ~x = 〈x, y, a〉 and B ⊆ Z16[~x] where

B =

{
x+ a2 + 7a+ 7 (p1), y + a2 + 7a+ 7 (p2),

a3 + a2 + 7a+ 7 (p3), 2a2 + 14 (p4), 8a+ 8 (p5)

}

Now, let p = xa + 15 ∈ Z16[~x] and ≺ = ≺~x. Then, lt≺(p) = xa = a lt≺(p1)

and p = ap1 + r1 where r1 = 15a3 + 9a2 + 9a + 15, hence p →≺,p1 r. Similarly,

lt≺(r1) = 15a3 = 15 lt≺(p3) and r1 = 15p3 + r2 where r2 = 10a2 + 6, hence

r1 →≺,p3 r2. Finally, lt≺(r2) = 10a2 = 5 lt≺(p4) and r2 = 5p4 + r3 where r3 = 0,

hence r2 →≺,p4 r3. Thus, p→≺,p1 r1 →≺,p3 r2 →≺,p4 r3, hence p→+
≺,B 0.

Note p is ≺-reducible by B iff lt≺(p) is divisible by lt≺(q) for some q ∈ B. Here, a

term t1 is divisible by a term t2 if t1 = t2t3 for some term t3; letting t1 = c1~x
~α and

t2 = c2~x
~β, this occurs iff c1 is divisible by c2 and ~α ≥ ~β pointwise, in which case

t3 = c3~x
~δ where c1 = c3c2 and ~δ = ~α − ~β ≥ ~0. Moreover, reduction eliminates the

leading term of a polynomial, leaving a residue polynomial comprised of strictly

smaller terms with respect to ≺:

Lemma 1. If p→+
≺,B r 6= 0 then lm≺(r) ≺ lm≺(p).

Since monomial orderings are well-orderings, the previous result implies that a

sequence of reductions cannot continue ad infinitum and must eventually terminate

with the 0 polynomial. In this case, it follows that p ∈ 〈B〉~x, hence reduction

provides a test for membership in an ideal:

CHAPTER 2. GRÖBNER BASES 20

Proposition 1. If p→∗≺,B 0 then p ∈ 〈B〉~x.

In fact, the sequence of reductions itself be used to concretely demonstrate mem-

bership of 〈B〉~x, as illustrated in the following example:

Example 7. With the setup from Example 6, it holds that p →∗≺,B 0, thus from

the previous result p ∈ 〈B〉~x. To demonstrate this concretely, recall p →≺,p1
r1 →≺,p3 r2 →≺,p4 r3 = 0, where p = ap1 + r1, r1 = 1p3 + r2, r2 = 5p4 + r3 and

r3 = 0. By chaining these equalities it follows p = ap1 + r1 = ap1 + 1p3 + r2 =

ap1 + 1p3 + 5p4 + r3 = ap1 + p3 + 5p4 ∈ 〈B〉~x.

The converse of this result does not generally hold, as demonstrated by the fol-

lowing example:

Example 8. Let ~x = 〈x, y〉, ≺ = ≺~x and p ∈ Z16[~x] be defined p = 4x. Moreover,

let B = {p1, p2} ⊆ Z16[~x] where p1 = 2x2y+ 2x2 + 6xy+ x and p2 = 4y+ 4. Then,

p = 12p1 + (10x2 + 10x)p2 ∈ 〈B〉~x, yet p 6→≺,B.

Thus, reduction against an arbitrary basis B does not lead to a complete test

for membership in 〈B〉~x. Overcoming this limitation is a key motivation for the

definition of Gröbner basis.

2.7 Gröbner bases

With reduction in place, the fundamental concept of Gröbner basis can be defined:

Definition 5. Let B ⊆ Zm[~x] and ≺ a monomial ordering over ~x. Then, G ⊆ 〈B〉~x
is a Gröbner basis for 〈B〉~x with respect to ≺ if for all p ∈ 〈B〉~x, if p 6= 0 then p is

≺-reducible by G.

Note that a Gröbner basis for 〈B〉~x is also a basis for 〈B〉~x. As suggested above,

Gröbner bases provide a compete test for membership in 〈B〉~x, as asserted in the

following result:

Lemma 2. If G is a Gröbner basis for 〈B〉~x with respect to ≺ then for all p ∈ 〈B〉~x,
p→∗≺,G 0.

CHAPTER 2. GRÖBNER BASES 21

Example 9. Consider again the setup of Example 8. Then, p ∈ 〈B〉~x yet p 6→≺,B,

hence B is a not a Gröbner basis for 〈B〉~x with respect to ≺. It will be shown in

Example 11 that if p3 = 6x and p4 = 3x then G = {p1, p2, p3, p4} is a Gröbner

basis for 〈B〉~x with respect to ≺. Note that p is ≺-reducible by p4 ∈ G. Indeed,

p→≺,p4 0, hence p→∗≺,G 0, as predicted by the previous result.

Gröbner bases are not only useful for detecting membership of 〈B〉~x; they also

play a role in understanding zero sets of polynomials. Intuitively, if B ⊆ Zm[~x]

then ~a ∈ Zdm is a zero of B if each polynomial p ∈ B evaluates to 0 at ~a, where

evaluation is achieved by substituting each xi for ai in p and simplifying the result.

This concept will be formalised later. For now, let γ(B) denote the solution set of

B. It is straightforward to show that γ(B) = γ(〈B〉~x), hence if 〈B〉~x = 〈B′〉~x then

γ(B) = γ(B′).

Now, let B ⊆ Zm[~x] and suppose 〈B〉~x contains a non-zero constant polynomial

c. Then, since c evaluates universally to c 6= 0, it follows γ(〈B〉~x) = ∅, hence

γ(B) = ∅. But now, let G be a Gröbner basis for 〈B〉~x. Then, since a constant

polynomial is only reducible by a constant polynomial, it follows that G must

contain a constant polynomial too. In particular, even though B may not itself

contain a non-zero constant polynomial, G does, hence the fact that B has no

solutions can be inferred directly from a Gröbner basis for 〈B〉~x.

2.8 Buchberger’s algorithm

Classically, Gröbner bases are computed with Buchberger’s algorithm [8], which is

defined in terms of S-polynomials:

Definition 6. Let ≺ be a monomial ordering over ~x. The S-polynomial of p1, p2 ∈
Zm[~x] with respect to ≺ is defined:

S≺(p1, p2) = d22
k−k1~x~α−~α1p1 − d12k−k2~x~α−~α2p2

where, if pi = 0 then ki = ω, di = 1 and ~αi = ~0, else 2kidi is the rank decomposition

of lc≺(pi) and ~x ~αi = lm≺(pi), k = max(k1, k2) and ~α = max(~α1, ~α2).

CHAPTER 2. GRÖBNER BASES 22

function gb≺(B = {p1, . . . , ps} ⊆ Zm[~x])
begin

G :− B
S :− {(pi, pj) | 1 ≤ i < j ≤ s} ∪ {(pi, 0) | 1 ≤ i ≤ s}
while (S 6= ∅)

let s = (f1, f2) ∈ S
S :− S \ {s}
p :− S≺(f1, f2)
let p→∗≺,G r where r 6→≺,G
if (r 6= 0)

S :− S ∪ {(g, r) | g ∈ G} ∪ {(r, 0)}
G :− G ∪ {r}

end if
end while
return G

end

Figure 4: Gröbner basis algorithm over integers modulo 2ω

Example 10. Let ~x = 〈x, y〉, ≺ = ≺~x and p1, p2 ∈ Z16[~x] be defined p1 =

2x2y + 2x2 + 6xy + x and p2 = 4y + 4. Then, S≺(p1, p2) = 2(2xy2 + 6xy + 2y2 +

y)−y2(4x+4) = 12xy+2y and S≺(p1, 0) = 8(2xy2 +6xy+2y2 +y)−xy2(0) = 8y.

Note that lt≺(d22
k−k1~x~α−~α1p1) = lt≺(d12

k−k2~x~α−~α2p2), hence S≺(p1, p2) leads to a

cancellation of leading terms. In particular, the S-polynomial S≺(p1, 0) eliminates

the leading term of p1, and possible other terms as well. This deviates from the

classical case of fields, where only multiplying by 0 can eliminate a leading term.

It is this addition of S-polynomials with 0 that gives Gröbner bases over Zm their

own unique flavour. S-polynomials then yield an effective criterion [5, Theorem 30]

to determine if a given basis is a Gröbner basis.

Theorem 1 (Buchberger’s criterion). Let ≺ be a monomial ordering and B =

{p1, . . . , ps} ⊆ Zm[~x]. If S≺(pi, pj)→∗≺,B 0 for all 1 ≤ i < j ≤ s and S≺(pi, 0)→∗≺,B
0 for all 1 ≤ i ≤ s then B is a Gröbner basis for 〈B〉~x with respect to ≺.

Buchberger’s criterion justifies Buchberger’s algorithm for constructing Gröbner

bases. Fig. 4 presents a version of Buchberger’s algorithm [5] for modulo integers,

that takes B ⊆ Zm[~x] and a monomial ordering ≺ over ~x as input and returns

CHAPTER 2. GRÖBNER BASES 23

a Gröbner basis for 〈B〉~x with respect to ≺. The algorithm maintains a basis G,

initialised to B, and a set of S-polynomials S, initialised to the set of S-polynomials

derived from elements in B. Intuitively, the algorithm attempts to verify that G

is a Gröbner basis by reducing each S-polynomial pair in S against it. If some

S-polynomial does not reduce, it yields a new element which is added to G, and

generates further S-polynomials. Observe that the pair (r, 0) is added to S to

eliminate the leading term of r, which is likewise reflected in the way S is primed.

The algorithm terminates when all S-polynomials for the current basis reduce to

0, at which point Buchberger’s criterion applies to show the resulting system G is

a Gröbner basis.

Example 11. Let ~x = 〈x, y〉, ≺ = ≺~x and B = {p1, p2} ⊆ Z16[~x] where p1 =

2x2y + 2x2 + 6xy + x and p2 = 4y + 4. The table in Fig. 5 summarises the

execution of gb≺(B). The k-th row displays the values of G and S before the k-th

iteration of the main loop, as well as the reduction p →∗≺,G r that occurs during

that iteration. It follows from the last step that {p1, p2, p3, p4} is a Gröbner basis

for 〈B〉~x with respect to ≺.

Example 12. The previous example shows that G = {2x2y+ 2x2 + 6xy+ x, 4y+

4, 6x, 3x} is a Gröbner basis for 〈B〉~x with respect to ≺ = ≺~x, where B = {2x2y+

2x2 + 6xy+x, 4y+ 4}. In fact, the subset {4y+ 4, 3x} ⊆ G is also a Gröbner basis

for 〈B〉~x. To see this, note that lt≺(2x2y + 2x2 + 6xy + x) = 2x2y is divisible by

lt≺(3x) = 3x, since 2x2y = (6xy)3x. It follows if p ∈ 〈B〉~x is ≺-reducible by 2x2y+

2x2 + 6xy+x then it is also ≺-reducible by 3x. In particular, 2x2y+ 2x2 + 6xy+x

can be removed from G without compromising its status as a Gröbner basis. The

same observation applies to 6x, hence {4y + 4, 3x} is a Gröbner basis for 〈B〉~x.

These observations motivate the following notion:

Definition 7. A Gröbner basis G with respect to ≺ is minimal if p 6→≺,G\{p} for

all p ∈ G.

As indicated above, minimality can be achieved by successively removing polyno-

mials p ∈ G that are ≺-reducible by G \ {p}, a process that can be carried out

after Buchberger’s algorithm terminates. In the following, we shall assume that

this process is always carried out, hence only present minimal Gröbner bases.

CHAPTER 2. GRÖBNER BASES 24

G S p→∗≺,G r
{p1, p2} {(p1, p2), (p1, 0), S≺(p1, p2) = 12xy + 2x→∗≺,G 6x = p3

(p2, 0)}
{p1, p2, p3} {(p1, 0), (p2, 0), S≺(p1, 0) = 8x→∗≺,G 0

(p1, p3), (p2, p3),
(p3, 0)}

{p1, p2, p3} {(p2, 0), (p1, p3), S≺(p2, 0) = 0→∗≺,G 0
(p2, p3), (p3, 0)}

{p1, p2, p3} {(p1, p3), (p2, p3), S≺(p1, p3) = 6x2 + 2xy + 3x→∗≺,G 3x = p4
(p3, 0)}

{p1, p2, p3, p4} {(p2, p3), (p3, 0), S≺(p2, p3) = 12x→∗≺,G 0
(p1, p4), (p2, p4),
(p3, p4), (0, p4)}

{p1, p2, p3, p4} {(p3, 0), (p1, p4), S≺(p3, 0) = 0→∗≺,G 0
(p2, p4), (p3, p4),
(0, p4)}

{p1, p2, p3, p4} {(p1, p4), (p2, p4), S≺(p1, p4) = 6x2 + 2xy + 3x→∗≺,G 0
(p3, p4), (p4, 0)}

{p1, p2, p3, p4} {(p2, p4), (p3, p4), S≺(p2, p4) = 12x→∗≺,G 0
(p4, 0)}

{p1, p2, p3, p4} {(p3, p4), (p4, 0)} S≺(p3, p4) = 0→∗≺,G 0
{p1, p2, p3, p4} {(p4, 0)} S≺(p4, 0) = 0→∗≺,G 0
{p1, p2, p3, p4} ∅ −

Figure 5: Execution of gb≺(B)

2.9 Null polynomials

Null polynomials are polynomials that evaluate identically to 0, hence are univer-

sally valid:

Definition 8. Let n ∈ Zm[~x]. Then, n is a null polynomial iff γ~x(n) = Zdm.

The set of null polynomials in Zm[~x] will be denoted Nullm[~x]. Null polynomials

play a fundamental role in the development of MPAD: they constitute the domain

element > of MPAD and arise in computing closure. In this section, it will be

demonstrated how a finite basis for null polynomials can be constructed. To build

towards this development, consider:

CHAPTER 2. GRÖBNER BASES 25

Example 13. Let ~x = 〈x, y〉 and n1, n2 ∈ Z16[~x] be defined n1 = 2x4 +4x3 +6x2 +

4x and n2 = 4x2y2 + 12x2y + 12xy2 + 4xy. Note that n1 and n2 factor as

n1 = 2x(x− 1)(x− 2)(x− 3) and n2 = 4x(x− 1)y(y − 1)

Now, let ~a = 〈a, b〉 ∈ Z2
16. First note a(a − 1)(a − 2)(a − 3) is a product of 4

consecutive numbers, hence must be divisible by 8. It follows Jn1K~x(~a) = 2a(a −
1)(a− 2)(a− 3) must be divisible by 2 · 8 = 16, hence Jn1K~x(~a) = 0. Similarly, the

products a(a − 1) and b(b − 1) are formed from two consecutive numbers, hence

both are divisible by 2. It follows Jn1K~x(~a) = 4a(a − 1)b(b − 1) must be divisible

by 4 · 2 · 2 = 16, hence Jn2K~x(~a) = 0. Therefore {n1, n2} ⊆ Null16[~x].

The previous example suggests a way to systematically construct null polynomials,

formalised in the following definition and result:

Definition 9. For a term c~x~α, the factor polynomial ηc~x~α is defined:

ηc~x~α = c
d∏
i=1

αi−1∏
j=0

(xi − j)

Example 14. In Z16[~x] where ~x = 〈x, y〉,

η3x2y3 = 3x(x− 1)y(y − 1)(y − 2) = 3x2y3 + 7x2y2 + 6x2y + 13xy3 + 9xy2 + 10xy

Note that 3x2y3 is a term of η3x2y3 . Moreover, each monomial ~x~α in η3x2y3 takes

the form xk1yk2 where k1 ≤ 2 and k2 ≤ 3, hence divides x2y3. This division is

strict unless ~x~α = x2y3.

As the previous example suggests, if ~x
~β is a monomial occurring in ηc~x~α and ~x

~β 6= ~x~α

then ~x
~β strictly divides ~x~α. Thus, letting ~δ = ~α−~β > ~0, it follows from the defining

properties of a monomial ordering ≺ that 1 ≺ ~x
~δ, hence ~x

~β = 1~x
~β ≺ ~x

~δ~x
~β = ~x~α.

In particular, it follows lt≺(ηc~x~α) = c~x~α independently of ≺. The following result,

which determines conditions on c and ~α to ensure a factor polynomial is null, is a

straightforward consequence of [35, Lemma 3.1]:

Proposition 2. If 2ω−rankω(c) | α1! · · ·αd! in N then ηc~x~α ∈ Nullm[~x].

CHAPTER 2. GRÖBNER BASES 26

Example 15. Continuing with Example 13, recall n1 = η2x4 and n2 = η4x2y2 .

Since 24−rank4(2) = 24−1 = 8 | 24 = 4! 0! and 24−rank4(2) = 24−2 = 4 | 4 = 2! 2!,

Proposition 2 provides an alternative justification as to why n1 and n2 are both

null. Observe too that lt≺(η2x4) = lt≺(n1) = 2x4 and lt≺(η4x2y2) = lt≺(n2) = 4x2y2.

The following result presents a partial converse to Proposition 2, demonstrating

that a null polynomial is always reducible by a null factor polynomial. Restated,

this demonstrates the polynomials ηc~x~α form a Gröbner basis for Nullm[~x], as for-

malised in the corollary:

Proposition 3. Let ≺ be a monomial ordering over ~x and p ∈ Nullm[~x] with

lt≺(p) = c~x~α. Then, 2ω−rankω(c) | α1! · · ·αd!. In particular, p is ≺-reducible by

ηc~x~α ∈ Nullm[~x].

Corollary 1. The set { ηc~x~α | 2ω−rankω(c) | α1! · · ·αd! } is a Gröbner basis for

Nullm[~x] with respect to any monomial ordering ≺.

These results, which follow from [35, Lemma 3.2], demonstrate the existence of a

basis for Nullm[~x], but not a finite one. Note, however, the set of factor polynomials

ηc~x~α is not a minimal Gröbner basis. To see this, suppose ηc~xα is null, c divides c′

and ~α ≤ ~α′. Then, rankω(c) ≤ rankω(c′) hence 2ω−rankω(c
′) divides 2ω−rankω(c), which

divides α1! · · ·αd!, which divides α′1! · · ·α′d!. Thus, Proposition 2 implies ηc′~x~α′ is

also null. But also, since lt≺(ηc~x~α) = c~x~α and lt≺(ηc′~x~α′) = c′~x~α
′

it follows ηc′~x~α′

is ≺-reducible by ηc~x~α . In particular, the set of null factor polynomials excluding

ηc′~x~α′ is still a Gröbner basis for Nullm[~x]. This motivates defining a criterion for

a null factor polynomial to be irreducible by another null factor polynomial. To

that end:

Definition 10. A null factor polynomial η2k~x~α is principle if all the following hold:

• 0 ≤ k < ω,

• If k > 0 then 2ω−(k−1) - α1! · · ·αd!,

• If α` > 0 then 2ω−k - α1! · · · (α` − 1)! · · ·αd!

Example 16. Returning to Example 15, n1 = η2x4 = η2k1~x~α1 where k1 = 1 < ω

and ~α1 = 〈4, 0〉. Now,

CHAPTER 2. GRÖBNER BASES 27

• 2ω−(k1−1) = 24−0 = 16 - 24 = 4! 0!, hence the second property holds,

• 2ω−k1 = 24−1 = 8 - 6 = (4− 1)! 0!, hence the third property holds for ` = 1

(it holds vacuously for ` = 2).

It follows n1 is a principle null factor polynomial. Similarly, n2 = η4x2y2 = η2k2~x~α2

where k2 = 2 < ω and ~α2 = 〈2, 2〉. Now,

• 2ω−(k2−1) = 24−1 = 8 - 4 = 2! 2!, hence the second property holds,

• 2ω−k2 = 24−2 = 4 - 2 = (2 − 1)! 2! = 2! (2 − 1)!, hence the third property

holds.

It follows n2 is also a principle null factor polynomial.

Let BNullm[~x] denote the set of all principle null factor polynomials. Note that

this set is finite. To see this, suppose α` > ω + 1 for some `. Then, for any

0 ≤ k < ω, it follows 2ω−k divides 2ω, which divides (ω + 1)!, which divides

(α`−1)!, which divides α1! · · · (α`−1)! · · ·αd!. Thus, 2ω−k | α1! · · · (α`−1)! · · ·αd!,
hence the third property above cannot hold. In particular, if ηc~x~α is principle then

~α ≤ 〈ω + 1, . . . , ω + 1〉 pointwise, which implies BNullm[~x] is finite. . In fact, from

[35, Theorem 3.3] it follows the criteria described in Definition 10 guarantee that

no principle null factor polynomial is ≺-reducible by another principle null factor

polynomial, thus establishing:

Theorem 2. BNullm[~x] is a minimal Gröbner basis for Nullm[~x].

In particular, it follows BNullm[~x] is a finite basis for null polynomials. Indeed, this

justifies that the basis B defined in Example 25 is a basis for Null16[~x], since it is

precisely BNull16[~x].

2.10 Substitution

Polynomial substitution will play a key role in the later development of closure:

Definition 11. Let p, q ∈ Zm[~x]. Then p[xi 7→ q] denotes the polynomial con-

structed by substituting q for every instance of xi in p.

CHAPTER 2. GRÖBNER BASES 28

Example 17. Let ~x = 〈x, y〉 and p = xy + 2x+ 3 ∈ Z16[~x]. Then,

• p[x 7→y + 1] = (y + 1)y + 2(y + 1) + 3 = y2 + 3y + 5.

• p[x 7→x+ 1] = (x+ 1)y + 2(x+ 1) + 3 = xy + 2x+ y + 5.

Substitution and reduction are closely linked. The following result relies on reduc-

ing a polynomial p by {x1 −W1, . . . , xd −Wd} to eliminate all occurrences of the

variables xi. The example that follows illustrates the idea behind the lemma.

Lemma 3. Let p ∈ Zm[~x : ~w] and ~W ∈ Zm[~w]d. Then, p = q1(x1 −W1) + · · · +
qd(xd −Wd) + r for some q` ∈ Zm[~x : ~w] and r ∈ Zm[~w].

Example 18. Let p = x2 + 3y ∈ Z16[x, y] and ~W ∈ Z16[w1, w2]. Then,

p = x2 + 3y

= x(x−W1) + xW1 + 3y

= (x+W1)(x−W1) + 3y +W 2
1

= (x+W1)(x−W1) + 3(y −W2) +W 2
1 + 3W2

= q1(x−W1) + q2(y −W2) + r

where q1 = x+W1, q2 = 3 and r = W 2
1 + 3W2. Note that r = p[x 7→ W1, y 7→ W2].

2.11 Related work

Gröbner bases Originally introduced for rings of polynomials with coefficients

are drawn from a field [52] (where non-zero elements have multiplicative inverses)

the theory of Gröbner bases has subsequently been extended to more general rings

[2, 45, 60]. Magma [4] provides a variant of Buchberger for modulo arithmetic,

though details of the implementation are proprietary. Although the primary focus

of [5] is on Boolean Gröbner bases, for which ω = 1 and Zm is actually a field, this

study reports a Buchberger algorithm which adds the annihilator of a polynomial.

This algorithm also use so-called field equations that express invariants xi = x2i

for all xi ∈ Z2, which are a particular instance of null polynomials. An alternative

approach is to add the equation 2ω = 0 to a system of polynomial equations

to simulate modulo behaviour with arbitrary-precision integers [45]. In recent

CHAPTER 2. GRÖBNER BASES 29

years, signature-based approaches [23, 28], which have improved the efficiency

of computing Gröbner bases for polynomials over fields, have been extended to

more general settings [24, 25, 30]. Gröbner base engines have also recently shown

promise for realising word-level propagation [72].

Null polynomials Null polynomials have a long history [47, 75], inspired by

the desire to detect semantic equivalence of two polynomials mod m (where m is

not necessarily 2ω). Unary null polynomials were studied almost a century ago

[47], then rediscovered fifty years later [75], where they were presented in a more

accessible way. These results were extended to multi-variate polynomials, first

for the case of arbitrary m [43], then, bizarrely, for m = 2ω [73] (although [73]

overtook [43] in publication order). More recently, these results were distilled [35]

to construct a minimal Gröbner basis for the set of null polynomials.

2.12 Concluding Discussion

Buchberger’s classic S-polynomial based criterion for characterising a Gröbner base

can be extended to modular arithmetic by scaling each polynomial in the basis by a

power of two to eliminate its leading term. This extension amounts to relaxing the

form of S-polynomials from S≺(p1, p2) where p1 6= 0 and p2 6= 0 to allow S≺(p1, 0)

where p1 6= 0, since the latter form eliminates the leading term of p1. This extension

of Buchberger’s criterion, leads to a natural extension of Buchberger’s algorithm.

Less endearing is the handling of null polynomials, which are polynomials that are

universally valid. Although vacuous semantically, they still need to considered for

reduction, hence must be enumerated. To this end, a way to finitely enumerate

the set of nulls is presented for any given number of variable and bit-width. The

enumeration is tight in that it yields a Gröbner basis which is minimal.

Chapter 3

SMT for Modular Polynomials

3.1 Introduction

Some of the most influential algorithms in algebraic computation, such as Buch-

berger’s algorithm [8] and Collin’s Cylindrical Algebraic Decomposition algorithm

[12], were invented long before the advent of SMT. SMT itself has evolved from its

origins in SAT into a largely independently branch of symbolic computation. Yet

the potential of cross-fertilising one branch with the other has been repeatedly ob-

served [1, 6, 19], and a new class of SMT solvers is beginning to emerge that apply

both algebraic and satisfiability techniques in tandem [39, 44, 76]. The problem,

however, is that algebraic algorithms do not readily fit into the standard SMT

architecture [68] because they are not normally incremental or backtrackable, and

rarely support learning [1].

For application to software verification, the SMT background theory of bit-

vectors is of central interest. Solvers for bit-vectors conventionally translate bit-

vector constraints into propositional formulae by replacing constraints with propo-

sitional circuits that realise them, a technique evocatively called bit-blasting. How-

ever, particularly for constraints involving multiplication, the resulting formulae

can be prohibitively large. Moreover, bit-blasting foregoes the advantages afforded

by reasoning at the level of bit-vectors [3, 36].

In this chapter we present a new architecture for solving systems of polynomial

equalities over bit-vectors. Rather than converting to SAT and bit-blasting, the

30

CHAPTER 3. SMT FOR MODULAR POLYNOMIALS 31

method sets bits in order of least significance through the addition of certain poly-

nomials to the system. Computing a Gröbner basis [5] for the resulting system

effects a kind of high-level propagation, which we have called bit-sequence propaga-

tion, in which the values of other bits can be automatically inferred. Furthermore,

we show how the procedure can be carried out with symbolic truth values without

giving up bit-sequence propagation, thus unifying Gröbner basis calculations that

would otherwise be separate.

Once all bits are assigned truth values (symbolic or otherwise), the resulting

Gröbner basis prescribes an assignment to the bit-vectors which is a function of

the symbolic truth values. The remaining polynomials in the basis relate the

symbolic truth values and correspond to non-linear pseudo-boolean constraints

modulo a power of two. These constraints can be solved either by translation into

classical linear pseudo-boolean constraints (without a modulo) or else by encoding

them as propositional formulae, for which a novel translation process is described.

Either way, the algebraic Gröbner basis computation is encapsulated in the phase

that emits the pseudo-boolean constraints, hence the Gröbner basis engine [5]

does not need to be backtrackable, incremental or support learning. Overall, the

architecture provides a principled method for compiling high-level polynomials to

low-level pseudo-boolean constraints.

In summary, this chapter makes the following contributions:

• We introduce bit-sequence propagation, in which a bit is set by adding a suit-

able constraint to the system and computing a Gröbner basis, demonstrating

how it can lead to other bits being set automatically;

• We show how bit assignments can be handled symbolically in order to unify

distinct Gröbner basis computations, eventually yielding a residue system of

non-linear pseudo-boolean constraints;

• We show how the resulting pseudo-boolean systems can be solved by em-

ploying a novel rewrite procedure for converting non-linear modulo pseudo-

booleans to propositional formulae.

The chapter is structured as follows: Section 4.3 illustrates bit-sequence propa-

gation through a concrete example. The pseudo-boolean encoding are detailed

CHAPTER 3. SMT FOR MODULAR POLYNOMIALS 32

in Section 3.3. Experimental results are given in Section 3.4, Section 3.5 surveys

related work and Section 3.6 concludes.

3.2 Bit-sequence Propagation in a Nutshell

Classically, that is for polynomials over algebraically closed fields, unsatisfiability

can be decided by Hilbert’s Nullstellensatz [18]. This equates unsatisfiability with

the existence of a non-zero constant polynomial in a Gröbner basis for the poly-

nomials. The concept of Gröbner basis is inextricably linked with that of an ideal

[18]. The ideal for a given system (set) of polynomials is the least set closed under

the addition of polynomials drawn from the set and multiplication of an arbitrary

polynomial with a polynomial from the set; an ideal shares the same zeros as the

system from which it is derived, but is not finite. A Gröbner basis is merely a fi-

nite representation of an ideal, convenient because, among other things, it enables

satisfiability to be detected, at least over a field.

Unary bit-vectors constitute a field, but Nullstellensatz does not hold for bit-

vectors with multiple bits. To see this, consider the polynomial equation x2+2 = 0

where the arithmetic is 3-bit (modulo 8). Any solution x to this equation must be

even. But, 02 + 2 = 42 + 2 = 2 and 22 + 2 = 62 + 2 = 6. Hence x2 + 2 = 0 has

no solutions, yet the Gröbner basis {x2 + 2} does not contain a non-zero constant

polynomial. Moreover, even for a Gröbner basis of a satisfiable system, such as

{x2 + 4}, the solutions to the system cannot be immediately read off from the

basis. The force of these observations is that Gröbner bases need to be augmented

with search to test satisfiability and discover models. To illustrate this we consider

a more complicated system:

B =


y2 + 120x2 + 123x+ 48 = 0, yx+ 65x2 + 50x+ 32 = 0,

2y + 63x2 + 59x+ 128 = 0, x3 + 135x2 + 100x+ 64 = 0,

64x2 + 192x = 0


where x, y ∈ Z256. Henceforth we follow convention and omit = 0 from systems.

CHAPTER 3. SMT FOR MODULAR POLYNOMIALS 33

B

B0

B00

B000

B0000 B0001

B001

B0010 B0011

B01

B010

B0100 B0101

B011

B0110 B0111

B1

x0

x2

x7

y7 y7

x7

y7 y7

x2

x7

y7 y7

x7

y7 y7

x0

B

PB1

PB2

PB3

PB4

x0 = b1

x2 = b2

x7 = b3

y7 = b4

Figure 6: Bit-assignments and word-level propagation: 0/1 bits and symbolic bits

3.2.1 Solving using 0/1 truth values

Since Z256 is finite, this system can be solved by viewing the problem [58] as a finite

domain constraint satisfaction problem. In this setting, each bit-vector is associ-

ated with a set of values that is progressively pruned using word-level constraint

propagation rules. The search tree in the left-hand side of Fig 6 illustrates how

pruning is achieved by setting and inferring bits in the order of least-significance,

starting with the bits of x then those of y. On a left branch of the tree one bit,

xi or yj, is set to 0; on a right branch the bit is set to 1 (indicated in bold). Each

node is labelled with a Gröbner basis that encodes the impact of setting a bit on

all other bits. Gröbner bases are indexed by their position in the tree. Grey nodes

correspond to the solutions of B.

Computing B0 Setting the least significant bit of x, bit 0, to 0 can be achieved

by imposing x = 2w for some otherwise unconstrained variable w. Hence, we add

2w − x to B and compute a Gröbner basis with respect to the lexicographical

ordering on variables w � y � x, yielding:{
wx+ 86x+ 96, 2w + 255x, y2 + 219x+ 48,

yx+ 134x+ 96, 2y + 231x+ 64, x2 + 172x+ 192, 64x

}

CHAPTER 3. SMT FOR MODULAR POLYNOMIALS 34

To eliminate dependence on w, polynomials involving w are removed, giving:

B0 =

{
y2 + 219x+ 48, yx+ 134x+ 96, 2y + 231x+ 64,

x2 + 172x+ 192, 64x

}

Note that B0 contains 64x (representing 64x = 0) which indicates that x is a

multiple of 4. Thus bit 1 is also clear, although we did not actively impose it.

Now, observe the constraint 64x = 0 implies 0 = 26(x− 0) hence x− 0 = 22w′

for some w′. To clear the next bit, put w′ = 2w which gives x − 0 = 8w yielding

the polynomial 8w− x. Otherwise, to set the next bit put w′ = 2w+ 1 giving the

polynomial 8w − x+ 4.

Computing B00 Augmenting B0 with 8w− x, calculating a Gröbner basis, and

then eliminating w gives:

B00 =

{
y2 + 219x+ 48, yx+ 128, 2y + 231x+ 64,

x2, 2x+ 160

}

Since B00 includes 2x+ 160 (representing 2x+ 160 = 0) it follows that only bit 7

is undetermined. To constrain it, observe 0 = 2(x − 48) thus x − 48 = 27w′ for

some w′. Putting w′ = 2w gives x− 48 = 256w = 0 hence the polynomial x− 48.

Conversely, putting w′ = 2w + 1 gives x− 48 = 256w + 128 = 128 thus x− 176.

Computing B000 and B001 Adding x − 48 and x − 176 to B00, computing a

Gröbner basis, and eliminating w (a vacuous step), respectively yields:

B000 =
{
y2 + 64, 2y + 144, x+ 208

}
B001 =

{
y2 + 192, 2y + 16, x+ 80

}
Both systems contain a single constraint on x which uniquely determines its value,

hence we move attention to y. Both B000 and B001 contain equations with lead-

ing terms 2y and thus only bit 7 of y must be constrained. Following the same

CHAPTER 3. SMT FOR MODULAR POLYNOMIALS 35

procedure as before, we obtain:

B0000 =


y + 200,

x+ 208,

128

B0001 =


y + 72,

x+ 208,

128

B0010 =

{
y + 136,

x+ 80

}
B0011 =

{
y + 8,

x+ 80

}

These Gröbner bases all completely constrain x and y, hence are leaf nodes. Note

that B0000 and B0001 contain the non-zero, constant polynomial 128, indicating

unsatisfiability. Hence, only B0010 and B0011 actually yield solutions (highlighted

in grey), namely x 7→ 176, y 7→ 120 and x 7→ 176, y 7→ 248 respectively.

Computing B∗ The general principle is that if 2k(x− `) is in the basis and ω is

the bit width, then the linear polynomial 2ω−k+1w− x+ ` is added for some fresh

w to set the next undermined bit to 0. Conversely, to set the next bit to 1, the

polynomial 2ω−k+1w − x + 2ω−k + ` is added. We name this tactic bit-sequence

propagation. Using this tactic to flesh out the rest of the tree gives the following

satisfiable bases (also marked in grey in the figure):

B1 =
{
y + 183, x+ 91

}
B0110 =

{
y + 158, x+ 92

}
B0111 =

{
y + 30, x+ 92

}
yielding x 7→ 165, y 7→ 73, x 7→ 164, y 7→ 98 and x 7→ 164, y 7→ 226 respectively.

3.2.2 Solving using symbolic truth values

To reduce the total number of Gröbner basis calculations, we observe that it is

sufficient to work with symbolic bits. The right-hand side of Figure 6 illustrates

how this reduces the number of bases calculated to 4, albeit at the cost of carrying

symbolic bits in the basis. Bit-sequence propagation generalises via the single

rule: if 2k(x − `) is in the basis and ω is the bit width, then the polynomials

2ω−k+1w − x + 2ω−kb + ` and b2 − b are added to the basis. This sets the next

undermined bit to the symbolic value b; the polynomial b2 − b merely asserts that

CHAPTER 3. SMT FOR MODULAR POLYNOMIALS 36

each symbolic b can only be 0 or 1. This construction gives:

PB1 =


y2 + 219x+ 216b1 + 48, yx+ 6x+ 181b1 + 96, yb1 + 183b1,

2y + 103x+ 203b1 + 64, x2 + 44x+ 139b1 + 192, xb1 + 91b1,

64x+ 192b1, b21 + 255b1


...

PB4 =


y + 128b4 + 192b3 + 214b2 + 153b1 + 200, x+ 12b2 + 255b1 + 80,

b24 + 255b4, 128b4b1 + 128b1, b33 + 255b3, 64b3b1,

128b3 + 128b2 + 128, b22 + 255b2, 2b2b1 + 254b1, b21 + 255b1


The final PB4 expresses x and y as combinations of b4, b3, b2 and b1:

y ≡256 −128b4 − 192b3 − 214b2 − 153b1 − 200 x ≡256 −12b2 − 255b1 − 80

Observe that the remaining polynomials are non-linear pseudo-boolean constraints

over b4, b3, b2 and b1 modulo 256. The polynomials b2i + 255bi, which assert that

each bi is binary, are subsequently ignored.

3.2.3 Solving using SAT

These pseudo-booleans can be simplified by observing that when all coefficients in

the constraint are divisible by a power of 2 then the modulo can be lowered:

128b4b1 + 128b1 ≡256 0 ⇐⇒ b4b1 + b1 ≡2 0

64b3b1 ≡256 0 ⇐⇒ b3b1 ≡4 0

128b3 + 128b2 + 128 ≡256 0 ⇐⇒ b3 + b2 + 1 ≡2 0

2b2b1 + 254b1 ≡256 0 ⇐⇒ b2b1 + 127b1 ≡128 0

Since the reduced versions of the first and third constaints are modulo 2 they can

be mapped immediately to the propositional formulae:

b4b1 + b1 ≡2 0 ⇐⇒ (b4 ∧ b1)⊕ b1
b3 + b2 + 1 ≡2 0 ⇐⇒ ¬(b3 ⊕ b2)

where the negation is introduced because of the constant 1. The second and fourth

CHAPTER 3. SMT FOR MODULAR POLYNOMIALS 37

constraints cannot be handled so directly because the modulus is not 2. However,

for the second, we can use the fact that the left-hand side is a single term to infer

either b3 or b1 must be 0, yielding the formula ¬b3 ∨ ¬b1. Finally, for the fourth

constraint, we do a case split on b2. Setting b2 = 0 simplifies the constraint to

127b1 ≡128 0, from which b1 = 0 is inferred. Conversely, setting b2 = 1 simplifies

the constraint to 128b1 ≡128 0 which is vacuous. Overall, we derive the formula

(¬b2 ∧ ¬b1) ∨ b2 for the fourth constraint. There are 5 truth assignments for the

formula assembled from the above 4 sub-formulae, yielding 5 assignments to x and

y that concur with those given previously.

The reasoning exemplified here has been distilled into a series of rules, pre-

sented in Section 3.3, for encoding non-linear modulo pseudo-booleans into SAT.

An alternative approach finds the values for b4, b3, b2 and b1 using a cutting-plane

pseudo-boolean solver [53] alongside a modulo elimination transformation [29, Sec-

tion 3]. Regardless of the particular method employed to solve this system, observe

that search has been isolated in the SAT/pseudo-boolean solver; the Gröbner bases

are calculated in an entirely deterministic fashion.

3.3 Encoding pseudo-boolean constraints

Figure 7 presents rules for translating a polynomial in the form ~c · ~X ≡2r d to a

propositional formula such that ~c ∈ Z`m, d ∈ Zm and ~X ∈ ℘(∪~x)`, where ~x, recall,

is the vector of variables and ` is the arity of the vectors ~c and ~X. This form of

constraint, although restrictive, is sufficient to express the pseudo-booleans which

arise in the final Gröbner basis, as illustrated below:

Example 19. Returning to PB4 of Section 4.3 the polynomials 128b4b1 + 128b1

and 128b3 + 128b2 + 128 can be written as 〈128, 128〉 · 〈{b1, b4}, {b1}〉 ≡256 0 and

〈128, 128〉 · 〈{b3}, {b2}〉 ≡256 128 since 128 = −128 (mod 256).

The rules of Figure 7 collectively reduce the problem of encoding a constraint to

that of encoding one or more strictly simpler constraints. For brevity, we limit the

commentary to the more subtle rules. The false rule handles constraints which are

unsatisfiable because the coefficients ~c are all even and d is odd. The scale rule

reduces the encoding problem to that for an equi-satisfiable constraint obtained

CHAPTER 3. SMT FOR MODULAR POLYNOMIALS 38

true
ε · ε ≡2r 0 → true

false
∀ci ∈ ~c. rank(ci) > 0 rank(d) = 0

~c · ~X ≡2r d → false

xor
~1 · ~X ≡2 1 →

⊕
X∈ ~X (

∧
X)

iff
~c · ~X ≡2 1 → f

~c · ~X ≡2 0 → ¬f

scale
~c · ~X ≡2r d → f

(2s~c) · ~X ≡2r+s (2sd) → f
set

rank(d) = 0 ∃!ci ∈ ~c. rank(ci) = 0

(~c · ~X ≡2r d)[x 7→ 1 | x ∈ Xi] → f

~c · ~X ≡2r d → (
∧
Xi) ∧ f

clear

rank(d) > 0 ∃!ci ∈ ~c. rank(ci) = 0

∀x ∈ Xi. (~c · ~X ≡2r d)[x 7→ 0] → fx

~c · ~X ≡2r d →
∨
x∈Xi(¬x ∧ fx)

split
x ∈

⋃ ~X (~c · ~X ≡2r d)[x 7→ 0] → f0 (~c · ~X ≡2r d)[x→ 1] → f1

~c · ~X ≡2r d → (¬x ∧ f0) ∨ (x ∧ f1)

Figure 7: Reduction rules for pseudo-boolean polynomials modulo 2r

by dividing the modulo, coefficients and constant by a power of 2. The set rule

handles constraints where d is odd and there is a unique term ciXi for which ci is

odd. In this circumstance all the variables of Xi must be 1 for the constraint to be

satisfiable. Conversely, clear deals with constraints for which d is even and there

exists a unique ciXi for which ci is odd since then one variable of Xi must be 0

for satisfiability. When none of above are applicable, split is applied to reduce to

encoding problem to that of two strictly smaller constraints.

3.4 Experimental results

Our aim is to apply high-level algebraic reasoning to systematically reduce poly-

nomials to compact systems of low-level constraints. Our experimental work thus

assesses how the complexity of the low-level constraints relate to that of the input

polynomials. Although we provide timings for our Buchberger algorithm, which

as far as we know is state-of-the-art, this is not our main concern. Indeed, fast

algorithms for calculating Gröbner bases over fields have emerged in the last two

CHAPTER 3. SMT FOR MODULAR POLYNOMIALS 39

Figure 8: Top: number of symbolic variables (y) against ω (x) for n = 2, 3 and
4; Bottom: number of pseudo-booleans (y) against ω (x) for n = 2, 3 and 4

decades [27, 28], and similar performance gains seem achievable for modulo arith-

metic. In light of this, our Buchberger algorithm is implemented in Scala 2.13.0

(compiled to JVM) using BigInt for complete generality. Experiments were per-

formed on a 2.7GHz Intel i5 Macbook with 16Gbyte of SDRAM.

Datasets To exercise the symbolic method, polynomial systems were generated

for different numbers of bit-vectors n and different bit-widths ω. For each ω ∈
{2, 4, 8, 16, 32, 64} and n ∈ {2, 3, 4}, 100 polynomial systems were constructed by

randomly generating points in Zn2ω and deriving a system with these points as

their zeros. First, each point was described as a system of n (linear) polynomials.

Second, a single system was then formed with n points as its zeros through the

introduction of n−1 fresh variables [2]. Third, the fresh variables were eliminated

by calculating a Gröbner base to derive a basis constituting a single datapoint.

CHAPTER 3. SMT FOR MODULAR POLYNOMIALS 40

Symbolic variable and pseudo-boolean count Figure 8 presents box and

whisker diagrams that summarise the numbers of symbolic variables and pseudo-

booleans appearing in the derived pseudo-boolean systems. For each box and

whisker, the lower and upper limits of the box indicate the first and third quartiles,

the central line the median. The inter-quartile range (IQR) is the distance from

the top to the bottom of the box. By convention the whiskers extend to 1.5 times

the IQR above and below the median value; any point falling outside of this range

is considered to be an outlier and is plotted as an individual point. Figure 8

was derived from datapoints generated from 6 random points. Similar trends are

observed with fewer points and appear to be displayed for more points, but variable

elimination impedes dataset generation and large-scale evaluation.

For both the number of symbolic variables and the number of pseudo-booleans,

the medians level off after an initial increase and then appear to be relatively

independent of ω. This surprising result suggests that algebraic methods have a

role in reducing the complexity of polynomials for bit-vectors, which is sensitive to

ω for bit-blasting. This implication is that the number of Gröbner base calculations

also stablises with ω since this tallies with the number of symbolic variables. We

also observe that the number of symbolic bits employed is typically only a fraction

of the total number of bits occurring in the bit-vectors, hence setting a single

symbolic bit is often sufficient to infer values for many other bits.

Pseudo-boolean versus multiplication count The upper row of figure 9

presents a fine-grained analysis of the number of pseudo-booleans, comparing this

count to the number of bit-vector multiplications in the datasets. Multiplications

are counted as follows: An occurrence of a monomial x3yz, say, in polynomial

system contributes 2 + 1 + 1 to its multiplication count, irrespective of whether

it occurs singly or multiply. The term 42x3yz also contributes 4 to the count, so

simple multiplications with constants are ignored. Addition is also not counted,

the rationale being to compare the number of pseudo-booleans against the number

of bit-vector multiplications which are not amenable to specialisation in a reason-

ably smart encoding. The x-axis of the histograms of Figure 9 divides the different

ratios into bins, the first column giving the number of datasets for which the ratio

falls within [0, 0.25). As n increases the ratios bunch more tightly around the bin

CHAPTER 3. SMT FOR MODULAR POLYNOMIALS 41

Figure 9: Histograms for the ratio of the number of pseudo-booleans (top)/logical
connectives (bottom) to the multiplication count for n = 2, 3, 4 and ω = 32

[0.5, 0.75) and, more significantly, the number of pseudo-booleans rarely exceed

twice the multiplication count, at least for ω = 32.

Logical connectives versus multiplication count The lower row of Figure 9

examines the complexity of the resulting pseudo-boolean systems from another

perspective: the number of logical connectives required to encode them. The

pseudo-boolean systems were translated to propositional formulae using the re-

duction rules of Figure 7 and their complexity measured by counting the num-

ber of logical connectives used within them. The histograms present a frequency

analysis of ratios of the number logical connectives to the multiplication count.

Remarkably, histograms show that typically no more than 25 logical connectives

are required per multiplication for ω = 32.

Timing Although the number of symbolic variables is proxy for complexity,

it ignores that Gröbner base calculation increases in cost with the number of

symbolic variables. Fig. 10 is intended to add clarity, plotting the time in seconds

CHAPTER 3. SMT FOR MODULAR POLYNOMIALS 42

Figure 10: Timings for Buchberger in seconds (y) against ω (x) for n = 2, 3, 4

to calculate the pseudo-booleans against ω. As expected, the median runtimes

increase with ω for any given n, though not alarmingly for an implementation

based on Buchberger rather than a modern, fast engine such as F5 [28]. It should

be emphasised that the Gröbner bases computation is the dominating overhead:

the resulting SAT instances are almost trivial for our datapoints since the instances

are defined over the symbolic variables, which are few in number because of bit-

sequence propagation.

3.5 Related Work

Momentum may be growing [1, 6, 19] for combining algebraic and SMT tech-

niques but work at this intersection has mainly focused on CAD [44, 76]. Gröbner

bases have been used [3], however, for interpolating non-linear constraints over

bit-vectors by use of symbolic conversion predicates. These predicates are used

to lazily convert between bit-vectors and rationals, over which Gröbner bases are

computed. A closer integration of Gröbner bases with bit-vectors is offered by

Buchberger’s algorithm [8] which has been adapted to operate on polynomials in-

tegers with arbitrary moduli [5], work which is developed in this current chapter.

Further afield efficient, and also motivated by the desire to bypass bit-blasting,

portfolio solvers have been developed for bit-vectors [77] which combine learning

with word-level propagators [58] which iteratively restrict the values which can be

assigned to a bit-vector. In contrast to our work, the propagators are designed to

run in constant time and make use of low-level bit-twiddling operations [78].

CHAPTER 3. SMT FOR MODULAR POLYNOMIALS 43

3.6 Concluding Discussion

This chapter argues for translating polynomial equalities over bit-vectors into

pseudo-boolean constraints, the central idea being to use Gröbner bases to ex-

pose the consequences of setting an individual bit on the bit-vectors over which a

polynomial system is defined. The resulting technique, named bit-sequence prop-

agation, typically infers the values of many bits from setting a single bit, even in

the context of symbolic bit assignments. The symbolic bits enable the Gröbner

bases to be calculated in an entirely deterministic fashion, with search, and its

all associated complexity, encapsulated within the pseudo-boolean solver, whether

one is employed directly or a reduction to SAT is used.

Chapter 4

The Modular Polynomial

Abstract Domain

4.1 Introduction

Numeric abstract domains evolve at a surprisingly slow pace considering their

ubiquity in optimisation, transformation and verification. One evolutionary step

is when an abstract domain, originally conceived for idealised, arbitrary-precision

arithmetic, is adapted to machine arithmetic to better suit its working environ-

ment. This adaption is more often a leap than a step since the domain operations

typically need to be fundamentally reimagined to model modular arithmetic.

Modular domains It has taken more then two decades for each of the classical

abstract domains of ranges [14, 37], difference constraints [22] and linear equal-

ities [46], to be adjusted to a modular setting, as realised in, respectively, sign

agnostic range analysis [33], modular difference constraints [32] and linear equali-

ties modulo a power of two [65]. The tenor of these works is that operating over

modular integers is not, in fact, a restriction, but rather the natural domain for

deriving invariants over fixed-width integers, which are the norm in mainstream

programming languages.

Working over modular integers not only allows a more faithful representation

of concrete program operations, but can even expose invariants that exist but

44

CHAPTER 4. THE MODULAR POLYNOMIAL ABSTRACT DOMAIN 45

would otherwise be missed. For instance, consider a program operating on two

32-bit unsigned integers x and y, and a merge point for three branches. Suppose

x = 1, y = 6 at the end of the first branch; x = 2, y = 13 at the end of the second;

and x = 0, y = 232 − 1 at the end of the third. The linear modular constraint

y ≡ 7x− 1(mod 232) holds for all three points and therefore summarises program

state at the merge point. But y = 7x − 1 does not hold, nor any linear equality

since the three points are not co-linear in Euclidean geometry.

Modular polynomials For inferring polynomial invariants, one might be for-

given for considering the additional complexity of modular arithmetic to be an

irritation, justified only by the desire to faithfully model machine integers and

avoid missing invariants. In this chapter we challenge this view by demonstrating

how a novel abstract domain employing modular arithmetic can actually sim-

plify the discovery of polynomial equalities. Contrary to non-modular approaches

[9, 21, 41, 63, 49, 50, 70, 71], the Modular Polynomial Abstract Domain (MPAD)

is a finite lattice, finessing the need for widening and ad hoc constructions, such

as artificial degree bounds.

Closure of modular systems Fundamental to MPAD is the concept of a closed

polynomial system. A system of polynomials is closed if it cannot be further aug-

mented with polynomials without restricting its solution set. Mirroring a construc-

tion used for the Octagon domain [59], we demonstrate that join and projection

can be calculated, without omitting polynomials that actually hold, when they

are applied to closed systems. Moreover, the systems that result are also closed.

This, in general, does not hold for meet, thus it is necessary to apply a closure

operation, which takes a polynomial system as input and outputs a closed system

with the same solution set.

Contributions To summarise, this chapter makes the following contributions:

• We propose MPAD, whose invariants are systems of polynomial equations

modulo a power of two, providing formal definitions of the key abstract

domain operations of meet, join and projection;

CHAPTER 4. THE MODULAR POLYNOMIAL ABSTRACT DOMAIN 46

• We introduce a notion of closure, showing that it is preserved by join and

projection but must be re-established after meet in order to retain all poly-

nomial invariants;

• We demonstrate that MPAD can derive invariants that cannot be expressed

with non-modular polynomial systems. Therefore, the techniques presented

in this chapter represent a new point in the pantheon of abstract domains.

4.2 Modular Polynomial Abstract Domain

This section abstractly specifies MPAD, and its domain operations, with minimal

mathematical machinery. The problem of how to finitely represent the elements

of MPAD and finitely compute the domain operations is deferred until after an

extended example which illustrates how the domain operations are deployed.

4.2.1 Concretisation

For ~a ∈ Zdm and p ∈ Zm[~x] let JpK~x(~a) denote evaluating p at ~a by substituting

each ai for xi in p, and calculating the resulting arithmetical expression. Through

this definition, a set of polynomials in Zm[~x] is a symbolic description of a set of

points, interpreted by γ~x as follows:

Definition 12. The concretisation map γ~x : ℘(Zm[~x]) → ℘(Zdm) where d = |~x| is

defined:

γ~x(P) = {~a ∈ Zdm | JpK~x(~a) = 0 for all p ∈ P}

The set of points γ~x(P) is the solution (or zero) set of the set P of polynomials

over ~x. For a single p ∈ Zm[~x], let γ~x(p) = γ~x({p}).

Example 20. Let P1, P2 ⊆ Z8[x] where P1 = {x2 + 7x} and P2 = {x+ 6}. Then

γx(P1) = {0, 1} and γx(P2) = {2}.

Example 21. Let ~x = 〈x, y〉 and Q1, Q2 ⊆ Z256[~x] where

Q1 =
{

4x+ 132, y + 228
}

Q2 =


x2 + x+ 123y + 130, xy + 108y + 128,

2x+ 23y + 54, y2 + 82y,

128y



CHAPTER 4. THE MODULAR POLYNOMIAL ABSTRACT DOMAIN 47

(a) γ~x(Q1) (b) γ~x(Q2) (c) γ~x(Q3) (d) γ~x(Q4)

Figure 11: Dyadic join with and without closure, where Q3 = 〈Q′1〉~x ∩ 〈Q2〉~x and
Q4 = 〈Q1〉~x ∩ 〈Q2〉~x

The solutions sets γ~x(Q1) and γ~x(Q2) are plotted as points in [0, 255]2 in Fig. 11(a)

and Fig. 11(b) respectively. Here, the grid lines represent increments of 32. Al-

though Q1 is linear it has 4 solutions, namely (31, 28), (95, 28), (159, 28) and

(223, 28), because 31 · 4 ≡256 95 · 4 ≡256 159 · 4 ≡256 223 · 4 ≡256 124 ≡256 −132.

Given P = 〈B〉~x, the following result shows that we can reason about the solution

sets of P and B interchangeably:

Lemma 4. If P = 〈B〉~x then γ~x(P) = γ~x(B)

4.2.2 Closure

Suppose P ⊆ Zm[~x], p ∈ Zm[~x] and γ~x(P) ⊆ γ~x(p). Then γ~x(P ∪ {p}) = γ~x(P),

thus P can be augmented with p without restricting its solution set. This is the

intuition behind the following definition:

Definition 13. The operator ↑~x: ℘(Zm[~x])→ ℘(Zm[~x]) is defined by:

↑~x P = {p ∈ Zm[~x] | γ~x(P) ⊆ γ~x(p)}

The following result collects fundamental properties of ↑~x. The first three together

imply that ↑~x is a closure operator on 〈℘(Zm[~x]),⊆〉. The fourth implies that ↑~x
constructs a canonical representation of a system of polynomials. The fifth shows

that the canonical representation preserves the solution set, hence it is sufficient

to work with this representation alone.

Proposition 4. The operator ↑~x satisfies the following:

CHAPTER 4. THE MODULAR POLYNOMIAL ABSTRACT DOMAIN 48

• P ⊆ ↑~x P (extensivity),

• if P1 ⊆ P2 then ↑~x P1 ⊆ ↑~x P2 (monotonicity),

• ↑~x ↑~x P = ↑~x P (idempotence),

• γ~x(P1) = γ~x(P2) iff ↑~x P1 = ↑~x P2,

• γ~x(↑~x P) = γ~x(P).

The closure operator ↑~x yields a canonical representation of a given set of poly-

nomials, yet the representation is not finite. A tractable representation for ↑~x P
could be obtained by demonstrating ↑~x P = 〈B〉~x for some finite B. The following

result presents the first step in establishing this:

Lemma 5. If P = ↑~x P then P = 〈P 〉~x.

In particular, since ↑~x P = ↑~x ↑~x P it holds that ↑~x P = 〈↑~x P 〉~x, hence ↑~x P is

an ideal. But it has long been known that ideals of polynomials admit a finite

basis [38]. In particular, ↑~x P = 〈B〉~x for some finite B. The domain operations

developed later will build on this finite representation.

Example 22. Returning to Example 21, ↑~x Q1 and ↑~x Q2 admit the finite repre-

sentations ↑~x Q1 = 〈Q′1〉~x and ↑~x Q2 = 〈Q2〉~x where Q′1 = {x2+2x+1, 4x+132, y+

228}. Observe 312 + 2 · 31 + 1 = 1024 ≡256 0. Similarly it follows γ~x(x
2 + 2x+ 1)

⊇ {(31, y), (95, y), (159, y), (233, y) | y ∈ Z256}. Thus x2 + 2x + 1 ∈ ↑~xQ1. How-

ever, x2 + 2x + 1 6∈ 〈Q1〉~x. To see this, consider the expansion of the polynomial

p(4x+132)+q(y+228) = 4(xp+33p+57q)+yq. Observe that any term t occuring

in this polynomial that is independent of y must be a term of 4(xp + 33p + 57q).

But then, the coefficient of t must be a multiple of 4. In particular, there cannot

exist p, q for which x2 + 2x + 1 = p(4x + 132) + q(y + 228), since x2 (and in fact

2x and 1 as well) is independent of y but has coefficient 1. Hence Q1 must be

enlarged to obtain a basis for ↑~x Q1.

4.2.3 MPAD

The closure operator characterises the elements of our abstract domain:

CHAPTER 4. THE MODULAR POLYNOMIAL ABSTRACT DOMAIN 49

Definition 14. MPADm[~x] = {P ⊆ Zm[~x] | ↑~x P = P}

Elements of MPADm[~x] are said to be closed. If P1 ⊆ P2 then γ~x(P1) ⊇ γ~x(P2) thus

to align with 〈℘(Zdm),⊆〉 the domain MPADm[~x] adopts the superset ordering:

Proposition 5. 〈MPADm[~x],v,⊥,>,u,t〉 is a finite lattice, where

v = ⊇ ⊥ = Zm[~x] > = ↑~x ∅ P1 u P2 = ↑~x (P1 ∪ P2) P1 t P2 = P1 ∩ P2

Join and meet are specified set theoretically rather than algorithmically. Observe

too that MPAD is finite even though there are no bounds, a priori, put on the

degree of any polynomial. This follows from the finiteness of Zm and the closure

construction which underlies MPAD. To observe this, consider the function space

F = {JpK~x | p ∈ Zm[~x]} ⊆ Zdm → Zm. Since the space Zdm → Zm is finite

there exists p1, . . . , p` ∈ Zm[~x] such that F = {JpiK~x | i ∈ [1, `]}. To see how F

determines the structure of MPADm[~x], define p ≡ q iff JqK~x(~a) = JpK~x(~a) for all

~a ∈ Zdm. Let P ∈ MPADm[~x] and p ∈ P . Observe p ≡ pi for some i ∈ [1, `] and

γ~x(P) ⊆ γ~x(p) = γ~x(pi) hence pi ∈ P . Conversely, if pj ∈ P and pj ≡ q then

q ∈ P . Therefore there exists I ⊆ [1, `] such that P = {q ∈ Zm[~x] | q ≡ pi, i ∈ I}.
Thus MPADm[~x] only has a finite number of elements.

Example 23. Developing Example 20 further, 〈P1〉~xt〈P2〉~x = 〈P1〉~x∩〈P2〉~x = 〈P 〉~x
where P = {x3 + 5x2 + 2x} though at this stage we omit details of how to calculate

the intersection of two ideals. Nevertheless observe γ~x(P) = {0, 1, 2, 4, 6} hence

γ~x(〈P1〉~x) ⊆ γ~x(〈P 〉~x) and γ~x(〈P2〉~x) ⊆ γ~x(〈P 〉~x) as required.

CHAPTER 4. THE MODULAR POLYNOMIAL ABSTRACT DOMAIN 50

Example 24. Continuing from Example 22, let

Q′ =



x3 + x+ 13y2 + 11y + 126,

x2y + xy + 14y2 + 24y,

2x2 + xy + 19y2 + 97y + 78,

xy2 + 22y2 + 116y,

2xy + 19y2 + 110y,

4x+ 2y2 + 82y + 108,

y3 + 22y2 + 72y,

32y2 + 64y,

128y,



Q =



x2y + xy + 14y2 + 24y,

xy2 + 22y2 + 116y,

2xy + 19y2 + 110y,

4x+ 2y2 + 82y + 108,

y3 + 22y2 + 72y,

32y2 + 64y,

128y


Then, 〈Q′1〉~x ∩ 〈Q2〉~x = 〈Q′〉~x and 〈Q1〉~x ∩ 〈Q2〉~x = 〈Q〉~x. Again, we defer the dis-

cussion of how Q and Q′ are calculated. Observe from Figs. 11(a), 11(b) and 11(c)

that γ~x(〈Q′1〉~x) ∪ γ~x(〈Q2〉~x) ⊆ γ~x(〈Q′〉~x) as required, the diamond points indicat-

ing those introduced by join itself. The diamonds in Figure 11(d) are extraneous

points introduced by calculating 〈Q1〉~x ∩ 〈Q2〉~x rather than 〈Q′1〉~x ∩ 〈Q2〉~x. This

illustrates that operating on arbitrary bases is not generally sufficient to maintain

precision, thus motivating the need for closure.

Finally, the following result asserts that MPAD enjoys mathematical properties

that simplify the application of abstract interpretation:

Proposition 6. 〈℘(Zdm),⊆〉
α~x

γ~x

〈MPADm[~x],v〉 is a Galois insertion, where

α~x(A) = {p ∈ Zm[~x] | A ⊆ γ~x(p)}

4.2.4 Null polynomials

Recall > = ↑~x ∅ = {p ∈ Zm[~x] | γ~x(∅) ⊆ γ~x(p)}. It follows > = {p ∈ Zm[~x] | ∀~a ∈
Zdm.JpK~x(~a) = 0} because γ~x(∅) = Zdm. Such polynomials are referred to as null

polynomials and represent universally valid constraints.

CHAPTER 4. THE MODULAR POLYNOMIAL ABSTRACT DOMAIN 51

Example 25. Let ~x = 〈x, y〉. Then in Z16[~x], > = 〈B〉~x where

B =



x4y2 + 15x4y + 10x3y2 + 6x3y + 11x2y2 + 5x2y + 10xy2 + 6xy,

x2y4 + 10x2y3 + 11x2y2 + 10x2y + 15xy4 + 6xy3 + 5xy2 + 6xy,

4x2y2 + 12x2y + 12xy2 + 4xy,

x6 + x5 + 5x4 + 15x3 + 2x2 + 8x, 2x4 + 4x3 + 6x2 + 4x, 8x2 + 8x,

y6 + y5 + 5y4 + 15y3 + 2y2 + 8y, 2y4 + 4y3 + 6y2 + 4y, 8y2 + 8y


It is tempting to remove null polynomials from bases, since they are vacuous as

constraints. Unfortunately, this is not generally possible without sacrificing the

canonical representation property of closure. Despite this, for brevity, we will fol-

low the convention that null polynomials are omitted in the printed representation

of bases.

4.3 Motivating Example

To demonstrate how a run of the analysis can infer a non-linear loop invariant,

the class of polynomial programs is introduced. The syntax of this class is given

in Section 4.3.1, followed by their reference semantics in Section 4.3.2, formulated

over sets of points. Their semantics is then abstracted in Section 4.3.3, to reason

about how paths through a program compose. A work-list algorithm is given in

Section 4.3.4, which serves as a framework for inferring loop invariants. The whole

section, however, majors on a run of the analysis itself, given over Sections 4.3.5,

4.3.6 and 4.3.7 which illustrate how the domain operations are applied within a

work-list framework.

4.3.1 Syntax of polynomial programs

Let ~x = 〈x1, . . . , xd〉 denote a vector of program variables. A polynomial program

over ~x is a graph G = 〈N,E, n∗〉 where N is a finite set of program points,

E ⊆ N ×Stmt×N is a finite set of annotated edges and n∗ ∈ N is the entry point

into G. The set Stmt of program statements is defined:

xj := ∗ | xj := p | assume (p = 0) | assume (p 6= 0)

CHAPTER 4. THE MODULAR POLYNOMIAL ABSTRACT DOMAIN 52

function inverse(a)
assume (a odd)
begin

y := 1
do

x := y
y := x ∗ (2− a ∗ x)

while (x 6= y)
assert (a ∗ x = 1)
return x

end

0

1

2

3

4

5

6 7

assume (2ω−1a− 2ω−1 = 0)

y := 1

x := y

y := x(2− ax)

assume (x− y 6= 0)

assume (x− y = 0)

assume (ax− 1 = 0) assume (ax− 1 6= 0)

(a) (b)

Figure 12: An algorithm (a) and flow graph (b) for computing the multiplicative
inverse

where xj := ∗ and xj := p denote, respectively, non-deterministic assignment to

the variable xj and polynomial assignment to xj for some p ∈ Zm[~x]. The assume

statements for p = 0 and p 6= 0 provide a linguistic abstraction for positive and

negative guards, respectively expressing that p is satisfied, and conversely p is not

satisfied, by an assignment to ~x.

To illustrate a polynomial program, consider the algorithm [78] for computing

the multiplicative inverse of an (odd) integer a ∈ Zm listed in Fig. 12(a). The

variables x, y and a all store a ω-bit (unsigned) machine integer. This algorithm is

abstracted by G = 〈N,E, n∗〉 over ~x = 〈x, y, a〉, where N = {0, . . . , 7}, n∗ = 0 and

E is given in Fig. 12(b). The statement assume (a odd) is rendered as the edge

〈0, assume (2ω−1a−2ω−1 = 0), 1〉, where the (linear) polynomial 2ω−1a− 2ω−1 = 0

expresses that a is odd. The control-flow for the do . . . while is represented as two

edges 〈4, assume (x− y 6= 0), 2〉 and 〈4, assume (x− y = 0), 5〉, which, respec-

tively, encode the loop condition x 6= y and its negation. The control flow for the

assert statement is expressed through two edges: the edge 〈5, assume (ax− 1 = 0), 6〉
and 〈5, assume (ax− 1 6= 0), 7〉, where 7 is an error state which is reached if the

assertion fails.

CHAPTER 4. THE MODULAR POLYNOMIAL ABSTRACT DOMAIN 53

4.3.2 Collecting semantics of polynomial programs

The collecting semantics defines the actions of single statements and sequences

of statements. The semantics for assignment is formulated as an update to ~a ∈
Zdm at position j with a constant c ∈ Zm, an action denoted by: ~a[j 7→ c] =

〈a1, . . . , aj−1, c, aj+1, . . . , ad〉. A collecting semantics for single statements J·K :

Stmt→ (℘(Zdm)→ ℘(Zdm)) can then be defined case-wise by:

Jxj := ∗K(A) = {(~a)[j 7→ c] | ~a ∈ A, c ∈ Zm}
Jxj := pK(A) = {(~a)[j 7→ c] | ~a ∈ A, c = JpK~x(~a)}

Jassume (p = 0)K(A) = {~a ∈ A | JpK~x(~a) = 0}
Jassume (p 6= 0)K(A) = {~a ∈ A | JpK~x(~a) 6= 0}

To lift the collecting semantics to a program G = 〈N,E, n∗〉, the set of paths

ΠG through G is introduced. The set ΠG is defined simultaneously with the map

end : ΠG → N as follows:

ε ∈ ΠG

π · e ∈ ΠG if π ∈ ΠG, end(π) = n, e = 〈n, s, n′〉 ∈ E
end(ε) = n∗

end(π · 〈n, s, n′〉) = n′

A prefix relation � ⊆ ΠG×ΠG is defined as the smallest partial order � such that

for all π ∈ ΠG, ε � π and if π = π′ · e where e ∈ E then π′ � π. The collecting

semantics on single statements lifts to paths J·K : ΠG → (℘(Zdm)→ ℘(Zdm)) by:

JεK(A) = A

Jπ · 〈n, s, n′〉K(A) = JsK(JπK(A))

Thus JπK thus maps a set of points A at n∗ to a set of points JπK(A) at end(π).

This semantics serves as a reference semantics for judging the correctness of an

abstract semantics, given next.

4.3.3 Abstract semantics of polynomial programs

The collecting semantics defines the behaviour of sequences of statements, but

does not provide an algorithm for inferring invariants. To this end, state maps

are introduced where a state map for G = 〈N,E, n∗〉 over ~x is a map σ : N →

CHAPTER 4. THE MODULAR POLYNOMIAL ABSTRACT DOMAIN 54

function fixpoint(G = 〈N,E, n∗〉)
begin

k := 0
w0 := {〈n, s, n′〉 ∈ E | n = n∗}
σ0 := λn.(if n = n∗ then > else ⊥)
while (wk 6= ∅) do

let ek = 〈n, s, n′〉 ∈ wk
let Pk ∈ MPADm[~x] where JsK(γ~x(σk(n))) ⊆ γ~x(Pk)
if (Pk v σk(n

′)) then
wk+1 := wk \ {ek}
σk+1 := σk

else
wk+1 := (wk \ {ek}) ∪ {e′ ∈ E | e′ = 〈n′, s′, n′′〉}
σk+1 := σk[n

′ 7→ σk(n
′) t Pk]

end if
k := k + 1

end while
return σk

end

Figure 13: Worklist-based fixpoint algorithm

MPADm[~x]. The set of state maps, the function space N → MPADm[~x], is ordered

point-wise by f1 v f2 iff f1(n) v f2(n) for all n ∈ N . Meet and join lift by

f1 u f2 = λn. f1(n) u f2(n) and f1 t f2 = λn. f1(n) t f2(n) and bottom and top

are defined ⊥ = λn. ⊥ and > = λn. >. Since N is finite and MPADm[~x] is a finite

lattice, it follows that 〈N → MPADm[~x],v,⊥,>,u,t〉 is also a finite lattice.

The connection with the collecting semantics is made by interpreting a state

map σ as a description of a (possibly infinite) set γ(σ) of sequences emanating

from n∗, defined:

γ(σ) = {π ∈ ΠG | ∀ρ � π.JρK(Zdm) ⊆ γ~x(σ(end(ρ)))}

Note that the set of points at n∗ is taken as Zdm. The calculational problem is

then to find a state map σ ∈ N → MPADm[~x] that describes all paths ΠG, that is,

ΠG ⊆ γ(σ). This can be achieved with the work-list algorithm presented in Fig 13.

CHAPTER 4. THE MODULAR POLYNOMIAL ABSTRACT DOMAIN 55

4.3.4 Calculating the abstract semantics (framework)

The work-list algorithm computes a non-decreasing sequence σ0 v σ1 v . . . v σk

of state maps where σ0 = λn.(if n = n∗ then > else ⊥). The algorithm is driven

by a work-list wk ⊆ E which is primed with the edges that flow from n∗. At

each iteration of the algorithm, if wk 6= ∅ then an edge e = 〈n, s, n′〉 is (non-

deterministically) selected from wk and, σk+1 is computed as a relaxation of σk

that ensures JsK(γ~x(σk(n))) ⊆ γ~x(σk+1(n
′)). The algorithm reduces this process to

the selection of Pk ∈ MPADm[~x] satisfying JsK(γ~x(σk(n)) ⊆ γ~x(Pk), but leaves open

the question of how to choose Pk. Otherwise, if wk = ∅, the algorithm terminates

and returns σk. The following result, and its corollary, asserts that the work-list

algorithm terminates to derive a state map that describes all paths ΠG:

Proposition 7. For any polynomial graph G = 〈N,E, n∗〉, the fixpoint algorithm

terminates and returns a state map σ∗ satisfying JsK(γ~x(σ∗(n))) ⊆ γ~x(σ
∗(n′)) for

all 〈n, s, n′〉 ∈ E.

Corollary 2. If fixpoint(G) = σ∗ then ΠG ⊆ γ(σ∗)

4.3.5 Calculating the abstract semantics: pre-loop

To illustrate the calculation of the abstract semantics, a concrete execution is

considered for the polynomial program G represented in Fig. 12(b) where ω =

4 and ~x = 〈x, y, a〉. This execution is summarised in Fig. 14, where each row

corresponds to iteration k of the fixpoint algorithm.

The second column displays the worklist wk. For brevity, each edge 〈n, s, n′〉
in the worklist is abbreviated to 〈n, n′〉. Since for each pair 〈n, n′〉 there is at most

one statement s for which 〈n, s, n′〉 ∈ E, this causes no ambiguity. The selected

edge is always the first listed in the worklist for a given step. For instance, at step

4, the edge 〈4, 2〉 is selected, rather than 〈4, 5〉.
The third column displays the state map σk+1 as a function of the state map σk.

This is either σk, if no update occured, or else σk[n 7→ Q], where Q = σk(n) t Pk.
For brevity, polynomials that appear more than once are introduced with a label

(pa, pb, etc.) which is used to denote them in the bases of subsequent iterations.

CHAPTER 4. THE MODULAR POLYNOMIAL ABSTRACT DOMAIN 56

k wk σk+1

0 {〈0, 1〉} σ0[1 7→ 〈x4a+ x4 + 2x3a+ 2x3 + 3x2a+ 3x2 + 2xa+ 2x (pa),
2x2y2a+ 2x2y2 + 2x2ya+ 2x2y + 2xy2a+ 2xy2 +
2xya+ 2xy, x2a2 + 7x2 + xa2 + 7x (pb),
4x2a+ 4x2 + 4xa+ 4x (pc),
y4a+ y4 + 2y3a+ 2y3 + 3y2a+ 3y2 + 2ya+ 2y,
y2a2 + 7y2 + ya2 + 7y, 4y2a+ 4y2 + 4ya+ 4y,
a3 + a2 + 7a+ 7 (pd), 2a

2 + 14 (pe), 8a+ 8 (pf)〉~x]
1 {〈1, 2〉} σ1[2 7→ 〈pa, pb, pc, y + 15 (pg), pd, pe, pf〉~x]
2 {〈2, 3〉} σ2[3 7→ 〈x+ 15 (ph), pg, pd, pe, pf〉~x]
3 {〈3, 4〉} σ3[4 7→ 〈ph, y + a+ 14, pd, pe, pf〉~x]
4 {〈4, 2〉, 〈4, 5〉} σ4[2 7→ 〈pa, pb, pc, xy + 15x+ 7y + 9,

y2 + ya+ 5y + 7a+ 2 (pi), ya
2 + 7y + a2 + 7 (pj),

2ya+ 2y + 6a+ 6 (pk), 8y + 8 (pl), pd, pe, pf〉~x]
5 {〈2, 3〉, 〈4, 5〉} σ5[3 7→ 〈x+ 7y + 8 (pm), pi, pj, pk, pl, pd, pe, pf〉~x]
6 {〈3, 4〉, 〈4, 5〉} σ6[4 7→ 〈x2 + 2x+ 3y + 3a+ 7 (pn), xy + 3x+ a+ 11,

xa+ 3x+ y + 11, 4x+ 2y + 2a+ 8 (po),
y2 + 2y + a2 + 6a+ 6 (pq), ya+ y + a2 + 7a+ 6 (pr),
4y + 4a+ 8 (ps), pd, pe, pf〉~x]

7 {〈4, 2〉, 〈4, 5〉} σ7[2 7→ 〈pa, x2y + 7x2 + 8x+ 7y + 9, pb, pc,
xy2 + 15x+ y2 + 15,
xya+ xy + 7xa+ 7x+ ya+ y + 7a+ 7,
2xy + 14x+ y2 + ya+ 3y + 7a+ 4,
y3 + y2 + 7y + 7 (pt), y

2a+ y2 + 7a+ 7 (pu),
2y2 + 14 (pv), pj, pk, pl, pd, pe, pf〉~x]

8 {〈2, 3〉, 〈4, 5〉} σ8[3 7→ 〈pm, pt, pu, pv, pj, pk, pl, pd, pe, pf〉~x]
9 {〈3, 4〉, 〈4, 5〉} σ9[4 7→ 〈pn, xy + xa+ 2x+ 3y + 3a+ 6, xa2 + 3x+ 2y + a2 +

2a+ 7, 2xa+ 2x+ 6a+ 6, po, pq, pr, ps, pd, pe, pf〉~x]
10 {〈4, 2〉, 〈4, 5〉} σ10
11 {〈4, 5〉} σ11[5 7→ 〈x+ a2 + 7a+ 7 (pw), y + a2 + 7a+ 7 (px), pd, pe, pf〉~x]
12 {〈5, 6〉, 〈5, 7〉} σ12[6 7→ 〈pw, px, pd, pe, pf〉~x]
13 {〈5, 7〉} σ13

Figure 14: Updates to the state map

Assume statement (positive case) When k = 0, the edge 〈0, 1〉 is selected

from w0, corresponding to the statement assume (8a + 8 = 0). To process

this edge, P0 = 〈B0〉~x ∈ MPAD16[~x] is computed such that Jassume (8a + 8 =

CHAPTER 4. THE MODULAR POLYNOMIAL ABSTRACT DOMAIN 57

0)K(γ~x(σ0(0))) ⊆ γ~x(P0). Note that σ0(0) = > = 〈N〉~x where, as discussed in

Section 4.2.4, N is a basis for null-polynomials in Zm[~x]. To construct B0, the

closure of the basis N ∪ {8a+ 8} is calculated, which yields

B0 =



x4a+ x4 + 2x3a+ 2x3 + 3x2a+ 3x2 + 2xa+ 2x,

2x2y2a+ 2x2y2 + 2x2ya+ 2x2y + 2xy2a+ 2xy2 + 2xya+ 2xy,

x2a2 + 7x2 + xa2 + 7x, 4x2a+ 4x2 + 4xa+ 4x,

y4a+ y4 + 2y3a+ 2y3 + 3y2a+ 3y2 + 2ya+ 2y,

y2a2 + 7y2 + ya2 + 7y, 4y2a+ 4y2 + 4ya+ 4y,

a3 + a2 + 7a+ 7, 2a2 + 14, 8a+ 8


Intuitively, adjoining the polynomial 8a+8 to N imposes the constraint 8a+8 = 0.

The closure algorithm is applied to guarantee that P0 = 〈B0〉~x ∈ MPADm[~x], a

property that it not guaranteed of 〈N ∪ {8a+ 8}〉~x. An algorithm for calculating

closure will be detailed in Section 5.2.

To complete the abstract execution of this statement, the new state map σ1

and worklist w1 are computed. Since σ0(1) = ⊥, the test P0 v σ0(1) fails, hence

the else clause is executed. But also since σ0(1) = ⊥, it follows σ0(1) t P0 = P0.

Thus, σ1 = σ0[1 7→ P0], as recorded in the first row of the table, and w1 =

(w0 \ {〈0, 1〉} ∪ {〈n, n′〉 ∈ E | n = 1} = {〈1, 2〉}, as recorded in the second row of

the table. Execution then continues with k = 1.

Polynomial assignment When k = 1, the edge 〈1, 2〉 is selected, corresponding

to the statement y := 1. To process this edge, P1 ∈ MPAD16[~x] is computed such

that Jy := 1K(γ~x(σ1(1))) ⊆ γ~x(P1). Recall from above that σ1(1) = P0 = 〈B0〉~x. To

effect the assignment y := 1, first the basisB0 is adjoined with the polynomial w−1.

Here, w is a new variable that represents the value of y after the assignment and the

polynomial w−1 expresses that this value must equal 1. Then, y is eliminated from

B0∪{w−1}, to reflect that y is overwritten during the assignment. This elimination

step is achieved in two phases and exploits the concept of Gröbner basis, introduced

in Section ??. First, a Gröbner basis is computed for 〈B0∪{w−1}〉~x with respect

CHAPTER 4. THE MODULAR POLYNOMIAL ABSTRACT DOMAIN 58

to a lexicographical ordering 〈y, x, w, a〉 over the variables, yielding

y4a+ y4 + 2y3a+ 2y3 + 3y2a+ 3y2 + 2ya+ 2y,

2y2x2a+ 2y2x2 + 2y2xa+ 2y2x+ 2yx2a+ 2yx2 + 2yxa+ 2yx,

y2a2 + 7y2 + ya2 + 7y, 4y2a+ 4y2 + 4ya+ 4y,

x4a+ x4 + 2x3a+ 2x3 + 3x2a+ 3x2 + 2xa+ 2x,

x2a2 + 7x2 + xa2 + 7x, 4x2a+ 4x2 + 4xa+ 4x,

w + 15, a3 + a2 + 7a+ 7, 2a2 + 14, 8a+ 8


Then, all polynomials involving y are deleted:

x4a+ x4 + 2x3a+ 2x3 + 3x2a+ 3x2 + 2xa+ 2x,

x2a2 + 7x2 + xa2 + 7x, 4x2a+ 4x2 + 4xa+ 4x,

w + 15, a3 + a2 + 7a+ 7, 2a2 + 14, 8a+ 8


Note that it is essential for the original basis to be a Gröbner basis to ensure this

deletion does not lose information. To finalise the assignment, w is renamed to y,

yielding:

B1 =


x4a+ x4 + 2x3a+ 2x3 + 3x2a+ 3x2 + 2xa+ 2x,

x2a2 + 7x2 + xa2 + 7x, 4x2a+ 4x2 + 4xa+ 4x,

y + 15, a3 + a2 + 7a+ 7, 2a2 + 14, 8a+ 8


In the sequel it will be shown that P1 = 〈B1〉~x ∈ MPADm[~x] hence closure need

not be reapplied after polynomial assignment.

Since σ1(2) = ⊥ it follows as in the previous case that P1 6v σ1(2) and σ1(2) t
P1 = P1. Thus, σ2 = σ1[2 7→ P1] and w2 = (w1 \ {〈1, 2〉} ∪ {〈n, n′〉 ∈ E | n =

2} = {〈2, 3〉}, as recorded in the second and third rows of the table respectively.

Execution then continues with k = 2.

4.3.6 Calculating the abstract semantics: loop

The assignments x := y and y := x(2− ax) are handled in the same way as above

and yield σ3 and σ4, as recorded in the fourth and fifth rows of the table. At this

point, execution reaches node 4 and w4 = {〈4, 2〉, 〈4, 5〉}, corresponding to the two

CHAPTER 4. THE MODULAR POLYNOMIAL ABSTRACT DOMAIN 59

edges rooted at node 4.

Assume statement (negative case) When k = 4, the edge 〈4, 2〉 is selected,

corresponding to the statement assume (x − y 6= 0). To process this edge, P4 ∈
MPAD16[~x] is computed such that Jassume (x − y 6= 0)K(γ~x(σ4(4))) ⊆ γ~x(P4).

Note that, from the table it follows σ3(4) = 〈B3〉~x where

B3 =
{
x+ 15, y + a+ 14, a3 + a2 + 7a+ 7, 2a2 + 14, 8a+ 8

}
To effect the operation, closure is separately applied to four bases:

B3 ∪ {8(x− y) + 8} →cl[~x] B4,1 = {1}
B3 ∪ {4(x− y) + 8} →cl[~x] B4,2 = {x+ 15, y + a+ 14, a2 + 2a+ 1, 4a+ 4}
B3 ∪ {2(x− y) + 8} →cl[~x] B4,3 = {x+ 15, y + a+ 14, a2 + 7, 2a+ 6}
B3 ∪ {(x− y) + 8} →cl[~x] B4,4 = {x+ 15, y + 7, a+ 7}

The intuition is that each γ~x(B4,k) is the subset of ~a ∈ γ~x(B3) for which the k least-

significant bits of Jx− yK~x(~a) store the value 2k−1. Thus γ~x(B4,1) is the subset of

~a ∈ γ~x(B3) for which the least bit of Jx−yK~x(~a) is 20 = 1; γ~x(B4,2) is the subset for

which the 2 least bits of Jx− yK~x(~a) store 21 = 2, etc. Since Jx− yK~x(~a) 6= 0 holds

precisely when at least one bit is set, it follows P4 =
⊔4
k=1〈B4,k〉~x ∈ MPADm[~x]

satisfies the property above (the procedure for calculating join is discussed shortly).

In fact, in this case P4 = P3, hence the abstract execution of assume (x− y 6= 0)

does not strengthen the polynomial constraints even though B4,1 = {1} reveals

that the difference between x and y is never odd.

Join As for the previous updates, the inclusion P4 v σ4(2) does not hold, hence

the join σ4(2) t P4 = 〈B1〉~x t 〈B4〉~x must be computed. Contrary to the previous

updates, however, σ4(2) 6= ⊥ hence the join cannot be inferred immediately. To

compute it, the basis {wp | p ∈ B2} ∪ {(1−w)p | p ∈ B3} is constructed, where w

CHAPTER 4. THE MODULAR POLYNOMIAL ABSTRACT DOMAIN 60

is a fresh variable, before w is eliminated, yielding:

B′ =



x4a+ x4 + 2x3a+ 2x3 + 3x2a+ 3x2 + 2xa+ 2x,

x2a2 + 7x2 + xa2 + 7x, 4x2a+ 4x2 + 4xa+ 4x

xy + 15x+ 7y + 9, y2 + ya+ 5y + 7a+ 2,

ya2 + 7y + a2 + 7, 2ya+ 2y + 6a+ 6, 8y + 8

a3 + a2 + 7a+ 7, 2a2 + 14, 8a+ 8


Then, σ5 = σ2[2 7→ 〈B′〉~x], as recorded in the fifth row of the table.

Loop stability This update propagates to nodes 3 and 4 by re-evaluating the

assignments x := y and y := x(2 − ax), as recorded in the table for k = 5 and

k = 6. The update to node 4 is propagated back to node 2 via the statement

assume (x − y 6= 0). Processing this statement leads to a further relaxation at

node 2 which again propagates to nodes 3 and 4 under the assignments x := y and

y := x(2− ax). These updates are recorded in the rows of the table corresponding

to k = 7, k = 8 and k = 9. When k = 10, the edge 〈4, 2〉, corresponding to the

statement assume (x−y 6= 0), is processed for the third time and P10 ∈ MPADm[~x]

is computed such that Jassume (x − y 6= 0)K(γ~x(σ10(4))) ⊆ γ~x(P10), analogously

to before. In this case, however, it holds that P10 v σ10(2) and thus σ11 = σ10 and

a fixpoint is reached for the loop body in 3 iterations.

4.3.7 Calculating the abstract semantics: post-loop

When, k = 11, 12 and 13, the statements assume (x− y = 0) and assume (ax−
1 = 0), and assume (ax − 1 6= 0) are processed analogously to before, and the

associated updates are recorded in the table. After executing these statements,

the worklist becomes empty hence the algorithm terminates. In the final state

map σ14 it holds that σ14(7) = ⊥, hence node 7 is unreachable. In particular, the

assertion assert (a ∗ x = 1) must succeed.

CHAPTER 4. THE MODULAR POLYNOMIAL ABSTRACT DOMAIN 61

4.4 Related Work

Modular domains Momentum for migrating abstract domains from idealised

arithmetic to machine arithmetic is growing [26, 33, 32, 48, 64, 65], driven by

the desire to soundly model program behaviour, particularly with regards to low-

level code. Invariants over fixed-width integers can be represented with machine

integers, which can speed up domain operations and allow coefficients, constants

and bounds to be stored in constant space reducing overall memory consumption.

Polynomial invariants Early work [63, 71] on deriving polynomial invariants

use polynomials with symbolic coefficients whose degree is fixed a priori. These

works provide iterative [63] and direct constraint-solving [71] methods for inferring

polynomial invariants, the former propagating polynomial preconditions against

the control-flow, using Buchberger’s algorithm to test for loop stability. The latter

method [71] instead uses polynomial templates for invariants whose coefficients are

linear expressions over template variables. Parametric linear equalities are solved

and, where necessary, cylindrical algebraic decomposition methods [11] are applied

to compute the coefficients. Neither method is complete and [63] conclude, “It is

a challenging open problem whether or not the set of all polynomial relations can

be computed not just ones of some given form”.

This challenge [63] has motivated subsequent work [41, 42, 70, 50], which re-

strict the form of programs that can be analysed, either to those containing only

simple loops [70], P-solvable loops [50] or affine programs [41]. Simple loops [70]

are loops for which the body is a set of alternative assignments where each as-

signment simultaneously updates a subset of variables with an affine map on that

subset summed with a polynomial over the other variables. Matrices which en-

code the affine maps are required to have positive rational eigenvalues, but the

conjecture [70, Section 9] is that this is not necessary for termination.

P-solvable loops [50] are a class of loop for which the values of the variables can

be expressed as polynomials of the initial values, loop counters and exponents of

the counters. Polynomial invariants can be derived by solving recurrence equations

in the loop counters, and then eliminating the counters and exponential terms

[49]. The approach has been generalised to extended P-solvable loops, which allow

CHAPTER 4. THE MODULAR POLYNOMIAL ABSTRACT DOMAIN 62

multiplication between program variables and the loop counter [42], though this

generates more complex recurrences again.

State-of-the-art in computing all polynomial relations focuses on affine pro-

grams [41] where a variable is assigned to an affine expression. The problem is

reduced by an ingenious construction to that of computing the Zariski closure of

the semigroup generated by a finite set of rational square matrices. However, it

is not clear how this approach extends to general polynomial assignments, partic-

ularly those in a modulo setting. It is also not evident how the construction can

be combined with a conventional fixpoint engine which traces invariants in the

direction of control-flow, typically using an approximate reduced cardinal product

to combine numeric and symbolic domains [17].

In an attempt to side-step Gröbner bases [57], linear algebra [9, 21] has been

proposed for inferring polynomial invariants, again at the cost of bounding the

degree of the invariants. However, as [13] notes, even work over polynomial ideals

of unrestricted degree is not sufficient for completeness since ideals should ideally

be closed under radicals. Thus, if an ideal includes the polynomial pd for some

power d then it should include p, which is not dissimilar to our closure operator.

4.5 Concluding Discussion

Although Müller-Olm and Seidl [63] effectively threw down the gauntlet on the

problem of how to compute the set of all polynomial relations, one solution – that

set out in this chapter – has its roots in their own work on the (linear) analysis of

modular arithmetic [64, 65], as is reflected in the title of our work on MPAD.

Working over modular integers is not merely more realistic, but reshapes the

domain operations which can and need be applied. Widening is unnecessary be-

cause modular integers induce an abstract domain of polynomial invariants which

satisfies the ascending chain condition. Conversely, negative polynomial guards

can be supported by partitioning the solution set of a polynomial disequality into

sets of integers whose least bits represent a power of two. To illustrate the novelty

of this domain, and how it extends the scope of invariant discovery, we show how

MPAD can be used to automatically derive a quadratic loop invariant for a classic

algorithm for calculating the multiplicative inverse of a modular integer.

Chapter 5

Domain Operation Algorithms for

MPAD

The design of an abstract domain divides into two phases: the specification of

the high-level domain operations such as meet and join, and then the detailed

algorithmics of how the operations are actually realised. But domain operations

do not exist in isolation and there is often latitude to shift the complexity, whether

conceptual or computational, from one operation and into another. MPAD adopts

a centralised architecture, akin to that used in Octagons [59], in which there is

a single auxiliary domain operation, closure, that streamlines and supports the

other domain operations. Closure then localises and encapsulates much of the

complexity of the domain.

Closure is formulated in terms of join, which itself is reduced to variable elim-

ination that is, in turn, calculated using Gröbner bases. The development of the

domain operations is thus layered: commencing with variable elimination, then

moving onto join before majoring on closure itself.

Once closure is in place, the transfer functions of MPAD can be formulated

in a natural and systematic fashion by combining variable elimination with clo-

sure. When polynomial assignment is constructed in this way, it even comes with

an optimality guarantee, which generalises a result for affine approximation [62].

Rather surprisingly, MPAD provides transfer functions for both positive and neg-

ative polynomial guards, that is, statements of the form assume (p = 0) and

63

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 64

assume (p 6= 0) where p is an arbitrary polynomial. Thus the abstract transfer

functions which result from this development are unusually rich. To summarise,

this chapter makes the following contributions:

• We introduce variable elimination, demonstrating how its calculation can be

reduced to the calculation of a Gröbner basis;

• We introduce the notion of covers, presenting a divide-and-conquer algorithm

for computing them and introducing reductions and shortcuts that simplify

its calculation;

• We demonstrate how closure can be computed for the individual sub-systems

of a cover, in a new application for null-polynomials. Thus, closure can be

computed from a cover of a system;

• We demonstrate how the abstract transfer functions for MPAD can be re-

duced to variable elimination and closure. In particular, we show how poly-

nomial disequalities can be handled by a novel partitioning scheme;

• We show that polynomial assignment is optimal. Coupled with the finite-

ness of MPAD, it follows that MPAD will infer all polynomial invariants for

programs consisting solely of polynomial assignments.

5.1 Calculating variable elimination and join

Variable elimination is fundamental to computing the domain operations of MPAD,

many operations deploying it or reducing to it, join being one such example. This

section explains how variable elimination can be computed using Gröbner bases,

and how variable elimination can be combined with a relaxation to compute the

join of two ideals finitely represented as bases.

5.1.1 Concretisation and closure: reprise

A generic projection function πi(〈a1, . . . , a`〉) = 〈a1, . . . , ai−1, ai+1, . . . , a`〉 is used

to formulate elimination. It maps a vector of dimension ` to another of dimension

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 65

(a) γ~x(P)

(b) γ~x(Q) (c) γ~y(P) (d) γ~y(Q) (e) γ~w(B)

Figure 15: Concretisation of P = {x2 + 14x}, Q = {x3 + 5x2 + 2x} and B =
{wx+ 10w, 15wx2 + wx+ x2 + 15x} for ~x = 〈x〉 and ~y = 〈x, y〉 and ~w = 〈x,w〉

`− 1. Elimination and join likewise relate objects of different dimensionality. The

elimination of xj from a system P ⊆ Zm[~x] is the derivation of a system S ⊆ Zm[~y]

where ~y = πj(~x). Hence |~y| = |~x| − 1. The join of two systems P,Q ⊆ Zm[~x]

is calculated using a relaxation R ⊆ Zm[~y] where ~y = 〈w, x1, . . . , xd〉. Hence

|~y| = |~x|+1. To reason about variable elimination and join it is therefore necessary

to relate systems over ~x and ~y where ~x v ~y and |~x| 6= |~y|. Here, as before, v denotes

the subsequence relation. To this end, the first two results assert how the subset

ordering between γ~x(P) and γ~x(Q) for P,Q ⊆ Zm[~x] is preserved by γ~y(P) and

γ~y(Q) when ~x v ~y. The second is an immediate consequence of the first.

Lemma 6. If ~x = πi(~y) and P,Q ⊆ Zm[~x] such that γ~x(P) ⊆ γ~x(Q) then γ~y(P) ⊆
γ~y(Q).

Corollary 3. If ~x v ~y and P,Q ⊆ Zm[~x] such that γ~x(P) ⊆ γ~x(Q) then γ~y(P) ⊆
γ~y(Q).

Example 26. Let ~x = 〈x〉 and ~y = 〈x, y〉 so that ~x v ~y and consider P =

{x2 + 14x} and Q = {x3 + 5x2 + 2x}. Fig. 15(a)–(d) illustrate γ~x(P) ⊆ γ~x(Q) and

how it is mirrored by γ~y(P) ⊆ γ~y(Q). Fig. 15(e) will be discussed below.

Closure ↑~x is defined in terms of γ~x and thus is also parameterised by ~x. The

next result, which is a direct consequence of the above corollary, explains how

subset ordering between ↑~x (P) and ↑~x (Q) over ~x is likewise preserved by ↑~y P
and ↑~y Q when ~x v ~y. Together, these results show how concretisation γ~x, which

provides an interpretation for polynomials of Zm[~x], and closure ↑~x, which provides

a representation for them, both extend from ~x to ~y where ~x v ~y.

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 66

Corollary 4. P,Q ⊆ Zm[~x], ↑~x P ⊆ ↑~x Q and ~x v ~y then ↑~y P ⊆ ↑~y Q.

5.1.2 Variable elimination

The presentation of elimination itself commences with a syntactic form of variable

elimination, which simply removes polynomials that contains a given variable.

Definition 15. (Syntactic) variable elimination elim[xj] : ℘(Zm[~x])→ ℘(Zm[πj(~x)])

is defined

elim[xj](P) = P ∩ Zm[πj(~x)]

The following result demonstrates that abstraction and elimination commute. The

result is formulated in terms of the natural lifting of πj from the function space

Zdm → Zd−1m to ℘(Zdm)→ ℘(Zd−1m).

Proposition 8. If A ⊆ Zdm then elim[xj](α~x(A)) = απj(~x)(πj(A)).

It follows from this result that elimination preserves closure:

Corollary 5. If P ∈ MPADm[~x] then elim[xj](P) ∈ MPADm[πj(~x)].

Example 27. Consider B = {wx+ 10w, 15wx2 +wx+ x2 + 15x} ⊆ Z16[w, x] and

observe elim[w](B) = ∅. However (x2 + 7x + 8)(wx + 10w) + (x + 2)(15wx2 +

wx + x2 + 15x) = x3 + x2 + 14x hence x3 + x2 + 14x ∈ 〈B〉〈w,x〉. Since w 6∈
vars(x3 + x2 + 14x) it follows x3 + x2 + 14x ∈ elim[w](〈B〉〈w,x〉). In particular,

elim[w](〈B〉〈w,x〉) 6= {0} = 〈∅〉〈x〉 = 〈elim[w](B)〉〈x〉.

The previous example shows that syntactic variable elimination is not well-behaved

with respect to ideal generation, thus motivating the following definition:

Definition 16. (Semantic) variable elimination is a relation→elim[xj]⊆ ℘(Zm[~x])×
℘(Zm[πj(~x)]) defined B →elim[xj] B

′ iff elim[xj](〈B〉~x) = 〈B′〉πj(~x).

Proposition 9. Let B ⊆ Zm[~x] and B′ be a Gröbner basis for 〈B〉~x with respect

to ≺~y where ~y is a permutation of ~x and y1 = xj. Then B →elim[xj] elim[xj](B
′).

The previous result can be stated more generally in terms of elimination orderings

[2]; the restriction to lexicographical ordering is adopted merely to simplify the

presentation. Consistent with this choice, gb≺~y is henceforth abbreviated to gb~y,

again purely to streamline the exposition.

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 67

Example 28. Let B = {wx+ 10w, 15wx2 +wx+ x2 + 15x} ⊆ Z16[w, x, y]. Then,

gb〈w,x,y〉(B) = {wx+ 3x2 + 13x, 2w + x2 + 15x, x3 + x2 + 14x}

It follows B →elim[w] {x3 + x2 + 14x}.

Example 29. Let B = {w(x+ 3), w(y+ 9), (1−w)(x+ 6), (1−w)(y+ 2)}. Then,

gb〈w,x,y〉(B) = {w + 7y + 14, x+ 5y, y2 + 11y + 2}
gb〈w,y,x〉(B) = {w + 5x+ 14, y + 13x, x2 + 9x+ 2}

Thus B →elim[w] B
′ and B →elim[w] B

′′ where B′ = {x + 5y, y2 + 11y + 2} and

B′′ = {y + 13x, x2 + 9x + 2} illustrating why →elim[w] is defined as a relation. To

see 〈B′〉〈x,y〉 = 〈B′′〉〈x,y〉 observe x+ 5y →y+13x 0 and

y2+11y+2→y+13x 3xy+11y+2→y+13x 9x2+11y+2→x2+9x+2 15x+11y →y+13x 0

Similarly, p→B′ 0 for all p ∈ B′′.

5.1.3 Join

Once variable elimination is in place, join can be calculated by adapting a stan-

dard relaxation [2] to the current setting. The result, which provides a way of

intersecting ideals, hence calculating join, is stated in terms of a lifted product

qP = {qp | p ∈ P} where P ⊆ Zm[~x] and q ∈ Zm[~x]:

Proposition 10. If w 6∈ vars(B1 ∪B2) then 〈B1〉~x ∩ 〈B2〉~x = 〈B〉~x whenever

wB1 ∪ (1− w)B2 →elim[w] B

Example 30. Let ~x = 〈x, y〉 and B1, B2 ⊆ Z16[~x] where B1 = {x + 10}, B2 =

{x2 + 15x} and Ii = 〈Bi〉~x. Both Ii are closed, that is, Ii = ↑Ii. Let

B = wB1 ∪ (1− w)B2 = {wx+ 10w, 15wx2 + wx+ x2 + 15x}

From example 27, B →elim[w] {x3+x2+14x}, hence 〈B1〉~xt〈B2〉~x = 〈x3+x2+14x〉~x.

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 68

Figs. 16(a), 16(b) and 16(i) depict γ~x(I1), γ~x(I2) and γ~x(I1 t I2) respectively.

Observe (8, y) ∈ γ~x(I1 t I2) but (8, y) 6∈ γ~x(I1) ∪ γ~x(I2) for any y ∈ Z16. These

additional points, which are introduced by join itself, stem not from the re-

laxation wB1 ∪ (1 − w)B2 which introduces w, but the elimination of w from

gb〈w,x,y〉(B) which derives a unary polynomial representation over x alone. To see

this, Fig. 15(e) depicts γ~w(B), where ~w = 〈x,w〉 and the w-axis is vertical and the

x-axis is horizontal. Observe that γ~w(B) contains points with x-coordinates of 0,

1 and 6, and no others. These x-coordinates concur with γ~x(I1) and γ~x(I2). But

α~x(A) = ↑~x {x3 + x2 + 14x} for A = {(x, y) ∈ Z2
16 | x = 0 ∨ x = 1 ∨ x = 6}. Thus

there is no better unary polynomial representation of A than {x3 + x2 + 14x}. In

particular, γ~x(I1 t I2) cannot exclude points (8, y) for y ∈ Z16.

Example 31. Fig. 16 presents a series of examples of join on Z16[~x] for ~x = 〈x, y〉.
Figs. 16(a) - (h) depict γ~x(Ii) for Ii = 〈Bi〉~x where Ii = ↑Ii and Bi are as follows:

B3 =
{
x+ 3, y + 9

}
B4 =

{
x+ 6, y + 2

}
B5 =

{
x2, 4x, y

}
B6 =

{
x2, xy4 + xy2 + 2xy, 2xy2 + 2xy, 4x

}
B7 =

{
x4y + x2y + 2xy, 2x2y + 2xy, y2, 4y

}
B8 =

{
x+ y

}
For comparison, the yellow points give the best abstraction of γ~x(Ii) using systems

of linear congruences modulo 16 (linear polynomials).

Figs. 16(i) - (p) depict γ~x(Ii t Ij) for various combinations of i, j ∈ {1, 8}, il-

lustrating where a polynomial representation introduces additional points through

join. Again, the yellow points give the join of the best linear abstractions, which

can be computed by combining a relaxation with variable elimination [48]. To

illustrate the working, consider B3 and B4 rewritten as follows:

B3 =

{
x ≡16 −3

y ≡16 −9
B4 =

{
x ≡16 −6

y ≡16 −2

The relaxation introduces fresh variables x′, y′, x′′, y′′ and µ:

x ≡16 x
′ + x′′

y ≡16 y
′ + y′′

x′ ≡16 −3µ

y′ ≡16 −9µ

x′′ ≡16 −6(1− µ)

y′′ ≡16 −2(1− µ)

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 69

(a) γ~x(I1) (b) γ~x(I2) (c) γ~x(I3) (d) γ~x(I4)

(e) γ~x(I5) (f) γ~x(I6) (g) γ~x(I7) (h) γ~x(I8)

(i) γ~x(I1 t I2) (j) γ~x(I1 t I4) (k) γ~x(I3 t I4) (l) γ~x(I2 t I6)

(m) γ~x(I5 t I6) (n) γ~x(I6 t I7) (o) γ~x(I7 t I8) (p) γ~x(I3 t I8)

Figure 16: Examples of join on Z16[~x] for ~x = 〈x, y〉

Eliminating x′, y′, x′′ and y′′ gives a system of two congruences: x ≡16 3µ− 6 and

y ≡16 −7µ− 2. Rearranging for µ gives µ ≡16 2− 5x hence y ≡16 3x as illustrated

in Figure 16(k). The other linear joins are computed likewise.

Note in particular the loss of precision in using linear, rather than polynomial,

abstractions. For instance, the set γ~x(I2) can only be approximated by a triv-

ial (unconstrained) linear system, which leads to a complete loss of information.

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 70

(a) γ〈x,y〉(F1) (b) A1 (c) A2 (d) A3

(e) A4 (f) A5 (g) γ〈x,y〉(F2) (h) A6

Figure 17: Covers of F1 over 〈w1〉 and F2 over 〈w1, w2〉

Moreover, as demonstrated in Figs. 16(j) - (k) and Figs. 16(n) - (p), even if the

arguments to a (polynomial) join are precisely representable via linear systems,

the result may not be. This has particular consequences for abstract interpreta-

tion, where joins typically arise from a merge of control flow, for instance at the

entry point of a loop. When employing a linear abstraction [65], the presence

of such merge points can lead to a significant loss of precision compared to the

corresponding polynomial abstraction.

5.2 Calculating closure and meet

This section addresses how to finitely compute closure. The problem is reduced to

that of computing a cover of a system of polynomials. A cover provides a way to

decompose closure to sub-problems for which closure can be computed directly. A

divide-and-conquer algorithm is introduced for computing a cover, which exploits

a simplification procedure based on Gröbner bases, to avoid superfluous work. The

section concludes by showing how meet can be computed using closure.

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 71

5.2.1 Covering

An algorithm for computing closure is formulated in terms of the concept of a cover,

which is itself defined through a pointwise lifting of polynomial evaluation JpK~x(~a)

to a vector of polynomials ~p = 〈p1, . . . , pn〉 by J~pK~x(~a) = 〈Jp1K~x(~a), . . . , JpnK~x(~a)〉.

Definition 17. Let W ⊆ Zm[~w]d, A ⊆ Zdm and F ⊆ Zm[~x]. Then

• W is a cover of A over ~w iff A = {J ~W K~w(~a) | ~W ∈ W ∧ ~a ∈ Z|~w|m }

• W is a cover of F over ~w iff W is a cover of γ~x(F) over ~w

Example 32. Figs. 17(a) and (e) depict γ~x(F1) and γ~x(F2) for ~x = 〈x, y〉 where

F1 =

{
x+ 3y3 + 4y2 + 7y + 10,

y4 + 7y2 + 8y

}
F2 =

{
2x+ 10,

4y + 12

}

Figs. 17(b), (c) and (d) illustrate Ai = {J ~WiK~w(~a) | ~a ∈ Z1
m} for ~w = 〈w1〉 where

~W1 = 〈4w1 + 6, 4w1〉 ~W2 = 〈8, 8w1 + 1〉 ~W3 = 〈12, 8w1 + 7〉

Observe { ~Wi} is a cover of Ai and since γ~x(F1) = A1 ∪ A2 ∪ A3, { ~W1, ~W2, ~W3} is

a cover of F1 over ~w. The set of 4 vectors { ~W1, ~W2, ~W4, ~W5} where ~W4 = 〈12, 7〉
and ~W5 = 〈12, 15〉 is also a cover of F1, illustrating that covers are not unique.

The polynomial vectors ~W4 and ~W5 define single points and suggest how a cover

can be constructed for an arbitrary F ⊆ Zm[~w] by putting W = {~a | ~a ∈ γ~x(F)}.
The vector ~w is not necessarily unary as the cover { ~W6} of F2 over ~w = 〈w1, w2〉
illustrates where ~W6 = 〈8w1+3, 4w2+1〉 and γ~x(F2) = A6 = {J ~W6K~w(~a) | ~a ∈ Z2

m},
and γ~x(F2) and A6 are illustrated in Figs. 17(g) and (h) respectively.

The challenge is compute a cover over some ~w for arbitrary F ⊆ Zm[~x] without

naively enumerating all points of γ~x(F). To this end, Fig. 18 presents a divide-

and-conquer algorithm that recursively decomposes γ~x(F) into subsets following

the structure of F . Ultimately the function computes a cover W ⊆ Zm[~w]d for

F over ~w where |~w| = d = |~x|. The function cover depends on three auxiliary

functions, simplify constrain and safe all of which are listed in Fig. 19. The

function cover and its auxiliaries operate on pairs S = 〈 ~W,F 〉 where ~W ∈ Zm[~w]d

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 72

function cover(F ⊆ Zm[~x])
begin

let ~w = 〈w1, . . . , wd〉
return cover(~w, F [x1 7→ w1, . . . , xd 7→ wd])

end
function cover(S ∈ Zm[~w]d × ℘(Zm[~w]))
begin

S ′ = simplify(S)
if (S ′ = nil) return ∅
else

let S ′ = 〈 ~W,F 〉
if (F = ∅) return { ~W}
else

let wi ∈ vars(F)
S ′0 = constrain(S ′, 1, wi, 0) (* F ∪ {wi − 21w} *)
S ′1 = constrain(S ′, 1, wi, 1) (* F ∪ {wi − 21w + 1} *)
return cover(S ′0) ∪ cover(S ′1)

end if
end if

end

Figure 18: The cover algorithm

is a vector of polynomials and F ⊆ Zm[~w] is a system. The vector ~W provides a

lens to interpret the solutions of F , as formalised in the following:

Definition 18. The concretisation map γ~w : Zm[~w]d×℘(Zm[~w])→ Zdm is defined:

γ~w(〈 ~W,F 〉) = {J ~W K~w(~a) | ~a ∈ γ~w(F)}

Example 33. Consider Sb = 〈 ~Wb, Fb〉 and Sc = 〈 ~Wc, Fc〉, where ~Wb = 〈w1, 2w2〉,
~Wc = 〈w1, 4w2〉 and

Fb =

{
w2

1 + w1 + 6w2 + 12,

2w1w2 + 4w1, 4w2
2, 8w2

}
Fc =

{
w2

1 + w1 + 12w2 + 12,

4w1w2 + 4w1

}

Fig. 20(b) illustrates γ~w(Fb) as large, translucent points and γ~w(Sb) as small,

opaque points. Observe 〈8, 2〉, 〈8, 10〉 ∈ γ~w(Fb) and J ~W K~w(〈8, 2〉) = 〈8, 4〉 =

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 73

function simplify(〈 ~W,F 〉 ∈ Zm[~w]d × ℘(Zm[~w]))
begin

F ′ = gb~w(F)

S ′ = 〈 ~W,F ′〉
if (c ∈ F ′ where c ∈ Zm \ {0})

return nil

else if (2ω−j(wi + r) ∈ F ′ where j > 0 ∧ r ∈ Zm[wi+1, . . . , wd] ∧ safe(~W,wi, r))
S ′′ = constrain(S ′, j, wi, r) (* F ∪ {wi − 2jw + r} *)
return simplify(S ′′)

else
return S ′

end if
end

function constrain(〈 ~W,F 〉 ∈ Zm[~w]d × Zm[~w], j ∈ N, wi ∈ ~w, r ∈ Zm[wi+1, . . . , wd])
begin

F ∪ {wi − 2jw + r} →elim[wi] F
′

~W ′ = ~W [wi 7→ 2jw − r]
if (W ′

i = 2ωw + q ∧ q ∈ Zm[wi+1, . . . , wd]) F
′′ = F ′[w 7→ 0]

else F ′′ = F ′[w 7→ wi]

return 〈 ~W ′[w 7→ wi], F
′′〉

end

function safe(~W ∈ Zm[~w]d, wi ∈ ~w, r ∈ Zm[wi+1, . . . , wd])
begin

let ~W = 〈2k1w1 + q1, . . . , 2
kdwd + qd〉

if (c~y~α ∈ r, w` ∈ vars(~y) where ki + rank(c) < k`) return false
else return true

end

Figure 19: The simplify, constrain and safe functions

J ~W K~w(〈8, 10〉) hence, in general, there is many-to-one relationship between γ~w(Fb)

and γ~w(Sa). Fig. 20(c) depicts γ~w(Fc) and γ~w(Sc) using the same convention. Ob-

serve too that γ~w(Sb) = γ~w(Sc) but the cardinality of γ~w(Fc) is 4-fold that of γ~w(Sc)

since ~Wc = 〈w1, 4w2〉.

Observe that if W ⊆ Zm[~w]d is a cover for F ⊆ Zm[~x] over ~w then γ~x(F) =

∪{γ~w(〈 ~W, ∅〉) | ~W ∈ W}. Thus a cover is formed from pairs 〈 ~W,F 〉 that are

degenerate in the sense that F = ∅. The rationale behind cover is therefore to

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 74

(a) 〈w1, w2〉 (b) 〈w1, 2w2〉 (c) 〈w1, 4w2〉 (d) 〈2w1, 4w2〉{
w2

1 + w1 + 7w2
2+

11w2 + 12,
w1w2 + 4w1 + 10w2

2

}{
w2

1 + w1 + 6w2 + 12,
2w1w2 + 4w1,
4w2

2, 8w2

}{
w2

1 + w1 + 12w2 + 12,
4w1w2 + 4w1

}
{2w1 + 12w2 + 12}

(e) 〈4w2 + 4, 4w2〉 (f) 〈2w1 + 15, 4w2〉 (g) 〈15, 4w2〉 (h) 〈15, 12〉
∅ {2w1, 4w2 + 4} {4w1 + 4} ∅

(i) 〈w1, 2w2 + 15〉 (j) 〈14, 2w2 + 15〉 (k) 〈14, 1〉
{w1 + 2, 2w2 + 14} {2w2 + 14} ∅

Figure 20: Covering F : γ~y(Fn) (large, translucent points) and γ~y(Sn) (small,

opaque points) for Sn = 〈 ~Wn, Fn〉

decompose a single pair 〈 ~W,F 〉 where ~W = ~w into a collection of degenerate pairs:

Example 34. Consider computing a cover for the system

F =

{
x2 + x+ 7y2 + 11y + 12,

xy + 4x+ 10y2

}

over ~w = 〈w1, w2〉. The set γ~x(F) is plotted in Figure 21(a). The top-level cover

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 75

(a) γ~x(F) (b) γ~x(F3) (c) γ~x(F4)

Figure 21: Solution sets for F , F3 and F4

function expresses F as the pair Sa = 〈 ~Wa, Fa〉 where

~Wa = ~w Fa =

{
w2

1 + w1 + 7w2
2 + 11w2 + 12,

w1w2 + 4w1 + 10w2
2

}

Since ~Wa is the identity, that is J ~W K~w(~b) = ~b for all ~b ∈ Z2
m, it follows γ~w(Sa) =

γ~x(F).

The cover function invokes both simplify and constrain. The function sim-

plify performs simplification, either returning nil, indicating γ~w(〈 ~W,F 〉) = ∅,
or S ′ = 〈 ~W ′, F ′〉 where γ~w(S) = γ~w(S ′) (possibly with S = S ′). The first sub-

stantive action of simplify is to calculate a Gröbner base F ′ for the ideal 〈F 〉~w
using the variable ordering ~w. If there exists a constant polynomial c ∈ F ′ such

that c 6= 0 then this reveals γ~w(F) = γ~w(F ′) = ∅ hence γ~w(S) = ∅. Otherwise,

constrain is invoked if F ′ contains a polynomial of the form 2ω−j(wi + r) where

r ∈ Zm[wi+1, . . . , wd], 0 < j ≤ ω and the safety check safe(~W,wi, r) is satisfied.

The added polynomial wi− 2jw+ r asserts that wi + r is a multiple of 2j, which is

a direct consequence of 2ω−j(wi + r). The safety check ensures that the addition

of 2ω−j(wi + r) does not induce a coupling between the variables of ~w, specifi-

cally those arising in r, that would compromise the termination argument behind

simplify and cover. The safety check is vacuously satisfied if vars(r) = ∅.
Simplification is used in tandem with splitting, the latter employed by cover

only when the former cannot infer new information. When constrain is invoked

from cover, two pairs S ′0 and S ′1 are derived from S ′ = 〈 ~W ′, F ′〉 for which γ~w(S ′) =

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 76

(a)

(i) (j) (k) 〈14, 1〉
2(w2 + 7)

w2 + 7 = 8w

w1 + 2

w1 + 2 = 16w = 0

splitw
2 = 2w − 1

(b) (c)

(f) (g) (h) 〈15, 12〉
4(w1 + 1)

w1 + 1 = 4w

2w1

w1 = 8w

splitw
1 = 2w − 1

(d) (e) 〈4w2 + 4, 4w2〉
2(w1 + 6w2 + 6)

w1 + 6w2 + 6 = 8w
split

w1
= 2w

8w2

w2 = 2w
split

w2
= 2w

Figure 22: Covering F : the simplification and splitting actions

γ~w(S ′0) ∪ γ~w(S ′1). The pairs S ′0 and S ′1 are formed by adding wi − 2w + 0 and

wi − 2w + 1 to F ′, which stipulate, respectively, whether wi takes an even or an

odd value. Note, in this case, constrain(S ′, 1, wi, r) is called with vars(r) = ∅,
hence safe(~W,wi, r) holds independently of ~W and wi and need not be deployed

within the body of cover itself. The cover function is then recursively applied to

S ′0 and S ′1 to compute two covers, which are combined by set union. The function

returns a singleton set { ~W} when F = ∅ (though the check F = ∅ can be relaxed

to F ⊆ > to allow early termination for when F only contains null polynomials).

Example 35. Fig. 22 presents the simplification and splitting actions that arise

during a run of the algorithm on the pair Sa = 〈 ~Wa, Fa〉 introduced in Example 34.

The actions are presented as a tree rooted at node a where the leaves, nodes e,

g and h, are each decorated with a single polynomial vector. Together these

3 vectors constitute the cover. Fig. 20 augments Fig. 22 with details of Sn =

〈 ~Wn, Fn〉 for each node n of the tree: ~Wn written above Fn. In each diagram

γ~w(Fn) is represented as large, translucent points and γ~w(Sn) as small, opaque

points. Observe that Fa does not contain any polynomial of the general form

2ω−j(wi + r) hence cover immediately splits the problem into calculating a cover

for 〈 ~Wb, Fb〉 and a cover for 〈 ~Wi, Fi〉. Note how splitting doubles a leading constant:
~Wa = ~w whereas ~Wb = 〈w1, 2w2〉 and ~Wi = 〈w1, 2w2+1〉. This form of scaling by a

power of 2 is a general pattern. By comparing the number of small, opaque points

in Fig. 20(a) against those in (b) and (i), observe that the solutions of γ~w(Sa) are

preserved by the split, that is, γ~w(Sa) = γ~w(Sb) ∪ γ~w(Si).

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 77

The system Fb contains 8w2 = 24−1(w2 + r) where r = 0 hence cover de-

ploys simplification to derive Sc = 〈 ~Wc, Fc〉 from Sb. Since vars(r) = ∅ the check

safe(~W,wi, r) is vacuously satisfied. Recall from example 33 that γ~w(Sb) = γ~w(Sc).

Observe too how a leading constant is again doubled, with a commensurate dou-

bling in the cardinality of γ~w(Fc) over γ~w(Fb). Since Fc does not contain any

polynomial 2ω−j(wi + r) splitting is again applied to give a total of three branches

that emanate from a. Observe Fe = Fg = Fh = ∅ hence the pairs 〈 ~We, Fe〉, 〈 ~Wg, Fg〉
and 〈 ~Wh, Fh〉 are degenerate and thereby define the final cover { ~We, ~Wg, ~Wh} over

~w.

Example 36. Fig. 22 serves to illustrate the application of the check safe(~W,wi, r)

within simplify. Observe that vars(r) = ∅ in all but one of the simplification steps.

For the step that applies 2(w1 + 6w2 + 6), r = 6w2 + 6 and ~W = 〈21w1, 2
2w2〉.

The polynomial r contains a single term 6w2, which contains the single variable

w2. The test safe(~W,w1, r) thus reduces to a single inequality k1 + rank(6) < k2

which is false since k1 = 1, rank(6) = 1 and k2 = 2. Thus safe returns true.

The cover function, and its auxiliaries, are justified by two independent sets of

results, the first establishing termination of simplify and cover and the second

proving that cover indeed computes a cover. Both sets are founded on two re-

sults, Proposition 11 and Proposition 12, which establish fundamental properties

of constrain. These properties are then reflected in the functions, simplify and

cover, which call it.

Proposition 11 asserts syntactic properties of the polynomials constituting ~W

and how they are preserved by constrain. The result gives weight to the ob-

servation that each polynomial of ~W assumes the form W` = 2k`w` + q` where

q` ∈ Zm[w`+1, . . . , wd]. On exit from constrain, the result shows how the powers

of 2 in leading constants of ~W are preserved, with the exception of W ′
i = 2k

′
iwi+q

′
i,

for which ki < min(ki + j, ω) = k′i. These powers of 2 are therefore related by

〈k1, . . . , kd〉 < 〈k′1, . . . , k′d〉 where ¡ denotes the pointwise ordering, which provides

the basis for a termination argument.

Proposition 11. Let S = 〈 ~W,F 〉 ∈ Zm[~w]d × ℘(Zm[~w]) and suppose for each

1 ≤ ` ≤ d

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 78

• W` = 2k`w` + q`

• If 〈v1, . . . , v`, . . . , vd〉 ∈ γ~w(F) then 〈v1, . . . , v` + 2ω−k` , . . . , vd〉 ∈ γ~w(F)

• If k` = ω then w` 6∈ vars(F)

where q` ∈ Zm[w`+1, . . . , wd] and 0 ≤ k` ≤ ω. Suppose constrain(S, j, wi, r) =

〈 ~W ′′, F ′′〉 where r ∈ Zm[wi+1, . . . , wd], {wi} ∪ vars(r) ⊆ vars(F) and safe(~W,wi, r)

holds. Then, for each 1 ≤ ` ≤ d,

• W ′′
` = 2k

′
`w` + q′`

• If 〈v1, . . . , v`, . . . , vd〉 ∈ γ~w(F ′′) then 〈v1, . . . , v` + 2ω−k
′
` , . . . , vd〉 ∈ γ~w(F ′′)

• If k′` = ω then w` 6∈ vars(F ′′)

where q′` ∈ Zm[w`+1, . . . , wd] and k′` =

{
min(ki + j, ω) if i = `

k` otherwise

The proposition also explains how families of solutions are preserved and extended

by an application of constrain. The result asserts that if each solution ~v ∈ γ~w(F)

arises in a family V ⊆ γ~w(F) of solutions generated thus:

V = {~v + ~δ | ~δ = 〈c12ω−k1 , . . . , cd2ω−kd〉, 0 ≤ ci < 2ki}

then each solution ~v′ ∈ γ~w(F ′) generates an analogous family of solutions with

respect to the k′`. Quite apart for accounting for the regular nature of γ~w(F ′), it

follows that the cardinality of γ~y(F
′) is 2min(j,ω−ki)-fold that of γ~y(F). Moreover,

if k′1 = . . . = k′d = ω then γ~y(F
′) has either 0 or (2ω)d solutions. The proposition

also clarifies that if wi ∈ vars(F) then ki < ω. This provides a progress condition

in that if wi is selected for splitting in cover then ki < min(ki + j, ω) = k′i. Since

k′` = k` for all ` 6= i, it then follows 〈k1, . . . , kd〉 < 〈k′1, . . . , k′d〉 ensuring a variable

is selected for splitting only a finite number of times.

The cover function is primed with ~W = ~w so initially W` = 2k`w` + q where

k` = 0 and q = 0. This ensures that the first property of Lemma 11 holds when

constrain is initially called. But since k` = 0 for all 1 ≤ ` ≤ d, the second and

third properties hold too, albeit vacuously. The following corollary is a consequence

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 79

of this initialisation, and Lemma 11 which shows how these three properties are

perpetuated by constrain:

Corollary 6. If cover calls constrain(S, j, wi, r), simplify(S) or cover(S) where

S = 〈 ~W,F 〉 then for each 1 ≤ ` ≤ d,

• W` = 2k`wi + q`,

• If 〈v1, . . . , v`, . . . , vd〉 ∈ γ~w(F) then 〈v1, . . . , v` + 2ω−k` , . . . , vd〉 ∈ γ~w(F)

• If k` = ω then w` 6∈ vars(F)

where q` ∈ Zm[w`+1, . . . , wd] and 0 ≤ k` ≤ ω.

The force of the corollary is that it provides the basis of a termination argument

for simplify and cover both of which are recursive.

Theorem 3. simplify and cover terminate

The correctness argument is likewise organised in a bottom-up fashion. First,

semantic properties are derived for constrain. These properties are then used to

justify simplify, whose properties are then, in turn, deployed in the correctness

argument of the top-level function cover. The following proposition asserts that

constrain(S, j, wi, r) is only used to augment F of S = 〈 ~W,F 〉 with a polynomial

of the form 2ω−j(wi + r): the context of the calls ensuring that safe(~W,wi, r)

holds, either because it is validated on-the-fly or because r = 0 or r = 1.

Proposition 12. Let S = 〈 ~W,F 〉 ∈ Zm[~w]d × ℘(Zm[~w]) and consider a call

〈 ~W ′′, F ′′〉 = constrain(S, j, wi, r) made from cover. Then,

γ~w(〈 ~W,F ∪ {2ω−j(wi + r)}〉) = γ~w(〈 ~W ′′, ~F ′′〉)

The following result explains that if simplify(S) = S ′ then either S ′ = nil and

γ~w(S) = ∅ or γ~w(S ′) = γ~w(S). The theorem asserts that cover(F) does indeed

compute a cover for F over ~w.

Corollary 7. Let S = 〈 ~W,F 〉 ∈ Zm[~w]d × ℘(Zm[~w]) and simplify(S) = S ′.

• If S ′ ∈ Zm[~w]d × ℘(Zm[~w]) then γ~w(S) = γ~w(S ′)

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 80

• If S ′ = nil then γ~w(S) = ∅

Theorem 4. Let F ∈ Zm[~x]d and cover(F) =W ⊆ Zm[~w]. Then W is a cover of

F over ~w.

Example 37. Returning again to F1 and F2 of example 32, cover computes

W1 = {〈4w2 + 6, 4w2〉, 〈8, 8w2 + 1〉, 〈12, 8w2 + 7〉} W2 = {〈8w1 + 3, 4w2 + 1〉}

over ~w = 〈w1, w2〉, where the 3 vectors of W1 corresponding to A1, A2 and A3

respectively and the single vector constitutingW2 corresponding to A6 of figure 17,

but with a different choice of parametric variable w2 from w1 used previously in

example 32,

5.2.2 Closure

This section explains how a cover provides a vehicle for computing closure. A

closed set of polynomials can be represented by different bases, and therefore a

relation is introduced to express when one basis represents the closure of another:

Definition 19. The relation→cl[~x] ⊆ ℘(Zm[~x])2 is defined B →cl[~x] B
′ iff ↑~x 〈B〉~x =

〈B′〉~x.

The following lemma provides a method for computing ↑~x 〈F 〉~x when { ~W} is a

singleton cover for F . The lemma is stated by lifting the elimination relation to

vectors of variables defined thus B →elim[ε] B and B →elim[y:~y] B
′′ iff B →elim[y] B

′

and B′ →elim[~y] B
′′. The computational tactic given in the lemma amounts to

augmenting null polynomials with d polynomials which equate each variable x`

with W` and then applying variable elimination:

Lemma 7. Let ~W ∈ Zm[~w]d and suppose {x1−W1, . . . , xd−Wd}∪BNullm[~w] →elim[~w]

B ⊆ Zm[~x]. Then, 〈B〉~x = α~x({J ~W K~w(~a) | ~a ∈ Z|~w|m }).

Example 38. To illustrate this tactic, recall from Example 37 that { ~W} is a cover

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 81

of F2 over ~w = 〈w1, w2〉 where ~W = 〈8w1 + 3, 4w2 + 1〉. Now,

BNull16[~w] =



w6
1 + w5

1 + w4
1 + 7w3

1 + 6w2
1 (p1),

2w4
1 + 4w3

1 + 6w2
1 + 4w1 (p2),

w4
1w

2
2 + w4

1w2 + 2w3
1w

2
2 + 2w3

1w2 +

3w2
1w

2
2 + 3w2

1w2 + 2w1w
2
2 + 2w1w2 (p3),

w2
1w

4
2 + 2w2

1w
3
2 + 3w2

1w
2
2 + 2w2

1w2 +

w1w
4
2 + 2w1w

3
2 + 3w1w

2
2 + 2w1w2 (p4),

4w2
1w

2
2 + 4w2

1w2 + 4w1w
2
2 + 4w1w2, 8w2

1 + 8w1,

w6
2 + w5

2 + w4
2 + 7w3

2 + 6w2
2(p5)

2w4
2 + 4w3

2 + 6w2
2 + 4w2 (p6), 8w2

2 + 8w2


and gb~w:~x({x−W1, y −W2} ∪BNull16[~w]) = B where ~x = 〈x, y〉 and

B =



p1, p2, p3, p4, 2w1y + 6w1 + w2x+ w2 + x+ 3y + 10,

w4
1y + w4

1 + 4w3
1 + w2

1y + 5w2
1 + 4w1 + w2x+ w2 + 3y + 13,

w2
1w2y + 3w2

1w2 + w1w2y + 3w1w2, w1x+ 5w1, 8w1 + x+ 13,

w3
2y + 3w3

2 + w2
2y + 3w2

2, w
2
2x+ w2

2 + w2x+ w2y + y + 15,

p5, p6, 2w2y + 2w2 + y + 15, 4w2 + 3y + 13,

x2 + 7, xy + x+ y + 9, 2x+ 10, y2 + 2y + 13, 4y + 12


The three regions delineate polynomials depending on both w1 and w2 (top), w2

but not w1 (middle) and neither w1 nor w2 (bottom). It follows {x−W1, y−W2}∪
BNull16[w1,w2] →elim[w1] B

′ where

B′ =


w3

2y + 3w3
2 + w2

2y + 3w2
2, w

2
2x+ w2

2 + w2x+ w2y + y + 15,

p5, p6, 2w2y + 2w2 + y + 15, 4w2 + 3y + 13,

x2 + 7, xy + x+ y + 9, 2x+ 10, y2 + 2y + 13, 4y + 12


Now, B′ is also a Gröbner basis (with respect to ≺〈w,x,y〉), hence B′ →elim[w2] B

′′

where

B′′ = {x2 + 7, xy + x+ y + 9, 2x+ 10, y2 + 2y + 13, 4y + 12}

Composing the two elimination relations yields {x−W1, y−W2}∪BNull16[w1,w2] →elim[~w]

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 82

B′′. Note that it is only necessary to compute a single Gröbner basis to derive

B′′. Observe that each polynomial of B′′ satisfies the points of γ~x(F2) illustrated

in Fig. 17(g).

The following theorem generalises this tactic to arbitrary covers:

Theorem 5. Let B ⊆ Zm[~x] and W ⊆ Zm[~w]d be a cover for B over ~w. Suppose

for each ~W ∈ W , {x1 − W1, . . . , xd − Wd} ∪ BNullm[~w] →elim[~w] B ~W and 〈B′〉~x =⊔
~W∈W〈B ~W 〉~x. Then, B →cl[~x] B

′.

Example 39. Now recall from Example 35 that { ~We, ~Wh, ~Wk} is a cover of

F =

{
x2 + x+ 7y2 + 11y + 12,

xy + 4x+ 10y2

}

over ~w = 〈w1, w2〉 where ~We = 〈4w2 + 4, 4w2〉, ~Wh = 〈15, 12〉 and ~Wk = 〈14, 1〉.
To apply the theorem, B ~We

is derived by {x−(4w2+4), y−4w2}∪BNull16[~w] →elim[~w]

B ~We
. Since ~We depends only on w2, B ~We

can be computed by {x− (4w2 + 4), y −
4w2} ∪ BNull16[w2] →elim[w2] B ~We

. To that end, note gb〈w2,x,y〉({x − (4w2 − 4), y −
4w2} ∪BNull16[w2]) = B′~We

where

B′~We
=


w6

2 + w5
2 + w4

2 + 3w3
2 + w2

2y + 2w2
2 + w2y,

2w4
2 + w2

2y + 2w2
2 + w2y + y,

w3
2y + w2y + 2y, 2w2y + 2y, 4w2 + 3y,

x+ 3y + 12, y2, 4y


thus B ~We

= {x + 3y + 12, y2, 4y} is computed whilst avoiding null polynomials

containing w1.

The bases B ~Wh
and B ~Wk

can be derived without recourse to elimination or null

polynomials since ~Wh and ~Wk are independent of w1 and w2 hence it is sufficient

to put

B ~Wh
= {x−15, y−12} = {x+1, y+4} B ~Wk

= {x−14, y−1} = {x+2, y+15}

By the theorem it follows ↑~x 〈F 〉~x = 〈B〉~x where 〈B〉~x = 〈B ~We
〉~x t 〈B ~Wh

〉~x t

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 83

〈B ~Wk
〉~x which gives

B =

{
x2 + x+ 7y2 + 11y + 12, xy + 4x+ 10y2,

y3 + 7y2 + 8y, 4y2 + 12y

}

All the polynomials of B satisfy the points γ~x(F) plotted in Fig. 21(a). Note too

that

F ′ =
{
x2 + x+ 7y2 + 11y + 12, xy + 4x+ 10y2, y3 + 7y2 + 8y

}
is a Gröbner basis for 〈F 〉~x with respect to ≺~x. Since 4y2 + 12y is irreducible by

F ′ it follows 4y2 + 12y /∈ 〈F 〉~x which is why closure augments F with 4y2 + 12y.

5.2.3 Meet

Despite the central importance of meet, this section is relatively short, since the

following proposition demonstrates how meet can be reduced to closure:

Proposition 13. If B1 ∪B2 →cl[~x] B then 〈B1〉~x u 〈B2〉~x = 〈B〉~x.

Example 40. Consider F3, F4 ⊆ Z16[x, y] where F3 = {x2+x+7y2+11y+12} and

F4 = {xy + 4x+ 10y2} and let F = F3 ∪ F4. The solution sets γ~x(F), γ~x(F3) and

γ~x(F4) are plotted in Figs. 21(a), (b) and (c) respectively. The diamond points

in Figs. 21(b) and (c) are those contained in both γ~x(F3) and γ~x(F4) and thus

demonstrate γ~x(F) = γ~x(F1) ∩ γ~x(F2).

Now, Example 39 shows F →cl[~x] B where

B =

{
x2 + x+ 7y2 + 11y + 12, xy + 4x+ 10y2,

y3 + 7y2 + 8y, 4y2 + 12y

}

thus it follows 〈F3〉~x u 〈F4〉~x = 〈B〉~x. As noted in Example 39, 4y2 + 4y /∈ 〈F 〉~x
hence 〈F 〉~x 6= 〈B〉~x.

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 84

(a) A = γ(〈B〉) (b) Jassume (p = 0)K(A) (c) Jassume (p 6= 0)K(A)

Figure 23: Abstract assumes for p = 2x− 4

5.3 Calculating abstract transfer functions

The essense of abstract interpretation is to simulate the semantics JsK(A) = A′ of

a statement s operating on concrete data A ⊆ Zdm with an an abstract version (an

abstract transfer function for s) which given B ∈ MPADm[~x] such that A ⊆ γ~x(B)

computes some B′ ∈ MPADm[~x] such that A′ ⊆ γ~x(B
′). This section provides

abstract transfer functions for assume statements, non-deterministic assignments

and polynomial assignments, all transfer functions satisfying the stronger property

that α~x(JsK(γ~x(B))) = 〈B′〉~x. The section concludes with a procedure for checking

〈B〉~x v 〈B′〉~x for finite bases B and B′, necessary for detecting that a fixpoint is

reached.

5.3.1 Assume for polynomial equality

The method for imposing a polynomial equality p = 0 is analogous to that for

computing meet: the system of polynomials is augmented with p and then closure

is applied:

Proposition 14. Suppose 〈B〉~x ∈ MPADm[~x] and A = γ~x(B). If B∪{p} →cl[~x] B
′

then α~x(Jassume (p = 0)K(A)) = 〈B′〉~x.

Example 41. To illustrate, let ~x = 〈x, y〉, p = 2x + 12 ∈ Z16[~x] and suppose

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 85

B ⊆ Z16[~x] is defined:

B =


x3 + x2 + 3xy + 4x+ 2y + 12,

x2y + 4x+ 4y + 8, 4xy

2x2 + 3xy + 2x+ 2y + 4,

y2 + 6y + 8, 8y


The solution sets γ~x(B) and γ~x(p) are plotted in Fig. 23(a) as the small, opaque

points and large, translucent points respectively. Now,

B ∪ {p} →cl[~x] B
′ = {x2 + 12, xy + 6y, 2x+ 12, y2 + 6y + 8, 8y}

The solution sets γ~x(B
′) and γ~x(p) are plotted in Fig. 23(b) as the small, opaque

points and large, translucent points respectively. As can be seen, γ~x(B
′) is a strict

subset of γ~x(p), consistent with the semantics of the statement Jassume (p = 0)K.

5.3.2 Assume for polynomial disequality

The method for imposing a polynomial disequality p 6= 0 rests on a division of

γ~x(B) into subsets A1, . . . , Aω where the least k bits of JpK~x(~a) represent 2k−1 for

all ~a ∈ Ak. Bit k of JpK~x(~a) is set for all a ∈ Ak, hence JpK~x(~a) 6= 0, which provides

a way of simulating disequality:

Proposition 15. Suppose 〈B〉~x ∈ MPADm[~x] and A = γ~x(B). If B ∪ {2ω−kp +

2ω−1} →cl[~x] Bk for each 1 ≤ k ≤ ω then α~x(Jassume (p 6= 0)K(A)) =
⊔ω
k=1〈Bk〉~x.

For intuition, consider Ai = γ~x({2ω−kp + 2ω−1}) and observe ~a ∈ A1 iff the least

bit of JpK~x(~a) is 1. Moreover, ~a ∈ A2 iff the least 2 bits of JpK~x(~a) are 10, and

~a ∈ Aω iff the ω bits of JpK~x(~a) are 10 · · · 0. Thus B is augmented with 2ω−1p +

2ω−1, 2ω−2p + 2ω−1, . . . , p + 2ω−1. These ω separate systems are then closed and

recombined by join, as is illustrate below:

Example 42. Consider again p = 2x+ 12 ∈ Z16[~x] and B ⊆ Z16[~x] as specified in

Example 41. Then, for each 1 ≤ k ≤ 4, B ∪ {24−kp+ 8} →cl[~x] Bk where

B1 = {1} B2 = {x+ 13, y + 4}
B3 = {x2, xy + 8, 2x+ 8, y2 + 12, 2y + 4} B4 = {1}

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 86

Thus γ~x(B1) = γ~x(B4) = ∅ but γ~x(B2) = {〈3, 12〉}. Observe JpK~x(〈3, 12〉) = 2 ≡
00102. Moreover γ~x(B3) = {〈4, 6〉, 〈4, 14〉, 〈12, 6〉, 〈12, 14〉} and note JpK~x(〈4, y〉) =

JpK~x(〈12, y〉) = 4 ≡ 01002 for all y ∈ Z16. The (non-empty) sets γ~x(B2) and γ~x(B3)

are plotted in Fig. 23(c) as the lone diamond and the four small, opaque circles

respectively. Observe that these two sets are disjoint. The set γ~x(p) is also plotted

as the large, translucent points. It is disjoint from both γ~x(B2) and γ~x(B3).

Now, note
⊔4
k=1〈Bk〉~x = 〈B′′〉~x where

B′′ =

{
x3 + x2 + 2y + 4, 2x2 + 2x+ 8, xy + 6y + 4

4x+ 6y + 12, y2 + 6y + 8, 8y

}

It thus follows that α~x(Jassume (p 6= 0)K(γ~x(B))) = 〈B′′〉~x. Moreover, γ~x(B
′′) =

γ~x(B2) ∪ γ~x(B3) (though this does not hold in general). Thus the union of the

diamond and the small, circular points in Fig. 23(c) is precisely the set γ~x(B
′′).

Finally, observing Fig. 23(a), (b) and (c) together reveals that γ~x(B) is the disjoint

union of γ~x(B
′′) of the γ~x(B

′) of the previous example.

5.3.3 Non-deterministic assignment

The following lemma demonstrates that the integrity of an abstraction B is pre-

served when a new variable yj is introduced whose value is determined by a poly-

nomial p ∈ Z16[~x] where yj 6∈ vars(~x). The result supports the development of

both non-deterministic and polynomial assignment.

Lemma 8. Suppose ~x v ~y where vars(~y) \ {yj} = vars(~x). If A ⊆ Zdm, α~x(A) =

〈B〉~x, p ∈ Zm[~x] and A′ = {〈a1, . . . , aj−1, JpK~x(~a), aj, . . . , ad〉 | ~a ∈ A} then

α~y(A
′) = 〈B ∪ {yj − p}〉~y.

One might expect non-deterministic assignment to be modelled by eliminating

polynomials which include the assigned variable. However, as the example below

demonstrates, this is not generally sufficient since, paradoxically, it is possible for

the variable to appear in a polynomial even when unconstrained. This situation

necessitates the application of closure in the following result:

Proposition 16. SupposeB ∈ MPADm[~x] andA = γ~x(B). IfB →cl[w:~x] B
′′ →elim[xj]

B′′′ and B′′′ ∪ {xj − w} →elim[w] B
′ then α~x(Jxj := ∗K(A)) = 〈B′〉~x.

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 87

Example 43. Let ~x = 〈x, y〉 and consider B ⊆ Z16[~x] defined B = {x2, xy, 2x +

2y, y2, 4y}. The set γ~x(B) is plotted in Fig. 24(a). Then, B →cl[w:~x] B
′′ where

B′′ =

{
y2, yx, yw2 + yw + xw2 + xw, 2y + 2x,

x2, xw4 + xw2 + 2xw, 2xw2 + 2xw, 4x

}

Note this is also a Gröbner basis with respect to ≺〈y,w,x〉, hence B′′ →elim[y] B
′′′

where

B′′′ =
{
x2, xw4 + xw2 + 2xw, 2xw2 + 2xw, 4x

}
Finally, noting gb〈w,x,y〉(B

′′′∪{y−w}) = {w−y, x2, xy4+xy2+2xy, 2xy2+2xy, 4x}
it follows B′′′ ∪ {y − w} →elim[w] B

′ where

B′ =
{
x2, xy4 + xy2 + 2xy, 2xy2 + 2xy, 4x

}
Thus, the previous result implies α~x(Jy := ∗K(γ~x(B)) = 〈B′〉~x, whose solutions are

plotted in Fig. 24(b). Note that for each solution 〈a1, a2〉 in Fig. 24(a), the solution

〈a1, b〉 is present in Fig. 24(c) for all b ∈ Z16, consistent with a non-deterministic

assignment to y.

Interestingly, y occurs in B′ even though it unconstrained. To see why, consider

2xy2 + 2xy ∈ B′. Any value a taken by x must be a multiple of 4 since 4x ∈ B.

But then, partially evaluating 2xy2 + 2xy with x = a = 4b yields 8by2 + 8by =

b(8y2 + 8y). Since 8y2 + 8y is a null-polynomial, so too is b(8y2 + 8y), independent

of b. In particular, the polynomial 2xy2 +2xy does not constrain y, even though it

is not itself null. If y had simply been eliminated from the basis then 2xy2 + 2xy

would not have been discovered, illustrating the need for closure.

5.3.4 Polynomial assignment

The correctness result for polynomial assignment takes a different form to the other

program statements, stated in terms of the assumption α~x(A) = 〈B〉~x. Note that

if 〈B〉~x ∈ MPADm[~x] and A = γ~x(B) then α~x(A) = 〈B〉~x and the result applies.

Thus this formulation is strictly stronger.

Proposition 17 (optimality). Suppose A ⊆ Zdm, α~x(A) = 〈B〉~x, B ∪ {w −

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 88

(a) A = γ~x(B) (b) Jy := ∗K(A) (c) Jy := y2K(A)

Figure 24: Non-deterministic and polynomial assignment

p} →elim[xj] B
′′ and B′′ ∪ {xj − w} →elim[w] B

′, where w /∈ vars(B). Then,

α~x(Jxj := pK(A)) = 〈B′〉~x.

This lemma generalises a folklore result for affine approximation (linear equalities)

[62, Lemma 2] which shows that affine approximation commutes with the trans-

fer function for linear assignment, as modelled by an affine transformation. The

above lemma strengthens this result to show an analogous optimality result for

polynomial approximation and polynomial assignment, as realised in MPAD. The

force of the folklore result is that if a program consists solely of linear assignments,

then the affine approximation of the collecting semantics of the program coincides

exactly with the linear systems derived by the transfer functions [62, Lemma 3].

Hence all linear equalities which hold for the collecting semantics are inferred when

working at the more abstract level of linear equalities. The argumentation, which

is standard in abstract interpretation, relies on linear equalities satisfying the as-

cending chain condition, a property that also carries over to MPAD. It should

be noted, however, that these results only hold for programs which are devoid of

assume statements, hence the full arguments are not rehearsed here.

Example 44. Let ~x = 〈x, y〉 and A′ = {〈0, 0〉, 〈0, 8〉, 〈4, 4〉} ⊆ Z2
16 which is plotted

as the three diamond points in Fig. 24(a). Then, with B as in Example 43, it

follows α~x(A
′) = 〈B〉~x. Then,

gb〈y,x,w〉(B ∪ {w − y2}) = {y2, yx, 2y + 2x, x2, 4x,w}

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 89

hence B ∪ {w − y2} →elim[y] {x2, 4x,w} = B′′. Moreover,

gb〈w,x,y〉(B
′′ ∪ {y − w}) = {w, x2, 4x, y}

hence B′′ ∪ {y − w} →elim[w] B
′ where B′ = {x2, 4x, y}.

Now consider A′′ = Jy := y2K(A′) = {〈0, 0〉, 〈4, 0〉}, whose points are plotted

as diamonds in Fig. 24(c). The arcs indicate how each point in A′ is mapped

to a corresponding point in A′′, which is possibly the same. Abstraction of A′′

introduces two additional points since α~x(A
′′) = 〈x2, 4x, y〉~x and {〈8, 0〉, 〈12, 0〉} ⊆

γ~x({x2, 4x, y}). But note how these points are themselves mapped from points in

A \ A′, as indicated by the arcs. Observe too that α~x(A
′′) = B′ as predicted by

the proposition.

5.3.5 Fixpoint check

In order to detect a fixpoint, it is necessary to decide whether the relation v holds

over MPADm[~x]. For this, the theory of Gröbner bases provides a natural solution.

First, note if 〈B1〉~x, 〈B2〉~x ∈ MPADm[~x] then 〈B1〉~x v 〈B2〉~x iff 〈B2〉~x ⊆ 〈B1〉~x iff

B2 ⊆ 〈B1〉~x. But this final inclusion can be decided if B1 is a Gröbner basis for

〈B2〉~x with respect to a monomial ordering ≺ since, in this case, B2 ⊆ 〈B1〉~x iff

p →∗≺,B1
0 for all p ∈ B2.

Example 45. To illustrate, let ~x = 〈x, y〉 and consider checking 〈B1〉~x v 〈B2〉~x
and 〈B2〉~x v 〈B1〉~x where

B1 =

{
x+ 15y + 1,

y2 + 11y + 4

}
B2 =


x+ y2 + 10y + 5,

y3 + 11y + 4,

2y2 + 6y + 8


Then, B1 and B2 are Gröbner bases for 〈B1〉~x and 〈B2〉~x respectively, with respect

to ≺~x. But now, letting p = x + 15y + 1 and q = y2 + 11y + 4 and abbreviating

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 90

→≺~x,B to →B, it follows

x+ y2 + 10y + 5→p y
2 + 11y + 4→q 0

y3 + 11y + 4→q 5y2 + 7y + 4→q 0

2y2 + 6y + 8→q 0

therefore 〈B1〉~x v 〈B2〉~x. However, since y2 + 11y+ 4 ∈ B1 is ≺~x-irreducible by B2

it follows y2 + 11y + 4 /∈ 〈B2〉~x. In particular, 〈B2〉~x 6v 〈B1〉~x.

5.4 Related work

The architecture of the domain operations of MPAD mirrors that of the so-called

weakly relational abstract domains of Octagons [59] and the Two Variable per

Inequality (TVPI) abstract domain [40, 74]. This architecture rests on a closure

algorithm which strengthens a system of constraints with entailed constraints,

whose presence allows other domain operations to be more syntactic and therefore

simpler. Closure algorithms for sparse representations of both Octagons and TVPI

have also now emerged [74], which are nearer again to the closure operation of

MPAD that operates on polynomials which are also represented symbolically.

It is interesting too to see that aspects of the triangularisation algorithm for

linear modular equations surface [65] in the argumentation of the correctness of clo-

sure. Recall that termination of covering follows by reasoning about powers of two

in the leading terms of the polynomials constituting the vector ~W , which resonates

with the rank-based termination arguments used for linear modular equations.

The simplification and splitting techniqes at the heart of the covering algorithm,

however, stem from the modular and finite nature of the arithmetic, and therefore

it is perhaps not surprising that there is an absence of closely related work.

5.5 Concluding Discussion

The key operation in MPAD is closure since it underpins other domain operations,

but closure is actually straightforward once a covering has been derived. The

number of the null polynomials that need to be enumerated depends critically

CHAPTER 5. DOMAIN OPERATION ALGORITHMS FOR MPAD 91

on the number of variables of ~w which remain in the ~W vectors that constitute

the cover. Thus further splitting could, paradoxically, confer a computational

advantage by further reducing the number of variables hence the number of nulls.

Nevertheless, the overarching principle behind the covering algorithm is to apply

simplification aggressively, in order to defer, and ideally deter, splitting. Once

closure is in place the transfer functions then slot into place too.

Chapter 6

Future Work and Conclusions

This thesis started with a discussion of how one sub-discipline of program ver-

ification cross-fertilises another, and concludes with a broader reflection on how

algorithms used within verification cross-fertilise with techniques developed within

another field of symbolic computation, namely computer algebra.

6.1 Future work

It is recognised [1] that classical algorithms for calculating Gröbner bases [8] or

eliminating variables [11, 12] do not fit with the SMT computation model [68]

because they support neither incrementality nor learning [54]. Incrementality al-

lows single constraints to be added or retracted efficiently, and learning accelerates

satisfiability checking by avoiding repeated search. Nevertheless, the potential af-

forded by combining symbolic computation with SMT has been noted in several

places [1, 6, 19], and a new class of SMT solvers has appeared that apply algebraic

and satisfiability techniques together [39, 44, 76]. Despite the promise of a tighter

integration of computer algebra with SMT, progress has largely focussed on the-

ories that are important in computer algebra, such as that of algebraically closed

fields of polynomials, not theories which are routinely applied verification, such as

that of bit-vectors. This thesis constitutes a first step towards bridging this gap,

concentrating on multiplication of bit-vectors, and more generally polynomials over

bit-vectors, which are problematic for bit-blasting.

92

CHAPTER 6. FUTURE WORK AND CONCLUSIONS 93

Going further, an interesting research question is how systems of polynomials

can express bit-wise operations. Ironically, at the very beginning of this thesis

work, a study was undertaken calculating best transformers [69] for various bit-wise

operations. For example, the following system is the best MPAD8[~x] abstraction

of the symbolic relation z = x & y over Z8 where ~x = 〈x, y, z〉:

x4 + 6x3 + 3x2 + 6x, xy3 + xy2 + 5yz2 + 2xy + 5z2 + 2z,

xz3 + xz2 + 5z3 + 6xz + 5z2 + 6z y4 + 6y3 + 7y2 + 2y,

yz3 + 5yz2 + z3 + 2yz + 5z2 + 2z, z4 + 6z3 + 3z2 + 6z,

x2y + 5xy2 + 6xz2 + 6yz2 + 6z3 + 5xy + 3z2,

x2z + 7xz2 + 5xz + 3z2, xyz + 7xz2 + 7yz2 + z3,

y2z + 7yz2 + yz + 7z2, 4x2 + 4x,

4xy + 4z, 4xz + 4z, 4y2 + 4y, 4yz + 4z, 4z2 + 4z


A best transformer can be calculated for a bit-vector operation since MPAD8[~x]

satisfies the ascending chain condition. The intuition is that points 〈x, y, z〉 ∈
Z2

8 are harvested which satisfy the bit-vector and join is applied to calculate a

system of polynomials which summaries these points. The approach can be made

demand-driven by finding a point 〈x, y, z〉 ∈ Z3
8 which does not satisfy the summary

computed thus far yet satisfies z = x & y. The summary is then relaxed by

calculating the join with this point, thus generating a sequence of summaries which

progressively describe more and more points. When no further points can be found,

the summary constitutes the best abstraction of the relation z = x & y.

The value of these abstraction is that they provide a uniform scheme for han-

dling bit-vector operations within the framework of modular polynomials. Bit-

vector logic would potentially be translated into systems of polynomials to take

better advantage of word-level propagation in SMT, mirroring the use of alge-

braic methods in SAT solving [39]. Best abstractions for bit-wise operations could

also be useful in the verification of micro-controller code which frequently deploys

bit-twiddling. However, it is not clear the extent to which these summaries can

actually be derived.

Considering the large body of work on Gröbner bases over algebraically closed

fields, there are relatively few studies [4, 5] on adapting Gröbner basis algorithms

CHAPTER 6. FUTURE WORK AND CONCLUSIONS 94

to modular arithmetic, most notably using the F-series of algorithms [27, 28].

In particular, we know of no study which can side-step the enumeration of null

polynomials, or even compute them on-demand in reduction. Null polynomials are

an irritant for MPAD since they consume considerable space and impede scalability

to full-size bit-widths. In our opinion, it would not seem prudent to invest more

in implementation effort without a thorough reevaluation of the role of nulls.

The interaction between MPAD, and other numeric domains, is another promis-

ing field of study. It is worth noting that MPAD has potential for discovering poly-

nomial invariants over arbitrary (idealised) integers. Observe that if a polynomial

invariant holds over arbitrary integers then it also holds as a modular polynomial

invariant. Hence, MPAD can be used to propose candidate invariants for arbitrary

integers which are then checked as a post-processing (filtering) step. The covering

algorithm which underpins closure performs propagation over systems of polyno-

mials, but it would be interesting to examine whether this could be extended to

other theories, Nelson-Oppen style [66], so that a covering could be computed for

arbitrary SMT formulae.

Returning to the SMT problem of detecting the satisfiability of modular poly-

nomials, it interesting to see that the decomposition proposed for handling negative

guards is equally applicable to SMT formulae over both polynomial equalities and

disequalities. A disequality could be reduced to a disjunct of ω separate equalities,

each checking whether a particular bit is set, forgoing the ω − 1 join calculations.

In summary, the thesis offers at least as many research questions as answers,

possibly reflecting the richness of this vein of work at the intersection of SMT,

abstract interpretation and computer algebra.

6.2 Conclusions

In terms of concrete answers, we review the main contributions of the thesis by

way of a final concluding discussion.

The thesis first presents a new architecture for solving systems of polynomial

equalities over bit-vectors which addresses the backtrackability, incrementality

and learning issues which are normally associated with Gröbner basis engines [1].

Rather than converting to SAT and bit-blasting, the method sets bits in order of

CHAPTER 6. FUTURE WORK AND CONCLUSIONS 95

least significance through the addition of polynomials. Computing a Gröbner basis

for the resulting system realises bit-sequence propagation, in which the values of

other bits can be automatically inferred. Furthermore, and perhaps rather surpris-

ingly, we show how the procedure can be carried out with symbolic truth values

without giving up bit-sequence propagation, thus unifying Gröbner basis calcula-

tions that would otherwise be separate. Once all bits are assigned truth values

(symbolic or otherwise), the resulting Gröbner basis prescribes an assignment to

the bit-vectors which is a function of the symbolic truth values. The remaining

polynomials in the basis relate the symbolic truth values and correspond to non-

linear pseudo-boolean constraints modulo a power of two. These constraints can be

solved either by translation into classical linear pseudo-boolean constraints (with-

out a modulo) or else by encoding them as propositional formulae, for which a novel

translation process is described. Either way, the algebraic Gröbner basis computa-

tion is encapsulated in the phase that emits the pseudo-boolean constraints, hence

the Gröbner basis engine does not need to be backtrackable, incremental or sup-

port learning. Overall, the architecture provides a principled method for compiling

high-level polynomials to low-level pseudo-boolean constraints.

The second theme of the thesis focusses not on using Gröbner bases as a device

for compilation, but as an engine for inferring polynomial invariants by abstract

interpretation. This is idea is crystalised in MPAD: the modular polynomial ab-

stract domain, which is a strict generalisation of linear equalities modulo a power

of two [63]. We provide abstract transfer functions for MPAD, showing the trans-

fer function for polynomial assignment is optimal. Coupled with the finiteness

of MPAD, it follows that MPAD will infer all polynomial invariant for programs

consisting solely of polynomial assignments. We introduce a notion of closure,

showing that it is preserved by join and polynomial assignment. For meet, it is

necessary to re-establish closure, hence a closure algorithm is provided, which is

itself formulated in terms of covering. This algorithm for covering, like that for

SMT solving, exploits structure in a system of polynomials by judiciously setting a

single bit of a single variable to either 0 or 1 to derive two simpler systems of poly-

nomials. Setting a single bit exposes the values of other bits of other variables, as

with bit-sequence propagation. We show of how domain operations reduce to clo-

sure and demonstrate that MPAD can derive invariants that cannot be expressed

CHAPTER 6. FUTURE WORK AND CONCLUSIONS 96

with non-modular polynomial systems. MPAD thus represents a new point in the

pantheon of abstract domains, complementing the new approach to SMT solving

for modular polynomials, both building on bit-sequence propagation.

Appendix A

Proofs

A.1 Proofs for domain operations

Lemma 9. If P1 ⊆ P2 then γ~x(P2) ⊆ γ~x(P1).

Proof of Lemma 9. Let ~a ∈ γ~x(P2). Then, JpK~x(~a) = 0 for all p ∈ P2. But since

P1 ⊆ P2 it follows JpK~x(~a) = 0 for all p ∈ P1. It follows ~a ∈ γ~x(P1), hence

γ~x(P2) ⊆ γ~x(P1).

Proof of Proposition 4. The properties are proved in the alternative order 1, 2, 5,

4, 3, since some depend on others for their proof.

• (P ⊆ ↑~x P) Let p ∈ P . If ~a ∈ γ~x(P) then JpK~x(~a) = 0, hence ~a ∈ γ~x(p). It

follows γ~x(P) ⊆ γ~x(p). Thus, p ∈ ↑~x P so P ⊆ ↑~x P .

• (P1 ⊆ P2 =⇒ ↑~x P1 ⊆ ↑~x P2) Let p ∈ ↑~x P1. Then, γ~x(P1) ⊆ γ~x(p).

But, since P1 ⊆ P2, it follows from Lemma 9 that γ~x(P2) ⊆ γ~x(P2). Thus,

γ~x(P2) ⊆ γ~x(p). It follows that p ∈ ↑~x P2, hence ↑~x P1 ⊆ ↑~x P2.

• (γ~x(↑~x P) = γ~x(P)) By monotonicity of ↑~x and Lemma 9, it follows γ~x(↑~x P) ⊆
γ~x(P), hence it must ony be shown γ~x(P) ⊆ γ~x(↑~x P). For this, note if

p ∈ ↑~x P then γ~x(P) ⊆ γ~x(p), thus JpK~x(~a) = 0 for all ~a ∈ γ~x(P). Thus

γ~x(P) ⊆ γ~x(↑~x P) and the result follows.

• (γ~x(P1) = γ~x(P2) ⇐⇒ ↑~x P1 = ↑~x P2) If γ~x(P1) = γ~x(P2), then for all

p ∈ Zm[~x], γ~x(P1) ⊆ γ~x(p) iff γ~x(P2) ⊆ γ~x(p). It follows that ↑~x P1 = ↑~x P2.

97

APPENDIX A. PROOFS 98

Conversely, if ↑~x P1 = ↑~x P2 then γ~x(P1) = γ~x(↑~x P1) = γ~x(↑~x P2) = γ~x(P2)

follows from the third property.

• (↑~x ↑~x P = ↑~x P) From the third result γ~x(↑~x P) = γ~x(P). The fourth result

then implies ↑~x ↑~x P = ↑~x P .

Proof of Lemma 4. Since B ⊆ 〈B〉~x it follows γ~x(B) ⊆ γ~x(〈B〉~x) by Proposition 4.

For the converse, let p ∈ 〈B〉~x. Then p =
∑s

i=1 uipi for some ui ∈ Zm[~x] and

pi ∈ B. Observe γ~x(B) ⊆ γ~x(pi) ⊆ γ~x(uipi) hence γ~x(B) ⊆ γ~x(p) therefore γ~x(B) ⊆
γ~x(〈B〉~x).

Proof of Lemma 5. Let p ∈ 〈P 〉~x. Then p =
∑s

i=1 uipi for ui ∈ Zm[~x] and pi ∈ P .

Observe γ~x(P) ⊆ γ~x(pi) ⊆ γ~x(uipi) hence γ~x(P) ⊆ γ~x(p) thus p ∈ ↑~x P = P . It

follows 〈P 〉~x ⊆ P . The converse is immediate and the result follows.

Proof of Proposition 5. First it will be shown that⊥,>, P1uP2, P1tP2 ∈ MPADm[~x]

so that the domain operations are well-defined:

• (⊥) Since⊥ = Zm[~x] it follows from extensivity of ↑~x that ↑~x ⊥ ⊇ ⊥ = Zm[~x].

Thus ↑~x ⊥ = Zm[~x] = ⊥, so ⊥ ∈ MPADm[~x].

• (> and P1uP2) Note, if P ⊆ Zm[~x] then ↑~x P ∈ MPADm[~x], since ↑~x ↑~x P =

↑~x P by idempotency. It follows immediately that >, P1 u P2 ∈ MPADm[~x].

• (P1 t P2) It suffices to show that ↑~x (P1 t P2) ⊆ P1 t P2 since the converse

holds by extensivity of ↑~x. To this end, let p ∈ ↑~x (P1 t P2) = ↑~x (P1 ∩ P2).

Then, γ~x(P1 ∩ P2) ⊆ γ~x(p). Now, for i ∈ {1, 2}, it follows from P1 ∩ P2 ⊆ Pi

and Lemma 9 that γ~x(Pi) ⊆ γ~x(P1 ∩ P2), hence γ~x(Pi) ⊆ γ~x(p). But this

implies p ∈ ↑~x Pi and thus p ∈ Pi, since Pi ∈ MPADm[~x]. Therefore, p ∈
P1 ∩ P2, hence ↑~x (P1 t P2) ⊆ P1 ∩ P2 = P1 t P2, as required.

Now, note that if P1, P2 ∈ MPADm[~x] and γ~x(P1) = γ~x(P2) then γ~x(↑~x P1) =

γ~x(↑~x P2), hence P1 = P2 by Proposition 4. In particular, since ℘(Znm) is finite,

so too must be MPADm[~x]. Moreover, since ⊆ is a partial order over MPADm[~x],

so too is v. Thus it only remains to show that the domain operation satisfy the

defining properties of a lattice:

APPENDIX A. PROOFS 99

• (⊥) If P ∈ MPADm[~x] then P ⊆ ⊥, thus ⊥ v P .

• (>) If P ∈ MPADm[~x] then ∅ ⊆ P . Thus, by monotonicity of ↑~x, > = ↑~x ∅ ⊆
↑~x P = P , hence ↑~x P v >.

• (u) If P1, P2 ∈ MPADm[~x] then for each i ∈ {1, 2}, Pi ⊆ P1 ∪ P2 ⊆
↑~x (P1 ∪ P2) = P1 u P2. Thus, P1 u P2 v Pi for each i ∈ {1, 2}, so P1 u P2

is a lower bound for P1, P2. To prove it is the greatest lower bound, let

Q ∈ MPADm[~x] and suppose Q v Pi for each i ∈ {1, 2}. Then, Pi ⊆ Q for

each i ∈ {1, 2} so P1∪P2 ⊆ Q. It follows P1uP2 = ↑~x (P1 ∪ P2) ⊆ ↑~x Q = Q.

Thus Q v P1 u P2 so P1 u P2 is the greatest lower bound of P1, P2.

• (t) If P1, P2 ∈ MPADm[~x] then P1 t P2 = P1 ∩ P2 ⊆ Pi for each i ∈ {1, 2}.
Thus, P1 t P2 is an upper bound for P1, P2. To prove it is the least upper

bound, let Q ∈ MPADm[~x] and suppose Pi v Q for each i ∈ {1, 2}. Then,

Q ⊆ Pi for each i ∈ {1, 2}, so Q ⊆ P1∩P2 = P1tP2. It follows P1tP2 v Q,

so P1 t P2 is the least upper bound of P1, P2.

Proof of Proposition 6. It must be shown that α~x(A) v P iff A ⊆ γ~x(P), and

moreover that α~xγ~x is the identity on MPADm[~x]:

• Suppose α~x(A) v P and let p ∈ P . Then, P ⊆ α~x(A) so p ∈ α~x(A). It follows

A ⊆ γ~x(p) and thus A ⊆ γ~x(P). For the converse, suppose A ⊆ γ~x(P) and

let p ∈ P . Then γ~x(P) ⊆ γ~x(p) so A ⊆ γ~x(p). It follows p ∈ α~x(A), thus

P ⊆ α~x(A) and hence α~x(A) v P .

• Let P ∈ MPADm[~x]. Then, since γ~x(P) ⊆ γ~x(P), it follows from the previous

property (applied to A = γ~x(P)) that α~x(γ~x(P)) v P . Thus, P ⊆ α~x(γ~x(P)).

For the opposite inclusion, let p ∈ α~x(γ~x(P)). Then, γ~x(P) ⊆ γ~x(p), from

which it follows p ∈ ↑~x P = P . Therefore α~x(γ~x(P)) ⊆ P and the result

follows.

APPENDIX A. PROOFS 100

A.2 Proofs for worklist algorithm

for proposition 7. For termination, observe that 〈N → MPADm[~x],v〉 is a finite

lattice, hence the sequence (σk) must become stationary. Thus, there exists ` ∈ N
for which σ` = σ`+1 = . . ., hence w` ⊃ w`+1 ⊃ . . . is a strictly decreasing sequence.

It follows w`′ = ∅ for some `′ ≥ `, hence the algorithm terminates. Put σ∗ = σ`′ .

For the second property, it is sufficient to prove that for each k, JsK(γ~x(σk(n))) ⊆
γ~x(σk(n

′)) for all 〈n, s, n′〉 ∈ E \ wk. The result then follows by setting k = `′,

since σ`′ = σ∗ and E \ w`′ = E \ ∅ = E. Proof is by induction.

• Suppose k = 0 and let e = 〈n, s, n′〉 ∈ E \ w0. Then n 6= n∗ hence

γ~x(σ0(n)) = γ~x(⊥) = ∅. It follows JsK(γ~x(σ0(n))) = ∅ ⊆ γ~x(σ0(n
′)) as

required.

• Suppose the result holds for k ≥ 0 and let e = 〈n, s, n′〉 ∈ E \wk+1. It follows

σk+1(n) = σk(n) and therefore JsK(γ~x(σk+1(n))) = JsK(γ~x(σk(n))). Thus, the

result follows if JsK(γ~x(σk(n))) ⊆ γ~x(σk+1(n
′)). To show this:

– Suppose e = ek.

∗ Suppose the then case is taken at step k. Then, by the defining

property of Pk it holds JsK(γ~x(σk(n))) ⊆ γ~x(Pk). Moreover, Pk v
σk(n

′) and σk = σk+1 hence JsK(γ~x(σk(n))) ⊆ γ~x(σk+1(n
′)).

∗ Suppose the else case is taken at step k. Then JsK(γ~x(σk(n))) ⊆
γ~x(Pk) and σk+1(n

′) = σk(n
′)tPk hence JsK(γ~x(σk(n))) ⊆ γ~x(σk+1(n

′)).

– Suppose e 6= ek. Then e ∈ E \ wk hence by induction JsK(γ~x(σk(n))) ⊆
γ~x(σk(n

′)) but σk v σk+1 hence JsK(γ~x(σk(n))) ⊆ γ~x(σk+1(n
′)).

for corollary 2. Proceed by structural induction on ΠG. First, JεK(Zdm) = Zdm =

γ(>) = γ(σ0(n
∗)) = γ(σ∗(n∗)) ⊆ γ(σ∗(end(ε))), thus ε ∈ γ(σ∗). Now, suppose

π ∈ γ(σ∗) and let e = 〈n, s, n′〉 ∈ E where n = end(π). Then, Jπ · eK(Zdm) =

JsK(JπK(Zdm)) ⊆ JsK(γ(σ∗(end(π)))) = JsK(γ(σ∗(n))) ⊆ γ(σ∗(n′)) = γ(σ∗(end(π ·
e))), where the second step follows by inductive hypothesis and the fourth by

APPENDIX A. PROOFS 101

Proposition 7. Now let ω � π. By induction it follows JωK(Zdm) ⊆ γ(σ∗(end(ω))).

Therefore JωK(Zdm) ⊆ γ(σ∗(end(ω))) for all ω � π · e. Thus π · e ∈ γ(σ∗).

APPENDIX A. PROOFS 102

A.3 Proofs for Gröbner bases

Proof of Lemma 3. Let ≺ = ≺~x:~w and d = |~x|. First, note if p ∈ Zm[~w] then the

result holds immediately with each q` = 0 and r = p. In particular, the result

holds for p = 0, so suppose p 6= 0 and let lt≺(p) = c~x~α ~w
~β. Proceed by induction

on ~α:

• Suppose ~α = ~0. Since lt≺(p) = c~xα ~w
~β it follows for all terms d~x~α

′
~w
~β′ in p

satisfy ~x~α
′
~w
~β′ � ~x~α ~w

~β. But then, by definition of ≺ this implies ~α′ ≤ ~α = ~0

lexicographically, hence ~α′ = ~0. It follows vars(p) ⊆ vars(~w) hence p ∈ Zm[~w]

and result then follows from argument above.

• Suppose ~α > ~0. Then, by assumption α` > 0 for some 1 ≤ ` ≤ d. But

then, p is ≺-reducible by x`−W`. In particular, p = t(x`−W`) + q for some

q ∈ Zm[~x : ~w] where either q = 0 or else lm≺(q) ≺ ~x~α ~w
~β, by Lemma 1. If

q = 0 then the result follows immediately with q` = t, qi = 0 for i 6= ` and

r = 0. Otherwise, by the inductive hypothesis it holds q = q1(x1 −W`) +

· · ·+ qd(xd −Wd) + r where r ∈ Zm[~w]. It thus follows p = t(x` −W`) + q =

q1(x1 −W1) + · · ·+ (q` + t)(x` −W`) + · · ·+ qd(xd −Wd) + r and the result

follows.

APPENDIX A. PROOFS 103

A.4 Proofs for variable elimination and join

Proof for lemma 6. Let ~a ∈ γ~x(P). Then JpK~x(~a) = 0 for all p ∈ P . Because

P ⊆ Zm[~x] it follows JpK~x(πi(~a)) = 0 for all p ∈ P thus πi(~a) ∈ γ~x(P) ⊆ γ~x(Q).

Hence JqK~x(πi(~a)) = 0 for all q ∈ Q. Because Q ⊆ Zm[~x] it follows JqK~y(~a) = 0 for

all q ∈ Q therefore ~a ∈ γ~y(Q).

Proof of Corollary 5. IfA = γ~x(P) then elim[xj](α~x(A)) = απj(~x)(πj(A)) by Propo-

sition 8. Since P = ↑~x P = α~x(γ~x(P)) then elim[xj](P) = elim[xj](α~x(A)). But the

range of απj(~x) is MPADm[πj(~x)] so the result follows.

Proof for corollary 4. Let ~a ∈ γ~x(Q) and p ∈ P . Then p ∈ P ⊆↑~x P ⊆↑~x Q.

Therefore ~a ∈ γ~x(Q) ⊆ γ~x(p). Thus ~a ∈ γ~x(P) hence γ~x(Q) ⊆ γ~x(P). By corol-

lary 3 it follows γ~y(Q) ⊆ γ~y(P). Now let q ∈↑~y P . Then γ~y(Q) ⊆ γ~y(P) ⊆ γ~y(q)

hence q ∈↑~y Q.

Proof of Proposition 8. Let P = α~x(A) andQ = απj(~x)(πj(A)). To show elim[xj](P) ⊆
Q, let p ∈ elim[xj](P) and ~a ∈ πj(A). Then, there exists~b ∈ A such that πj(~b) = ~a.

It thus follows JpKπj(~x)(~a) = JpK~x(~b) = 0 and so πj(A) ⊆ γπj(~x)(elim[xj](P)).

Thus, from Proposition 6 it follows απj(~x)(πj(A)) v elim[xj](P), or equivalently

elim[xj](P) ⊆ Q.

To showQ ⊆ elim[xj](P), let q ∈ Q and~b ∈ A. Then, JqK~x(~b) = JqKπj(~x)(πj(~b)) =

0, since πj(~b) ∈ πj(A) ⊆ γπj(~x)(q). Therefore, A ⊆ γ~x(q), from which it follows

q ∈ ↑~x P = P . Since q ∈ ↑~x P and q ∈ Zm[πj(~x)] it thus follows q ∈ elim[xj](P),

hence Q ⊆ elim[xj](P).

Proof for proposition 9. It must be shown that elim[xj](〈B〉~x) = 〈elim[xj](B
′)〉πj(~x).

• Let p ∈ 〈elim[xj](B
′)〉πj(~x). Then p =

∑s
i=1 uipi for pi ∈ elim[xj](B

′) and

ui ∈ Zm[πj(~x)]. Since pj and uj are independent of xj so is p too. But

because elim[xj](B
′) ⊆ B′ ⊆ 〈B〉~x it follows p ∈ 〈B〉~x. Since p is independent

of xj it follows p ∈ elim[xj](〈B〉~x), as required.

• Let p ∈ elim[xj](〈B〉~x). Since 〈B′〉~x = 〈B〉~x it follows p ∈ elim[xj](〈B′〉~x).
Since B′ is a Gröbner basis, by repeatedly reducing p by elements of B′ it

follows p =
∑s

i=1 uipi where pi ∈ B′ and ui ∈ Zm[~x]. Let pi = p′i + xjp
′′
i

APPENDIX A. PROOFS 104

where p′i is independent of xj. Then p =
∑s

i=1 uip
′
i +xj

∑s
i=1 uip

′′
i . Since p is

independent of xj,
∑s

i=1 uip
′′
i = 0 hence p =

∑s
i=1 uip

′
i. Repeating the argu-

ment for ui = u′i+xju
′′
i where u′i is independent of xj it follows p =

∑s
i=1 u

′
ip
′
i

where p′i ∈ elim[xj](B
′) and u′i ∈ Zm[πj(~x)]. Thus p ∈ 〈elim[xj](B

′)〉πj(~x), as

required.

Proof for proposition 10. The assumption means elim[w](〈wB1 ∪ (1 − w)B2〉~y) =

〈B〉~x where ~x = 〈x1, . . . , xd〉 and ~y = 〈w, x1, . . . , xd〉

• Let p ∈ 〈B1〉~x∩〈B2〉~x hence p ∈ 〈B1〉~x and p ∈ 〈B2〉~x. It follows p =
∑s

i=1 uipi

for pi ∈ B1 and ui ∈ Zm[~x] and p =
∑t

j=1 vjqj for qj ∈ B2 and vj ∈ Zm[~x].

Thus p = wp + (1− w)p =
∑s

i=1 ui(wpi) +
∑t

j=1 vj(1− w)qj ∈ 〈wB1 ∪ (1−
w)B2〉~y. Since w /∈ vars(p) it thus follows p ∈ elim[w](〈wB1 ∪ (1− w)B2〉~y).

• Let p ∈ 〈B〉~x. Then p =
∑s

i=1 ui(wpi) +
∑t

j=1 vj(1 − w)qj for pi ∈ B1,

qj ∈ B2 and ui, vj ∈ Zm[~y]. Since w /∈ vars(p) it follows that p = p[w 7→
0] =

∑t
j=1 v

′
jqj where v′j = vj[w 7→ 0] and o[w 7→ x] denotes substituting x

for w throughout the object o. Likewise p = p[w 7→ 1] =
∑s

i=1 u
′
ipi where

u′i = ui[w 7→ 1]. Since u′i, v
′
j ∈ Zm[~x] it follows p ∈ 〈B1〉~x and p ∈ 〈B2〉~x,

hence p ∈ 〈B1〉~x ∩ 〈B2〉~x, as required.

APPENDIX A. PROOFS 105

A.5 Proofs for cover and closure

Lemma 10. Let F ⊆ Zm[~w] and suppose F ∪ {wi − 2jw + r} →elim[wi] F
′, where

w /∈ vars(~w) and r ∈ Zm[wi+1, . . . , wd]. Then,

γw:πi(~w)(F
′) = {b : πi(~a) | b : ~a ∈ γw:~w(F ∪ {wi − 2jw + r})}

Proof of Lemma 10. For brevity, put G = F ∪{wi−2jw+r} and recall γw:~w(G) =

γw:~w(〈G〉w:~w). The assumptionG→elim[wi] F
′ implies elim[wi](〈G〉w:~w) = 〈F ′〉w:πi(~w).

Thus, γw:πi(~w)(F
′) = γw:πi(~w)(〈F ′〉w:πi(~w)) = γw:πi(~w)(elim[wi](〈G〉w:~w)). It thus suf-

fices to show

γw:πi(~w)(elim[wi](〈G〉w:~w)) = {b : πi(~a) | b : ~a ∈ γw:~w(〈G〉w:~w)}.

To that end:

• Let b : ~a ∈ γw:~w(〈G〉w:~w) and f ∈ elim[wi](〈G〉w:~w). Then, f ∈ 〈G〉w:~w, so

JfKw:~w(b : ~a) = 0. But since also f ∈ Zm[w : πi(~w)], it follows JfKw:πi(~w)(b :

πi(~a)) = JfKw:~w(b : ~a) = 0 hence b : πi(~a) ∈ γw:πi(~w)(elim[wi](〈G〉w:~w).

• Let b : ~a′ ∈ γw:πi(~w)(elim[wi](〈G〉w:~w) and f ∈ 〈G〉w:~w. Then, f = u(wi −
2jw + r) + q for some u ∈ Zm[w : ~w] and q ∈ Zm[w : πi(~w)]. Since q =

f − u(wi − 2jw + r) it follows q ∈ 〈G〉w:~w, thus q ∈ elim[wi](〈G〉w:~w). Now,

let ~a = 〈a′1, . . . , a′i−1, a′, a′i+1, . . . , a
′
d〉 where a′ = 2jb − JrKw:~w(b : ~a′). Then,

JqKw:~w(b : ~a) = JqKw:πi(~w)(b : πi(~a)) = JqKw:πi(~w)(b : ~a′) = 0 and also Jwi −
2jw + rKw:~w(b : ~a) = 0. Thus JfKw:~w(b : ~a) = 0 hence b : ~a ∈ γw:~w(〈G〉w:~w)

where ~a′ = πi(~a).

Lemma 11. Let S = 〈 ~W,F 〉 ∈ Zm[~w]d×℘(Zm[~w]) and suppose for each 1 ≤ ` ≤ d

• W` = 2k`w` + q`

• If 〈v1, . . . , v`, . . . , vd〉 ∈ γ~w(F) then 〈v1, . . . , v` + 2ω−k` , . . . , vd〉 ∈ γ~w(F)

APPENDIX A. PROOFS 106

where q` ∈ Zm[w`+1, . . . , wd] and 0 ≤ k` ≤ ω. Let r ∈ Zm[wi+1, . . . , wd] satisfy

safe(~W,wi, r), ~W
′ = ~W [wi 7→ 2jw− r] and F ∪ {wi− 2jw+ r} →elim[wi] F

′, where

w /∈ vars(~w). Then, for 1 ≤ ` ≤ d,

• W ′
` = 2k

′
`w′` + q′`

• If 〈v1, . . . , v`, . . . , vd〉 ∈ γ~w′(F ′) then 〈v1, . . . , v` + 2ω−k
′
` , . . . , vd〉 ∈ γ~w′(F ′)

where ~w′ = ~w[i 7→ w], q′` ∈ Zm[w′`+1, . . . , w
′
d] and k′` =

{
min(ki + j, ω) if i = `

k` otherwise

Proof of Lemma 11. Let 1 ≤ ` ≤ d. To prove the first property:

• Suppose ` 6= i. Then W ′
` = W`[wi 7→ 2jw−r] = (2k`w`+q`)[wi 7→ 2jw−r] =

2k`w` + q`[wi 7→ 2jw − r] = 2k`w` + q′` where q′` = q`[wi 7→ 2jw − r]. Thus

k′` = k`. Now:

– If ` < i then q` ∈ Zm[w`+1, . . . , wd] and since 2jw−r ∈ Zm[w,wi+1, . . . , wd]

it follows q′` ∈ Zm[w`+1, . . . , wi−1, w, wi+1, . . . , wd] = Zm[w′`+1, . . . , w
′
d].

– If ` > i then q` ∈ Zm[w`+1, . . . , wd] thus wi /∈ vars(q`). Thus q′` = q` ∈
Zm[w`+1, . . . , wd] = Zm[w′`+1, . . . , w

′
d].

Thus, in either case q′` ∈ Zm[w′`+1, . . . , w
′
d], as required.

• Suppose ` = i. Then W ′
i = Wi[wi 7→ 2jw − r] = (2kiwi + qi)[wi 7→

2jw − r] = 2ki(2jw − r) + qi = 2ki+jw + q′i where q′i = −2kir + qi ∈
Zm[wi+1, . . . , wd] = Zm[w′i+1, . . . , w

′
d]. Now if ki + j ≥ ω then 2ki+j = 0 = 2ω

hence 2ki+j = 2min(ki+j,ω) = 2k
′
i . Since w = w′i it follows W ′

i = 2k
′
iw′i + q′i with

q′i ∈ Zm[w′i+1, . . . , w
′
d], as required.

To prove the second property, let ~v ∈ γ~w′(F ′). Then, vi : πi(~v) ∈ γw:πi(~w)(F ′).
Thus, from Lemma 10 there exists ~v′ ∈ Zdm such that vi : ~v′ ∈ γw:~w(F ∪{wi−2jw+

r}) and πi(~v
′) = πi(~v). In particular, it follows ~v′ ∈ γ~w(F) and vi : ~v′ ∈ γw:~w(wi −

2jw+r), hence v′i−2jvi+JrK〈wi+1,...,wd〉(〈v′i+1, . . . , v
′
d〉) = v′i−2jvi+JrKw:~w(vi : ~v′) =

Jwi − 2jw + rKw:~w(vi : ~v′) = 0. Now:

APPENDIX A. PROOFS 107

• Suppose ` < i and let ~v′′ = 〈v′1, . . . , v′`−1, v′` + 2ω−k` , v′`+1, . . . , v
′
d〉. Since

~v′ ∈ γ~w(F) it follows from the inductive hypothesis that ~v′′ ∈ γ~w(F), hence

vi : ~v′′ ∈ γw:~w(F). Moreover, JrKw:~w(vi : ~v′′) = JrK〈wi+1,...,wd〉(〈v′′i+1, . . . , v
′′
d〉) =

JrK〈wi+1,...,wd〉(〈v′i+1, . . . , v
′
d〉), since r ∈ Zm[wi+1, . . . , wd], hence Jwi − 2jw +

rKw:~w(vi : ~v′′) = v′′i−2jvi+JrKw:~w(vi : ~v′′) = v′i−2jvi+JrK〈wi+1,...,wd〉(〈v′i+1, . . . , v
′
d〉) =

0. It follows vi : ~v′′ ∈ γw:~w(F ∪ {wi − 2jw + r}). Thus, by Lemma 10

it follows vi : πi(~v
′′) ∈ γw:πi(~w)(F ′). But, vi : πi(~v

′′) = 〈vi, v′1, . . . , v′`−1, v′` +

2ω−k` , v′`+1, . . . , v
′
i−1, v

′
i+1, . . . , v

′
d〉 = 〈vi, v1, . . . , v`−1, v`+2ω−k

′
` , v`+1, . . . , vi−1, vi+1, . . . , vd〉,

since k` = k′` and πi(~v
′) = πi(~v). Reordering variables yields 〈v1, . . . , v` +

2ω−k
′
` , . . . , vd〉 ∈ γ~w′(F ′), as required.

• Suppose ` > i and let ~v′′ = 〈v′1, . . . , v′i−1, v′′i , v′i+1, . . . , v
′
`+2ω−k` , . . . , v′d〉 where

v′′i = 2jvi − JrK〈wi+1,...,wd〉(〈v′i+1, . . . , v
′
`−1, v

′
` + 2ω−k` , v′`+1, . . . , v

′
d〉). It will be

shown v′′i = v′i + c2ω−ki for some c ∈ Zm.

First, note since v′i − 2jvi + JrK〈wi+1,...,wd〉(〈v′i+1, . . . , v
′
d〉) = 0 it follows

v′′i = v′i + JrK〈wi+1,...,wd〉(〈v′i+1, . . . , v
′
`, . . . , v

′
d〉)

− JrK〈wi+1,...,wd〉(〈v′i+1, . . . , v
′
` + c2ω−k` , . . . , v′d〉)

(1)

Now, let t be a term in r. Since r ∈ Zm[wi+1, . . . , wd] it follows t =

awα1
i+1 · · ·w

αd−i
d for some a. It will be shown

JtK〈wi+1,...,wd〉(〈v′i+1, . . . , v
′
`, . . . , v

′
d〉)

− JtK〈wi+1,...,wd〉(〈v′i+1, . . . , v
′
` + 2ω−k` , . . . , v′d〉) = c2ω−ki

(2)

for some c ∈ Zm. Note this holds iff v′i+1
α1 · · · [a(v′`

α`−i−(v′`+2ω−k`)α`−i)] · · · v′d
αd−i =

c2ω−ki . Hence, if it can be shown that a(v′`
α`−i − (v′` + 2ω−k`)α`−i) = c2ω−ki

for some c, the result will follow. First, note if α`−i = 0 then a(v′`
α`−i − (v′` +

2ω−k`)α`−i) = a(1− 1) = 0 = c2ω−ki where c = 0, as required. Thus, assume

α`−i > 0.

Now, let α > 0 and v, e ∈ Zm be arbitrary. Then, letting bs =
(
α
s

)
for each

APPENDIX A. PROOFS 108

0 ≤ s ≤ α it follows

(v + e)α =
∑α

s=0 bsv
seα−s

= bαv
α +

∑α−1
s=0 bsv

seα−s

= vα + e
∑α−1

s=0 bsv
se(α−1)−s

= vα + c′e

where c′ =
∑α−1

s=0 bsv
seα−1−s. In particular, setting α = α`−i, v = v′` and

e = 2ω−k
′
` and rearranging yields

(v′` + 2ω−k
′
`)α`−i − v′`

α`−i = c′2ω−k
′
` (3)

Now, since α`−i > 0 it follows w` ∈ vars(t). Thus, since safe(~W,wi, r) holds

it follows ki+rank(a) ≥ k`, hence ω−k′`+rank(a) = ω−k`+rank(a) ≥ ω−ki.
In particular, rank(a2ω−k

′
`) = ω− k′` + rank(a) ≥ ω− ki = rank(2ω−ki), hence

a2ω−k
′
` = c′′2ω−ki for some c′′ ∈ Zm. Combining this with equation (3) yields

that a(v′`
α`−i − (v′` + 2ω−k

′
`)α`−i) = −ac′2ω−k′` = −c′c′′2ω−ki = c2ω−ki where

c = −c′c′′. It follows equation (2) holds for each term t ∈ r.

Now, since equation (2) holds for each term t ∈ r it follows by linearity of

polynomial evaluation that

JrK〈wi+1,...,wd〉(〈v′i+1, . . . , v
′
`, . . . , v

′
d〉)

− JrK〈wi+1,...,wd〉(〈v′i+1, . . . , v
′
` + 2ω−k

′
` , . . . , v′d〉) = c2ω−ki

for some c ∈ Zm. In particular, it follows from equation (1) that v′′i =

v′i + c2ω−ki for some c ∈ Zm, as required.

Substituting this equation into ~v′′ yields ~v′′ = 〈v′1, . . . , v′i−1, v′i+c2ω−ki , v′i+1, . . . , v
′
`−1, v

′
`+

2ω−k` , v′`+1, . . . , v
′
d〉 and since ~v′ ∈ γ~w(F), c applications of the inductive hy-

pothesis for component i and a further application for component ` yields

~v′′ ∈ γw:~w(F). Moreover, since JrKw:~w(vi : ~v′′) = JrK〈wi+1,...,wd〉(〈v′′i+1, . . . , v
′′
d〉) =

JrK〈wi+1,...,wd〉(〈v′i+1, . . . , v
′
` + 2ω−k` , . . . , v′d〉), it follows Jwi − 2jw + rKw:~w(vi :

~v′′) = v′′i − 2jvi + JrK〈wi+1,...,wd〉(〈v′i+1, . . . , v
′
`−1, v

′
` + 2ω−k` , v′`+1, . . . , v

′
d〉) = 0.

Thus vi : ~v′′ ∈ γw:~w(F ∪ {wi − 2jw + r}). Now, by Lemma 10, it follows

vi : πi(~v
′′) ∈ γw:πi(~w)(F

′). But, vi : πi(~v
′′) = 〈vi, v′1, . . . , v′i−1, v′i+1, . . . , v

′
` +

APPENDIX A. PROOFS 109

2ω−k` , . . . , v′d〉 = 〈vi, v1, . . . , vi−1, vi+1, . . . , v` + 2ω−k
′
` , . . . , vd〉 since k` = k′`

and πi(~v
′) = πi(~v). Reordering variables yields 〈v1, . . . , v` + 2ω−k

′
` , . . . , vd〉 ∈

γ~w′(F
′), as required.

• Suppose ` = i and let ~v′′ = 〈v′1, . . . , v′i + 2(ω−k′i)+j, . . . , v′d〉. Note since

k′i = min(ω, ki+j) it follows 0 ≤ (ω−k′i)+j ≤ ω. Then, Jwi−2jw+rKw:~w((vi+

2ω−k
′
i) : ~v′′) = v′i + 2(ω−k′i)+j − 2j(vi + 2ω−k

′
i) + JrK〈wi+1,...,wd〉(〈v′i+1, . . . , v

′
d〉) =

v′i − 2jvi + JrK〈wi+1,...,wd〉(〈v′i+1, . . . , v
′
d〉) = 0. Since also ~v′ ∈ γ~w(F) it fol-

lows from 2j applications of the inductive hypothesis that ~v′′ ∈ γ~w(F),

hence (vi + 2ω−k
′
i) : ~v′′ ∈ γw:~w(F). It follows (vi + 2ω−k

′
i) : ~v′′ ∈ γw:~w(F ∪

{wi − 2jw + r}), hence by Lemma 10, (vi + 2ω−k
′
i) : πi(~v

′′) ∈ γw:π(~w)(F
′).

But, (vi + 2ω−k
′
i) : πi(~v

′′) = 〈vi + 2ω−k
′
i , v′1, . . . , v

′
i−1, v

′
i+1, . . . , v

′
d〉 = 〈vi +

2ω−k
′
i , v1, . . . , vi−1, vi+1, . . . , vd〉. Reordering variables yields 〈v1, . . . , vi+2ω−k

′
i , . . . , vd〉 ∈

γ~w′(F
′), as required.

Proof for Proposition 11. Since 〈 ~W ′′, F ′′〉 = constrain(〈 ~W,F 〉, j, wi, r) it follows

• ~W ′′ = ~W ′[wi 7→ w] where ~W ′ = ~W [wi 7→ 2jw − r],

• There exists F ′ ∈ Zm[~w′] such that F ∪ {wi − 2jw + r} →elim[wi] F
′ and

F ′′ =

{
F ′[w 7→ 0] if W ′

i = 2ωw + q ∧ q ∈ Zm[wi+1, . . . , wd]

F ′[w 7→ wi] otherwise

where w /∈ vars(~w) and ~w′ = ~w[i 7→ w]. Then, from Lemma 11, for all 1 ≤ ` ≤ d,

• W ′
` = 2k

′
`w′` + q′′`

• If 〈v1, . . . , v`, . . . , vd〉 ∈ γ~w′(F ′) then 〈v1, . . . , v` + 2ω−k
′
` , . . . , vd〉 ∈ γ~w′(F ′)

where q′′` ∈ Zm[w′`+1, . . . , w
′
d]. Now, let 1 ≤ ` ≤ d. For the first property:

• Suppose ` 6= i. Then, w′` = w` 6= w so W ′ = 2k`w` + q′′` . It follows W ′′
` =

(2k`w` + q′`)[w 7→ wi] = 2k
′
`w` + q′` where q′` = q′′` [w 7→ wi]. Since q′′` ∈

Zm[w′`+1, . . . , w
′
d] it follows q′` ∈ Zm[w`+1, . . . , wd], as required.

APPENDIX A. PROOFS 110

• Suppose ` = i. Then, w′i = w, hence W ′
i = 2k

′
iw+q′′i . It follows W ′′

i = (2k
′
iw+

q′′i)[w 7→ wi] = 2k
′
iwi + q′′i . Since q′′i ∈ Zm[w′i+1, . . . , w

′
d] = Zm[wi+1, . . . , wd],

the result follows with q′i = q′′i .

For the second property:

• Suppose k′i = ω. Then, W ′
i = 2ωw + q′′` where q′′` ∈ Zm[w′i+1, . . . , w

′
d] =

Zm[wi+1, . . . , wd], hence F ′′ = F ′[w 7→ 0]. Let ~v ∈ γ~w(F ′′). Now,

– Suppose ` 6= i and let ~v ∈ γ~w(F ′′). Then, if ~v′ ∈ Zdm is defined such

that πi(~v
′) = πi(~v) and v′i = 0 then ~v′ ∈ γ~w′(F ′). Thus, by the property

above 〈v′1, . . . , v′` + 2ω−k
′
` , . . . , v′d〉 ∈ γ~w′(F ′) and since v′i = 0 it follows

〈v′1, . . . , v′` + 2ω−k
′
` , . . . , v′d〉 ∈ γ~w(F ′′). But now, since wi /∈ vars(F ′′) it

follows if ~v′′ ∈ Zdm is defined such that πi(~v
′′) = πi(~v

′) and v′′i = vi then

~v′′ ∈ γ~w(F ′′). But, then ~v′′ = 〈v1, . . . , v` + 2ω−k
′
` , . . . , vd〉 and the result

follows.

– Suppose ` = i and let ~v ∈ γ~w(F ′′). Then, since wi /∈ vars(F ′′),

〈v1, . . . , vi + 2ω−k
′
i , . . . , vd〉 ∈ γ~w(F ′′), as required.

• Suppose k′i < ω. Then, W ′
i = 2k

′
iw+q′′` 6= 2ωw+q with q ∈ Zm[wi+1, . . . , wd],

hence F ′′ = F ′[w 7→ wi]. Thus, if ~v ∈ γ~w(F ′′) then ~v ∈ γ~w′(F ′), hence by the

inductive property 〈v1, . . . , v` + 2ω−k
′
` , . . . , vd〉 ∈ γ~w′(F ′) and so 〈v1, . . . , v` +

2ω−k
′
` , . . . , vd〉 ∈ γ~w(F ′′).

For the third property, note since F∪{wi−2jw+r} →elim[wi] F
′ it follows vars(F ′) ⊆

(vars(F) ∪ {w} ∪ vars(r)) \ {wi}. But since vars(r) ⊆ vars(F) it follows vars(F ′) ⊆
(vars(F) ∪ {w}) \ {wi}. Moreover, since F ′′ = F ′[w 7→ 0] or F ′′ = F ′[w 7→ wi]

it follows vars(F ′′) ⊆ (vars(F ′) \ {w}) ∪ {wi} ⊆ vars(F) ∪ {wi} = vars(F), since

{wi} ⊆ vars(F). Now, suppose k′` = ω. Then,

• Suppose ` 6= i. Then, k` = ω, hence by the inductive hypothesis, w` /∈
vars(F). But since vars(F ′′) ⊆ vars(F) it follows w` /∈ vars(F ′′), as required.

• Suppose ` = i. Then, k′i = ω so, as shown above, F ′′ = F ′[w 7→ 0]. It follows

vars(F ′′) ⊆ vars(F ′) \ {w} ⊆ vars(F) \ {wi}, so wi /∈ vars(F ′′), as required.

APPENDIX A. PROOFS 111

Corollary 8. Let S = 〈 ~W,F 〉 ∈ Zm[~w]d × ℘(Zm[~w]) and suppose

• W` = 2k`w` + q`

• If 〈v1, . . . , v`, . . . , vd〉 ∈ γ~w(F) then 〈v1, . . . , v` + 2ω−k` , . . . , vd〉 ∈ γ~w(F)

• If k` = ω then w` 6∈ vars(F)

for some 0 ≤ k` ≤ ω and q` ∈ Zm[w`+1, . . . , wd]. Suppose simplify(S) = 〈 ~W ′, F ′〉.
Then,

• W ′
` = 2k

′
`w` + q′`

• If 〈v1, . . . , v`, . . . , vd〉 ∈ γ~w(F ′) then 〈v1, . . . , v` + 2ω−k
′
` , . . . , vd〉 ∈ γ~w(F ′)

• If k′` = ω then w` 6∈ vars(F ′)

for some k` ≤ k′` ≤ ω and q′` ∈ Zm[w`+1, . . . , wd].

proof for Corollary 8. Let ~W ′′ = ~W and F ′′ = gb~w(F). It will be shown the

hypotheses also hold for the pair 〈 ~W ′′, F ′′〉. To that end:

• W ′′
` = W` = 2k`w` + q` where q` ∈ Zm[w`+1, . . . , wd],

• Note γ~w(F ′′) = γ~w(〈F ′′〉~w) = γ~w(〈F 〉~w) = γ~w(F). Thus, if ~v ∈ γ~w(F ′′) then

~v ∈ γ~w(F), hence 〈v1, . . . , v` + 2ω−k` , . . . , vd〉 ∈ γ~w(F) = γ~w(F ′′).

• If k` = ω then w` /∈ vars(F). But since vars(F ′′) = vars(F) it follows w` /∈
vars(F ′′),

The result follows. Now, proceed by induction on the number n of calls to

simplify:

• Suppose n = 0. Then, 〈 ~W ′, F ′〉 = 〈 ~W ′′, F ′′〉 and by the argument above the

result holds with k′` = k`.

APPENDIX A. PROOFS 112

• Suppose n > 0 and let S ′ = 〈 ~W ′′, F ′′〉. Then, there exists 2ω−j(wi + r) ∈ F ′′

where j > 0, r ∈ Zm[wi+1, . . . , wd] and safe(~W ′′, wi, r) holds and, moreover,

〈 ~W ′, F ′〉 = simplify(S ′′) where S ′′ = constrain(S ′, j, wi, r). Now, since

2ω−j(wi + r) ∈ F ′′ and j > 0 it follows {wi} ∪ vars(r) ⊆ vars(F ′′) = vars(F).

The argument above shows the hypotheses hold for S ′, hence Lemma 11

implies the result holds for S ′′ and some k′′` satisfying k` ≤ k′′` ≤ ω. But

now, the call simplify(S ′′) requires n − 1 calls and returns 〈 ~W ′, F ′〉 hence,

by induction, the hypothesis holds for 〈 ~W ′, F ′〉 for some k′` satisfying k′′` ≤
k′` ≤ ω. Since k` ≤ k′′` , the result follows.

Proof for corollary 6. The result follows by induction on the depth n at which a

call arises:

• Suppose n = 0. Only cover(S) is called at depth 0. Then ~W = 〈w1, . . . , wd〉
hence W` = 2k`w` + q` where k` = 0 and q` = 0 ∈ Zm[w`+1, . . . , wd].

Moreover, since 2ω−k` = 2ω−0 = 0, it follows 〈v1, . . . , v` + 2ω−k` , . . . , vd〉 =

〈v1, . . . , v`, . . . , vd〉, hence the second property is satisfied vacuously. Finally,

since k` = 0 < ω for all `, the third property also holds vacuously.

• Suppose constrain is called at depth n > 0.

– Suppose constrain(S ′, j, wi, r) is called from cover(S). Then, the call

cover(S) occurs at depth n− 1, hence by the inductive hypothesis the

conclusions hold for S. Moreover, since cover(S) makes a recursive call,

it follows S ′ = 〈 ~W ′, F ′〉. Thus, by Corollary 8 it follows the conclusions

also hold for S ′.

– Suppose constrain(S ′, j, wi, r) is called from simplify(S). Then, the

call simplify(S) occurs at depth n− 1, hence by the inductive hypoth-

esis the conclusions hold for S. Thus, the argument in the proof for

Corollary 8 shows the conclusions hold for S ′.

• Suppose simplify is called at depth n > 0.

APPENDIX A. PROOFS 113

– Suppose simplify(S) is called from cover(S). Since cover(S) is called

at depth n− 1, the conclusions hold for S, hence the call simplify(S).

– Suppose simplify(S ′′) is called from simplify(S). Then, the call simplify(S)

occurs at depth n−1, hence by the inductive hypothesis the conclusions

hold for S. Thus, the argument in the proof for Corollary 8 shows the

conclusions also hold for S ′′.

• Suppose cover(S ′`) is called from cover(S) at depth n > 0. The call

cover(S) occurs at depth n− 1, hence the conclusions hold for S. Let S ′ =

simplify(S). Now, since S ′` = constrain(S ′, 1, wi, r) where wi ∈ vars(F ′)

and r = 0 or r = 1, it follows r ∈ Zm[wi+1, . . . , wd] and {wi} ∪ vars(r) ⊆
vars(F ′). Moreover, since vars(r) = ∅ it follows that safe(~W ′, wi, r) holds.

Thus, from Proposition 11, the conclusions also hold for S ′`.

proof for Theorem 3. Let leveli(2
kwi+q) = k and define level : Zm[~w]d → {0, . . . , ω}d

by level(W1, . . . ,Wd) = 〈level1(W1), . . . , leveld(Wd)〉. Consider a call constrain(S, j, wi, r)

occuring during the execution of cover. Note first in any such call j > 0,

r ∈ Zm[wi+1, . . . , wd], {wi} ∪ vars(r) ⊆ vars(F) and safe(~W,wi, r) holds. Now,

suppose S = 〈 ~W,F 〉 and the call returns 〈 ~W ′, F ′〉. Then, by Corollary 6, there

exist 0 ≤ k` ≤ ω and q` ∈ Zm[w`+1, . . . , wd] such that W` = 2k`w`+q` and if k` = ω

then w` /∈ vars(F). Thus, by Proposition 11, there exist q′` ∈ Zm[w`+1, . . . , wd] such

that

W ′
` = 2k

′
`w` + q′` where k′` =

{
min(ki + j, ω) if ` = i

k` otherwise

and if k′` = ω then x` /∈ vars(F ′), for each 1 ≤ ` ≤ d. Now, since wi ∈ vars(F) it

follows ki < ω. Thus, k′i = min(ki + j, ω) > ki. Since k′` = k` for each ` 6= i it thus

follows level(~W ′) = 〈k′1, . . . , k′d〉 > 〈k1, . . . , kd〉 = level(~W), where the comparison

is pointwise.

Now, consider a call simplify(S) occuring during the execution of cover, where

S = 〈 ~W,F 〉, and suppose simplify(S) makes the recursive call simplify(S ′′),

where S ′′ = 〈 ~W ′, F ′〉. Then, 〈 ~W ′, F ′〉 = constrain(S ′, j, xi, r). By the previous

APPENDIX A. PROOFS 114

argument it follows that level(~W ′) > level(~W). In particular, it follows any se-

quence of recursive calls to simplify determines a strictly increasing sequence of

levels, bounded above by 〈ω, . . . , ω〉 pointwise. Termination of simplify follows

immediately.

Finally, consider a call cover(S) occuring during the execution of cover, where

S = 〈 ~W,F 〉, and suppose cover(S) makes the recursive call cover(S ′`), where S ′` =

〈 ~W ′′, F ′′〉. Then, 〈 ~W ′′, F ′′〉 = constrain(S ′, j, xi, r) where S ′ = simplify(S) =

〈 ~W ′, F ′〉. Then, by Corollary 8, it follows level(~W ′) ≥ level(~W). Moreover, by

the previous argument, level(~W ′′) > level(~W ′), hence level(~W ′′) > level(~W). In

particular, it follows any sequence of recursive calls to cover determines a strictly

increasing sequence of levels, bounded above by 〈ω, . . . , ω〉 pointwise. Termination

of cover thus follows.

proof for Theorem 3. Let leveli(2
kwi+q) = k and define level : Zm[~w]d → {0, . . . , ω}d

by level(W1, . . . ,Wd) = 〈level1(W1), . . . , leveld(Wd)〉. Consider a call constrain(S, j, wi, r)

occuring during the execution of cover. Note first in any such call j > 0,

r ∈ Zm[wi+1, . . . , wd], {wi} ∪ vars(r) ⊆ vars(F) and safe(~W,wi, r) holds. Now,

suppose S = 〈 ~W,F 〉 and the call returns 〈 ~W ′, F ′〉. Then, by Corollary 6, there

exist 0 ≤ k` ≤ ω and q` ∈ Zm[w`+1, . . . , wd] such that W` = 2k`w`+q` and if k` = ω

then w` /∈ vars(F). Thus, by Proposition 11, there exist q′` ∈ Zm[w`+1, . . . , wd] such

that

W ′
` = 2k

′
`w` + q′` where k′` =

{
min(ki + j, ω) if ` = i

k` otherwise

and if k′` = ω then x` /∈ vars(F ′), for each 1 ≤ ` ≤ d. Now, since wi ∈ vars(F) it

follows ki < ω. Thus, k′i = min(ki + j, ω) > ki. Since k′` = k` for each ` 6= i it thus

follows level(~W ′) = 〈k′1, . . . , k′d〉 > 〈k1, . . . , kd〉 = level(~W), where the comparison

is pointwise.

Now, consider a call simplify(S) occuring during the execution of cover, where

S = 〈 ~W,F 〉, and suppose simplify(S) makes the recursive call simplify(S ′′),

where S ′′ = 〈 ~W ′, F ′〉. Then, 〈 ~W ′, F ′〉 = constrain(S ′, j, xi, r). By the previ-

ous argument it follows that level(~W ′) > level(~W). In particular, any sequence

APPENDIX A. PROOFS 115

of recursive calls to simplify determines a strictly increasing sequence of levels,

bounded above by 〈ω, . . . , ω〉. Termination of simplify follows immediately.

Finally, consider a call cover(S) occuring during the execution of cover, where

S = 〈 ~W,F 〉, and suppose cover(S) makes the recursive call cover(S ′`), where S ′` =

〈 ~W ′′, F ′′〉. Then, 〈 ~W ′′, F ′′〉 = constrain(S ′, j, xi, r) where S ′ = simplify(S) =

〈 ~W ′, F ′〉. Then, by Corollary 8, it follows level(~W ′) ≥ level(~W). Moreover, by

the previous argument, level(~W ′′) > level(~W ′), therefore level(~W ′′) > level(~W). In

particular, any sequence of recursive calls to cover determines a strictly increas-

ing sequence of levels, bounded above by 〈ω, . . . , ω〉. Termination of cover thus

follows.

Proof for proposition 12. First note since constrain(S, j, wi, r) is a call made dur-

ing the execution of cover, it follows j > 0, r ∈ Zm[wi+1, . . . , wd], {wi}∪ vars(r) ⊆
vars(F) and safe(~W,wi, r) holds. Now, since 〈 ~W ′′, F ′′〉 = constrain(〈 ~W,F 〉, j, wi, r)
it follows

• ~W ′′ = ~W ′[wi 7→ w] where ~W ′ = ~W [wi 7→ 2jw − r],

• There exists F ′ ∈ Zm[~w′] such that F ∪ {wi − 2jw + r} →elim[wi] F
′ and

F ′′ =

{
F ′[w 7→ 0] if W ′

i = 2ωw + q ∧ q ∈ Zm[wi+1, . . . , wd]

F ′[w 7→ wi] otherwise

where w /∈ vars(~w) and ~w′ = ~w[i 7→ w]. Then, from Lemma 11, for all 1 ≤ ` ≤ d,

• W ′
` = 2k

′
`w′` + q′′`

• If 〈v1, . . . , v`, . . . , vd〉 ∈ γ~w′(F ′) then 〈v1, . . . , v` + 2ω−k
′
` , . . . , vd〉 ∈ γ~w′(F ′)

where q′′` ∈ Zm[w′`+1, . . . , w
′
d]. It will first be shown

γ~w(〈 ~W ′′, F ′′〉) = {J ~W ′K~w′(~a′′) | ~a′′ ∈ γ~w′(F ′)} (4)

Note, since ~W ′′ = ~W ′[w 7→ wi] it follows for any 1 ≤ ` ≤ d that JW ′′
` K~w(~a′′) =

JW ′
`K~w′(~a′′) for all ~a′′ ∈ Zdm. Thus, the result holds if γ~w(F ′′) = γ~w′(F

′). To that

end:

APPENDIX A. PROOFS 116

• Suppose k′i < ω so F ′′ = F ′[w 7→ wi]. Then, f ∈ F ′ iff f [w 7→ wi] ∈ F ′′.

Moreover, for any ~a′′ ∈ Zdm, JfK~w′(~a′′) = Jf [w 7→ wi]K~w(~a′′). In particular,

JfK~w′(~a′′) = 0 iff Jf [w 7→ wi]K~w(~a′′) = 0. The result follows.

• Suppose k′i = ω so F ′′ = F ′[w 7→ 0]. Then, since 2ω−k
′
i = 20 = 1, it follows

from above if ~v ∈ γ~w′(F
′) then 〈v1, . . . , vi + 1, . . . , vd〉 ∈ γ~w′(F

′). Repeat-

edly applying this result yields ~v ∈ γ~w′(F ′) iff 〈v1, . . . , vi−1, v, vi+1, . . . , vd〉 ∈
γ~w′(F

′) for all v ∈ Zm. Moreover, since wi /∈ vars(F ′′) it also follows

~v ∈ γ~w(F ′′) iff 〈v1, . . . , vi−1, v, vi+1, . . . , vd〉 ∈ γ~w(F ′′) for all v ∈ Zm. Fi-

nally, f ∈ F ′ iff f [w 7→ 0] ∈ F ′′ and for any ~a′′ ∈ Zdm with a′′i = 0,

JfK~w′(~a′′) = Jf [w 7→ wi]K~w(~a′′). It follows:

~a′′ ∈ γ~w′(F ′) iff 〈a′′1, . . . , a′′i−1, 0, a′′i+1, . . . , a
′′
d〉 ∈ γ~w′(F ′)

iff JfK~w′(〈a′′1, . . . , a′′i−1, 0, a′′i+1, . . . , a
′′
d〉) = 0 for all f ∈ F ′

iff Jf [w 7→ 0]K~w(〈a′′1, . . . , a′′i−1, 0, a′′i+1, . . . , a
′′
d〉) = 0 for all f ∈ F ′

iff JfK~w(〈a′′1, . . . , a′′i−1, 0, a′′i+1, . . . , a
′′
d〉) = 0 for all f ∈ F ′′

iff 〈a′′1, . . . , a′′i−1, 0, a′′i+1, . . . , a
′′
d〉 ∈ γ~w(F ′′)

iff ~a′′ ∈ γ~w(F ′′)

Thus, γ~w(F ′′) = γ~w′(F
′) and so equation (4) holds. To complete the argument it

will be shown

γ~w(〈 ~W,F ∪ {2ω−j(wi + r)}〉) = {J ~W ′K~w′(~a′′) | ~a′′ ∈ γ~w′(F ′)} (5)

To that end:

• Let ~a ∈ γ~w(F ∪ {2ω−j(wi + r)}). Then, ~a ∈ γ~w(F) and J2ω−j(wi + r)K~w(~a) =

2ω−j(ai + JrK~w(~a)) = 0. But this implies there exists b ∈ Zm such that

ai − 2jb + JrK~w(~a) = 0. Thus, Jwi − 2jw + rKw:~w(b : ~a) = 0 and since

~a ∈ γ~w(F) then b : ~a ∈ γw:~w(F), and so b : ~a ∈ γw:~w(F ∪ {wi − 2j + r)}).
But now, by Lemma 10 it follows b : πi(~a) ∈ γw:πi(~w)(F

′), hence ~a[i 7→
b] ∈ γ~w′(F

′) by reordering variables. Since ~W ′ = ~W [wi 7→ 2jw − r] it

follows JW ′
`K~w′(~a[i 7→ b]) = JW`K~w(~a[i 7→ 2jb− JrK~w(~a)]) = JW`K~w(~a). Hence

J ~W K~w(~a) = J ~W ′K~w′(~a[i 7→ b]) ∈ {J ~W ′K~w′(~a′′) | ~a′′ ∈ γ~w′(F ′)} as required.

APPENDIX A. PROOFS 117

• Let ~a′′ ∈ γ~w′(F ′). Then, by reordering variables, a′′i : πi(~a
′′) ∈ γw:πi(~w)(F ′).

Thus, but Lemma 10, there exists ~a such that a′′i : ~a ∈ γw:~w(F ∪ {wi −
2jw + r}) and πi(~a) = πi(~a

′′). It follows Jwi − 2jw + rKw:~w(a′′i : ~a) =

ai − 2ja′′i + JrK~w(~a) = 0, hence J2ω−j(wi + r)K~w(~a) = 2ω−j(ai + JrK~w(~a)) =

2ω−j(ai − 2ja′′i + JrK~w(~a)) = 0. Since also ~a ∈ γ~w(F) it follows ~a ∈ γ~w(F ∪
{2ω−j(wi + r)}). Now, since ~W ′ = ~W [wi 7→ 2j − r] it follows JW ′

`K~w′(~a′′) =

JW`K~w(~a′′[i 7→ 2ja′′i − JrK~w(~a)]) = JW`K~w(~a). Hence J ~W ′K~w(~a′′) = J ~W K~w(~a) ∈
γ~w(〈 ~W,F ∪ {2ω−j(wi + r)}〉) as required.

Proof of Corollary 7. Let F ′ = gb≺~w(F) and S ′′ = 〈 ~W,F ′〉. Note γ~w(F) =

γ~w(〈F 〉~w) = γ~w(〈F ′〉~w) = γ~w(F ′), hence γ~w(S) = γ~w(S ′′). Now, proceed by in-

duction on the number n of recursive calls to simplify:

• Suppose n = 0. Then,

– Suppose S ′ ∈ Zm[~w]d×℘(Zm[~w]). Since n = 0, it follows S ′′ = S ′, hence

γ~w(S) = γ~w(S ′′) = γ~w(S ′).

– Suppose S ′ = nil. Then, there exists c ∈ F ′ such that c ∈ Zm\{0}. But

then, γ~w(F) = γ~w(F ′) ⊆ γ~w(c) = ∅. It follows γ~w(S) = ∅, as required.

• Suppose n > 0. Then, there exists 2ω−j(wi + r) ∈ F ′ where j > 0, r ∈
Zm[wi+1, . . . , wd] and safe(~W,wi, r) holds. Moreover, S ′ = simplify(S ′′′)

where S ′′′ = constrain(S ′′, j, wi, r). Now, by Proposition 12 it holds that

γ~w(〈 ~W,F ′∪{2ω−j(wi+ r)}〉) = γ~w(S ′′′). But since 2ω−j(wi+ r) ∈ F ′ it holds

that γ~w(F ′ ∪ {2ω−j(wi + r)}) = γ~w(F ′), hence γ~w(S ′′) = γ~w(S ′′′). Thus it

follows γ~w(S) = γ~w(S ′′′). Now, since simplify(S ′′′) makes n − 1 recursive

calls, it follows by the inductive hypothesis:

– If S ′ ∈ Zm[~w]d×℘(Zm[~w]) then γ~w(S ′′′) = γ~w(S ′), hence γ~w(S) = γ~w(S ′),

as required.

– If S ′ = nil then γ~w(S ′′′) = ∅, hence γ~w(S) = ∅, as required.

APPENDIX A. PROOFS 118

Proof of Corollary 7. Let F ′ = gb≺~w(F) and S ′′ = 〈 ~W,F ′〉. Note γ~w(F) =

γ~w(〈F 〉~w) = γ~w(〈F ′〉~w) = γ~w(F ′), hence γ~w(S) = γ~w(S ′′). Now, proceed by in-

duction on the number n of recursive calls to simplify:

• Suppose n = 0. Then,

– Suppose S ′ ∈ Zm[~w]d×℘(Zm[~w]). Since n = 0, it follows S ′′ = S ′, hence

γ~w(S) = γ~w(S ′′) = γ~w(S ′).

– Suppose S ′ = nil. Then, there exists c ∈ F ′ such that c ∈ Zm\{0}. But

then, γ~w(F) = γ~w(F ′) ⊆ γ~w(c) = ∅. It follows γ~w(S) = ∅, as required.

• Suppose n > 0. Then, there exists 2ω−j(wi + r) ∈ F ′ where j > 0, r ∈
Zm[wi+1, . . . , wd] and safe(~W,wi, r) holds. Moreover, S ′ = simplify(S ′′′)

where S ′′′ = constrain(S ′′, j, wi, r). Now, by Proposition 12 it holds that

γ~w(〈 ~W,F ′∪{2ω−j(wi+ r)}〉) = γ~w(S ′′′). But since 2ω−j(wi+ r) ∈ F ′ it holds

that γ~w(F ′ ∪ {2ω−j(wi + r)}) = γ~w(F ′), hence γ~w(S ′′) = γ~w(S ′′′). Thus it

follows γ~w(S) = γ~w(S ′′′). Now, since simplify(S ′′′) makes n − 1 recursive

calls, it follows by the inductive hypothesis:

– If S ′ ∈ Zm[~w]d×℘(Zm[~w]) then γ~w(S ′′′) = γ~w(S ′), hence γ~w(S) = γ~w(S ′),

as required.

– If S ′ = nil then γ~w(S ′′′) = ∅, hence γ~w(S) = ∅, as required.

Proof of Theorem 4. It will first be shown if S = 〈 ~W,F 〉 and cover(S) =W then

W is a cover of γ~w(S). To that end, let S ′ = simplify(S). Then:

• Suppose first S ′ = nil. Then, by Corollary 7, γ~w(S) = ∅. But, in this case

W = ∅, which is a cover of ∅ over ~w.

• Otherwise, S ′ = 〈 ~W ′, F ′〉. Now, proceed by induction on the maximum

depth n of a recursive call to cover:

APPENDIX A. PROOFS 119

– Suppose n = 0, so cover(S) makes no recursive calls. Then, F = ∅ and

W = { ~W}. But then, γ~w(S) = {J ~W K~w(~a) | ~a ∈ γ~w(F)} = {J ~W K~w(~a) |
~a ∈ Z|~w|m } = {J ~W ′K~w(~a) | ~W ′ ∈ W ∧ ~a ∈ Z|~w|m }, and so W is a cover of

γ~w(S) over ~w.

– Suppose n > 0. Then, letting S ′` = constrain(S ′, 1, wi, `) and W` =

cover(S ′`) for each ` ∈ {0, 1} it follows W = W1 ∪ W2. Now, by

Proposition 12, γ~w(S ′`) = γ~w(〈 ~W ′, F ′ ∪ {2ω−1(wi + `)}〉) = {J ~W ′K~w(~a) |
~a ∈ γ~w(F ′ ∪ {2ω−1(wi + `)}). Now, since γ~w(F ′) = γ~w(F ′ ∪ {2ω−1(wi +

0)})∪ γ~w(F ′∪{2ω−1(wi + 1)}) it thus follows γ~w(S ′) = γ~w(S ′0)∪ γ~w(S ′1).

But now, since the maximum depth of a recursive call in cover(S ′`) is

n− 1, it follows from the inductive hypothesis W` is a cover of γ~w(S ′`).

Since γ~w(S ′) = γ~w(S ′0)∪γ~w(S ′1) andW =W0∪W1 it follows immediately

that W is a cover of γ~w(S ′).

It thus follows if cover(S) = W then W is a cover of γ~w(S) over ~w. To conclude

the proof note that cover(F0) = cover(〈 ~W,F 〉) where ~W = 〈w1, . . . , wd〉 and

F = F0[x1 7→ w1, . . . , xd 7→ wd]. Thus, by the result above, W is a cover of

γ~w(〈 ~W,F 〉). But γ~x(F0) = γ~w(F) = {J ~W K~w(~a) | ~a ∈ γ~w(F)} = γ~w(〈 ~W,F 〉). Thus,

W is a cover of γ~x(F0) and hence of F0, as required.

Proof of Lemma 7. Let p ∈ Zm[~x] and suppose p = q1(x1 −W1) + · · · + qd(xd −
Wd) + r where each q1, . . . , qd, r ∈ Zm[~x : ~w]. Now, suppose ~b = J ~W K~w(~a) where

~a ∈ Z|~w|m . Then,

JpK~x(~b) = JpK~x:~w(~b : ~a)

=
(∑d

`=1Jq`K~x:~w(~b : ~a)Jx` −W`K~x:~w(~b : ~a)
)

+ JrK~x:~w(~b : ~a)

=
(∑d

`=1Jq`K~x:~w(~b : ~a)(b` − JW`K~w(~a))
)

+ JrK~a:~w(~b : ~a)

= JrK~x:~w(~b : ~a)

where the final step follows since b`−JW`K~w(~a) = 0 for all 1 ≤ ` ≤ d. In particular,

it follows JpK~x(~b) = 0 iff JrK~x:~w(~b : ~a) = 0. Now:

• Suppose p ∈ 〈B〉~x. By assumption, elim[~w](〈{x1 − W1, . . . , xd − Wd} ∪
BNullm[~w]〉~x:~w) = 〈B〉~x, hence p = q1(x1 −W1) + · · · + qd(xd −Wd) + r where

APPENDIX A. PROOFS 120

each q` ∈ Zm[~x : ~w] and r ∈ 〈BNullm[~w]〉~x:~w ⊆ Zm[~x : ~w]. Then, JrK~w(~a) = 0

for all ~a ∈ Z|~w|m . Thus, from the equality derived above it follows JpK~x(~b) = 0

for all ~b ∈ {J ~W K~w(~a) | ~a ∈ Z|~w|m }. Therefore, p ∈ α~x({J ~W K~w(~a) | ~a ∈ Z|~w|m }).

• Suppose p ∈ α~x({J ~W K~w(~a) | ~a ∈ Z|~w|m }). Then, JpK~x(~b) = 0 for all ~b ∈
{J ~W K~w(~a) | ~a ∈ Z|~w|m }. Moreover, from Lemma 3, it follows p = q1(x1 −
W1) + · · · + qd(xd −Wd) + r where each q` ∈ Zm[~x : ~w] and r ∈ Zm[~w] ⊆
Zm[~x : ~w]. Thus, from the equality derived above, JrK~w(~a) = JrK~x:~w(~b : ~a) = 0

for all ~a ∈ Z|~w|m , where ~b = J ~W K~w(~a). It follows r ∈ 〈BNullm[~w]〉~w, hence

p ∈ 〈{x1 −W1, . . . , xd −Wd} ∪ BNullm[~w]〉~x:~w. Since p ∈ Zm[~x] it thus follows

p ∈ elim[~w](〈{x1 −W1, . . . , xd −Wd} ∪BNullm[~w]〉~x:~w) = 〈B〉~x.

Therefore 〈B〉~x = α~x({J ~W K~w(~a) | ~a ∈ Z|~w|m }), as required.

Proof of Theorem 5. It must be shown ↑~x 〈B〉~x = 〈B′〉~x. First note since W is a

cover of B over ~w it follows γ~x(〈B〉~x) = γ~x(B) = {J ~W K~w(~a) | ~W ∈ W ∧ ~a ∈ Z|~w|m }.
Now, if γ~x(B) = ∅ then ↑~x 〈B〉~x = 〈1〉~x. But, from the previous equality it also

follows W = ∅, hence
⊔

~W∈W〈B ~W 〉~x = 〈B′〉~x is degenerate and equals Zm[~x] =

〈1〉~x = ↑~x 〈B〉~x as required.

Thus, suppose γ~x(B) 6= ∅, so W 6= ∅. Then, if ~W ∈ W it follows {J ~W K~w(~a) |
~a ∈ Z|~w|m } ⊆ γ~x(〈B〉~x). Therefore, from Proposition 6, α~x({J ~W K~w(~a) | ~a ∈ Z|~w|m }) v
〈B〉~x. It thus follows from Lemma 7 that 〈B ~W 〉~x v 〈B〉~x, hence by Proposition 5,

〈B′〉~x =
⊔

~W∈W〈B ~W 〉~x v 〈B〉~x and so γ~x(〈B′〉~x) ⊆ γ~x(〈B〉~x).
But also, since 〈B′〉~x =

⊔
~W∈W〈B ~W 〉~x it follows γ~x(〈B′〉~x) ⊇

⋃
~W∈W γ~x(〈B ~W 〉~x).

By Lemma 7 it follows 〈B ~W 〉~x = α~x({J ~W K~w(~a) | ~a ∈ Z|~w|m }), hence γ~x(〈B ~W 〉~x) ⊇
{J ~W K~w(~a) | ~a ∈ Z|~w|m } and so γ~x(〈B′〉~x) ⊇

⋃
~W∈W{J ~W K~w(~a) | ~a ∈ Z|~w|m } =

{J ~W K~w(~a) | ~W ∈ W ∧ ~a ∈ Z|~w|m } = γ~x(〈B〉~x).
Thus, γ~x(〈B〉~x) = γ~x(〈B′〉~x). But then Theorem ?? implies ↑~x 〈B〉~x = ↑~x 〈B′〉~x.

To conclude the proof, note since 〈B ~W 〉~x = α~x({J ~W K~w(~a) | ~a ∈ Z|~w|m }) it follows

〈B ~W 〉~x ∈ MPADm[~x] for each ~W ∈ W . Thus, since 〈B′〉~x =
⊔

~W∈W〈B ~W 〉~x it follows

from Proposition 5 that 〈B′〉~x ∈ MPADm[~x]. In particular, ↑~x 〈B′〉~x = 〈B′〉~x, hence

↑~x 〈B〉~x = 〈B′〉~x, as required.

APPENDIX A. PROOFS 121

Proof of Proposition 13. The assumption means ↑~x 〈B1 ∪B2〉~x = 〈B〉~x and it must

be shown ↑~x (〈B1〉~x ∪ 〈B2〉~x) = 〈B〉~x, which follows iff ↑~x 〈B1 ∪B2〉~x = ↑~x (〈B1〉~x ∪ 〈B2〉~x).
Thus, by Proposition 4, the result holds iff γ~x(〈B1 ∪ B2〉~x) = γ~x(〈B1〉~x ∪ 〈B2〉~x).
To show this:

• Since B1 ⊆ 〈B1〉~x and B2 ⊆ 〈B2〉~x it follows B1 ∪B2 ⊆ 〈B1〉~x ∪ 〈B2〉~x, hence

γ~x(〈B1 ∪B2〉~x) = γ~x(B1 ∪B2) ⊇ γ~x(〈B1〉~x ∪ 〈B2〉~x).

• Since 〈B1〉~x ⊆ 〈B1 ∪B2〉~x and 〈B2〉~x ⊆ 〈B1 ∪B2〉~x it follows 〈B1〉~x ∪ 〈B2〉~x ⊆
〈B1 ∪B2〉~x. Thus, γ~x(〈B1 ∪B2〉~x) ⊆ γ~x(〈B1〉~x ∪ 〈B2〉~x).

The result follows.

APPENDIX A. PROOFS 122

A.6 Proofs for abstract transfer functions

Proof of Proposition 14. LetA′ = Jassume (p = 0)K(A). By assumption, ↑~x 〈B ∪ {p}〉~x =

〈B′〉~x, hence it must be shown α~x(A
′) = ↑~x 〈B ∪ {p}〉~x. To that end:

• Suppose q ∈ α~x(A
′), so A′ ⊆ γ~x(q), and let ~a ∈ γ~x(〈B ∪ {p}〉~x). Then,

~a ∈ γ~x(B) = A and JpK~x(~a) = 0, hence ~a ∈ A′ ⊆ γ~x(q). It follows γ~x(〈B ∪
{p}〉~x) ⊆ γ~x(q), hence q ∈ ↑~x 〈B ∪ {p}〉~x.

• Suppose q ∈ ↑~x 〈B ∪ {p}〉~x, so γ~x(〈B∪{p}〉~x) ⊆ γ~x(q), and let ~a ∈ A′. Then,

~a ∈ A = γ~x(B) and JpK~x(~a) = 0, hence ~a ∈ γ~x(〈B∪{p}〉~x) ⊆ γ~x(q). It follows

A′ ⊆ γ~x(q), hence q ∈ α~x(A′).

Thus ↑~x 〈B ∪ {p}〉~x = α~x(A
′), as required.

Proof of Proposition 15. Let A′ = Jassume (p 6= 0)K(A). By assumption, for each

1 ≤ k ≤ ω it holds ↑~x 〈B ∪ {2ω−kp+ 2ω−1}〉~x = 〈Bk〉~x. Now:

• Let q ∈ α~x(A′) and ~a ∈ γ~x(〈B ∪ {2ω−kp + 2ω−1}〉~x). Then, ~a ∈ γ~x(B) = A

and J2ω−kp+2ω−1K~x(~a) = 2ω−kJpK~x(~a)+2ω−1 = 0. In particular, JpK~x(~a) 6= 0,

so ~a ∈ A′. But then, JqK~x(~a) = 0, hence γ~x(〈B ∪ {2ω−kp+ 2ω−1}〉~x) ⊆ γ~x(q).

It follows q ∈ ↑~x 〈B ∪ {2ω−kp+ 2ω−1}〉~x = 〈Bk〉~x, hence q ∈
⋂ω
k=1〈Bk〉~x =⊔ω

k=1〈Bk〉~x.

• Let q ∈
⊔ω
k=1〈Bk〉~x =

⋂ω
k=1〈Bk〉~x, so q ∈ 〈Bk〉~x for each 1 ≤ k ≤ ω, and

~a ∈ A′. Then, ~a ∈ A = γ~x(B) and JpK~x(~a) 6= 0. Let JpK~x(~a) =
∑ω

`=1 b`2
`−1

where each b` ∈ {0, 1}. Since JpK~x(~a) 6= 0, there exists 1 ≤ k ≤ ω such that

bk = 1 and b` = 0 for all ` < k. Then, 2ω−kJpK~x(~a) =
∑ω

`=1 b`2
ω−k+`−1 =∑k

`=1 b`2
ω−k+`−1 = 2ω−1. In particular J2ω−kp + 2ω−1K~x(~a) = 2ω−kJpK~x(~a) +

2ω−1 = 2ω−1 + 2ω−1 = 0, hence ~a ∈ γ~x(〈B ∪ {2ω−kp + 2ω−1}〉~x). But since

q ∈ 〈Bk〉~x = ↑~x 〈B ∪ {2ω−kp+ 2ω−1}〉~x it follows γ~x(〈B∪{2ω−kp+2ω−1}〉~x) ⊆
γ~x(q), hence ~a ∈ γ~x(q). Therefore, A′ ⊆ γ~x(q) and so q ∈ α~x(A′).

It follows
⊔ω
k=1〈Bk〉~x = α~x(A

′), as required.

APPENDIX A. PROOFS 123

Proof of Lemma 8. Put w = yj. First, if~b ∈ A′ then~b = 〈a1, . . . , aj−1, JpK~x(~a), aj, . . . , ad〉
for some ~a ∈ A. Now, if q ∈ B then JqK~y(~b) = JqK~x(~a) = 0. Moreover, Jw−pK~y(~b) =

JpK~x(~a) − JpK~x(~a) = 0. It follows ~b ∈ γ~y(B ∪ {w − p}) = γ~y(〈B ∪ {w − p}〉~y),
thus A′ ⊆ γ~y(〈B ∪ {w − p}〉~y). Therefore, by Proposition 6 it follows α~y(A

′) v
〈B ∪ {w − p}〉~y, or equivalently 〈B ∪ {w − p}〉~y ⊆ α~y(A

′).

To show the opposite inclusion, let q ∈ α~y(A
′). Then, by Lemma 3, q =

u(w − p) + r for some u ∈ Zm[~y] and r ∈ Zm[~x]. Let ~a ∈ A. Then, ~b =

〈a1, . . . , aj−1, JpK~x(~a), aj, . . . , ad〉 ∈ A′ and JrK~x(~a) = JrK~y(~b) = Jq−u(w−p)K~y(~b) =

JqK~y(~b)−JuK~y(~b)Jw−pK~y(~b) = 0−JuK~y(~b)0 = 0. It follows A ⊆ γ~x(r), thus r ∈ 〈B〉~x.
Since q = u(w−p)+r where r ∈ 〈B〉~x it thus follows q ∈ 〈B∪{w−p}〉~y. Therefore,

α~y(A
′) ⊆ 〈B ∪ {w − p}〉~y as required.

Proof for Proposition 16. Let A′ = Zm × A. Observe b : ~a ∈ γw:~x(B) iff ~a ∈
γ~x(B) = A, hence γw:~x(〈B〉w:~x) = γw:~x(B) = A′. Thus, for p ∈ Zm[w : ~x] it holds

that γw:~x(〈B〉w:~x) ⊆ γw:~x(p) iff A′ ⊆ γw:~x(p), hence ↑w:~x 〈B〉w:~x = αw:~x(A
′). By

assumption ↑w:~x 〈B〉w:~x = 〈B′′〉w:~x, hence 〈B′′〉w:~x = αw:~x(A
′). By Proposition 8,

elim[xj](〈B′′〉w:πj(~x)) = αw:πj(~x)(πj+1(A
′)). Since elim[xj](〈B′′〉w:~x) = 〈B′′′〉w:πj(~x)

holds by assumption, it follows 〈B′′′〉w:πj(~x) = αw:πj(~x)(πj+1(A
′)).

Now, let A′′ = {〈b1, . . . , bj, JwKw:πj(~x)(~b), bj+1, . . . , bd〉 | ~b ∈ πj+1(A
′)}. Then,

Lemma 8 implies αw:~x(A
′′) = 〈B′′ ∪ {xj − w}〉w:~x. From Proposition 8 it follows

elim[w](αw:~x(A
′′)) = α~x(π1(A

′′)), hence elim[w](〈B′′ ∪ {xj − w}〉w:~x) = α~x(π1(A
′′)).

But, by assumption, elim[w](〈B′′∪{xj−w}〉w:~x) = 〈B′〉~x, hence 〈B′〉~x = α~x(π1(A
′′)).

To conclude, note that πj+1(A
′) = πj+1(Zm × A) = Zm × πj(A), and so

A′′ = {〈b1, . . . , bj, JwKw:πj(~x)(~b), bj+1, . . . , bd〉 | ~b ∈ πj+1(A
′)}

= {〈b1, . . . , bj, b1, bj+1, . . . , bd〉 | ~b ∈ Zm × πj(A)}
= {〈b, a1, . . . , aj−1, b, aj+1, . . . , ad〉 | ~a ∈ A ∧ b ∈ Zm}

Thus, π1(A
′′) = {〈a1, . . . , aj−1, b, aj+1, . . . , ad〉 | ~a ∈ A ∧ b ∈ Zm} = Jxj := ∗K(A),

hence 〈B′〉~x = α~x(Jxj := ∗K(A), as required.

Proof of Proposition 17. LetA′ = {〈JpK~x(~a), a1, . . . , ad〉 | ~a ∈ A}. Then, αw:~x(A
′) =

〈B∪{w−p}〉w:~x by Lemma 8. Thus, from Proposition 8 it follows elim[xj](αw:~x(A
′)) =

APPENDIX A. PROOFS 124

αw:πj(~x)(πj+1(A
′)), and therefore elim[xj](〈B ∪ {w − p}〉w:~x) = αw:πj(~x)(πj+1(A

′)).

But, by assumption, elim[xj](〈B ∪ {w − p}〉w:~x) = 〈B′′〉w:πj(~x), hence 〈B′′〉w:πj(~x) =

αw:πj(~x)(πj+1(A
′)).

Now, let A′′ = {〈b1, . . . , bj, JwKw:πj(~x)(~b), bj+1, . . . , bd〉 | ~b ∈ πj+1(A
′)}. Then,

Lemma 8 implies αw:~x(A
′′) = 〈B′′ ∪ {xj − w}〉w:~x. From Proposition 8 it follows

elim[w](αw:~x(A
′′)) = α~x(π1(A

′′)), hence elim[w](〈B′′ ∪ {xj − w}〉w:~x) = α~x(π1(A
′′)).

But, by assumption, elim[w](〈B′′∪{xj−w}〉w:~x) = 〈B′〉~x, hence 〈B′〉~x = α~x(π1(A
′′)).

To conclude, note that

A′′ = {〈b1, . . . , bj, JwKw:πj(~x)(~b), bj+1, . . . , bd〉 | ~b ∈ πj+1(A
′)}

= {〈b1, . . . , bj, b1, bj+1, . . . , bd〉 | ~b ∈ πj+1(A
′)}

= {〈JpK~x(~a), a1, . . . , aj−1, JpK~x(~a), aj+1, . . . , ad〉 | ~a ∈ A}

Thus, π1(A
′′) = {〈a1, . . . , aj−1, JpK~x(~a), aj+1, . . . , ad〉 | ~a ∈ A} = Jxj := pK(A),

hence 〈B′〉~x = α~x(Jxj := pK(A), as required.

Bibliography

[1] Ábráham, E. (2015). Building Bridges between Symbolic Computation and

Satisfiability Checking. In International Symposium on Symbolic and Alge-

braic Computation, ACM Press, pp. 1–6.

[2] Adams, W. and Loustaunau, P. (1994). An Introduction to Gröbner Bases.

American Mathematical Society.

[3] Backeman, P., Rümmer, P. and Zeljic, A. (2018). Bit-Vector Interpolation and

Quantifier Elimination by Lazy Reduction. In Formal Methods in Computer

Aided Design, IEEE, pp. 1–10.

[4] Bosma, W. et al. (2010). Handbook of Magma Functions. University of Sydney,

2nd edn., https://magma.maths.usyd.edu.au/magma/handbook/.

[5] Brickenstein, M. et al. (2009). New Developments in the Theory of Gröbner

Bases and Applications to Formal Verification. Journal of Pure and Applied

Algebra, 213, pp. 1612–1635.

[6] Brown, C. (2016). Bridging Two Communities to Solve Real Problems. In

International Symposium on Symbolic and Numeric Algorithms for Scientific

Computing, IEEE Press, pp. 11–14.

[7] Bryant, R., German, S. and Velev, M. (2001). Exploiting Positive Equality

in a Logic of Equality with Uninterpreted Functions. ACM Transactions on

Computational Logic, 2(1), pp. 93–134.

[8] Buchberger, B. (2006). Bruno Buchberger’s PhD thesis 1965: An Algorithm

for Finding the Basis Elements of the Residue Class ring of a Zero Dimensional

Polynomial Ideal. Journal of Symbolic Computation, 41, pp. 475–511.

125

https://magma.maths.usyd.edu.au/magma/handbook/

BIBLIOGRAPHY 126

[9] Cacher, D. et al. (2014). Inference of polynomial invariants for imperative

programs: A farewell to Gröbner bases. Science of Computer Programming,

93, pp. 89–109.

[10] Codish, M. et al. (1995). Improving Abstract Interpretations by Combining

Domains. ACM Transactions on Programming Languages and Systems, 17(1).

[11] Collins, G. and Hong, H. (1991). Partial Cylindrical Algebraic Decomposition

for Quantifier Elimination. Journal of Symbolic Computation, 12, pp. 299–328.

[12] Collins, G. E. (1975). Quantifier Elimination for Real Closed Fields by Cylin-

drical Algebraic Decompostion. In Automata Theory and Formal Languages,

Springer, pp. 134–183.

[13] Colón, M. A. (2004). Approximating the Algebraic Relational Semantics of

Imperative Programs. In Static Analysis Symposium, Lecture Notes in Com-

puter Science, vol. 3148, Springer, pp. 296–311.

[14] Cousot, P. and Cousot, R. (1977). Abstract interpretation: a unified lattice

model for static analysis of programs by construction or approximation of

fixpoints. In Principles of Programming Languages, ACM Press, pp. 238–252.

[15] Cousot, P. and Cousot, R. (1992). Comparing the Galois Connection and

Widening/Narrowing Approaches to Abstract Interpretation. In International

Symposium on Programming Language Implementation and Logic Program-

ming, Springer, pp. 269–295.

[16] Cousot, P. and N, H. (1978). Automatic Discovery of Linear Restraints among

Variables of a Program. In Principles of Programming Languages, ACM Press,

p. 8496.

[17] Cousot, P. et al. (2005). The ASTRÉE Analyzer. In European Symposium on

Programming, Lecture Notes in Computer Science, vol. 3444, Springer, pp.

21–30.

[18] Cox, D., Little, J. and O’Shea, D. (1992). Ideals, Varieties and Algorithms.

Undergraduate Texts in Mathematics, Springer.

BIBLIOGRAPHY 127

[19] Davenport, J. H. et al. (2019). Symbolic Computation and Satisfiability

Checking. Journal of Symbolic Computation, https://doi.org/10.1016/j.

jsc.2019.07.017.

[20] Davis, M., Logemann, G. and Loveland, D. (1962). A Machine Program for

Theorem-Proving. Communications of the ACM, 5(7), p. 394?397.

[21] de Oliveira, S., Bensalem, S. and Prevosto, V. (2016). Polynomial invariants

by linear algebra. In Automated Technology for Verification and Analysis, vol.

9938, Springer, pp. 479–494.

[22] Dill, D. (1989). Timing Assumptions and Verification of Finite-state Concur-

rent Systems. In CAV, Lecture Notes in Computer Science, vol. 407, Springer,

pp. 197–212.

[23] Eder, C. and Faugàre, J. C. (2017). A Survey on Signature-Based Algorithms

for Computing Gröbner Bases. Journal of Symbolic Computation, 80, pp. 719–

784.

[24] Eder, C., Pfister, G. and Popescu, A. (2017). On Signature-Based Gröbner

Bases over Euclidean Rings. In International Symposium on Symbolic and

Algebraic Computation, ACM Press, pp. 141–148.

[25] Eder, C., Pfister, G. and Popescu, A. (2021). Standard bases over Euclidean

domains. Journal of Symbolic Computation, 102, pp. 21–36.

[26] Elder, M. et al. (2014). Abstract Domains of Affine Relations. ACM Trans-

actions on Programming Languages and Systems, 36(4), pp. 1–73.

[27] Faugére, J. (1999). A New Efficient Algorithm for Computing Gröbner Bases

(F4). Journal of Pure and Applied Algebra, 139(1-3), pp. 61–88.

[28] Faugère, J. C. (2002). A New Efficient Algorithm for Computing

GröbnerBases without Reduction to Zero (F5). In International Symposium

on Symbolic and Algebraic Computation, ACM Press, pp. 75–83.

https://doi.org/10.1016/j.jsc.2019.07.017
https://doi.org/10.1016/j.jsc.2019.07.017

BIBLIOGRAPHY 128

[29] Fekete, Y. and Codish, M. (2014). Simplifying Pseudo-Boolean Constraints in

Residual Number Systems. In SAT, Lecture Notes in Computer Science, vol.

8561, Springer, pp. 351–366.

[30] Francis, M. and Verron, T. (2020). A Signature-Based Algorithm for Comput-

ing Gröbner Bases over Principal Ideal Domains. Mathematics in Computer

Science, 14, pp. 515–530.

[31] Ganesh, V. and Dill, D. (2007). A Decision Procedure for Bit-vectors and

Arrays. In Computer-Aided Verification, Springer, no. 4590 in Lecture Notes

in Computer Science, pp. 519–531.

[32] Gange, G. et al. (2013). Solving Difference Constraints over Modular Arith-

metic. In CADE, Lecture Notes in Computer Science, vol. 7898, Springer, pp.

215–230.

[33] Gange, G. et al. (2014). Interval Analysis and Machine Arithmetic: Why

Signedness Ignorance Is Bliss. ACM Transactions on Programming Languages

and Systems, 37(1), pp. 1–35.

[34] Granger, P. (1991). Static Analysis of Linear Congruence Equalities Among

Variables of a Program. In Theory and Practice of Software, Lecture Notes in

Computer Science, vol. 493, Springer, pp. 169–192.

[35] Greuel, G.-M., Seelisch, F. and Wienand, O. (2011). The Gröbner Basis of

the Ideal of Vanishing Polynomials. Journal of Symbolic Computation, 46(5),

pp. 561–570.

[36] Griggio, A. (2011). Effective Word-Level Interpolation for Software Verifica-

tion. In Formal Methods in Computer-Aided Design, IEEE, pp. 28–36.

[37] Harrison, W. (1977). Compiler Analysis of the Value Ranges for Variables.

IEEE Transactions on Software Engineering, 3(3), pp. 243–250.

[38] Hilbert, D. (1890). Über die Theorie der Algebraischen Formen. Mathematis-

che Annalen, 36(4), pp. 473–534.

BIBLIOGRAPHY 129

[39] Horácek, J. et al. (2017). Integrating Algebraic and SAT Solvers. In Mathe-

matical Aspects of Computer and Information Sciences, vol. 10693, Springer,

pp. 147–162.

[40] Howe, J., King, A. and Simon, A. (2019). Incremental Closure for Systems of

Two Variables Per Equality. Theoretical Computer Science, 768, pp. 1–64.

[41] Hrushovski, E. et al. (2018). Polynomial Invariants for Affine Programs. In

Logic in Computer Science, ACM Press, pp. 530–539.

[42] Humenberger, A., Jaroschek, M. and Kovács, L. (2018). Invariant Generation

for Multi-Path Loops with Polynomial Assignments. In Verification, Model

Checking and Abstract Interpretation, Lecture Notes in Computer Science,

vol. 10747, Springer, pp. 226–246.

[43] Hungerbühler, N. and Specker, E. (2006). A Generalization of the Smaran-

dache Function to Several Variables. Integers: Electronic Journal Combina-

torial Number Theory, 6, pp. 1–11.

[44] Jovanović, D. and de Moura, L. (2012). Solving Non-linear Arithmetic. In

International Joint Conference on Automated Reasoning, vol. 7364, Springer,

pp. 339–354.

[45] Kandri-Rody, A. and Kapur, D. (1988). Computing a Gröbner Basis of a

Polynomial Ideal over a Euclidean Domain. Journal of Symbolic Computation,

6(1), pp. 37–57.

[46] Karr, M. (1976). Affine Relationships Among Variables of a Program. Acta

Informatica, 6(2), pp. 133–151.

[47] Kempner, A. J. (1921). Polynomials and their Residue Systems. Transactions

of the American Mathematical Society, 22(2), pp. 240–266.

[48] King, A. and Søndergaard, H. (2008). Inferring Congruence Equations using

SAT. In Computer-Aided Verification, Lecture Notes in Computer Science,

vol. 5123, Springer, pp. 281–293.

BIBLIOGRAPHY 130

[49] Kovács, L. (2008). Reasoning Algebraically About P-Solvable Loops. In Tools

and Algorithms for the Construction and Analysis of Systems, Lecture Notes

in Computer Science, vol. 4963, Springer, pp. 249–264.

[50] Kovács, L. (2010). A Complete Invariant Generation Approach for P-Solvable

Loops. In International Andrei Ershov Memorial Conference on Perspec-

tives of System Informatics, Lecture Notes in Computer Science, vol. 5947,

Springer, pp. 242–256.

[51] Kroening, D. and Strichman, O. (2016). Decision Procedures. Springer.

[52] Lang, S. (2002). Graduate Texts in Mathematics: Algebra. Springer.

[53] Manquinhoand, V. M. and Marques-Silva, J. (2006). Using Cutting Planes in

Pseudo-Boolean Optimization. Journal on Satisability, Boolean Modeling and

Computation, 2, pp. 199–208.

[54] Marques-Silva, J. and Sakallah, K. (1999). GRASP: A Search Algorithm for

Propositional Satisfiability. IEEE Transactions on Computers, 48, pp. 506–

521.

[55] Marques-Silva, J. P., Lynce, I. and Malik, S. (2009). Conflict-Driven Clause

Learning SAT Solvers. In A. Biere, M. Heule, H. Van Maaren and T. Walsh,

eds., Handbook of Satisfiability, IOS Press, pp. 131–153.

[56] Marques-Silva, J. P. and Sakallah, K. A. (1999). GRASP: A Search Algorithm

for Propositional Satisfiability. IEEE Transactions on Computers, 48(5), pp.

506–521.

[57] Mayr, E. (1989). Membership in Polynomial Ideals over Q is Exponential

Space Complete. In Symposium on Theoretical Aspects of Computer Science,

Lecture Notes in Computer Science, vol. 349, Springer, pp. 400–406.

[58] Michel, L. and Van Hentenryck, P. (2012). Constraint Satisfaction over Bit-

vectors. In Constraint Programming, Lecture Notes in Computer Science, vol.

7514, Springer, pp. 527–543.

BIBLIOGRAPHY 131

[59] Miné, A. (2006). The Octagon Abstract Domain. Higher-Order and Symbolic

Computation, 19(1), pp. 31–100.

[60] Möller, H. M. (1988). On the Construction of Gröbner Bases Using Syzygies.

Journal of Symbolic Computation, 6(2–3), pp. 345–359.

[61] Moskewicz, M. W. et al. (2001). Chaff: Engineering an Efficient SAT Solver.

In Design Automation Conference, pp. 530–535.

[62] Müller-Olm, M. and Seidl, H. (2004). A Note on Karr’s Algorithm. In In-

ternational Colloquium on Automata, Languages, and Programming, Lecture

Notes in Computer Science, vol. 3142, Springer, pp. 1016–1028.

[63] Müller-Olm, M. and Seidl, H. (2004). Computing Polynomial Program Invari-

ants. Information Processing Letters, 91, pp. 233–244.

[64] Müller-Olm, M. and Seidl, H. (2005). Analysis of Modular Arithmetic. In

European Symposium on Programming, Lecture Notes in Computer Science,

vol. 3444, Springer, pp. 46–60.

[65] Müller-Olm, M. and Seidl, H. (2007). Analysis of Modular Arithmetic. ACM

Transactions on Programming Languages and Systems, 29(5), pp. 1–26.

[66] Nelson, G. and Oppen, D. (1979). Simplification by Cooperating Decision Pro-

cedures. ACM Transactions on Programming Languages and Systems, 1(2),

pp. 245–257.

[67] Nieuwenhuis, R. and Oliveras, A. (2005). DPLL(T) with Exhaustive Theory

Propagation and its Application to Difference Logic. In Computer-Aided Veri-

fication, Lecture Notes in Computer Science, vol. 3576, Springer, pp. 321–334.

[68] Nieuwenhuis, R., Oliveras, A. and Tinelli, C. (2006). Solving SAT and SAT

Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland pro-

cedure to DPLL(T). Journal of the ACM, 53(6), pp. 937–977.

[69] Reps, T., Sagiv, M. and Yorsh, G. (2004). Symbolic Implementation of the

Best Transformer. In Verification, Model Checking and Abstract Interpreta-

tion, Lecture Notes in Computer Science, vol. 2937, Springer, pp. 252–266.

BIBLIOGRAPHY 132

[70] Rodŕıguez-Carbonell, E. and Kapur, D. (2007). Generating all Polynomial

Invariants in Simple Loops. Journal of Symbolic Computation, 42, pp. 443–

476.

[71] Sankaranarayanan, S., Sipma, H. B. and Manna, Z. (2004). Non-linear Loop

Invariant Generation using Gröbner Bases. In Principles of Programming Lan-

guages, ACM Press, pp. 318–329.

[72] Seed, T., King, A. and Evans, N. (2020). Reducing Bit-Vector Polynomials to

SAT using Gröbner Bases. In Theory and Applications of Satisfiability Testing,

Lecture Notes in Computer Science, vol. 12178, Springer, pp. 361–377.

[73] Shekhar, N. et al. (2005). Equivalence Verification of Polynomial Datapaths

with Fixed-Size Bit-Vectors using Finite Ring Algebra. In International Con-

ference on Computer-Aided Design, IEEE Computer Society, pp. 291–296.

[74] Simon, A. and King, A. (2010). The Two Variable Per Inequality Abstract

Domain. Higher-Order and Symbolic Computation, 23(1), pp. 87–143.

[75] Singmaster, D. (1974). On Polynomial Functions (mod m). Journal of Number

Theory, 6(5), pp. 345–352.

[76] T. Viehmann and G. Kremer and E. Ábráham (2017). Comparing Differ-

ent Projection Operators in the Cylindrical Algebraic Decomposition for

SMT Solving. In International Workshop on Satisfiability Checking and Sym-

bolic Computation, http://www.sc-square.org/CSA/workshop2-papers/

RP2-FinalVersion.pdf.

[77] Wang, W., Søndergaard, H. and Stuckey, P. (2019). Wombit: A Portfolio

Bit-Vector Solver Using Word-Level Propagation. Journal of Automated Rea-

soning, 63(3), pp. 723–762.

[78] Warren, H. (2012). Hacker’s Delight. Addison-Wesley.

[79] Zhang, L. and Malik, S. (2002). The Quest for Efficient Boolean Satisfia-

bility Solvers. In International Conference on Computer Aided Verification,

Springer, pp. 17–36.

http://www.sc-square.org/CSA/workshop2-papers/RP2-FinalVersion.pdf
http://www.sc-square.org/CSA/workshop2-papers/RP2-FinalVersion.pdf

