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Abstract 20 

Archaeologists rarely discover the first or last known occurrences of past cultural phenomena, yet ‘start’ and 21 

‘end’ dates are central to our understanding of past human behaviour; therein lays a paradox long known within 22 

the discipline. Optimal linear estimation (OLE) has recently been used to reconstruct the full temporal range of 23 

prehistoric archaeological technologies using only the partial records available. That is, OLE has been used to 24 

reconstruct the portions of the archaeological record not yet evidenced through artefact discoveries. Here we 25 

present OLE to a wider archaeological audience and outline for the first time the model’s assumptions as they 26 

pertain to archaeological phenomena. We demonstrate OLE to be an accessible, user-friendly and 27 

methodologically transparent temporal range estimation method applied via a single set of equations. Further, 28 

we present five additional frequentist techniques that enable archaeologists to account for observation 29 

reliability, search effort and extreme data scarcity when inferring temporal ranges. These methods allow 30 

archaeologists to gain a more accurate understanding of the temporal range of past human behaviour. 31 

 32 
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1. Introduction 40 
 41 

Recently introduced to archaeology from conservation science and palaeontological studies (e.g., Roberts 42 
and Solow, 2003; Pimiento and Clements, 2014; Zhang et al., 2020), optimal linear estimation (OLE) modelling is 43 
proving a useful technique to infer the full chronology of archaeological phenomena (Key et al, 2021a, 2021b; 44 
Bebber and Key, 2021). This brief communication is designed to introduce the technique to a wider 45 
archaeological audience, and to discuss how the model’s predictions and assumptions interact with the unique 46 
nature of archaeological phenomena. We also present several additional, related techniques that are new to 47 
archaeological science and can be used separately or in conjunction with OLE to increase the accuracy of 48 
temporal estimates. 49 
 50 

Unlike traditional assessments which use dated artefacts as a start or end point, OLE can infer how much 51 
longer a phenomenon is likely to have persisted prior to, or after, these known dates. That is, OLE is able to 52 
reconstruct the portion of the archaeological record that has not yet been discovered and provide a more 53 
accurate account of an archaeological phenomena’s temporal presence (Fig. 1). To date, the technique has been 54 
used to extend the Oldowan and Acheulean periods by tens of thousands of years (Key et al., 2021a 2021b), and 55 
push back the origin of North American copper use by several hundred years (Bebber and Key, 2021). 56 

 57 
The importance of reconstructing the earliest and latest portions of an archaeological phenomenon’s 58 

temporal range has long been recognised (e.g., Cowgill, 1972; Surovell and Brantingham, 2007; Crema, 2012). 59 
Currently, Bayesian modelling approaches are the dominant (c.f. Buck and Meson, 2015; Ramsey, 2015) method 60 
applied to solving temporal probability questions in archaeological research. Although techniques addressing 61 
temporal uncertainty in archaeological occurrences are also well known (Crema, 2012; Kolář et al., 2016; Baxter 62 
and Cool, 2016). Most often used to calibrate radiocarbon dates (Bayliss, 2015; Crema and Bevan, 2021), 63 
Bayesian models can provide ‘start’ or ‘end’ dates for a given phenomenon based on probability densities derived 64 
from groups of temporally bounded radiocarbon samples (e.g., Wicks et al., 2014; Bicho et al., 2015). In turn, 65 
temporal range estimations have generally been limited to archaeological phenomena with associated 66 
radiocarbon dates.  67 
 68 

Importantly, most Bayesian techniques applied to radiocarbon probability distributions do not directly 69 
model the start or end date of a phenomena. Instead, they provide revised probability estimates reconstructed 70 
from the probability densities of known radiocarbon samples; they do not directly reconstruct yet-to-be-71 
discovered portions of the archaeological record. In other words, Bayesian techniques estimate when known 72 
artefact records occurred. Further, Bayesian techniques do not always consider changes to artefact occurrence 73 
frequencies through time (although it is possible [e.g., Ramsey, 2015; Fernández-López de Pablo and Barton, 74 
2015; Banks et al., 2019; Crema and Kobayashi, 2020]).) Finally, Bayesian techniques (see: Otarola-Castillo and 75 
Torquato [2018] and references therein) are underpinned by the necessity of including prior assumptions about 76 
the phenomena they are investigating (Litton and Buck, 1995), meaning that inherent to any Bayesian temporal 77 
range estimates are subjective interpretations of prior information specified by the archaeologist (Pettitt and 78 
Zilhão, 2015) (although techniques to limit the impact of unverified a priori information can be applied [e.g., 79 
Long and Taylor, 2015]). While useful in many contexts, Bayesian techniques require prior information that can 80 
often be unavailable, are mathematically demanding, and can be difficult to compare to more traditional 81 
frequentist methods (Pettitt and Zilhão, 2015; Brook et al., 2019). It is for these reasons that their use has been 82 
limited within conservation studies (Boakes et al., 2015).  83 
 84 

In contrast, OLE makes very few prior assumptions, and as a frequentist method based on the extreme value 85 
theory its predictions are rooted in the temporal spacing of the data that it investigates. This means that partial 86 
temporal records (i.e., periodic occurrences of artefacts through time) are not only easily accommodated into 87 
the method but are intrinsic to its predictions. Moreover, it can be applied to any type of dating information, any 88 
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archaeological phenomena, and at any timescale, so long as it is represented by lineal occurrences through time, 89 
be this highly sporadic early stone tool technologies dated through optically stimulated luminiscence (OSL), 90 
faunal, 40Ar/39Ar or radiocarbon methods, or more recent archaeological phenomena dated through historical 91 
texts or ethnographic sightings. Its implementation via a single set of equations further increases its transparency 92 
and accessibility as an analytical tool. In other words, OLE has potential to be applied within any archaeological 93 
context and by any archaeologist.  94 
 95 

Other temporal range estimation techniques have been used in conservation science and paleobiology 96 
research, and could potentially be used to reconstruct the archaeological record. However, some have been 97 
shown to be outperformed by OLE (Rivadeneira et al., 2009) or require records to represent stationary Poisson 98 
processes (i.e., there is no decline in frequency towards extinction, or increase in frequency after invention) (e.g., 99 
Solow, 1993), which is not realistic for most archaeological phenomena (Surovell and Brantingham, 2007; 100 
Mesoudi and Lycett, 2009; Lycett, 2015; Mesoudi, 2015; Shennan, 2015). Indeed, one of the reasons that OLE 101 
can be readily applied within archaeology is that, as with species, the origination or extinction of culture is not 102 
sudden. It develops over time, meaning the likelihood of identifying sites that represent the start and end points 103 
of a phenomena are incredibly low (Surovell and Brantingham, 2007; Prasciunas and Surovell, 2015). Rather, 104 
phenomena are likely to have persisted for longer periods, and these periods will be relatively difficult to detect 105 
in the archaeological record. There are always exceptions, such as catastrophic events that quickly wipe out a 106 
population, but these will be less common. 107 
 108 

It is important to note that although first developed for conservation science (Roberts and Solow, 2003; 109 
Solow, 2005), OLE has no parameters specific to biological organisms and can readily be applied to cultural 110 
traditions. Moreover, the analogous mechanisms underpinning biological and cultural evolution allow for similar 111 
factors to be influencing the start/end dates of both (Lycett, 2015; Mesoudi, 2015; Shennan, 2015). In addition 112 
to OLE, we also briefly describe here five other techniques that enable researchers to account for observation 113 
reliability (Jarić and Roberts, 2014; Brook et al., 2019), search effort (McCarthy, 1998), and situations with 114 
extreme data scarcity, such as datasets consisted of only two records (Solow and Roberts, 2003) or just a single 115 
record (Roberts and Jarić, 2020), when inferring temporal ranges.  116 
 117 

2. How does optimal linear estimation (OLE) work? 118 
 119 

OLE requires the oldest or youngest dated occurrences of a phenomena to be entered into the model 120 
(depending on whether it is being used to estimate a ‘start’ or an ‘end’), from which the timings and chronological 121 
spacing of these known occurrences are used to statistically estimate how much earlier or longer the phenomena 122 
is likely to have existed. Ten dates are generally recommended as being optimal (Solow, 2005; Rivadeneira et al., 123 
2009), although lower sample sizes (e.g., n = 5) have also been demonstrated to display good accuracy (Clements 124 
et al., 2013). OLE relies on the assumption that the dates entered into the model display (at least roughly) a joint 125 
distribution with a ‘Weibull form’. As noted above, this is a valid assumption for most archaeological phenomena. 126 
In turn, the shape (form) parameters of the Weibull distribution used in the OLE model are based on the 127 
chronology (spacing) of the dates entered. An ‘end’ or ‘start’ point can then be determined and is defined as the 128 
point at which the Weibull distribution determines that another occurrence should have been found had the 129 
cultural phenomenon not ended or not yet existed (relative to the temporal direction of the model) (Fig. 1).  130 
 131 

In case of a phenomenon ending, the model predicts that given the temporal spacing of the known 132 
archaeological record, we would have expected to have found a younger archaeological site relative to the 133 
youngest currently known, if the phenomenon still existed beyond the tail end of the model’s distribution. Given 134 
that no sites have been found, we can infer the phenomenon ends at this point. In cases of origination, the model 135 
infers that given the temporal spacing of the known archaeological record, another earlier occurrence of the 136 
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phenomenon would have been expected to have been found, relative to the currently known oldest occurrence, 137 
if it existed beyond the tail of the modelled distribution.  138 
 139 

2.1 Assumptions 140 
 141 
Although OLE has few underlying assumptions compared to other temporal modelling techniques (Solow, 142 

2005; Rivadeneira et al., 2009; Clements et al., 2013; Pettitt and Zilhão, 2015; Otarola-Castillo and Torquato, 143 
2018), there are several to be aware of. First, OLE assumes a continuation of the phenomena in question after or 144 
before the latest or earliest (respectively) currently known occurrences. Simply put, it assumes that it is unlikely 145 
that the most recent or earliest observation of a process would be the last/first point in time when the process 146 
was active. This can be safely assumed for most archaeological phenomena (see above), but near instantaneous 147 
ends to cultural phenomena are possible. This could range from catastrophic natural disasters (e.g., volcanic 148 
eruptions) through to the rapid replacement of one artefact type with another (e.g., changes to coinage). In 149 
instances where this is assumed, other methods, designed for cases with constant sighting rates prior to a 150 
phenomenon’s end, could be considered instead, such as that by Solow (1993). However, it should be noted that 151 
OLE and other frequentist methods are sensitive to, and account for, the amount of available data on the studied 152 
phenomenon. For example, in cases of well-studied and recent artefact types, where occurrences are temporally 153 
densely distributed and frequent, predicted end/start points would shift to and closely match the time of the 154 
last known record. 155 
 156 

Second, OLE assumes all observations (in this case archaeological occurrences) to be discrete. When 157 
modelling species extinction this means that each observation is assumed to represent a different, independent 158 
sighting event. Given that artefacts represent physical manifestations of cultural information contained within a 159 
biological repository, and ultimately it is the chronology of the cultural information that is being modelled, a 160 
‘discrete’ archaeological occurrence is at its most extreme an artefact/assemblage assumed to be produced by a 161 
unique individual relative to those already included in the model (Bebber and Key, 2021). This means that all 162 
artefactual occurrences should be assumed to have been made by different individuals. At its most moderate, 163 
‘discrete’ may simply refer to an independent representation of the phenomena; although this entails an 164 
assumption of random sampling from a population. Several identical dates can be used so long as they all meet 165 
this criterion. Indeed, variation in data type, quality and characteristics needs to be considered carefully to avoid 166 
biases when applying OLE (as with any modelling technique). Highly clustered data make an important example, 167 
and the archaeological record is full of waste middens, battle grounds, occupancy sites, artefact caches and other 168 
phenomena that should be considered carefully in terms of what precisely they represent when included within 169 
the model. In cases where cultural phenomena are broader and the product of multiple 170 
individuals/craftsperson’s, such as specific settlement types or some ceremonial outfits, then it may be more 171 
appropriate to consider discrete observations at a population level.  172 

 173 
Third, although OLE does not assume the probability of detection to be consistent, it does assume relatively 174 

stable search effort that never equates to zero. When modelling species extinction, this means that any breaks 175 
in between dates in the model (occurrences) are not a function of irregular search effort. In other words, the 176 
model assumes that gaps in species sighting data are not because people are not looking for the species. This 177 
assumption is less relevant to studies of paleontological or archaeological phenomena, as the temporal record 178 
of fossils and artefacts through time (and therefore their spacing) are not dictated by human search effort, but 179 
geological and taphonomic factors in combination with frequency changes (Surovell and Brantingham, 2007; 180 
Surovell et al., 2009). Archaeologists can display biases in search effort towards sediments of a specific age, but 181 
assuming that there is no intentional avoidance of artefacts then this assumption should not be violated in most 182 
archaeological instances (notably, geographic biases in search effort may also influence temporal records).  183 
 184 
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Although OLE makes no other assumptions, Clements et al. (2013) highlighted two additional factors that 185 
could potentially influence the model’s accuracy. The first includes sudden changes to the rate of a phenomena’s 186 
decline/uptake. Within an archaeological context, this means the addition of new pressures could alter the rate 187 
of cultural decline/uptake experienced for some, but not all, occurrences in the model. For example, sudden 188 
environmental change relevant to only the latest occurrences of an ‘extinction’ (end) model could additionally 189 
speed up the phenomena’s decline due to additional stresses on the population. The second factor concerns 190 
changes to the ‘observability’ of a phenomena. This does not relate to the naturally increasing/decreasing 191 
likelihood of discovering an occurrence as the phenomena become more or less widespread (Surovell and 192 
Brantingham, 2007; Mesoudi and Lycett, 2009; Jordan and Cummings, 2014). Instead, it refers to a change in 193 
relative observability. For instance, taphonomic processes can introduce natural bias to the preservation of 194 
archaeological sites, which can impact observability irrespective of the demographic and frequency trends 195 
present at the time of existence (Surovell and Brantingham, 2007; Surovell et al., 2009). Further, spatial 196 
considerations may also impact observability through changes to the accessibility of past landscapes (for 197 
example, earlier or later occurrences may be more or less likely to be discovered due to flooding events [e.g., the 198 
flooding of Doggerland]). Thus, these factors should be assumed constant when using OLE estimates (see Solow 199 
[2005], Clements et al. [2013], and Boakes et al. [2015] for further details). 200 
 201 

Finally, there are several expectations relevant to using OLE in archaeology that are not necessarily 202 
applicable in other contexts. First, there is an inherent assumption that the dates used in the model are an 203 
accurate representation of the temporal presence of the occurrence in question (see: Crema, 2012). That is, the 204 
dates associated with an artefact/site should accurately reflect when it entered the archaeological record (or at 205 
least, as accurate as the relevant dating method can be). Finally, there should be sufficient accuracy of an 206 
archaeological occurrence’s identification when including it in an OLE model. This is primarily an issue when 207 
typological artefact classifications are subjective and have potential to vary between analysts; after all, one 208 
cannot identify the final or first occurrence of a phenomena if it cannot be reliably detected. However, this is 209 
likely more an issue for some archaeological fields than others. 210 
 211 

2.2 OLE model 212 
 213 

The formulaic expression of OLE has recently been published in open access archaeological literature (Key 214 
et al., 2021a, 2021b), and is widely available elsewhere, including the original articles describing the technique 215 
(Roberts and Solow, 2003; Solow, 2005). Further, the R sExtinct software package provides an easily accessible 216 
means through which to run OLE (Clements, 2013). We provide an explanation of the OLE equations in the 217 
attached Supplementary Information, along with a link to the R script provided by Clements (2013). Notably, 218 
models inferring the ‘start’ date of archaeological phenomena need to be adjusted to run in the reverse temporal 219 
direction to those provided by Clements (2013; cf. Key et al., 2021b). The 10 youngest or oldest dates should be 220 
approximately used as the beginning of the period, dependent on the direction of the model. As with any 221 
frequentist model the most common time unit used is years, but decades, centuries or millennia can be used 222 
just as well.  223 

 224 
As noted above, OLE provides temporal estimates based on extreme Weibull form distributions that are 225 

tailored relative to the dated occurrences used, their distribution, and intervals observed between these dates. 226 
The distribution’s curve is then used to identify an ‘end point’ or ‘point of origin’ beyond which the phenomenon 227 
can be inferred to no longer exist, as if it did (given current artefact distributions) another artefactual occurrence 228 
would be known about between the last/earliest current known occurrence and the inferred point of end/origin. 229 
To put it another way, OLE asks, given the distribution of known occurrences, how likely is it that another does 230 
not exist in the archaeological record.  231 

 232 
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Two estimated dates are commonly produced by OLE. One represents the estimated origin (TO) or end (TE) 233 
date of the phenomenon in question. The other represents the upper bound of each model’s confidence interval 234 
(TCI), although lower bounds can also easily be produced and applied (Roberts and Solow, 2003). TO and TE dates 235 
are the main output of archaeological OLE models and represent the ‘end’ or ‘origin’ point in whatever dating 236 
time scale used for the input data (e.g., BP, BCE). TCI dates represent the point beyond which there is a 5% or less 237 
probability (in line with α = 0.05) that the phenomenon still existed. In other words, TCI dates represent a 238 
confidence limit where in 95 out of 100 cases, the true end/origin point will be within the confidence interval.   239 

 240 
Archaeological dating methods often come with a degree of uncertainty. That is, although the age of 241 

artefactual occurrences can be identified, they often come with error ranges, or date ranges with varying 242 
distributions of likelihood. Combined with the OLE method’s use of discrete time units (e.g., specific years), it 243 
means that point estimates must be identified and used in place of these ranges. It is possible to run individual 244 
OLE models using central tendency values taken from ranges, and this will provide a reasonable estimated 245 
account of the phenomenon’s temporal range (particularly if the date range has an approximate normal 246 
distribution of likelihood). Other methods for deciding on point estimates can be used, so long as they are 247 
justified (e.g., a secondary dating technique indicating that a specific portion of the first techniques range is more 248 
likely). In other instances, however, it may be favourable to account for temporal range uncertainty through 249 
repeated sampling procedures. As already applied elsewhere (Bebber and Key, 2021; Key et al., 2021), it is 250 
possible to draw dates randomly from a normal or uniform distribution (or other distribution, if preferred) within 251 
a defined range. This is repeated for all investigated occurrences and the randomly generated datasets are 252 
subsequently assessed with the OLE method. By repeating this procedure many times (e.g., 10,000) and using 253 
averages from the OLE data produced, it becomes possible to account for the temporal uncertainty associated 254 
with many archaeological dating techniques. Additional frequentist techniques that specifically account for 255 
record reliability, including dating uncertainty, are described below (Section 3.1).  256 

 257 
 258 

2.3 How does temporal spacing of dated archaeological occurrences impact OLE estimations? 259 
 260 

OLE has repeatedly been demonstrated to be robust within a variety of scenarios, including those that vary 261 
in temporal scale, ‘sighting’ probabilities, or search effort and trajectories (Rivadeneira et al., 2009; Clements et 262 
al., 2013). This means that OLE tends to remain accurate under most archaeological scenarios. As with any 263 
statistical modelling, however, the characteristics of the data entered into the model determine the output and 264 
the inferences derived thereof. Thus, it is useful to highlight how variation in sampling patterns and discovery 265 
happenstance can influence temporal range estimations. Figure 1 details a typical sequence of ten archaeological 266 
finds through time, under four different scenarios. This is a simple example and does not represent a test of 267 
robustness, as this has already been undertaken elsewhere (see Rivadeneira et al. 2009; Clements et al., 2013). 268 
Nevertheless, it is a useful illustration of the method’s performance, as it highlights its sensitivity to the 269 
distribution and trends in records. 270 

 271 
Figure 1a details a typical artefact sequence where there is a greater number of earlier artefactual 272 

occurrences (blue), but as the phenomena increasingly moves towards its end the likelihood of finding 273 
artefacts/sites decreases until there is a final known occurrence (yellow). Using this example, OLE models predict 274 
the phenomena to end at 965 years before present (BP), 35 years after the youngest known artefact (1000 BP). 275 
Using the same artefactual occurrences but with several being randomly removed (such that n = 5, while ensuring 276 
the youngest date remains the same), the model’s inferred end date shifts slightly forward to 957 BP (Fig. 1b), 277 
suggesting a slightly longer persistence of the phenomenon. Of course, this is a simple example, but it highlights 278 
the ability of the method to be used with low sample sizes, albeit with increased uncertainty. 279 
 280 
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The factor most likely to influence an OLE model’s prediction is the temporal density of dates close to the 281 
latest or earliest known occurrence (depending on its temporal direction). If there are greater numbers of known 282 
occurrences immediately prior to the last one, then the model will predict a closer end date (989 BP; Fig. 1c). 283 
Indeed, it follows that if there are several closely dated sites and then an absence of occurrences, it is likely that 284 
the last known record will be reasonably close to the true end date of the phenomenon. Conversely, relatively 285 
few records prior to the last known occurrence will point to a likely declining trend of occurrence, and that the 286 
phenomenon likely continued for an extended period with low chance of detection. Thus, in these instances the 287 
model has increased uncertainty and predicts a relatively longer tail of presence for the phenomenon (942 BP; 288 
Fig. 1d).   289 
 290 

 291 
Figure 1: Examples of how OLE temporal estimates are influenced by date distributions (these illustrations are 292 
derived from real OLE estimates). Figure A represents a ‘standard’ archaeological scenario where more 293 
occurrences exist closer to the phenomenon’s peak and then gradually decrease prior to the ‘last known artefact’ 294 
(n = 10). Figure B represents the same scenario, but happenstance and/or reduced search effort has resulted in 295 
only five artefacts (and therefore dates) being available (n = 5; randomly sampled from Figure A’s scenario). 296 
Figure C illustrates improved surveying and/or preservation conditions, which has resulted in a greater number 297 
of instances having been found prior to the last known artefact (n = 10). This will predict a faster end to the 298 
phenomenon; the model’s logic is that if it had continued beyond 989 BP, archaeologists should have discovered 299 
another site between 1000 – 989 BP given the density and distribution of sites found prior to 1000 BP. Figure D 300 
demonstrates the reverse scenario, where fewer dates are available around the ‘last known artefact’, indicating 301 
a declining trend of occurrence. In such a scenario, a quick end to the phenomenon is unlikely due to extended 302 
intervals between occurrences, and therefore the increased likelihood that artefacts do exist but remain 303 
undiscovered. Note that scenarios C and D are relatively extreme examples for demonstrative purposes.  304 
 305 

3. Further frequentist range estimation methods 306 
 307 
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3.1 Methods that account for record reliability 308 
 309 

Archaeological records often contain artefacts of variable reliability. This may stem from their state of 310 
preservation and other factors impeding identification, uncertainty of their origin (e.g., surface finds), or 311 
credibility of the person reporting the find. Whether an artefact or site is accepted as a valid record can strongly 312 
affect the inferences derived using temporal estimation methods (Roberts et al., 2010). Thus, it is important for 313 
the reliability of occurrence identification to be considered as part of some archaeological scenarios that apply 314 
these techniques.   315 

 316 
The majority of the existing temporal estimation methods designed to handle mixed-certainty records either 317 

classify them as reliable or unreliable, or assign them a score that represents probability that a record is true, 318 
based on the record type and its characteristics (Boakes et al., 2015; Brook et al., 2019). While the common 319 
approach for treating variable reliability is to include or discard records based on their type or arbitrary inclusion 320 
probability thresholds, recently developed approaches by Jarić and Roberts (2014) and Brook et al. (2019) allow 321 
for individual record reliabilities to be directly included in existing temporal inference methods (including OLE). 322 
 323 

The approach by Jarić and Roberts (2014) represents a simple modification of existing methods and allows 324 
each individual record to be weighted based on its reliability score. Although so far only applied to the standard 325 
Solow method (Solow, 1993), Jarić and Roberts (2014) suggest that it can also be readily applied to other 326 
frequentist methods, including those by Strauss and Sadler (1989), Solow and Roberts (2003) and McInerny et 327 
al. (2006). The modification works by replacing standard record time series, represented by a binary sequence 328 
of presences and absences, with presences expressed as probabilities that represent the reliability of each 329 
individual record (i.e., a likelihood that the given observation is true) (Jarić and Roberts, 2014). In effect, the 330 
number or records in a dataset is replaced by a sum of probability values assigned to each record, indicating the 331 
most likely number of observations. Additionally, individual record reliabilities are used to estimate the most 332 
likely endpoint of a sighting record, based on the likelihood that all later records in the dataset are false. Brook 333 
et al. (2019) introduced additional improvements to this approach by also estimating the likely year of the first 334 
true record, based on the likelihood that all preceding records are false. Together, these approaches can 335 
substantially improve the predictive power of origin and end-point (extinction) estimation methods when 336 
occurrence records display mixed-certainty. 337 
 338 

A further simple and powerful extension to OLE and other existing temporal range estimation methods was 339 
proposed by Brook et al. (2019). The approach is based on resampling without replacement from a dataset of 340 
records, where reliability of each record is used as its probability of being sampled and included. Repeated 341 
sampling and extinction inference based on each sample record produces a range and frequency distribution 342 
around the extinction date. The method was demonstrated to be robust and to perform well, and has a number 343 
of advantages compared to existing methods: 1) it is based on resampling of records and these can thereafter be 344 
used as input for other end/origin estimation methods, including OLE; 2) it is simple and easily applicable using 345 
the freely available R script; 3) it allows direct integration of overlapping records (Brook et al., 2019). 346 
 347 

3.2 Methods that account for collection effort 348 
 349 

As discussed previously, relatively stable collection effort represents one of the key assumptions of OLE and 350 
other methods from this group. Any changes in collection effort over geological time will be confounded with 351 
true changes and trends in the presence and frequency of phenomenon studied, and might consequently lead 352 
to biased results. We note this to potentially be less of an issue for archaeology relative to other fields using 353 
these techniques (Section 2.1), but there are situations where collection efforts may be biased in favour of older 354 
or more recent sediments due to temporal or geographic biases.  355 

 356 
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When a substantial level of temporal instability in collection effort is suspected, methods such as that 357 
introduced by McCarthy (1998) should be considered. Also known as the "Partial Solow equation", this method 358 
represents a modification of the Solow method (Solow, 1993) and uses indices of collection effort made in each 359 
discrete time unit (i.e., year). It can be used to estimate the likelihood that a phenomenon has ended, and the 360 
likely extinction time, based on the proportion of collection effort made prior to the last known record and the 361 
total collection effort, as well as the total number of records. 362 
 363 

3.3 Methods designed for extreme data scarcity 364 
 365 

Archaeological records can be scarce, which can complicate or obstruct application of quantitative methods 366 
such as OLE. Overall, sample sizes below five records are not recommended for OLE and other standard methods 367 
from this group, and usually cannot be applied to less than three records. However, two extinction inference 368 
methods presented here are designed to handle such extreme data scarcity. A non-parametric method 369 
introduced by Solow and Roberts (2003), and based on the truncation point estimate by Robson and Whitlock 370 
(1964), provides inference of the extinction date based on the timing of the last two records. Here, extinction 371 
likelihood simply represents a proportion of the interval between the last two records, and the interval between 372 
the second-last record and the end of the observation period. This technique was recently applied to estimate 373 
the Lomekwian’s date of origin (Key et al., 2021b). 374 
 375 
Roberts and Jarić (2020) further proposed an approach based on the Partial Solow equation (McCarthy, 1998) 376 
that is able to infer extinction probability and confidence intervals for phenomena known from only a single 377 
record. Using indices of collection effort, extinction likelihood represents a proportion between the collection 378 
effort made prior to the only known record and the total effort over the whole collection period (Roberts and 379 
Jarić, 2020).  380 
 381 

Considering the scarcity of input data, both methods are very conservative, and produce wide confidence 382 
intervals. Nevertheless, for such data-deficient situations, these methods often represent the only available 383 
quantitative indices for the temporal spans of phenomena, and can be used as just one line of evidence, or as a 384 
preliminary screening tool (Roberts and Jarić, 2020). New archaeological phenomena or exceptional finds very 385 
rarely preserved (e.g., Lower and Middle Palaeolithic organic technology) would benefit most from these 386 
methods.  387 
 388 

4. Discussion and Conclusion 389 
 390 
The adage ‘garbage in, garbage out’ applies equally to optimal linear estimation as it does to any other modelling 391 
technique. Following Pettitt and Zilhão’s (2015) example, we wanted to emphasise the assumptions underlying 392 
the models detailed here and used elsewhere (Key et al., 2021a, 2021b), and to suggest points of good practice 393 
for those wishing to use them. There are no ‘one rule fits all’ approaches to meeting all assumptions, and in our 394 
own experience we have taken the decision to slightly modify how we define discrete archaeological occurrences 395 
depending on the context (e.g., Bebber and Key, 2021). However, by detailing these suggestions as the methods 396 
are introduced, we hope to create an environment where OLE can be applied to the archaeological record with 397 
minimal room for misleading and inaccurate results. 398 
 399 
Predictive models are, of course, just that; predictions. They can be based on the best available evidence, but it 400 
is nevertheless the case that unexpected or unknowable influences could have been acting on the archaeological 401 
phenomenon in question, or that key information has been obscured to date due to human-based search 402 
biases/effort or taphonomic processes. Future discoveries therefore have the potential to overhaul any 403 
predictions made using the techniques outlined here by extending temporal ranges or increasing/decreasing 404 
predicted slopes of decline/growth. This should not be viewed as a failure on a part of the model. Instead, it is 405 
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an invitation to reapply the model using these new data, and to continuously update estimated temporal ranges 406 
as new information comes to light.  407 
 408 
OLE is an accessible, user-friendly and methodologically transparent temporal range estimation method applied 409 
via a single set of equations. It is for these reasons it has become widely used within ecological and 410 
palaeontological studies (Rout et al., 2010; Lee, 2014). We therefore hope that OLE and the other techniques 411 
described here become accepted and applied within archaeological research. Doing so will allow us to gain a 412 
better understanding the temporal presence of past human behaviour.  413 
 414 
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